3 * Copyright (c) 2017 Jesper Dangaard Brouer, Red Hat Inc.
4 * Released under terms in GPL version 2. See COPYING.
7 /* The 'cpumap' is primarily used as a backend map for XDP BPF helper
8 * call bpf_redirect_map() and XDP_REDIRECT action, like 'devmap'.
10 * Unlike devmap which redirects XDP frames out another NIC device,
11 * this map type redirects raw XDP frames to another CPU. The remote
12 * CPU will do SKB-allocation and call the normal network stack.
14 * This is a scalability and isolation mechanism, that allow
15 * separating the early driver network XDP layer, from the rest of the
16 * netstack, and assigning dedicated CPUs for this stage. This
17 * basically allows for 10G wirespeed pre-filtering via bpf.
19 #include <linux/bpf.h>
20 #include <linux/filter.h>
21 #include <linux/ptr_ring.h>
24 #include <linux/sched.h>
25 #include <linux/workqueue.h>
26 #include <linux/kthread.h>
27 #include <linux/capability.h>
28 #include <trace/events/xdp.h>
30 #include <linux/netdevice.h> /* netif_receive_skb_core */
31 #include <linux/etherdevice.h> /* eth_type_trans */
33 /* General idea: XDP packets getting XDP redirected to another CPU,
34 * will maximum be stored/queued for one driver ->poll() call. It is
35 * guaranteed that setting flush bit and flush operation happen on
36 * same CPU. Thus, cpu_map_flush operation can deduct via this_cpu_ptr()
37 * which queue in bpf_cpu_map_entry contains packets.
40 #define CPU_MAP_BULK_SIZE 8 /* 8 == one cacheline on 64-bit archs */
41 struct xdp_bulk_queue
{
42 void *q
[CPU_MAP_BULK_SIZE
];
46 /* Struct for every remote "destination" CPU in map */
47 struct bpf_cpu_map_entry
{
48 u32 cpu
; /* kthread CPU and map index */
49 int map_id
; /* Back reference to map */
50 u32 qsize
; /* Queue size placeholder for map lookup */
52 /* XDP can run multiple RX-ring queues, need __percpu enqueue store */
53 struct xdp_bulk_queue __percpu
*bulkq
;
55 /* Queue with potential multi-producers, and single-consumer kthread */
56 struct ptr_ring
*queue
;
57 struct task_struct
*kthread
;
58 struct work_struct kthread_stop_wq
;
60 atomic_t refcnt
; /* Control when this struct can be free'ed */
66 /* Below members specific for map type */
67 struct bpf_cpu_map_entry
**cpu_map
;
68 unsigned long __percpu
*flush_needed
;
71 static int bq_flush_to_queue(struct bpf_cpu_map_entry
*rcpu
,
72 struct xdp_bulk_queue
*bq
, bool in_napi_ctx
);
74 static u64
cpu_map_bitmap_size(const union bpf_attr
*attr
)
76 return BITS_TO_LONGS(attr
->max_entries
) * sizeof(unsigned long);
79 static struct bpf_map
*cpu_map_alloc(union bpf_attr
*attr
)
81 struct bpf_cpu_map
*cmap
;
86 if (!capable(CAP_SYS_ADMIN
))
87 return ERR_PTR(-EPERM
);
89 /* check sanity of attributes */
90 if (attr
->max_entries
== 0 || attr
->key_size
!= 4 ||
91 attr
->value_size
!= 4 || attr
->map_flags
& ~BPF_F_NUMA_NODE
)
92 return ERR_PTR(-EINVAL
);
94 cmap
= kzalloc(sizeof(*cmap
), GFP_USER
);
96 return ERR_PTR(-ENOMEM
);
98 bpf_map_init_from_attr(&cmap
->map
, attr
);
100 /* Pre-limit array size based on NR_CPUS, not final CPU check */
101 if (cmap
->map
.max_entries
> NR_CPUS
) {
106 /* make sure page count doesn't overflow */
107 cost
= (u64
) cmap
->map
