powerpc/perf: Avoid FAB_*_MATCH checks for power9
[linux/fpc-iii.git] / kernel / exit.c
blob8f14b866f9f616adcf13f2fde5c5652fb113cb42
1 /*
2 * linux/kernel/exit.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 #include <linux/mm.h>
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/freezer.h>
24 #include <linux/binfmts.h>
25 #include <linux/nsproxy.h>
26 #include <linux/pid_namespace.h>
27 #include <linux/ptrace.h>
28 #include <linux/profile.h>
29 #include <linux/mount.h>
30 #include <linux/proc_fs.h>
31 #include <linux/kthread.h>
32 #include <linux/mempolicy.h>
33 #include <linux/taskstats_kern.h>
34 #include <linux/delayacct.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_event.h>
51 #include <trace/events/sched.h>
52 #include <linux/hw_breakpoint.h>
53 #include <linux/oom.h>
54 #include <linux/writeback.h>
55 #include <linux/shm.h>
56 #include <linux/kcov.h>
57 #include <linux/random.h>
59 #include <linux/uaccess.h>
60 #include <asm/unistd.h>
61 #include <asm/pgtable.h>
62 #include <asm/mmu_context.h>
64 static void __unhash_process(struct task_struct *p, bool group_dead)
66 nr_threads--;
67 detach_pid(p, PIDTYPE_PID);
68 if (group_dead) {
69 detach_pid(p, PIDTYPE_PGID);
70 detach_pid(p, PIDTYPE_SID);
72 list_del_rcu(&p->tasks);
73 list_del_init(&p->sibling);
74 __this_cpu_dec(process_counts);
76 list_del_rcu(&p->thread_group);
77 list_del_rcu(&p->thread_node);
81 * This function expects the tasklist_lock write-locked.
83 static void __exit_signal(struct task_struct *tsk)
85 struct signal_struct *sig = tsk->signal;
86 bool group_dead = thread_group_leader(tsk);
87 struct sighand_struct *sighand;
88 struct tty_struct *uninitialized_var(tty);
89 cputime_t utime, stime;
91 sighand = rcu_dereference_check(tsk->sighand,
92 lockdep_tasklist_lock_is_held());
93 spin_lock(&sighand->siglock);
95 #ifdef CONFIG_POSIX_TIMERS
96 posix_cpu_timers_exit(tsk);
97 if (group_dead) {
98 posix_cpu_timers_exit_group(tsk);
99 } else {
101 * This can only happen if the caller is de_thread().
102 * FIXME: this is the temporary hack, we should teach
103 * posix-cpu-timers to handle this case correctly.
105 if (unlikely(has_group_leader_pid(tsk)))
106 posix_cpu_timers_exit_group(tsk);
108 #endif
110 if (group_dead) {
111 tty = sig->tty;
112 sig->tty = NULL;
113 } else {
115 * If there is any task waiting for the group exit
116 * then notify it:
118 if (sig->notify_count > 0 && !--sig->notify_count)
119 wake_up_process(sig->group_exit_task);
121 if (tsk == sig->curr_target)
122 sig->curr_target = next_thread(tsk);
125 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 sizeof(unsigned long long));
129 * Accumulate here the counters for all threads as they die. We could
130 * skip the group leader because it is the last user of signal_struct,
131 * but we want to avoid the race with thread_group_cputime() which can
132 * see the empty ->thread_head list.
134 task_cputime(tsk, &utime, &stime);
135 write_seqlock(&sig->stats_lock);
136 sig->utime += utime;
137 sig->stime += stime;
138 sig->gtime += task_gtime(tsk);
139 sig->min_flt += tsk->min_flt;
140 sig->maj_flt += tsk->maj_flt;
141 sig->nvcsw += tsk->nvcsw;
142 sig->nivcsw += tsk->nivcsw;
143 sig->inblock += task_io_get_inblock(tsk);
144 sig->oublock += task_io_get_oublock(tsk);
145 task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 sig->nr_threads--;
148 __unhash_process(tsk, group_dead);
149 write_sequnlock(&sig->stats_lock);
152 * Do this under ->siglock, we can race with another thread
153 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
155 flush_sigqueue(&tsk->pending);
156 tsk->sighand = NULL;
157 spin_unlock(&sighand->siglock);
159 __cleanup_sighand(sighand);
160 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 if (group_dead) {
162 flush_sigqueue(&sig->shared_pending);
163 tty_kref_put(tty);
167 static void delayed_put_task_struct(struct rcu_head *rhp)
169 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
171 perf_event_delayed_put(tsk);
172 trace_sched_process_free(tsk);
173 put_task_struct(tsk);
177 void release_task(struct task_struct *p)
179 struct task_struct *leader;
180 int zap_leader;
181 repeat:
182 /* don't need to get the RCU readlock here - the process is dead and
183 * can't be modifying its own credentials. But shut RCU-lockdep up */
184 rcu_read_lock();
185 atomic_dec(&__task_cred(p)->user->processes);
186 rcu_read_unlock();
188 proc_flush_task(p);
190 write_lock_irq(&tasklist_lock);
191 ptrace_release_task(p);
192 __exit_signal(p);
195 * If we are the last non-leader member of the thread
196 * group, and the leader is zombie, then notify the
197 * group leader's parent process. (if it wants notification.)
199 zap_leader = 0;
200 leader = p->group_leader;
201 if (leader != p && thread_group_empty(leader)
202 && leader->exit_state == EXIT_ZOMBIE) {
204 * If we were the last child thread and the leader has
205 * exited already, and the leader's parent ignores SIGCHLD,
206 * then we are the one who should release the leader.
208 zap_leader = do_notify_parent(leader, leader->exit_signal);
209 if (zap_leader)
210 leader->exit_state = EXIT_DEAD;
213 write_unlock_irq(&tasklist_lock);
214 release_thread(p);
215 call_rcu(&p->rcu, delayed_put_task_struct);
217 p = leader;
218 if (unlikely(zap_leader))
219 goto repeat;
223 * Note that if this function returns a valid task_struct pointer (!NULL)
224 * task->usage must remain >0 for the duration of the RCU critical section.
