1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
18 #include "extent_map.h"
20 #include "transaction.h"
21 #include "print-tree.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
28 #include "dev-replace.h"
30 #include "tree-checker.h"
32 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
33 [BTRFS_RAID_RAID10
] = {
36 .devs_max
= 0, /* 0 == as many as possible */
38 .tolerated_failures
= 1,
42 .raid_name
= "raid10",
43 .bg_flag
= BTRFS_BLOCK_GROUP_RAID10
,
44 .mindev_error
= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
46 [BTRFS_RAID_RAID1
] = {
51 .tolerated_failures
= 1,
56 .bg_flag
= BTRFS_BLOCK_GROUP_RAID1
,
57 .mindev_error
= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
64 .tolerated_failures
= 0,
69 .bg_flag
= BTRFS_BLOCK_GROUP_DUP
,
72 [BTRFS_RAID_RAID0
] = {
77 .tolerated_failures
= 0,
82 .bg_flag
= BTRFS_BLOCK_GROUP_RAID0
,
85 [BTRFS_RAID_SINGLE
] = {
90 .tolerated_failures
= 0,
94 .raid_name
= "single",
98 [BTRFS_RAID_RAID5
] = {
103 .tolerated_failures
= 1,
107 .raid_name
= "raid5",
108 .bg_flag
= BTRFS_BLOCK_GROUP_RAID5
,
109 .mindev_error
= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
111 [BTRFS_RAID_RAID6
] = {
116 .tolerated_failures
= 2,
120 .raid_name
= "raid6",
121 .bg_flag
= BTRFS_BLOCK_GROUP_RAID6
,
122 .mindev_error
= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
126 const char *btrfs_bg_type_to_raid_name(u64 flags
)
128 const int index
= btrfs_bg_flags_to_raid_index(flags
);
130 if (index
>= BTRFS_NR_RAID_TYPES
)
133 return btrfs_raid_array
[index
].raid_name
;
137 * Fill @buf with textual description of @bg_flags, no more than @size_buf
138 * bytes including terminating null byte.
140 void btrfs_describe_block_groups(u64 bg_flags
, char *buf
, u32 size_buf
)
145 u64 flags
= bg_flags
;
146 u32 size_bp
= size_buf
;
153 #define DESCRIBE_FLAG(flag, desc) \
155 if (flags & (flag)) { \
156 ret = snprintf(bp, size_bp, "%s|", (desc)); \
157 if (ret < 0 || ret >= size_bp) \
165 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA
, "data");
166 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM
, "system");
167 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA
, "metadata");
169 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE
, "single");
170 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
171 DESCRIBE_FLAG(btrfs_raid_array
[i
].bg_flag
,
172 btrfs_raid_array
[i
].raid_name
);
176 ret
= snprintf(bp
, size_bp
, "0x%llx|", flags
);
180 if (size_bp
< size_buf
)
181 buf
[size_buf
- size_bp
- 1] = '\0'; /* remove last | */
184 * The text is trimmed, it's up to the caller to provide sufficiently
190 static int init_first_rw_device(struct btrfs_trans_handle
*trans
);
191 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
);
192 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
193 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
194 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
195 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
196 enum btrfs_map_op op
,
197 u64 logical
, u64
*length
,
198 struct btrfs_bio
**bbio_ret
,
199 int mirror_num
, int need_raid_map
);
205 * There are several mutexes that protect manipulation of devices and low-level
206 * structures like chunks but not block groups, extents or files
208 * uuid_mutex (global lock)
209 * ------------------------
210 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
211 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
212 * device) or requested by the device= mount option
214 * the mutex can be very coarse and can cover long-running operations
216 * protects: updates to fs_devices counters like missing devices, rw devices,
217 * seeding, structure cloning, opening/closing devices at mount/umount time
219 * global::fs_devs - add, remove, updates to the global list
221 * does not protect: manipulation of the fs_devices::devices list!
223 * btrfs_device::name - renames (write side), read is RCU
225 * fs_devices::device_list_mutex (per-fs, with RCU)
226 * ------------------------------------------------
227 * protects updates to fs_devices::devices, ie. adding and deleting
229 * simple list traversal with read-only actions can be done with RCU protection
231 * may be used to exclude some operations from running concurrently without any
232 * modifications to the list (see write_all_supers)
236 * protects balance structures (status, state) and context accessed from
237 * several places (internally, ioctl)
241 * protects chunks, adding or removing during allocation, trim or when a new
242 * device is added/removed
246 * a big lock that is held by the cleaner thread and prevents running subvolume
247 * cleaning together with relocation or delayed iputs
260 * Exclusive operations, BTRFS_FS_EXCL_OP
261 * ======================================
263 * Maintains the exclusivity of the following operations that apply to the
264 * whole filesystem and cannot run in parallel.
269 * - Device replace (*)
272 * The device operations (as above) can be in one of the following states:
278 * Only device operations marked with (*) can go into the Paused state for the
281 * - ioctl (only Balance can be Paused through ioctl)
282 * - filesystem remounted as read-only
283 * - filesystem unmounted and mounted as read-only
284 * - system power-cycle and filesystem mounted as read-only
285 * - filesystem or device errors leading to forced read-only
287 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
288 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
289 * A device operation in Paused or Running state can be canceled or resumed
290 * either by ioctl (Balance only) or when remounted as read-write.
291 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
295 DEFINE_MUTEX(uuid_mutex
);
296 static LIST_HEAD(fs_uuids
);
297 struct list_head
*btrfs_get_fs_uuids(void)
303 * alloc_fs_devices - allocate struct btrfs_fs_devices
304 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
305 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
307 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
308 * The returned struct is not linked onto any lists and can be destroyed with
309 * kfree() right away.
311 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
,
312 const u8
*metadata_fsid
)
314 struct btrfs_fs_devices
*fs_devs
;
316 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
318 return ERR_PTR(-ENOMEM
);
320 mutex_init(&fs_devs
->device_list_mutex
);
322 INIT_LIST_HEAD(&fs_devs
->devices
);
323 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
324 INIT_LIST_HEAD(&fs_devs
->fs_list
);
326 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
329 memcpy(fs_devs
->metadata_uuid
, metadata_fsid
, BTRFS_FSID_SIZE
);
331 memcpy(fs_devs
->metadata_uuid
, fsid
, BTRFS_FSID_SIZE
);
336 void btrfs_free_device(struct btrfs_device
*device
)
338 WARN_ON(!list_empty(&device
->post_commit_list
));
339 rcu_string_free(device
->name
);
340 extent_io_tree_release(&device
->alloc_state
);
341 bio_put(device
->flush_bio
);
345 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
347 struct btrfs_device
*device
;
348 WARN_ON(fs_devices
->opened
);
349 while (!list_empty(&fs_devices
->devices
)) {
350 device
= list_entry(fs_devices
->devices
.next
,
351 struct btrfs_device
, dev_list
);
352 list_del(&device
->dev_list
);
353 btrfs_free_device(device
);
358 static void btrfs_kobject_uevent(struct block_device
*bdev
,
359 enum kobject_action action
)
363 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
365 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
367 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
368 &disk_to_dev(bdev
->bd_disk
)->kobj
);
371 void __exit
btrfs_cleanup_fs_uuids(void)
373 struct btrfs_fs_devices
*fs_devices
;
375 while (!list_empty(&fs_uuids
)) {
376 fs_devices
= list_entry(fs_uuids
.next
,
377 struct btrfs_fs_devices
, fs_list
);
378 list_del(&fs_devices
->fs_list
);
379 free_fs_devices(fs_devices
);
384 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
385 * Returned struct is not linked onto any lists and must be destroyed using
388 static struct btrfs_device
*__alloc_device(void)
390 struct btrfs_device
*dev
;
392 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
394 return ERR_PTR(-ENOMEM
);
397 * Preallocate a bio that's always going to be used for flushing device
398 * barriers and matches the device lifespan
400 dev
->flush_bio
= bio_alloc_bioset(GFP_KERNEL
, 0, NULL
);
401 if (!dev
->flush_bio
) {
403 return ERR_PTR(-ENOMEM
);
406 INIT_LIST_HEAD(&dev
->dev_list
);
407 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
408 INIT_LIST_HEAD(&dev
->post_commit_list
);
410 spin_lock_init(&dev
->io_lock
);
412 atomic_set(&dev
->reada_in_flight
, 0);
413 atomic_set(&dev
->dev_stats_ccnt
, 0);
414 btrfs_device_data_ordered_init(dev
);
415 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
416 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
417 extent_io_tree_init(NULL
, &dev
->alloc_state
, 0, NULL
);
422 static noinline
struct btrfs_fs_devices
*find_fsid(
423 const u8
*fsid
, const u8
*metadata_fsid
)
425 struct btrfs_fs_devices
*fs_devices
;
431 * Handle scanned device having completed its fsid change but
432 * belonging to a fs_devices that was created by first scanning
433 * a device which didn't have its fsid/metadata_uuid changed
434 * at all and the CHANGING_FSID_V2 flag set.
436 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
437 if (fs_devices
->fsid_change
&&
438 memcmp(metadata_fsid
, fs_devices
->fsid
,
439 BTRFS_FSID_SIZE
) == 0 &&
440 memcmp(fs_devices
->fsid
, fs_devices
->metadata_uuid
,
441 BTRFS_FSID_SIZE
) == 0) {
446 * Handle scanned device having completed its fsid change but
447 * belonging to a fs_devices that was created by a device that
448 * has an outdated pair of fsid/metadata_uuid and
449 * CHANGING_FSID_V2 flag set.
451 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
452 if (fs_devices
->fsid_change
&&
453 memcmp(fs_devices
->metadata_uuid
,
454 fs_devices
->fsid
, BTRFS_FSID_SIZE
) != 0 &&
455 memcmp(metadata_fsid
, fs_devices
->metadata_uuid
,
456 BTRFS_FSID_SIZE
) == 0) {
462 /* Handle non-split brain cases */
463 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
465 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0
466 && memcmp(metadata_fsid
, fs_devices
->metadata_uuid
,
467 BTRFS_FSID_SIZE
) == 0)
470 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
478 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
479 int flush
, struct block_device
**bdev
,
480 struct buffer_head
**bh
)
484 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
487 ret
= PTR_ERR(*bdev
);
492 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
493 ret
= set_blocksize(*bdev
, BTRFS_BDEV_BLOCKSIZE
);
495 blkdev_put(*bdev
, flags
);
498 invalidate_bdev(*bdev
);
499 *bh
= btrfs_read_dev_super(*bdev
);
502 blkdev_put(*bdev
, flags
);
514 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
515 struct bio
*head
, struct bio
*tail
)
518 struct bio
*old_head
;
520 old_head
= pending_bios
->head
;
521 pending_bios
->head
= head
;
522 if (pending_bios
->tail
)
523 tail
->bi_next
= old_head
;
525 pending_bios
->tail
= tail
;
529 * we try to collect pending bios for a device so we don't get a large
530 * number of procs sending bios down to the same device. This greatly
531 * improves the schedulers ability to collect and merge the bios.
533 * But, it also turns into a long list of bios to process and that is sure
534 * to eventually make the worker thread block. The solution here is to
535 * make some progress and then put this work struct back at the end of
536 * the list if the block device is congested. This way, multiple devices
537 * can make progress from a single worker thread.
539 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
541 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
543 struct backing_dev_info
*bdi
;
544 struct btrfs_pending_bios
*pending_bios
;
548 unsigned long num_run
;
549 unsigned long batch_run
= 0;
550 unsigned long last_waited
= 0;
552 int sync_pending
= 0;
553 struct blk_plug plug
;
556 * this function runs all the bios we've collected for
557 * a particular device. We don't want to wander off to
558 * another device without first sending all of these down.
559 * So, setup a plug here and finish it off before we return
561 blk_start_plug(&plug
);
563 bdi
= device
->bdev
->bd_bdi
;
566 spin_lock(&device
->io_lock
);
571 /* take all the bios off the list at once and process them
572 * later on (without the lock held). But, remember the
573 * tail and other pointers so the bios can be properly reinserted
574 * into the list if we hit congestion
576 if (!force_reg
&& device
->pending_sync_bios
.head
) {
577 pending_bios
= &device
->pending_sync_bios
;
580 pending_bios
= &device
->pending_bios
;
584 pending
= pending_bios
->head
;
585 tail
= pending_bios
->tail
;
586 WARN_ON(pending
&& !tail
);
589 * if pending was null this time around, no bios need processing
590 * at all and we can stop. Otherwise it'll loop back up again
591 * and do an additional check so no bios are missed.
593 * device->running_pending is used to synchronize with the
596 if (device
->pending_sync_bios
.head
== NULL
&&
597 device
->pending_bios
.head
== NULL
) {
599 device
->running_pending
= 0;
602 device
->running_pending
= 1;
605 pending_bios
->head
= NULL
;
606 pending_bios
->tail
= NULL
;
608 spin_unlock(&device
->io_lock
);
613 /* we want to work on both lists, but do more bios on the
614 * sync list than the regular list
617 pending_bios
!= &device
->pending_sync_bios
&&
618 device
->pending_sync_bios
.head
) ||
619 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
620 device
->pending_bios
.head
)) {
621 spin_lock(&device
->io_lock
);
622 requeue_list(pending_bios
, pending
, tail
);
627 pending
= pending
->bi_next
;
630 BUG_ON(atomic_read(&cur
->__bi_cnt
) == 0);
633 * if we're doing the sync list, record that our
634 * plug has some sync requests on it
636 * If we're doing the regular list and there are
637 * sync requests sitting around, unplug before
640 if (pending_bios
== &device
->pending_sync_bios
) {
642 } else if (sync_pending
) {
643 blk_finish_plug(&plug
);
644 blk_start_plug(&plug
);
648 btrfsic_submit_bio(cur
);
655 * we made progress, there is more work to do and the bdi
656 * is now congested. Back off and let other work structs
659 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
660 fs_info
->fs_devices
->open_devices
> 1) {
661 struct io_context
*ioc
;
663 ioc
= current
->io_context
;
666 * the main goal here is that we don't want to
667 * block if we're going to be able to submit
668 * more requests without blocking.
670 * This code does two great things, it pokes into
671 * the elevator code from a filesystem _and_
672 * it makes assumptions about how batching works.
674 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
675 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
677 ioc
->last_waited
== last_waited
)) {
679 * we want to go through our batch of
680 * requests and stop. So, we copy out
681 * the ioc->last_waited time and test
682 * against it before looping
684 last_waited
= ioc
->last_waited
;
688 spin_lock(&device
->io_lock
);
689 requeue_list(pending_bios
, pending
, tail
);
690 device
->running_pending
= 1;
692 spin_unlock(&device
->io_lock
);
693 btrfs_queue_work(fs_info
->submit_workers
,
703 spin_lock(&device
->io_lock
);
704 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
706 spin_unlock(&device
->io_lock
);
709 blk_finish_plug(&plug
);
712 static void pending_bios_fn(struct btrfs_work
*work
)
714 struct btrfs_device
*device
;
716 device
= container_of(work
, struct btrfs_device
, work
);
717 run_scheduled_bios(device
);
720 static bool device_path_matched(const char *path
, struct btrfs_device
*device
)
725 found
= strcmp(rcu_str_deref(device
->name
), path
);
732 * Search and remove all stale (devices which are not mounted) devices.
733 * When both inputs are NULL, it will search and release all stale devices.
734 * path: Optional. When provided will it release all unmounted devices
735 * matching this path only.
736 * skip_dev: Optional. Will skip this device when searching for the stale
738 * Return: 0 for success or if @path is NULL.
739 * -EBUSY if @path is a mounted device.
740 * -ENOENT if @path does not match any device in the list.
742 static int btrfs_free_stale_devices(const char *path
,
743 struct btrfs_device
*skip_device
)
745 struct btrfs_fs_devices
*fs_devices
, *tmp_fs_devices
;
746 struct btrfs_device
*device
, *tmp_device
;
752 list_for_each_entry_safe(fs_devices
, tmp_fs_devices
, &fs_uuids
, fs_list
) {
754 mutex_lock(&fs_devices
->device_list_mutex
);
755 list_for_each_entry_safe(device
, tmp_device
,
756 &fs_devices
->devices
, dev_list
) {
757 if (skip_device
&& skip_device
== device
)
759 if (path
&& !device
->name
)
761 if (path
&& !device_path_matched(path
, device
))
763 if (fs_devices
->opened
) {
764 /* for an already deleted device return 0 */
765 if (path
&& ret
!= 0)
770 /* delete the stale device */
771 fs_devices
->num_devices
--;
772 list_del(&device
->dev_list
);
773 btrfs_free_device(device
);
776 if (fs_devices
->num_devices
== 0)
779 mutex_unlock(&fs_devices
->device_list_mutex
);
781 if (fs_devices
->num_devices
== 0) {
782 btrfs_sysfs_remove_fsid(fs_devices
);
783 list_del(&fs_devices
->fs_list
);
784 free_fs_devices(fs_devices
);
791 static int btrfs_open_one_device(struct btrfs_fs_devices
*fs_devices
,
792 struct btrfs_device
*device
, fmode_t flags
,
795 struct request_queue
*q
;
796 struct block_device
*bdev
;
797 struct buffer_head
*bh
;
798 struct btrfs_super_block
*disk_super
;
807 ret
= btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
812 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
813 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
814 if (devid
!= device
->devid
)
817 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
, BTRFS_UUID_SIZE
))
820 device
->generation
= btrfs_super_generation(disk_super
);
822 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
823 if (btrfs_super_incompat_flags(disk_super
) &
824 BTRFS_FEATURE_INCOMPAT_METADATA_UUID
) {
826 "BTRFS: Invalid seeding and uuid-changed device detected\n");
830 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
831 fs_devices
->seeding
= 1;
833 if (bdev_read_only(bdev
))
834 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
836 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
839 q
= bdev_get_queue(bdev
);
840 if (!blk_queue_nonrot(q
))
841 fs_devices
->rotating
= 1;
844 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
845 device
->mode
= flags
;
847 fs_devices
->open_devices
++;
848 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
849 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
850 fs_devices
->rw_devices
++;
851 list_add_tail(&device
->dev_alloc_list
, &fs_devices
->alloc_list
);
859 blkdev_put(bdev
, flags
);
865 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
866 * being created with a disk that has already completed its fsid change.
868 static struct btrfs_fs_devices
*find_fsid_inprogress(
869 struct btrfs_super_block
*disk_super
)
871 struct btrfs_fs_devices
*fs_devices
;
873 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
874 if (memcmp(fs_devices
->metadata_uuid
, fs_devices
->fsid
,
875 BTRFS_FSID_SIZE
) != 0 &&
876 memcmp(fs_devices
->metadata_uuid
, disk_super
->fsid
,
877 BTRFS_FSID_SIZE
) == 0 && !fs_devices
->fsid_change
) {
886 static struct btrfs_fs_devices
*find_fsid_changed(
887 struct btrfs_super_block
*disk_super
)
889 struct btrfs_fs_devices
*fs_devices
;
892 * Handles the case where scanned device is part of an fs that had
893 * multiple successful changes of FSID but curently device didn't
894 * observe it. Meaning our fsid will be different than theirs.
896 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
897 if (memcmp(fs_devices
->metadata_uuid
, fs_devices
->fsid
,
898 BTRFS_FSID_SIZE
) != 0 &&
899 memcmp(fs_devices
->metadata_uuid
, disk_super
->metadata_uuid
,
900 BTRFS_FSID_SIZE
) == 0 &&
901 memcmp(fs_devices
->fsid
, disk_super
->fsid
,
902 BTRFS_FSID_SIZE
) != 0) {
910 * Add new device to list of registered devices
913 * device pointer which was just added or updated when successful
914 * error pointer when failed
916 static noinline
struct btrfs_device
*device_list_add(const char *path
,
917 struct btrfs_super_block
*disk_super
,
918 bool *new_device_added
)
920 struct btrfs_device
*device
;
921 struct btrfs_fs_devices
*fs_devices
= NULL
;
922 struct rcu_string
*name
;
923 u64 found_transid
= btrfs_super_generation(disk_super
);
924 u64 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
925 bool has_metadata_uuid
= (btrfs_super_incompat_flags(disk_super
) &
926 BTRFS_FEATURE_INCOMPAT_METADATA_UUID
);
927 bool fsid_change_in_progress
= (btrfs_super_flags(disk_super
) &
928 BTRFS_SUPER_FLAG_CHANGING_FSID_V2
);
930 if (fsid_change_in_progress
) {
931 if (!has_metadata_uuid
) {
933 * When we have an image which has CHANGING_FSID_V2 set
934 * it might belong to either a filesystem which has
935 * disks with completed fsid change or it might belong
936 * to fs with no UUID changes in effect, handle both.
938 fs_devices
= find_fsid_inprogress(disk_super
);
940 fs_devices
= find_fsid(disk_super
->fsid
, NULL
);
942 fs_devices
= find_fsid_changed(disk_super
);
944 } else if (has_metadata_uuid
) {
945 fs_devices
= find_fsid(disk_super
->fsid
,
946 disk_super
->metadata_uuid
);
948 fs_devices
= find_fsid(disk_super
->fsid
, NULL
);
953 if (has_metadata_uuid
)
954 fs_devices
= alloc_fs_devices(disk_super
->fsid
,
955 disk_super
->metadata_uuid
);
957 fs_devices
= alloc_fs_devices(disk_super
->fsid
, NULL
);
959 if (IS_ERR(fs_devices
))
960 return ERR_CAST(fs_devices
);
962 fs_devices
->fsid_change
= fsid_change_in_progress
;
964 mutex_lock(&fs_devices
->device_list_mutex
);
965 list_add(&fs_devices
->fs_list
, &fs_uuids
);
969 mutex_lock(&fs_devices
->device_list_mutex
);
970 device
= btrfs_find_device(fs_devices
, devid
,
971 disk_super
->dev_item
.uuid
, NULL
, false);
974 * If this disk has been pulled into an fs devices created by
975 * a device which had the CHANGING_FSID_V2 flag then replace the
976 * metadata_uuid/fsid values of the fs_devices.
978 if (has_metadata_uuid
&& fs_devices
->fsid_change
&&
979 found_transid
> fs_devices
->latest_generation
) {
980 memcpy(fs_devices
->fsid
, disk_super
->fsid
,
982 memcpy(fs_devices
->metadata_uuid
,
983 disk_super
->metadata_uuid
, BTRFS_FSID_SIZE
);
985 fs_devices
->fsid_change
= false;
990 if (fs_devices
->opened
) {
991 mutex_unlock(&fs_devices
->device_list_mutex
);
992 return ERR_PTR(-EBUSY
);
995 device
= btrfs_alloc_device(NULL
, &devid
,
996 disk_super
->dev_item
.uuid
);
997 if (IS_ERR(device
)) {
998 mutex_unlock(&fs_devices
->device_list_mutex
);
999 /* we can safely leave the fs_devices entry around */
1003 name
= rcu_string_strdup(path
, GFP_NOFS
);
1005 btrfs_free_device(device
);
1006 mutex_unlock(&fs_devices
->device_list_mutex
);
1007 return ERR_PTR(-ENOMEM
);
1009 rcu_assign_pointer(device
->name
, name
);
1011 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
1012 fs_devices
->num_devices
++;
1014 device
->fs_devices
= fs_devices
;
1015 *new_device_added
= true;
1017 if (disk_super
->label
[0])
1018 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
1019 disk_super
->label
, devid
, found_transid
, path
);
1021 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
1022 disk_super
->fsid
, devid
, found_transid
, path
);
1024 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
1026 * When FS is already mounted.
1027 * 1. If you are here and if the device->name is NULL that
1028 * means this device was missing at time of FS mount.
1029 * 2. If you are here and if the device->name is different
1030 * from 'path' that means either
1031 * a. The same device disappeared and reappeared with
1032 * different name. or
1033 * b. The missing-disk-which-was-replaced, has
1036 * We must allow 1 and 2a above. But 2b would be a spurious
1037 * and unintentional.