.max_entries
* sizeof(struct bpf_cpu_map_entry
*);
108 cost
+= cpu_map_bitmap_size(attr
) * num_possible_cpus();
109 if (cost
>= U32_MAX
- PAGE_SIZE
)
111 cmap
->map
.pages
= round_up(cost
, PAGE_SIZE
) >> PAGE_SHIFT
;
113 /* Notice returns -EPERM on if map size is larger than memlock limit */
114 ret
= bpf_map_precharge_memlock(cmap
->map
.pages
);
120 /* A per cpu bitfield with a bit per possible CPU in map */
121 cmap
->flush_needed
= __alloc_percpu(cpu_map_bitmap_size(attr
),
122 __alignof__(unsigned long));
123 if (!cmap
->flush_needed
)
126 /* Alloc array for possible remote "destination" CPUs */
127 cmap
->cpu_map
= bpf_map_area_alloc(cmap
->map
.max_entries
*
128 sizeof(struct bpf_cpu_map_entry
*),
129 cmap
->map
.numa_node
);
135 free_percpu(cmap
->flush_needed
);
141 static void get_cpu_map_entry(struct bpf_cpu_map_entry
*rcpu
)
143 atomic_inc(&rcpu
->refcnt
);
146 /* called from workqueue, to workaround syscall using preempt_disable */
147 static void cpu_map_kthread_stop(struct work_struct
*work
)
149 struct bpf_cpu_map_entry
*rcpu
;
151 rcpu
= container_of(work
, struct bpf_cpu_map_entry
, kthread_stop_wq
);
153 /* Wait for flush in __cpu_map_entry_free(), via full RCU barrier,
154 * as it waits until all in-flight call_rcu() callbacks complete.
158 /* kthread_stop will wake_up_process and wait for it to complete */
159 kthread_stop(rcpu
->kthread
);
162 static struct sk_buff
*cpu_map_build_skb(struct bpf_cpu_map_entry
*rcpu
,
163 struct xdp_frame
*xdpf
)
165 unsigned int frame_size
;
166 void *pkt_data_start
;
169 /* build_skb need to place skb_shared_info after SKB end, and
170 * also want to know the memory "truesize". Thus, need to
171 * know the memory frame size backing xdp_buff.
173 * XDP was designed to have PAGE_SIZE frames, but this
174 * assumption is not longer true with ixgbe and i40e. It
175 * would be preferred to set frame_size to 2048 or 4096
176 * depending on the driver.
178 * frame_len = frame_size - sizeof(*xdp_frame);
180 * Instead, with info avail, skb_shared_info in placed after
181 * packet len. This, unfortunately fakes the truesize.
182 * Another disadvantage of this approach, the skb_shared_info
183 * is not at a fixed memory location, with mixed length
184 * packets, which is bad for cache-line hotness.
186 frame_size
= SKB_DATA_ALIGN(xdpf
->len
+ xdpf
->headroom
) +
187 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
189 pkt_data_start
= xdpf
->data
- xdpf
->headroom
;
190 skb
= build_skb(pkt_data_start
, frame_size
);
194 skb_reserve(skb
, xdpf
->headroom
);
195 __skb_put(skb
, xdpf
->len
);
197 skb_metadata_set(skb
, xdpf
->metasize
);
199 /* Essential SKB info: protocol and skb->dev */
200 skb
->protocol
= eth_type_trans(skb
, xdpf
->dev_rx
);
202 /* Optional SKB info, currently missing:
203 * - HW checksum info (skb->ip_summed)
204 * - HW RX hash (skb_set_hash)
205 * - RX ring dev queue index (skb_record_rx_queue)
211 static void __cpu_map_ring_cleanup(struct ptr_ring
*ring
)
213 /* The tear-down procedure should have made sure that queue is
214 * empty. See __cpu_map_entry_replace() and work-queue
215 * invoked cpu_map_kthread_stop(). Catch any broken behaviour
216 * gracefully and warn once.
