mm/zswap: NUMA aware allocation for zswap_dstmem
[linux/fpc-iii.git] / fs / xfs / xfs_file.c
blob830c1c937b8888e7adba5557997d8d30dfc91713
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_mount.h"
27 #include "xfs_da_format.h"
28 #include "xfs_da_btree.h"
29 #include "xfs_inode.h"
30 #include "xfs_trans.h"
31 #include "xfs_inode_item.h"
32 #include "xfs_bmap.h"
33 #include "xfs_bmap_util.h"
34 #include "xfs_error.h"
35 #include "xfs_dir2.h"
36 #include "xfs_dir2_priv.h"
37 #include "xfs_ioctl.h"
38 #include "xfs_trace.h"
39 #include "xfs_log.h"
40 #include "xfs_dinode.h"
42 #include <linux/aio.h>
43 #include <linux/dcache.h>
44 #include <linux/falloc.h>
45 #include <linux/pagevec.h>
47 static const struct vm_operations_struct xfs_file_vm_ops;
50 * Locking primitives for read and write IO paths to ensure we consistently use
51 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
53 static inline void
54 xfs_rw_ilock(
55 struct xfs_inode *ip,
56 int type)
58 if (type & XFS_IOLOCK_EXCL)
59 mutex_lock(&VFS_I(ip)->i_mutex);
60 xfs_ilock(ip, type);
63 static inline void
64 xfs_rw_iunlock(
65 struct xfs_inode *ip,
66 int type)
68 xfs_iunlock(ip, type);
69 if (type & XFS_IOLOCK_EXCL)
70 mutex_unlock(&VFS_I(ip)->i_mutex);
73 static inline void
74 xfs_rw_ilock_demote(
75 struct xfs_inode *ip,
76 int type)
78 xfs_ilock_demote(ip, type);
79 if (type & XFS_IOLOCK_EXCL)
80 mutex_unlock(&VFS_I(ip)->i_mutex);
84 * xfs_iozero
86 * xfs_iozero clears the specified range of buffer supplied,
87 * and marks all the affected blocks as valid and modified. If
88 * an affected block is not allocated, it will be allocated. If
89 * an affected block is not completely overwritten, and is not
90 * valid before the operation, it will be read from disk before
91 * being partially zeroed.
93 int
94 xfs_iozero(
95 struct xfs_inode *ip, /* inode */
96 loff_t pos, /* offset in file */
97 size_t count) /* size of data to zero */
99 struct page *page;
100 struct address_space *mapping;
101 int status;
103 mapping = VFS_I(ip)->i_mapping;
104 do {
105 unsigned offset, bytes;
106 void *fsdata;
108 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
109 bytes = PAGE_CACHE_SIZE - offset;
110 if (bytes > count)
111 bytes = count;
113 status = pagecache_write_begin(NULL, mapping, pos, bytes,
114 AOP_FLAG_UNINTERRUPTIBLE,
115 &page, &fsdata);
116 if (status)
117 break;
119 zero_user(page, offset, bytes);
121 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
122 page, fsdata);
123 WARN_ON(status <= 0); /* can't return less than zero! */
124 pos += bytes;
125 count -= bytes;
126 status = 0;
127 } while (count);
129 return (-status);
133 * Fsync operations on directories are much simpler than on regular files,
134 * as there is no file data to flush, and thus also no need for explicit
135 * cache flush operations, and there are no non-transaction metadata updates
136 * on directories either.
138 STATIC int
139 xfs_dir_fsync(
140 struct file *file,
141 loff_t start,
142 loff_t end,
143 int datasync)
145 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
146 struct xfs_mount *mp = ip->i_mount;
147 xfs_lsn_t lsn = 0;
149 trace_xfs_dir_fsync(ip);
151 xfs_ilock(ip, XFS_ILOCK_SHARED);
152 if (xfs_ipincount(ip))
153 lsn = ip->i_itemp->ili_last_lsn;
154 xfs_iunlock(ip, XFS_ILOCK_SHARED);
156 if (!lsn)
157 return 0;
158 return -_xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, NULL);
161 STATIC int
162 xfs_file_fsync(
163 struct file *file,
164 loff_t start,
165 loff_t end,
166 int datasync)
168 struct inode *inode = file->f_mapping->host;
169 struct xfs_inode *ip = XFS_I(inode);
170 struct xfs_mount *mp = ip->i_mount;
171 int error = 0;
172 int log_flushed = 0;
173 xfs_lsn_t lsn = 0;
175 trace_xfs_file_fsync(ip);
177 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
178 if (error)
179 return error;
181 if (XFS_FORCED_SHUTDOWN(mp))
182 return -XFS_ERROR(EIO);
184 xfs_iflags_clear(ip, XFS_ITRUNCATED);
186 if (mp->m_flags & XFS_MOUNT_BARRIER) {
188 * If we have an RT and/or log subvolume we need to make sure
189 * to flush the write cache the device used for file data
190 * first. This is to ensure newly written file data make
191 * it to disk before logging the new inode size in case of
192 * an extending write.
194 if (XFS_IS_REALTIME_INODE(ip))
195 xfs_blkdev_issue_flush(mp->m_rtdev_targp);
196 else if (mp->m_logdev_targp != mp->m_ddev_targp)
197 xfs_blkdev_issue_flush(mp->m_ddev_targp);
201 * All metadata updates are logged, which means that we just have
202 * to flush the log up to the latest LSN that touched the inode.