226 struct task_struct *task_rcu_dereference(struct task_struct **ptask)
228 struct sighand_struct *sighand;
229 struct task_struct *task;
232 * We need to verify that release_task() was not called and thus
233 * delayed_put_task_struct() can't run and drop the last reference
234 * before rcu_read_unlock(). We check task->sighand != NULL,
235 * but we can read the already freed and reused memory.
237 retry:
238 task = rcu_dereference(*ptask);
239 if (!task)
240 return NULL;
242 probe_kernel_address(&task->sighand, sighand);
245 * Pairs with atomic_dec_and_test() in put_task_struct(). If this task
246 * was already freed we can not miss the preceding update of this
247 * pointer.
249 smp_rmb();
250 if (unlikely(task != READ_ONCE(*ptask)))
251 goto retry;
254 * We've re-checked that "task == *ptask", now we have two different
255 * cases:
257 * 1. This is actually the same task/task_struct. In this case
258 * sighand != NULL tells us it is still alive.
260 * 2. This is another task which got the same memory for task_struct.
261 * We can't know this of course, and we can not trust
262 * sighand != NULL.
264 * In this case we actually return a random value, but this is
265 * correct.
267 * If we return NULL - we can pretend that we actually noticed that
268 * *ptask was updated when the previous task has exited. Or pretend
269 * that probe_slab_address(&sighand) reads NULL.
271 * If we return the new task (because sighand is not NULL for any
272 * reason) - this is fine too. This (new) task can't go away before
273 * another gp pass.
275 * And note: We could even eliminate the false positive if re-read
276 * task->sighand once again to avoid the falsely NULL. But this case
277 * is very unlikely so we don't care.
279 if (!sighand)
280 return NULL;
282 return task;
285 struct task_struct *try_get_task_struct(struct task_struct **ptask)
287 struct task_struct *task;
289 rcu_read_lock();
290 task = task_rcu_dereference(ptask);
291 if (task)
292 get_task_struct(task);
293 rcu_read_unlock();
295 return task;
299 * Determine if a process group is "orphaned", according to the POSIX
300 * definition in 2.2.2.52. Orphaned process groups are not to be affected
301 * by terminal-generated stop signals. Newly orphaned process groups are
302 * to receive a SIGHUP and a SIGCONT.
304 * "I ask you, have you ever known what it is to be an orphan?"
306 static int will_become_orphaned_pgrp(struct pid *pgrp,
307 struct task_struct *ignored_task)
309 struct task_struct *p;
311 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
312 if ((p == ignored_task) ||
313 (p->exit_state && thread_group_empty(p)) ||
314 is_global_init(p->real_parent))
315 continue;
317 if (task_pgrp(p->real_parent) != pgrp &&
318 task_session(p->real_parent) == task_session(p))
319 return 0;
320 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
322 return 1;
325 int is_current_pgrp_orphaned(void)
327 int retval;
329 read_lock(&tasklist_lock);
330 retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
331 read_unlock(&tasklist_lock);
333 return retval;
336 static bool has_stopped_jobs(struct pid *pgrp)
338 struct task_struct *p;
340 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
341 if (p->signal->flags & SIGNAL_STOP_STOPPED)
342 return true;
343 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
345 return false;
349 * Check to see if any process groups have become orphaned as
350 * a result of our exiting, and if they have any stopped jobs,
351 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
353 static void
354 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
356 struct pid *pgrp = task_pgrp(tsk);
357 struct task_struct *ignored_task = tsk;
359 if (!parent)
360 /* exit: our father is in a different pgrp than
361 * we are and we were the only connection outside.
363 parent = tsk->real_parent;
364 else
365 /* reparent: our child is in a different pgrp than
366 * we are, and it was the only connection outside.
368 ignored_task = NULL;
370 if (task_pgrp(parent) != pgrp &&
371 task_session(parent) == task_session(tsk) &&
372 will_become_orphaned_pgrp(pgrp, ignored_task) &&
373 has_stopped_jobs(pgrp)) {
374 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
375 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
379 #ifdef CONFIG_MEMCG
381 * A task is exiting. If it owned this mm, find a new owner for the mm.
383 void mm_update_next_owner(struct mm_struct *mm)
385 struct task_struct *c, *g, *p = current;
387 retry:
389 * If the exiting or execing task is not the owner, it's
390 * someone else's problem.
392 if (mm->owner != p)
393 return;
395 * The current owner is exiting/execing and there are no other
396 * candidates. Do not leave the mm pointing to a possibly
397 * freed task structure.
399 if (atomic_read(&mm->mm_users) <= 1) {
400 mm->owner = NULL;
401 return;
404 read_lock(&tasklist_lock);
406 * Search in the children
408 list_for_each_entry(c, &p->children, sibling) {
409 if (c->mm == mm)
410 goto assign_new_owner;
414 * Search in the siblings
416 list_for_each_entry(c, &p->real_parent->children, sibling) {
417 if (c->mm == mm)
418 goto assign_new_owner;
422 * Search through everything else, we should not get here often.
424 for_each_process(g) {
425 if (g->flags & PF_KTHREAD)
426 continue;
427 for_each_thread(g, c) {
428 if (c->mm == mm)
429 goto assign_new_owner;
430 if (c->mm)
431 break;
434 read_unlock(&tasklist_lock);
436 * We found no owner yet mm_users > 1: this implies that we are
437 * most likely racing with swapoff (try_to_unuse()) or /proc or
438 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
440 mm->owner = NULL;
441 return;
443 assign_new_owner:
444 BUG_ON(c == p);
445 get_task_struct(c);
447 * The task_lock protects c->mm from changing.
448 * We always want mm->owner->mm == mm
450 task_lock(c);
452 * Delay read_unlock() till we have the task_lock()
453 * to ensure that c does not slip away underneath us
455 read_unlock(&tasklist_lock);
456 if (c->mm != mm) {
457 task_unlock(c);
458 put_task_struct(c);
459 goto retry;
461 mm->owner = c;
462 task_unlock(c);
463 put_task_struct(c);
465 #endif /* CONFIG_MEMCG */
468 * Turn us into a lazy TLB process if we
469 * aren't already..
