1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
15 #include "transaction.h"
18 #include "inode-map.h"
20 #include "dev-replace.h"
23 #define BTRFS_ROOT_TRANS_TAG 0
25 static const unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
26 [TRANS_STATE_RUNNING
] = 0U,
27 [TRANS_STATE_BLOCKED
] = __TRANS_START
,
28 [TRANS_STATE_COMMIT_START
] = (__TRANS_START
| __TRANS_ATTACH
),
29 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_START
|
32 [TRANS_STATE_UNBLOCKED
] = (__TRANS_START
|
36 [TRANS_STATE_COMPLETED
] = (__TRANS_START
|
42 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
44 WARN_ON(refcount_read(&transaction
->use_count
) == 0);
45 if (refcount_dec_and_test(&transaction
->use_count
)) {
46 BUG_ON(!list_empty(&transaction
->list
));
47 WARN_ON(!RB_EMPTY_ROOT(
48 &transaction
->delayed_refs
.href_root
.rb_root
));
49 if (transaction
->delayed_refs
.pending_csums
)
50 btrfs_err(transaction
->fs_info
,
51 "pending csums is %llu",
52 transaction
->delayed_refs
.pending_csums
);
54 * If any block groups are found in ->deleted_bgs then it's
55 * because the transaction was aborted and a commit did not
56 * happen (things failed before writing the new superblock
57 * and calling btrfs_finish_extent_commit()), so we can not
58 * discard the physical locations of the block groups.
60 while (!list_empty(&transaction
->deleted_bgs
)) {
61 struct btrfs_block_group_cache
*cache
;
63 cache
= list_first_entry(&transaction
->deleted_bgs
,
64 struct btrfs_block_group_cache
,
66 list_del_init(&cache
->bg_list
);
67 btrfs_put_block_group_trimming(cache
);
68 btrfs_put_block_group(cache
);
70 WARN_ON(!list_empty(&transaction
->dev_update_list
));
75 static noinline
void switch_commit_roots(struct btrfs_transaction
*trans
)
77 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
78 struct btrfs_root
*root
, *tmp
;
80 down_write(&fs_info
->commit_root_sem
);
81 list_for_each_entry_safe(root
, tmp
, &trans
->switch_commits
,
83 list_del_init(&root
->dirty_list
);
84 free_extent_buffer(root
->commit_root
);
85 root
->commit_root
= btrfs_root_node(root
);
86 if (is_fstree(root
->root_key
.objectid
))
87 btrfs_unpin_free_ino(root
);
88 extent_io_tree_release(&root
->dirty_log_pages
);
89 btrfs_qgroup_clean_swapped_blocks(root
);
92 /* We can free old roots now. */
93 spin_lock(&trans
->dropped_roots_lock
);
94 while (!list_empty(&trans
->dropped_roots
)) {
95 root
= list_first_entry(&trans
->dropped_roots
,
96 struct btrfs_root
, root_list
);
97 list_del_init(&root
->root_list
);
98 spin_unlock(&trans
->dropped_roots_lock
);
99 btrfs_drop_and_free_fs_root(fs_info
, root
);
100 spin_lock(&trans
->dropped_roots_lock
);
102 spin_unlock(&trans
->dropped_roots_lock
);
103 up_write(&fs_info
->commit_root_sem
);
106 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
109 if (type
& TRANS_EXTWRITERS
)
110 atomic_inc(&trans
->num_extwriters
);
113 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
116 if (type
& TRANS_EXTWRITERS
)
117 atomic_dec(&trans
->num_extwriters
);
120 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
123 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
126 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
128 return atomic_read(&trans
->num_extwriters
);
132 * either allocate a new transaction or hop into the existing one
134 static noinline
int join_transaction(struct btrfs_fs_info
*fs_info
,
137 struct btrfs_transaction
*cur_trans
;
139 spin_lock(&fs_info
->trans_lock
);
141 /* The file system has been taken offline. No new transactions. */
142 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
143 spin_unlock(&fs_info
->trans_lock
);
147 cur_trans
= fs_info
->running_transaction
;
149 if (cur_trans
->aborted
) {
150 spin_unlock(&fs_info
->trans_lock
);
151 return cur_trans
->aborted
;
153 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
154 spin_unlock(&fs_info
->trans_lock
);
157 refcount_inc(&cur_trans
->use_count
);
158 atomic_inc(&cur_trans
->num_writers
);
159 extwriter_counter_inc(cur_trans
, type
);
160 spin_unlock(&fs_info
->trans_lock
);
163 spin_unlock(&fs_info
->trans_lock
);
166 * If we are ATTACH, we just want to catch the current transaction,
167 * and commit it. If there is no transaction, just return ENOENT.
169 if (type
== TRANS_ATTACH
)
173 * JOIN_NOLOCK only happens during the transaction commit, so
174 * it is impossible that ->running_transaction is NULL
176 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
178 cur_trans
= kmalloc(sizeof(*cur_trans
), GFP_NOFS
);
182 spin_lock(&fs_info
->trans_lock
);
183 if (fs_info
->running_transaction
) {
185 * someone started a transaction after we unlocked. Make sure
186 * to redo the checks above
190 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
191 spin_unlock(&fs_info
->trans_lock
);
196 cur_trans
->fs_info
= fs_info
;
197 atomic_set(&cur_trans
->num_writers
, 1);
198 extwriter_counter_init(cur_trans
, type
);
199 init_waitqueue_head(&cur_trans
->writer_wait
);
200 init_waitqueue_head(&cur_trans
->commit_wait
);
201 cur_trans
->state
= TRANS_STATE_RUNNING
;
203 * One for this trans handle, one so it will live on until we
204 * commit the transaction.
206 refcount_set(&cur_trans
->use_count
, 2);
207 cur_trans
->flags
= 0;
208 cur_trans
->start_time
= ktime_get_seconds();
210 memset(&cur_trans
->delayed_refs
, 0, sizeof(cur_trans
->delayed_refs
));
212 cur_trans
->delayed_refs
.href_root
= RB_ROOT_CACHED
;
213 cur_trans
->delayed_refs
.dirty_extent_root
= RB_ROOT
;
214 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
217 * although the tree mod log is per file system and not per transaction,
218 * the log must never go across transaction boundaries.
221 if (!list_empty(&fs_info
->tree_mod_seq_list
))
222 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
223 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
224 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
225 atomic64_set(&fs_info
->tree_mod_seq
, 0);
227 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
229 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
230 INIT_LIST_HEAD(&cur_trans
->dev_update_list
);
231 INIT_LIST_HEAD(&cur_trans
->switch_commits
);
232 INIT_LIST_HEAD(&cur_trans
->dirty_bgs
);
233 INIT_LIST_HEAD(&cur_trans
->io_bgs
);
234 INIT_LIST_HEAD(&cur_trans
->dropped_roots
);
235 mutex_init(&cur_trans
->cache_write_mutex
);
236 spin_lock_init(&cur_trans
->dirty_bgs_lock
);
237 INIT_LIST_HEAD(&cur_trans
->deleted_bgs
);
238 spin_lock_init(&cur_trans
->dropped_roots_lock
);
239 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
240 extent_io_tree_init(fs_info
, &cur_trans
->dirty_pages
,
241 IO_TREE_TRANS_DIRTY_PAGES
, fs_info
->btree_inode
);
242 fs_info
->generation
++;
243 cur_trans
->transid
= fs_info
->generation
;
244 fs_info
->running_transaction
= cur_trans
;
245 cur_trans
->aborted
= 0;
246 spin_unlock(&fs_info
->trans_lock
);
252 * this does all the record keeping required to make sure that a reference
253 * counted root is properly recorded in a given transaction. This is required
254 * to make sure the old root from before we joined the transaction is deleted
255 * when the transaction commits
257 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
258 struct btrfs_root
*root
,
261 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
263 if ((test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
264 root
->last_trans
< trans
->transid
) || force
) {
265 WARN_ON(root
== fs_info
->extent_root
);
266 WARN_ON(!force
&& root
->commit_root
!= root
->node
);
269 * see below for IN_TRANS_SETUP usage rules
270 * we have the reloc mutex held now, so there
271 * is only one writer in this function
273 set_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
275 /* make sure readers find IN_TRANS_SETUP before
276 * they find our root->last_trans update
280 spin_lock(&fs_info
->fs_roots_radix_lock
);
281 if (root
->last_trans
== trans
->transid
&& !force
) {
282 spin_unlock(&fs_info
->fs_roots_radix_lock
);
285 radix_tree_tag_set(&fs_info
->fs_roots_radix
,
286 (unsigned long)root
->root_key
.objectid
,
287 BTRFS_ROOT_TRANS_TAG
);
288 spin_unlock(&fs_info
->fs_roots_radix_lock
);
289 root
->last_trans
= trans
->transid
;
291 /* this is pretty tricky. We don't want to
292 * take the relocation lock in btrfs_record_root_in_trans
293 * unless we're really doing the first setup for this root in
296 * Normally we'd use root->last_trans as a flag to decide
297 * if we want to take the expensive mutex.
