2 * Kernel Probes (KProbes)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corp. 2002, 2006
20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <linux/module.h>
30 #include <linux/slab.h>
31 #include <linux/hardirq.h>
32 #include <linux/ftrace.h>
33 #include <asm/cacheflush.h>
34 #include <asm/sections.h>
37 DEFINE_PER_CPU(struct kprobe
*, current_kprobe
);
38 DEFINE_PER_CPU(struct kprobe_ctlblk
, kprobe_ctlblk
);
40 struct kretprobe_blackpoint kretprobe_blacklist
[] = { };
42 DEFINE_INSN_CACHE_OPS(dmainsn
);
44 static void *alloc_dmainsn_page(void)
46 return (void *)__get_free_page(GFP_KERNEL
| GFP_DMA
);
49 static void free_dmainsn_page(void *page
)
51 free_page((unsigned long)page
);
54 struct kprobe_insn_cache kprobe_dmainsn_slots
= {
55 .mutex
= __MUTEX_INITIALIZER(kprobe_dmainsn_slots
.mutex
),
56 .alloc
= alloc_dmainsn_page
,
57 .free
= free_dmainsn_page
,
58 .pages
= LIST_HEAD_INIT(kprobe_dmainsn_slots
.pages
),
59 .insn_size
= MAX_INSN_SIZE
,
62 static void copy_instruction(struct kprobe
*p
)
64 unsigned long ip
= (unsigned long) p
->addr
;
68 if (ftrace_location(ip
) == ip
) {
70 * If kprobes patches the instruction that is morphed by
71 * ftrace make sure that kprobes always sees the branch
72 * "jg .+24" that skips the mcount block or the "brcl 0,0"
73 * in case of hotpatch.
75 ftrace_generate_nop_insn((struct ftrace_insn
*)p
->ainsn
.insn
);
76 p
->ainsn
.is_ftrace_insn
= 1;
78 memcpy(p
->ainsn
.insn
, p
->addr
, insn_length(*p
->addr
>> 8));
79 p
->opcode
= p
->ainsn
.insn
[0];
80 if (!probe_is_insn_relative_long(p
->ainsn
.insn
))
83 * For pc-relative instructions in RIL-b or RIL-c format patch the
84 * RI2 displacement field. We have already made sure that the insn
85 * slot for the patched instruction is within the same 2GB area
86 * as the original instruction (either kernel image or module area).
87 * Therefore the new displacement will always fit.
89 disp
= *(s32
*)&p
->ainsn
.insn
[1];
90 addr
= (u64
)(unsigned long)p
->addr
;
91 new_addr
= (u64
)(unsigned long)p
->ainsn
.insn
;
92 new_disp
= ((addr
+ (disp
* 2)) - new_addr
) / 2;
93 *(s32
*)&p
->ainsn
.insn
[1] = new_disp
;
95 NOKPROBE_SYMBOL(copy_instruction
);
97 static inline int is_kernel_addr(void *addr
)
99 return addr
< (void *)_end
;
102 static int s390_get_insn_slot(struct kprobe
*p
)
105 * Get an insn slot that is within the same 2GB area like the original
106 * instruction. That way instructions with a 32bit signed displacement
107 * field can be patched and executed within the insn slot.
