3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 * Derived from "include/asm-i386/pgtable.h"
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
27 #include <linux/sched.h>
28 #include <linux/mm_types.h>
29 #include <linux/page-flags.h>
30 #include <linux/radix-tree.h>
34 extern pgd_t swapper_pg_dir
[] __attribute__ ((aligned (4096)));
35 extern void paging_init(void);
36 extern void vmem_map_init(void);
39 * The S390 doesn't have any external MMU info: the kernel page
40 * tables contain all the necessary information.
42 #define update_mmu_cache(vma, address, ptep) do { } while (0)
43 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
46 * ZERO_PAGE is a global shared page that is always zero; used
47 * for zero-mapped memory areas etc..
50 extern unsigned long empty_zero_page
;
51 extern unsigned long zero_page_mask
;
53 #define ZERO_PAGE(vaddr) \
54 (virt_to_page((void *)(empty_zero_page + \
55 (((unsigned long)(vaddr)) &zero_page_mask))))
56 #define __HAVE_COLOR_ZERO_PAGE
58 /* TODO: s390 cannot support io_remap_pfn_range... */
59 #endif /* !__ASSEMBLY__ */
62 * PMD_SHIFT determines the size of the area a second-level page
64 * PGDIR_SHIFT determines what a third-level page table entry can map
68 #define PGDIR_SHIFT 42
70 #define PMD_SIZE (1UL << PMD_SHIFT)
71 #define PMD_MASK (~(PMD_SIZE-1))
72 #define PUD_SIZE (1UL << PUD_SHIFT)
73 #define PUD_MASK (~(PUD_SIZE-1))
74 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
75 #define PGDIR_MASK (~(PGDIR_SIZE-1))
78 * entries per page directory level: the S390 is two-level, so
79 * we don't really have any PMD directory physically.
80 * for S390 segment-table entries are combined to one PGD
81 * that leads to 1024 pte per pgd
83 #define PTRS_PER_PTE 256
84 #define PTRS_PER_PMD 2048
85 #define PTRS_PER_PUD 2048
86 #define PTRS_PER_PGD 2048
88 #define FIRST_USER_ADDRESS 0UL
90 #define pte_ERROR(e) \
91 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
92 #define pmd_ERROR(e) \
93 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
94 #define pud_ERROR(e) \
95 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
96 #define pgd_ERROR(e) \
97 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
101 * The vmalloc and module area will always be on the topmost area of the
102 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
103 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
104 * modules will reside. That makes sure that inter module branches always
105 * happen without trampolines and in addition the placement within a 2GB frame
106 * is branch prediction unit friendly.
108 extern unsigned long VMALLOC_START
;
109 extern unsigned long VMALLOC_END
;
110 extern struct page
*vmemmap
;
112 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
114 extern unsigned long MODULES_VADDR
;
115 extern unsigned long MODULES_END
;
116 #define MODULES_VADDR MODULES_VADDR
117 #define MODULES_END MODULES_END
118 #define MODULES_LEN (1UL << 31)
120 static inline int is_module_addr(void *addr
)
122 BUILD_BUG_ON(MODULES_LEN
> (1UL << 31));
123 if (addr
< (void *)MODULES_VADDR
)
125 if (addr
> (void *)MODULES_END
)
131 * A 64 bit pagetable entry of S390 has following format:
133 * 0000000000111111111122222222223333333333444444444455555555556666
134 * 0123456789012345678901234567890123456789012345678901234567890123
136 * I Page-Invalid Bit: Page is not available for address-translation
137 * P Page-Protection Bit: Store access not possible for page
138 * C Change-bit override: HW is not required to set change bit
140 * A 64 bit segmenttable entry of S390 has following format:
141 * | P-table origin | TT
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
145 * I Segment-Invalid Bit: Segment is not available for address-translation
146 * C Common-Segment Bit: Segment is not private (PoP 3-30)
147 * P Page-Protection Bit: Store access not possible for page
150 * A 64 bit region table entry of S390 has following format:
151 * | S-table origin | TF TTTL
152 * 0000000000111111111122222222223333333333444444444455555555556666
153 * 0123456789012345678901234567890123456789012345678901234567890123
155 * I Segment-Invalid Bit: Segment is not available for address-translation
160 * The 64 bit regiontable origin of S390 has following format:
161 * | region table origon | DTTL
162 * 0000000000111111111122222222223333333333444444444455555555556666
163 * 0123456789012345678901234567890123456789012345678901234567890123
165 * X Space-Switch event:
166 * G Segment-Invalid Bit:
167 * P Private-Space Bit:
168 * S Storage-Alteration:
172 * A storage key has the following format:
176 * F : fetch protection bit
181 /* Hardware bits in the page table entry */
182 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
183 #define _PAGE_INVALID 0x400 /* HW invalid bit */
184 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
186 /* Software bits in the page table entry */
187 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
188 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
189 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
190 #define _PAGE_READ 0x010 /* SW pte read bit */
191 #define _PAGE_WRITE 0x020 /* SW pte write bit */
192 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
193 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
194 #define __HAVE_ARCH_PTE_SPECIAL
196 #ifdef CONFIG_MEM_SOFT_DIRTY
197 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
199 #define _PAGE_SOFT_DIRTY 0x000
202 /* Set of bits not changed in pte_modify */
203 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
204 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
207 * handle_pte_fault uses pte_present and pte_none to find out the pte type
208 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
209 * distinguish present from not-present ptes. It is changed only with the page
212 * The following table gives the different possible bit combinations for
213 * the pte hardware and software bits in the last 12 bits of a pte
214 * (. unassigned bit, x don't care, t swap type):
222 * prot-none, clean, old .11.xx0000.1
223 * prot-none, clean, young .11.xx0001.1
224 * prot-none, dirty, old .10.xx0010.1
225 * prot-none, dirty, young .10.xx0011.1
226 * read-only, clean, old .11.xx0100.1