1039 * Further in case of 1 and 2a above, the disk at 'path'
1040 * would have missed some transaction when it was away and
1041 * in case of 2a the stale bdev has to be updated as well.
1042 * 2b must not be allowed at all time.
1046 * For now, we do allow update to btrfs_fs_device through the
1047 * btrfs dev scan cli after FS has been mounted. We're still
1048 * tracking a problem where systems fail mount by subvolume id
1049 * when we reject replacement on a mounted FS.
1051 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
1053 * That is if the FS is _not_ mounted and if you
1054 * are here, that means there is more than one
1055 * disk with same uuid and devid.We keep the one
1056 * with larger generation number or the last-in if
1057 * generation are equal.
1059 mutex_unlock(&fs_devices
->device_list_mutex
);
1060 return ERR_PTR(-EEXIST
);
1064 * We are going to replace the device path for a given devid,
1065 * make sure it's the same device if the device is mounted
1068 struct block_device
*path_bdev
;
1070 path_bdev
= lookup_bdev(path
);
1071 if (IS_ERR(path_bdev
)) {
1072 mutex_unlock(&fs_devices
->device_list_mutex
);
1073 return ERR_CAST(path_bdev
);
1076 if (device
->bdev
!= path_bdev
) {
1078 mutex_unlock(&fs_devices
->device_list_mutex
);
1079 btrfs_warn_in_rcu(device
->fs_info
,
1080 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
1081 disk_super
->fsid
, devid
,
1082 rcu_str_deref(device
->name
), path
);
1083 return ERR_PTR(-EEXIST
);
1086 btrfs_info_in_rcu(device
->fs_info
,
1087 "device fsid %pU devid %llu moved old:%s new:%s",
1088 disk_super
->fsid
, devid
,
1089 rcu_str_deref(device
->name
), path
);
1092 name
= rcu_string_strdup(path
, GFP_NOFS
);
1094 mutex_unlock(&fs_devices
->device_list_mutex
);
1095 return ERR_PTR(-ENOMEM
);
1097 rcu_string_free(device
->name
);
1098 rcu_assign_pointer(device
->name
, name
);
1099 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
1100 fs_devices
->missing_devices
--;
1101 clear_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
1106 * Unmount does not free the btrfs_device struct but would zero
1107 * generation along with most of the other members. So just update
1108 * it back. We need it to pick the disk with largest generation
1111 if (!fs_devices
->opened
) {
1112 device
->generation
= found_transid
;
1113 fs_devices
->latest_generation
= max_t(u64
, found_transid
,
1114 fs_devices
->latest_generation
);
1117 fs_devices
->total_devices
= btrfs_super_num_devices(disk_super
);
1119 mutex_unlock(&fs_devices
->device_list_mutex
);
1123 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
1125 struct btrfs_fs_devices
*fs_devices
;
1126 struct btrfs_device
*device
;
1127 struct btrfs_device
*orig_dev
;
1129 fs_devices
= alloc_fs_devices(orig
->fsid
, NULL
);
1130 if (IS_ERR(fs_devices
))
1133 mutex_lock(&orig
->device_list_mutex
);
1134 fs_devices
->total_devices
= orig
->total_devices
;
1136 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
1137 struct rcu_string
*name
;
1139 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
1145 * This is ok to do without rcu read locked because we hold the
1146 * uuid mutex so nothing we touch in here is going to disappear.
1148 if (orig_dev
->name
) {
1149 name
= rcu_string_strdup(orig_dev
->name
->str
,
1152 btrfs_free_device(device
);
1155 rcu_assign_pointer(device
->name
, name
);
1158 list_add(&device
->dev_list
, &fs_devices
->devices
);
1159 device
->fs_devices
= fs_devices
;
1160 fs_devices
->num_devices
++;
1162 mutex_unlock(&orig
->device_list_mutex
);
1165 mutex_unlock(&orig
->device_list_mutex
);
1166 free_fs_devices(fs_devices
);
1167 return ERR_PTR(-ENOMEM
);
1171 * After we have read the system tree and know devids belonging to
1172 * this filesystem, remove the device which does not belong there.
1174 void btrfs_free_extra_devids(struct btrfs_fs_devices
*fs_devices
, int step
)
1176 struct btrfs_device
*device
, *next
;
1177 struct btrfs_device
*latest_dev
= NULL
;
1179 mutex_lock(&uuid_mutex
);
1181 /* This is the initialized path, it is safe to release the devices. */
1182 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
1183 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
1184 &device
->dev_state
)) {
1185 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
1186 &device
->dev_state
) &&
1188 device
->generation
> latest_dev
->generation
)) {
1189 latest_dev
= device
;
1194 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
1196 * In the first step, keep the device which has
1197 * the correct fsid and the devid that is used
1198 * for the dev_replace procedure.
1199 * In the second step, the dev_replace state is
1200 * read from the device tree and it is known
1201 * whether the procedure is really active or
1202 * not, which means whether this device is
1203 * used or whether it should be removed.
1205 if (step
== 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
1206 &device
->dev_state
)) {
1211 blkdev_put(device
->bdev
, device
->mode
);
1212 device
->bdev
= NULL
;
1213 fs_devices
->open_devices
--;
1215 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
1216 list_del_init(&device
->dev_alloc_list
);
1217 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
1218 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
1219 &device
->dev_state
))
1220 fs_devices
->rw_devices
--;
1222 list_del_init(&device
->dev_list
);
1223 fs_devices
->num_devices
--;
1224 btrfs_free_device(device
);
1227 if (fs_devices
->seed
) {
1228 fs_devices
= fs_devices
->seed
;
1232 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1234 mutex_unlock(&uuid_mutex
);
1237 static void btrfs_close_bdev(struct btrfs_device
*device
)
1242 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
1243 sync_blockdev(device
->bdev
);
1244 invalidate_bdev(device
->bdev
);
1247 blkdev_put(device
->bdev
, device
->mode
);
1250 static void btrfs_close_one_device(struct btrfs_device
*device
)
1252 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
1253 struct btrfs_device
*new_device
;
1254 struct rcu_string
*name
;
1257 fs_devices
->open_devices
--;
1259 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
1260 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
1261 list_del_init(&device
->dev_alloc_list
);
1262 fs_devices
->rw_devices
--;
1265 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
1266 fs_devices
->missing_devices
--;
1268 btrfs_close_bdev(device
);
1270 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
1272 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
1274 /* Safe because we are under uuid_mutex */
1276 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
1277 BUG_ON(!name
); /* -ENOMEM */
1278 rcu_assign_pointer(new_device
->name
, name
);
1281 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
1282 new_device
->fs_devices
= device
->fs_devices
;
1285 btrfs_free_device(device
);
1288 static int close_fs_devices(struct btrfs_fs_devices
*fs_devices
)
1290 struct btrfs_device
*device
, *tmp
;
1292 if (--fs_devices
->opened
> 0)
1295 mutex_lock(&fs_devices
->device_list_mutex
);
1296 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
1297 btrfs_close_one_device(device
);
1299 mutex_unlock(&fs_devices
->device_list_mutex
);
1301 WARN_ON(fs_devices
->open_devices
);
1302 WARN_ON(fs_devices
->rw_devices
);
1303 fs_devices
->opened
= 0;
1304 fs_devices
->seeding
= 0;
1309 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
1311 struct btrfs_fs_devices
*seed_devices
= NULL
;
1314 mutex_lock(&uuid_mutex
);
1315 ret
= close_fs_devices(fs_devices
);
1316 if (!fs_devices
->opened
) {
1317 seed_devices
= fs_devices
->seed
;
1318 fs_devices
->seed
= NULL
;
1320 mutex_unlock(&uuid_mutex
);
1322 while (seed_devices
) {
1323 fs_devices
= seed_devices
;
1324 seed_devices
= fs_devices
->seed
;
1325 close_fs_devices(fs_devices
);
1326 free_fs_devices(fs_devices
);
1331 static int open_fs_devices(struct btrfs_fs_devices
*fs_devices
,
1332 fmode_t flags
, void *holder
)
1334 struct btrfs_device
*device
;
1335 struct btrfs_device
*latest_dev
= NULL
;
1338 flags
|= FMODE_EXCL
;
1340 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
1341 /* Just open everything we can; ignore failures here */
1342 if (btrfs_open_one_device(fs_devices
, device
, flags
, holder
))
1346 device
->generation
> latest_dev
->generation
)
1347 latest_dev
= device
;
1349 if (fs_devices
->open_devices
== 0) {
1353 fs_devices
->opened
= 1;
1354 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1355 fs_devices
->total_rw_bytes
= 0;
1360 static int devid_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1362 struct btrfs_device
*dev1
, *dev2
;
1364 dev1
= list_entry(a
, struct btrfs_device
, dev_list
);
1365 dev2
= list_entry(b
, struct btrfs_device
, dev_list
);
1367 if (dev1
->devid
< dev2
->devid
)
1369 else if (dev1
->devid
> dev2
->devid
)
1374 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1375 fmode_t flags
, void *holder
)
1379 lockdep_assert_held(&uuid_mutex
);
1381 mutex_lock(&fs_devices
->device_list_mutex
);
1382 if (fs_devices
->opened
) {
1383 fs_devices
->opened
++;
1386 list_sort(NULL
, &fs_devices
->devices
, devid_cmp
);
1387 ret
= open_fs_devices(fs_devices
, flags
, holder
);
1389 mutex_unlock(&fs_devices
->device_list_mutex
);
1394 static void btrfs_release_disk_super(struct page
*page
)
1400 static int btrfs_read_disk_super(struct block_device
*bdev
, u64 bytenr
,
1402 struct btrfs_super_block
**disk_super
)
1407 /* make sure our super fits in the device */
1408 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1411 /* make sure our super fits in the page */
1412 if (sizeof(**disk_super
) > PAGE_SIZE
)
1415 /* make sure our super doesn't straddle pages on disk */
1416 index
= bytenr
>> PAGE_SHIFT
;
1417 if ((bytenr
+ sizeof(**disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1420 /* pull in the page with our super */
1421 *page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
1424 if (IS_ERR_OR_NULL(*page
))
1429 /* align our pointer to the offset of the super block */
1430 *disk_super
= p
+ offset_in_page(bytenr
);
1432 if (btrfs_super_bytenr(*disk_super
) != bytenr
||
1433 btrfs_super_magic(*disk_super
) != BTRFS_MAGIC
) {
1434 btrfs_release_disk_super(*page
);
1438 if ((*disk_super
)->label
[0] &&
1439 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1])
1440 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1445 int btrfs_forget_devices(const char *path
)
1449 mutex_lock(&uuid_mutex
);
1450 ret
= btrfs_free_stale_devices(strlen(path
) ? path
: NULL
, NULL
);
1451 mutex_unlock(&uuid_mutex
);
1457 * Look for a btrfs signature on a device. This may be called out of the mount path
1458 * and we are not allowed to call set_blocksize during the scan. The superblock
1459 * is read via pagecache
1461 struct btrfs_device
*btrfs_scan_one_device(const char *path
, fmode_t flags
,
1464 struct btrfs_super_block
*disk_super
;
1465 bool new_device_added
= false;
1466 struct btrfs_device
*device
= NULL
;
1467 struct block_device
*bdev
;
1471 lockdep_assert_held(&uuid_mutex
);
1474 * we would like to check all the supers, but that would make
1475 * a btrfs mount succeed after a mkfs from a different FS.
1476 * So, we need to add a special mount option to scan for
1477 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1479 bytenr
= btrfs_sb_offset(0);
1480 flags
|= FMODE_EXCL
;
1482 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1484 return ERR_CAST(bdev
);
1486 if (btrfs_read_disk_super(bdev
, bytenr
, &page
, &disk_super
)) {
1487 device
= ERR_PTR(-EINVAL
);
1488 goto error_bdev_put
;
1491 device
= device_list_add(path
, disk_super
, &new_device_added
);
1492 if (!IS_ERR(device
)) {
1493 if (new_device_added
)
1494 btrfs_free_stale_devices(path
, device
);
1497 btrfs_release_disk_super(page
);
1500 blkdev_put(bdev
, flags
);
1506 * Try to find a chunk that intersects [start, start + len] range and when one
1507 * such is found, record the end of it in *start
1509 static bool contains_pending_extent(struct btrfs_device
*device
, u64
*start
,
1512 u64 physical_start
, physical_end
;
1514 lockdep_assert_held(&device
->fs_info
->chunk_mutex
);
1516 if (!find_first_extent_bit(&device
->alloc_state
, *start
,
1517 &physical_start
, &physical_end
,
1518 CHUNK_ALLOCATED
, NULL
)) {
1520 if (in_range(physical_start
, *start
, len
) ||
1521 in_range(*start
, physical_start
,
1522 physical_end
- physical_start
)) {
1523 *start
= physical_end
+ 1;
1532 * find_free_dev_extent_start - find free space in the specified device
1533 * @device: the device which we search the free space in
1534 * @num_bytes: the size of the free space that we need
1535 * @search_start: the position from which to begin the search
1536 * @start: store the start of the free space.
1537 * @len: the size of the free space. that we find, or the size
1538 * of the max free space if we don't find suitable free space
1540 * this uses a pretty simple search, the expectation is that it is
1541 * called very infrequently and that a given device has a small number
1544 * @start is used to store the start of the free space if we find. But if we
1545 * don't find suitable free space, it will be used to store the start position
1546 * of the max free space.
1548 * @len is used to store the size of the free space that we find.
1549 * But if we don't find suitable free space, it is used to store the size of
1550 * the max free space.
1552 int find_free_dev_extent_start(struct btrfs_device
*device
, u64 num_bytes
,
1553 u64 search_start
, u64
*start
, u64
*len
)
1555 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1556 struct btrfs_root
*root
= fs_info
->dev_root
;
1557 struct btrfs_key key
;
1558 struct btrfs_dev_extent
*dev_extent
;
1559 struct btrfs_path
*path
;
1564 u64 search_end
= device
->total_bytes
;
1567 struct extent_buffer
*l
;
1570 * We don't want to overwrite the superblock on the drive nor any area
1571 * used by the boot loader (grub for example), so we make sure to start
1572 * at an offset of at least 1MB.
1574 search_start
= max_t(u64
, search_start
, SZ_1M
);
1576 path
= btrfs_alloc_path();
1580 max_hole_start
= search_start
;
1584 if (search_start
>= search_end
||
1585 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1590 path
->reada
= READA_FORWARD
;
1591 path
->search_commit_root
= 1;
1592 path
->skip_locking
= 1;
1594 key
.objectid
= device
->devid
;
1595 key
.offset
= search_start
;
1596 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1598 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1602 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1609 slot
= path
->slots
[0];
1610 if (slot
>= btrfs_header_nritems(l
)) {
1611 ret
= btrfs_next_leaf(root
, path
);
1619 btrfs_item_key_to_cpu(l
, &key
, slot
);
1621 if (key
.objectid
< device
->devid
)
1624 if (key
.objectid
> device
->devid
)
1627 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1630 if (key
.offset
> search_start
) {
1631 hole_size
= key
.offset
- search_start
;
1634 * Have to check before we set max_hole_start, otherwise
1635 * we could end up sending back this offset anyway.
1637 if (contains_pending_extent(device
, &search_start
,
1639 if (key
.offset
>= search_start
)
1640 hole_size
= key
.offset
- search_start
;
1645 if (hole_size
> max_hole_size
) {
1646 max_hole_start
= search_start
;
1647 max_hole_size
= hole_size
;
1651 * If this free space is greater than which we need,
1652 * it must be the max free space that we have found
1653 * until now, so max_hole_start must point to the start
1654 * of this free space and the length of this free space
1655 * is stored in max_hole_size. Thus, we return
1656 * max_hole_start and max_hole_size and go back to the
1659 if (hole_size
>= num_bytes
) {
1665 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1666 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1668 if (extent_end
> search_start
)
1669 search_start
= extent_end
;
1676 * At this point, search_start should be the end of
1677 * allocated dev extents, and when shrinking the device,
1678 * search_end may be smaller than search_start.
1680 if (search_end
> search_start
) {
1681 hole_size
= search_end
- search_start
;
1683 if (contains_pending_extent(device
, &search_start
, hole_size
)) {
1684 btrfs_release_path(path
);
1688 if (hole_size
> max_hole_size
) {
1689 max_hole_start
= search_start
;
1690 max_hole_size
= hole_size
;
1695 if (max_hole_size
< num_bytes
)
1701 btrfs_free_path(path
);
1702 *start
= max_hole_start
;
1704 *len
= max_hole_size
;
1708 int find_free_dev_extent(struct btrfs_device
*device
, u64 num_bytes
,
1709 u64
*start
, u64
*len
)
1711 /* FIXME use last free of some kind */
1712 return find_free_dev_extent_start(device
, num_bytes
, 0, start
, len
);
1715 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1716 struct btrfs_device
*device
,
1717 u64 start
, u64
*dev_extent_len
)
1719 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1720 struct btrfs_root
*root
= fs_info
->dev_root
;
1722 struct btrfs_path
*path
;
1723 struct btrfs_key key
;
1724 struct btrfs_key found_key
;
1725 struct extent_buffer
*leaf
= NULL
;
1726 struct btrfs_dev_extent
*extent
= NULL
;
1728 path
= btrfs_alloc_path();
1732 key
.objectid
= device
->devid
;
1734 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1736 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1738 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1739 BTRFS_DEV_EXTENT_KEY
);
1742 leaf
= path
->nodes
[0];
1743 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1744 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1745 struct btrfs_dev_extent
);
1746 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1747 btrfs_dev_extent_length(leaf
, extent
) < start
);
1749 btrfs_release_path(path
);
1751 } else if (ret
== 0) {
1752 leaf
= path
->nodes
[0];
1753 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1754 struct btrfs_dev_extent
);
1756 btrfs_handle_fs_error(fs_info
, ret
, "Slot search failed");
1760 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1762 ret
= btrfs_del_item(trans
, root
, path
);
1764 btrfs_handle_fs_error(fs_info
, ret
,
1765 "Failed to remove dev extent item");
1767 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1770 btrfs_free_path(path
);
1774 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1775 struct btrfs_device
*device
,
1776 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1779 struct btrfs_path
*path
;
1780 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1781 struct btrfs_root
*root
= fs_info
->dev_root
;
1782 struct btrfs_dev_extent
*extent
;
1783 struct extent_buffer
*leaf
;
1784 struct btrfs_key key
;
1786 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
));
1787 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
));
1788 path
= btrfs_alloc_path();
1792 key
.objectid
= device
->devid
;
1794 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1795 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1800 leaf
= path
->nodes
[0];
1801 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1802 struct btrfs_dev_extent
);
1803 btrfs_set_dev_extent_chunk_tree(leaf
, extent
,
1804 BTRFS_CHUNK_TREE_OBJECTID
);
1805 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
,
1806 BTRFS_FIRST_CHUNK_TREE_OBJECTID
);
1807 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1809 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1810 btrfs_mark_buffer_dirty(leaf
);
1812 btrfs_free_path(path
);
1816 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1818 struct extent_map_tree
*em_tree
;
1819 struct extent_map
*em
;
1823 em_tree
= &fs_info
->mapping_tree
;
1824 read_lock(&em_tree
->lock
);
1825 n
= rb_last(&em_tree
->map
.rb_root
);
1827 em
= rb_entry(n
, struct extent_map
, rb_node
);
1828 ret
= em
->start
+ em
->len
;
1830 read_unlock(&em_tree
->lock
);
1835 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1839 struct btrfs_key key
;
1840 struct btrfs_key found_key
;
1841 struct btrfs_path
*path
;
1843 path
= btrfs_alloc_path();
1847 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1848 key
.type
= BTRFS_DEV_ITEM_KEY
;
1849 key
.offset
= (u64
)-1;
1851 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1855 BUG_ON(ret
== 0); /* Corruption */
1857 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1858 BTRFS_DEV_ITEMS_OBJECTID
,
1859 BTRFS_DEV_ITEM_KEY
);
1863 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1865 *devid_ret
= found_key
.offset
+ 1;
1869 btrfs_free_path(path
);
1874 * the device information is stored in the chunk root
1875 * the btrfs_device struct should be fully filled in
1877 static int btrfs_add_dev_item(struct btrfs_trans_handle
*trans
,
1878 struct btrfs_device
*device
)
1881 struct btrfs_path
*path
;
1882 struct btrfs_dev_item
*dev_item
;
1883 struct extent_buffer
*leaf
;
1884 struct btrfs_key key
;
1887 path
= btrfs_alloc_path();
1891 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1892 key
.type
= BTRFS_DEV_ITEM_KEY
;
1893 key
.offset
= device
->devid
;
1895 ret
= btrfs_insert_empty_item(trans
, trans
->fs_info
->chunk_root
, path
,
1896 &key
, sizeof(*dev_item
));
1900 leaf
= path
->nodes
[0];
1901 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1903 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1904 btrfs_set_device_generation(leaf
, dev_item
, 0);
1905 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1906 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1907 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1908 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1909 btrfs_set_device_total_bytes(leaf
, dev_item
,
1910 btrfs_device_get_disk_total_bytes(device
));
1911 btrfs_set_device_bytes_used(leaf
, dev_item
,
1912 btrfs_device_get_bytes_used(device
));
1913 btrfs_set_device_group(leaf
, dev_item
, 0);
1914 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1915 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1916 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1918 ptr
= btrfs_device_uuid(dev_item
);
1919 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1920 ptr
= btrfs_device_fsid(dev_item
);
1921 write_extent_buffer(leaf
, trans
->fs_info
->fs_devices
->metadata_uuid
,
1922 ptr
, BTRFS_FSID_SIZE
);
1923 btrfs_mark_buffer_dirty(leaf
);
1927 btrfs_free_path(path
);
1932 * Function to update ctime/mtime for a given device path.
1933 * Mainly used for ctime/mtime based probe like libblkid.
1935 static void update_dev_time(const char *path_name
)
1939 filp
= filp_open(path_name
, O_RDWR
, 0);
1942 file_update_time(filp
);
1943 filp_close(filp
, NULL
);
1946 static int btrfs_rm_dev_item(struct btrfs_device
*device
)
1948 struct btrfs_root
*root
= device
->fs_info
->chunk_root
;
1950 struct btrfs_path
*path
;
1951 struct btrfs_key key
;
1952 struct btrfs_trans_handle
*trans
;
1954 path
= btrfs_alloc_path();
1958 trans
= btrfs_start_transaction(root
, 0);
1959 if (IS_ERR(trans
)) {
1960 btrfs_free_path(path
);
1961 return PTR_ERR(trans
);
1963 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1964 key
.type
= BTRFS_DEV_ITEM_KEY
;
1965 key
.offset
= device
->devid
;
1967 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1971 btrfs_abort_transaction(trans
, ret
);
1972 btrfs_end_transaction(trans
);
1976 ret
= btrfs_del_item(trans
, root
, path
);
1978 btrfs_abort_transaction(trans
, ret
);
1979 btrfs_end_transaction(trans
);
1983 btrfs_free_path(path
);
1985 ret
= btrfs_commit_transaction(trans
);
1990 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1991 * filesystem. It's up to the caller to adjust that number regarding eg. device
1994 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
2002 seq
= read_seqbegin(&fs_info
->profiles_lock
);
2004 all_avail
= fs_info
->avail_data_alloc_bits
|
2005 fs_info
->avail_system_alloc_bits
|
2006 fs_info
->avail_metadata_alloc_bits
;
2007 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
2009 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
2010 if (!(all_avail
& btrfs_raid_array
[i
].bg_flag
))
2013 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
2014 int ret
= btrfs_raid_array
[i
].mindev_error
;
2024 static struct btrfs_device
* btrfs_find_next_active_device(
2025 struct btrfs_fs_devices
*fs_devs
, struct btrfs_device
*device
)
2027 struct btrfs_device
*next_device
;
2029 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
2030 if (next_device
!= device
&&
2031 !test_bit(BTRFS_DEV_STATE_MISSING
, &next_device
->dev_state
)
2032 && next_device
->bdev
)
2040 * Helper function to check if the given device is part of s_bdev / latest_bdev
2041 * and replace it with the provided or the next active device, in the context
2042 * where this function called, there should be always be another device (or
2043 * this_dev) which is active.