109 p
->ainsn
.insn
= NULL
;
110 if (is_kernel_addr(p
->addr
))
111 p
->ainsn
.insn
= get_dmainsn_slot();
112 else if (is_module_addr(p
->addr
))
113 p
->ainsn
.insn
= get_insn_slot();
114 return p
->ainsn
.insn
? 0 : -ENOMEM
;
116 NOKPROBE_SYMBOL(s390_get_insn_slot
);
118 static void s390_free_insn_slot(struct kprobe
*p
)
122 if (is_kernel_addr(p
->addr
))
123 free_dmainsn_slot(p
->ainsn
.insn
, 0);
125 free_insn_slot(p
->ainsn
.insn
, 0);
126 p
->ainsn
.insn
= NULL
;
128 NOKPROBE_SYMBOL(s390_free_insn_slot
);
130 int arch_prepare_kprobe(struct kprobe
*p
)
132 if ((unsigned long) p
->addr
& 0x01)
134 /* Make sure the probe isn't going on a difficult instruction */
135 if (probe_is_prohibited_opcode(p
->addr
))
137 if (s390_get_insn_slot(p
))
142 NOKPROBE_SYMBOL(arch_prepare_kprobe
);
144 int arch_check_ftrace_location(struct kprobe
*p
)
149 struct swap_insn_args
{
151 unsigned int arm_kprobe
: 1;
154 static int swap_instruction(void *data
)
156 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
157 unsigned long status
= kcb
->kprobe_status
;
158 struct swap_insn_args
*args
= data
;
159 struct ftrace_insn new_insn
, *insn
;
160 struct kprobe
*p
= args
->p
;
163 new_insn
.opc
= args
->arm_kprobe
? BREAKPOINT_INSTRUCTION
: p
->opcode
;
164 len
= sizeof(new_insn
.opc
);
165 if (!p
->ainsn
.is_ftrace_insn
)
167 len
= sizeof(new_insn
);
168 insn
= (struct ftrace_insn
*) p
->addr
;
169 if (args
->arm_kprobe
) {
170 if (is_ftrace_nop(insn
))
171 new_insn
.disp
= KPROBE_ON_FTRACE_NOP
;
173 new_insn
.disp
= KPROBE_ON_FTRACE_CALL
;
175 ftrace_generate_call_insn(&new_insn
, (unsigned long)p
->addr
);
176 if (insn
->disp
== KPROBE_ON_FTRACE_NOP
)
177 ftrace_generate_nop_insn(&new_insn
);
180 kcb
->kprobe_status
= KPROBE_SWAP_INST
;
181 s390_kernel_write(p
->addr
, &new_insn
, len
);
182 kcb
->kprobe_status
= status
;
185 NOKPROBE_SYMBOL(swap_instruction
);
187 void arch_arm_kprobe(struct kprobe
*p
)
189 struct swap_insn_args args
= {.p
= p
, .arm_kprobe
= 1};
191 stop_machine(swap_instruction
, &args
, NULL
);
193 NOKPROBE_SYMBOL(arch_arm_kprobe
);
195 void arch_disarm_kprobe(struct kprobe
*p
)
197 struct swap_insn_args args
= {.p
= p
, .arm_kprobe
= 0};
199 stop_machine(swap_instruction
, &args
, NULL
);
201 NOKPROBE_SYMBOL(arch_disarm_kprobe
);
203 void arch_remove_kprobe(struct kprobe
*p
)
205 s390_free_insn_slot(p
);
207 NOKPROBE_SYMBOL(arch_remove_kprobe
);
209 static void enable_singlestep(struct kprobe_ctlblk
*kcb
,
210 struct pt_regs
*regs
,
213 struct per_regs per_kprobe
;
215 /* Set up the PER control registers %cr9-%cr11 */
216 per_kprobe
.control
= PER_EVENT_IFETCH
;
217 per_kprobe
.start
= ip
;
220 /* Save control regs and psw mask */
221 __ctl_store(kcb
->kprobe_saved_ctl
, 9, 11);
222 kcb
->kprobe_saved_imask
= regs
->psw
.mask
&
223 (PSW_MASK_PER
| PSW_MASK_IO
| PSW_MASK_EXT
);
225 /* Set PER control regs, turns on single step for the given address */
226 __ctl_load(per_kprobe
, 9, 11);
227 regs
->psw
.mask
|= PSW_MASK_PER
;
228 regs
->psw
.mask
&= ~(PSW_MASK_IO
| PSW_MASK_EXT
);
231 NOKPROBE_SYMBOL(enable_singlestep
);
233 static void disable_singlestep(struct kprobe_ctlblk
*kcb
,
234 struct pt_regs
*regs
,
237 /* Restore control regs and psw mask, set new psw address */
238 __ctl_load(kcb
->kprobe_saved_ctl
, 9, 11);
239 regs
->psw
.mask
&= ~PSW_MASK_PER
;
240 regs
->psw
.mask
|= kcb
->kprobe_saved_imask
;
243 NOKPROBE_SYMBOL(disable_singlestep
);
246 * Activate a kprobe by storing its pointer to current_kprobe. The
247 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
248 * two kprobes can be active, see KPROBE_REENTER.