227 * read-only, clean, young .01.xx0101.1
228 * read-only, dirty, old .11.xx0110.1
229 * read-only, dirty, young .01.xx0111.1
230 * read-write, clean, old .11.xx1100.1
231 * read-write, clean, young .01.xx1101.1
232 * read-write, dirty, old .10.xx1110.1
233 * read-write, dirty, young .00.xx1111.1
234 * HW-bits: R read-only, I invalid
235 * SW-bits: p present, y young, d dirty, r read, w write, s special,
238 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
239 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
240 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
243 /* Bits in the segment/region table address-space-control-element */
244 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
245 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
246 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
247 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
248 #define _ASCE_REAL_SPACE 0x20 /* real space control */
249 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
250 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
251 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
252 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
253 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
254 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
256 /* Bits in the region table entry */
257 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
258 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
259 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
260 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
261 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
262 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
263 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
264 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
266 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
267 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
268 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
269 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
270 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
271 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
273 #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
274 #define _REGION3_ENTRY_RO 0x200 /* page protection bit */
276 /* Bits in the segment table entry */
277 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
278 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
279 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
280 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
281 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
282 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
284 #define _SEGMENT_ENTRY (0)
285 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
287 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
288 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
289 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
290 #define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
291 #define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
293 #ifdef CONFIG_MEM_SOFT_DIRTY
294 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
296 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
300 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
302 * prot-none, clean, old 00..1...1...00
303 * prot-none, clean, young 01..1...1...00
304 * prot-none, dirty, old 10..1...1...00
305 * prot-none, dirty, young 11..1...1...00
306 * read-only, clean, old 00..1...1...10
307 * read-only, clean, young 01..1...0...10
308 * read-only, dirty, old 10..1...1...10
309 * read-only, dirty, young 11..1...0...10
310 * read-write, clean, old 00..1...1...11
311 * read-write, clean, young 01..1...0...11
312 * read-write, dirty, old 10..0...1...11
313 * read-write, dirty, young 11..0...0...11
314 * The segment table origin is used to distinguish empty (origin==0) from
315 * read-write, old segment table entries (origin!=0)
316 * HW-bits: R read-only, I invalid
317 * SW-bits: y young, d dirty, r read, w write
320 /* Page status table bits for virtualization */
321 #define PGSTE_ACC_BITS 0xf000000000000000UL
322 #define PGSTE_FP_BIT 0x0800000000000000UL
323 #define PGSTE_PCL_BIT 0x0080000000000000UL
324 #define PGSTE_HR_BIT 0x0040000000000000UL
325 #define PGSTE_HC_BIT 0x0020000000000000UL
326 #define PGSTE_GR_BIT 0x0004000000000000UL
327 #define PGSTE_GC_BIT 0x0002000000000000UL
328 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
329 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
331 /* Guest Page State used for virtualization */
332 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
333 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
334 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
335 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
338 * A user page table pointer has the space-switch-event bit, the
339 * private-space-control bit and the storage-alteration-event-control
340 * bit set. A kernel page table pointer doesn't need them.
342 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
346 * Page protection definitions.
348 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
349 #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
350 _PAGE_INVALID | _PAGE_PROTECT)
351 #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
352 _PAGE_INVALID | _PAGE_PROTECT)
354 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
355 _PAGE_YOUNG | _PAGE_DIRTY)
356 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
357 _PAGE_YOUNG | _PAGE_DIRTY)
358 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
362 * On s390 the page table entry has an invalid bit and a read-only bit.
363 * Read permission implies execute permission and write permission
364 * implies read permission.
367 #define __P000 PAGE_NONE
368 #define __P001 PAGE_READ
369 #define __P010 PAGE_READ
370 #define __P011 PAGE_READ
371 #define __P100 PAGE_READ
372 #define __P101 PAGE_READ
373 #define __P110 PAGE_READ
374 #define __P111 PAGE_READ
376 #define __S000 PAGE_NONE
377 #define __S001 PAGE_READ
378 #define __S010 PAGE_WRITE
379 #define __S011 PAGE_WRITE
380 #define __S100 PAGE_READ
381 #define __S101 PAGE_READ
382 #define __S110 PAGE_WRITE
383 #define __S111 PAGE_WRITE
386 * Segment entry (large page) protection definitions.