218 struct xdp_frame
*xdpf
;
220 while ((xdpf
= ptr_ring_consume(ring
)))
221 if (WARN_ON_ONCE(xdpf
))
222 xdp_return_frame(xdpf
);
225 static void put_cpu_map_entry(struct bpf_cpu_map_entry
*rcpu
)
227 if (atomic_dec_and_test(&rcpu
->refcnt
)) {
228 /* The queue should be empty at this point */
229 __cpu_map_ring_cleanup(rcpu
->queue
);
230 ptr_ring_cleanup(rcpu
->queue
, NULL
);
236 static int cpu_map_kthread_run(void *data
)
238 struct bpf_cpu_map_entry
*rcpu
= data
;
240 set_current_state(TASK_INTERRUPTIBLE
);
242 /* When kthread gives stop order, then rcpu have been disconnected
243 * from map, thus no new packets can enter. Remaining in-flight
244 * per CPU stored packets are flushed to this queue. Wait honoring
245 * kthread_stop signal until queue is empty.
247 while (!kthread_should_stop() || !__ptr_ring_empty(rcpu
->queue
)) {
248 unsigned int processed
= 0, drops
= 0, sched
= 0;
249 struct xdp_frame
*xdpf
;
251 /* Release CPU reschedule checks */
252 if (__ptr_ring_empty(rcpu
->queue
)) {
253 set_current_state(TASK_INTERRUPTIBLE
);
254 /* Recheck to avoid lost wake-up */
255 if (__ptr_ring_empty(rcpu
->queue
)) {
259 __set_current_state(TASK_RUNNING
);
262 sched
= cond_resched();
265 /* Process packets in rcpu->queue */
268 * The bpf_cpu_map_entry is single consumer, with this
269 * kthread CPU pinned. Lockless access to ptr_ring
270 * consume side valid as no-resize allowed of queue.
272 while ((xdpf
= __ptr_ring_consume(rcpu
->queue
))) {
276 skb
= cpu_map_build_skb(rcpu
, xdpf
);
278 xdp_return_frame(xdpf
);
282 /* Inject into network stack */
283 ret
= netif_receive_skb_core(skb
);
284 if (ret
== NET_RX_DROP
)
287 /* Limit BH-disable period */
288 if (++processed
== 8)
291 /* Feedback loop via tracepoint */
292 trace_xdp_cpumap_kthread(rcpu
->map_id
, processed
, drops
, sched
);
294 local_bh_enable(); /* resched point, may call do_softirq() */
296 __set_current_state(TASK_RUNNING
);
298 put_cpu_map_entry(rcpu
);
302 static struct bpf_cpu_map_entry
*__cpu_map_entry_alloc(u32 qsize
, u32 cpu
,
305 gfp_t gfp
= GFP_KERNEL
| __GFP_NOWARN
;
306 struct bpf_cpu_map_entry
*rcpu
;
309 /* Have map->numa_node, but choose node of redirect target CPU */
310 numa
= cpu_to_node(cpu
);
312 rcpu
= kzalloc_node(sizeof(*rcpu
), gfp
, numa
);
316 /* Alloc percpu bulkq */
317 rcpu
->bulkq
= __alloc_percpu_gfp(sizeof(*rcpu
->bulkq
),
318 sizeof(void *), gfp
);
323 rcpu
->queue
= kzalloc_node(sizeof(*rcpu
->queue
), gfp
, numa
);
327 err
= ptr_ring_init(rcpu
->queue
, qsize
, gfp
);
332 rcpu
->map_id
= map_id
;
336 rcpu
->kthread
= kthread_create_on_node(cpu_map_kthread_run
, rcpu
, numa
,
337 "cpumap/%d/map:%d", cpu
, map_id
);
338 if (IS_ERR(rcpu
->kthread
))
341 get_cpu_map_entry(rcpu
); /* 1-refcnt for being in cmap->cpu_map[] */
342 get_cpu_map_entry(rcpu
); /* 1-refcnt for kthread */
344 /* Make sure kthread runs on a single CPU */
345 kthread_bind(rcpu
->kthread
, cpu
);
346 wake_up_process(rcpu
->kthread
);
351 ptr_ring_cleanup(rcpu
->queue
, NULL
);
355 free_percpu(rcpu
->bulkq
);
361 static void __cpu_map_entry_free(struct rcu_head
*rcu
)
363 struct bpf_cpu_map_entry
*rcpu
;
366 /* This cpu_map_entry have been disconnected from map and one