250 static void push_kprobe(struct kprobe_ctlblk
*kcb
, struct kprobe
*p
)
252 kcb
->prev_kprobe
.kp
= __this_cpu_read(current_kprobe
);
253 kcb
->prev_kprobe
.status
= kcb
->kprobe_status
;
254 __this_cpu_write(current_kprobe
, p
);
256 NOKPROBE_SYMBOL(push_kprobe
);
259 * Deactivate a kprobe by backing up to the previous state. If the
260 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
261 * for any other state prev_kprobe.kp will be NULL.
263 static void pop_kprobe(struct kprobe_ctlblk
*kcb
)
265 __this_cpu_write(current_kprobe
, kcb
->prev_kprobe
.kp
);
266 kcb
->kprobe_status
= kcb
->prev_kprobe
.status
;
268 NOKPROBE_SYMBOL(pop_kprobe
);
270 void arch_prepare_kretprobe(struct kretprobe_instance
*ri
, struct pt_regs
*regs
)
272 ri
->ret_addr
= (kprobe_opcode_t
*) regs
->gprs
[14];
274 /* Replace the return addr with trampoline addr */
275 regs
->gprs
[14] = (unsigned long) &kretprobe_trampoline
;
277 NOKPROBE_SYMBOL(arch_prepare_kretprobe
);
279 static void kprobe_reenter_check(struct kprobe_ctlblk
*kcb
, struct kprobe
*p
)
281 switch (kcb
->kprobe_status
) {
282 case KPROBE_HIT_SSDONE
:
283 case KPROBE_HIT_ACTIVE
:
284 kprobes_inc_nmissed_count(p
);
290 * A kprobe on the code path to single step an instruction
291 * is a BUG. The code path resides in the .kprobes.text
292 * section and is executed with interrupts disabled.
294 printk(KERN_EMERG
"Invalid kprobe detected at %p.\n", p
->addr
);
299 NOKPROBE_SYMBOL(kprobe_reenter_check
);
301 static int kprobe_handler(struct pt_regs
*regs
)
303 struct kprobe_ctlblk
*kcb
;
307 * We want to disable preemption for the entire duration of kprobe
308 * processing. That includes the calls to the pre/post handlers
309 * and single stepping the kprobe instruction.
312 kcb
= get_kprobe_ctlblk();
313 p
= get_kprobe((void *)(regs
->psw
.addr
- 2));
316 if (kprobe_running()) {
318 * We have hit a kprobe while another is still
319 * active. This can happen in the pre and post
320 * handler. Single step the instruction of the
321 * new probe but do not call any handler function
322 * of this secondary kprobe.
323 * push_kprobe and pop_kprobe saves and restores
324 * the currently active kprobe.
326 kprobe_reenter_check(kcb
, p
);
328 kcb
->kprobe_status
= KPROBE_REENTER
;
331 * If we have no pre-handler or it returned 0, we
332 * continue with single stepping. If we have a
333 * pre-handler and it returned non-zero, it prepped
334 * for calling the break_handler below on re-entry
335 * for jprobe processing, so get out doing nothing
339 kcb
->kprobe_status
= KPROBE_HIT_ACTIVE
;
340 if (p
->pre_handler
&& p
->pre_handler(p
, regs
))
342 kcb
->kprobe_status
= KPROBE_HIT_SS
;
344 enable_singlestep(kcb
, regs
, (unsigned long) p
->ainsn
.insn
);
346 } else if (kprobe_running()) {
347 p
= __this_cpu_read(current_kprobe
);
348 if (p
->break_handler
&& p
->break_handler(p
, regs
)) {
350 * Continuation after the jprobe completed and
351 * caused the jprobe_return trap. The jprobe
352 * break_handler "returns" to the original
353 * function that still has the kprobe breakpoint
354 * installed. We continue with single stepping.