388 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
389 _SEGMENT_ENTRY_PROTECT)
390 #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
392 #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
393 _SEGMENT_ENTRY_WRITE)
395 static inline int mm_has_pgste(struct mm_struct
*mm
)
398 if (unlikely(mm
->context
.has_pgste
))
404 static inline int mm_alloc_pgste(struct mm_struct
*mm
)
407 if (unlikely(mm
->context
.alloc_pgste
))
414 * In the case that a guest uses storage keys
415 * faults should no longer be backed by zero pages
417 #define mm_forbids_zeropage mm_use_skey
418 static inline int mm_use_skey(struct mm_struct
*mm
)
421 if (mm
->context
.use_skey
)
428 * pgd/pmd/pte query functions
430 static inline int pgd_present(pgd_t pgd
)
432 if ((pgd_val(pgd
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R2
)
434 return (pgd_val(pgd
) & _REGION_ENTRY_ORIGIN
) != 0UL;
437 static inline int pgd_none(pgd_t pgd
)
439 if ((pgd_val(pgd
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R2
)
441 return (pgd_val(pgd
) & _REGION_ENTRY_INVALID
) != 0UL;
444 static inline int pgd_bad(pgd_t pgd
)
447 * With dynamic page table levels the pgd can be a region table
448 * entry or a segment table entry. Check for the bit that are
449 * invalid for either table entry.
452 ~_SEGMENT_ENTRY_ORIGIN
& ~_REGION_ENTRY_INVALID
&
453 ~_REGION_ENTRY_TYPE_MASK
& ~_REGION_ENTRY_LENGTH
;
454 return (pgd_val(pgd
) & mask
) != 0;
457 static inline int pud_present(pud_t pud
)
459 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R3
)
461 return (pud_val(pud
) & _REGION_ENTRY_ORIGIN
) != 0UL;
464 static inline int pud_none(pud_t pud
)
466 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) < _REGION_ENTRY_TYPE_R3
)
468 return (pud_val(pud
) & _REGION_ENTRY_INVALID
) != 0UL;
471 static inline int pud_large(pud_t pud
)
473 if ((pud_val(pud
) & _REGION_ENTRY_TYPE_MASK
) != _REGION_ENTRY_TYPE_R3
)
475 return !!(pud_val(pud
) & _REGION3_ENTRY_LARGE
);
478 static inline int pud_bad(pud_t pud
)
481 * With dynamic page table levels the pud can be a region table
482 * entry or a segment table entry. Check for the bit that are
483 * invalid for either table entry.
486 ~_SEGMENT_ENTRY_ORIGIN
& ~_REGION_ENTRY_INVALID
&
487 ~_REGION_ENTRY_TYPE_MASK
& ~_REGION_ENTRY_LENGTH
;
488 return (pud_val(pud
) & mask
) != 0;
491 static inline int pmd_present(pmd_t pmd
)
493 return pmd_val(pmd
) != _SEGMENT_ENTRY_INVALID
;
496 static inline int pmd_none(pmd_t pmd
)
498 return pmd_val(pmd
) == _SEGMENT_ENTRY_INVALID
;
501 static inline int pmd_large(pmd_t pmd
)
503 return (pmd_val(pmd
) & _SEGMENT_ENTRY_LARGE
) != 0;
506 static inline unsigned long pmd_pfn(pmd_t pmd
)
508 unsigned long origin_mask
;
510 origin_mask
= _SEGMENT_ENTRY_ORIGIN
;
512 origin_mask
= _SEGMENT_ENTRY_ORIGIN_LARGE
;
513 return (pmd_val(pmd
) & origin_mask
) >> PAGE_SHIFT
;
516 static inline int pmd_bad(pmd_t pmd
)
519 return (pmd_val(pmd
) & ~_SEGMENT_ENTRY_BITS_LARGE
) != 0;
520 return (pmd_val(pmd
) & ~_SEGMENT_ENTRY_BITS
) != 0;
523 #define __HAVE_ARCH_PMD_WRITE
524 static inline int pmd_write(pmd_t pmd
)
526 return (pmd_val(pmd
) & _SEGMENT_ENTRY_WRITE
) != 0;
