2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
24 #include "kvm_cache_regs.h"
27 #include <linux/kvm_host.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/swap.h>
34 #include <linux/hugetlb.h>
35 #include <linux/compiler.h>
36 #include <linux/srcu.h>
37 #include <linux/slab.h>
38 #include <linux/uaccess.h>
41 #include <asm/cmpxchg.h>
44 #include <asm/kvm_page_track.h>
47 * When setting this variable to true it enables Two-Dimensional-Paging
48 * where the hardware walks 2 page tables:
49 * 1. the guest-virtual to guest-physical
50 * 2. while doing 1. it walks guest-physical to host-physical
51 * If the hardware supports that we don't need to do shadow paging.
53 bool tdp_enabled
= false;
57 AUDIT_POST_PAGE_FAULT
,
68 module_param(dbg
, bool, 0644);
70 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
71 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
72 #define MMU_WARN_ON(x) WARN_ON(x)
74 #define pgprintk(x...) do { } while (0)
75 #define rmap_printk(x...) do { } while (0)
76 #define MMU_WARN_ON(x) do { } while (0)
79 #define PTE_PREFETCH_NUM 8
81 #define PT_FIRST_AVAIL_BITS_SHIFT 10
82 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
84 #define PT64_LEVEL_BITS 9
86 #define PT64_LEVEL_SHIFT(level) \
87 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
89 #define PT64_INDEX(address, level)\
90 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
93 #define PT32_LEVEL_BITS 10
95 #define PT32_LEVEL_SHIFT(level) \
96 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
98 #define PT32_LVL_OFFSET_MASK(level) \
99 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
100 * PT32_LEVEL_BITS))) - 1))
102 #define PT32_INDEX(address, level)\
103 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
106 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
107 #define PT64_DIR_BASE_ADDR_MASK \
108 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
109 #define PT64_LVL_ADDR_MASK(level) \
110 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
111 * PT64_LEVEL_BITS))) - 1))
112 #define PT64_LVL_OFFSET_MASK(level) \
113 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
114 * PT64_LEVEL_BITS))) - 1))
116 #define PT32_BASE_ADDR_MASK PAGE_MASK
117 #define PT32_DIR_BASE_ADDR_MASK \
118 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
119 #define PT32_LVL_ADDR_MASK(level) \
120 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
121 * PT32_LEVEL_BITS))) - 1))
123 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
124 | shadow_x_mask | shadow_nx_mask)
126 #define ACC_EXEC_MASK 1
127 #define ACC_WRITE_MASK PT_WRITABLE_MASK
128 #define ACC_USER_MASK PT_USER_MASK
129 #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
131 #include <trace/events/kvm.h>
133 #define CREATE_TRACE_POINTS
134 #include "mmutrace.h"
136 #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
137 #define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
139 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
141 /* make pte_list_desc fit well in cache line */
142 #define PTE_LIST_EXT 3
144 struct pte_list_desc
{
145 u64
*sptes
[PTE_LIST_EXT
];
146 struct pte_list_desc
*more
;
149 struct kvm_shadow_walk_iterator
{
157 #define for_each_shadow_entry(_vcpu, _addr, _walker) \
158 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
159 shadow_walk_okay(&(_walker)); \
160 shadow_walk_next(&(_walker)))
162 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
163 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
164 shadow_walk_okay(&(_walker)) && \
165 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
166 __shadow_walk_next(&(_walker), spte))
168 static struct kmem_cache
*pte_list_desc_cache
;
169 static struct kmem_cache
*mmu_page_header_cache
;
170 static struct percpu_counter kvm_total_used_mmu_pages
;
172 static u64 __read_mostly shadow_nx_mask
;
173 static u64 __read_mostly shadow_x_mask
; /* mutual exclusive with nx_mask */
174 static u64 __read_mostly shadow_user_mask
;
175 static u64 __read_mostly shadow_accessed_mask
;
176 static u64 __read_mostly shadow_dirty_mask
;
177 static u64 __read_mostly shadow_mmio_mask
;
179 static void mmu_spte_set(u64
*sptep
, u64 spte
);
180 static void mmu_free_roots(struct kvm_vcpu
*vcpu
);
182 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask
)
184 shadow_mmio_mask
= mmio_mask
;
186 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask
);
189 * the low bit of the generation number is always presumed to be zero.