367 * RCU graze-period have elapsed. Thus, XDP cannot queue any
368 * new packets and cannot change/set flush_needed that can
371 rcpu
= container_of(rcu
, struct bpf_cpu_map_entry
, rcu
);
373 /* Flush remaining packets in percpu bulkq */
374 for_each_online_cpu(cpu
) {
375 struct xdp_bulk_queue
*bq
= per_cpu_ptr(rcpu
->bulkq
, cpu
);
377 /* No concurrent bq_enqueue can run at this point */
378 bq_flush_to_queue(rcpu
, bq
, false);
380 free_percpu(rcpu
->bulkq
);
381 /* Cannot kthread_stop() here, last put free rcpu resources */
382 put_cpu_map_entry(rcpu
);
385 /* After xchg pointer to bpf_cpu_map_entry, use the call_rcu() to
386 * ensure any driver rcu critical sections have completed, but this
387 * does not guarantee a flush has happened yet. Because driver side
388 * rcu_read_lock/unlock only protects the running XDP program. The
389 * atomic xchg and NULL-ptr check in __cpu_map_flush() makes sure a
390 * pending flush op doesn't fail.
392 * The bpf_cpu_map_entry is still used by the kthread, and there can
393 * still be pending packets (in queue and percpu bulkq). A refcnt
394 * makes sure to last user (kthread_stop vs. call_rcu) free memory
397 * The rcu callback __cpu_map_entry_free flush remaining packets in
398 * percpu bulkq to queue. Due to caller map_delete_elem() disable
399 * preemption, cannot call kthread_stop() to make sure queue is empty.
400 * Instead a work_queue is started for stopping kthread,
401 * cpu_map_kthread_stop, which waits for an RCU graze period before
402 * stopping kthread, emptying the queue.
404 static void __cpu_map_entry_replace(struct bpf_cpu_map
*cmap
,
405 u32 key_cpu
, struct bpf_cpu_map_entry
*rcpu
)
407 struct bpf_cpu_map_entry
*old_rcpu
;
409 old_rcpu
= xchg(&cmap
->cpu_map
[key_cpu
], rcpu
);
411 call_rcu(&old_rcpu
->rcu
, __cpu_map_entry_free
);
412 INIT_WORK(&old_rcpu
->kthread_stop_wq
, cpu_map_kthread_stop
);
413 schedule_work(&old_rcpu
->kthread_stop_wq
);
417 static int cpu_map_delete_elem(struct bpf_map
*map
, void *key
)
419 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
420 u32 key_cpu
= *(u32
*)key
;
422 if (key_cpu
>= map
->max_entries
)
425 /* notice caller map_delete_elem() use preempt_disable() */
426 __cpu_map_entry_replace(cmap
, key_cpu
, NULL
);
430 static int cpu_map_update_elem(struct bpf_map
*map
, void *key
, void *value
,
433 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
434 struct bpf_cpu_map_entry
*rcpu
;
436 /* Array index key correspond to CPU number */
437 u32 key_cpu
= *(u32
*)key
;
438 /* Value is the queue size */
439 u32 qsize
= *(u32
*)value
;
441 if (unlikely(map_flags
> BPF_EXIST
))
443 if (unlikely(key_cpu
>= cmap
->map
.max_entries
))
445 if (unlikely(map_flags
== BPF_NOEXIST
))
447 if (unlikely(qsize
> 16384)) /* sanity limit on qsize */
450 /* Make sure CPU is a valid possible cpu */
451 if (!cpu_possible(key_cpu
))
455 rcpu
= NULL
; /* Same as deleting */
457 /* Updating qsize cause re-allocation of bpf_cpu_map_entry */
458 rcpu
= __cpu_map_entry_alloc(qsize
, key_cpu
, map
->id
);
463 __cpu_map_entry_replace(cmap
, key_cpu
, rcpu
);
468 static void cpu_map_free(struct bpf_map
*map
)