299 * But, we have to set root->last_trans before we
300 * init the relocation root, otherwise, we trip over warnings
301 * in ctree.c. The solution used here is to flag ourselves
302 * with root IN_TRANS_SETUP. When this is 1, we're still
303 * fixing up the reloc trees and everyone must wait.
305 * When this is zero, they can trust root->last_trans and fly
306 * through btrfs_record_root_in_trans without having to take the
307 * lock. smp_wmb() makes sure that all the writes above are
308 * done before we pop in the zero below
310 btrfs_init_reloc_root(trans
, root
);
311 smp_mb__before_atomic();
312 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
);
318 void btrfs_add_dropped_root(struct btrfs_trans_handle
*trans
,
319 struct btrfs_root
*root
)
321 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
322 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
324 /* Add ourselves to the transaction dropped list */
325 spin_lock(&cur_trans
->dropped_roots_lock
);
326 list_add_tail(&root
->root_list
, &cur_trans
->dropped_roots
);
327 spin_unlock(&cur_trans
->dropped_roots_lock
);
329 /* Make sure we don't try to update the root at commit time */
330 spin_lock(&fs_info
->fs_roots_radix_lock
);
331 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
332 (unsigned long)root
->root_key
.objectid
,
333 BTRFS_ROOT_TRANS_TAG
);
334 spin_unlock(&fs_info
->fs_roots_radix_lock
);
337 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
338 struct btrfs_root
*root
)
340 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
342 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
346 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
350 if (root
->last_trans
== trans
->transid
&&
351 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP
, &root
->state
))
354 mutex_lock(&fs_info
->reloc_mutex
);
355 record_root_in_trans(trans
, root
, 0);
356 mutex_unlock(&fs_info
->reloc_mutex
);
361 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
363 return (trans
->state
>= TRANS_STATE_BLOCKED
&&
364 trans
->state
< TRANS_STATE_UNBLOCKED
&&
368 /* wait for commit against the current transaction to become unblocked
369 * when this is done, it is safe to start a new transaction, but the current
370 * transaction might not be fully on disk.
372 static void wait_current_trans(struct btrfs_fs_info
*fs_info
)
374 struct btrfs_transaction
*cur_trans
;
376 spin_lock(&fs_info
->trans_lock
);
377 cur_trans
= fs_info
->running_transaction
;
378 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
379 refcount_inc(&cur_trans
->use_count
);
380 spin_unlock(&fs_info
->trans_lock
);
382 wait_event(fs_info
->transaction_wait
,
383 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
385 btrfs_put_transaction(cur_trans
);
387 spin_unlock(&fs_info
->trans_lock
);
391 static int may_wait_transaction(struct btrfs_fs_info
*fs_info
, int type
)
393 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
))
396 if (type
== TRANS_START
)
402 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
404 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
406 if (!fs_info
->reloc_ctl
||
407 !test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
408 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
415 static struct btrfs_trans_handle
*
416 start_transaction(struct btrfs_root
*root
, unsigned int num_items
,
417 unsigned int type
, enum btrfs_reserve_flush_enum flush
,
418 bool enforce_qgroups
)
420 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
421 struct btrfs_block_rsv
*delayed_refs_rsv
= &fs_info
->delayed_refs_rsv
;
422 struct btrfs_trans_handle
*h
;
423 struct btrfs_transaction
*cur_trans
;
425 u64 qgroup_reserved
= 0;
426 bool reloc_reserved
= false;
429 /* Send isn't supposed to start transactions. */
430 ASSERT(current
->journal_info
!= BTRFS_SEND_TRANS_STUB
);
432 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
433 return ERR_PTR(-EROFS
);
435 if (current
->journal_info
) {
436 WARN_ON(type
& TRANS_EXTWRITERS
);
437 h
= current
->journal_info
;
438 refcount_inc(&h
->use_count
);
439 WARN_ON(refcount_read(&h
->use_count
) > 2);
440 h
->orig_rsv
= h
->block_rsv
;
446 * Do the reservation before we join the transaction so we can do all
447 * the appropriate flushing if need be.
449 if (num_items
&& root
!= fs_info
->chunk_root
) {
450 struct btrfs_block_rsv
*rsv
= &fs_info
->trans_block_rsv
;
451 u64 delayed_refs_bytes
= 0;
453 qgroup_reserved
= num_items
* fs_info
->nodesize
;
454 ret
= btrfs_qgroup_reserve_meta_pertrans(root
, qgroup_reserved
,
460 * We want to reserve all the bytes we may need all at once, so
461 * we only do 1 enospc flushing cycle per transaction start. We
462 * accomplish this by simply assuming we'll do 2 x num_items
463 * worth of delayed refs updates in this trans handle, and
464 * refill that amount for whatever is missing in the reserve.
466 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, num_items
);
467 if (delayed_refs_rsv
->full
== 0) {
468 delayed_refs_bytes
= num_bytes
;
473 * Do the reservation for the relocation root creation
475 if (need_reserve_reloc_root(root
)) {
476 num_bytes
+= fs_info
->nodesize
;
477 reloc_reserved
= true;
480 ret
= btrfs_block_rsv_add(root
, rsv
, num_bytes
, flush
);
483 if (delayed_refs_bytes
) {
484 btrfs_migrate_to_delayed_refs_rsv(fs_info
, rsv
,
486 num_bytes
-= delayed_refs_bytes
;
488 } else if (num_items
== 0 && flush
== BTRFS_RESERVE_FLUSH_ALL
&&
489 !delayed_refs_rsv
->full
) {
491 * Some people call with btrfs_start_transaction(root, 0)
492 * because they can be throttled, but have some other mechanism
493 * for reserving space. We still want these guys to refill the
494 * delayed block_rsv so just add 1 items worth of reservation
497 ret
= btrfs_delayed_refs_rsv_refill(fs_info
, flush
);
502 h
= kmem_cache_zalloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
509 * If we are JOIN_NOLOCK we're already committing a transaction and
510 * waiting on this guy, so we don't need to do the sb_start_intwrite
511 * because we're already holding a ref. We need this because we could
512 * have raced in and did an fsync() on a file which can kick a commit
513 * and then we deadlock with somebody doing a freeze.
515 * If we are ATTACH, it means we just want to catch the current
516 * transaction and commit it, so we needn't do sb_start_intwrite().
518 if (type
& __TRANS_FREEZABLE
)
519 sb_start_intwrite(fs_info
->sb
);
521 if (may_wait_transaction(fs_info
, type
))
522 wait_current_trans(fs_info
);
525 ret
= join_transaction(fs_info
, type
);
527 wait_current_trans(fs_info
);
528 if (unlikely(type
== TRANS_ATTACH
))
531 } while (ret
== -EBUSY
);
536 cur_trans
= fs_info
->running_transaction
;
538 h
->transid
= cur_trans
->transid
;
539 h
->transaction
= cur_trans
;
541 refcount_set(&h
->use_count
, 1);
542 h
->fs_info
= root
->fs_info
;
545 h
->can_flush_pending_bgs
= true;
546 INIT_LIST_HEAD(&h
->new_bgs
);
549 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
&&
550 may_wait_transaction(fs_info
, type
)) {
551 current
->journal_info
= h
;
552 btrfs_commit_transaction(h
);
557 trace_btrfs_space_reservation(fs_info
, "transaction",
558 h
->transid
, num_bytes
, 1);
559 h
->block_rsv
= &fs_info
->trans_block_rsv
;
560 h
->bytes_reserved
= num_bytes
;
561 h
->reloc_reserved
= reloc_reserved
;
565 btrfs_record_root_in_trans(h
, root
);
567 if (!current
->journal_info
)
568 current
->journal_info
= h
;
572 if (type
& __TRANS_FREEZABLE
)
573 sb_end_intwrite(fs_info
->sb
);
574 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
577 btrfs_block_rsv_release(fs_info
, &fs_info
->trans_block_rsv
,
580 btrfs_qgroup_free_meta_pertrans(root
, qgroup_reserved
);
584 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
585 unsigned int num_items
)
587 return start_transaction(root
, num_items
, TRANS_START
,
588 BTRFS_RESERVE_FLUSH_ALL
, true);
591 struct btrfs_trans_handle
*btrfs_start_transaction_fallback_global_rsv(
592 struct btrfs_root
*root
,
593 unsigned int num_items
,
596 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
597 struct btrfs_trans_handle
*trans
;
602 * We have two callers: unlink and block group removal. The
603 * former should succeed even if we will temporarily exceed
604 * quota and the latter operates on the extent root so
605 * qgroup enforcement is ignored anyway.