2045 void btrfs_assign_next_active_device(struct btrfs_device
*device
,
2046 struct btrfs_device
*this_dev
)
2048 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
2049 struct btrfs_device
*next_device
;
2052 next_device
= this_dev
;
2054 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
2056 ASSERT(next_device
);
2058 if (fs_info
->sb
->s_bdev
&&
2059 (fs_info
->sb
->s_bdev
== device
->bdev
))
2060 fs_info
->sb
->s_bdev
= next_device
->bdev
;
2062 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
2063 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
2067 * Return btrfs_fs_devices::num_devices excluding the device that's being
2068 * currently replaced.
2070 static u64
btrfs_num_devices(struct btrfs_fs_info
*fs_info
)
2072 u64 num_devices
= fs_info
->fs_devices
->num_devices
;
2074 down_read(&fs_info
->dev_replace
.rwsem
);
2075 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
2076 ASSERT(num_devices
> 1);
2079 up_read(&fs_info
->dev_replace
.rwsem
);
2084 int btrfs_rm_device(struct btrfs_fs_info
*fs_info
, const char *device_path
,
2087 struct btrfs_device
*device
;
2088 struct btrfs_fs_devices
*cur_devices
;
2089 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2093 mutex_lock(&uuid_mutex
);
2095 num_devices
= btrfs_num_devices(fs_info
);
2097 ret
= btrfs_check_raid_min_devices(fs_info
, num_devices
- 1);
2101 device
= btrfs_find_device_by_devspec(fs_info
, devid
, device_path
);
2103 if (IS_ERR(device
)) {
2104 if (PTR_ERR(device
) == -ENOENT
&&
2105 strcmp(device_path
, "missing") == 0)
2106 ret
= BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2108 ret
= PTR_ERR(device
);
2112 if (btrfs_pinned_by_swapfile(fs_info
, device
)) {
2113 btrfs_warn_in_rcu(fs_info
,
2114 "cannot remove device %s (devid %llu) due to active swapfile",
2115 rcu_str_deref(device
->name
), device
->devid
);
2120 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
2121 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
2125 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
2126 fs_info
->fs_devices
->rw_devices
== 1) {
2127 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
2131 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
2132 mutex_lock(&fs_info
->chunk_mutex
);
2133 list_del_init(&device
->dev_alloc_list
);
2134 device
->fs_devices
->rw_devices
--;
2135 mutex_unlock(&fs_info
->chunk_mutex
);
2138 mutex_unlock(&uuid_mutex
);
2139 ret
= btrfs_shrink_device(device
, 0);
2140 mutex_lock(&uuid_mutex
);
2145 * TODO: the superblock still includes this device in its num_devices
2146 * counter although write_all_supers() is not locked out. This
2147 * could give a filesystem state which requires a degraded mount.
2149 ret
= btrfs_rm_dev_item(device
);
2153 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2154 btrfs_scrub_cancel_dev(device
);
2157 * the device list mutex makes sure that we don't change
2158 * the device list while someone else is writing out all
2159 * the device supers. Whoever is writing all supers, should
2160 * lock the device list mutex before getting the number of
2161 * devices in the super block (super_copy). Conversely,
2162 * whoever updates the number of devices in the super block
2163 * (super_copy) should hold the device list mutex.
2167 * In normal cases the cur_devices == fs_devices. But in case
2168 * of deleting a seed device, the cur_devices should point to
2169 * its own fs_devices listed under the fs_devices->seed.
2171 cur_devices
= device
->fs_devices
;
2172 mutex_lock(&fs_devices
->device_list_mutex
);
2173 list_del_rcu(&device
->dev_list
);
2175 cur_devices
->num_devices
--;
2176 cur_devices
->total_devices
--;
2177 /* Update total_devices of the parent fs_devices if it's seed */
2178 if (cur_devices
!= fs_devices
)
2179 fs_devices
->total_devices
--;
2181 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
2182 cur_devices
->missing_devices
--;
2184 btrfs_assign_next_active_device(device
, NULL
);
2187 cur_devices
->open_devices
--;
2188 /* remove sysfs entry */
2189 btrfs_sysfs_rm_device_link(fs_devices
, device
);
2192 num_devices
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
2193 btrfs_set_super_num_devices(fs_info
->super_copy
, num_devices
);
2194 mutex_unlock(&fs_devices
->device_list_mutex
);
2197 * at this point, the device is zero sized and detached from
2198 * the devices list. All that's left is to zero out the old
2199 * supers and free the device.
2201 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2202 btrfs_scratch_superblocks(device
->bdev
, device
->name
->str
);
2204 btrfs_close_bdev(device
);
2206 btrfs_free_device(device
);
2208 if (cur_devices
->open_devices
== 0) {
2209 while (fs_devices
) {
2210 if (fs_devices
->seed
== cur_devices
) {
2211 fs_devices
->seed
= cur_devices
->seed
;
2214 fs_devices
= fs_devices
->seed
;
2216 cur_devices
->seed
= NULL
;
2217 close_fs_devices(cur_devices
);
2218 free_fs_devices(cur_devices
);
2222 mutex_unlock(&uuid_mutex
);
2226 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
2227 mutex_lock(&fs_info
->chunk_mutex
);
2228 list_add(&device
->dev_alloc_list
,
2229 &fs_devices
->alloc_list
);
2230 device
->fs_devices
->rw_devices
++;
2231 mutex_unlock(&fs_info
->chunk_mutex
);
2236 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device
*srcdev
)
2238 struct btrfs_fs_devices
*fs_devices
;
2240 lockdep_assert_held(&srcdev
->fs_info
->fs_devices
->device_list_mutex
);
2243 * in case of fs with no seed, srcdev->fs_devices will point
2244 * to fs_devices of fs_info. However when the dev being replaced is
2245 * a seed dev it will point to the seed's local fs_devices. In short
2246 * srcdev will have its correct fs_devices in both the cases.
2248 fs_devices
= srcdev
->fs_devices
;
2250 list_del_rcu(&srcdev
->dev_list
);
2251 list_del(&srcdev
->dev_alloc_list
);
2252 fs_devices
->num_devices
--;
2253 if (test_bit(BTRFS_DEV_STATE_MISSING
, &srcdev
->dev_state
))
2254 fs_devices
->missing_devices
--;
2256 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &srcdev
->dev_state
))
2257 fs_devices
->rw_devices
--;
2260 fs_devices
->open_devices
--;
2263 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device
*srcdev
)
2265 struct btrfs_fs_info
*fs_info
= srcdev
->fs_info
;
2266 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
2268 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &srcdev
->dev_state
)) {
2269 /* zero out the old super if it is writable */
2270 btrfs_scratch_superblocks(srcdev
->bdev
, srcdev
->name
->str
);
2273 btrfs_close_bdev(srcdev
);
2275 btrfs_free_device(srcdev
);
2277 /* if this is no devs we rather delete the fs_devices */
2278 if (!fs_devices
->num_devices
) {
2279 struct btrfs_fs_devices
*tmp_fs_devices
;
2282 * On a mounted FS, num_devices can't be zero unless it's a
2283 * seed. In case of a seed device being replaced, the replace
2284 * target added to the sprout FS, so there will be no more
2285 * device left under the seed FS.
2287 ASSERT(fs_devices
->seeding
);
2289 tmp_fs_devices
= fs_info
->fs_devices
;
2290 while (tmp_fs_devices
) {
2291 if (tmp_fs_devices
->seed
== fs_devices
) {
2292 tmp_fs_devices
->seed
= fs_devices
->seed
;
2295 tmp_fs_devices
= tmp_fs_devices
->seed
;
2297 fs_devices
->seed
= NULL
;
2298 close_fs_devices(fs_devices
);
2299 free_fs_devices(fs_devices
);
2303 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device
*tgtdev
)
2305 struct btrfs_fs_devices
*fs_devices
= tgtdev
->fs_info
->fs_devices
;
2308 mutex_lock(&fs_devices
->device_list_mutex
);
2310 btrfs_sysfs_rm_device_link(fs_devices
, tgtdev
);
2313 fs_devices
->open_devices
--;
2315 fs_devices
->num_devices
--;
2317 btrfs_assign_next_active_device(tgtdev
, NULL
);
2319 list_del_rcu(&tgtdev
->dev_list
);
2321 mutex_unlock(&fs_devices
->device_list_mutex
);
2324 * The update_dev_time() with in btrfs_scratch_superblocks()
2325 * may lead to a call to btrfs_show_devname() which will try
2326 * to hold device_list_mutex. And here this device
2327 * is already out of device list, so we don't have to hold
2328 * the device_list_mutex lock.
2330 btrfs_scratch_superblocks(tgtdev
->bdev
, tgtdev
->name
->str
);
2332 btrfs_close_bdev(tgtdev
);
2334 btrfs_free_device(tgtdev
);
2337 static struct btrfs_device
*btrfs_find_device_by_path(
2338 struct btrfs_fs_info
*fs_info
, const char *device_path
)
2341 struct btrfs_super_block
*disk_super
;
2344 struct block_device
*bdev
;
2345 struct buffer_head
*bh
;
2346 struct btrfs_device
*device
;
2348 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2349 fs_info
->bdev_holder
, 0, &bdev
, &bh
);
2351 return ERR_PTR(ret
);
2352 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
2353 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2354 dev_uuid
= disk_super
->dev_item
.uuid
;
2355 if (btrfs_fs_incompat(fs_info
, METADATA_UUID
))
2356 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, dev_uuid
,
2357 disk_super
->metadata_uuid
, true);
2359 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, dev_uuid
,
2360 disk_super
->fsid
, true);
2364 device
= ERR_PTR(-ENOENT
);
2365 blkdev_put(bdev
, FMODE_READ
);
2370 * Lookup a device given by device id, or the path if the id is 0.
2372 struct btrfs_device
*btrfs_find_device_by_devspec(
2373 struct btrfs_fs_info
*fs_info
, u64 devid
,
2374 const char *device_path
)
2376 struct btrfs_device
*device
;
2379 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, NULL
,
2382 return ERR_PTR(-ENOENT
);
2386 if (!device_path
|| !device_path
[0])
2387 return ERR_PTR(-EINVAL
);
2389 if (strcmp(device_path
, "missing") == 0) {
2390 /* Find first missing device */
2391 list_for_each_entry(device
, &fs_info
->fs_devices
->devices
,
2393 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
2394 &device
->dev_state
) && !device
->bdev
)
2397 return ERR_PTR(-ENOENT
);
2400 return btrfs_find_device_by_path(fs_info
, device_path
);
2404 * does all the dirty work required for changing file system's UUID.
2406 static int btrfs_prepare_sprout(struct btrfs_fs_info
*fs_info
)
2408 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2409 struct btrfs_fs_devices
*old_devices
;
2410 struct btrfs_fs_devices
*seed_devices
;
2411 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2412 struct btrfs_device
*device
;
2415 lockdep_assert_held(&uuid_mutex
);
2416 if (!fs_devices
->seeding
)
2419 seed_devices
= alloc_fs_devices(NULL
, NULL
);
2420 if (IS_ERR(seed_devices
))
2421 return PTR_ERR(seed_devices
);
2423 old_devices
= clone_fs_devices(fs_devices
);
2424 if (IS_ERR(old_devices
)) {
2425 kfree(seed_devices
);
2426 return PTR_ERR(old_devices
);
2429 list_add(&old_devices
->fs_list
, &fs_uuids
);
2431 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2432 seed_devices
->opened
= 1;
2433 INIT_LIST_HEAD(&seed_devices
->devices
);
2434 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2435 mutex_init(&seed_devices
->device_list_mutex
);
2437 mutex_lock(&fs_devices
->device_list_mutex
);
2438 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2440 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2441 device
->fs_devices
= seed_devices
;
2443 mutex_lock(&fs_info
->chunk_mutex
);
2444 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2445 mutex_unlock(&fs_info
->chunk_mutex
);
2447 fs_devices
->seeding
= 0;
2448 fs_devices
->num_devices
= 0;
2449 fs_devices
->open_devices
= 0;
2450 fs_devices
->missing_devices
= 0;
2451 fs_devices
->rotating
= 0;
2452 fs_devices
->seed
= seed_devices
;
2454 generate_random_uuid(fs_devices
->fsid
);
2455 memcpy(fs_devices
->metadata_uuid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2456 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2457 mutex_unlock(&fs_devices
->device_list_mutex
);
2459 super_flags
= btrfs_super_flags(disk_super
) &
2460 ~BTRFS_SUPER_FLAG_SEEDING
;
2461 btrfs_set_super_flags(disk_super
, super_flags
);
2467 * Store the expected generation for seed devices in device items.
2469 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
)
2471 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2472 struct btrfs_root
*root
= fs_info
->chunk_root
;
2473 struct btrfs_path
*path
;
2474 struct extent_buffer
*leaf
;
2475 struct btrfs_dev_item
*dev_item
;
2476 struct btrfs_device
*device
;
2477 struct btrfs_key key
;
2478 u8 fs_uuid
[BTRFS_FSID_SIZE
];
2479 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2483 path
= btrfs_alloc_path();
2487 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2489 key
.type
= BTRFS_DEV_ITEM_KEY
;
2492 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2496 leaf
= path
->nodes
[0];
2498 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2499 ret
= btrfs_next_leaf(root
, path
);
2504 leaf
= path
->nodes
[0];
2505 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2506 btrfs_release_path(path
);
2510 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2511 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2512 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2515 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2516 struct btrfs_dev_item
);
2517 devid
= btrfs_device_id(leaf
, dev_item
);
2518 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2520 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2522 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, dev_uuid
,
2524 BUG_ON(!device
); /* Logic error */
2526 if (device
->fs_devices
->seeding
) {
2527 btrfs_set_device_generation(leaf
, dev_item
,
2528 device
->generation
);
2529 btrfs_mark_buffer_dirty(leaf
);
2537 btrfs_free_path(path
);
2541 int btrfs_init_new_device(struct btrfs_fs_info
*fs_info
, const char *device_path
)
2543 struct btrfs_root
*root
= fs_info
->dev_root
;
2544 struct request_queue
*q
;
2545 struct btrfs_trans_handle
*trans
;
2546 struct btrfs_device
*device
;
2547 struct block_device
*bdev
;
2548 struct super_block
*sb
= fs_info
->sb
;
2549 struct rcu_string
*name
;
2550 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2551 u64 orig_super_total_bytes
;
2552 u64 orig_super_num_devices
;
2553 int seeding_dev
= 0;
2555 bool unlocked
= false;
2557 if (sb_rdonly(sb
) && !fs_devices
->seeding
)
2560 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2561 fs_info
->bdev_holder
);
2563 return PTR_ERR(bdev
);
2565 if (fs_devices
->seeding
) {
2567 down_write(&sb
->s_umount
);
2568 mutex_lock(&uuid_mutex
);
2571 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2573 mutex_lock(&fs_devices
->device_list_mutex
);
2574 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
2575 if (device
->bdev
== bdev
) {
2578 &fs_devices
->device_list_mutex
);
2582 mutex_unlock(&fs_devices
->device_list_mutex
);
2584 device
= btrfs_alloc_device(fs_info
, NULL
, NULL
);
2585 if (IS_ERR(device
)) {
2586 /* we can safely leave the fs_devices entry around */
2587 ret
= PTR_ERR(device
);
2591 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2594 goto error_free_device
;
2596 rcu_assign_pointer(device
->name
, name
);
2598 trans
= btrfs_start_transaction(root
, 0);
2599 if (IS_ERR(trans
)) {
2600 ret
= PTR_ERR(trans
);
2601 goto error_free_device
;
2604 q
= bdev_get_queue(bdev
);
2605 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
2606 device
->generation
= trans
->transid
;
2607 device
->io_width
= fs_info
->sectorsize
;
2608 device
->io_align
= fs_info
->sectorsize
;
2609 device
->sector_size
= fs_info
->sectorsize
;
2610 device
->total_bytes
= round_down(i_size_read(bdev
->bd_inode
),
2611 fs_info
->sectorsize
);
2612 device
->disk_total_bytes
= device
->total_bytes
;
2613 device
->commit_total_bytes
= device
->total_bytes
;
2614 device
->fs_info
= fs_info
;
2615 device
->bdev
= bdev
;
2616 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2617 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
2618 device
->mode
= FMODE_EXCL
;
2619 device
->dev_stats_valid
= 1;
2620 set_blocksize(device
->bdev
, BTRFS_BDEV_BLOCKSIZE
);
2623 sb
->s_flags
&= ~SB_RDONLY
;
2624 ret
= btrfs_prepare_sprout(fs_info
);
2626 btrfs_abort_transaction(trans
, ret
);
2631 device
->fs_devices
= fs_devices
;
2633 mutex_lock(&fs_devices
->device_list_mutex
);
2634 mutex_lock(&fs_info
->chunk_mutex
);
2635 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
2636 list_add(&device
->dev_alloc_list
, &fs_devices
->alloc_list
);
2637 fs_devices
->num_devices
++;
2638 fs_devices
->open_devices
++;
2639 fs_devices
->rw_devices
++;
2640 fs_devices
->total_devices
++;
2641 fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2643 atomic64_add(device
->total_bytes
, &fs_info
->free_chunk_space
);
2645 if (!blk_queue_nonrot(q
))
2646 fs_devices
->rotating
= 1;
2648 orig_super_total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
2649 btrfs_set_super_total_bytes(fs_info
->super_copy
,
2650 round_down(orig_super_total_bytes
+ device
->total_bytes
,
2651 fs_info
->sectorsize
));
2653 orig_super_num_devices
= btrfs_super_num_devices(fs_info
->super_copy
);
2654 btrfs_set_super_num_devices(fs_info
->super_copy
,
2655 orig_super_num_devices
+ 1);
2657 /* add sysfs device entry */
2658 btrfs_sysfs_add_device_link(fs_devices
, device
);
2661 * we've got more storage, clear any full flags on the space
2664 btrfs_clear_space_info_full(fs_info
);
2666 mutex_unlock(&fs_info
->chunk_mutex
);
2667 mutex_unlock(&fs_devices
->device_list_mutex
);
2670 mutex_lock(&fs_info
->chunk_mutex
);
2671 ret
= init_first_rw_device(trans
);
2672 mutex_unlock(&fs_info
->chunk_mutex
);
2674 btrfs_abort_transaction(trans
, ret
);
2679 ret
= btrfs_add_dev_item(trans
, device
);
2681 btrfs_abort_transaction(trans
, ret
);
2686 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2688 ret
= btrfs_finish_sprout(trans
);
2690 btrfs_abort_transaction(trans
, ret
);
2694 /* Sprouting would change fsid of the mounted root,
2695 * so rename the fsid on the sysfs
2697 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2698 fs_info
->fs_devices
->fsid
);
2699 if (kobject_rename(&fs_devices
->fsid_kobj
, fsid_buf
))
2701 "sysfs: failed to create fsid for sprout");
2704 ret
= btrfs_commit_transaction(trans
);
2707 mutex_unlock(&uuid_mutex
);
2708 up_write(&sb
->s_umount
);
2711 if (ret
) /* transaction commit */
2714 ret
= btrfs_relocate_sys_chunks(fs_info
);
2716 btrfs_handle_fs_error(fs_info
, ret
,
2717 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2718 trans
= btrfs_attach_transaction(root
);
2719 if (IS_ERR(trans
)) {
2720 if (PTR_ERR(trans
) == -ENOENT
)
2722 ret
= PTR_ERR(trans
);
2726 ret
= btrfs_commit_transaction(trans
);
2729 /* Update ctime/mtime for libblkid */
2730 update_dev_time(device_path
);
2734 btrfs_sysfs_rm_device_link(fs_devices
, device
);
2735 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2736 mutex_lock(&fs_info
->chunk_mutex
);
2737 list_del_rcu(&device
->dev_list
);
2738 list_del(&device
->dev_alloc_list
);
2739 fs_info
->fs_devices
->num_devices
--;
2740 fs_info
->fs_devices
->open_devices
--;
2741 fs_info
->fs_devices
->rw_devices
--;
2742 fs_info
->fs_devices
->total_devices
--;
2743 fs_info
->fs_devices
->total_rw_bytes
-= device
->total_bytes
;
2744 atomic64_sub(device
->total_bytes
, &fs_info
->free_chunk_space
);
2745 btrfs_set_super_total_bytes(fs_info
->super_copy
,
2746 orig_super_total_bytes
);
2747 btrfs_set_super_num_devices(fs_info
->super_copy
,
2748 orig_super_num_devices
);
2749 mutex_unlock(&fs_info
->chunk_mutex
);
2750 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2753 sb
->s_flags
|= SB_RDONLY
;
2755 btrfs_end_transaction(trans
);
2757 btrfs_free_device(device
);
2759 blkdev_put(bdev
, FMODE_EXCL
);
2760 if (seeding_dev
&& !unlocked
) {
2761 mutex_unlock(&uuid_mutex
);
2762 up_write(&sb
->s_umount
);
2767 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2768 struct btrfs_device
*device
)
2771 struct btrfs_path
*path
;
2772 struct btrfs_root
*root
= device
->fs_info
->chunk_root
;
2773 struct btrfs_dev_item
*dev_item
;
2774 struct extent_buffer
*leaf
;
2775 struct btrfs_key key
;
2777 path
= btrfs_alloc_path();
2781 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2782 key
.type
= BTRFS_DEV_ITEM_KEY
;
2783 key
.offset
= device
->devid
;
2785 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2794 leaf
= path
->nodes
[0];
2795 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2797 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2798 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2799 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2800 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2801 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2802 btrfs_set_device_total_bytes(leaf
, dev_item
,
2803 btrfs_device_get_disk_total_bytes(device
));
2804 btrfs_set_device_bytes_used(leaf
, dev_item
,
2805 btrfs_device_get_bytes_used(device
));
2806 btrfs_mark_buffer_dirty(leaf
);
2809 btrfs_free_path(path
);
2813 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2814 struct btrfs_device
*device
, u64 new_size
)
2816 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
2817 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2821 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2824 new_size
= round_down(new_size
, fs_info
->sectorsize
);
2826 mutex_lock(&fs_info
->chunk_mutex
);
2827 old_total
= btrfs_super_total_bytes(super_copy
);
2828 diff
= round_down(new_size
- device
->total_bytes
, fs_info
->sectorsize
);
2830 if (new_size
<= device
->total_bytes
||
2831 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
2832 mutex_unlock(&fs_info
->chunk_mutex
);
2836 btrfs_set_super_total_bytes(super_copy
,
2837 round_down(old_total
+ diff
, fs_info
->sectorsize
));
2838 device
->fs_devices
->total_rw_bytes
+= diff
;
2840 btrfs_device_set_total_bytes(device
, new_size
);
2841 btrfs_device_set_disk_total_bytes(device
, new_size
);
2842 btrfs_clear_space_info_full(device
->fs_info
);
2843 if (list_empty(&device
->post_commit_list
))
2844 list_add_tail(&device
->post_commit_list
,
2845 &trans
->transaction
->dev_update_list
);
2846 mutex_unlock(&fs_info
->chunk_mutex
);
2848 return btrfs_update_device(trans
, device
);
2851 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
, u64 chunk_offset
)
2853 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2854 struct btrfs_root
*root
= fs_info
->chunk_root
;
2856 struct btrfs_path
*path
;
2857 struct btrfs_key key
;
2859 path
= btrfs_alloc_path();
2863 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2864 key
.offset
= chunk_offset
;
2865 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2867 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2870 else if (ret
> 0) { /* Logic error or corruption */
2871 btrfs_handle_fs_error(fs_info
, -ENOENT
,
2872 "Failed lookup while freeing chunk.");
2877 ret
= btrfs_del_item(trans
, root
, path
);
2879 btrfs_handle_fs_error(fs_info
, ret
,
2880 "Failed to delete chunk item.");
2882 btrfs_free_path(path
);
2886 static int btrfs_del_sys_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2888 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2889 struct btrfs_disk_key
*disk_key
;
2890 struct btrfs_chunk
*chunk
;
2897 struct btrfs_key key
;
2899 mutex_lock(&fs_info
->chunk_mutex
);
2900 array_size
= btrfs_super_sys_array_size(super_copy
);
2902 ptr
= super_copy
->sys_chunk_array
;
2905 while (cur
< array_size
) {
2906 disk_key
= (struct btrfs_disk_key
*)ptr
;
2907 btrfs_disk_key_to_cpu(&key
, disk_key
);
2909 len
= sizeof(*disk_key
);
2911 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2912 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2913 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2914 len
+= btrfs_chunk_item_size(num_stripes
);
2919 if (key
.objectid
== BTRFS_FIRST_CHUNK_TREE_OBJECTID
&&
2920 key
.offset
== chunk_offset
) {
2921 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2923 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2929 mutex_unlock(&fs_info
->chunk_mutex
);
2934 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2935 * @logical: Logical block offset in bytes.