470 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
474 /* At this point bpf_prog->aux->refcnt == 0 and this map->refcnt == 0,
475 * so the bpf programs (can be more than one that used this map) were
476 * disconnected from events. Wait for outstanding critical sections in
477 * these programs to complete. The rcu critical section only guarantees
478 * no further "XDP/bpf-side" reads against bpf_cpu_map->cpu_map.
479 * It does __not__ ensure pending flush operations (if any) are
483 bpf_clear_redirect_map(map
);
486 /* To ensure all pending flush operations have completed wait for flush
487 * bitmap to indicate all flush_needed bits to be zero on _all_ cpus.
488 * Because the above synchronize_rcu() ensures the map is disconnected
489 * from the program we can assume no new bits will be set.
491 for_each_online_cpu(cpu
) {
492 unsigned long *bitmap
= per_cpu_ptr(cmap
->flush_needed
, cpu
);
494 while (!bitmap_empty(bitmap
, cmap
->map
.max_entries
))
498 /* For cpu_map the remote CPUs can still be using the entries
499 * (struct bpf_cpu_map_entry).
501 for (i
= 0; i
< cmap
->map
.max_entries
; i
++) {
502 struct bpf_cpu_map_entry
*rcpu
;
504 rcpu
= READ_ONCE(cmap
->cpu_map
[i
]);
508 /* bq flush and cleanup happens after RCU graze-period */
509 __cpu_map_entry_replace(cmap
, i
, NULL
); /* call_rcu */
511 free_percpu(cmap
->flush_needed
);
512 bpf_map_area_free(cmap
->cpu_map
);
516 struct bpf_cpu_map_entry
*__cpu_map_lookup_elem(struct bpf_map
*map
, u32 key
)
518 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
519 struct bpf_cpu_map_entry
*rcpu
;
521 if (key
>= map
->max_entries
)
524 rcpu
= READ_ONCE(cmap
->cpu_map
[key
]);
528 static void *cpu_map_lookup_elem(struct bpf_map
*map
, void *key
)
530 struct bpf_cpu_map_entry
*rcpu
=
531 __cpu_map_lookup_elem(map
, *(u32
*)key
);
533 return rcpu
? &rcpu
->qsize
: NULL
;
536 static int cpu_map_get_next_key(struct bpf_map
*map
, void *key
, void *next_key
)
538 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
539 u32 index
= key
? *(u32
*)key
: U32_MAX
;
540 u32
*next
= next_key
;
542 if (index
>= cmap
->map
.max_entries
) {
547 if (index
== cmap
->map
.max_entries
- 1)
553 const struct bpf_map_ops cpu_map_ops
= {
554 .map_alloc
= cpu_map_alloc
,
555 .map_free
= cpu_map_free
,
556 .map_delete_elem
= cpu_map_delete_elem
,
557 .map_update_elem
= cpu_map_update_elem
,
558 .map_lookup_elem
= cpu_map_lookup_elem
,
559 .map_get_next_key
= cpu_map_get_next_key
,
560 .map_check_btf
= map_check_no_btf
,
563 static int bq_flush_to_queue(struct bpf_cpu_map_entry
*rcpu
,
564 struct xdp_bulk_queue
*bq
, bool in_napi_ctx
)
566 unsigned int processed
= 0, drops
= 0;
567 const int to_cpu
= rcpu
->cpu
;
571 if (unlikely(!bq
->count
))
575 spin_lock(&q
->producer_lock
);
577 for (i
= 0; i
< bq
->count
; i
++) {
578 struct xdp_frame
*xdpf
= bq
->q
[i
];
581 err
= __ptr_ring_produce(q
, xdpf
);
584 if (likely(in_napi_ctx
))
585 xdp_return_frame_rx_napi(xdpf
);
587 xdp_return_frame(xdpf
);
592 spin_unlock(&q
->producer_lock
);
594 /* Feedback loop via tracepoints */
595 trace_xdp_cpumap_enqueue(rcpu
->map_id
, processed
, drops
, to_cpu
);
599 /* Runs under RCU-read-side, plus in softirq under NAPI protection.