607 trans
= start_transaction(root
, num_items
, TRANS_START
,
608 BTRFS_RESERVE_FLUSH_ALL
, false);
609 if (!IS_ERR(trans
) || PTR_ERR(trans
) != -ENOSPC
)
612 trans
= btrfs_start_transaction(root
, 0);
616 num_bytes
= btrfs_calc_trans_metadata_size(fs_info
, num_items
);
617 ret
= btrfs_cond_migrate_bytes(fs_info
, &fs_info
->trans_block_rsv
,
618 num_bytes
, min_factor
);
620 btrfs_end_transaction(trans
);
624 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
625 trans
->bytes_reserved
= num_bytes
;
626 trace_btrfs_space_reservation(fs_info
, "transaction",
627 trans
->transid
, num_bytes
, 1);
632 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
634 return start_transaction(root
, 0, TRANS_JOIN
, BTRFS_RESERVE_NO_FLUSH
,
638 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
640 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
,
641 BTRFS_RESERVE_NO_FLUSH
, true);
645 * btrfs_attach_transaction() - catch the running transaction
647 * It is used when we want to commit the current the transaction, but
648 * don't want to start a new one.
650 * Note: If this function return -ENOENT, it just means there is no
651 * running transaction. But it is possible that the inactive transaction
652 * is still in the memory, not fully on disk. If you hope there is no
653 * inactive transaction in the fs when -ENOENT is returned, you should
655 * btrfs_attach_transaction_barrier()
657 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
659 return start_transaction(root
, 0, TRANS_ATTACH
,
660 BTRFS_RESERVE_NO_FLUSH
, true);
664 * btrfs_attach_transaction_barrier() - catch the running transaction
666 * It is similar to the above function, the difference is this one
667 * will wait for all the inactive transactions until they fully
670 struct btrfs_trans_handle
*
671 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
673 struct btrfs_trans_handle
*trans
;
675 trans
= start_transaction(root
, 0, TRANS_ATTACH
,
676 BTRFS_RESERVE_NO_FLUSH
, true);
677 if (trans
== ERR_PTR(-ENOENT
))
678 btrfs_wait_for_commit(root
->fs_info
, 0);
683 /* wait for a transaction commit to be fully complete */
684 static noinline
void wait_for_commit(struct btrfs_transaction
*commit
)
686 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
689 int btrfs_wait_for_commit(struct btrfs_fs_info
*fs_info
, u64 transid
)
691 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
695 if (transid
<= fs_info
->last_trans_committed
)
698 /* find specified transaction */
699 spin_lock(&fs_info
->trans_lock
);
700 list_for_each_entry(t
, &fs_info
->trans_list
, list
) {
701 if (t
->transid
== transid
) {
703 refcount_inc(&cur_trans
->use_count
);
707 if (t
->transid
> transid
) {
712 spin_unlock(&fs_info
->trans_lock
);
715 * The specified transaction doesn't exist, or we
716 * raced with btrfs_commit_transaction
719 if (transid
> fs_info
->last_trans_committed
)
724 /* find newest transaction that is committing | committed */
725 spin_lock(&fs_info
->trans_lock
);
726 list_for_each_entry_reverse(t
, &fs_info
->trans_list
,
728 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
729 if (t
->state
== TRANS_STATE_COMPLETED
)
732 refcount_inc(&cur_trans
->use_count
);
736 spin_unlock(&fs_info
->trans_lock
);
738 goto out
; /* nothing committing|committed */
741 wait_for_commit(cur_trans
);
742 btrfs_put_transaction(cur_trans
);
747 void btrfs_throttle(struct btrfs_fs_info
*fs_info
)
749 wait_current_trans(fs_info
);
752 static int should_end_transaction(struct btrfs_trans_handle
*trans
)
754 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
756 if (btrfs_check_space_for_delayed_refs(fs_info
))
759 return !!btrfs_block_rsv_check(&fs_info
->global_block_rsv
, 5);
762 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
)
764 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
767 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
||
768 cur_trans
->delayed_refs
.flushing
)
771 return should_end_transaction(trans
);
774 static void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
)
777 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
779 if (!trans
->block_rsv
) {
780 ASSERT(!trans
->bytes_reserved
);
784 if (!trans
->bytes_reserved
)
787 ASSERT(trans
->block_rsv
== &fs_info
->trans_block_rsv
);
788 trace_btrfs_space_reservation(fs_info
, "transaction",
789 trans
->transid
, trans
->bytes_reserved
, 0);
790 btrfs_block_rsv_release(fs_info
, trans
->block_rsv
,
791 trans
->bytes_reserved
);
792 trans
->bytes_reserved
= 0;
795 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
798 struct btrfs_fs_info
*info
= trans
->fs_info
;
799 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
800 int lock
= (trans
->type
!= TRANS_JOIN_NOLOCK
);
803 if (refcount_read(&trans
->use_count
) > 1) {
804 refcount_dec(&trans
->use_count
);
805 trans
->block_rsv
= trans
->orig_rsv
;
809 btrfs_trans_release_metadata(trans
);
810 trans
->block_rsv
= NULL
;
812 btrfs_create_pending_block_groups(trans
);
814 btrfs_trans_release_chunk_metadata(trans
);
816 if (lock
&& READ_ONCE(cur_trans
->state
) == TRANS_STATE_BLOCKED
) {
818 return btrfs_commit_transaction(trans
);
820 wake_up_process(info
->transaction_kthread
);
823 if (trans
->type
& __TRANS_FREEZABLE
)
824 sb_end_intwrite(info
->sb
);
826 WARN_ON(cur_trans
!= info
->running_transaction
);
827 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
828 atomic_dec(&cur_trans
->num_writers
);
829 extwriter_counter_dec(cur_trans
, trans
->type
);
831 cond_wake_up(&cur_trans
->writer_wait
);
832 btrfs_put_transaction(cur_trans
);
834 if (current
->journal_info
== trans
)
835 current
->journal_info
= NULL
;
838 btrfs_run_delayed_iputs(info
);
840 if (trans
->aborted
||
841 test_bit(BTRFS_FS_STATE_ERROR
, &info
->fs_state
)) {
842 wake_up_process(info
->transaction_kthread
);
846 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
850 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
)
852 return __btrfs_end_transaction(trans
, 0);
855 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
)
857 return __btrfs_end_transaction(trans
, 1);
861 * when btree blocks are allocated, they have some corresponding bits set for
862 * them in one of two extent_io trees. This is used to make sure all of
863 * those extents are sent to disk but does not wait on them
865 int btrfs_write_marked_extents(struct btrfs_fs_info
*fs_info
,
866 struct extent_io_tree
*dirty_pages
, int mark
)
870 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
871 struct extent_state
*cached_state
= NULL
;
875 atomic_inc(&BTRFS_I(fs_info
->btree_inode
)->sync_writers
);
876 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
877 mark
, &cached_state
)) {
878 bool wait_writeback
= false;
880 err
= convert_extent_bit(dirty_pages
, start
, end
,
882 mark
, &cached_state
);
884 * convert_extent_bit can return -ENOMEM, which is most of the
885 * time a temporary error. So when it happens, ignore the error
886 * and wait for writeback of this range to finish - because we
887 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
888 * to __btrfs_wait_marked_extents() would not know that
889 * writeback for this range started and therefore wouldn't
890 * wait for it to finish - we don't want to commit a
891 * superblock that points to btree nodes/leafs for which
892 * writeback hasn't finished yet (and without errors).