471 static void exit_mm(struct task_struct *tsk)
473 struct mm_struct *mm = tsk->mm;
474 struct core_state *core_state;
476 mm_release(tsk, mm);
477 if (!mm)
478 return;
479 sync_mm_rss(mm);
481 * Serialize with any possible pending coredump.
482 * We must hold mmap_sem around checking core_state
483 * and clearing tsk->mm. The core-inducing thread
484 * will increment ->nr_threads for each thread in the
485 * group with ->mm != NULL.
487 down_read(&mm->mmap_sem);
488 core_state = mm->core_state;
489 if (core_state) {
490 struct core_thread self;
492 up_read(&mm->mmap_sem);
494 self.task = tsk;
495 self.next = xchg(&core_state->dumper.next, &self);
497 * Implies mb(), the result of xchg() must be visible
498 * to core_state->dumper.
500 if (atomic_dec_and_test(&core_state->nr_threads))
501 complete(&core_state->startup);
503 for (;;) {
504 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
505 if (!self.task) /* see coredump_finish() */
506 break;
507 freezable_schedule();
509 __set_task_state(tsk, TASK_RUNNING);
510 down_read(&mm->mmap_sem);
512 atomic_inc(&mm->mm_count);
513 BUG_ON(mm != tsk->active_mm);
514 /* more a memory barrier than a real lock */
515 task_lock(tsk);
516 tsk->mm = NULL;
517 up_read(&mm->mmap_sem);
518 enter_lazy_tlb(mm, current);
519 task_unlock(tsk);
520 mm_update_next_owner(mm);
521 mmput(mm);
522 if (test_thread_flag(TIF_MEMDIE))
523 exit_oom_victim();
526 static struct task_struct *find_alive_thread(struct task_struct *p)
528 struct task_struct *t;
530 for_each_thread(p, t) {
531 if (!(t->flags & PF_EXITING))
532 return t;
534 return NULL;
537 static struct task_struct *find_child_reaper(struct task_struct *father)
538 __releases(&tasklist_lock)
539 __acquires(&tasklist_lock)
541 struct pid_namespace *pid_ns = task_active_pid_ns(father);
542 struct task_struct *reaper = pid_ns->child_reaper;
544 if (likely(reaper != father))
545 return reaper;
547 reaper = find_alive_thread(father);
548 if (reaper) {
549 pid_ns->child_reaper = reaper;
550 return reaper;
553 write_unlock_irq(&tasklist_lock);
554 if (unlikely(pid_ns == &init_pid_ns)) {
555 panic("Attempted to kill init! exitcode=0x%08x\n",
556 father->signal->group_exit_code ?: father->exit_code);
558 zap_pid_ns_processes(pid_ns);
559 write_lock_irq(&tasklist_lock);
561 return father;
565 * When we die, we re-parent all our children, and try to:
566 * 1. give them to another thread in our thread group, if such a member exists
567 * 2. give it to the first ancestor process which prctl'd itself as a
568 * child_subreaper for its children (like a service manager)
569 * 3. give it to the init process (PID 1) in our pid namespace
571 static struct task_struct *find_new_reaper(struct task_struct *father,
572 struct task_struct *child_reaper)
574 struct task_struct *thread, *reaper;
576 thread = find_alive_thread(father);
577 if (thread)
578 return thread;
580 if (father->signal->has_child_subreaper) {
582 * Find the first ->is_child_subreaper ancestor in our pid_ns.
583 * We start from father to ensure we can not look into another
584 * namespace, this is safe because all its threads are dead.
586 for (reaper = father;
587 !same_thread_group(reaper, child_reaper);
588 reaper = reaper->real_parent) {
589 /* call_usermodehelper() descendants need this check */
590 if (reaper == &init_task)
591 break;
592 if (!reaper->signal->is_child_subreaper)
593 continue;
594 thread = find_alive_thread(reaper);
595 if (thread)
596 return thread;
600 return child_reaper;
604 * Any that need to be release_task'd are put on the @dead list.
606 static void reparent_leader(struct task_struct *father, struct task_struct *p,
607 struct list_head *dead)
609 if (unlikely(p->exit_state == EXIT_DEAD))
610 return;
612 /* We don't want people slaying init. */
613 p->exit_signal = SIGCHLD;
615 /* If it has exited notify the new parent about this child's death. */
616 if (!p->ptrace &&
617 p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
618 if (do_notify_parent(p, p->exit_signal)) {
619 p->exit_state = EXIT_DEAD;
620 list_add(&p->ptrace_entry, dead);
624 kill_orphaned_pgrp(p, father);
628 * This does two things:
630 * A. Make init inherit all the child processes
631 * B. Check to see if any process groups have become orphaned
632 * as a result of our exiting, and if they have any stopped
633 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
635 static void forget_original_parent(struct task_struct *father,
636 struct list_head *dead)
638 struct task_struct *p, *t, *reaper;
640 if (unlikely(!list_empty(&father->ptraced)))
641 exit_ptrace(father, dead);
643 /* Can drop and reacquire tasklist_lock */
644 reaper = find_child_reaper(father);
645 if (list_empty(&father->children))
646 return;
648 reaper = find_new_reaper(father, reaper);
649 list_for_each_entry(p, &father->children, sibling) {
650 for_each_thread(p, t) {
651 t->real_parent = reaper;
652 BUG_ON((!t->ptrace) != (t->parent == father));
653 if (likely(!t->ptrace))
654 t->parent = t->real_parent;
655 if (t->pdeath_signal)
656 group_send_sig_info(t->pdeath_signal,
657 SEND_SIG_NOINFO, t);
660 * If this is a threaded reparent there is no need to
661 * notify anyone anything has happened.
663 if (!same_thread_group(reaper, father))
664 reparent_leader(father, p, dead);
666 list_splice_tail_init(&father->children, &reaper->children);
670 * Send signals to all our closest relatives so that they know
671 * to properly mourn us..
673 static void exit_notify(struct task_struct *tsk, int group_dead)
675 bool autoreap;
676 struct task_struct *p, *n;
677 LIST_HEAD(dead);
679 write_lock_irq(&tasklist_lock);
680 forget_original_parent(tsk, &dead);
682 if (group_dead)
683 kill_orphaned_pgrp(tsk->group_leader, NULL);
685 if (unlikely(tsk->ptrace)) {
686 int sig = thread_group_leader(tsk) &&
687 thread_group_empty(tsk) &&
688 !ptrace_reparented(tsk) ?