2936 * @length: Length of extent in bytes.
2938 * Return: Chunk mapping or ERR_PTR.
2940 struct extent_map
*btrfs_get_chunk_map(struct btrfs_fs_info
*fs_info
,
2941 u64 logical
, u64 length
)
2943 struct extent_map_tree
*em_tree
;
2944 struct extent_map
*em
;
2946 em_tree
= &fs_info
->mapping_tree
;
2947 read_lock(&em_tree
->lock
);
2948 em
= lookup_extent_mapping(em_tree
, logical
, length
);
2949 read_unlock(&em_tree
->lock
);
2952 btrfs_crit(fs_info
, "unable to find logical %llu length %llu",
2954 return ERR_PTR(-EINVAL
);
2957 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
2959 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2960 logical
, length
, em
->start
, em
->start
+ em
->len
);
2961 free_extent_map(em
);
2962 return ERR_PTR(-EINVAL
);
2965 /* callers are responsible for dropping em's ref. */
2969 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
, u64 chunk_offset
)
2971 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2972 struct extent_map
*em
;
2973 struct map_lookup
*map
;
2974 u64 dev_extent_len
= 0;
2976 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2978 em
= btrfs_get_chunk_map(fs_info
, chunk_offset
, 1);
2981 * This is a logic error, but we don't want to just rely on the
2982 * user having built with ASSERT enabled, so if ASSERT doesn't
2983 * do anything we still error out.
2988 map
= em
->map_lookup
;
2989 mutex_lock(&fs_info
->chunk_mutex
);
2990 check_system_chunk(trans
, map
->type
);
2991 mutex_unlock(&fs_info
->chunk_mutex
);
2994 * Take the device list mutex to prevent races with the final phase of
2995 * a device replace operation that replaces the device object associated
2996 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2998 mutex_lock(&fs_devices
->device_list_mutex
);
2999 for (i
= 0; i
< map
->num_stripes
; i
++) {
3000 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
3001 ret
= btrfs_free_dev_extent(trans
, device
,
3002 map
->stripes
[i
].physical
,
3005 mutex_unlock(&fs_devices
->device_list_mutex
);
3006 btrfs_abort_transaction(trans
, ret
);
3010 if (device
->bytes_used
> 0) {
3011 mutex_lock(&fs_info
->chunk_mutex
);
3012 btrfs_device_set_bytes_used(device
,
3013 device
->bytes_used
- dev_extent_len
);
3014 atomic64_add(dev_extent_len
, &fs_info
->free_chunk_space
);
3015 btrfs_clear_space_info_full(fs_info
);
3016 mutex_unlock(&fs_info
->chunk_mutex
);
3019 ret
= btrfs_update_device(trans
, device
);
3021 mutex_unlock(&fs_devices
->device_list_mutex
);
3022 btrfs_abort_transaction(trans
, ret
);
3026 mutex_unlock(&fs_devices
->device_list_mutex
);
3028 ret
= btrfs_free_chunk(trans
, chunk_offset
);
3030 btrfs_abort_transaction(trans
, ret
);
3034 trace_btrfs_chunk_free(fs_info
, map
, chunk_offset
, em
->len
);
3036 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
3037 ret
= btrfs_del_sys_chunk(fs_info
, chunk_offset
);
3039 btrfs_abort_transaction(trans
, ret
);
3044 ret
= btrfs_remove_block_group(trans
, chunk_offset
, em
);
3046 btrfs_abort_transaction(trans
, ret
);
3052 free_extent_map(em
);
3056 static int btrfs_relocate_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
3058 struct btrfs_root
*root
= fs_info
->chunk_root
;
3059 struct btrfs_trans_handle
*trans
;
3063 * Prevent races with automatic removal of unused block groups.
3064 * After we relocate and before we remove the chunk with offset
3065 * chunk_offset, automatic removal of the block group can kick in,
3066 * resulting in a failure when calling btrfs_remove_chunk() below.
3068 * Make sure to acquire this mutex before doing a tree search (dev
3069 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3070 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3071 * we release the path used to search the chunk/dev tree and before
3072 * the current task acquires this mutex and calls us.
3074 lockdep_assert_held(&fs_info
->delete_unused_bgs_mutex
);
3076 ret
= btrfs_can_relocate(fs_info
, chunk_offset
);
3080 /* step one, relocate all the extents inside this chunk */
3081 btrfs_scrub_pause(fs_info
);
3082 ret
= btrfs_relocate_block_group(fs_info
, chunk_offset
);
3083 btrfs_scrub_continue(fs_info
);
3088 * We add the kobjects here (and after forcing data chunk creation)
3089 * since relocation is the only place we'll create chunks of a new
3090 * type at runtime. The only place where we'll remove the last
3091 * chunk of a type is the call immediately below this one. Even
3092 * so, we're protected against races with the cleaner thread since
3093 * we're covered by the delete_unused_bgs_mutex.
3095 btrfs_add_raid_kobjects(fs_info
);
3097 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
3099 if (IS_ERR(trans
)) {
3100 ret
= PTR_ERR(trans
);
3101 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
3106 * step two, delete the device extents and the
3107 * chunk tree entries
3109 ret
= btrfs_remove_chunk(trans
, chunk_offset
);
3110 btrfs_end_transaction(trans
);
3114 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
)
3116 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3117 struct btrfs_path
*path
;
3118 struct extent_buffer
*leaf
;
3119 struct btrfs_chunk
*chunk
;
3120 struct btrfs_key key
;
3121 struct btrfs_key found_key
;
3123 bool retried
= false;
3127 path
= btrfs_alloc_path();
3132 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3133 key
.offset
= (u64
)-1;
3134 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3137 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3138 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3140 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3143 BUG_ON(ret
== 0); /* Corruption */
3145 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
3148 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3154 leaf
= path
->nodes
[0];
3155 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3157 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
3158 struct btrfs_chunk
);
3159 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3160 btrfs_release_path(path
);
3162 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
3163 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3169 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3171 if (found_key
.offset
== 0)
3173 key
.offset
= found_key
.offset
- 1;
3176 if (failed
&& !retried
) {
3180 } else if (WARN_ON(failed
&& retried
)) {
3184 btrfs_free_path(path
);
3189 * return 1 : allocate a data chunk successfully,
3190 * return <0: errors during allocating a data chunk,
3191 * return 0 : no need to allocate a data chunk.
3193 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info
*fs_info
,
3196 struct btrfs_block_group_cache
*cache
;
3200 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3202 chunk_type
= cache
->flags
;
3203 btrfs_put_block_group(cache
);
3205 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
) {
3206 spin_lock(&fs_info
->data_sinfo
->lock
);
3207 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3208 spin_unlock(&fs_info
->data_sinfo
->lock
);
3211 struct btrfs_trans_handle
*trans
;
3214 trans
= btrfs_join_transaction(fs_info
->tree_root
);
3216 return PTR_ERR(trans
);
3218 ret
= btrfs_force_chunk_alloc(trans
,
3219 BTRFS_BLOCK_GROUP_DATA
);
3220 btrfs_end_transaction(trans
);
3224 btrfs_add_raid_kobjects(fs_info
);
3232 static int insert_balance_item(struct btrfs_fs_info
*fs_info
,
3233 struct btrfs_balance_control
*bctl
)
3235 struct btrfs_root
*root
= fs_info
->tree_root
;
3236 struct btrfs_trans_handle
*trans
;
3237 struct btrfs_balance_item
*item
;
3238 struct btrfs_disk_balance_args disk_bargs
;
3239 struct btrfs_path
*path
;
3240 struct extent_buffer
*leaf
;
3241 struct btrfs_key key
;
3244 path
= btrfs_alloc_path();
3248 trans
= btrfs_start_transaction(root
, 0);
3249 if (IS_ERR(trans
)) {
3250 btrfs_free_path(path
);
3251 return PTR_ERR(trans
);
3254 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3255 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3258 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3263 leaf
= path
->nodes
[0];
3264 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3266 memzero_extent_buffer(leaf
, (unsigned long)item
, sizeof(*item
));
3268 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3269 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3270 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3271 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3272 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3273 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3275 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3277 btrfs_mark_buffer_dirty(leaf
);
3279 btrfs_free_path(path
);
3280 err
= btrfs_commit_transaction(trans
);
3286 static int del_balance_item(struct btrfs_fs_info
*fs_info
)
3288 struct btrfs_root
*root
= fs_info
->tree_root
;
3289 struct btrfs_trans_handle
*trans
;
3290 struct btrfs_path
*path
;
3291 struct btrfs_key key
;
3294 path
= btrfs_alloc_path();
3298 trans
= btrfs_start_transaction(root
, 0);
3299 if (IS_ERR(trans
)) {
3300 btrfs_free_path(path
);
3301 return PTR_ERR(trans
);
3304 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3305 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3308 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3316 ret
= btrfs_del_item(trans
, root
, path
);
3318 btrfs_free_path(path
);
3319 err
= btrfs_commit_transaction(trans
);
3326 * This is a heuristic used to reduce the number of chunks balanced on
3327 * resume after balance was interrupted.
3329 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3332 * Turn on soft mode for chunk types that were being converted.
3334 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3335 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3336 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3337 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3338 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3339 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3342 * Turn on usage filter if is not already used. The idea is
3343 * that chunks that we have already balanced should be
3344 * reasonably full. Don't do it for chunks that are being
3345 * converted - that will keep us from relocating unconverted
3346 * (albeit full) chunks.
3348 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3349 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3350 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3351 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3352 bctl
->data
.usage
= 90;
3354 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3355 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3356 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3357 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3358 bctl
->sys
.usage
= 90;
3360 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3361 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3362 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3363 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3364 bctl
->meta
.usage
= 90;
3369 * Clear the balance status in fs_info and delete the balance item from disk.
3371 static void reset_balance_state(struct btrfs_fs_info
*fs_info
)
3373 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3376 BUG_ON(!fs_info
->balance_ctl
);
3378 spin_lock(&fs_info
->balance_lock
);
3379 fs_info
->balance_ctl
= NULL
;
3380 spin_unlock(&fs_info
->balance_lock
);
3383 ret
= del_balance_item(fs_info
);
3385 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3389 * Balance filters. Return 1 if chunk should be filtered out
3390 * (should not be balanced).
3392 static int chunk_profiles_filter(u64 chunk_type
,
3393 struct btrfs_balance_args
*bargs
)
3395 chunk_type
= chunk_to_extended(chunk_type
) &
3396 BTRFS_EXTENDED_PROFILE_MASK
;
3398 if (bargs
->profiles
& chunk_type
)
3404 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3405 struct btrfs_balance_args
*bargs
)
3407 struct btrfs_block_group_cache
*cache
;
3409 u64 user_thresh_min
;
3410 u64 user_thresh_max
;
3413 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3414 chunk_used
= btrfs_block_group_used(&cache
->item
);
3416 if (bargs
->usage_min
== 0)
3417 user_thresh_min
= 0;
3419 user_thresh_min
= div_factor_fine(cache
->key
.offset
,
3422 if (bargs
->usage_max
== 0)
3423 user_thresh_max
= 1;
3424 else if (bargs
->usage_max
> 100)
3425 user_thresh_max
= cache
->key
.offset
;
3427 user_thresh_max
= div_factor_fine(cache
->key
.offset
,
3430 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3433 btrfs_put_block_group(cache
);
3437 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3438 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3440 struct btrfs_block_group_cache
*cache
;
3441 u64 chunk_used
, user_thresh
;
3444 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3445 chunk_used
= btrfs_block_group_used(&cache
->item
);
3447 if (bargs
->usage_min
== 0)
3449 else if (bargs
->usage
> 100)
3450 user_thresh
= cache
->key
.offset
;
3452 user_thresh
= div_factor_fine(cache
->key
.offset
,
3455 if (chunk_used
< user_thresh
)
3458 btrfs_put_block_group(cache
);
3462 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3463 struct btrfs_chunk
*chunk
,
3464 struct btrfs_balance_args
*bargs
)
3466 struct btrfs_stripe
*stripe
;
3467 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3470 for (i
= 0; i
< num_stripes
; i
++) {
3471 stripe
= btrfs_stripe_nr(chunk
, i
);
3472 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3479 static u64
calc_data_stripes(u64 type
, int num_stripes
)
3481 const int index
= btrfs_bg_flags_to_raid_index(type
);
3482 const int ncopies
= btrfs_raid_array
[index
].ncopies
;
3483 const int nparity
= btrfs_raid_array
[index
].nparity
;
3486 return num_stripes
- nparity
;
3488 return num_stripes
/ ncopies
;
3491 /* [pstart, pend) */
3492 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3493 struct btrfs_chunk
*chunk
,
3494 struct btrfs_balance_args
*bargs
)
3496 struct btrfs_stripe
*stripe
;
3497 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3504 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3507 type
= btrfs_chunk_type(leaf
, chunk
);
3508 factor
= calc_data_stripes(type
, num_stripes
);
3510 for (i
= 0; i
< num_stripes
; i
++) {
3511 stripe
= btrfs_stripe_nr(chunk
, i
);
3512 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3515 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3516 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3517 stripe_length
= div_u64(stripe_length
, factor
);
3519 if (stripe_offset
< bargs
->pend
&&
3520 stripe_offset
+ stripe_length
> bargs
->pstart
)
3527 /* [vstart, vend) */
3528 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3529 struct btrfs_chunk
*chunk
,
3531 struct btrfs_balance_args
*bargs
)
3533 if (chunk_offset
< bargs
->vend
&&
3534 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3535 /* at least part of the chunk is inside this vrange */
3541 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3542 struct btrfs_chunk
*chunk
,
3543 struct btrfs_balance_args
*bargs
)
3545 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3547 if (bargs
->stripes_min
<= num_stripes
3548 && num_stripes
<= bargs
->stripes_max
)
3554 static int chunk_soft_convert_filter(u64 chunk_type
,
3555 struct btrfs_balance_args
*bargs
)
3557 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3560 chunk_type
= chunk_to_extended(chunk_type
) &
3561 BTRFS_EXTENDED_PROFILE_MASK
;
3563 if (bargs
->target
== chunk_type
)
3569 static int should_balance_chunk(struct extent_buffer
*leaf
,
3570 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3572 struct btrfs_fs_info
*fs_info
= leaf
->fs_info
;
3573 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3574 struct btrfs_balance_args
*bargs
= NULL
;
3575 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3578 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3579 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3583 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3584 bargs
= &bctl
->data
;
3585 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3587 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3588 bargs
= &bctl
->meta
;
3590 /* profiles filter */
3591 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3592 chunk_profiles_filter(chunk_type
, bargs
)) {
3597 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3598 chunk_usage_filter(fs_info
, chunk_offset
, bargs
)) {
3600 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3601 chunk_usage_range_filter(fs_info
, chunk_offset
, bargs
)) {
3606 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3607 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3611 /* drange filter, makes sense only with devid filter */
3612 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3613 chunk_drange_filter(leaf
, chunk
, bargs
)) {
3618 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3619 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3623 /* stripes filter */
3624 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3625 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3629 /* soft profile changing mode */
3630 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3631 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3636 * limited by count, must be the last filter
3638 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3639 if (bargs
->limit
== 0)
3643 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3645 * Same logic as the 'limit' filter; the minimum cannot be
3646 * determined here because we do not have the global information
3647 * about the count of all chunks that satisfy the filters.
3649 if (bargs
->limit_max
== 0)
3658 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3660 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3661 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3663 struct btrfs_chunk
*chunk
;
3664 struct btrfs_path
*path
= NULL
;
3665 struct btrfs_key key
;
3666 struct btrfs_key found_key
;
3667 struct extent_buffer
*leaf
;
3670 int enospc_errors
= 0;
3671 bool counting
= true;
3672 /* The single value limit and min/max limits use the same bytes in the */
3673 u64 limit_data
= bctl
->data
.limit
;
3674 u64 limit_meta
= bctl
->meta
.limit
;
3675 u64 limit_sys
= bctl
->sys
.limit
;
3679 int chunk_reserved
= 0;
3681 path
= btrfs_alloc_path();
3687 /* zero out stat counters */
3688 spin_lock(&fs_info
->balance_lock
);
3689 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3690 spin_unlock(&fs_info
->balance_lock
);
3694 * The single value limit and min/max limits use the same bytes
3697 bctl
->data
.limit
= limit_data
;
3698 bctl
->meta
.limit
= limit_meta
;
3699 bctl
->sys
.limit
= limit_sys
;
3701 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3702 key
.offset
= (u64
)-1;
3703 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3706 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3707 atomic_read(&fs_info
->balance_cancel_req
)) {
3712 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3713 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3715 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3720 * this shouldn't happen, it means the last relocate
3724 BUG(); /* FIXME break ? */
3726 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3727 BTRFS_CHUNK_ITEM_KEY
);
3729 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3734 leaf
= path
->nodes
[0];
3735 slot
= path
->slots
[0];
3736 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3738 if (found_key
.objectid
!= key
.objectid
) {
3739 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3743 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3744 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3747 spin_lock(&fs_info
->balance_lock
);
3748 bctl
->stat
.considered
++;
3749 spin_unlock(&fs_info
->balance_lock
);
3752 ret
= should_balance_chunk(leaf
, chunk
, found_key
.offset
);
3754 btrfs_release_path(path
);
3756 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3761 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3762 spin_lock(&fs_info
->balance_lock
);
3763 bctl
->stat
.expected
++;
3764 spin_unlock(&fs_info
->balance_lock
);
3766 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3768 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3770 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3777 * Apply limit_min filter, no need to check if the LIMITS
3778 * filter is used, limit_min is 0 by default
3780 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3781 count_data
< bctl
->data
.limit_min
)
3782 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3783 count_meta
< bctl
->meta
.limit_min
)
3784 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3785 count_sys
< bctl
->sys
.limit_min
)) {
3786 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3790 if (!chunk_reserved
) {
3792 * We may be relocating the only data chunk we have,
3793 * which could potentially end up with losing data's
3794 * raid profile, so lets allocate an empty one in
3797 ret
= btrfs_may_alloc_data_chunk(fs_info
,
3800 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3802 } else if (ret
== 1) {
3807 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3808 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3809 if (ret
== -ENOSPC
) {
3811 } else if (ret
== -ETXTBSY
) {
3813 "skipping relocation of block group %llu due to active swapfile",
3819 spin_lock(&fs_info
->balance_lock
);
3820 bctl
->stat
.completed
++;
3821 spin_unlock(&fs_info
->balance_lock
);
3824 if (found_key
.offset
== 0)
3826 key
.offset
= found_key
.offset
- 1;
3830 btrfs_release_path(path
);
3835 btrfs_free_path(path
);
3836 if (enospc_errors
) {
3837 btrfs_info(fs_info
, "%d enospc errors during balance",
3847 * alloc_profile_is_valid - see if a given profile is valid and reduced
3848 * @flags: profile to validate
3849 * @extended: if true @flags is treated as an extended profile
3851 static int alloc_profile_is_valid(u64 flags
, int extended
)
3853 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3854 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3856 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3858 /* 1) check that all other bits are zeroed */
3862 /* 2) see if profile is reduced */
3864 return !extended
; /* "0" is valid for usual profiles */
3866 /* true if exactly one bit set */
3867 return is_power_of_2(flags
);
3870 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3872 /* cancel requested || normal exit path */
3873 return atomic_read(&fs_info
->balance_cancel_req
) ||
3874 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3875 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3878 /* Non-zero return value signifies invalidity */
3879 static inline int validate_convert_profile(struct btrfs_balance_args
*bctl_arg
,
3882 return ((bctl_arg
->flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3883 (!alloc_profile_is_valid(bctl_arg
->target
, 1) ||
3884 (bctl_arg
->target
& ~allowed
)));
3888 * Fill @buf with textual description of balance filter flags @bargs, up to
3889 * @size_buf including the terminating null. The output may be trimmed if it
3890 * does not fit into the provided buffer.
3892 static void describe_balance_args(struct btrfs_balance_args
*bargs
, char *buf
,
3896 u32 size_bp
= size_buf
;
3898 u64 flags
= bargs
->flags
;
3899 char tmp_buf
[128] = {'\0'};
3904 #define CHECK_APPEND_NOARG(a) \
3906 ret = snprintf(bp, size_bp, (a)); \
3907 if (ret < 0 || ret >= size_bp) \
3908 goto out_overflow; \
3913 #define CHECK_APPEND_1ARG(a, v1) \
3915 ret = snprintf(bp, size_bp, (a), (v1)); \
3916 if (ret < 0 || ret >= size_bp) \
3917 goto out_overflow; \
3922 #define CHECK_APPEND_2ARG(a, v1, v2) \
3924 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3925 if (ret < 0 || ret >= size_bp) \
3926 goto out_overflow; \
3931 if (flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3932 CHECK_APPEND_1ARG("convert=%s,",
3933 btrfs_bg_type_to_raid_name(bargs
->target
));
3935 if (flags
& BTRFS_BALANCE_ARGS_SOFT
)
3936 CHECK_APPEND_NOARG("soft,");
3938 if (flags
& BTRFS_BALANCE_ARGS_PROFILES
) {
3939 btrfs_describe_block_groups(bargs
->profiles
, tmp_buf
,
3941 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf
);
3944 if (flags
& BTRFS_BALANCE_ARGS_USAGE
)
3945 CHECK_APPEND_1ARG("usage=%llu,", bargs
->usage
);
3947 if (flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
)
3948 CHECK_APPEND_2ARG("usage=%u..%u,",
3949 bargs
->usage_min
, bargs
->usage_max
);
3951 if (flags
& BTRFS_BALANCE_ARGS_DEVID
)
3952 CHECK_APPEND_1ARG("devid=%llu,", bargs
->devid
);
3954 if (flags
& BTRFS_BALANCE_ARGS_DRANGE
)
3955 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3956 bargs
->pstart
, bargs
->pend
);
3958 if (flags
& BTRFS_BALANCE_ARGS_VRANGE
)
3959 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3960 bargs
->vstart
, bargs
->vend
);
3962 if (flags
& BTRFS_BALANCE_ARGS_LIMIT
)
3963 CHECK_APPEND_1ARG("limit=%llu,", bargs
->limit
);
3965 if (flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)
3966 CHECK_APPEND_2ARG("limit=%u..%u,",
3967 bargs
->limit_min
, bargs
->limit_max
);
3969 if (flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
)
3970 CHECK_APPEND_2ARG("stripes=%u..%u,",
3971 bargs
->stripes_min
, bargs
->stripes_max
);
3973 #undef CHECK_APPEND_2ARG
3974 #undef CHECK_APPEND_1ARG
3975 #undef CHECK_APPEND_NOARG
3979 if (size_bp
< size_buf
)
3980 buf
[size_buf
- size_bp
- 1] = '\0'; /* remove last , */
3985 static void describe_balance_start_or_resume(struct btrfs_fs_info
*fs_info
)
3987 u32 size_buf
= 1024;
3988 char tmp_buf
[192] = {'\0'};
3991 u32 size_bp
= size_buf
;
3993 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3995 buf
= kzalloc(size_buf
, GFP_KERNEL
);
4001 #define CHECK_APPEND_1ARG(a, v1) \
4003 ret = snprintf(bp, size_bp, (a), (v1)); \
4004 if (ret < 0 || ret >= size_bp) \
4005 goto out_overflow; \
4010 if (bctl
->flags
& BTRFS_BALANCE_FORCE
)
4011 CHECK_APPEND_1ARG("%s", "-f ");
4013 if (bctl
->flags
& BTRFS_BALANCE_DATA
) {
4014 describe_balance_args(&bctl
->data
, tmp_buf
, sizeof(tmp_buf
));
4015 CHECK_APPEND_1ARG("-d%s ", tmp_buf
);
4018 if (bctl
->flags
& BTRFS_BALANCE_METADATA
) {
4019 describe_balance_args(&bctl
->meta
, tmp_buf
, sizeof(tmp_buf
));
4020 CHECK_APPEND_1ARG("-m%s ", tmp_buf
);
4023 if (bctl
->flags
& BTRFS_BALANCE_SYSTEM
) {
4024 describe_balance_args(&bctl
->sys
, tmp_buf
, sizeof(tmp_buf
));
4025 CHECK_APPEND_1ARG("-s%s ", tmp_buf
);
4028 #undef CHECK_APPEND_1ARG
4032 if (size_bp
< size_buf
)
4033 buf
[size_buf
- size_bp
- 1] = '\0'; /* remove last " " */
4034 btrfs_info(fs_info
, "balance: %s %s",
4035 (bctl
->flags
& BTRFS_BALANCE_RESUME
) ?