529 static inline int pmd_dirty(pmd_t pmd
)
533 dirty
= (pmd_val(pmd
) & _SEGMENT_ENTRY_DIRTY
) != 0;
537 static inline int pmd_young(pmd_t pmd
)
541 young
= (pmd_val(pmd
) & _SEGMENT_ENTRY_YOUNG
) != 0;
545 static inline int pte_present(pte_t pte
)
547 /* Bit pattern: (pte & 0x001) == 0x001 */
548 return (pte_val(pte
) & _PAGE_PRESENT
) != 0;
551 static inline int pte_none(pte_t pte
)
553 /* Bit pattern: pte == 0x400 */
554 return pte_val(pte
) == _PAGE_INVALID
;
557 static inline int pte_swap(pte_t pte
)
559 /* Bit pattern: (pte & 0x201) == 0x200 */
560 return (pte_val(pte
) & (_PAGE_PROTECT
| _PAGE_PRESENT
))
564 static inline int pte_special(pte_t pte
)
566 return (pte_val(pte
) & _PAGE_SPECIAL
);
569 #define __HAVE_ARCH_PTE_SAME
570 static inline int pte_same(pte_t a
, pte_t b
)
572 return pte_val(a
) == pte_val(b
);
575 #ifdef CONFIG_NUMA_BALANCING
576 static inline int pte_protnone(pte_t pte
)
578 return pte_present(pte
) && !(pte_val(pte
) & _PAGE_READ
);
581 static inline int pmd_protnone(pmd_t pmd
)
583 /* pmd_large(pmd) implies pmd_present(pmd) */
584 return pmd_large(pmd
) && !(pmd_val(pmd
) & _SEGMENT_ENTRY_READ
);
588 static inline int pte_soft_dirty(pte_t pte
)
590 return pte_val(pte
) & _PAGE_SOFT_DIRTY
;
592 #define pte_swp_soft_dirty pte_soft_dirty
594 static inline pte_t
pte_mksoft_dirty(pte_t pte
)
596 pte_val(pte
) |= _PAGE_SOFT_DIRTY
;
599 #define pte_swp_mksoft_dirty pte_mksoft_dirty
601 static inline pte_t
pte_clear_soft_dirty(pte_t pte
)
603 pte_val(pte
) &= ~_PAGE_SOFT_DIRTY
;
606 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
608 static inline int pmd_soft_dirty(pmd_t pmd
)
610 return pmd_val(pmd
) & _SEGMENT_ENTRY_SOFT_DIRTY
;
613 static inline pmd_t
pmd_mksoft_dirty(pmd_t pmd
)
615 pmd_val(pmd
) |= _SEGMENT_ENTRY_SOFT_DIRTY
;
619 static inline pmd_t
pmd_clear_soft_dirty(pmd_t pmd
)
621 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_SOFT_DIRTY
;
626 * query functions pte_write/pte_dirty/pte_young only work if
627 * pte_present() is true. Undefined behaviour if not..
629 static inline int pte_write(pte_t pte
)
631 return (pte_val(pte
) & _PAGE_WRITE
) != 0;
634 static inline int pte_dirty(pte_t pte
)
636 return (pte_val(pte
) & _PAGE_DIRTY
) != 0;
639 static inline int pte_young(pte_t pte
)
641 return (pte_val(pte
) & _PAGE_YOUNG
) != 0;
644 #define __HAVE_ARCH_PTE_UNUSED
645 static inline int pte_unused(pte_t pte
)
647 return pte_val(pte
) & _PAGE_UNUSED
;
651 * pgd/pmd/pte modification functions
654 static inline void pgd_clear(pgd_t
*pgd
)
656 if ((pgd_val(*pgd
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R2
)
657 pgd_val(*pgd
) = _REGION2_ENTRY_EMPTY
;
660 static inline void pud_clear(pud_t
*pud
)
662 if ((pud_val(*pud
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R3
)
663 pud_val(*pud
) = _REGION3_ENTRY_EMPTY
;
666 static inline void pmd_clear(pmd_t
*pmdp
)
668 pmd_val(*pmdp
) = _SEGMENT_ENTRY_INVALID
;
671 static inline void pte_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
673 pte_val(*ptep
) = _PAGE_INVALID
;
677 * The following pte modification functions only work if
678 * pte_present() is true. Undefined behaviour if not..