689 tsk->exit_signal : SIGCHLD;
690 autoreap = do_notify_parent(tsk, sig);
691 } else if (thread_group_leader(tsk)) {
692 autoreap = thread_group_empty(tsk) &&
693 do_notify_parent(tsk, tsk->exit_signal);
694 } else {
695 autoreap = true;
698 tsk->exit_state = autoreap ? EXIT_DEAD : EXIT_ZOMBIE;
699 if (tsk->exit_state == EXIT_DEAD)
700 list_add(&tsk->ptrace_entry, &dead);
702 /* mt-exec, de_thread() is waiting for group leader */
703 if (unlikely(tsk->signal->notify_count < 0))
704 wake_up_process(tsk->signal->group_exit_task);
705 write_unlock_irq(&tasklist_lock);
707 list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
708 list_del_init(&p->ptrace_entry);
709 release_task(p);
713 #ifdef CONFIG_DEBUG_STACK_USAGE
714 static void check_stack_usage(void)
716 static DEFINE_SPINLOCK(low_water_lock);
717 static int lowest_to_date = THREAD_SIZE;
718 unsigned long free;
720 free = stack_not_used(current);
722 if (free >= lowest_to_date)
723 return;
725 spin_lock(&low_water_lock);
726 if (free < lowest_to_date) {
727 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
728 current->comm, task_pid_nr(current), free);
729 lowest_to_date = free;
731 spin_unlock(&low_water_lock);
733 #else
734 static inline void check_stack_usage(void) {}
735 #endif
737 void __noreturn do_exit(long code)
739 struct task_struct *tsk = current;
740 int group_dead;
741 TASKS_RCU(int tasks_rcu_i);
743 profile_task_exit(tsk);
744 kcov_task_exit(tsk);
746 WARN_ON(blk_needs_flush_plug(tsk));
748 if (unlikely(in_interrupt()))
749 panic("Aiee, killing interrupt handler!");
750 if (unlikely(!tsk->pid))
751 panic("Attempted to kill the idle task!");
754 * If do_exit is called because this processes oopsed, it's possible
755 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
756 * continuing. Amongst other possible reasons, this is to prevent
757 * mm_release()->clear_child_tid() from writing to a user-controlled
758 * kernel address.
760 set_fs(USER_DS);
762 ptrace_event(PTRACE_EVENT_EXIT, code);
764 validate_creds_for_do_exit(tsk);
767 * We're taking recursive faults here in do_exit. Safest is to just
768 * leave this task alone and wait for reboot.
770 if (unlikely(tsk->flags & PF_EXITING)) {
771 pr_alert("Fixing recursive fault but reboot is needed!\n");
773 * We can do this unlocked here. The futex code uses
774 * this flag just to verify whether the pi state
775 * cleanup has been done or not. In the worst case it
776 * loops once more. We pretend that the cleanup was
777 * done as there is no way to return. Either the
778 * OWNER_DIED bit is set by now or we push the blocked
779 * task into the wait for ever nirwana as well.
781 tsk->flags |= PF_EXITPIDONE;
782 set_current_state(TASK_UNINTERRUPTIBLE);
783 schedule();
786 exit_signals(tsk); /* sets PF_EXITING */
788 * Ensure that all new tsk->pi_lock acquisitions must observe
789 * PF_EXITING. Serializes against futex.c:attach_to_pi_owner().
791 smp_mb();
793 * Ensure that we must observe the pi_state in exit_mm() ->
794 * mm_release() -> exit_pi_state_list().
796 raw_spin_unlock_wait(&tsk->pi_lock);
798 if (unlikely(in_atomic())) {
799 pr_info("note: %s[%d] exited with preempt_count %d\n",
800 current->comm, task_pid_nr(current),
801 preempt_count());
802 preempt_count_set(PREEMPT_ENABLED);
805 /* sync mm's RSS info before statistics gathering */
806 if (tsk->mm)
807 sync_mm_rss(tsk->mm);
808 acct_update_integrals(tsk);
809 group_dead = atomic_dec_and_test(&tsk->signal->live);
810 if (group_dead) {
811 #ifdef CONFIG_POSIX_TIMERS
812 hrtimer_cancel(&tsk->signal->real_timer);
813 exit_itimers(tsk->signal);
814 #endif
815 if (tsk->mm)
816 setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
818 acct_collect(code, group_dead);
819 if (group_dead)
820 tty_audit_exit();
821 audit_free(tsk);
823 tsk->exit_code = code;
824 taskstats_exit(tsk, group_dead);
826 exit_mm(tsk);
828 if (group_dead)
829 acct_process();
830 trace_sched_process_exit(tsk);
832 exit_sem(tsk);
833 exit_shm(tsk);
834 exit_files(tsk);
835 exit_fs(tsk);
836 if (group_dead)
837 disassociate_ctty(1);
838 exit_task_namespaces(tsk);
839 exit_task_work(tsk);
840 exit_thread(tsk);
843 * Flush inherited counters to the parent - before the parent
844 * gets woken up by child-exit notifications.
846 * because of cgroup mode, must be called before cgroup_exit()
848 perf_event_exit_task(tsk);
850 sched_autogroup_exit_task(tsk);
851 cgroup_exit(tsk);
854 * FIXME: do that only when needed, using sched_exit tracepoint
856 flush_ptrace_hw_breakpoint(tsk);
858 TASKS_RCU(preempt_disable());
859 TASKS_RCU(tasks_rcu_i = __srcu_read_lock(&tasks_rcu_exit_srcu));
860 TASKS_RCU(preempt_enable());
861 exit_notify(tsk, group_dead);
862 proc_exit_connector(tsk);
863 mpol_put_task_policy(tsk);
864 #ifdef CONFIG_FUTEX
865 if (unlikely(current->pi_state_cache))
866 kfree(current->pi_state_cache);
867 #endif
869 * Make sure we are holding no locks:
871 debug_check_no_locks_held();
873 * We can do this unlocked here. The futex code uses this flag
874 * just to verify whether the pi state cleanup has been done
875 * or not. In the worst case it loops once more.