893 * We cleanup any entries left in the io tree when committing
894 * the transaction (through extent_io_tree_release()).
896 if (err
== -ENOMEM
) {
898 wait_writeback
= true;
901 err
= filemap_fdatawrite_range(mapping
, start
, end
);
904 else if (wait_writeback
)
905 werr
= filemap_fdatawait_range(mapping
, start
, end
);
906 free_extent_state(cached_state
);
911 atomic_dec(&BTRFS_I(fs_info
->btree_inode
)->sync_writers
);
916 * when btree blocks are allocated, they have some corresponding bits set for
917 * them in one of two extent_io trees. This is used to make sure all of
918 * those extents are on disk for transaction or log commit. We wait
919 * on all the pages and clear them from the dirty pages state tree
921 static int __btrfs_wait_marked_extents(struct btrfs_fs_info
*fs_info
,
922 struct extent_io_tree
*dirty_pages
)
926 struct address_space
*mapping
= fs_info
->btree_inode
->i_mapping
;
927 struct extent_state
*cached_state
= NULL
;
931 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
932 EXTENT_NEED_WAIT
, &cached_state
)) {
934 * Ignore -ENOMEM errors returned by clear_extent_bit().
935 * When committing the transaction, we'll remove any entries
936 * left in the io tree. For a log commit, we don't remove them
937 * after committing the log because the tree can be accessed
938 * concurrently - we do it only at transaction commit time when
939 * it's safe to do it (through extent_io_tree_release()).
941 err
= clear_extent_bit(dirty_pages
, start
, end
,
942 EXTENT_NEED_WAIT
, 0, 0, &cached_state
);
946 err
= filemap_fdatawait_range(mapping
, start
, end
);
949 free_extent_state(cached_state
);
959 int btrfs_wait_extents(struct btrfs_fs_info
*fs_info
,
960 struct extent_io_tree
*dirty_pages
)
965 err
= __btrfs_wait_marked_extents(fs_info
, dirty_pages
);
966 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR
, &fs_info
->flags
))
974 int btrfs_wait_tree_log_extents(struct btrfs_root
*log_root
, int mark
)
976 struct btrfs_fs_info
*fs_info
= log_root
->fs_info
;
977 struct extent_io_tree
*dirty_pages
= &log_root
->dirty_log_pages
;
981 ASSERT(log_root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
);
983 err
= __btrfs_wait_marked_extents(fs_info
, dirty_pages
);
984 if ((mark
& EXTENT_DIRTY
) &&
985 test_and_clear_bit(BTRFS_FS_LOG1_ERR
, &fs_info
->flags
))
988 if ((mark
& EXTENT_NEW
) &&
989 test_and_clear_bit(BTRFS_FS_LOG2_ERR
, &fs_info
->flags
))
998 * When btree blocks are allocated the corresponding extents are marked dirty.
999 * This function ensures such extents are persisted on disk for transaction or
1002 * @trans: transaction whose dirty pages we'd like to write
1004 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
)
1008 struct extent_io_tree
*dirty_pages
= &trans
->transaction
->dirty_pages
;
1009 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1010 struct blk_plug plug
;
1012 blk_start_plug(&plug
);
1013 ret
= btrfs_write_marked_extents(fs_info
, dirty_pages
, EXTENT_DIRTY
);
1014 blk_finish_plug(&plug
);
1015 ret2
= btrfs_wait_extents(fs_info
, dirty_pages
);
1017 extent_io_tree_release(&trans
->transaction
->dirty_pages
);
1028 * this is used to update the root pointer in the tree of tree roots.
1030 * But, in the case of the extent allocation tree, updating the root
1031 * pointer may allocate blocks which may change the root of the extent
1034 * So, this loops and repeats and makes sure the cowonly root didn't
1035 * change while the root pointer was being updated in the metadata.
1037 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
1038 struct btrfs_root
*root
)
1041 u64 old_root_bytenr
;
1043 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1044 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1046 old_root_used
= btrfs_root_used(&root
->root_item
);
1049 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
1050 if (old_root_bytenr
== root
->node
->start
&&
1051 old_root_used
== btrfs_root_used(&root
->root_item
))
1054 btrfs_set_root_node(&root
->root_item
, root
->node
);
1055 ret
= btrfs_update_root(trans
, tree_root
,
1061 old_root_used
= btrfs_root_used(&root
->root_item
);
1068 * update all the cowonly tree roots on disk
1070 * The error handling in this function may not be obvious. Any of the
1071 * failures will cause the file system to go offline. We still need
1072 * to clean up the delayed refs.
1074 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
)
1076 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1077 struct list_head
*dirty_bgs
= &trans
->transaction
->dirty_bgs
;
1078 struct list_head
*io_bgs
= &trans
->transaction
->io_bgs
;
1079 struct list_head
*next
;
1080 struct extent_buffer
*eb
;
1083 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
1084 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
1086 btrfs_tree_unlock(eb
);
1087 free_extent_buffer(eb
);
1092 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1096 ret
= btrfs_run_dev_stats(trans
);
1099 ret
= btrfs_run_dev_replace(trans
);
1102 ret
= btrfs_run_qgroups(trans
);
1106 ret
= btrfs_setup_space_cache(trans
);
1110 /* run_qgroups might have added some more refs */
1111 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1115 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
1116 struct btrfs_root
*root
;
1117 next
= fs_info
->dirty_cowonly_roots
.next
;
1118 list_del_init(next
);
1119 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
1120 clear_bit(BTRFS_ROOT_DIRTY
, &root
->state
);
1122 if (root
!= fs_info
->extent_root
)
1123 list_add_tail(&root
->dirty_list
,
1124 &trans
->transaction
->switch_commits
);
1125 ret
= update_cowonly_root(trans
, root
);
1128 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1133 while (!list_empty(dirty_bgs
) || !list_empty(io_bgs
)) {
1134 ret
= btrfs_write_dirty_block_groups(trans
);
1137 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1142 if (!list_empty(&fs_info
->dirty_cowonly_roots
))
1145 list_add_tail(&fs_info
->extent_root
->dirty_list
,
1146 &trans
->transaction
->switch_commits
);
1148 /* Update dev-replace pointer once everything is committed */
1149 fs_info
->dev_replace
.committed_cursor_left
=
1150 fs_info
->dev_replace
.cursor_left_last_write_of_item
;
1156 * dead roots are old snapshots that need to be deleted. This allocates
1157 * a dirty root struct and adds it into the list of dead roots that need to
1160 void btrfs_add_dead_root(struct btrfs_root
*root
)
1162 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1164 spin_lock(&fs_info
->trans_lock
);
1165 if (list_empty(&root
->root_list
))
1166 list_add_tail(&root
->root_list
, &fs_info
->dead_roots
);
1167 spin_unlock(&fs_info
->trans_lock
);
1171 * update all the cowonly tree roots on disk
1173 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
)
1175 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1176 struct btrfs_root
*gang
[8];
1181 spin_lock(&fs_info
->fs_roots_radix_lock
);
1183 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1186 BTRFS_ROOT_TRANS_TAG
);
1189 for (i
= 0; i
< ret
; i
++) {
1190 struct btrfs_root
*root
= gang
[i
];
1191 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1192 (unsigned long)root
->root_key
.objectid
,
1193 BTRFS_ROOT_TRANS_TAG
);
1194 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1196 btrfs_free_log(trans
, root
);
1197 btrfs_update_reloc_root(trans
, root
);
1199 btrfs_save_ino_cache(root
, trans
);
1201 /* see comments in should_cow_block() */
1202 clear_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1203 smp_mb__after_atomic();
1205 if (root
->commit_root
!= root
->node
) {
1206 list_add_tail(&root
->dirty_list
,
1207 &trans
->transaction
->switch_commits
);
1208 btrfs_set_root_node(&root
->root_item
,
1212 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1215 spin_lock(&fs_info
->fs_roots_radix_lock
);
1218 btrfs_qgroup_free_meta_all_pertrans(root
);
1221 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1226 * defrag a given btree.
1227 * Every leaf in the btree is read and defragged.