680 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
682 pte_val(pte
) &= _PAGE_CHG_MASK
;
683 pte_val(pte
) |= pgprot_val(newprot
);
685 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
686 * invalid bit set, clear it again for readable, young pages
688 if ((pte_val(pte
) & _PAGE_YOUNG
) && (pte_val(pte
) & _PAGE_READ
))
689 pte_val(pte
) &= ~_PAGE_INVALID
;
691 * newprot for PAGE_READ and PAGE_WRITE has the page protection
692 * bit set, clear it again for writable, dirty pages
694 if ((pte_val(pte
) & _PAGE_DIRTY
) && (pte_val(pte
) & _PAGE_WRITE
))
695 pte_val(pte
) &= ~_PAGE_PROTECT
;
699 static inline pte_t
pte_wrprotect(pte_t pte
)
701 pte_val(pte
) &= ~_PAGE_WRITE
;
702 pte_val(pte
) |= _PAGE_PROTECT
;
706 static inline pte_t
pte_mkwrite(pte_t pte
)
708 pte_val(pte
) |= _PAGE_WRITE
;
709 if (pte_val(pte
) & _PAGE_DIRTY
)
710 pte_val(pte
) &= ~_PAGE_PROTECT
;
714 static inline pte_t
pte_mkclean(pte_t pte
)
716 pte_val(pte
) &= ~_PAGE_DIRTY
;
717 pte_val(pte
) |= _PAGE_PROTECT
;
721 static inline pte_t
pte_mkdirty(pte_t pte
)
723 pte_val(pte
) |= _PAGE_DIRTY
| _PAGE_SOFT_DIRTY
;
724 if (pte_val(pte
) & _PAGE_WRITE
)
725 pte_val(pte
) &= ~_PAGE_PROTECT
;
729 static inline pte_t
pte_mkold(pte_t pte
)
731 pte_val(pte
) &= ~_PAGE_YOUNG
;
732 pte_val(pte
) |= _PAGE_INVALID
;
736 static inline pte_t
pte_mkyoung(pte_t pte
)
738 pte_val(pte
) |= _PAGE_YOUNG
;
739 if (pte_val(pte
) & _PAGE_READ
)
740 pte_val(pte
) &= ~_PAGE_INVALID
;
744 static inline pte_t
pte_mkspecial(pte_t pte
)
746 pte_val(pte
) |= _PAGE_SPECIAL
;
750 #ifdef CONFIG_HUGETLB_PAGE
751 static inline pte_t
pte_mkhuge(pte_t pte
)
753 pte_val(pte
) |= _PAGE_LARGE
;
758 static inline void __ptep_ipte(unsigned long address
, pte_t
*ptep
)
760 unsigned long pto
= (unsigned long) ptep
;
762 /* Invalidation + global TLB flush for the pte */
765 : "=m" (*ptep
) : "m" (*ptep
), "a" (pto
), "a" (address
));
768 static inline void __ptep_ipte_local(unsigned long address
, pte_t
*ptep
)
770 unsigned long pto
= (unsigned long) ptep
;
772 /* Invalidation + local TLB flush for the pte */
774 " .insn rrf,0xb2210000,%2,%3,0,1"
775 : "=m" (*ptep
) : "m" (*ptep
), "a" (pto
), "a" (address
));
778 static inline void __ptep_ipte_range(unsigned long address
, int nr
, pte_t
*ptep
)
780 unsigned long pto
= (unsigned long) ptep
;
782 /* Invalidate a range of ptes + global TLB flush of the ptes */
785 " .insn rrf,0xb2210000,%2,%0,%1,0"
786 : "+a" (address
), "+a" (nr
) : "a" (pto
) : "memory");
791 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
792 * both clear the TLB for the unmapped pte. The reason is that
793 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
794 * to modify an active pte. The sequence is
795 * 1) ptep_get_and_clear
798 * On s390 the tlb needs to get flushed with the modification of the pte
799 * if the pte is active. The only way how this can be implemented is to
800 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
803 pte_t
ptep_xchg_direct(struct mm_struct
*, unsigned long, pte_t
*, pte_t
);
804 pte_t
ptep_xchg_lazy(struct mm_struct
*, unsigned long, pte_t
*, pte_t
);
806 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
807 static inline int ptep_test_and_clear_young(struct vm_area_struct
*vma
,
808 unsigned long addr
, pte_t
*ptep
)
812 pte
= ptep_xchg_direct(vma
->vm_mm
, addr
, ptep
, pte_mkold(pte
));
813 return pte_young(pte
);
816 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
817 static inline int ptep_clear_flush_young(struct vm_area_struct
*vma
,
818 unsigned long address
, pte_t
*ptep
)
820 return ptep_test_and_clear_young(vma
, address
, ptep
);
823 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
824 static inline pte_t
ptep_get_and_clear(struct mm_struct
*mm
,
825 unsigned long addr
, pte_t
*ptep
)
827 return ptep_xchg_lazy(mm
, addr
, ptep
, __pte(_PAGE_INVALID
));
830 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
831 pte_t
ptep_modify_prot_start(struct mm_struct
*, unsigned long, pte_t
*);
832 void ptep_modify_prot_commit(struct mm_struct
*, unsigned long, pte_t
*, pte_t
);
834 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
835 static inline pte_t
ptep_clear_flush(struct vm_area_struct
*vma
,
836 unsigned long addr
, pte_t
*ptep
)
838 return ptep_xchg_direct(vma
->vm_mm
, addr
, ptep
, __pte(_PAGE_INVALID
));
842 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
843 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
844 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
845 * cannot be accessed while the batched unmap is running. In this case
846 * full==1 and a simple pte_clear is enough. See tlb.h.