4036 "resume" : "start", buf
);
4042 * Should be called with balance mutexe held
4044 int btrfs_balance(struct btrfs_fs_info
*fs_info
,
4045 struct btrfs_balance_control
*bctl
,
4046 struct btrfs_ioctl_balance_args
*bargs
)
4048 u64 meta_target
, data_target
;
4054 bool reducing_integrity
;
4057 if (btrfs_fs_closing(fs_info
) ||
4058 atomic_read(&fs_info
->balance_pause_req
) ||
4059 atomic_read(&fs_info
->balance_cancel_req
)) {
4064 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
4065 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
4069 * In case of mixed groups both data and meta should be picked,
4070 * and identical options should be given for both of them.
4072 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
4073 if (mixed
&& (bctl
->flags
& allowed
)) {
4074 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
4075 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
4076 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
4078 "balance: mixed groups data and metadata options must be the same");
4084 num_devices
= btrfs_num_devices(fs_info
);
4086 for (i
= 0; i
< ARRAY_SIZE(btrfs_raid_array
); i
++)
4087 if (num_devices
>= btrfs_raid_array
[i
].devs_min
)
4088 allowed
|= btrfs_raid_array
[i
].bg_flag
;
4090 if (validate_convert_profile(&bctl
->data
, allowed
)) {
4092 "balance: invalid convert data profile %s",
4093 btrfs_bg_type_to_raid_name(bctl
->data
.target
));
4097 if (validate_convert_profile(&bctl
->meta
, allowed
)) {
4099 "balance: invalid convert metadata profile %s",
4100 btrfs_bg_type_to_raid_name(bctl
->meta
.target
));
4104 if (validate_convert_profile(&bctl
->sys
, allowed
)) {
4106 "balance: invalid convert system profile %s",
4107 btrfs_bg_type_to_raid_name(bctl
->sys
.target
));
4113 * Allow to reduce metadata or system integrity only if force set for
4114 * profiles with redundancy (copies, parity)
4117 for (i
= 0; i
< ARRAY_SIZE(btrfs_raid_array
); i
++) {
4118 if (btrfs_raid_array
[i
].ncopies
>= 2 ||
4119 btrfs_raid_array
[i
].tolerated_failures
>= 1)
4120 allowed
|= btrfs_raid_array
[i
].bg_flag
;
4123 seq
= read_seqbegin(&fs_info
->profiles_lock
);
4125 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
4126 (fs_info
->avail_system_alloc_bits
& allowed
) &&
4127 !(bctl
->sys
.target
& allowed
)) ||
4128 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
4129 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
4130 !(bctl
->meta
.target
& allowed
)))
4131 reducing_integrity
= true;
4133 reducing_integrity
= false;
4135 /* if we're not converting, the target field is uninitialized */
4136 meta_target
= (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
4137 bctl
->meta
.target
: fs_info
->avail_metadata_alloc_bits
;
4138 data_target
= (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
4139 bctl
->data
.target
: fs_info
->avail_data_alloc_bits
;
4140 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
4142 if (reducing_integrity
) {
4143 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
4145 "balance: force reducing metadata integrity");
4148 "balance: reduces metadata integrity, use --force if you want this");
4154 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target
) <
4155 btrfs_get_num_tolerated_disk_barrier_failures(data_target
)) {
4157 "balance: metadata profile %s has lower redundancy than data profile %s",
4158 btrfs_bg_type_to_raid_name(meta_target
),
4159 btrfs_bg_type_to_raid_name(data_target
));
4162 ret
= insert_balance_item(fs_info
, bctl
);
4163 if (ret
&& ret
!= -EEXIST
)
4166 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
4167 BUG_ON(ret
== -EEXIST
);
4168 BUG_ON(fs_info
->balance_ctl
);
4169 spin_lock(&fs_info
->balance_lock
);
4170 fs_info
->balance_ctl
= bctl
;
4171 spin_unlock(&fs_info
->balance_lock
);
4173 BUG_ON(ret
!= -EEXIST
);
4174 spin_lock(&fs_info
->balance_lock
);
4175 update_balance_args(bctl
);
4176 spin_unlock(&fs_info
->balance_lock
);
4179 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4180 set_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
);
4181 describe_balance_start_or_resume(fs_info
);
4182 mutex_unlock(&fs_info
->balance_mutex
);
4184 ret
= __btrfs_balance(fs_info
);
4186 mutex_lock(&fs_info
->balance_mutex
);
4187 if (ret
== -ECANCELED
&& atomic_read(&fs_info
->balance_pause_req
))
4188 btrfs_info(fs_info
, "balance: paused");
4189 else if (ret
== -ECANCELED
&& atomic_read(&fs_info
->balance_cancel_req
))
4190 btrfs_info(fs_info
, "balance: canceled");
4192 btrfs_info(fs_info
, "balance: ended with status: %d", ret
);
4194 clear_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
);
4197 memset(bargs
, 0, sizeof(*bargs
));
4198 btrfs_update_ioctl_balance_args(fs_info
, bargs
);
4201 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
4202 balance_need_close(fs_info
)) {
4203 reset_balance_state(fs_info
);
4204 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4207 wake_up(&fs_info
->balance_wait_q
);
4211 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
4212 reset_balance_state(fs_info
);
4215 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4220 static int balance_kthread(void *data
)
4222 struct btrfs_fs_info
*fs_info
= data
;
4225 mutex_lock(&fs_info
->balance_mutex
);
4226 if (fs_info
->balance_ctl
)
4227 ret
= btrfs_balance(fs_info
, fs_info
->balance_ctl
, NULL
);
4228 mutex_unlock(&fs_info
->balance_mutex
);
4233 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
4235 struct task_struct
*tsk
;
4237 mutex_lock(&fs_info
->balance_mutex
);
4238 if (!fs_info
->balance_ctl
) {
4239 mutex_unlock(&fs_info
->balance_mutex
);
4242 mutex_unlock(&fs_info
->balance_mutex
);
4244 if (btrfs_test_opt(fs_info
, SKIP_BALANCE
)) {
4245 btrfs_info(fs_info
, "balance: resume skipped");
4250 * A ro->rw remount sequence should continue with the paused balance
4251 * regardless of who pauses it, system or the user as of now, so set
4254 spin_lock(&fs_info
->balance_lock
);
4255 fs_info
->balance_ctl
->flags
|= BTRFS_BALANCE_RESUME
;
4256 spin_unlock(&fs_info
->balance_lock
);
4258 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
4259 return PTR_ERR_OR_ZERO(tsk
);
4262 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
4264 struct btrfs_balance_control
*bctl
;
4265 struct btrfs_balance_item
*item
;
4266 struct btrfs_disk_balance_args disk_bargs
;
4267 struct btrfs_path
*path
;
4268 struct extent_buffer
*leaf
;
4269 struct btrfs_key key
;
4272 path
= btrfs_alloc_path();
4276 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
4277 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
4280 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
4283 if (ret
> 0) { /* ret = -ENOENT; */
4288 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
4294 leaf
= path
->nodes
[0];
4295 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
4297 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
4298 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4300 btrfs_balance_data(leaf
, item
, &disk_bargs
);
4301 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
4302 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
4303 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
4304 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
4305 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
4308 * This should never happen, as the paused balance state is recovered
4309 * during mount without any chance of other exclusive ops to collide.
4311 * This gives the exclusive op status to balance and keeps in paused
4312 * state until user intervention (cancel or umount). If the ownership
4313 * cannot be assigned, show a message but do not fail. The balance
4314 * is in a paused state and must have fs_info::balance_ctl properly
4317 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
))
4319 "balance: cannot set exclusive op status, resume manually");
4321 mutex_lock(&fs_info
->balance_mutex
);
4322 BUG_ON(fs_info
->balance_ctl
);
4323 spin_lock(&fs_info
->balance_lock
);
4324 fs_info
->balance_ctl
= bctl
;
4325 spin_unlock(&fs_info
->balance_lock
);
4326 mutex_unlock(&fs_info
->balance_mutex
);
4328 btrfs_free_path(path
);
4332 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
4336 mutex_lock(&fs_info
->balance_mutex
);
4337 if (!fs_info
->balance_ctl
) {
4338 mutex_unlock(&fs_info
->balance_mutex
);
4342 if (test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
4343 atomic_inc(&fs_info
->balance_pause_req
);
4344 mutex_unlock(&fs_info
->balance_mutex
);
4346 wait_event(fs_info
->balance_wait_q
,
4347 !test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4349 mutex_lock(&fs_info
->balance_mutex
);
4350 /* we are good with balance_ctl ripped off from under us */
4351 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4352 atomic_dec(&fs_info
->balance_pause_req
);
4357 mutex_unlock(&fs_info
->balance_mutex
);
4361 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
4363 mutex_lock(&fs_info
->balance_mutex
);
4364 if (!fs_info
->balance_ctl
) {
4365 mutex_unlock(&fs_info
->balance_mutex
);
4370 * A paused balance with the item stored on disk can be resumed at
4371 * mount time if the mount is read-write. Otherwise it's still paused
4372 * and we must not allow cancelling as it deletes the item.
4374 if (sb_rdonly(fs_info
->sb
)) {
4375 mutex_unlock(&fs_info
->balance_mutex
);
4379 atomic_inc(&fs_info
->balance_cancel_req
);
4381 * if we are running just wait and return, balance item is
4382 * deleted in btrfs_balance in this case
4384 if (test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
4385 mutex_unlock(&fs_info
->balance_mutex
);
4386 wait_event(fs_info
->balance_wait_q
,
4387 !test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4388 mutex_lock(&fs_info
->balance_mutex
);
4390 mutex_unlock(&fs_info
->balance_mutex
);
4392 * Lock released to allow other waiters to continue, we'll
4393 * reexamine the status again.
4395 mutex_lock(&fs_info
->balance_mutex
);
4397 if (fs_info
->balance_ctl
) {
4398 reset_balance_state(fs_info
);
4399 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4400 btrfs_info(fs_info
, "balance: canceled");
4404 BUG_ON(fs_info
->balance_ctl
||
4405 test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4406 atomic_dec(&fs_info
->balance_cancel_req
);
4407 mutex_unlock(&fs_info
->balance_mutex
);
4411 static int btrfs_uuid_scan_kthread(void *data
)
4413 struct btrfs_fs_info
*fs_info
= data
;
4414 struct btrfs_root
*root
= fs_info
->tree_root
;
4415 struct btrfs_key key
;
4416 struct btrfs_path
*path
= NULL
;
4418 struct extent_buffer
*eb
;
4420 struct btrfs_root_item root_item
;
4422 struct btrfs_trans_handle
*trans
= NULL
;
4424 path
= btrfs_alloc_path();
4431 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4435 ret
= btrfs_search_forward(root
, &key
, path
,
4436 BTRFS_OLDEST_GENERATION
);
4443 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4444 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4445 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4446 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4449 eb
= path
->nodes
[0];
4450 slot
= path
->slots
[0];
4451 item_size
= btrfs_item_size_nr(eb
, slot
);
4452 if (item_size
< sizeof(root_item
))
4455 read_extent_buffer(eb
, &root_item
,
4456 btrfs_item_ptr_offset(eb
, slot
),
4457 (int)sizeof(root_item
));
4458 if (btrfs_root_refs(&root_item
) == 0)
4461 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4462 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4466 btrfs_release_path(path
);
4468 * 1 - subvol uuid item
4469 * 1 - received_subvol uuid item
4471 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4472 if (IS_ERR(trans
)) {
4473 ret
= PTR_ERR(trans
);
4481 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4482 ret
= btrfs_uuid_tree_add(trans
, root_item
.uuid
,
4483 BTRFS_UUID_KEY_SUBVOL
,
4486 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4492 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4493 ret
= btrfs_uuid_tree_add(trans
,
4494 root_item
.received_uuid
,
4495 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4498 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4506 ret
= btrfs_end_transaction(trans
);
4512 btrfs_release_path(path
);
4513 if (key
.offset
< (u64
)-1) {
4515 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4517 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4518 } else if (key
.objectid
< (u64
)-1) {
4520 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4529 btrfs_free_path(path
);
4530 if (trans
&& !IS_ERR(trans
))
4531 btrfs_end_transaction(trans
);
4533 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4535 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
4536 up(&fs_info
->uuid_tree_rescan_sem
);
4541 * Callback for btrfs_uuid_tree_iterate().
4543 * 0 check succeeded, the entry is not outdated.
4544 * < 0 if an error occurred.
4545 * > 0 if the check failed, which means the caller shall remove the entry.
4547 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
4548 u8
*uuid
, u8 type
, u64 subid
)
4550 struct btrfs_key key
;
4552 struct btrfs_root
*subvol_root
;
4554 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
4555 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
4558 key
.objectid
= subid
;
4559 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4560 key
.offset
= (u64
)-1;
4561 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4562 if (IS_ERR(subvol_root
)) {
4563 ret
= PTR_ERR(subvol_root
);
4570 case BTRFS_UUID_KEY_SUBVOL
:
4571 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
4574 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
4575 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
4585 static int btrfs_uuid_rescan_kthread(void *data
)
4587 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
4591 * 1st step is to iterate through the existing UUID tree and
4592 * to delete all entries that contain outdated data.
4593 * 2nd step is to add all missing entries to the UUID tree.
4595 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4597 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4598 up(&fs_info
->uuid_tree_rescan_sem
);
4601 return btrfs_uuid_scan_kthread(data
);
4604 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4606 struct btrfs_trans_handle
*trans
;
4607 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4608 struct btrfs_root
*uuid_root
;
4609 struct task_struct
*task
;
4616 trans
= btrfs_start_transaction(tree_root
, 2);
4618 return PTR_ERR(trans
);
4620 uuid_root
= btrfs_create_tree(trans
, BTRFS_UUID_TREE_OBJECTID
);
4621 if (IS_ERR(uuid_root
)) {
4622 ret
= PTR_ERR(uuid_root
);
4623 btrfs_abort_transaction(trans
, ret
);
4624 btrfs_end_transaction(trans
);
4628 fs_info
->uuid_root
= uuid_root
;
4630 ret
= btrfs_commit_transaction(trans
);
4634 down(&fs_info
->uuid_tree_rescan_sem
);
4635 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4637 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4638 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4639 up(&fs_info
->uuid_tree_rescan_sem
);
4640 return PTR_ERR(task
);
4646 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4648 struct task_struct
*task
;
4650 down(&fs_info
->uuid_tree_rescan_sem
);
4651 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4653 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4654 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4655 up(&fs_info
->uuid_tree_rescan_sem
);
4656 return PTR_ERR(task
);
4663 * shrinking a device means finding all of the device extents past
4664 * the new size, and then following the back refs to the chunks.
4665 * The chunk relocation code actually frees the device extent
4667 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4669 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
4670 struct btrfs_root
*root
= fs_info
->dev_root
;
4671 struct btrfs_trans_handle
*trans
;
4672 struct btrfs_dev_extent
*dev_extent
= NULL
;
4673 struct btrfs_path
*path
;
4679 bool retried
= false;
4680 struct extent_buffer
*l
;
4681 struct btrfs_key key
;
4682 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4683 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4684 u64 old_size
= btrfs_device_get_total_bytes(device
);
4688 new_size
= round_down(new_size
, fs_info
->sectorsize
);
4690 diff
= round_down(old_size
- new_size
, fs_info
->sectorsize
);
4692 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
4695 path
= btrfs_alloc_path();
4699 path
->reada
= READA_BACK
;
4701 trans
= btrfs_start_transaction(root
, 0);
4702 if (IS_ERR(trans
)) {
4703 btrfs_free_path(path
);
4704 return PTR_ERR(trans
);
4707 mutex_lock(&fs_info
->chunk_mutex
);
4709 btrfs_device_set_total_bytes(device
, new_size
);
4710 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4711 device
->fs_devices
->total_rw_bytes
-= diff
;
4712 atomic64_sub(diff
, &fs_info
->free_chunk_space
);
4716 * Once the device's size has been set to the new size, ensure all
4717 * in-memory chunks are synced to disk so that the loop below sees them
4718 * and relocates them accordingly.
4720 if (contains_pending_extent(device
, &start
, diff
)) {
4721 mutex_unlock(&fs_info
->chunk_mutex
);
4722 ret
= btrfs_commit_transaction(trans
);
4726 mutex_unlock(&fs_info
->chunk_mutex
);
4727 btrfs_end_transaction(trans
);
4731 key
.objectid
= device
->devid
;
4732 key
.offset
= (u64
)-1;
4733 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4736 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
4737 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4739 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4743 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4745 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4750 btrfs_release_path(path
);
4755 slot
= path
->slots
[0];
4756 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4758 if (key
.objectid
!= device
->devid
) {
4759 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4760 btrfs_release_path(path
);
4764 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4765 length
= btrfs_dev_extent_length(l
, dev_extent
);
4767 if (key
.offset
+ length
<= new_size
) {
4768 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4769 btrfs_release_path(path
);
4773 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4774 btrfs_release_path(path
);
4777 * We may be relocating the only data chunk we have,
4778 * which could potentially end up with losing data's
4779 * raid profile, so lets allocate an empty one in
4782 ret
= btrfs_may_alloc_data_chunk(fs_info
, chunk_offset
);
4784 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4788 ret
= btrfs_relocate_chunk(fs_info
, chunk_offset
);
4789 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4790 if (ret
== -ENOSPC
) {
4793 if (ret
== -ETXTBSY
) {
4795 "could not shrink block group %llu due to active swapfile",
4800 } while (key
.offset
-- > 0);
4802 if (failed
&& !retried
) {
4806 } else if (failed
&& retried
) {
4811 /* Shrinking succeeded, else we would be at "done". */
4812 trans
= btrfs_start_transaction(root
, 0);
4813 if (IS_ERR(trans
)) {
4814 ret
= PTR_ERR(trans
);
4818 mutex_lock(&fs_info
->chunk_mutex
);
4819 btrfs_device_set_disk_total_bytes(device
, new_size
);
4820 if (list_empty(&device
->post_commit_list
))
4821 list_add_tail(&device
->post_commit_list
,
4822 &trans
->transaction
->dev_update_list
);
4824 WARN_ON(diff
> old_total
);
4825 btrfs_set_super_total_bytes(super_copy
,
4826 round_down(old_total
- diff
, fs_info
->sectorsize
));
4827 mutex_unlock(&fs_info
->chunk_mutex
);
4829 /* Now btrfs_update_device() will change the on-disk size. */
4830 ret
= btrfs_update_device(trans
, device
);
4832 btrfs_abort_transaction(trans
, ret
);
4833 btrfs_end_transaction(trans
);
4835 ret
= btrfs_commit_transaction(trans
);
4838 btrfs_free_path(path
);
4840 mutex_lock(&fs_info
->chunk_mutex
);
4841 btrfs_device_set_total_bytes(device
, old_size
);
4842 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
4843 device
->fs_devices
->total_rw_bytes
+= diff
;
4844 atomic64_add(diff
, &fs_info
->free_chunk_space
);
4845 mutex_unlock(&fs_info
->chunk_mutex
);
4850 static int btrfs_add_system_chunk(struct btrfs_fs_info
*fs_info
,
4851 struct btrfs_key
*key
,
4852 struct btrfs_chunk
*chunk
, int item_size
)
4854 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4855 struct btrfs_disk_key disk_key
;
4859 mutex_lock(&fs_info
->chunk_mutex
);
4860 array_size
= btrfs_super_sys_array_size(super_copy
);
4861 if (array_size
+ item_size
+ sizeof(disk_key
)
4862 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4863 mutex_unlock(&fs_info
->chunk_mutex
);
4867 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4868 btrfs_cpu_key_to_disk(&disk_key
, key
);
4869 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4870 ptr
+= sizeof(disk_key
);
4871 memcpy(ptr
, chunk
, item_size
);
4872 item_size
+= sizeof(disk_key
);
4873 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4874 mutex_unlock(&fs_info
->chunk_mutex
);
4880 * sort the devices in descending order by max_avail, total_avail
4882 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4884 const struct btrfs_device_info
*di_a
= a
;
4885 const struct btrfs_device_info
*di_b
= b
;
4887 if (di_a
->max_avail
> di_b
->max_avail
)
4889 if (di_a
->max_avail
< di_b
->max_avail
)
4891 if (di_a
->total_avail
> di_b
->total_avail
)
4893 if (di_a
->total_avail
< di_b
->total_avail
)
4898 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4900 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4903 btrfs_set_fs_incompat(info
, RAID56
);
4906 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4907 u64 start
, u64 type
)
4909 struct btrfs_fs_info
*info
= trans
->fs_info
;
4910 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4911 struct btrfs_device
*device
;
4912 struct map_lookup
*map
= NULL
;
4913 struct extent_map_tree
*em_tree
;
4914 struct extent_map
*em
;
4915 struct btrfs_device_info
*devices_info
= NULL
;
4917 int num_stripes
; /* total number of stripes to allocate */
4918 int data_stripes
; /* number of stripes that count for
4920 int sub_stripes
; /* sub_stripes info for map */
4921 int dev_stripes
; /* stripes per dev */
4922 int devs_max
; /* max devs to use */
4923 int devs_min
; /* min devs needed */
4924 int devs_increment
; /* ndevs has to be a multiple of this */
4925 int ncopies
; /* how many copies to data has */
4926 int nparity
; /* number of stripes worth of bytes to
4927 store parity information */
4929 u64 max_stripe_size
;
4938 BUG_ON(!alloc_profile_is_valid(type
, 0));
4940 if (list_empty(&fs_devices
->alloc_list
)) {
4941 if (btrfs_test_opt(info
, ENOSPC_DEBUG
))
4942 btrfs_debug(info
, "%s: no writable device", __func__
);
4946 index
= btrfs_bg_flags_to_raid_index(type
);
4948 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4949 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4950 devs_max
= btrfs_raid_array
[index
].devs_max
;
4952 devs_max
= BTRFS_MAX_DEVS(info
);
4953 devs_min
= btrfs_raid_array
[index
].devs_min
;
4954 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4955 ncopies
= btrfs_raid_array
[index
].ncopies
;
4956 nparity
= btrfs_raid_array
[index
].nparity
;
4958 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4959 max_stripe_size
= SZ_1G
;
4960 max_chunk_size
= BTRFS_MAX_DATA_CHUNK_SIZE
;
4961 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4962 /* for larger filesystems, use larger metadata chunks */
4963 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4964 max_stripe_size
= SZ_1G
;
4966 max_stripe_size
= SZ_256M
;
4967 max_chunk_size
= max_stripe_size
;
4968 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4969 max_stripe_size
= SZ_32M
;
4970 max_chunk_size
= 2 * max_stripe_size
;
4972 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4977 /* We don't want a chunk larger than 10% of writable space */
4978 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4981 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4987 * in the first pass through the devices list, we gather information
4988 * about the available holes on each device.