877 tsk->flags |= PF_EXITPIDONE;
879 if (tsk->io_context)
880 exit_io_context(tsk);
882 if (tsk->splice_pipe)
883 free_pipe_info(tsk->splice_pipe);
885 if (tsk->task_frag.page)
886 put_page(tsk->task_frag.page);
888 validate_creds_for_do_exit(tsk);
890 check_stack_usage();
891 preempt_disable();
892 if (tsk->nr_dirtied)
893 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
894 exit_rcu();
895 TASKS_RCU(__srcu_read_unlock(&tasks_rcu_exit_srcu, tasks_rcu_i));
897 do_task_dead();
899 EXPORT_SYMBOL_GPL(do_exit);
901 void complete_and_exit(struct completion *comp, long code)
903 if (comp)
904 complete(comp);
906 do_exit(code);
908 EXPORT_SYMBOL(complete_and_exit);
910 SYSCALL_DEFINE1(exit, int, error_code)
912 do_exit((error_code&0xff)<<8);
916 * Take down every thread in the group. This is called by fatal signals
917 * as well as by sys_exit_group (below).
919 void
920 do_group_exit(int exit_code)
922 struct signal_struct *sig = current->signal;
924 BUG_ON(exit_code & 0x80); /* core dumps don't get here */
926 if (signal_group_exit(sig))
927 exit_code = sig->group_exit_code;
928 else if (!thread_group_empty(current)) {
929 struct sighand_struct *const sighand = current->sighand;
931 spin_lock_irq(&sighand->siglock);
932 if (signal_group_exit(sig))
933 /* Another thread got here before we took the lock. */
934 exit_code = sig->group_exit_code;
935 else {
936 sig->group_exit_code = exit_code;
937 sig->flags = SIGNAL_GROUP_EXIT;
938 zap_other_threads(current);
940 spin_unlock_irq(&sighand->siglock);
943 do_exit(exit_code);
944 /* NOTREACHED */
948 * this kills every thread in the thread group. Note that any externally
949 * wait4()-ing process will get the correct exit code - even if this
950 * thread is not the thread group leader.
952 SYSCALL_DEFINE1(exit_group, int, error_code)
954 do_group_exit((error_code & 0xff) << 8);
955 /* NOTREACHED */
956 return 0;
959 struct wait_opts {
960 enum pid_type wo_type;
961 int wo_flags;
962 struct pid *wo_pid;
964 struct siginfo __user *wo_info;
965 int __user *wo_stat;
966 struct rusage __user *wo_rusage;
968 wait_queue_t child_wait;
969 int notask_error;
972 static inline
973 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
975 if (type != PIDTYPE_PID)
976 task = task->group_leader;
977 return task->pids[type].pid;
980 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
982 return wo->wo_type == PIDTYPE_MAX ||
983 task_pid_type(p, wo->wo_type) == wo->wo_pid;
986 static int
987 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
989 if (!eligible_pid(wo, p))
990 return 0;
993 * Wait for all children (clone and not) if __WALL is set or
994 * if it is traced by us.
996 if (ptrace || (wo->wo_flags & __WALL))
997 return 1;
1000 * Otherwise, wait for clone children *only* if __WCLONE is set;
1001 * otherwise, wait for non-clone children *only*.
1003 * Note: a "clone" child here is one that reports to its parent
1004 * using a signal other than SIGCHLD, or a non-leader thread which
1005 * we can only see if it is traced by us.
1007 if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1008 return 0;
1010 return 1;
1013 static int wait_noreap_copyout(struct wait_opts *wo, struct task_struct *p,
1014 pid_t pid, uid_t uid, int why, int status)
1016 struct siginfo __user *infop;
1017 int retval = wo->wo_rusage
1018 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1020 put_task_struct(p);
1021 infop = wo->wo_info;
1022 if (infop) {
1023 if (!retval)
1024 retval = put_user(SIGCHLD, &infop->si_signo);
1025 if (!retval)
1026 retval = put_user(0, &infop->si_errno);
1027 if (!retval)
1028 retval = put_user((short)why, &infop->si_code);
1029 if (!retval)
1030 retval = put_user(pid, &infop->si_pid);
1031 if (!retval)
1032 retval = put_user(uid, &infop->si_uid);
1033 if (!retval)
1034 retval = put_user(status, &infop->si_status);
1036 if (!retval)
1037 retval = pid;
1038 return retval;
1042 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1043 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1044 * the lock and this task is uninteresting. If we return nonzero, we have
1045 * released the lock and the system call should return.
1047 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1049 int state, retval, status;
1050 pid_t pid = task_pid_vnr(p);
1051 uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1052 struct siginfo __user *infop;
1054 if (!likely(wo->wo_flags & WEXITED))
1055 return 0;
1057 if (unlikely(wo->wo_flags & WNOWAIT)) {
1058 int exit_code = p->exit_code;
1059 int why;
1061 get_task_struct(p);
1062 read_unlock(&tasklist_lock);
1063 sched_annotate_sleep();
1065 if ((exit_code & 0x7f) == 0) {
1066 why = CLD_EXITED;
1067 status = exit_code >> 8;
1068 } else {
1069 why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED;
1070 status = exit_code & 0x7f;
1072 return wait_noreap_copyout(wo, p, pid, uid, why, status);
1075 * Move the task's state to DEAD/TRACE, only one thread can do this.
1077 state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1078 EXIT_TRACE : EXIT_DEAD;
1079 if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1080 return 0;
1082 * We own this thread, nobody else can reap it.
1084 read_unlock(&tasklist_lock);
1085 sched_annotate_sleep();
1088 * Check thread_group_leader() to exclude the traced sub-threads.
1090 if (state == EXIT_DEAD && thread_group_leader(p)) {
1091 struct signal_struct *sig = p->signal;
1092 struct signal_struct *psig = current->signal;
1093 unsigned long maxrss;
1094 cputime_t tgutime, tgstime;
1097 * The resource counters for the group leader are in its
1098 * own task_struct. Those for dead threads in the group
1099 * are in its signal_struct, as are those for the child
1100 * processes it has previously reaped. All these
1101 * accumulate in the parent's signal_struct c* fields.