204 xfs_ilock(ip, XFS_ILOCK_SHARED);
205 if (xfs_ipincount(ip)) {
206 if (!datasync ||
207 (ip->i_itemp->ili_fields & ~XFS_ILOG_TIMESTAMP))
208 lsn = ip->i_itemp->ili_last_lsn;
210 xfs_iunlock(ip, XFS_ILOCK_SHARED);
212 if (lsn)
213 error = _xfs_log_force_lsn(mp, lsn, XFS_LOG_SYNC, &log_flushed);
216 * If we only have a single device, and the log force about was
217 * a no-op we might have to flush the data device cache here.
218 * This can only happen for fdatasync/O_DSYNC if we were overwriting
219 * an already allocated file and thus do not have any metadata to
220 * commit.
222 if ((mp->m_flags & XFS_MOUNT_BARRIER) &&
223 mp->m_logdev_targp == mp->m_ddev_targp &&
224 !XFS_IS_REALTIME_INODE(ip) &&
225 !log_flushed)
226 xfs_blkdev_issue_flush(mp->m_ddev_targp);
228 return -error;
231 STATIC ssize_t
232 xfs_file_aio_read(
233 struct kiocb *iocb,
234 const struct iovec *iovp,
235 unsigned long nr_segs,
236 loff_t pos)
238 struct file *file = iocb->ki_filp;
239 struct inode *inode = file->f_mapping->host;
240 struct xfs_inode *ip = XFS_I(inode);
241 struct xfs_mount *mp = ip->i_mount;
242 size_t size = 0;
243 ssize_t ret = 0;
244 int ioflags = 0;
245 xfs_fsize_t n;
247 XFS_STATS_INC(xs_read_calls);
249 BUG_ON(iocb->ki_pos != pos);
251 if (unlikely(file->f_flags & O_DIRECT))
252 ioflags |= IO_ISDIRECT;
253 if (file->f_mode & FMODE_NOCMTIME)
254 ioflags |= IO_INVIS;
256 ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
257 if (ret < 0)
258 return ret;
260 if (unlikely(ioflags & IO_ISDIRECT)) {
261 xfs_buftarg_t *target =
262 XFS_IS_REALTIME_INODE(ip) ?
263 mp->m_rtdev_targp : mp->m_ddev_targp;
264 /* DIO must be aligned to device logical sector size */
265 if ((pos | size) & target->bt_logical_sectormask) {
266 if (pos == i_size_read(inode))
267 return 0;
268 return -XFS_ERROR(EINVAL);
272 n = mp->m_super->s_maxbytes - pos;
273 if (n <= 0 || size == 0)
274 return 0;
276 if (n < size)
277 size = n;
279 if (XFS_FORCED_SHUTDOWN(mp))
280 return -EIO;
283 * Locking is a bit tricky here. If we take an exclusive lock
284 * for direct IO, we effectively serialise all new concurrent
285 * read IO to this file and block it behind IO that is currently in
286 * progress because IO in progress holds the IO lock shared. We only
287 * need to hold the lock exclusive to blow away the page cache, so
288 * only take lock exclusively if the page cache needs invalidation.
289 * This allows the normal direct IO case of no page cache pages to
290 * proceeed concurrently without serialisation.
292 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
293 if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
294 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
295 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
297 if (inode->i_mapping->nrpages) {
298 ret = filemap_write_and_wait_range(
299 VFS_I(ip)->i_mapping,
300 pos, -1);
301 if (ret) {
302 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
303 return ret;
305 truncate_pagecache_range(VFS_I(ip), pos, -1);
307 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
310 trace_xfs_file_read(ip, size, pos, ioflags);
312 ret = generic_file_aio_read(iocb, iovp, nr_segs, pos);
313 if (ret > 0)
314 XFS_STATS_ADD(xs_read_bytes, ret);
316 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
317 return ret;
320 STATIC ssize_t
321 xfs_file_splice_read(
322 struct file *infilp,
323 loff_t *ppos,
324 struct pipe_inode_info *pipe,
325 size_t count,
326 unsigned int flags)
328 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
329 int ioflags = 0;
330 ssize_t ret;
332 XFS_STATS_INC(xs_read_calls);
334 if (infilp->f_mode & FMODE_NOCMTIME)
335 ioflags |= IO_INVIS;
337 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
338 return -EIO;
340 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
342 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
344 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
345 if (ret > 0)
346 XFS_STATS_ADD(xs_read_bytes, ret);
348 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
349 return ret;
353 * xfs_file_splice_write() does not use xfs_rw_ilock() because
354 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
355 * couuld cause lock inversions between the aio_write path and the splice path
356 * if someone is doing concurrent splice(2) based writes and write(2) based
357 * writes to the same inode. The only real way to fix this is to re-implement
358 * the generic code here with correct locking orders.
360 STATIC ssize_t
361 xfs_file_splice_write(
362 struct pipe_inode_info *pipe,
363 struct file *outfilp,
364 loff_t *ppos,
365 size_t count,
366 unsigned int flags)
368 struct inode *inode = outfilp->f_mapping->host;
369 struct xfs_inode *ip = XFS_I(inode);
370 int ioflags = 0;
371 ssize_t ret;
373 XFS_STATS_INC(xs_write_calls);
375 if (outfilp->f_mode & FMODE_NOCMTIME)
376 ioflags |= IO_INVIS;
378 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
379 return -EIO;
381 xfs_ilock(ip, XFS_IOLOCK_EXCL);
383 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
385 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
386 if (ret > 0)
387 XFS_STATS_ADD(xs_write_bytes, ret);
389 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
390 return ret;
394 * This routine is called to handle zeroing any space in the last block of the
395 * file that is beyond the EOF. We do this since the size is being increased
396 * without writing anything to that block and we don't want to read the
397 * garbage on the disk.