4991 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
4995 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4997 "BTRFS: read-only device in alloc_list\n");
5001 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
5002 &device
->dev_state
) ||
5003 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
5006 if (device
->total_bytes
> device
->bytes_used
)
5007 total_avail
= device
->total_bytes
- device
->bytes_used
;
5011 /* If there is no space on this device, skip it. */
5012 if (total_avail
== 0)
5015 ret
= find_free_dev_extent(device
,
5016 max_stripe_size
* dev_stripes
,
5017 &dev_offset
, &max_avail
);
5018 if (ret
&& ret
!= -ENOSPC
)
5022 max_avail
= max_stripe_size
* dev_stripes
;
5024 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
) {
5025 if (btrfs_test_opt(info
, ENOSPC_DEBUG
))
5027 "%s: devid %llu has no free space, have=%llu want=%u",
5028 __func__
, device
->devid
, max_avail
,
5029 BTRFS_STRIPE_LEN
* dev_stripes
);
5033 if (ndevs
== fs_devices
->rw_devices
) {
5034 WARN(1, "%s: found more than %llu devices\n",
5035 __func__
, fs_devices
->rw_devices
);
5038 devices_info
[ndevs
].dev_offset
= dev_offset
;
5039 devices_info
[ndevs
].max_avail
= max_avail
;
5040 devices_info
[ndevs
].total_avail
= total_avail
;
5041 devices_info
[ndevs
].dev
= device
;
5046 * now sort the devices by hole size / available space
5048 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
5049 btrfs_cmp_device_info
, NULL
);
5051 /* round down to number of usable stripes */
5052 ndevs
= round_down(ndevs
, devs_increment
);
5054 if (ndevs
< devs_min
) {
5056 if (btrfs_test_opt(info
, ENOSPC_DEBUG
)) {
5058 "%s: not enough devices with free space: have=%d minimum required=%d",
5059 __func__
, ndevs
, devs_min
);
5064 ndevs
= min(ndevs
, devs_max
);
5067 * The primary goal is to maximize the number of stripes, so use as
5068 * many devices as possible, even if the stripes are not maximum sized.
5070 * The DUP profile stores more than one stripe per device, the
5071 * max_avail is the total size so we have to adjust.
5073 stripe_size
= div_u64(devices_info
[ndevs
- 1].max_avail
, dev_stripes
);
5074 num_stripes
= ndevs
* dev_stripes
;
5077 * this will have to be fixed for RAID1 and RAID10 over
5080 data_stripes
= (num_stripes
- nparity
) / ncopies
;
5083 * Use the number of data stripes to figure out how big this chunk
5084 * is really going to be in terms of logical address space,
5085 * and compare that answer with the max chunk size. If it's higher,
5086 * we try to reduce stripe_size.
5088 if (stripe_size
* data_stripes
> max_chunk_size
) {
5090 * Reduce stripe_size, round it up to a 16MB boundary again and
5091 * then use it, unless it ends up being even bigger than the
5092 * previous value we had already.
5094 stripe_size
= min(round_up(div_u64(max_chunk_size
,
5095 data_stripes
), SZ_16M
),
5099 /* align to BTRFS_STRIPE_LEN */
5100 stripe_size
= round_down(stripe_size
, BTRFS_STRIPE_LEN
);
5102 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
5107 map
->num_stripes
= num_stripes
;
5109 for (i
= 0; i
< ndevs
; ++i
) {
5110 for (j
= 0; j
< dev_stripes
; ++j
) {
5111 int s
= i
* dev_stripes
+ j
;
5112 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
5113 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
5117 map
->stripe_len
= BTRFS_STRIPE_LEN
;
5118 map
->io_align
= BTRFS_STRIPE_LEN
;
5119 map
->io_width
= BTRFS_STRIPE_LEN
;
5121 map
->sub_stripes
= sub_stripes
;
5123 chunk_size
= stripe_size
* data_stripes
;
5125 trace_btrfs_chunk_alloc(info
, map
, start
, chunk_size
);
5127 em
= alloc_extent_map();
5133 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
5134 em
->map_lookup
= map
;
5136 em
->len
= chunk_size
;
5137 em
->block_start
= 0;
5138 em
->block_len
= em
->len
;
5139 em
->orig_block_len
= stripe_size
;
5141 em_tree
= &info
->mapping_tree
;
5142 write_lock(&em_tree
->lock
);
5143 ret
= add_extent_mapping(em_tree
, em
, 0);
5145 write_unlock(&em_tree
->lock
);
5146 free_extent_map(em
);
5149 write_unlock(&em_tree
->lock
);
5151 ret
= btrfs_make_block_group(trans
, 0, type
, start
, chunk_size
);
5153 goto error_del_extent
;
5155 for (i
= 0; i
< map
->num_stripes
; i
++) {
5156 struct btrfs_device
*dev
= map
->stripes
[i
].dev
;
5158 btrfs_device_set_bytes_used(dev
, dev
->bytes_used
+ stripe_size
);
5159 if (list_empty(&dev
->post_commit_list
))
5160 list_add_tail(&dev
->post_commit_list
,
5161 &trans
->transaction
->dev_update_list
);
5164 atomic64_sub(stripe_size
* map
->num_stripes
, &info
->free_chunk_space
);
5166 free_extent_map(em
);
5167 check_raid56_incompat_flag(info
, type
);
5169 kfree(devices_info
);
5173 write_lock(&em_tree
->lock
);
5174 remove_extent_mapping(em_tree
, em
);
5175 write_unlock(&em_tree
->lock
);
5177 /* One for our allocation */
5178 free_extent_map(em
);
5179 /* One for the tree reference */
5180 free_extent_map(em
);
5182 kfree(devices_info
);
5186 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
5187 u64 chunk_offset
, u64 chunk_size
)
5189 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5190 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
5191 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
5192 struct btrfs_key key
;
5193 struct btrfs_device
*device
;
5194 struct btrfs_chunk
*chunk
;
5195 struct btrfs_stripe
*stripe
;
5196 struct extent_map
*em
;
5197 struct map_lookup
*map
;
5204 em
= btrfs_get_chunk_map(fs_info
, chunk_offset
, chunk_size
);
5208 map
= em
->map_lookup
;
5209 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
5210 stripe_size
= em
->orig_block_len
;
5212 chunk
= kzalloc(item_size
, GFP_NOFS
);
5219 * Take the device list mutex to prevent races with the final phase of
5220 * a device replace operation that replaces the device object associated
5221 * with the map's stripes, because the device object's id can change
5222 * at any time during that final phase of the device replace operation
5223 * (dev-replace.c:btrfs_dev_replace_finishing()).
5225 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
5226 for (i
= 0; i
< map
->num_stripes
; i
++) {
5227 device
= map
->stripes
[i
].dev
;
5228 dev_offset
= map
->stripes
[i
].physical
;
5230 ret
= btrfs_update_device(trans
, device
);
5233 ret
= btrfs_alloc_dev_extent(trans
, device
, chunk_offset
,
5234 dev_offset
, stripe_size
);
5239 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5243 stripe
= &chunk
->stripe
;
5244 for (i
= 0; i
< map
->num_stripes
; i
++) {
5245 device
= map
->stripes
[i
].dev
;
5246 dev_offset
= map
->stripes
[i
].physical
;
5248 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
5249 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
5250 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
5253 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5255 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
5256 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
5257 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
5258 btrfs_set_stack_chunk_type(chunk
, map
->type
);
5259 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
5260 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
5261 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
5262 btrfs_set_stack_chunk_sector_size(chunk
, fs_info
->sectorsize
);
5263 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
5265 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
5266 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
5267 key
.offset
= chunk_offset
;
5269 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
5270 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
5272 * TODO: Cleanup of inserted chunk root in case of
5275 ret
= btrfs_add_system_chunk(fs_info
, &key
, chunk
, item_size
);
5280 free_extent_map(em
);
5285 * Chunk allocation falls into two parts. The first part does work
5286 * that makes the new allocated chunk usable, but does not do any operation
5287 * that modifies the chunk tree. The second part does the work that
5288 * requires modifying the chunk tree. This division is important for the
5289 * bootstrap process of adding storage to a seed btrfs.
5291 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
, u64 type
)
5295 lockdep_assert_held(&trans
->fs_info
->chunk_mutex
);
5296 chunk_offset
= find_next_chunk(trans
->fs_info
);
5297 return __btrfs_alloc_chunk(trans
, chunk_offset
, type
);
5300 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
)
5302 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5304 u64 sys_chunk_offset
;
5308 chunk_offset
= find_next_chunk(fs_info
);
5309 alloc_profile
= btrfs_metadata_alloc_profile(fs_info
);
5310 ret
= __btrfs_alloc_chunk(trans
, chunk_offset
, alloc_profile
);
5314 sys_chunk_offset
= find_next_chunk(fs_info
);
5315 alloc_profile
= btrfs_system_alloc_profile(fs_info
);
5316 ret
= __btrfs_alloc_chunk(trans
, sys_chunk_offset
, alloc_profile
);
5320 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
5322 const int index
= btrfs_bg_flags_to_raid_index(map
->type
);
5324 return btrfs_raid_array
[index
].tolerated_failures
;
5327 int btrfs_chunk_readonly(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
5329 struct extent_map
*em
;
5330 struct map_lookup
*map
;
5335 em
= btrfs_get_chunk_map(fs_info
, chunk_offset
, 1);
5339 map
= em
->map_lookup
;
5340 for (i
= 0; i
< map
->num_stripes
; i
++) {
5341 if (test_bit(BTRFS_DEV_STATE_MISSING
,
5342 &map
->stripes
[i
].dev
->dev_state
)) {
5346 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
,
5347 &map
->stripes
[i
].dev
->dev_state
)) {
5354 * If the number of missing devices is larger than max errors,
5355 * we can not write the data into that chunk successfully, so
5358 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5361 free_extent_map(em
);
5365 void btrfs_mapping_tree_free(struct extent_map_tree
*tree
)
5367 struct extent_map
*em
;
5370 write_lock(&tree
->lock
);
5371 em
= lookup_extent_mapping(tree
, 0, (u64
)-1);
5373 remove_extent_mapping(tree
, em
);
5374 write_unlock(&tree
->lock
);
5378 free_extent_map(em
);
5379 /* once for the tree */
5380 free_extent_map(em
);
5384 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5386 struct extent_map
*em
;
5387 struct map_lookup
*map
;
5390 em
= btrfs_get_chunk_map(fs_info
, logical
, len
);
5393 * We could return errors for these cases, but that could get
5394 * ugly and we'd probably do the same thing which is just not do
5395 * anything else and exit, so return 1 so the callers don't try
5396 * to use other copies.
5400 map
= em
->map_lookup
;
5401 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
5402 ret
= map
->num_stripes
;
5403 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5404 ret
= map
->sub_stripes
;
5405 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5407 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5409 * There could be two corrupted data stripes, we need
5410 * to loop retry in order to rebuild the correct data.
5412 * Fail a stripe at a time on every retry except the
5413 * stripe under reconstruction.
5415 ret
= map
->num_stripes
;
5418 free_extent_map(em
);
5420 down_read(&fs_info
->dev_replace
.rwsem
);
5421 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
) &&
5422 fs_info
->dev_replace
.tgtdev
)
5424 up_read(&fs_info
->dev_replace
.rwsem
);
5429 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info
*fs_info
,
5432 struct extent_map
*em
;
5433 struct map_lookup
*map
;
5434 unsigned long len
= fs_info
->sectorsize
;
5436 em
= btrfs_get_chunk_map(fs_info
, logical
, len
);
5438 if (!WARN_ON(IS_ERR(em
))) {
5439 map
= em
->map_lookup
;
5440 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5441 len
= map
->stripe_len
* nr_data_stripes(map
);
5442 free_extent_map(em
);
5447 int btrfs_is_parity_mirror(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5449 struct extent_map
*em
;
5450 struct map_lookup
*map
;
5453 em
= btrfs_get_chunk_map(fs_info
, logical
, len
);
5455 if(!WARN_ON(IS_ERR(em
))) {
5456 map
= em
->map_lookup
;
5457 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5459 free_extent_map(em
);
5464 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5465 struct map_lookup
*map
, int first
,
5466 int dev_replace_is_ongoing
)
5470 int preferred_mirror
;
5472 struct btrfs_device
*srcdev
;
5475 (BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)));
5477 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5478 num_stripes
= map
->sub_stripes
;
5480 num_stripes
= map
->num_stripes
;
5482 preferred_mirror
= first
+ current
->pid
% num_stripes
;
5484 if (dev_replace_is_ongoing
&&
5485 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5486 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5487 srcdev
= fs_info
->dev_replace
.srcdev
;
5492 * try to avoid the drive that is the source drive for a
5493 * dev-replace procedure, only choose it if no other non-missing
5494 * mirror is available
5496 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5497 if (map
->stripes
[preferred_mirror
].dev
->bdev
&&
5498 (tolerance
|| map
->stripes
[preferred_mirror
].dev
!= srcdev
))
5499 return preferred_mirror
;
5500 for (i
= first
; i
< first
+ num_stripes
; i
++) {
5501 if (map
->stripes
[i
].dev
->bdev
&&
5502 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5507 /* we couldn't find one that doesn't fail. Just return something
5508 * and the io error handling code will clean up eventually
5510 return preferred_mirror
;
5513 static inline int parity_smaller(u64 a
, u64 b
)
5518 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5519 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5521 struct btrfs_bio_stripe s
;
5528 for (i
= 0; i
< num_stripes
- 1; i
++) {
5529 if (parity_smaller(bbio
->raid_map
[i
],
5530 bbio
->raid_map
[i
+1])) {
5531 s
= bbio
->stripes
[i
];
5532 l
= bbio
->raid_map
[i
];
5533 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5534 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5535 bbio
->stripes
[i
+1] = s
;
5536 bbio
->raid_map
[i
+1] = l
;
5544 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5546 struct btrfs_bio
*bbio
= kzalloc(
5547 /* the size of the btrfs_bio */
5548 sizeof(struct btrfs_bio
) +
5549 /* plus the variable array for the stripes */
5550 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5551 /* plus the variable array for the tgt dev */
5552 sizeof(int) * (real_stripes
) +
5554 * plus the raid_map, which includes both the tgt dev
5557 sizeof(u64
) * (total_stripes
),
5558 GFP_NOFS
|__GFP_NOFAIL
);
5560 atomic_set(&bbio
->error
, 0);
5561 refcount_set(&bbio
->refs
, 1);
5566 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5568 WARN_ON(!refcount_read(&bbio
->refs
));
5569 refcount_inc(&bbio
->refs
);
5572 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5576 if (refcount_dec_and_test(&bbio
->refs
))
5580 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5582 * Please note that, discard won't be sent to target device of device
5585 static int __btrfs_map_block_for_discard(struct btrfs_fs_info
*fs_info
,
5586 u64 logical
, u64 length
,
5587 struct btrfs_bio
**bbio_ret
)
5589 struct extent_map
*em
;
5590 struct map_lookup
*map
;
5591 struct btrfs_bio
*bbio
;
5595 u64 stripe_end_offset
;
5602 u32 sub_stripes
= 0;
5603 u64 stripes_per_dev
= 0;
5604 u32 remaining_stripes
= 0;
5605 u32 last_stripe
= 0;
5609 /* discard always return a bbio */
5612 em
= btrfs_get_chunk_map(fs_info
, logical
, length
);
5616 map
= em
->map_lookup
;
5617 /* we don't discard raid56 yet */
5618 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5623 offset
= logical
- em
->start
;
5624 length
= min_t(u64
, em
->len
- offset
, length
);
5626 stripe_len
= map
->stripe_len
;
5628 * stripe_nr counts the total number of stripes we have to stride
5629 * to get to this block
5631 stripe_nr
= div64_u64(offset
, stripe_len
);
5633 /* stripe_offset is the offset of this block in its stripe */
5634 stripe_offset
= offset
- stripe_nr
* stripe_len
;
5636 stripe_nr_end
= round_up(offset
+ length
, map
->stripe_len
);
5637 stripe_nr_end
= div64_u64(stripe_nr_end
, map
->stripe_len
);
5638 stripe_cnt
= stripe_nr_end
- stripe_nr
;
5639 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5642 * after this, stripe_nr is the number of stripes on this
5643 * device we have to walk to find the data, and stripe_index is
5644 * the number of our device in the stripe array
5648 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5649 BTRFS_BLOCK_GROUP_RAID10
)) {
5650 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5653 sub_stripes
= map
->sub_stripes
;
5655 factor
= map
->num_stripes
/ sub_stripes
;
5656 num_stripes
= min_t(u64
, map
->num_stripes
,
5657 sub_stripes
* stripe_cnt
);
5658 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5659 stripe_index
*= sub_stripes
;
5660 stripes_per_dev
= div_u64_rem(stripe_cnt
, factor
,
5661 &remaining_stripes
);
5662 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5663 last_stripe
*= sub_stripes
;
5664 } else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5665 BTRFS_BLOCK_GROUP_DUP
)) {
5666 num_stripes
= map
->num_stripes
;
5668 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5672 bbio
= alloc_btrfs_bio(num_stripes
, 0);
5678 for (i
= 0; i
< num_stripes
; i
++) {
5679 bbio
->stripes
[i
].physical
=
5680 map
->stripes
[stripe_index
].physical
+
5681 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5682 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5684 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5685 BTRFS_BLOCK_GROUP_RAID10
)) {
5686 bbio
->stripes
[i
].length
= stripes_per_dev
*
5689 if (i
/ sub_stripes
< remaining_stripes
)
5690 bbio
->stripes
[i
].length
+=
5694 * Special for the first stripe and
5697 * |-------|...|-------|
5701 if (i
< sub_stripes
)
5702 bbio
->stripes
[i
].length
-=
5705 if (stripe_index
>= last_stripe
&&
5706 stripe_index
<= (last_stripe
+
5708 bbio
->stripes
[i
].length
-=
5711 if (i
== sub_stripes
- 1)
5714 bbio
->stripes
[i
].length
= length
;
5718 if (stripe_index
== map
->num_stripes
) {
5725 bbio
->map_type
= map
->type
;
5726 bbio
->num_stripes
= num_stripes
;
5728 free_extent_map(em
);
5733 * In dev-replace case, for repair case (that's the only case where the mirror
5734 * is selected explicitly when calling btrfs_map_block), blocks left of the
5735 * left cursor can also be read from the target drive.
5737 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5739 * For READ, it also needs to be supported using the same mirror number.
5741 * If the requested block is not left of the left cursor, EIO is returned. This
5742 * can happen because btrfs_num_copies() returns one more in the dev-replace
5745 static int get_extra_mirror_from_replace(struct btrfs_fs_info
*fs_info
,
5746 u64 logical
, u64 length
,
5747 u64 srcdev_devid
, int *mirror_num
,
5750 struct btrfs_bio
*bbio
= NULL
;
5752 int index_srcdev
= 0;
5754 u64 physical_of_found
= 0;
5758 ret
= __btrfs_map_block(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
5759 logical
, &length
, &bbio
, 0, 0);
5761 ASSERT(bbio
== NULL
);
5765 num_stripes
= bbio
->num_stripes
;
5766 if (*mirror_num
> num_stripes
) {
5768 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5769 * that means that the requested area is not left of the left
5772 btrfs_put_bbio(bbio
);
5777 * process the rest of the function using the mirror_num of the source
5778 * drive. Therefore look it up first. At the end, patch the device
5779 * pointer to the one of the target drive.
5781 for (i
= 0; i
< num_stripes
; i
++) {
5782 if (bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5786 * In case of DUP, in order to keep it simple, only add the
5787 * mirror with the lowest physical address
5790 physical_of_found
<= bbio
->stripes
[i
].physical
)
5795 physical_of_found
= bbio
->stripes
[i
].physical
;
5798 btrfs_put_bbio(bbio
);
5804 *mirror_num
= index_srcdev
+ 1;
5805 *physical
= physical_of_found
;
5809 static void handle_ops_on_dev_replace(enum btrfs_map_op op
,
5810 struct btrfs_bio
**bbio_ret
,
5811 struct btrfs_dev_replace
*dev_replace
,
5812 int *num_stripes_ret
, int *max_errors_ret
)
5814 struct btrfs_bio
*bbio
= *bbio_ret
;
5815 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5816 int tgtdev_indexes
= 0;
5817 int num_stripes
= *num_stripes_ret
;
5818 int max_errors
= *max_errors_ret
;
5821 if (op
== BTRFS_MAP_WRITE
) {
5822 int index_where_to_add
;
5825 * duplicate the write operations while the dev replace
5826 * procedure is running. Since the copying of the old disk to
5827 * the new disk takes place at run time while the filesystem is
5828 * mounted writable, the regular write operations to the old
5829 * disk have to be duplicated to go to the new disk as well.
5831 * Note that device->missing is handled by the caller, and that
5832 * the write to the old disk is already set up in the stripes
5835 index_where_to_add
= num_stripes
;
5836 for (i
= 0; i
< num_stripes
; i
++) {
5837 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5838 /* write to new disk, too */
5839 struct btrfs_bio_stripe
*new =
5840 bbio
->stripes
+ index_where_to_add
;
5841 struct btrfs_bio_stripe
*old
=
5844 new->physical
= old
->physical
;
5845 new->length
= old
->length
;
5846 new->dev
= dev_replace
->tgtdev
;
5847 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5848 index_where_to_add
++;
5853 num_stripes
= index_where_to_add
;
5854 } else if (op
== BTRFS_MAP_GET_READ_MIRRORS
) {
5855 int index_srcdev
= 0;
5857 u64 physical_of_found
= 0;
5860 * During the dev-replace procedure, the target drive can also
5861 * be used to read data in case it is needed to repair a corrupt
5862 * block elsewhere. This is possible if the requested area is
5863 * left of the left cursor. In this area, the target drive is a
5864 * full copy of the source drive.
5866 for (i
= 0; i
< num_stripes
; i
++) {
5867 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5869 * In case of DUP, in order to keep it simple,
5870 * only add the mirror with the lowest physical
5874 physical_of_found
<=
5875 bbio
->stripes
[i
].physical
)
5879 physical_of_found
= bbio
->stripes
[i
].physical
;
5883 struct btrfs_bio_stripe
*tgtdev_stripe
=
5884 bbio
->stripes
+ num_stripes
;
5886 tgtdev_stripe
->physical
= physical_of_found
;
5887 tgtdev_stripe
->length
=
5888 bbio
->stripes
[index_srcdev
].length
;
5889 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5890 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5897 *num_stripes_ret
= num_stripes
;
5898 *max_errors_ret
= max_errors
;
5899 bbio
->num_tgtdevs
= tgtdev_indexes
;
5903 static bool need_full_stripe(enum btrfs_map_op op
)
5905 return (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
);
5908 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
5909 enum btrfs_map_op op
,
5910 u64 logical
, u64
*length
,
5911 struct btrfs_bio
**bbio_ret
,
5912 int mirror_num
, int need_raid_map
)
5914 struct extent_map
*em
;
5915 struct map_lookup
*map
;
5925 int tgtdev_indexes
= 0;
5926 struct btrfs_bio
*bbio
= NULL
;
5927 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5928 int dev_replace_is_ongoing
= 0;
5929 int num_alloc_stripes
;
5930 int patch_the_first_stripe_for_dev_replace
= 0;
5931 u64 physical_to_patch_in_first_stripe
= 0;
5932 u64 raid56_full_stripe_start
= (u64
)-1;
5934 if (op
== BTRFS_MAP_DISCARD
)
5935 return __btrfs_map_block_for_discard(fs_info
, logical
,
5938 em
= btrfs_get_chunk_map(fs_info
, logical
, *length
);
5942 map
= em
->map_lookup
;
5943 offset
= logical
- em
->start
;
5945 stripe_len
= map
->stripe_len
;
5948 * stripe_nr counts the total number of stripes we have to stride
5949 * to get to this block
5951 stripe_nr
= div64_u64(stripe_nr
, stripe_len
);
5953 stripe_offset
= stripe_nr
* stripe_len
;
5954 if (offset
< stripe_offset
) {
5956 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5957 stripe_offset
, offset
, em
->start
, logical
,
5959 free_extent_map(em
);
5963 /* stripe_offset is the offset of this block in its stripe*/
5964 stripe_offset
= offset
- stripe_offset
;
5966 /* if we're here for raid56, we need to know the stripe aligned start */
5967 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5968 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5969 raid56_full_stripe_start
= offset
;
5971 /* allow a write of a full stripe, but make sure we don't
5972 * allow straddling of stripes
5974 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5976 raid56_full_stripe_start
*= full_stripe_len
;
5979 if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5981 /* For writes to RAID[56], allow a full stripeset across all disks.