356 kcb
->kprobe_status
= KPROBE_HIT_SS
;
357 enable_singlestep(kcb
, regs
,
358 (unsigned long) p
->ainsn
.insn
);
361 * No kprobe at this address and the current kprobe
362 * has no break handler (no jprobe!). The kernel just
363 * exploded, let the standard trap handler pick up the
367 * No kprobe at this address and no active kprobe. The trap has
368 * not been caused by a kprobe breakpoint. The race of breakpoint
369 * vs. kprobe remove does not exist because on s390 as we use
370 * stop_machine to arm/disarm the breakpoints.
372 preempt_enable_no_resched();
375 NOKPROBE_SYMBOL(kprobe_handler
);
378 * Function return probe trampoline:
379 * - init_kprobes() establishes a probepoint here
380 * - When the probed function returns, this probe
381 * causes the handlers to fire
383 static void __used
kretprobe_trampoline_holder(void)
385 asm volatile(".global kretprobe_trampoline\n"
386 "kretprobe_trampoline: bcr 0,0\n");
390 * Called when the probe at kretprobe trampoline is hit
392 static int trampoline_probe_handler(struct kprobe
*p
, struct pt_regs
*regs
)
394 struct kretprobe_instance
*ri
;
395 struct hlist_head
*head
, empty_rp
;
396 struct hlist_node
*tmp
;
397 unsigned long flags
, orig_ret_address
;
398 unsigned long trampoline_address
;
399 kprobe_opcode_t
*correct_ret_addr
;
401 INIT_HLIST_HEAD(&empty_rp
);
402 kretprobe_hash_lock(current
, &head
, &flags
);
405 * It is possible to have multiple instances associated with a given
406 * task either because an multiple functions in the call path
407 * have a return probe installed on them, and/or more than one return
408 * return probe was registered for a target function.
410 * We can handle this because:
411 * - instances are always inserted at the head of the list
412 * - when multiple return probes are registered for the same
413 * function, the first instance's ret_addr will point to the
414 * real return address, and all the rest will point to
415 * kretprobe_trampoline
418 orig_ret_address
= 0;
419 correct_ret_addr
= NULL
;
420 trampoline_address
= (unsigned long) &kretprobe_trampoline
;
421 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
422 if (ri
->task
!= current
)
423 /* another task is sharing our hash bucket */
426 orig_ret_address
= (unsigned long) ri
->ret_addr
;
428 if (orig_ret_address
!= trampoline_address
)
430 * This is the real return address. Any other
431 * instances associated with this task are for
432 * other calls deeper on the call stack
437 kretprobe_assert(ri
, orig_ret_address
, trampoline_address
);
439 correct_ret_addr
= ri
->ret_addr
;
440 hlist_for_each_entry_safe(ri
, tmp
, head
, hlist
) {
441 if (ri
->task
!= current
)
442 /* another task is sharing our hash bucket */
445 orig_ret_address
= (unsigned long) ri
->ret_addr
;
447 if (ri
->rp
&& ri
->rp
->handler
) {
448 ri
->ret_addr
= correct_ret_addr
;
449 ri
->rp
->handler(ri
, regs
);
452 recycle_rp_inst(ri
, &empty_rp
);
454 if (orig_ret_address
!= trampoline_address
)
456 * This is the real return address. Any other
457 * instances associated with this task are for
458 * other calls deeper on the call stack
463 regs
->psw
.addr
= orig_ret_address
;
465 pop_kprobe(get_kprobe_ctlblk());
466 kretprobe_hash_unlock(current
, &flags
);
467 preempt_enable_no_resched();
469 hlist_for_each_entry_safe(ri
, tmp
, &empty_rp
, hlist
) {
470 hlist_del(&ri
->hlist
);
474 * By returning a non-zero value, we are telling
475 * kprobe_handler() that we don't want the post_handler
476 * to run (and have re-enabled preemption)
480 NOKPROBE_SYMBOL(trampoline_probe_handler
);
483 * Called after single-stepping. p->addr is the address of the
484 * instruction whose first byte has been replaced by the "breakpoint"
485 * instruction. To avoid the SMP problems that can occur when we
486 * temporarily put back the original opcode to single-step, we
487 * single-stepped a copy of the instruction. The address of this
488 * copy is p->ainsn.insn.