600 * Thus, safe percpu variable access.
602 static int bq_enqueue(struct bpf_cpu_map_entry
*rcpu
, struct xdp_frame
*xdpf
)
604 struct xdp_bulk_queue
*bq
= this_cpu_ptr(rcpu
->bulkq
);
606 if (unlikely(bq
->count
== CPU_MAP_BULK_SIZE
))
607 bq_flush_to_queue(rcpu
, bq
, true);
609 /* Notice, xdp_buff/page MUST be queued here, long enough for
610 * driver to code invoking us to finished, due to driver
611 * (e.g. ixgbe) recycle tricks based on page-refcnt.
613 * Thus, incoming xdp_frame is always queued here (else we race
614 * with another CPU on page-refcnt and remaining driver code).
615 * Queue time is very short, as driver will invoke flush
616 * operation, when completing napi->poll call.
618 bq
->q
[bq
->count
++] = xdpf
;
622 int cpu_map_enqueue(struct bpf_cpu_map_entry
*rcpu
, struct xdp_buff
*xdp
,
623 struct net_device
*dev_rx
)
625 struct xdp_frame
*xdpf
;
627 xdpf
= convert_to_xdp_frame(xdp
);
631 /* Info needed when constructing SKB on remote CPU */
632 xdpf
->dev_rx
= dev_rx
;
634 bq_enqueue(rcpu
, xdpf
);
638 void __cpu_map_insert_ctx(struct bpf_map
*map
, u32 bit
)
640 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
641 unsigned long *bitmap
= this_cpu_ptr(cmap
->flush_needed
);
643 __set_bit(bit
, bitmap
);
646 void __cpu_map_flush(struct bpf_map
*map
)
648 struct bpf_cpu_map
*cmap
= container_of(map
, struct bpf_cpu_map
, map
);
649 unsigned long *bitmap
= this_cpu_ptr(cmap
->flush_needed
);
652 /* The napi->poll softirq makes sure __cpu_map_insert_ctx()
653 * and __cpu_map_flush() happen on same CPU. Thus, the percpu
654 * bitmap indicate which percpu bulkq have packets.
656 for_each_set_bit(bit
, bitmap
, map
->max_entries
) {
657 struct bpf_cpu_map_entry
*rcpu
= READ_ONCE(cmap
->cpu_map
[bit
]);
658 struct xdp_bulk_queue
*bq
;
660 /* This is possible if entry is removed by user space
661 * between xdp redirect and flush op.
666 __clear_bit(bit
, bitmap
);
668 /* Flush all frames in bulkq to real queue */
669 bq
= this_cpu_ptr(rcpu
->bulkq
);
670 bq_flush_to_queue(rcpu
, bq
, true);
672 /* If already running, costs spin_lock_irqsave + smb_mb */
673 wake_up_process(rcpu
->kthread
);