848 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
849 static inline pte_t
ptep_get_and_clear_full(struct mm_struct
*mm
,
851 pte_t
*ptep
, int full
)
855 *ptep
= __pte(_PAGE_INVALID
);
858 return ptep_xchg_lazy(mm
, addr
, ptep
, __pte(_PAGE_INVALID
));
861 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
862 static inline void ptep_set_wrprotect(struct mm_struct
*mm
,
863 unsigned long addr
, pte_t
*ptep
)
868 ptep_xchg_lazy(mm
, addr
, ptep
, pte_wrprotect(pte
));
871 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
872 static inline int ptep_set_access_flags(struct vm_area_struct
*vma
,
873 unsigned long addr
, pte_t
*ptep
,
874 pte_t entry
, int dirty
)
876 if (pte_same(*ptep
, entry
))
878 ptep_xchg_direct(vma
->vm_mm
, addr
, ptep
, entry
);
883 * Additional functions to handle KVM guest page tables
885 void ptep_set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
886 pte_t
*ptep
, pte_t entry
);
887 void ptep_set_notify(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
);
888 void ptep_notify(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
);
889 void ptep_zap_unused(struct mm_struct
*mm
, unsigned long addr
,
890 pte_t
*ptep
, int reset
);
891 void ptep_zap_key(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
);
893 bool test_and_clear_guest_dirty(struct mm_struct
*mm
, unsigned long address
);
894 int set_guest_storage_key(struct mm_struct
*mm
, unsigned long addr
,
895 unsigned char key
, bool nq
);
896 unsigned char get_guest_storage_key(struct mm_struct
*mm
, unsigned long addr
);
899 * Certain architectures need to do special things when PTEs
900 * within a page table are directly modified. Thus, the following
901 * hook is made available.
903 static inline void set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
904 pte_t
*ptep
, pte_t entry
)
906 if (mm_has_pgste(mm
))
907 ptep_set_pte_at(mm
, addr
, ptep
, entry
);
913 * Conversion functions: convert a page and protection to a page entry,
914 * and a page entry and page directory to the page they refer to.
916 static inline pte_t
mk_pte_phys(unsigned long physpage
, pgprot_t pgprot
)
919 pte_val(__pte
) = physpage
+ pgprot_val(pgprot
);
920 return pte_mkyoung(__pte
);
923 static inline pte_t
mk_pte(struct page
*page
, pgprot_t pgprot
)
925 unsigned long physpage
= page_to_phys(page
);
926 pte_t __pte
= mk_pte_phys(physpage
, pgprot
);
928 if (pte_write(__pte
) && PageDirty(page
))
929 __pte
= pte_mkdirty(__pte
);
933 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
934 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
935 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
936 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
938 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
939 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
941 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
942 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
943 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
945 static inline pud_t
*pud_offset(pgd_t
*pgd
, unsigned long address
)
947 pud_t
*pud
= (pud_t
*) pgd
;
948 if ((pgd_val(*pgd
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R2
)
949 pud
= (pud_t
*) pgd_deref(*pgd
);
950 return pud
+ pud_index(address
);
953 static inline pmd_t
*pmd_offset(pud_t
*pud
, unsigned long address
)
955 pmd_t
*pmd
= (pmd_t
*) pud
;
956 if ((pud_val(*pud
) & _REGION_ENTRY_TYPE_MASK
) == _REGION_ENTRY_TYPE_R3
)
957 pmd
= (pmd_t
*) pud_deref(*pud
);
958 return pmd
+ pmd_index(address
);
961 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
962 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
963 #define pte_page(x) pfn_to_page(pte_pfn(x))
965 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
967 /* Find an entry in the lowest level page table.. */
968 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
969 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
970 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
971 #define pte_unmap(pte) do { } while (0)
973 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
974 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot
)
977 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
978 * Convert to segment table entry format.
980 if (pgprot_val(pgprot
) == pgprot_val(PAGE_NONE
))
981 return pgprot_val(SEGMENT_NONE
);
982 if (pgprot_val(pgprot
) == pgprot_val(PAGE_READ
))
983 return pgprot_val(SEGMENT_READ
);
984 return pgprot_val(SEGMENT_WRITE
);
987 static inline pmd_t