490 static void resume_execution(struct kprobe
*p
, struct pt_regs
*regs
)
492 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
493 unsigned long ip
= regs
->psw
.addr
;
494 int fixup
= probe_get_fixup_type(p
->ainsn
.insn
);
496 /* Check if the kprobes location is an enabled ftrace caller */
497 if (p
->ainsn
.is_ftrace_insn
) {
498 struct ftrace_insn
*insn
= (struct ftrace_insn
*) p
->addr
;
499 struct ftrace_insn call_insn
;
501 ftrace_generate_call_insn(&call_insn
, (unsigned long) p
->addr
);
503 * A kprobe on an enabled ftrace call site actually single
504 * stepped an unconditional branch (ftrace nop equivalent).
505 * Now we need to fixup things and pretend that a brasl r0,...
506 * was executed instead.
508 if (insn
->disp
== KPROBE_ON_FTRACE_CALL
) {
509 ip
+= call_insn
.disp
* 2 - MCOUNT_INSN_SIZE
;
510 regs
->gprs
[0] = (unsigned long)p
->addr
+ sizeof(*insn
);
514 if (fixup
& FIXUP_PSW_NORMAL
)
515 ip
+= (unsigned long) p
->addr
- (unsigned long) p
->ainsn
.insn
;
517 if (fixup
& FIXUP_BRANCH_NOT_TAKEN
) {
518 int ilen
= insn_length(p
->ainsn
.insn
[0] >> 8);
519 if (ip
- (unsigned long) p
->ainsn
.insn
== ilen
)
520 ip
= (unsigned long) p
->addr
+ ilen
;
523 if (fixup
& FIXUP_RETURN_REGISTER
) {
524 int reg
= (p
->ainsn
.insn
[0] & 0xf0) >> 4;
525 regs
->gprs
[reg
] += (unsigned long) p
->addr
-
526 (unsigned long) p
->ainsn
.insn
;
529 disable_singlestep(kcb
, regs
, ip
);
531 NOKPROBE_SYMBOL(resume_execution
);
533 static int post_kprobe_handler(struct pt_regs
*regs
)
535 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
536 struct kprobe
*p
= kprobe_running();
541 if (kcb
->kprobe_status
!= KPROBE_REENTER
&& p
->post_handler
) {
542 kcb
->kprobe_status
= KPROBE_HIT_SSDONE
;
543 p
->post_handler(p
, regs
, 0);
546 resume_execution(p
, regs
);
548 preempt_enable_no_resched();
551 * if somebody else is singlestepping across a probe point, psw mask
552 * will have PER set, in which case, continue the remaining processing
553 * of do_single_step, as if this is not a probe hit.
555 if (regs
->psw
.mask
& PSW_MASK_PER
)
560 NOKPROBE_SYMBOL(post_kprobe_handler
);
562 static int kprobe_trap_handler(struct pt_regs
*regs
, int trapnr
)
564 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
565 struct kprobe
*p
= kprobe_running();
566 const struct exception_table_entry
*entry
;
568 switch(kcb
->kprobe_status
) {
569 case KPROBE_SWAP_INST
:
570 /* We are here because the instruction replacement failed */
575 * We are here because the instruction being single
576 * stepped caused a page fault. We reset the current
577 * kprobe and the nip points back to the probe address
578 * and allow the page fault handler to continue as a
581 disable_singlestep(kcb
, regs
, (unsigned long) p
->addr
);
583 preempt_enable_no_resched();
585 case KPROBE_HIT_ACTIVE
:
586 case KPROBE_HIT_SSDONE
:
588 * We increment the nmissed count for accounting,
589 * we can also use npre/npostfault count for accounting
590 * these specific fault cases.