399 STATIC int /* error (positive) */
400 xfs_zero_last_block(
401 struct xfs_inode *ip,
402 xfs_fsize_t offset,
403 xfs_fsize_t isize)
405 struct xfs_mount *mp = ip->i_mount;
406 xfs_fileoff_t last_fsb = XFS_B_TO_FSBT(mp, isize);
407 int zero_offset = XFS_B_FSB_OFFSET(mp, isize);
408 int zero_len;
409 int nimaps = 1;
410 int error = 0;
411 struct xfs_bmbt_irec imap;
413 xfs_ilock(ip, XFS_ILOCK_EXCL);
414 error = xfs_bmapi_read(ip, last_fsb, 1, &imap, &nimaps, 0);
415 xfs_iunlock(ip, XFS_ILOCK_EXCL);
416 if (error)
417 return error;
419 ASSERT(nimaps > 0);
422 * If the block underlying isize is just a hole, then there
423 * is nothing to zero.
425 if (imap.br_startblock == HOLESTARTBLOCK)
426 return 0;
428 zero_len = mp->m_sb.sb_blocksize - zero_offset;
429 if (isize + zero_len > offset)
430 zero_len = offset - isize;
431 return xfs_iozero(ip, isize, zero_len);
435 * Zero any on disk space between the current EOF and the new, larger EOF.
437 * This handles the normal case of zeroing the remainder of the last block in
438 * the file and the unusual case of zeroing blocks out beyond the size of the
439 * file. This second case only happens with fixed size extents and when the
440 * system crashes before the inode size was updated but after blocks were
441 * allocated.
443 * Expects the iolock to be held exclusive, and will take the ilock internally.
445 int /* error (positive) */
446 xfs_zero_eof(
447 struct xfs_inode *ip,
448 xfs_off_t offset, /* starting I/O offset */
449 xfs_fsize_t isize) /* current inode size */
451 struct xfs_mount *mp = ip->i_mount;
452 xfs_fileoff_t start_zero_fsb;
453 xfs_fileoff_t end_zero_fsb;
454 xfs_fileoff_t zero_count_fsb;
455 xfs_fileoff_t last_fsb;
456 xfs_fileoff_t zero_off;
457 xfs_fsize_t zero_len;
458 int nimaps;
459 int error = 0;
460 struct xfs_bmbt_irec imap;
462 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
463 ASSERT(offset > isize);
466 * First handle zeroing the block on which isize resides.
468 * We only zero a part of that block so it is handled specially.
470 if (XFS_B_FSB_OFFSET(mp, isize) != 0) {
471 error = xfs_zero_last_block(ip, offset, isize);
472 if (error)
473 return error;
477 * Calculate the range between the new size and the old where blocks
478 * needing to be zeroed may exist.
480 * To get the block where the last byte in the file currently resides,
481 * we need to subtract one from the size and truncate back to a block
482 * boundary. We subtract 1 in case the size is exactly on a block
483 * boundary.
485 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
486 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
487 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
488 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
489 if (last_fsb == end_zero_fsb) {
491 * The size was only incremented on its last block.
492 * We took care of that above, so just return.
494 return 0;
497 ASSERT(start_zero_fsb <= end_zero_fsb);
498 while (start_zero_fsb <= end_zero_fsb) {
499 nimaps = 1;
500 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
502 xfs_ilock(ip, XFS_ILOCK_EXCL);
503 error = xfs_bmapi_read(ip, start_zero_fsb, zero_count_fsb,
504 &imap, &nimaps, 0);
505 xfs_iunlock(ip, XFS_ILOCK_EXCL);
506 if (error)
507 return error;
509 ASSERT(nimaps > 0);
511 if (imap.br_state == XFS_EXT_UNWRITTEN ||
512 imap.br_startblock == HOLESTARTBLOCK) {
513 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
514 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
515 continue;
519 * There are blocks we need to zero.
521 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
522 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
524 if ((zero_off + zero_len) > offset)
525 zero_len = offset - zero_off;
527 error = xfs_iozero(ip, zero_off, zero_len);
528 if (error)
529 return error;
531 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
532 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
535 return 0;
539 * Common pre-write limit and setup checks.
541 * Called with the iolocked held either shared and exclusive according to
542 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
543 * if called for a direct write beyond i_size.
545 STATIC ssize_t
546 xfs_file_aio_write_checks(
547 struct file *file,
548 loff_t *pos,
549 size_t *count,
550 int *iolock)
552 struct inode *inode = file->f_mapping->host;
553 struct xfs_inode *ip = XFS_I(inode);
554 int error = 0;
556 restart:
557 error = generic_write_checks(file, pos, count, S_ISBLK(inode->i_mode));
558 if (error)
559 return error;
562 * If the offset is beyond the size of the file, we need to zero any
563 * blocks that fall between the existing EOF and the start of this
564 * write. If zeroing is needed and we are currently holding the
565 * iolock shared, we need to update it to exclusive which implies
566 * having to redo all checks before.