1229 int btrfs_defrag_root(struct btrfs_root
*root
)
1231 struct btrfs_fs_info
*info
= root
->fs_info
;
1232 struct btrfs_trans_handle
*trans
;
1235 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
))
1239 trans
= btrfs_start_transaction(root
, 0);
1241 return PTR_ERR(trans
);
1243 ret
= btrfs_defrag_leaves(trans
, root
);
1245 btrfs_end_transaction(trans
);
1246 btrfs_btree_balance_dirty(info
);
1249 if (btrfs_fs_closing(info
) || ret
!= -EAGAIN
)
1252 if (btrfs_defrag_cancelled(info
)) {
1253 btrfs_debug(info
, "defrag_root cancelled");
1258 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING
, &root
->state
);
1263 * Do all special snapshot related qgroup dirty hack.
1265 * Will do all needed qgroup inherit and dirty hack like switch commit
1266 * roots inside one transaction and write all btree into disk, to make
1269 static int qgroup_account_snapshot(struct btrfs_trans_handle
*trans
,
1270 struct btrfs_root
*src
,
1271 struct btrfs_root
*parent
,
1272 struct btrfs_qgroup_inherit
*inherit
,
1275 struct btrfs_fs_info
*fs_info
= src
->fs_info
;
1279 * Save some performance in the case that qgroups are not
1280 * enabled. If this check races with the ioctl, rescan will
1283 if (!test_bit(BTRFS_FS_QUOTA_ENABLED
, &fs_info
->flags
))
1287 * Ensure dirty @src will be committed. Or, after coming
1288 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1289 * recorded root will never be updated again, causing an outdated root
1292 record_root_in_trans(trans
, src
, 1);
1295 * We are going to commit transaction, see btrfs_commit_transaction()
1296 * comment for reason locking tree_log_mutex
1298 mutex_lock(&fs_info
->tree_log_mutex
);
1300 ret
= commit_fs_roots(trans
);
1303 ret
= btrfs_qgroup_account_extents(trans
);
1307 /* Now qgroup are all updated, we can inherit it to new qgroups */
1308 ret
= btrfs_qgroup_inherit(trans
, src
->root_key
.objectid
, dst_objectid
,
1314 * Now we do a simplified commit transaction, which will:
1315 * 1) commit all subvolume and extent tree
1316 * To ensure all subvolume and extent tree have a valid
1317 * commit_root to accounting later insert_dir_item()
1318 * 2) write all btree blocks onto disk
1319 * This is to make sure later btree modification will be cowed
1320 * Or commit_root can be populated and cause wrong qgroup numbers
1321 * In this simplified commit, we don't really care about other trees
1322 * like chunk and root tree, as they won't affect qgroup.
1323 * And we don't write super to avoid half committed status.
1325 ret
= commit_cowonly_roots(trans
);
1328 switch_commit_roots(trans
->transaction
);
1329 ret
= btrfs_write_and_wait_transaction(trans
);
1331 btrfs_handle_fs_error(fs_info
, ret
,
1332 "Error while writing out transaction for qgroup");
1335 mutex_unlock(&fs_info
->tree_log_mutex
);
1338 * Force parent root to be updated, as we recorded it before so its
1339 * last_trans == cur_transid.
1340 * Or it won't be committed again onto disk after later
1344 record_root_in_trans(trans
, parent
, 1);
1349 * new snapshots need to be created at a very specific time in the
1350 * transaction commit. This does the actual creation.
1353 * If the error which may affect the commitment of the current transaction
1354 * happens, we should return the error number. If the error which just affect
1355 * the creation of the pending snapshots, just return 0.
1357 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1358 struct btrfs_pending_snapshot
*pending
)
1361 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1362 struct btrfs_key key
;
1363 struct btrfs_root_item
*new_root_item
;
1364 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1365 struct btrfs_root
*root
= pending
->root
;
1366 struct btrfs_root
*parent_root
;
1367 struct btrfs_block_rsv
*rsv
;
1368 struct inode
*parent_inode
;
1369 struct btrfs_path
*path
;
1370 struct btrfs_dir_item
*dir_item
;
1371 struct dentry
*dentry
;
1372 struct extent_buffer
*tmp
;
1373 struct extent_buffer
*old
;
1374 struct timespec64 cur_time
;
1382 ASSERT(pending
->path
);
1383 path
= pending
->path
;
1385 ASSERT(pending
->root_item
);
1386 new_root_item
= pending
->root_item
;
1388 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1390 goto no_free_objectid
;
1393 * Make qgroup to skip current new snapshot's qgroupid, as it is
1394 * accounted by later btrfs_qgroup_inherit().
1396 btrfs_set_skip_qgroup(trans
, objectid
);
1398 btrfs_reloc_pre_snapshot(pending
, &to_reserve
);
1400 if (to_reserve
> 0) {
1401 pending
->error
= btrfs_block_rsv_add(root
,
1402 &pending
->block_rsv
,
1404 BTRFS_RESERVE_NO_FLUSH
);
1406 goto clear_skip_qgroup
;
1409 key
.objectid
= objectid
;
1410 key
.offset
= (u64
)-1;
1411 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1413 rsv
= trans
->block_rsv
;
1414 trans
->block_rsv
= &pending
->block_rsv
;
1415 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1416 trace_btrfs_space_reservation(fs_info
, "transaction",
1418 trans
->bytes_reserved
, 1);
1419 dentry
= pending
->dentry
;
1420 parent_inode
= pending
->dir
;
1421 parent_root
= BTRFS_I(parent_inode
)->root
;
1422 record_root_in_trans(trans
, parent_root
, 0);
1424 cur_time
= current_time(parent_inode
);
1427 * insert the directory item
1429 ret
= btrfs_set_inode_index(BTRFS_I(parent_inode
), &index
);
1430 BUG_ON(ret
); /* -ENOMEM */
1432 /* check if there is a file/dir which has the same name. */
1433 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1434 btrfs_ino(BTRFS_I(parent_inode
)),
1435 dentry
->d_name
.name
,
1436 dentry
->d_name
.len
, 0);
1437 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1438 pending
->error
= -EEXIST
;
1439 goto dir_item_existed
;
1440 } else if (IS_ERR(dir_item
)) {
1441 ret
= PTR_ERR(dir_item
);
1442 btrfs_abort_transaction(trans
, ret
);
1445 btrfs_release_path(path
);
1448 * pull in the delayed directory update
1449 * and the delayed inode item
1450 * otherwise we corrupt the FS during
1453 ret
= btrfs_run_delayed_items(trans
);
1454 if (ret
) { /* Transaction aborted */
1455 btrfs_abort_transaction(trans
, ret
);
1459 record_root_in_trans(trans
, root
, 0);
1460 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1461 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1462 btrfs_check_and_init_root_item(new_root_item
);
1464 root_flags
= btrfs_root_flags(new_root_item
);
1465 if (pending
->readonly
)
1466 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1468 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1469 btrfs_set_root_flags(new_root_item
, root_flags
);
1471 btrfs_set_root_generation_v2(new_root_item
,
1473 uuid_le_gen(&new_uuid
);
1474 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1475 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1477 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1478 memset(new_root_item
->received_uuid
, 0,
1479 sizeof(new_root_item
->received_uuid
));
1480 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1481 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1482 btrfs_set_root_stransid(new_root_item
, 0);
1483 btrfs_set_root_rtransid(new_root_item
, 0);
1485 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1486 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1487 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1489 old
= btrfs_lock_root_node(root
);
1490 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1492 btrfs_tree_unlock(old
);
1493 free_extent_buffer(old
);
1494 btrfs_abort_transaction(trans
, ret
);
1498 btrfs_set_lock_blocking_write(old
);
1500 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1501 /* clean up in any case */
1502 btrfs_tree_unlock(old
);
1503 free_extent_buffer(old
);
1505 btrfs_abort_transaction(trans
, ret
);
1508 /* see comments in should_cow_block() */
1509 set_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
);
1512 btrfs_set_root_node(new_root_item
, tmp
);
1513 /* record when the snapshot was created in key.offset */
1514 key
.offset
= trans
->transid
;
1515 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1516 btrfs_tree_unlock(tmp
);
1517 free_extent_buffer(tmp
);
1519 btrfs_abort_transaction(trans
, ret
);
1524 * insert root back/forward references
1526 ret
= btrfs_add_root_ref(trans
, objectid
,
1527 parent_root
->root_key
.objectid
,
1528 btrfs_ino(BTRFS_I(parent_inode
)), index
,
1529 dentry
->d_name
.name
, dentry
->d_name
.len
);
1531 btrfs_abort_transaction(trans
, ret
);
1535 key
.offset
= (u64
)-1;
1536 pending
->snap
= btrfs_read_fs_root_no_name(fs_info
, &key
);
1537 if (IS_ERR(pending
->snap
)) {
1538 ret
= PTR_ERR(pending
->snap
);
1539 btrfs_abort_transaction(trans
, ret
);
1543 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1545 btrfs_abort_transaction(trans
, ret
);
1549 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1551 btrfs_abort_transaction(trans
, ret
);
1556 * Do special qgroup accounting for snapshot, as we do some qgroup
1557 * snapshot hack to do fast snapshot.