pmd_wrprotect(pmd_t pmd
)
989 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_WRITE
;
990 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
994 static inline pmd_t
pmd_mkwrite(pmd_t pmd
)
996 pmd_val(pmd
) |= _SEGMENT_ENTRY_WRITE
;
997 if (pmd_large(pmd
) && !(pmd_val(pmd
) & _SEGMENT_ENTRY_DIRTY
))
999 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_PROTECT
;
1003 static inline pmd_t
pmd_mkclean(pmd_t pmd
)
1005 if (pmd_large(pmd
)) {
1006 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_DIRTY
;
1007 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1012 static inline pmd_t
pmd_mkdirty(pmd_t pmd
)
1014 if (pmd_large(pmd
)) {
1015 pmd_val(pmd
) |= _SEGMENT_ENTRY_DIRTY
|
1016 _SEGMENT_ENTRY_SOFT_DIRTY
;
1017 if (pmd_val(pmd
) & _SEGMENT_ENTRY_WRITE
)
1018 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_PROTECT
;
1023 static inline pmd_t
pmd_mkyoung(pmd_t pmd
)
1025 if (pmd_large(pmd
)) {
1026 pmd_val(pmd
) |= _SEGMENT_ENTRY_YOUNG
;
1027 if (pmd_val(pmd
) & _SEGMENT_ENTRY_READ
)
1028 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_INVALID
;
1033 static inline pmd_t
pmd_mkold(pmd_t pmd
)
1035 if (pmd_large(pmd
)) {
1036 pmd_val(pmd
) &= ~_SEGMENT_ENTRY_YOUNG
;
1037 pmd_val(pmd
) |= _SEGMENT_ENTRY_INVALID
;
1042 static inline pmd_t
pmd_modify(pmd_t pmd
, pgprot_t newprot
)
1044 if (pmd_large(pmd
)) {
1045 pmd_val(pmd
) &= _SEGMENT_ENTRY_ORIGIN_LARGE
|
1046 _SEGMENT_ENTRY_DIRTY
| _SEGMENT_ENTRY_YOUNG
|
1047 _SEGMENT_ENTRY_LARGE
| _SEGMENT_ENTRY_SOFT_DIRTY
;
1048 pmd_val(pmd
) |= massage_pgprot_pmd(newprot
);
1049 if (!(pmd_val(pmd
) & _SEGMENT_ENTRY_DIRTY
))
1050 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1051 if (!(pmd_val(pmd
) & _SEGMENT_ENTRY_YOUNG
))
1052 pmd_val(pmd
) |= _SEGMENT_ENTRY_INVALID
;
1055 pmd_val(pmd
) &= _SEGMENT_ENTRY_ORIGIN
;
1056 pmd_val(pmd
) |= massage_pgprot_pmd(newprot
);
1060 static inline pmd_t
mk_pmd_phys(unsigned long physpage
, pgprot_t pgprot
)
1063 pmd_val(__pmd
) = physpage
+ massage_pgprot_pmd(pgprot
);
1067 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1069 static inline void __pmdp_csp(pmd_t
*pmdp
)
1071 register unsigned long reg2
asm("2") = pmd_val(*pmdp
);
1072 register unsigned long reg3
asm("3") = pmd_val(*pmdp
) |
1073 _SEGMENT_ENTRY_INVALID
;
1074 register unsigned long reg4
asm("4") = ((unsigned long) pmdp
) + 5;
1079 : "d" (reg2
), "d" (reg3
), "d" (reg4
), "m" (*pmdp
) : "cc");
1082 static inline void __pmdp_idte(unsigned long address
, pmd_t
*pmdp
)
1086 sto
= (unsigned long) pmdp
- pmd_index(address
) * sizeof(pmd_t
);
1088 " .insn rrf,0xb98e0000,%2,%3,0,0"
1090 : "m" (*pmdp
), "a" (sto
), "a" ((address
& HPAGE_MASK
))
1094 static inline void __pmdp_idte_local(unsigned long address
, pmd_t
*pmdp
)
1098 sto
= (unsigned long) pmdp
- pmd_index(address
) * sizeof(pmd_t
);
1100 " .insn rrf,0xb98e0000,%2,%3,0,1"
1102 : "m" (*pmdp
), "a" (sto
), "a" ((address
& HPAGE_MASK
))
1106 pmd_t
pmdp_xchg_direct(struct mm_struct
*, unsigned long, pmd_t
*, pmd_t
);
1107 pmd_t
pmdp_xchg_lazy(struct mm_struct
*, unsigned long, pmd_t
*, pmd_t
);
1109 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1111 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1112 void pgtable_trans_huge_deposit(struct mm_struct
*mm
, pmd_t
*pmdp
,
1115 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1116 pgtable_t
pgtable_trans_huge_withdraw(struct mm_struct
*mm
, pmd_t
*pmdp
);
1118 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1119 static inline int pmdp_set_access_flags(struct vm_area_struct
*vma
,
1120 unsigned long addr
, pmd_t
*pmdp
,
1121 pmd_t entry
, int dirty
)
1123 VM_BUG_ON(addr
& ~HPAGE_MASK
);
1125 entry
= pmd_mkyoung(entry
);
1127 entry
= pmd_mkdirty(entry
);
1128 if (pmd_val(*pmdp
) == pmd_val(entry
))
1130 pmdp_xchg_direct(vma
->vm_mm
, addr
, pmdp
, entry
);
1134 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1135 static inline int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
1136 unsigned long addr
, pmd_t
*pmdp
)
1140 pmd
= pmdp_xchg_direct(vma
->vm_mm
, addr
, pmdp
, pmd_mkold(pmd
));
1141 return pmd_young(pmd
);
1144 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1145 static inline int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
1146 unsigned long addr
, pmd_t
*pmdp
)
1148 VM_BUG_ON(addr
& ~HPAGE_MASK
);
1149 return pmdp_test_and_clear_young(vma
, addr
, pmdp
);
1152 static inline void set_pmd_at(struct mm_struct
*mm
, unsigned long addr
,
1153 pmd_t
*pmdp
, pmd_t entry
)