568 if (*pos > i_size_read(inode)) {
569 if (*iolock == XFS_IOLOCK_SHARED) {
570 xfs_rw_iunlock(ip, *iolock);
571 *iolock = XFS_IOLOCK_EXCL;
572 xfs_rw_ilock(ip, *iolock);
573 goto restart;
575 error = -xfs_zero_eof(ip, *pos, i_size_read(inode));
576 if (error)
577 return error;
581 * Updating the timestamps will grab the ilock again from
582 * xfs_fs_dirty_inode, so we have to call it after dropping the
583 * lock above. Eventually we should look into a way to avoid
584 * the pointless lock roundtrip.
586 if (likely(!(file->f_mode & FMODE_NOCMTIME))) {
587 error = file_update_time(file);
588 if (error)
589 return error;
593 * If we're writing the file then make sure to clear the setuid and
594 * setgid bits if the process is not being run by root. This keeps
595 * people from modifying setuid and setgid binaries.
597 return file_remove_suid(file);
601 * xfs_file_dio_aio_write - handle direct IO writes
603 * Lock the inode appropriately to prepare for and issue a direct IO write.
604 * By separating it from the buffered write path we remove all the tricky to
605 * follow locking changes and looping.
607 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
608 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
609 * pages are flushed out.
611 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
612 * allowing them to be done in parallel with reads and other direct IO writes.
613 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
614 * needs to do sub-block zeroing and that requires serialisation against other
615 * direct IOs to the same block. In this case we need to serialise the
616 * submission of the unaligned IOs so that we don't get racing block zeroing in
617 * the dio layer. To avoid the problem with aio, we also need to wait for
618 * outstanding IOs to complete so that unwritten extent conversion is completed
619 * before we try to map the overlapping block. This is currently implemented by
620 * hitting it with a big hammer (i.e. inode_dio_wait()).
622 * Returns with locks held indicated by @iolock and errors indicated by
623 * negative return values.
625 STATIC ssize_t
626 xfs_file_dio_aio_write(
627 struct kiocb *iocb,
628 const struct iovec *iovp,
629 unsigned long nr_segs,
630 loff_t pos,
631 size_t ocount)
633 struct file *file = iocb->ki_filp;
634 struct address_space *mapping = file->f_mapping;
635 struct inode *inode = mapping->host;
636 struct xfs_inode *ip = XFS_I(inode);
637 struct xfs_mount *mp = ip->i_mount;
638 ssize_t ret = 0;
639 size_t count = ocount;
640 int unaligned_io = 0;
641 int iolock;
642 struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
643 mp->m_rtdev_targp : mp->m_ddev_targp;
645 /* DIO must be aligned to device logical sector size */
646 if ((pos | count) & target->bt_logical_sectormask)
647 return -XFS_ERROR(EINVAL);
649 /* "unaligned" here means not aligned to a filesystem block */
650 if ((pos & mp->m_blockmask) || ((pos + count) & mp->m_blockmask))
651 unaligned_io = 1;
654 * We don't need to take an exclusive lock unless there page cache needs
655 * to be invalidated or unaligned IO is being executed. We don't need to
656 * consider the EOF extension case here because
657 * xfs_file_aio_write_checks() will relock the inode as necessary for
658 * EOF zeroing cases and fill out the new inode size as appropriate.
660 if (unaligned_io || mapping->nrpages)
661 iolock = XFS_IOLOCK_EXCL;
662 else
663 iolock = XFS_IOLOCK_SHARED;
664 xfs_rw_ilock(ip, iolock);
667 * Recheck if there are cached pages that need invalidate after we got
668 * the iolock to protect against other threads adding new pages while
669 * we were waiting for the iolock.
671 if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
672 xfs_rw_iunlock(ip, iolock);
673 iolock = XFS_IOLOCK_EXCL;
674 xfs_rw_ilock(ip, iolock);
677 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
678 if (ret)
679 goto out;
681 if (mapping->nrpages) {
682 ret = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
683 pos, -1);
684 if (ret)
685 goto out;
686 truncate_pagecache_range(VFS_I(ip), pos, -1);
690 * If we are doing unaligned IO, wait for all other IO to drain,
691 * otherwise demote the lock if we had to flush cached pages
693 if (unaligned_io)
694 inode_dio_wait(inode);
695 else if (iolock == XFS_IOLOCK_EXCL) {
696 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
697 iolock = XFS_IOLOCK_SHARED;
700 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, 0);
701 ret = generic_file_direct_write(iocb, iovp,
702 &nr_segs, pos, count, ocount);
704 out:
705 xfs_rw_iunlock(ip, iolock);
707 /* No fallback to buffered IO on errors for XFS. */
708 ASSERT(ret < 0 || ret == count);
709 return ret;
712 STATIC ssize_t
713 xfs_file_buffered_aio_write(
714 struct kiocb *iocb,
715 const struct iovec *iovp,
716 unsigned long nr_segs,
717 loff_t pos,
718 size_t count)
720 struct file *file = iocb->ki_filp;
721 struct address_space *mapping = file->f_mapping;
722 struct inode *inode = mapping->host;
723 struct xfs_inode *ip = XFS_I(inode);
724 ssize_t ret;
725 int enospc = 0;
726 int iolock = XFS_IOLOCK_EXCL;
727 struct iov_iter from;
729 xfs_rw_ilock(ip, iolock);
731 ret = xfs_file_aio_write_checks(file, &pos, &count, &iolock);
732 if (ret)
733 goto out;
735 iov_iter_init(&from, iovp, nr_segs, count, 0);
736 /* We can write back this queue in page reclaim */
737 current->backing_dev_info = mapping->backing_dev_info;
739 write_retry:
740 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, 0);
741 ret = generic_perform_write(file, &from, pos);
742 if (likely(ret >= 0))
743 iocb->ki_pos = pos + ret;
745 * If we just got an ENOSPC, try to write back all dirty inodes to
746 * convert delalloc space to free up some of the excess reserved
747 * metadata space.