1558 * To co-operate with that hack, we do hack again.
1559 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1561 ret
= qgroup_account_snapshot(trans
, root
, parent_root
,
1562 pending
->inherit
, objectid
);
1566 ret
= btrfs_insert_dir_item(trans
, dentry
->d_name
.name
,
1567 dentry
->d_name
.len
, BTRFS_I(parent_inode
),
1568 &key
, BTRFS_FT_DIR
, index
);
1569 /* We have check then name at the beginning, so it is impossible. */
1570 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1572 btrfs_abort_transaction(trans
, ret
);
1576 btrfs_i_size_write(BTRFS_I(parent_inode
), parent_inode
->i_size
+
1577 dentry
->d_name
.len
* 2);
1578 parent_inode
->i_mtime
= parent_inode
->i_ctime
=
1579 current_time(parent_inode
);
1580 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1582 btrfs_abort_transaction(trans
, ret
);
1585 ret
= btrfs_uuid_tree_add(trans
, new_uuid
.b
, BTRFS_UUID_KEY_SUBVOL
,
1588 btrfs_abort_transaction(trans
, ret
);
1591 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1592 ret
= btrfs_uuid_tree_add(trans
, new_root_item
->received_uuid
,
1593 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1595 if (ret
&& ret
!= -EEXIST
) {
1596 btrfs_abort_transaction(trans
, ret
);
1601 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
1603 btrfs_abort_transaction(trans
, ret
);
1608 pending
->error
= ret
;
1610 trans
->block_rsv
= rsv
;
1611 trans
->bytes_reserved
= 0;
1613 btrfs_clear_skip_qgroup(trans
);
1615 kfree(new_root_item
);
1616 pending
->root_item
= NULL
;
1617 btrfs_free_path(path
);
1618 pending
->path
= NULL
;
1624 * create all the snapshots we've scheduled for creation
1626 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
)
1628 struct btrfs_pending_snapshot
*pending
, *next
;
1629 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1632 list_for_each_entry_safe(pending
, next
, head
, list
) {
1633 list_del(&pending
->list
);
1634 ret
= create_pending_snapshot(trans
, pending
);
1641 static void update_super_roots(struct btrfs_fs_info
*fs_info
)
1643 struct btrfs_root_item
*root_item
;
1644 struct btrfs_super_block
*super
;
1646 super
= fs_info
->super_copy
;
1648 root_item
= &fs_info
->chunk_root
->root_item
;
1649 super
->chunk_root
= root_item
->bytenr
;
1650 super
->chunk_root_generation
= root_item
->generation
;
1651 super
->chunk_root_level
= root_item
->level
;
1653 root_item
= &fs_info
->tree_root
->root_item
;
1654 super
->root
= root_item
->bytenr
;
1655 super
->generation
= root_item
->generation
;
1656 super
->root_level
= root_item
->level
;
1657 if (btrfs_test_opt(fs_info
, SPACE_CACHE
))
1658 super
->cache_generation
= root_item
->generation
;
1659 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
))
1660 super
->uuid_tree_generation
= root_item
->generation
;
1663 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1665 struct btrfs_transaction
*trans
;
1668 spin_lock(&info
->trans_lock
);
1669 trans
= info
->running_transaction
;
1671 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1672 spin_unlock(&info
->trans_lock
);
1676 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1678 struct btrfs_transaction
*trans
;
1681 spin_lock(&info
->trans_lock
);
1682 trans
= info
->running_transaction
;
1684 ret
= is_transaction_blocked(trans
);
1685 spin_unlock(&info
->trans_lock
);
1690 * wait for the current transaction commit to start and block subsequent
1693 static void wait_current_trans_commit_start(struct btrfs_fs_info
*fs_info
,
1694 struct btrfs_transaction
*trans
)
1696 wait_event(fs_info
->transaction_blocked_wait
,
1697 trans
->state
>= TRANS_STATE_COMMIT_START
|| trans
->aborted
);
1701 * wait for the current transaction to start and then become unblocked.
1704 static void wait_current_trans_commit_start_and_unblock(
1705 struct btrfs_fs_info
*fs_info
,
1706 struct btrfs_transaction
*trans
)
1708 wait_event(fs_info
->transaction_wait
,
1709 trans
->state
>= TRANS_STATE_UNBLOCKED
|| trans
->aborted
);
1713 * commit transactions asynchronously. once btrfs_commit_transaction_async
1714 * returns, any subsequent transaction will not be allowed to join.
1716 struct btrfs_async_commit
{
1717 struct btrfs_trans_handle
*newtrans
;
1718 struct work_struct work
;
1721 static void do_async_commit(struct work_struct
*work
)
1723 struct btrfs_async_commit
*ac
=
1724 container_of(work
, struct btrfs_async_commit
, work
);
1727 * We've got freeze protection passed with the transaction.
1728 * Tell lockdep about it.
1730 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1731 __sb_writers_acquired(ac
->newtrans
->fs_info
->sb
, SB_FREEZE_FS
);
1733 current
->journal_info
= ac
->newtrans
;
1735 btrfs_commit_transaction(ac
->newtrans
);
1739 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1740 int wait_for_unblock
)
1742 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1743 struct btrfs_async_commit
*ac
;
1744 struct btrfs_transaction
*cur_trans
;
1746 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1750 INIT_WORK(&ac
->work
, do_async_commit
);
1751 ac
->newtrans
= btrfs_join_transaction(trans
->root
);
1752 if (IS_ERR(ac
->newtrans
)) {
1753 int err
= PTR_ERR(ac
->newtrans
);
1758 /* take transaction reference */
1759 cur_trans
= trans
->transaction
;
1760 refcount_inc(&cur_trans
->use_count
);
1762 btrfs_end_transaction(trans
);
1765 * Tell lockdep we've released the freeze rwsem, since the
1766 * async commit thread will be the one to unlock it.
1768 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1769 __sb_writers_release(fs_info
->sb
, SB_FREEZE_FS
);
1771 schedule_work(&ac
->work
);
1773 /* wait for transaction to start and unblock */
1774 if (wait_for_unblock
)
1775 wait_current_trans_commit_start_and_unblock(fs_info
, cur_trans
);
1777 wait_current_trans_commit_start(fs_info
, cur_trans
);
1779 if (current
->journal_info
== trans
)
1780 current
->journal_info
= NULL
;
1782 btrfs_put_transaction(cur_trans
);
1787 static void cleanup_transaction(struct btrfs_trans_handle
*trans
, int err
)
1789 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1790 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1792 WARN_ON(refcount_read(&trans
->use_count
) > 1);
1794 btrfs_abort_transaction(trans
, err
);
1796 spin_lock(&fs_info
->trans_lock
);
1799 * If the transaction is removed from the list, it means this
1800 * transaction has been committed successfully, so it is impossible
1801 * to call the cleanup function.