5982 For other RAID types and for RAID[56] reads, just allow a single
5983 stripe (on a single disk). */
5984 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5985 (op
== BTRFS_MAP_WRITE
)) {
5986 max_len
= stripe_len
* nr_data_stripes(map
) -
5987 (offset
- raid56_full_stripe_start
);
5989 /* we limit the length of each bio to what fits in a stripe */
5990 max_len
= stripe_len
- stripe_offset
;
5992 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5994 *length
= em
->len
- offset
;
5998 * This is for when we're called from btrfs_bio_fits_in_stripe and all
5999 * it cares about is the length
6004 down_read(&dev_replace
->rwsem
);
6005 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
6007 * Hold the semaphore for read during the whole operation, write is
6008 * requested at commit time but must wait.
6010 if (!dev_replace_is_ongoing
)
6011 up_read(&dev_replace
->rwsem
);
6013 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
6014 !need_full_stripe(op
) && dev_replace
->tgtdev
!= NULL
) {
6015 ret
= get_extra_mirror_from_replace(fs_info
, logical
, *length
,
6016 dev_replace
->srcdev
->devid
,
6018 &physical_to_patch_in_first_stripe
);
6022 patch_the_first_stripe_for_dev_replace
= 1;
6023 } else if (mirror_num
> map
->num_stripes
) {
6029 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
6030 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
6032 if (!need_full_stripe(op
))
6034 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
6035 if (need_full_stripe(op
))
6036 num_stripes
= map
->num_stripes
;
6037 else if (mirror_num
)
6038 stripe_index
= mirror_num
- 1;
6040 stripe_index
= find_live_mirror(fs_info
, map
, 0,
6041 dev_replace_is_ongoing
);
6042 mirror_num
= stripe_index
+ 1;
6045 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
6046 if (need_full_stripe(op
)) {
6047 num_stripes
= map
->num_stripes
;
6048 } else if (mirror_num
) {
6049 stripe_index
= mirror_num
- 1;
6054 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
6055 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
6057 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
6058 stripe_index
*= map
->sub_stripes
;
6060 if (need_full_stripe(op
))
6061 num_stripes
= map
->sub_stripes
;
6062 else if (mirror_num
)
6063 stripe_index
+= mirror_num
- 1;
6065 int old_stripe_index
= stripe_index
;
6066 stripe_index
= find_live_mirror(fs_info
, map
,
6068 dev_replace_is_ongoing
);
6069 mirror_num
= stripe_index
- old_stripe_index
+ 1;
6072 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
6073 if (need_raid_map
&& (need_full_stripe(op
) || mirror_num
> 1)) {
6074 /* push stripe_nr back to the start of the full stripe */
6075 stripe_nr
= div64_u64(raid56_full_stripe_start
,
6076 stripe_len
* nr_data_stripes(map
));
6078 /* RAID[56] write or recovery. Return all stripes */
6079 num_stripes
= map
->num_stripes
;
6080 max_errors
= nr_parity_stripes(map
);
6082 *length
= map
->stripe_len
;
6087 * Mirror #0 or #1 means the original data block.
6088 * Mirror #2 is RAID5 parity block.
6089 * Mirror #3 is RAID6 Q block.
6091 stripe_nr
= div_u64_rem(stripe_nr
,
6092 nr_data_stripes(map
), &stripe_index
);
6094 stripe_index
= nr_data_stripes(map
) +
6097 /* We distribute the parity blocks across stripes */
6098 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
6100 if (!need_full_stripe(op
) && mirror_num
<= 1)
6105 * after this, stripe_nr is the number of stripes on this
6106 * device we have to walk to find the data, and stripe_index is
6107 * the number of our device in the stripe array
6109 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
6111 mirror_num
= stripe_index
+ 1;
6113 if (stripe_index
>= map
->num_stripes
) {
6115 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6116 stripe_index
, map
->num_stripes
);
6121 num_alloc_stripes
= num_stripes
;
6122 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
) {
6123 if (op
== BTRFS_MAP_WRITE
)
6124 num_alloc_stripes
<<= 1;
6125 if (op
== BTRFS_MAP_GET_READ_MIRRORS
)
6126 num_alloc_stripes
++;
6127 tgtdev_indexes
= num_stripes
;
6130 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
6135 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
)
6136 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
6138 /* build raid_map */
6139 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&& need_raid_map
&&
6140 (need_full_stripe(op
) || mirror_num
> 1)) {
6144 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
6145 sizeof(struct btrfs_bio_stripe
) *
6147 sizeof(int) * tgtdev_indexes
);
6149 /* Work out the disk rotation on this stripe-set */
6150 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
6152 /* Fill in the logical address of each stripe */
6153 tmp
= stripe_nr
* nr_data_stripes(map
);
6154 for (i
= 0; i
< nr_data_stripes(map
); i
++)
6155 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
6156 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
6158 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
6159 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
6160 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
6165 for (i
= 0; i
< num_stripes
; i
++) {
6166 bbio
->stripes
[i
].physical
=
6167 map
->stripes
[stripe_index
].physical
+
6169 stripe_nr
* map
->stripe_len
;
6170 bbio
->stripes
[i
].dev
=
6171 map
->stripes
[stripe_index
].dev
;
6175 if (need_full_stripe(op
))
6176 max_errors
= btrfs_chunk_max_errors(map
);
6179 sort_parity_stripes(bbio
, num_stripes
);
6181 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
&&
6182 need_full_stripe(op
)) {
6183 handle_ops_on_dev_replace(op
, &bbio
, dev_replace
, &num_stripes
,
6188 bbio
->map_type
= map
->type
;
6189 bbio
->num_stripes
= num_stripes
;
6190 bbio
->max_errors
= max_errors
;
6191 bbio
->mirror_num
= mirror_num
;
6194 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6195 * mirror_num == num_stripes + 1 && dev_replace target drive is
6196 * available as a mirror
6198 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
6199 WARN_ON(num_stripes
> 1);
6200 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
6201 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
6202 bbio
->mirror_num
= map
->num_stripes
+ 1;
6205 if (dev_replace_is_ongoing
) {
6206 lockdep_assert_held(&dev_replace
->rwsem
);
6207 /* Unlock and let waiting writers proceed */
6208 up_read(&dev_replace
->rwsem
);
6210 free_extent_map(em
);
6214 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
6215 u64 logical
, u64
*length
,
6216 struct btrfs_bio
**bbio_ret
, int mirror_num
)
6218 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
6222 /* For Scrub/replace */
6223 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
6224 u64 logical
, u64
*length
,
6225 struct btrfs_bio
**bbio_ret
)
6227 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
, 0, 1);
6230 int btrfs_rmap_block(struct btrfs_fs_info
*fs_info
, u64 chunk_start
,
6231 u64 physical
, u64
**logical
, int *naddrs
, int *stripe_len
)
6233 struct extent_map
*em
;
6234 struct map_lookup
*map
;
6242 em
= btrfs_get_chunk_map(fs_info
, chunk_start
, 1);
6246 map
= em
->map_lookup
;
6248 rmap_len
= map
->stripe_len
;
6250 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
6251 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
6252 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
6253 length
= div_u64(length
, map
->num_stripes
);
6254 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
6255 length
= div_u64(length
, nr_data_stripes(map
));
6256 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
6259 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
6260 BUG_ON(!buf
); /* -ENOMEM */
6262 for (i
= 0; i
< map
->num_stripes
; i
++) {
6263 if (map
->stripes
[i
].physical
> physical
||
6264 map
->stripes
[i
].physical
+ length
<= physical
)
6267 stripe_nr
= physical
- map
->stripes
[i
].physical
;
6268 stripe_nr
= div64_u64(stripe_nr
, map
->stripe_len
);
6270 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
6271 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
6272 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
6273 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
6274 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
6275 } /* else if RAID[56], multiply by nr_data_stripes().
6276 * Alternatively, just use rmap_len below instead of
6277 * map->stripe_len */
6279 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
6280 WARN_ON(nr
>= map
->num_stripes
);
6281 for (j
= 0; j
< nr
; j
++) {
6282 if (buf
[j
] == bytenr
)
6286 WARN_ON(nr
>= map
->num_stripes
);
6293 *stripe_len
= rmap_len
;
6295 free_extent_map(em
);
6299 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
6301 bio
->bi_private
= bbio
->private;
6302 bio
->bi_end_io
= bbio
->end_io
;
6305 btrfs_put_bbio(bbio
);
6308 static void btrfs_end_bio(struct bio
*bio
)
6310 struct btrfs_bio
*bbio
= bio
->bi_private
;
6311 int is_orig_bio
= 0;
6313 if (bio
->bi_status
) {
6314 atomic_inc(&bbio
->error
);
6315 if (bio
->bi_status
== BLK_STS_IOERR
||
6316 bio
->bi_status
== BLK_STS_TARGET
) {
6317 unsigned int stripe_index
=
6318 btrfs_io_bio(bio
)->stripe_index
;
6319 struct btrfs_device
*dev
;
6321 BUG_ON(stripe_index
>= bbio
->num_stripes
);
6322 dev
= bbio
->stripes
[stripe_index
].dev
;
6324 if (bio_op(bio
) == REQ_OP_WRITE
)
6325 btrfs_dev_stat_inc_and_print(dev
,
6326 BTRFS_DEV_STAT_WRITE_ERRS
);
6327 else if (!(bio
->bi_opf
& REQ_RAHEAD
))
6328 btrfs_dev_stat_inc_and_print(dev
,
6329 BTRFS_DEV_STAT_READ_ERRS
);
6330 if (bio
->bi_opf
& REQ_PREFLUSH
)
6331 btrfs_dev_stat_inc_and_print(dev
,
6332 BTRFS_DEV_STAT_FLUSH_ERRS
);
6337 if (bio
== bbio
->orig_bio
)
6340 btrfs_bio_counter_dec(bbio
->fs_info
);
6342 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6345 bio
= bbio
->orig_bio
;
6348 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6349 /* only send an error to the higher layers if it is
6350 * beyond the tolerance of the btrfs bio
6352 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
6353 bio
->bi_status
= BLK_STS_IOERR
;
6356 * this bio is actually up to date, we didn't
6357 * go over the max number of errors
6359 bio
->bi_status
= BLK_STS_OK
;
6362 btrfs_end_bbio(bbio
, bio
);
6363 } else if (!is_orig_bio
) {
6369 * see run_scheduled_bios for a description of why bios are collected for
6372 * This will add one bio to the pending list for a device and make sure
6373 * the work struct is scheduled.
6375 static noinline
void btrfs_schedule_bio(struct btrfs_device
*device
,
6378 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
6379 int should_queue
= 1;
6380 struct btrfs_pending_bios
*pending_bios
;
6382 /* don't bother with additional async steps for reads, right now */
6383 if (bio_op(bio
) == REQ_OP_READ
) {
6384 btrfsic_submit_bio(bio
);
6388 WARN_ON(bio
->bi_next
);
6389 bio
->bi_next
= NULL
;
6391 spin_lock(&device
->io_lock
);
6392 if (op_is_sync(bio
->bi_opf
))
6393 pending_bios
= &device
->pending_sync_bios
;
6395 pending_bios
= &device
->pending_bios
;
6397 if (pending_bios
->tail
)
6398 pending_bios
->tail
->bi_next
= bio
;
6400 pending_bios
->tail
= bio
;
6401 if (!pending_bios
->head
)
6402 pending_bios
->head
= bio
;
6403 if (device
->running_pending
)
6406 spin_unlock(&device
->io_lock
);
6409 btrfs_queue_work(fs_info
->submit_workers
, &device
->work
);
6412 static void submit_stripe_bio(struct btrfs_bio
*bbio
, struct bio
*bio
,
6413 u64 physical
, int dev_nr
, int async
)
6415 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
6416 struct btrfs_fs_info
*fs_info
= bbio
->fs_info
;
6418 bio
->bi_private
= bbio
;
6419 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
6420 bio
->bi_end_io
= btrfs_end_bio
;
6421 bio
->bi_iter
.bi_sector
= physical
>> 9;
6422 btrfs_debug_in_rcu(fs_info
,
6423 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6424 bio_op(bio
), bio
->bi_opf
, (u64
)bio
->bi_iter
.bi_sector
,
6425 (u_long
)dev
->bdev
->bd_dev
, rcu_str_deref(dev
->name
), dev
->devid
,
6426 bio
->bi_iter
.bi_size
);
6427 bio_set_dev(bio
, dev
->bdev
);
6429 btrfs_bio_counter_inc_noblocked(fs_info
);
6432 btrfs_schedule_bio(dev
, bio
);
6434 btrfsic_submit_bio(bio
);
6437 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6439 atomic_inc(&bbio
->error
);
6440 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6441 /* Should be the original bio. */
6442 WARN_ON(bio
!= bbio
->orig_bio
);
6444 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6445 bio
->bi_iter
.bi_sector
= logical
>> 9;
6446 if (atomic_read(&bbio
->error
) > bbio
->max_errors
)
6447 bio
->bi_status
= BLK_STS_IOERR
;
6449 bio
->bi_status
= BLK_STS_OK
;
6450 btrfs_end_bbio(bbio
, bio
);
6454 blk_status_t
btrfs_map_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
6455 int mirror_num
, int async_submit
)
6457 struct btrfs_device
*dev
;
6458 struct bio
*first_bio
= bio
;
6459 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6465 struct btrfs_bio
*bbio
= NULL
;
6467 length
= bio
->bi_iter
.bi_size
;
6468 map_length
= length
;
6470 btrfs_bio_counter_inc_blocked(fs_info
);
6471 ret
= __btrfs_map_block(fs_info
, btrfs_op(bio
), logical
,
6472 &map_length
, &bbio
, mirror_num
, 1);
6474 btrfs_bio_counter_dec(fs_info
);
6475 return errno_to_blk_status(ret
);
6478 total_devs
= bbio
->num_stripes
;
6479 bbio
->orig_bio
= first_bio
;
6480 bbio
->private = first_bio
->bi_private
;
6481 bbio
->end_io
= first_bio
->bi_end_io
;
6482 bbio
->fs_info
= fs_info
;
6483 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6485 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6486 ((bio_op(bio
) == REQ_OP_WRITE
) || (mirror_num
> 1))) {
6487 /* In this case, map_length has been set to the length of
6488 a single stripe; not the whole write */
6489 if (bio_op(bio
) == REQ_OP_WRITE
) {
6490 ret
= raid56_parity_write(fs_info
, bio
, bbio
,
6493 ret
= raid56_parity_recover(fs_info
, bio
, bbio
,
6494 map_length
, mirror_num
, 1);
6497 btrfs_bio_counter_dec(fs_info
);
6498 return errno_to_blk_status(ret
);
6501 if (map_length
< length
) {
6503 "mapping failed logical %llu bio len %llu len %llu",
6504 logical
, length
, map_length
);
6508 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6509 dev
= bbio
->stripes
[dev_nr
].dev
;
6510 if (!dev
|| !dev
->bdev
|| test_bit(BTRFS_DEV_STATE_MISSING
,
6512 (bio_op(first_bio
) == REQ_OP_WRITE
&&
6513 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))) {
6514 bbio_error(bbio
, first_bio
, logical
);
6518 if (dev_nr
< total_devs
- 1)
6519 bio
= btrfs_bio_clone(first_bio
);
6523 submit_stripe_bio(bbio
, bio
, bbio
->stripes
[dev_nr
].physical
,
6524 dev_nr
, async_submit
);
6526 btrfs_bio_counter_dec(fs_info
);
6531 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6534 * If devid and uuid are both specified, the match must be exact, otherwise
6535 * only devid is used.
6537 * If @seed is true, traverse through the seed devices.
6539 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_devices
*fs_devices
,
6540 u64 devid
, u8
*uuid
, u8
*fsid
,
6543 struct btrfs_device
*device
;
6545 while (fs_devices
) {
6547 !memcmp(fs_devices
->metadata_uuid
, fsid
, BTRFS_FSID_SIZE
)) {
6548 list_for_each_entry(device
, &fs_devices
->devices
,
6550 if (device
->devid
== devid
&&
6551 (!uuid
|| memcmp(device
->uuid
, uuid
,
6552 BTRFS_UUID_SIZE
) == 0))
6557 fs_devices
= fs_devices
->seed
;
6564 static struct btrfs_device
*add_missing_dev(struct btrfs_fs_devices
*fs_devices
,
6565 u64 devid
, u8
*dev_uuid
)
6567 struct btrfs_device
*device
;
6569 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6573 list_add(&device
->dev_list
, &fs_devices
->devices
);
6574 device
->fs_devices
= fs_devices
;
6575 fs_devices
->num_devices
++;
6577 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6578 fs_devices
->missing_devices
++;
6584 * btrfs_alloc_device - allocate struct btrfs_device
6585 * @fs_info: used only for generating a new devid, can be NULL if
6586 * devid is provided (i.e. @devid != NULL).
6587 * @devid: a pointer to devid for this device. If NULL a new devid
6589 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6592 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6593 * on error. Returned struct is not linked onto any lists and must be
6594 * destroyed with btrfs_free_device.
6596 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6600 struct btrfs_device
*dev
;
6603 if (WARN_ON(!devid
&& !fs_info
))
6604 return ERR_PTR(-EINVAL
);
6606 dev
= __alloc_device();
6615 ret
= find_next_devid(fs_info
, &tmp
);
6617 btrfs_free_device(dev
);
6618 return ERR_PTR(ret
);
6624 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6626 generate_random_uuid(dev
->uuid
);
6628 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6629 pending_bios_fn
, NULL
, NULL
);
6634 static void btrfs_report_missing_device(struct btrfs_fs_info
*fs_info
,
6635 u64 devid
, u8
*uuid
, bool error
)
6638 btrfs_err_rl(fs_info
, "devid %llu uuid %pU is missing",
6641 btrfs_warn_rl(fs_info
, "devid %llu uuid %pU is missing",
6645 static u64
calc_stripe_length(u64 type
, u64 chunk_len
, int num_stripes
)
6647 int index
= btrfs_bg_flags_to_raid_index(type
);
6648 int ncopies
= btrfs_raid_array
[index
].ncopies
;
6651 switch (type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
6652 case BTRFS_BLOCK_GROUP_RAID5
:
6653 data_stripes
= num_stripes
- 1;
6655 case BTRFS_BLOCK_GROUP_RAID6
:
6656 data_stripes
= num_stripes
- 2;
6659 data_stripes
= num_stripes
/ ncopies
;
6662 return div_u64(chunk_len
, data_stripes
);
6665 static int read_one_chunk(struct btrfs_key
*key
, struct extent_buffer
*leaf
,
6666 struct btrfs_chunk
*chunk
)
6668 struct btrfs_fs_info
*fs_info
= leaf
->fs_info
;
6669 struct extent_map_tree
*map_tree
= &fs_info
->mapping_tree
;
6670 struct map_lookup
*map
;
6671 struct extent_map
*em
;
6675 u8 uuid
[BTRFS_UUID_SIZE
];
6680 logical
= key
->offset
;
6681 length
= btrfs_chunk_length(leaf
, chunk
);
6682 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6685 * Only need to verify chunk item if we're reading from sys chunk array,
6686 * as chunk item in tree block is already verified by tree-checker.
6688 if (leaf
->start
== BTRFS_SUPER_INFO_OFFSET
) {
6689 ret
= btrfs_check_chunk_valid(leaf
, chunk
, logical
);
6694 read_lock(&map_tree
->lock
);
6695 em
= lookup_extent_mapping(map_tree
, logical
, 1);
6696 read_unlock(&map_tree
->lock
);
6698 /* already mapped? */
6699 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6700 free_extent_map(em
);
6703 free_extent_map(em
);
6706 em
= alloc_extent_map();
6709 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6711 free_extent_map(em
);
6715 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6716 em
->map_lookup
= map
;
6717 em
->start
= logical
;
6720 em
->block_start
= 0;
6721 em
->block_len
= em
->len
;
6723 map
->num_stripes
= num_stripes
;
6724 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6725 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6726 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6727 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6728 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6729 map
->verified_stripes
= 0;
6730 em
->orig_block_len
= calc_stripe_length(map
->type
, em
->len
,
6732 for (i
= 0; i
< num_stripes
; i
++) {
6733 map
->stripes
[i
].physical
=
6734 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6735 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6736 read_extent_buffer(leaf
, uuid
, (unsigned long)
6737 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6739 map
->stripes
[i
].dev
= btrfs_find_device(fs_info
->fs_devices
,
6740 devid
, uuid
, NULL
, true);
6741 if (!map
->stripes
[i
].dev
&&
6742 !btrfs_test_opt(fs_info
, DEGRADED
)) {
6743 free_extent_map(em
);
6744 btrfs_report_missing_device(fs_info
, devid
, uuid
, true);
6747 if (!map
->stripes
[i
].dev
) {
6748 map
->stripes
[i
].dev
=
6749 add_missing_dev(fs_info
->fs_devices
, devid
,
6751 if (IS_ERR(map
->stripes
[i
].dev
)) {
6752 free_extent_map(em
);
6754 "failed to init missing dev %llu: %ld",
6755 devid
, PTR_ERR(map
->stripes
[i
].dev
));
6756 return PTR_ERR(map
->stripes
[i
].dev
);
6758 btrfs_report_missing_device(fs_info
, devid
, uuid
, false);
6760 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
6761 &(map
->stripes
[i
].dev
->dev_state
));
6765 write_lock(&map_tree
->lock
);
6766 ret
= add_extent_mapping(map_tree
, em
, 0);
6767 write_unlock(&map_tree
->lock
);
6770 "failed to add chunk map, start=%llu len=%llu: %d",
6771 em
->start
, em
->len
, ret
);
6773 free_extent_map(em
);
6778 static void fill_device_from_item(struct extent_buffer
*leaf
,
6779 struct btrfs_dev_item
*dev_item
,
6780 struct btrfs_device
*device
)
6784 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6785 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6786 device
->total_bytes
= device
->disk_total_bytes
;
6787 device
->commit_total_bytes
= device
->disk_total_bytes
;
6788 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6789 device
->commit_bytes_used
= device
->bytes_used
;
6790 device
->type
= btrfs_device_type(leaf
, dev_item
);
6791 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6792 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6793 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6794 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6795 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
6797 ptr
= btrfs_device_uuid(dev_item
);
6798 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6801 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_fs_info
*fs_info
,
6804 struct btrfs_fs_devices
*fs_devices
;
6807 lockdep_assert_held(&uuid_mutex
);
6810 fs_devices
= fs_info
->fs_devices
->seed
;
6811 while (fs_devices
) {
6812 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_FSID_SIZE
))
6815 fs_devices
= fs_devices
->seed
;
6818 fs_devices
= find_fsid(fsid
, NULL
);
6820 if (!btrfs_test_opt(fs_info
, DEGRADED
))
6821 return ERR_PTR(-ENOENT
);
6823 fs_devices
= alloc_fs_devices(fsid
, NULL
);
6824 if (IS_ERR(fs_devices
))
6827 fs_devices
->seeding
= 1;
6828 fs_devices
->opened
= 1;
6832 fs_devices
= clone_fs_devices(fs_devices
);
6833 if (IS_ERR(fs_devices
))
6836 ret
= open_fs_devices(fs_devices
, FMODE_READ
, fs_info
->bdev_holder
);
6838 free_fs_devices(fs_devices
);
6839 fs_devices
= ERR_PTR(ret
);
6843 if (!fs_devices
->seeding
) {
6844 close_fs_devices(fs_devices
);
6845 free_fs_devices(fs_devices
);
6846 fs_devices
= ERR_PTR(-EINVAL
);
6850 fs_devices
->seed
= fs_info
->fs_devices
->seed
;
6851 fs_info
->fs_devices
->seed
= fs_devices
;
6856 static int read_one_dev(struct extent_buffer
*leaf
,
6857 struct btrfs_dev_item
*dev_item
)
6859 struct btrfs_fs_info
*fs_info
= leaf
->fs_info
;
6860 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6861 struct btrfs_device
*device
;
6864 u8 fs_uuid
[BTRFS_FSID_SIZE
];
6865 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6867 devid
= btrfs_device_id(leaf
, dev_item
);
6868 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6870 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6873 if (memcmp(fs_uuid
, fs_devices
->metadata_uuid
, BTRFS_FSID_SIZE
)) {
6874 fs_devices
= open_seed_devices(fs_info
, fs_uuid
);
6875 if (IS_ERR(fs_devices
))
6876 return PTR_ERR(fs_devices
);
6879 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, dev_uuid
,
6882 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6883 btrfs_report_missing_device(fs_info
, devid
,
6888 device
= add_missing_dev(fs_devices
, devid
, dev_uuid
);
6889 if (IS_ERR(device
)) {
6891 "failed to add missing dev %llu: %ld",
6892 devid
, PTR_ERR(device
));
6893 return PTR_ERR(device
);
6895 btrfs_report_missing_device(fs_info
, devid
, dev_uuid
, false);
6897 if (!device
->bdev
) {
6898 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6899 btrfs_report_missing_device(fs_info
,
6900 devid
, dev_uuid
, true);
6903 btrfs_report_missing_device(fs_info
, devid
,
6907 if (!device
->bdev
&&
6908 !test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
6910 * this happens when a device that was properly setup
6911 * in the device info lists suddenly goes bad.