1158 static inline pmd_t
pmd_mkhuge(pmd_t pmd
)
1160 pmd_val(pmd
) |= _SEGMENT_ENTRY_LARGE
;
1161 pmd_val(pmd
) |= _SEGMENT_ENTRY_YOUNG
;
1162 pmd_val(pmd
) |= _SEGMENT_ENTRY_PROTECT
;
1166 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1167 static inline pmd_t
pmdp_huge_get_and_clear(struct mm_struct
*mm
,
1168 unsigned long addr
, pmd_t
*pmdp
)
1170 return pmdp_xchg_direct(mm
, addr
, pmdp
, __pmd(_SEGMENT_ENTRY_INVALID
));
1173 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1174 static inline pmd_t
pmdp_huge_get_and_clear_full(struct mm_struct
*mm
,
1176 pmd_t
*pmdp
, int full
)
1180 *pmdp
= __pmd(_SEGMENT_ENTRY_INVALID
);
1183 return pmdp_xchg_lazy(mm
, addr
, pmdp
, __pmd(_SEGMENT_ENTRY_INVALID
));
1186 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1187 static inline pmd_t
pmdp_huge_clear_flush(struct vm_area_struct
*vma
,
1188 unsigned long addr
, pmd_t
*pmdp
)
1190 return pmdp_huge_get_and_clear(vma
->vm_mm
, addr
, pmdp
);
1193 #define __HAVE_ARCH_PMDP_INVALIDATE
1194 static inline void pmdp_invalidate(struct vm_area_struct
*vma
,
1195 unsigned long addr
, pmd_t
*pmdp
)
1197 pmdp_xchg_direct(vma
->vm_mm
, addr
, pmdp
, __pmd(_SEGMENT_ENTRY_INVALID
));
1200 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1201 static inline void pmdp_set_wrprotect(struct mm_struct
*mm
,
1202 unsigned long addr
, pmd_t
*pmdp
)
1207 pmd
= pmdp_xchg_lazy(mm
, addr
, pmdp
, pmd_wrprotect(pmd
));
1210 static inline pmd_t
pmdp_collapse_flush(struct vm_area_struct
*vma
,
1211 unsigned long address
,
1214 return pmdp_huge_get_and_clear(vma
->vm_mm
, address
, pmdp
);
1216 #define pmdp_collapse_flush pmdp_collapse_flush
1218 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1219 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1221 static inline int pmd_trans_huge(pmd_t pmd
)
1223 return pmd_val(pmd
) & _SEGMENT_ENTRY_LARGE
;
1226 static inline int has_transparent_hugepage(void)
1228 return MACHINE_HAS_HPAGE
? 1 : 0;
1230 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1233 * 64 bit swap entry format:
1234 * A page-table entry has some bits we have to treat in a special way.
1235 * Bits 52 and bit 55 have to be zero, otherwise a specification
1236 * exception will occur instead of a page translation exception. The
1237 * specification exception has the bad habit not to store necessary
1238 * information in the lowcore.
1239 * Bits 54 and 63 are used to indicate the page type.
1240 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1241 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1242 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1244 * | offset |01100|type |00|
1245 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1246 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1249 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1250 #define __SWP_OFFSET_SHIFT 12
1251 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1252 #define __SWP_TYPE_SHIFT 2
1254 static inline pte_t
mk_swap_pte(unsigned long type
, unsigned long offset
)
1258 pte_val(pte
) = _PAGE_INVALID
| _PAGE_PROTECT
;
1259 pte_val(pte
) |= (offset
& __SWP_OFFSET_MASK
) << __SWP_OFFSET_SHIFT
;
1260 pte_val(pte
) |= (type
& __SWP_TYPE_MASK
) << __SWP_TYPE_SHIFT
;
1264 static inline unsigned long __swp_type(swp_entry_t entry
)
1266 return (entry
.val
>> __SWP_TYPE_SHIFT
) & __SWP_TYPE_MASK
;
1269 static inline unsigned long __swp_offset(swp_entry_t entry
)
1271 return (entry
.val
>> __SWP_OFFSET_SHIFT
) & __SWP_OFFSET_MASK
;
1274 static inline swp_entry_t
__swp_entry(unsigned long type
, unsigned long offset
)
1276 return (swp_entry_t
) { pte_val(mk_swap_pte(type
, offset
)) };
1279 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1280 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1282 #endif /* !__ASSEMBLY__ */
1284 #define kern_addr_valid(addr) (1)
1286 extern int vmem_add_mapping(unsigned long start
, unsigned long size
);
1287 extern int vmem_remove_mapping(unsigned long start
, unsigned long size
);
1288 extern int s390_enable_sie(void);
1289 extern int s390_enable_skey(void);
1290 extern void s390_reset_cmma(struct mm_struct
*mm
);
1292 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1293 #define HAVE_ARCH_UNMAPPED_AREA
1294 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1297 * No page table caches to initialise
1299 static inline void pgtable_cache_init(void) { }
1300 static inline void check_pgt_cache(void) { }
1302 #include <asm-generic/pgtable.h>
1304 #endif /* _S390_PAGE_H */