1803 BUG_ON(list_empty(&cur_trans
->list
));
1805 list_del_init(&cur_trans
->list
);
1806 if (cur_trans
== fs_info
->running_transaction
) {
1807 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1808 spin_unlock(&fs_info
->trans_lock
);
1809 wait_event(cur_trans
->writer_wait
,
1810 atomic_read(&cur_trans
->num_writers
) == 1);
1812 spin_lock(&fs_info
->trans_lock
);
1814 spin_unlock(&fs_info
->trans_lock
);
1816 btrfs_cleanup_one_transaction(trans
->transaction
, fs_info
);
1818 spin_lock(&fs_info
->trans_lock
);
1819 if (cur_trans
== fs_info
->running_transaction
)
1820 fs_info
->running_transaction
= NULL
;
1821 spin_unlock(&fs_info
->trans_lock
);
1823 if (trans
->type
& __TRANS_FREEZABLE
)
1824 sb_end_intwrite(fs_info
->sb
);
1825 btrfs_put_transaction(cur_trans
);
1826 btrfs_put_transaction(cur_trans
);
1828 trace_btrfs_transaction_commit(trans
->root
);
1830 if (current
->journal_info
== trans
)
1831 current
->journal_info
= NULL
;
1832 btrfs_scrub_cancel(fs_info
);
1834 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1838 * Release reserved delayed ref space of all pending block groups of the
1839 * transaction and remove them from the list
1841 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle
*trans
)
1843 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1844 struct btrfs_block_group_cache
*block_group
, *tmp
;
1846 list_for_each_entry_safe(block_group
, tmp
, &trans
->new_bgs
, bg_list
) {
1847 btrfs_delayed_refs_rsv_release(fs_info
, 1);
1848 list_del_init(&block_group
->bg_list
);
1852 static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle
*trans
)
1854 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1857 * We use writeback_inodes_sb here because if we used
1858 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1859 * Currently are holding the fs freeze lock, if we do an async flush
1860 * we'll do btrfs_join_transaction() and deadlock because we need to
1861 * wait for the fs freeze lock. Using the direct flushing we benefit
1862 * from already being in a transaction and our join_transaction doesn't
1863 * have to re-take the fs freeze lock.
1865 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
)) {
1866 writeback_inodes_sb(fs_info
->sb
, WB_REASON_SYNC
);
1868 struct btrfs_pending_snapshot
*pending
;
1869 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1872 * Flush dellaloc for any root that is going to be snapshotted.
1873 * This is done to avoid a corrupted version of files, in the
1874 * snapshots, that had both buffered and direct IO writes (even
1875 * if they were done sequentially) due to an unordered update of
1876 * the inode's size on disk.
1878 list_for_each_entry(pending
, head
, list
) {
1881 ret
= btrfs_start_delalloc_snapshot(pending
->root
);
1889 static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle
*trans
)
1891 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1893 if (btrfs_test_opt(fs_info
, FLUSHONCOMMIT
)) {
1894 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, 0, (u64
)-1);
1896 struct btrfs_pending_snapshot
*pending
;
1897 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1900 * Wait for any dellaloc that we started previously for the roots
1901 * that are going to be snapshotted. This is to avoid a corrupted
1902 * version of files in the snapshots that had both buffered and
1903 * direct IO writes (even if they were done sequentially).
1905 list_for_each_entry(pending
, head
, list
)
1906 btrfs_wait_ordered_extents(pending
->root
,
1907 U64_MAX
, 0, U64_MAX
);
1911 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
)
1913 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
1914 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1915 struct btrfs_transaction
*prev_trans
= NULL
;
1918 /* Stop the commit early if ->aborted is set */
1919 if (unlikely(READ_ONCE(cur_trans
->aborted
))) {
1920 ret
= cur_trans
->aborted
;
1921 btrfs_end_transaction(trans
);
1925 btrfs_trans_release_metadata(trans
);
1926 trans
->block_rsv
= NULL
;
1928 /* make a pass through all the delayed refs we have so far
1929 * any runnings procs may add more while we are here
1931 ret
= btrfs_run_delayed_refs(trans
, 0);
1933 btrfs_end_transaction(trans
);
1937 cur_trans
= trans
->transaction
;
1940 * set the flushing flag so procs in this transaction have to
1941 * start sending their work down.
1943 cur_trans
->delayed_refs
.flushing
= 1;
1946 btrfs_create_pending_block_groups(trans
);
1948 ret
= btrfs_run_delayed_refs(trans
, 0);
1950 btrfs_end_transaction(trans
);
1954 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN
, &cur_trans
->flags
)) {
1957 /* this mutex is also taken before trying to set
1958 * block groups readonly. We need to make sure
1959 * that nobody has set a block group readonly
1960 * after a extents from that block group have been
1961 * allocated for cache files. btrfs_set_block_group_ro
1962 * will wait for the transaction to commit if it
1963 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1965 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1966 * only one process starts all the block group IO. It wouldn't
1967 * hurt to have more than one go through, but there's no
1968 * real advantage to it either.
1970 mutex_lock(&fs_info
->ro_block_group_mutex
);
1971 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN
,
1974 mutex_unlock(&fs_info
->ro_block_group_mutex
);
1977 ret
= btrfs_start_dirty_block_groups(trans
);
1979 btrfs_end_transaction(trans
);
1985 spin_lock(&fs_info
->trans_lock
);
1986 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
1987 spin_unlock(&fs_info
->trans_lock
);
1988 refcount_inc(&cur_trans
->use_count
);
1989 ret
= btrfs_end_transaction(trans
);
1991 wait_for_commit(cur_trans
);
1993 if (unlikely(cur_trans
->aborted
))
1994 ret
= cur_trans
->aborted
;
1996 btrfs_put_transaction(cur_trans
);
2001 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
2002 wake_up(&fs_info
->transaction_blocked_wait
);
2004 if (cur_trans
->list
.prev
!= &fs_info
->trans_list
) {
2005 prev_trans
= list_entry(cur_trans
->list
.prev
,
2006 struct btrfs_transaction
, list
);
2007 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
2008 refcount_inc(&prev_trans
->use_count
);
2009 spin_unlock(&fs_info
->trans_lock
);
2011 wait_for_commit(prev_trans
);
2012 ret
= prev_trans
->aborted
;
2014 btrfs_put_transaction(prev_trans
);
2016 goto cleanup_transaction
;
2018 spin_unlock(&fs_info
->trans_lock
);
2021 spin_unlock(&fs_info
->trans_lock
);
2024 extwriter_counter_dec(cur_trans
, trans
->type
);
2026 ret
= btrfs_start_delalloc_flush(trans
);
2028 goto cleanup_transaction
;
2030 ret
= btrfs_run_delayed_items(trans
);
2032 goto cleanup_transaction
;
2034 wait_event(cur_trans
->writer_wait
,
2035 extwriter_counter_read(cur_trans
) == 0);
2037 /* some pending stuffs might be added after the previous flush. */
2038 ret
= btrfs_run_delayed_items(trans
);
2040 goto cleanup_transaction
;
2042 btrfs_wait_delalloc_flush(trans
);
2044 btrfs_scrub_pause(fs_info
);
2046 * Ok now we need to make sure to block out any other joins while we
2047 * commit the transaction. We could have started a join before setting
2048 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2050 spin_lock(&fs_info
->trans_lock
);
2051 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
2052 spin_unlock(&fs_info
->trans_lock
);
2053 wait_event(cur_trans
->writer_wait
,
2054 atomic_read(&cur_trans
->num_writers
) == 1);
2056 /* ->aborted might be set after the previous check, so check it */
2057 if (unlikely(READ_ONCE(cur_trans
->aborted
))) {
2058 ret
= cur_trans
->aborted
;
2059 goto scrub_continue
;
2062 * the reloc mutex makes sure that we stop
2063 * the balancing code from coming in and moving
2064 * extents around in the middle of the commit
2066 mutex_lock(&fs_info
->reloc_mutex
);
2069 * We needn't worry about the delayed items because we will
2070 * deal with them in create_pending_snapshot(), which is the
2071 * core function of the snapshot creation.
2073 ret
= create_pending_snapshots(trans
);
2075 mutex_unlock(&fs_info
->reloc_mutex
);
2076 goto scrub_continue
;
2080 * We insert the dir indexes of the snapshots and update the inode
2081 * of the snapshots' parents after the snapshot creation, so there
2082 * are some delayed items which are not dealt with. Now deal with
2085 * We needn't worry that this operation will corrupt the snapshots,
2086 * because all the tree which are snapshoted will be forced to COW
2087 * the nodes and leaves.
2089 ret
= btrfs_run_delayed_items(trans
);
2091 mutex_unlock(&fs_info
->reloc_mutex
);
2092 goto scrub_continue
;
2095 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
2097 mutex_unlock(&fs_info
->reloc_mutex
);
2098 goto scrub_continue
;
2102 * make sure none of the code above managed to slip in a
2105 btrfs_assert_delayed_root_empty(fs_info
);
2107 WARN_ON(cur_trans
!= trans
->transaction
);
2109 /* btrfs_commit_tree_roots is responsible for getting the
2110 * various roots consistent with each other. Every pointer
2111 * in the tree of tree roots has to point to the most up to date
2112 * root for every subvolume and other tree. So, we have to keep
2113 * the tree logging code from jumping in and changing any
2116 * At this point in the commit, there can't be any tree-log
2117 * writers, but a little lower down we drop the trans mutex
2118 * and let new people in. By holding the tree_log_mutex
2119 * from now until after the super is written, we avoid races
2120 * with the tree-log code.