1103 * We don't bother to take a lock here to protect these
1104 * p->signal fields because the whole thread group is dead
1105 * and nobody can change them.
1107 * psig->stats_lock also protects us from our sub-theads
1108 * which can reap other children at the same time. Until
1109 * we change k_getrusage()-like users to rely on this lock
1110 * we have to take ->siglock as well.
1112 * We use thread_group_cputime_adjusted() to get times for
1113 * the thread group, which consolidates times for all threads
1114 * in the group including the group leader.
1116 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1117 spin_lock_irq(&current->sighand->siglock);
1118 write_seqlock(&psig->stats_lock);
1119 psig->cutime += tgutime + sig->cutime;
1120 psig->cstime += tgstime + sig->cstime;
1121 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1122 psig->cmin_flt +=
1123 p->min_flt + sig->min_flt + sig->cmin_flt;
1124 psig->cmaj_flt +=
1125 p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1126 psig->cnvcsw +=
1127 p->nvcsw + sig->nvcsw + sig->cnvcsw;
1128 psig->cnivcsw +=
1129 p->nivcsw + sig->nivcsw + sig->cnivcsw;
1130 psig->cinblock +=
1131 task_io_get_inblock(p) +
1132 sig->inblock + sig->cinblock;
1133 psig->coublock +=
1134 task_io_get_oublock(p) +
1135 sig->oublock + sig->coublock;
1136 maxrss = max(sig->maxrss, sig->cmaxrss);
1137 if (psig->cmaxrss < maxrss)
1138 psig->cmaxrss = maxrss;
1139 task_io_accounting_add(&psig->ioac, &p->ioac);
1140 task_io_accounting_add(&psig->ioac, &sig->ioac);
1141 write_sequnlock(&psig->stats_lock);
1142 spin_unlock_irq(&current->sighand->siglock);
1145 retval = wo->wo_rusage
1146 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1147 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1148 ? p->signal->group_exit_code : p->exit_code;
1149 if (!retval && wo->wo_stat)
1150 retval = put_user(status, wo->wo_stat);
1152 infop = wo->wo_info;
1153 if (!retval && infop)
1154 retval = put_user(SIGCHLD, &infop->si_signo);
1155 if (!retval && infop)
1156 retval = put_user(0, &infop->si_errno);
1157 if (!retval && infop) {
1158 int why;
1160 if ((status & 0x7f) == 0) {
1161 why = CLD_EXITED;
1162 status >>= 8;
1163 } else {
1164 why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1165 status &= 0x7f;
1167 retval = put_user((short)why, &infop->si_code);
1168 if (!retval)
1169 retval = put_user(status, &infop->si_status);
1171 if (!retval && infop)
1172 retval = put_user(pid, &infop->si_pid);
1173 if (!retval && infop)
1174 retval = put_user(uid, &infop->si_uid);
1175 if (!retval)
1176 retval = pid;
1178 if (state == EXIT_TRACE) {
1179 write_lock_irq(&tasklist_lock);
1180 /* We dropped tasklist, ptracer could die and untrace */
1181 ptrace_unlink(p);
1183 /* If parent wants a zombie, don't release it now */
1184 state = EXIT_ZOMBIE;
1185 if (do_notify_parent(p, p->exit_signal))
1186 state = EXIT_DEAD;
1187 p->exit_state = state;
1188 write_unlock_irq(&tasklist_lock);
1190 if (state == EXIT_DEAD)
1191 release_task(p);
1193 return retval;
1196 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1198 if (ptrace) {
1199 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1200 return &p->exit_code;
1201 } else {
1202 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1203 return &p->signal->group_exit_code;
1205 return NULL;
1209 * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1210 * @wo: wait options
1211 * @ptrace: is the wait for ptrace
1212 * @p: task to wait for
1214 * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1216 * CONTEXT:
1217 * read_lock(&tasklist_lock), which is released if return value is
1218 * non-zero. Also, grabs and releases @p->sighand->siglock.
1220 * RETURNS:
1221 * 0 if wait condition didn't exist and search for other wait conditions
1222 * should continue. Non-zero return, -errno on failure and @p's pid on
1223 * success, implies that tasklist_lock is released and wait condition
1224 * search should terminate.
1226 static int wait_task_stopped(struct wait_opts *wo,
1227 int ptrace, struct task_struct *p)
1229 struct siginfo __user *infop;
1230 int retval, exit_code, *p_code, why;
1231 uid_t uid = 0; /* unneeded, required by compiler */
1232 pid_t pid;
1235 * Traditionally we see ptrace'd stopped tasks regardless of options.
1237 if (!ptrace && !(wo->wo_flags & WUNTRACED))
1238 return 0;
1240 if (!task_stopped_code(p, ptrace))
1241 return 0;
1243 exit_code = 0;
1244 spin_lock_irq(&p->sighand->siglock);
1246 p_code = task_stopped_code(p, ptrace);
1247 if (unlikely(!p_code))
1248 goto unlock_sig;
1250 exit_code = *p_code;
1251 if (!exit_code)
1252 goto unlock_sig;
1254 if (!unlikely(wo->wo_flags & WNOWAIT))
1255 *p_code = 0;
1257 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1258 unlock_sig:
1259 spin_unlock_irq(&p->sighand->siglock);
1260 if (!exit_code)
1261 return 0;
1264 * Now we are pretty sure this task is interesting.
1265 * Make sure it doesn't get reaped out from under us while we
1266 * give up the lock and then examine it below. We don't want to
1267 * keep holding onto the tasklist_lock while we call getrusage and
1268 * possibly take page faults for user memory.