749 if (ret == -ENOSPC && !enospc) {
750 enospc = 1;
751 xfs_flush_inodes(ip->i_mount);
752 goto write_retry;
755 current->backing_dev_info = NULL;
756 out:
757 xfs_rw_iunlock(ip, iolock);
758 return ret;
761 STATIC ssize_t
762 xfs_file_aio_write(
763 struct kiocb *iocb,
764 const struct iovec *iovp,
765 unsigned long nr_segs,
766 loff_t pos)
768 struct file *file = iocb->ki_filp;
769 struct address_space *mapping = file->f_mapping;
770 struct inode *inode = mapping->host;
771 struct xfs_inode *ip = XFS_I(inode);
772 ssize_t ret;
773 size_t ocount = 0;
775 XFS_STATS_INC(xs_write_calls);
777 BUG_ON(iocb->ki_pos != pos);
779 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
780 if (ret)
781 return ret;
783 if (ocount == 0)
784 return 0;
786 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
787 ret = -EIO;
788 goto out;
791 if (unlikely(file->f_flags & O_DIRECT))
792 ret = xfs_file_dio_aio_write(iocb, iovp, nr_segs, pos, ocount);
793 else
794 ret = xfs_file_buffered_aio_write(iocb, iovp, nr_segs, pos,
795 ocount);
797 if (ret > 0) {
798 ssize_t err;
800 XFS_STATS_ADD(xs_write_bytes, ret);
802 /* Handle various SYNC-type writes */
803 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
804 if (err < 0)
805 ret = err;
808 out:
809 return ret;
812 STATIC long
813 xfs_file_fallocate(
814 struct file *file,
815 int mode,
816 loff_t offset,
817 loff_t len)
819 struct inode *inode = file_inode(file);
820 struct xfs_inode *ip = XFS_I(inode);
821 struct xfs_trans *tp;
822 long error;
823 loff_t new_size = 0;
825 if (!S_ISREG(inode->i_mode))
826 return -EINVAL;
827 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
828 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE))
829 return -EOPNOTSUPP;
831 xfs_ilock(ip, XFS_IOLOCK_EXCL);
832 if (mode & FALLOC_FL_PUNCH_HOLE) {
833 error = xfs_free_file_space(ip, offset, len);
834 if (error)
835 goto out_unlock;
836 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
837 unsigned blksize_mask = (1 << inode->i_blkbits) - 1;
839 if (offset & blksize_mask || len & blksize_mask) {
840 error = EINVAL;
841 goto out_unlock;
845 * There is no need to overlap collapse range with EOF,
846 * in which case it is effectively a truncate operation
848 if (offset + len >= i_size_read(inode)) {
849 error = EINVAL;
850 goto out_unlock;
853 new_size = i_size_read(inode) - len;
855 error = xfs_collapse_file_space(ip, offset, len);
856 if (error)
857 goto out_unlock;
858 } else {
859 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
860 offset + len > i_size_read(inode)) {
861 new_size = offset + len;
862 error = -inode_newsize_ok(inode, new_size);
863 if (error)
864 goto out_unlock;
867 if (mode & FALLOC_FL_ZERO_RANGE)
868 error = xfs_zero_file_space(ip, offset, len);
869 else
870 error = xfs_alloc_file_space(ip, offset, len,
871 XFS_BMAPI_PREALLOC);
872 if (error)
873 goto out_unlock;
876 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_WRITEID);
877 error = xfs_trans_reserve(tp, &M_RES(ip->i_mount)->tr_writeid, 0, 0);
878 if (error) {
879 xfs_trans_cancel(tp, 0);
880 goto out_unlock;
883 xfs_ilock(ip, XFS_ILOCK_EXCL);
884 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
885 ip->i_d.di_mode &= ~S_ISUID;
886 if (ip->i_d.di_mode & S_IXGRP)
887 ip->i_d.di_mode &= ~S_ISGID;
889 if (!(mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_COLLAPSE_RANGE)))
890 ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
892 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
893 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
895 if (file->f_flags & O_DSYNC)
896 xfs_trans_set_sync(tp);
897 error = xfs_trans_commit(tp, 0);
898 if (error)
899 goto out_unlock;
901 /* Change file size if needed */
902 if (new_size) {
903 struct iattr iattr;
905 iattr.ia_valid = ATTR_SIZE;
906 iattr.ia_size = new_size;
907 error = xfs_setattr_size(ip, &iattr);
910 out_unlock:
911 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
912 return -error;
916 STATIC int
917 xfs_file_open(
918 struct inode *inode,
919 struct file *file)
921 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
922 return -EFBIG;
923 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
924 return -EIO;
925 return 0;
928 STATIC int
929 xfs_dir_open(
930 struct inode *inode,
931 struct file *file)
933 struct xfs_inode *ip = XFS_I(inode);
934 int mode;
935 int error;
937 error = xfs_file_open(inode, file);
938 if (error)
939 return error;
942 * If there are any blocks, read-ahead block 0 as we're almost
943 * certain to have the next operation be a read there.