592 kprobes_inc_nmissed_count(p
);
595 * We come here because instructions in the pre/post
596 * handler caused the page_fault, this could happen
597 * if handler tries to access user space by
598 * copy_from_user(), get_user() etc. Let the
599 * user-specified handler try to fix it first.
601 if (p
->fault_handler
&& p
->fault_handler(p
, regs
, trapnr
))
605 * In case the user-specified fault handler returned
606 * zero, try to fix up.
608 entry
= search_exception_tables(regs
->psw
.addr
);
610 regs
->psw
.addr
= extable_fixup(entry
);
615 * fixup_exception() could not handle it,
616 * Let do_page_fault() fix it.
624 NOKPROBE_SYMBOL(kprobe_trap_handler
);
626 int kprobe_fault_handler(struct pt_regs
*regs
, int trapnr
)
630 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
632 ret
= kprobe_trap_handler(regs
, trapnr
);
633 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
634 local_irq_restore(regs
->psw
.mask
& ~PSW_MASK_PER
);
637 NOKPROBE_SYMBOL(kprobe_fault_handler
);
640 * Wrapper routine to for handling exceptions.
642 int kprobe_exceptions_notify(struct notifier_block
*self
,
643 unsigned long val
, void *data
)
645 struct die_args
*args
= (struct die_args
*) data
;
646 struct pt_regs
*regs
= args
->regs
;
647 int ret
= NOTIFY_DONE
;
649 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
654 if (kprobe_handler(regs
))
658 if (post_kprobe_handler(regs
))
662 if (!preemptible() && kprobe_running() &&
663 kprobe_trap_handler(regs
, args
->trapnr
))
670 if (regs
->psw
.mask
& (PSW_MASK_IO
| PSW_MASK_EXT
))
671 local_irq_restore(regs
->psw
.mask
& ~PSW_MASK_PER
);
675 NOKPROBE_SYMBOL(kprobe_exceptions_notify
);
677 int setjmp_pre_handler(struct kprobe
*p
, struct pt_regs
*regs
)
679 struct jprobe
*jp
= container_of(p
, struct jprobe
, kp
);
680 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
683 memcpy(&kcb
->jprobe_saved_regs
, regs
, sizeof(struct pt_regs
));
685 /* setup return addr to the jprobe handler routine */
686 regs
->psw
.addr
= (unsigned long) jp
->entry
;
687 regs
->psw
.mask
&= ~(PSW_MASK_IO
| PSW_MASK_EXT
);
689 /* r15 is the stack pointer */
690 stack
= (unsigned long) regs
->gprs
[15];
692 memcpy(kcb
->jprobes_stack
, (void *) stack
, MIN_STACK_SIZE(stack
));
695 NOKPROBE_SYMBOL(setjmp_pre_handler
);
697 void jprobe_return(void)
699 asm volatile(".word 0x0002");
701 NOKPROBE_SYMBOL(jprobe_return
);
703 int longjmp_break_handler(struct kprobe
*p
, struct pt_regs
*regs
)
705 struct kprobe_ctlblk
*kcb
= get_kprobe_ctlblk();
708 stack
= (unsigned long) kcb
->jprobe_saved_regs
.gprs
[15];
710 /* Put the regs back */
711 memcpy(regs
, &kcb
->jprobe_saved_regs
, sizeof(struct pt_regs
));
712 /* put the stack back */
713 memcpy((void *) stack
, kcb
->jprobes_stack
, MIN_STACK_SIZE(stack
));
714 preempt_enable_no_resched();
717 NOKPROBE_SYMBOL(longjmp_break_handler
);
719 static struct kprobe trampoline
= {
720 .addr
= (kprobe_opcode_t
*) &kretprobe_trampoline
,
721 .pre_handler
= trampoline_probe_handler
724 int __init
arch_init_kprobes(void)
726 return register_kprobe(&trampoline
);
729 int arch_trampoline_kprobe(struct kprobe
*p
)
731 return p
->addr
== (kprobe_opcode_t
*) &kretprobe_trampoline
;
733 NOKPROBE_SYMBOL(arch_trampoline_kprobe
);