1270 get_task_struct(p);
1271 pid = task_pid_vnr(p);
1272 why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1273 read_unlock(&tasklist_lock);
1274 sched_annotate_sleep();
1276 if (unlikely(wo->wo_flags & WNOWAIT))
1277 return wait_noreap_copyout(wo, p, pid, uid, why, exit_code);
1279 retval = wo->wo_rusage
1280 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1281 if (!retval && wo->wo_stat)
1282 retval = put_user((exit_code << 8) | 0x7f, wo->wo_stat);
1284 infop = wo->wo_info;
1285 if (!retval && infop)
1286 retval = put_user(SIGCHLD, &infop->si_signo);
1287 if (!retval && infop)
1288 retval = put_user(0, &infop->si_errno);
1289 if (!retval && infop)
1290 retval = put_user((short)why, &infop->si_code);
1291 if (!retval && infop)
1292 retval = put_user(exit_code, &infop->si_status);
1293 if (!retval && infop)
1294 retval = put_user(pid, &infop->si_pid);
1295 if (!retval && infop)
1296 retval = put_user(uid, &infop->si_uid);
1297 if (!retval)
1298 retval = pid;
1299 put_task_struct(p);
1301 BUG_ON(!retval);
1302 return retval;
1306 * Handle do_wait work for one task in a live, non-stopped state.
1307 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1308 * the lock and this task is uninteresting. If we return nonzero, we have
1309 * released the lock and the system call should return.
1311 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1313 int retval;
1314 pid_t pid;
1315 uid_t uid;
1317 if (!unlikely(wo->wo_flags & WCONTINUED))
1318 return 0;
1320 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1321 return 0;
1323 spin_lock_irq(&p->sighand->siglock);
1324 /* Re-check with the lock held. */
1325 if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1326 spin_unlock_irq(&p->sighand->siglock);
1327 return 0;
1329 if (!unlikely(wo->wo_flags & WNOWAIT))
1330 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1331 uid = from_kuid_munged(current_user_ns(), task_uid(p));
1332 spin_unlock_irq(&p->sighand->siglock);
1334 pid = task_pid_vnr(p);
1335 get_task_struct(p);
1336 read_unlock(&tasklist_lock);
1337 sched_annotate_sleep();
1339 if (!wo->wo_info) {
1340 retval = wo->wo_rusage
1341 ? getrusage(p, RUSAGE_BOTH, wo->wo_rusage) : 0;
1342 put_task_struct(p);
1343 if (!retval && wo->wo_stat)
1344 retval = put_user(0xffff, wo->wo_stat);
1345 if (!retval)
1346 retval = pid;
1347 } else {
1348 retval = wait_noreap_copyout(wo, p, pid, uid,
1349 CLD_CONTINUED, SIGCONT);
1350 BUG_ON(retval == 0);
1353 return retval;
1357 * Consider @p for a wait by @parent.
1359 * -ECHILD should be in ->notask_error before the first call.
1360 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1361 * Returns zero if the search for a child should continue;
1362 * then ->notask_error is 0 if @p is an eligible child,
1363 * or another error from security_task_wait(), or still -ECHILD.
1365 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1366 struct task_struct *p)
1369 * We can race with wait_task_zombie() from another thread.
1370 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1371 * can't confuse the checks below.
1373 int exit_state = ACCESS_ONCE(p->exit_state);
1374 int ret;
1376 if (unlikely(exit_state == EXIT_DEAD))
1377 return 0;
1379 ret = eligible_child(wo, ptrace, p);
1380 if (!ret)
1381 return ret;
1383 ret = security_task_wait(p);
1384 if (unlikely(ret < 0)) {
1386 * If we have not yet seen any eligible child,
1387 * then let this error code replace -ECHILD.
1388 * A permission error will give the user a clue
1389 * to look for security policy problems, rather
1390 * than for mysterious wait bugs.
1392 if (wo->notask_error)
1393 wo->notask_error = ret;
1394 return 0;
1397 if (unlikely(exit_state == EXIT_TRACE)) {
1399 * ptrace == 0 means we are the natural parent. In this case
1400 * we should clear notask_error, debugger will notify us.
1402 if (likely(!ptrace))
1403 wo->notask_error = 0;
1404 return 0;
1407 if (likely(!ptrace) && unlikely(p->ptrace)) {
1409 * If it is traced by its real parent's group, just pretend
1410 * the caller is ptrace_do_wait() and reap this child if it
1411 * is zombie.
1413 * This also hides group stop state from real parent; otherwise
1414 * a single stop can be reported twice as group and ptrace stop.
1415 * If a ptracer wants to distinguish these two events for its
1416 * own children it should create a separate process which takes
1417 * the role of real parent.
1419 if (!ptrace_reparented(p))
1420 ptrace = 1;
1423 /* slay zombie? */
1424 if (exit_state == EXIT_ZOMBIE) {
1425 /* we don't reap group leaders with subthreads */
1426 if (!delay_group_leader(p)) {
1428 * A zombie ptracee is only visible to its ptracer.
1429 * Notification and reaping will be cascaded to the
1430 * real parent when the ptracer detaches.
1432 if (unlikely(ptrace) || likely(!p->ptrace))
1433 return wait_task_zombie(wo, p);
1437 * Allow access to stopped/continued state via zombie by
1438 * falling through. Clearing of notask_error is complex.
1440 * When !@ptrace:
1442 * If WEXITED is set, notask_error should naturally be
1443 * cleared. If not, subset of WSTOPPED|WCONTINUED is set,
1444 * so, if there are live subthreads, there are events to
1445 * wait for. If all subthreads are dead, it's still safe
1446 * to clear - this function will be called again in finite
1447 * amount time once all the subthreads are released and
1448 * will then return without clearing.
1450 * When @ptrace:
1452 * Stopped state is per-task and thus can't change once the
1453 * target task dies. Only continued and exited can happen.
1454 * Clear notask_error if WCONTINUED | WEXITED.
1456 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1457 wo->notask_error = 0;
1458 } else {
1460 * @p is alive and it's gonna stop, continue or exit, so
1461 * there always is something to wait for.
1463 wo->notask_error = 0;
1467 * Wait for stopped. Depending on @ptrace, different stopped state
1468 * is used and the two don't interact with each other.
1470 ret = wait_task_stopped(wo, ptrace, p);
1471 if (ret)
1472 return ret;
1475 * Wait for continued. There's only one continued state and the
1476 * ptracer can consume it which can confuse the real parent. Don't
1477 * use WCONTINUED from ptracer. You don't need or want it.
1479 return wait_task_continued(wo, p);
1483 * Do the work of do_wait() for one thread in the group, @tsk.