945 mode = xfs_ilock_data_map_shared(ip);
946 if (ip->i_d.di_nextents > 0)
947 xfs_dir3_data_readahead(NULL, ip, 0, -1);
948 xfs_iunlock(ip, mode);
949 return 0;
952 STATIC int
953 xfs_file_release(
954 struct inode *inode,
955 struct file *filp)
957 return -xfs_release(XFS_I(inode));
960 STATIC int
961 xfs_file_readdir(
962 struct file *file,
963 struct dir_context *ctx)
965 struct inode *inode = file_inode(file);
966 xfs_inode_t *ip = XFS_I(inode);
967 int error;
968 size_t bufsize;
971 * The Linux API doesn't pass down the total size of the buffer
972 * we read into down to the filesystem. With the filldir concept
973 * it's not needed for correct information, but the XFS dir2 leaf
974 * code wants an estimate of the buffer size to calculate it's
975 * readahead window and size the buffers used for mapping to
976 * physical blocks.
978 * Try to give it an estimate that's good enough, maybe at some
979 * point we can change the ->readdir prototype to include the
980 * buffer size. For now we use the current glibc buffer size.
982 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
984 error = xfs_readdir(ip, ctx, bufsize);
985 if (error)
986 return -error;
987 return 0;
990 STATIC int
991 xfs_file_mmap(
992 struct file *filp,
993 struct vm_area_struct *vma)
995 vma->vm_ops = &xfs_file_vm_ops;
997 file_accessed(filp);
998 return 0;
1002 * mmap()d file has taken write protection fault and is being made
1003 * writable. We can set the page state up correctly for a writable
1004 * page, which means we can do correct delalloc accounting (ENOSPC
1005 * checking!) and unwritten extent mapping.
1007 STATIC int
1008 xfs_vm_page_mkwrite(
1009 struct vm_area_struct *vma,
1010 struct vm_fault *vmf)
1012 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
1016 * This type is designed to indicate the type of offset we would like
1017 * to search from page cache for either xfs_seek_data() or xfs_seek_hole().
1019 enum {
1020 HOLE_OFF = 0,
1021 DATA_OFF,
1025 * Lookup the desired type of offset from the given page.
1027 * On success, return true and the offset argument will point to the
1028 * start of the region that was found. Otherwise this function will
1029 * return false and keep the offset argument unchanged.
1031 STATIC bool
1032 xfs_lookup_buffer_offset(
1033 struct page *page,
1034 loff_t *offset,
1035 unsigned int type)
1037 loff_t lastoff = page_offset(page);
1038 bool found = false;
1039 struct buffer_head *bh, *head;
1041 bh = head = page_buffers(page);
1042 do {
1044 * Unwritten extents that have data in the page
1045 * cache covering them can be identified by the
1046 * BH_Unwritten state flag. Pages with multiple
1047 * buffers might have a mix of holes, data and
1048 * unwritten extents - any buffer with valid
1049 * data in it should have BH_Uptodate flag set
1050 * on it.
1052 if (buffer_unwritten(bh) ||
1053 buffer_uptodate(bh)) {
1054 if (type == DATA_OFF)
1055 found = true;
1056 } else {
1057 if (type == HOLE_OFF)
1058 found = true;
1061 if (found) {
1062 *offset = lastoff;
1063 break;
1065 lastoff += bh->b_size;
1066 } while ((bh = bh->b_this_page) != head);
1068 return found;
1072 * This routine is called to find out and return a data or hole offset
1073 * from the page cache for unwritten extents according to the desired
1074 * type for xfs_seek_data() or xfs_seek_hole().
1076 * The argument offset is used to tell where we start to search from the
1077 * page cache. Map is used to figure out the end points of the range to
1078 * lookup pages.
1080 * Return true if the desired type of offset was found, and the argument
1081 * offset is filled with that address. Otherwise, return false and keep
1082 * offset unchanged.
1084 STATIC bool
1085 xfs_find_get_desired_pgoff(
1086 struct inode *inode,
1087 struct xfs_bmbt_irec *map,
1088 unsigned int type,
1089 loff_t *offset)
1091 struct xfs_inode *ip = XFS_I(inode);
1092 struct xfs_mount *mp = ip->i_mount;
1093 struct pagevec pvec;
1094 pgoff_t index;
1095 pgoff_t end;
1096 loff_t endoff;
1097 loff_t startoff = *offset;
1098 loff_t lastoff = startoff;
1099 bool found = false;
1101 pagevec_init(&pvec, 0);
1103 index = startoff >> PAGE_CACHE_SHIFT;
1104 endoff = XFS_FSB_TO_B(mp, map->br_startoff + map->br_blockcount);
1105 end = endoff >> PAGE_CACHE_SHIFT;
1106 do {
1107 int want;
1108 unsigned nr_pages;
1109 unsigned int i;
1111 want = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
1112 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
1113 want);
1115 * No page mapped into given range. If we are searching holes
1116 * and if this is the first time we got into the loop, it means
1117 * that the given offset is landed in a hole, return it.
1119 * If we have already stepped through some block buffers to find
1120 * holes but they all contains data. In this case, the last
1121 * offset is already updated and pointed to the end of the last
1122 * mapped page, if it does not reach the endpoint to search,
1123 * that means there should be a hole between them.