2122 mutex_lock(&fs_info
->tree_log_mutex
);
2124 ret
= commit_fs_roots(trans
);
2126 mutex_unlock(&fs_info
->tree_log_mutex
);
2127 mutex_unlock(&fs_info
->reloc_mutex
);
2128 goto scrub_continue
;
2132 * Since the transaction is done, we can apply the pending changes
2133 * before the next transaction.
2135 btrfs_apply_pending_changes(fs_info
);
2137 /* commit_fs_roots gets rid of all the tree log roots, it is now
2138 * safe to free the root of tree log roots
2140 btrfs_free_log_root_tree(trans
, fs_info
);
2143 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2144 * new delayed refs. Must handle them or qgroup can be wrong.
2146 ret
= btrfs_run_delayed_refs(trans
, (unsigned long)-1);
2148 mutex_unlock(&fs_info
->tree_log_mutex
);
2149 mutex_unlock(&fs_info
->reloc_mutex
);
2150 goto scrub_continue
;
2154 * Since fs roots are all committed, we can get a quite accurate
2155 * new_roots. So let's do quota accounting.
2157 ret
= btrfs_qgroup_account_extents(trans
);
2159 mutex_unlock(&fs_info
->tree_log_mutex
);
2160 mutex_unlock(&fs_info
->reloc_mutex
);
2161 goto scrub_continue
;
2164 ret
= commit_cowonly_roots(trans
);
2166 mutex_unlock(&fs_info
->tree_log_mutex
);
2167 mutex_unlock(&fs_info
->reloc_mutex
);
2168 goto scrub_continue
;
2172 * The tasks which save the space cache and inode cache may also
2173 * update ->aborted, check it.
2175 if (unlikely(READ_ONCE(cur_trans
->aborted
))) {
2176 ret
= cur_trans
->aborted
;
2177 mutex_unlock(&fs_info
->tree_log_mutex
);
2178 mutex_unlock(&fs_info
->reloc_mutex
);
2179 goto scrub_continue
;
2182 btrfs_prepare_extent_commit(fs_info
);
2184 cur_trans
= fs_info
->running_transaction
;
2186 btrfs_set_root_node(&fs_info
->tree_root
->root_item
,
2187 fs_info
->tree_root
->node
);
2188 list_add_tail(&fs_info
->tree_root
->dirty_list
,
2189 &cur_trans
->switch_commits
);
2191 btrfs_set_root_node(&fs_info
->chunk_root
->root_item
,
2192 fs_info
->chunk_root
->node
);
2193 list_add_tail(&fs_info
->chunk_root
->dirty_list
,
2194 &cur_trans
->switch_commits
);
2196 switch_commit_roots(cur_trans
);
2198 ASSERT(list_empty(&cur_trans
->dirty_bgs
));
2199 ASSERT(list_empty(&cur_trans
->io_bgs
));
2200 update_super_roots(fs_info
);
2202 btrfs_set_super_log_root(fs_info
->super_copy
, 0);
2203 btrfs_set_super_log_root_level(fs_info
->super_copy
, 0);
2204 memcpy(fs_info
->super_for_commit
, fs_info
->super_copy
,
2205 sizeof(*fs_info
->super_copy
));
2207 btrfs_commit_device_sizes(cur_trans
);
2209 clear_bit(BTRFS_FS_LOG1_ERR
, &fs_info
->flags
);
2210 clear_bit(BTRFS_FS_LOG2_ERR
, &fs_info
->flags
);
2212 btrfs_trans_release_chunk_metadata(trans
);
2214 spin_lock(&fs_info
->trans_lock
);
2215 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
2216 fs_info
->running_transaction
= NULL
;
2217 spin_unlock(&fs_info
->trans_lock
);
2218 mutex_unlock(&fs_info
->reloc_mutex
);
2220 wake_up(&fs_info
->transaction_wait
);
2222 ret
= btrfs_write_and_wait_transaction(trans
);
2224 btrfs_handle_fs_error(fs_info
, ret
,
2225 "Error while writing out transaction");
2226 mutex_unlock(&fs_info
->tree_log_mutex
);
2227 goto scrub_continue
;
2230 ret
= write_all_supers(fs_info
, 0);
2232 * the super is written, we can safely allow the tree-loggers
2233 * to go about their business
2235 mutex_unlock(&fs_info
->tree_log_mutex
);
2237 goto scrub_continue
;
2239 btrfs_finish_extent_commit(trans
);
2241 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &cur_trans
->flags
))
2242 btrfs_clear_space_info_full(fs_info
);
2244 fs_info
->last_trans_committed
= cur_trans
->transid
;
2246 * We needn't acquire the lock here because there is no other task
2247 * which can change it.
2249 cur_trans
->state
= TRANS_STATE_COMPLETED
;
2250 wake_up(&cur_trans
->commit_wait
);
2251 clear_bit(BTRFS_FS_NEED_ASYNC_COMMIT
, &fs_info
->flags
);
2253 spin_lock(&fs_info
->trans_lock
);
2254 list_del_init(&cur_trans
->list
);
2255 spin_unlock(&fs_info
->trans_lock
);
2257 btrfs_put_transaction(cur_trans
);
2258 btrfs_put_transaction(cur_trans
);
2260 if (trans
->type
& __TRANS_FREEZABLE
)
2261 sb_end_intwrite(fs_info
->sb
);
2263 trace_btrfs_transaction_commit(trans
->root
);
2265 btrfs_scrub_continue(fs_info
);
2267 if (current
->journal_info
== trans
)
2268 current
->journal_info
= NULL
;
2270 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
2275 btrfs_scrub_continue(fs_info
);
2276 cleanup_transaction
:
2277 btrfs_trans_release_metadata(trans
);
2278 btrfs_cleanup_pending_block_groups(trans
);
2279 btrfs_trans_release_chunk_metadata(trans
);
2280 trans
->block_rsv
= NULL
;
2281 btrfs_warn(fs_info
, "Skipping commit of aborted transaction.");
2282 if (current
->journal_info
== trans
)
2283 current
->journal_info
= NULL
;
2284 cleanup_transaction(trans
, ret
);
2290 * return < 0 if error
2291 * 0 if there are no more dead_roots at the time of call
2292 * 1 there are more to be processed, call me again
2294 * The return value indicates there are certainly more snapshots to delete, but
2295 * if there comes a new one during processing, it may return 0. We don't mind,
2296 * because btrfs_commit_super will poke cleaner thread and it will process it a
2297 * few seconds later.
2299 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
2302 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2304 spin_lock(&fs_info
->trans_lock
);
2305 if (list_empty(&fs_info
->dead_roots
)) {
2306 spin_unlock(&fs_info
->trans_lock
);
2309 root
= list_first_entry(&fs_info
->dead_roots
,
2310 struct btrfs_root
, root_list
);
2311 list_del_init(&root
->root_list
);
2312 spin_unlock(&fs_info
->trans_lock
);
2314 btrfs_debug(fs_info
, "cleaner removing %llu", root
->root_key
.objectid
);
2316 btrfs_kill_all_delayed_nodes(root
);
2318 if (btrfs_header_backref_rev(root
->node
) <
2319 BTRFS_MIXED_BACKREF_REV
)
2320 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
2322 ret
= btrfs_drop_snapshot(root
, NULL
, 1, 0);
2324 return (ret
< 0) ? 0 : 1;
2327 void btrfs_apply_pending_changes(struct btrfs_fs_info
*fs_info
)
2332 prev
= xchg(&fs_info
->pending_changes
, 0);
2336 bit
= 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE
;
2338 btrfs_set_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2341 bit
= 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE
;
2343 btrfs_clear_opt(fs_info
->mount_opt
, INODE_MAP_CACHE
);
2346 bit
= 1 << BTRFS_PENDING_COMMIT
;
2348 btrfs_debug(fs_info
, "pending commit done");
2353 "unknown pending changes left 0x%lx, ignoring", prev
);