1485 * -ECHILD should be in ->notask_error before the first call.
1486 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1487 * Returns zero if the search for a child should continue; then
1488 * ->notask_error is 0 if there were any eligible children,
1489 * or another error from security_task_wait(), or still -ECHILD.
1491 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1493 struct task_struct *p;
1495 list_for_each_entry(p, &tsk->children, sibling) {
1496 int ret = wait_consider_task(wo, 0, p);
1498 if (ret)
1499 return ret;
1502 return 0;
1505 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1507 struct task_struct *p;
1509 list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1510 int ret = wait_consider_task(wo, 1, p);
1512 if (ret)
1513 return ret;
1516 return 0;
1519 static int child_wait_callback(wait_queue_t *wait, unsigned mode,
1520 int sync, void *key)
1522 struct wait_opts *wo = container_of(wait, struct wait_opts,
1523 child_wait);
1524 struct task_struct *p = key;
1526 if (!eligible_pid(wo, p))
1527 return 0;
1529 if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1530 return 0;
1532 return default_wake_function(wait, mode, sync, key);
1535 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1537 __wake_up_sync_key(&parent->signal->wait_chldexit,
1538 TASK_INTERRUPTIBLE, 1, p);
1541 static long do_wait(struct wait_opts *wo)
1543 struct task_struct *tsk;
1544 int retval;
1546 trace_sched_process_wait(wo->wo_pid);
1548 init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1549 wo->child_wait.private = current;
1550 add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1551 repeat:
1553 * If there is nothing that can match our criteria, just get out.
1554 * We will clear ->notask_error to zero if we see any child that
1555 * might later match our criteria, even if we are not able to reap
1556 * it yet.
1558 wo->notask_error = -ECHILD;
1559 if ((wo->wo_type < PIDTYPE_MAX) &&
1560 (!wo->wo_pid || hlist_empty(&wo->wo_pid->tasks[wo->wo_type])))
1561 goto notask;
1563 set_current_state(TASK_INTERRUPTIBLE);
1564 read_lock(&tasklist_lock);
1565 tsk = current;
1566 do {
1567 retval = do_wait_thread(wo, tsk);
1568 if (retval)
1569 goto end;
1571 retval = ptrace_do_wait(wo, tsk);
1572 if (retval)
1573 goto end;
1575 if (wo->wo_flags & __WNOTHREAD)
1576 break;
1577 } while_each_thread(current, tsk);
1578 read_unlock(&tasklist_lock);
1580 notask:
1581 retval = wo->notask_error;
1582 if (!retval && !(wo->wo_flags & WNOHANG)) {
1583 retval = -ERESTARTSYS;
1584 if (!signal_pending(current)) {
1585 schedule();
1586 goto repeat;
1589 end:
1590 __set_current_state(TASK_RUNNING);
1591 remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1592 return retval;
1595 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1596 infop, int, options, struct rusage __user *, ru)
1598 struct wait_opts wo;
1599 struct pid *pid = NULL;
1600 enum pid_type type;
1601 long ret;
1603 if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1604 __WNOTHREAD|__WCLONE|__WALL))
1605 return -EINVAL;
1606 if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1607 return -EINVAL;
1609 switch (which) {
1610 case P_ALL:
1611 type = PIDTYPE_MAX;
1612 break;
1613 case P_PID:
1614 type = PIDTYPE_PID;
1615 if (upid <= 0)
1616 return -EINVAL;
1617 break;
1618 case P_PGID:
1619 type = PIDTYPE_PGID;
1620 if (upid <= 0)
1621 return -EINVAL;
1622 break;
1623 default:
1624 return -EINVAL;
1627 if (type < PIDTYPE_MAX)
1628 pid = find_get_pid(upid);
1630 wo.wo_type = type;
1631 wo.wo_pid = pid;
1632 wo.wo_flags = options;
1633 wo.wo_info = infop;
1634 wo.wo_stat = NULL;
1635 wo.wo_rusage = ru;
1636 ret = do_wait(&wo);
1638 if (ret > 0) {
1639 ret = 0;
1640 } else if (infop) {
1642 * For a WNOHANG return, clear out all the fields
1643 * we would set so the user can easily tell the
1644 * difference.
1646 if (!ret)
1647 ret = put_user(0, &infop->si_signo);
1648 if (!ret)
1649 ret = put_user(0, &infop->si_errno);
1650 if (!ret)
1651 ret = put_user(0, &infop->si_code);
1652 if (!ret)
1653 ret = put_user(0, &infop->si_pid);
1654 if (!ret)
1655 ret = put_user(0, &infop->si_uid);
1656 if (!ret)
1657 ret = put_user(0, &infop->si_status);
1660 put_pid(pid);
1661 return ret;
1664 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1665 int, options, struct rusage __user *, ru)
1667 struct wait_opts wo;
1668 struct pid *pid = NULL;
1669 enum pid_type type;
1670 long ret;
1672 if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1673 __WNOTHREAD|__WCLONE|__WALL))
1674 return -EINVAL;
1676 if (upid == -1)
1677 type = PIDTYPE_MAX;
1678 else if (upid < 0) {
1679 type = PIDTYPE_PGID;
1680 pid = find_get_pid(-upid);
1681 } else if (upid == 0) {
1682 type = PIDTYPE_PGID;
1683 pid = get_task_pid(current, PIDTYPE_PGID);
1684 } else /* upid > 0 */ {
1685 type = PIDTYPE_PID;
1686 pid = find_get_pid(upid);
1689 wo.wo_type = type;
1690 wo.wo_pid = pid;
1691 wo.wo_flags = options | WEXITED;
1692 wo.wo_info = NULL;
1693 wo.wo_stat = stat_addr;
1694 wo.wo_rusage = ru;
1695 ret = do_wait(&wo);
1696 put_pid(pid);
1698 return ret;
1701 #ifdef __ARCH_WANT_SYS_WAITPID
1704 * sys_waitpid() remains for compatibility. waitpid() should be
1705 * implemented by calling sys_wait4() from libc.a.
1707 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1709 return sys_wait4(pid, stat_addr, options, NULL);
1712 #endif