1125 if (nr_pages == 0) {
1126 /* Data search found nothing */
1127 if (type == DATA_OFF)
1128 break;
1130 ASSERT(type == HOLE_OFF);
1131 if (lastoff == startoff || lastoff < endoff) {
1132 found = true;
1133 *offset = lastoff;
1135 break;
1139 * At lease we found one page. If this is the first time we
1140 * step into the loop, and if the first page index offset is
1141 * greater than the given search offset, a hole was found.
1143 if (type == HOLE_OFF && lastoff == startoff &&
1144 lastoff < page_offset(pvec.pages[0])) {
1145 found = true;
1146 break;
1149 for (i = 0; i < nr_pages; i++) {
1150 struct page *page = pvec.pages[i];
1151 loff_t b_offset;
1154 * At this point, the page may be truncated or
1155 * invalidated (changing page->mapping to NULL),
1156 * or even swizzled back from swapper_space to tmpfs
1157 * file mapping. However, page->index will not change
1158 * because we have a reference on the page.
1160 * Searching done if the page index is out of range.
1161 * If the current offset is not reaches the end of
1162 * the specified search range, there should be a hole
1163 * between them.
1165 if (page->index > end) {
1166 if (type == HOLE_OFF && lastoff < endoff) {
1167 *offset = lastoff;
1168 found = true;
1170 goto out;
1173 lock_page(page);
1175 * Page truncated or invalidated(page->mapping == NULL).
1176 * We can freely skip it and proceed to check the next
1177 * page.
1179 if (unlikely(page->mapping != inode->i_mapping)) {
1180 unlock_page(page);
1181 continue;
1184 if (!page_has_buffers(page)) {
1185 unlock_page(page);
1186 continue;
1189 found = xfs_lookup_buffer_offset(page, &b_offset, type);
1190 if (found) {
1192 * The found offset may be less than the start
1193 * point to search if this is the first time to
1194 * come here.
1196 *offset = max_t(loff_t, startoff, b_offset);
1197 unlock_page(page);
1198 goto out;
1202 * We either searching data but nothing was found, or
1203 * searching hole but found a data buffer. In either
1204 * case, probably the next page contains the desired
1205 * things, update the last offset to it so.
1207 lastoff = page_offset(page) + PAGE_SIZE;
1208 unlock_page(page);
1212 * The number of returned pages less than our desired, search
1213 * done. In this case, nothing was found for searching data,
1214 * but we found a hole behind the last offset.
1216 if (nr_pages < want) {
1217 if (type == HOLE_OFF) {
1218 *offset = lastoff;
1219 found = true;
1221 break;
1224 index = pvec.pages[i - 1]->index + 1;
1225 pagevec_release(&pvec);
1226 } while (index <= end);
1228 out:
1229 pagevec_release(&pvec);
1230 return found;
1233 STATIC loff_t
1234 xfs_seek_data(
1235 struct file *file,
1236 loff_t start)
1238 struct inode *inode = file->f_mapping->host;
1239 struct xfs_inode *ip = XFS_I(inode);
1240 struct xfs_mount *mp = ip->i_mount;
1241 loff_t uninitialized_var(offset);
1242 xfs_fsize_t isize;
1243 xfs_fileoff_t fsbno;
1244 xfs_filblks_t end;
1245 uint lock;
1246 int error;
1248 lock = xfs_ilock_data_map_shared(ip);
1250 isize = i_size_read(inode);
1251 if (start >= isize) {
1252 error = ENXIO;
1253 goto out_unlock;
1257 * Try to read extents from the first block indicated
1258 * by fsbno to the end block of the file.
1260 fsbno = XFS_B_TO_FSBT(mp, start);
1261 end = XFS_B_TO_FSB(mp, isize);
1262 for (;;) {
1263 struct xfs_bmbt_irec map[2];
1264 int nmap = 2;
1265 unsigned int i;
1267 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1268 XFS_BMAPI_ENTIRE);
1269 if (error)
1270 goto out_unlock;
1272 /* No extents at given offset, must be beyond EOF */
1273 if (nmap == 0) {
1274 error = ENXIO;
1275 goto out_unlock;
1278 for (i = 0; i < nmap; i++) {
1279 offset = max_t(loff_t, start,
1280 XFS_FSB_TO_B(mp, map[i].br_startoff));
1282 /* Landed in a data extent */
1283 if (map[i].br_startblock == DELAYSTARTBLOCK ||
1284 (map[i].br_state == XFS_EXT_NORM &&
1285 !isnullstartblock(map[i].br_startblock)))
1286 goto out;
1289 * Landed in an unwritten extent, try to search data
1290 * from page cache.
1292 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1293 if (xfs_find_get_desired_pgoff(inode, &map[i],
1294 DATA_OFF, &offset))
1295 goto out;
1300 * map[0] is hole or its an unwritten extent but
1301 * without data in page cache. Probably means that
1302 * we are reading after EOF if nothing in map[1].
1304 if (nmap == 1) {
1305 error = ENXIO;
1306 goto out_unlock;
1309 ASSERT(i > 1);
1312 * Nothing was found, proceed to the next round of search
1313 * if reading offset not beyond or hit EOF.