6912 * device->bdev is NULL, and so we have to set
6913 * device->missing to one here
6915 device
->fs_devices
->missing_devices
++;
6916 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6919 /* Move the device to its own fs_devices */
6920 if (device
->fs_devices
!= fs_devices
) {
6921 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING
,
6922 &device
->dev_state
));
6924 list_move(&device
->dev_list
, &fs_devices
->devices
);
6925 device
->fs_devices
->num_devices
--;
6926 fs_devices
->num_devices
++;
6928 device
->fs_devices
->missing_devices
--;
6929 fs_devices
->missing_devices
++;
6931 device
->fs_devices
= fs_devices
;
6935 if (device
->fs_devices
!= fs_info
->fs_devices
) {
6936 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
));
6937 if (device
->generation
!=
6938 btrfs_device_generation(leaf
, dev_item
))
6942 fill_device_from_item(leaf
, dev_item
, device
);
6943 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
6944 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
6945 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
6946 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6947 atomic64_add(device
->total_bytes
- device
->bytes_used
,
6948 &fs_info
->free_chunk_space
);
6954 int btrfs_read_sys_array(struct btrfs_fs_info
*fs_info
)
6956 struct btrfs_root
*root
= fs_info
->tree_root
;
6957 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
6958 struct extent_buffer
*sb
;
6959 struct btrfs_disk_key
*disk_key
;
6960 struct btrfs_chunk
*chunk
;
6962 unsigned long sb_array_offset
;
6969 struct btrfs_key key
;
6971 ASSERT(BTRFS_SUPER_INFO_SIZE
<= fs_info
->nodesize
);
6973 * This will create extent buffer of nodesize, superblock size is
6974 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6975 * overallocate but we can keep it as-is, only the first page is used.
6977 sb
= btrfs_find_create_tree_block(fs_info
, BTRFS_SUPER_INFO_OFFSET
);
6980 set_extent_buffer_uptodate(sb
);
6981 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6983 * The sb extent buffer is artificial and just used to read the system array.
6984 * set_extent_buffer_uptodate() call does not properly mark all it's
6985 * pages up-to-date when the page is larger: extent does not cover the
6986 * whole page and consequently check_page_uptodate does not find all
6987 * the page's extents up-to-date (the hole beyond sb),
6988 * write_extent_buffer then triggers a WARN_ON.
6990 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6991 * but sb spans only this function. Add an explicit SetPageUptodate call
6992 * to silence the warning eg. on PowerPC 64.
6994 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6995 SetPageUptodate(sb
->pages
[0]);
6997 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6998 array_size
= btrfs_super_sys_array_size(super_copy
);
7000 array_ptr
= super_copy
->sys_chunk_array
;
7001 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
7004 while (cur_offset
< array_size
) {
7005 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
7006 len
= sizeof(*disk_key
);
7007 if (cur_offset
+ len
> array_size
)
7008 goto out_short_read
;
7010 btrfs_disk_key_to_cpu(&key
, disk_key
);
7013 sb_array_offset
+= len
;
7016 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
7017 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
7019 * At least one btrfs_chunk with one stripe must be
7020 * present, exact stripe count check comes afterwards
7022 len
= btrfs_chunk_item_size(1);
7023 if (cur_offset
+ len
> array_size
)
7024 goto out_short_read
;
7026 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
7029 "invalid number of stripes %u in sys_array at offset %u",
7030 num_stripes
, cur_offset
);
7035 type
= btrfs_chunk_type(sb
, chunk
);
7036 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) == 0) {
7038 "invalid chunk type %llu in sys_array at offset %u",
7044 len
= btrfs_chunk_item_size(num_stripes
);
7045 if (cur_offset
+ len
> array_size
)
7046 goto out_short_read
;
7048 ret
= read_one_chunk(&key
, sb
, chunk
);
7053 "unexpected item type %u in sys_array at offset %u",
7054 (u32
)key
.type
, cur_offset
);
7059 sb_array_offset
+= len
;
7062 clear_extent_buffer_uptodate(sb
);
7063 free_extent_buffer_stale(sb
);
7067 btrfs_err(fs_info
, "sys_array too short to read %u bytes at offset %u",
7069 clear_extent_buffer_uptodate(sb
);
7070 free_extent_buffer_stale(sb
);
7075 * Check if all chunks in the fs are OK for read-write degraded mount
7077 * If the @failing_dev is specified, it's accounted as missing.
7079 * Return true if all chunks meet the minimal RW mount requirements.
7080 * Return false if any chunk doesn't meet the minimal RW mount requirements.
7082 bool btrfs_check_rw_degradable(struct btrfs_fs_info
*fs_info
,
7083 struct btrfs_device
*failing_dev
)
7085 struct extent_map_tree
*map_tree
= &fs_info
->mapping_tree
;
7086 struct extent_map
*em
;
7090 read_lock(&map_tree
->lock
);
7091 em
= lookup_extent_mapping(map_tree
, 0, (u64
)-1);
7092 read_unlock(&map_tree
->lock
);
7093 /* No chunk at all? Return false anyway */
7099 struct map_lookup
*map
;
7104 map
= em
->map_lookup
;
7106 btrfs_get_num_tolerated_disk_barrier_failures(
7108 for (i
= 0; i
< map
->num_stripes
; i
++) {
7109 struct btrfs_device
*dev
= map
->stripes
[i
].dev
;
7111 if (!dev
|| !dev
->bdev
||
7112 test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
) ||
7113 dev
->last_flush_error
)
7115 else if (failing_dev
&& failing_dev
== dev
)
7118 if (missing
> max_tolerated
) {
7121 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7122 em
->start
, missing
, max_tolerated
);
7123 free_extent_map(em
);
7127 next_start
= extent_map_end(em
);
7128 free_extent_map(em
);
7130 read_lock(&map_tree
->lock
);
7131 em
= lookup_extent_mapping(map_tree
, next_start
,
7132 (u64
)(-1) - next_start
);
7133 read_unlock(&map_tree
->lock
);
7139 int btrfs_read_chunk_tree(struct btrfs_fs_info
*fs_info
)
7141 struct btrfs_root
*root
= fs_info
->chunk_root
;
7142 struct btrfs_path
*path
;
7143 struct extent_buffer
*leaf
;
7144 struct btrfs_key key
;
7145 struct btrfs_key found_key
;
7150 path
= btrfs_alloc_path();
7155 * uuid_mutex is needed only if we are mounting a sprout FS
7156 * otherwise we don't need it.
7158 mutex_lock(&uuid_mutex
);
7159 mutex_lock(&fs_info
->chunk_mutex
);
7162 * Read all device items, and then all the chunk items. All
7163 * device items are found before any chunk item (their object id
7164 * is smaller than the lowest possible object id for a chunk
7165 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7167 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
7170 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
7174 leaf
= path
->nodes
[0];
7175 slot
= path
->slots
[0];
7176 if (slot
>= btrfs_header_nritems(leaf
)) {
7177 ret
= btrfs_next_leaf(root
, path
);
7184 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
7185 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
7186 struct btrfs_dev_item
*dev_item
;
7187 dev_item
= btrfs_item_ptr(leaf
, slot
,
7188 struct btrfs_dev_item
);
7189 ret
= read_one_dev(leaf
, dev_item
);
7193 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
7194 struct btrfs_chunk
*chunk
;
7195 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
7196 ret
= read_one_chunk(&found_key
, leaf
, chunk
);
7204 * After loading chunk tree, we've got all device information,
7205 * do another round of validation checks.
7207 if (total_dev
!= fs_info
->fs_devices
->total_devices
) {
7209 "super_num_devices %llu mismatch with num_devices %llu found here",
7210 btrfs_super_num_devices(fs_info
->super_copy
),
7215 if (btrfs_super_total_bytes(fs_info
->super_copy
) <
7216 fs_info
->fs_devices
->total_rw_bytes
) {
7218 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7219 btrfs_super_total_bytes(fs_info
->super_copy
),
7220 fs_info
->fs_devices
->total_rw_bytes
);
7226 mutex_unlock(&fs_info
->chunk_mutex
);
7227 mutex_unlock(&uuid_mutex
);
7229 btrfs_free_path(path
);
7233 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
7235 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7236 struct btrfs_device
*device
;
7238 while (fs_devices
) {
7239 mutex_lock(&fs_devices
->device_list_mutex
);
7240 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
7241 device
->fs_info
= fs_info
;
7242 mutex_unlock(&fs_devices
->device_list_mutex
);
7244 fs_devices
= fs_devices
->seed
;
7248 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
7252 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7253 btrfs_dev_stat_reset(dev
, i
);
7256 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
7258 struct btrfs_key key
;
7259 struct btrfs_key found_key
;
7260 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7261 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7262 struct extent_buffer
*eb
;
7265 struct btrfs_device
*device
;
7266 struct btrfs_path
*path
= NULL
;
7269 path
= btrfs_alloc_path();
7275 mutex_lock(&fs_devices
->device_list_mutex
);
7276 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7278 struct btrfs_dev_stats_item
*ptr
;
7280 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7281 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7282 key
.offset
= device
->devid
;
7283 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
7285 __btrfs_reset_dev_stats(device
);
7286 device
->dev_stats_valid
= 1;
7287 btrfs_release_path(path
);
7290 slot
= path
->slots
[0];
7291 eb
= path
->nodes
[0];
7292 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
7293 item_size
= btrfs_item_size_nr(eb
, slot
);
7295 ptr
= btrfs_item_ptr(eb
, slot
,
7296 struct btrfs_dev_stats_item
);
7298 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7299 if (item_size
>= (1 + i
) * sizeof(__le64
))
7300 btrfs_dev_stat_set(device
, i
,
7301 btrfs_dev_stats_value(eb
, ptr
, i
));
7303 btrfs_dev_stat_reset(device
, i
);
7306 device
->dev_stats_valid
= 1;
7307 btrfs_dev_stat_print_on_load(device
);
7308 btrfs_release_path(path
);
7310 mutex_unlock(&fs_devices
->device_list_mutex
);
7313 btrfs_free_path(path
);
7314 return ret
< 0 ? ret
: 0;
7317 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
7318 struct btrfs_device
*device
)
7320 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
7321 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7322 struct btrfs_path
*path
;
7323 struct btrfs_key key
;
7324 struct extent_buffer
*eb
;
7325 struct btrfs_dev_stats_item
*ptr
;
7329 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7330 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7331 key
.offset
= device
->devid
;
7333 path
= btrfs_alloc_path();
7336 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
7338 btrfs_warn_in_rcu(fs_info
,
7339 "error %d while searching for dev_stats item for device %s",
7340 ret
, rcu_str_deref(device
->name
));
7345 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
7346 /* need to delete old one and insert a new one */
7347 ret
= btrfs_del_item(trans
, dev_root
, path
);
7349 btrfs_warn_in_rcu(fs_info
,
7350 "delete too small dev_stats item for device %s failed %d",
7351 rcu_str_deref(device
->name
), ret
);
7358 /* need to insert a new item */
7359 btrfs_release_path(path
);
7360 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
7361 &key
, sizeof(*ptr
));
7363 btrfs_warn_in_rcu(fs_info
,
7364 "insert dev_stats item for device %s failed %d",
7365 rcu_str_deref(device
->name
), ret
);
7370 eb
= path
->nodes
[0];
7371 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
7372 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7373 btrfs_set_dev_stats_value(eb
, ptr
, i
,
7374 btrfs_dev_stat_read(device
, i
));
7375 btrfs_mark_buffer_dirty(eb
);
7378 btrfs_free_path(path
);
7383 * called from commit_transaction. Writes all changed device stats to disk.
7385 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
)
7387 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
7388 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7389 struct btrfs_device
*device
;
7393 mutex_lock(&fs_devices
->device_list_mutex
);
7394 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7395 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
7396 if (!device
->dev_stats_valid
|| stats_cnt
== 0)
7401 * There is a LOAD-LOAD control dependency between the value of
7402 * dev_stats_ccnt and updating the on-disk values which requires
7403 * reading the in-memory counters. Such control dependencies
7404 * require explicit read memory barriers.
7406 * This memory barriers pairs with smp_mb__before_atomic in
7407 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7408 * barrier implied by atomic_xchg in
7409 * btrfs_dev_stats_read_and_reset
7413 ret
= update_dev_stat_item(trans
, device
);
7415 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
7417 mutex_unlock(&fs_devices
->device_list_mutex
);
7422 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
7424 btrfs_dev_stat_inc(dev
, index
);
7425 btrfs_dev_stat_print_on_error(dev
);
7428 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
7430 if (!dev
->dev_stats_valid
)
7432 btrfs_err_rl_in_rcu(dev
->fs_info
,
7433 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7434 rcu_str_deref(dev
->name
),
7435 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7436 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7437 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7438 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7439 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7442 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
7446 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7447 if (btrfs_dev_stat_read(dev
, i
) != 0)
7449 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
7450 return; /* all values == 0, suppress message */
7452 btrfs_info_in_rcu(dev
->fs_info
,
7453 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7454 rcu_str_deref(dev
->name
),
7455 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7456 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7457 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7458 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7459 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7462 int btrfs_get_dev_stats(struct btrfs_fs_info
*fs_info
,
7463 struct btrfs_ioctl_get_dev_stats
*stats
)
7465 struct btrfs_device
*dev
;
7466 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7469 mutex_lock(&fs_devices
->device_list_mutex
);
7470 dev
= btrfs_find_device(fs_info
->fs_devices
, stats
->devid
, NULL
, NULL
,
7472 mutex_unlock(&fs_devices
->device_list_mutex
);
7475 btrfs_warn(fs_info
, "get dev_stats failed, device not found");
7477 } else if (!dev
->dev_stats_valid
) {
7478 btrfs_warn(fs_info
, "get dev_stats failed, not yet valid");
7480 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
7481 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7482 if (stats
->nr_items
> i
)
7484 btrfs_dev_stat_read_and_reset(dev
, i
);
7486 btrfs_dev_stat_reset(dev
, i
);
7489 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7490 if (stats
->nr_items
> i
)
7491 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
7493 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
7494 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
7498 void btrfs_scratch_superblocks(struct block_device
*bdev
, const char *device_path
)
7500 struct buffer_head
*bh
;
7501 struct btrfs_super_block
*disk_super
;
7507 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
;
7510 if (btrfs_read_dev_one_super(bdev
, copy_num
, &bh
))
7513 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
7515 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
7516 set_buffer_dirty(bh
);
7517 sync_dirty_buffer(bh
);
7521 /* Notify udev that device has changed */
7522 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
7524 /* Update ctime/mtime for device path for libblkid */
7525 update_dev_time(device_path
);
7529 * Update the size and bytes used for each device where it changed. This is
7530 * delayed since we would otherwise get errors while writing out the
7533 * Must be invoked during transaction commit.
7535 void btrfs_commit_device_sizes(struct btrfs_transaction
*trans
)
7537 struct btrfs_device
*curr
, *next
;
7539 ASSERT(trans
->state
== TRANS_STATE_COMMIT_DOING
);
7541 if (list_empty(&trans
->dev_update_list
))
7545 * We don't need the device_list_mutex here. This list is owned by the
7546 * transaction and the transaction must complete before the device is
7549 mutex_lock(&trans
->fs_info
->chunk_mutex
);
7550 list_for_each_entry_safe(curr
, next
, &trans
->dev_update_list
,
7552 list_del_init(&curr
->post_commit_list
);
7553 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7554 curr
->commit_bytes_used
= curr
->bytes_used
;
7556 mutex_unlock(&trans
->fs_info
->chunk_mutex
);
7559 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7561 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7562 while (fs_devices
) {
7563 fs_devices
->fs_info
= fs_info
;
7564 fs_devices
= fs_devices
->seed
;
7568 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7570 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7571 while (fs_devices
) {
7572 fs_devices
->fs_info
= NULL
;
7573 fs_devices
= fs_devices
->seed
;
7578 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7580 int btrfs_bg_type_to_factor(u64 flags
)
7582 const int index
= btrfs_bg_flags_to_raid_index(flags
);
7584 return btrfs_raid_array
[index
].ncopies
;
7589 static int verify_one_dev_extent(struct btrfs_fs_info
*fs_info
,
7590 u64 chunk_offset
, u64 devid
,
7591 u64 physical_offset
, u64 physical_len
)
7593 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
;
7594 struct extent_map
*em
;
7595 struct map_lookup
*map
;
7596 struct btrfs_device
*dev
;
7602 read_lock(&em_tree
->lock
);
7603 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
7604 read_unlock(&em_tree
->lock
);
7608 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7609 physical_offset
, devid
);
7614 map
= em
->map_lookup
;
7615 stripe_len
= calc_stripe_length(map
->type
, em
->len
, map
->num_stripes
);
7616 if (physical_len
!= stripe_len
) {
7618 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7619 physical_offset
, devid
, em
->start
, physical_len
,
7625 for (i
= 0; i
< map
->num_stripes
; i
++) {
7626 if (map
->stripes
[i
].dev
->devid
== devid
&&
7627 map
->stripes
[i
].physical
== physical_offset
) {
7629 if (map
->verified_stripes
>= map
->num_stripes
) {
7631 "too many dev extents for chunk %llu found",
7636 map
->verified_stripes
++;
7642 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7643 physical_offset
, devid
);
7647 /* Make sure no dev extent is beyond device bondary */
7648 dev
= btrfs_find_device(fs_info
->fs_devices
, devid
, NULL
, NULL
, true);
7650 btrfs_err(fs_info
, "failed to find devid %llu", devid
);
7655 /* It's possible this device is a dummy for seed device */
7656 if (dev
->disk_total_bytes
== 0) {
7657 dev
= btrfs_find_device(fs_info
->fs_devices
->seed
, devid
, NULL
,
7660 btrfs_err(fs_info
, "failed to find seed devid %llu",
7667 if (physical_offset
+ physical_len
> dev
->disk_total_bytes
) {
7669 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7670 devid
, physical_offset
, physical_len
,
7671 dev
->disk_total_bytes
);
7676 free_extent_map(em
);
7680 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info
*fs_info
)
7682 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
;
7683 struct extent_map
*em
;
7684 struct rb_node
*node
;
7687 read_lock(&em_tree
->lock
);
7688 for (node
= rb_first_cached(&em_tree
->map
); node
; node
= rb_next(node
)) {
7689 em
= rb_entry(node
, struct extent_map
, rb_node
);
7690 if (em
->map_lookup
->num_stripes
!=
7691 em
->map_lookup
->verified_stripes
) {
7693 "chunk %llu has missing dev extent, have %d expect %d",
7694 em
->start
, em
->map_lookup
->verified_stripes
,
7695 em
->map_lookup
->num_stripes
);
7701 read_unlock(&em_tree
->lock
);
7706 * Ensure that all dev extents are mapped to correct chunk, otherwise
7707 * later chunk allocation/free would cause unexpected behavior.
7709 * NOTE: This will iterate through the whole device tree, which should be of
7710 * the same size level as the chunk tree. This slightly increases mount time.
7712 int btrfs_verify_dev_extents(struct btrfs_fs_info
*fs_info
)
7714 struct btrfs_path
*path
;
7715 struct btrfs_root
*root
= fs_info
->dev_root
;
7716 struct btrfs_key key
;
7718 u64 prev_dev_ext_end
= 0;
7722 key
.type
= BTRFS_DEV_EXTENT_KEY
;
7725 path
= btrfs_alloc_path();
7729 path
->reada
= READA_FORWARD
;
7730 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
7734 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
7735 ret
= btrfs_next_item(root
, path
);
7738 /* No dev extents at all? Not good */
7745 struct extent_buffer
*leaf
= path
->nodes
[0];
7746 struct btrfs_dev_extent
*dext
;
7747 int slot
= path
->slots
[0];
7749 u64 physical_offset
;
7753 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7754 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
7756 devid
= key
.objectid
;
7757 physical_offset
= key
.offset
;
7759 dext
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dev_extent
);
7760 chunk_offset
= btrfs_dev_extent_chunk_offset(leaf
, dext
);
7761 physical_len
= btrfs_dev_extent_length(leaf
, dext
);
7763 /* Check if this dev extent overlaps with the previous one */
7764 if (devid
== prev_devid
&& physical_offset
< prev_dev_ext_end
) {
7766 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7767 devid
, physical_offset
, prev_dev_ext_end
);
7772 ret
= verify_one_dev_extent(fs_info
, chunk_offset
, devid
,
7773 physical_offset
, physical_len
);
7777 prev_dev_ext_end
= physical_offset
+ physical_len
;
7779 ret
= btrfs_next_item(root
, path
);
7788 /* Ensure all chunks have corresponding dev extents */
7789 ret
= verify_chunk_dev_extent_mapping(fs_info
);
7791 btrfs_free_path(path
);
7796 * Check whether the given block group or device is pinned by any inode being
7797 * used as a swapfile.
7799 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info
*fs_info
, void *ptr
)
7801 struct btrfs_swapfile_pin
*sp
;
7802 struct rb_node
*node
;
7804 spin_lock(&fs_info
->swapfile_pins_lock
);
7805 node
= fs_info
->swapfile_pins
.rb_node
;
7807 sp
= rb_entry(node
, struct btrfs_swapfile_pin
, node
);
7809 node
= node
->rb_left
;
7810 else if (ptr
> sp
->ptr
)
7811 node
= node
->rb_right
;
7815 spin_unlock(&fs_info
->swapfile_pins_lock
);
7816 return node
!= NULL
;