1315 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1316 start = XFS_FSB_TO_B(mp, fsbno);
1317 if (start >= isize) {
1318 error = ENXIO;
1319 goto out_unlock;
1323 out:
1324 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1326 out_unlock:
1327 xfs_iunlock(ip, lock);
1329 if (error)
1330 return -error;
1331 return offset;
1334 STATIC loff_t
1335 xfs_seek_hole(
1336 struct file *file,
1337 loff_t start)
1339 struct inode *inode = file->f_mapping->host;
1340 struct xfs_inode *ip = XFS_I(inode);
1341 struct xfs_mount *mp = ip->i_mount;
1342 loff_t uninitialized_var(offset);
1343 xfs_fsize_t isize;
1344 xfs_fileoff_t fsbno;
1345 xfs_filblks_t end;
1346 uint lock;
1347 int error;
1349 if (XFS_FORCED_SHUTDOWN(mp))
1350 return -XFS_ERROR(EIO);
1352 lock = xfs_ilock_data_map_shared(ip);
1354 isize = i_size_read(inode);
1355 if (start >= isize) {
1356 error = ENXIO;
1357 goto out_unlock;
1360 fsbno = XFS_B_TO_FSBT(mp, start);
1361 end = XFS_B_TO_FSB(mp, isize);
1363 for (;;) {
1364 struct xfs_bmbt_irec map[2];
1365 int nmap = 2;
1366 unsigned int i;
1368 error = xfs_bmapi_read(ip, fsbno, end - fsbno, map, &nmap,
1369 XFS_BMAPI_ENTIRE);
1370 if (error)
1371 goto out_unlock;
1373 /* No extents at given offset, must be beyond EOF */
1374 if (nmap == 0) {
1375 error = ENXIO;
1376 goto out_unlock;
1379 for (i = 0; i < nmap; i++) {
1380 offset = max_t(loff_t, start,
1381 XFS_FSB_TO_B(mp, map[i].br_startoff));
1383 /* Landed in a hole */
1384 if (map[i].br_startblock == HOLESTARTBLOCK)
1385 goto out;
1388 * Landed in an unwritten extent, try to search hole
1389 * from page cache.
1391 if (map[i].br_state == XFS_EXT_UNWRITTEN) {
1392 if (xfs_find_get_desired_pgoff(inode, &map[i],
1393 HOLE_OFF, &offset))
1394 goto out;
1399 * map[0] contains data or its unwritten but contains
1400 * data in page cache, probably means that we are
1401 * reading after EOF. We should fix offset to point
1402 * to the end of the file(i.e., there is an implicit
1403 * hole at the end of any file).
1405 if (nmap == 1) {
1406 offset = isize;
1407 break;
1410 ASSERT(i > 1);
1413 * Both mappings contains data, proceed to the next round of
1414 * search if the current reading offset not beyond or hit EOF.
1416 fsbno = map[i - 1].br_startoff + map[i - 1].br_blockcount;
1417 start = XFS_FSB_TO_B(mp, fsbno);
1418 if (start >= isize) {
1419 offset = isize;
1420 break;
1424 out:
1426 * At this point, we must have found a hole. However, the returned
1427 * offset may be bigger than the file size as it may be aligned to
1428 * page boundary for unwritten extents, we need to deal with this
1429 * situation in particular.
1431 offset = min_t(loff_t, offset, isize);
1432 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1434 out_unlock:
1435 xfs_iunlock(ip, lock);
1437 if (error)
1438 return -error;
1439 return offset;
1442 STATIC loff_t
1443 xfs_file_llseek(
1444 struct file *file,
1445 loff_t offset,
1446 int origin)
1448 switch (origin) {
1449 case SEEK_END:
1450 case SEEK_CUR:
1451 case SEEK_SET:
1452 return generic_file_llseek(file, offset, origin);
1453 case SEEK_DATA:
1454 return xfs_seek_data(file, offset);
1455 case SEEK_HOLE:
1456 return xfs_seek_hole(file, offset);
1457 default:
1458 return -EINVAL;
1462 const struct file_operations xfs_file_operations = {
1463 .llseek = xfs_file_llseek,
1464 .read = do_sync_read,
1465 .write = do_sync_write,
1466 .aio_read = xfs_file_aio_read,
1467 .aio_write = xfs_file_aio_write,
1468 .splice_read = xfs_file_splice_read,
1469 .splice_write = xfs_file_splice_write,
1470 .unlocked_ioctl = xfs_file_ioctl,
1471 #ifdef CONFIG_COMPAT
1472 .compat_ioctl = xfs_file_compat_ioctl,
1473 #endif
1474 .mmap = xfs_file_mmap,
1475 .open = xfs_file_open,
1476 .release = xfs_file_release,
1477 .fsync = xfs_file_fsync,
1478 .fallocate = xfs_file_fallocate,
1481 const struct file_operations xfs_dir_file_operations = {
1482 .open = xfs_dir_open,
1483 .read = generic_read_dir,
1484 .iterate = xfs_file_readdir,
1485 .llseek = generic_file_llseek,
1486 .unlocked_ioctl = xfs_file_ioctl,
1487 #ifdef CONFIG_COMPAT
1488 .compat_ioctl = xfs_file_compat_ioctl,
1489 #endif
1490 .fsync = xfs_dir_fsync,
1493 static const struct vm_operations_struct xfs_file_vm_ops = {
1494 .fault = filemap_fault,
1495 .map_pages = filemap_map_pages,
1496 .page_mkwrite = xfs_vm_page_mkwrite,
1497 .remap_pages = generic_file_remap_pages,