190 * This disables mmio caching during memslot updates. The concept is
191 * similar to a seqcount but instead of retrying the access we just punt
192 * and ignore the cache.
194 * spte bits 3-11 are used as bits 1-9 of the generation number,
195 * the bits 52-61 are used as bits 10-19 of the generation number.
197 #define MMIO_SPTE_GEN_LOW_SHIFT 2
198 #define MMIO_SPTE_GEN_HIGH_SHIFT 52
200 #define MMIO_GEN_SHIFT 20
201 #define MMIO_GEN_LOW_SHIFT 10
202 #define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
203 #define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
205 static u64
generation_mmio_spte_mask(unsigned int gen
)
209 WARN_ON(gen
& ~MMIO_GEN_MASK
);
211 mask
= (gen
& MMIO_GEN_LOW_MASK
) << MMIO_SPTE_GEN_LOW_SHIFT
;
212 mask
|= ((u64
)gen
>> MMIO_GEN_LOW_SHIFT
) << MMIO_SPTE_GEN_HIGH_SHIFT
;
216 static unsigned int get_mmio_spte_generation(u64 spte
)
220 spte
&= ~shadow_mmio_mask
;
222 gen
= (spte
>> MMIO_SPTE_GEN_LOW_SHIFT
) & MMIO_GEN_LOW_MASK
;
223 gen
|= (spte
>> MMIO_SPTE_GEN_HIGH_SHIFT
) << MMIO_GEN_LOW_SHIFT
;
227 static unsigned int kvm_current_mmio_generation(struct kvm_vcpu
*vcpu
)
229 return kvm_vcpu_memslots(vcpu
)->generation
& MMIO_GEN_MASK
;
232 static void mark_mmio_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
, u64 gfn
,
235 unsigned int gen
= kvm_current_mmio_generation(vcpu
);
236 u64 mask
= generation_mmio_spte_mask(gen
);
238 access
&= ACC_WRITE_MASK
| ACC_USER_MASK
;
239 mask
|= shadow_mmio_mask
| access
| gfn
<< PAGE_SHIFT
;
241 trace_mark_mmio_spte(sptep
, gfn
, access
, gen
);
242 mmu_spte_set(sptep
, mask
);
245 static bool is_mmio_spte(u64 spte
)
247 return (spte
& shadow_mmio_mask
) == shadow_mmio_mask
;
250 static gfn_t
get_mmio_spte_gfn(u64 spte
)
252 u64 mask
= generation_mmio_spte_mask(MMIO_GEN_MASK
) | shadow_mmio_mask
;
253 return (spte
& ~mask
) >> PAGE_SHIFT
;
256 static unsigned get_mmio_spte_access(u64 spte
)
258 u64 mask
= generation_mmio_spte_mask(MMIO_GEN_MASK
) | shadow_mmio_mask
;
259 return (spte
& ~mask
) & ~PAGE_MASK
;
262 static bool set_mmio_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
, gfn_t gfn
,
263 kvm_pfn_t pfn
, unsigned access
)
265 if (unlikely(is_noslot_pfn(pfn
))) {
266 mark_mmio_spte(vcpu
, sptep
, gfn
, access
);
273 static bool check_mmio_spte(struct kvm_vcpu
*vcpu
, u64 spte
)
275 unsigned int kvm_gen
, spte_gen
;
277 kvm_gen
= kvm_current_mmio_generation(vcpu
);
278 spte_gen
= get_mmio_spte_generation(spte
);
280 trace_check_mmio_spte(spte
, kvm_gen
, spte_gen
);
281 return likely(kvm_gen
== spte_gen
);
284 void kvm_mmu_set_mask_ptes(u64 user_mask
, u64 accessed_mask
,
285 u64 dirty_mask
, u64 nx_mask
, u64 x_mask
)
287 shadow_user_mask
= user_mask
;
288 shadow_accessed_mask
= accessed_mask
;
289 shadow_dirty_mask
= dirty_mask
;
290 shadow_nx_mask
= nx_mask
;
291 shadow_x_mask
= x_mask
;
293 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes
);
295 static int is_cpuid_PSE36(void)
300 static int is_nx(struct kvm_vcpu
*vcpu
)
302 return vcpu
->arch
.efer
& EFER_NX
;
305 static int is_shadow_present_pte(u64 pte
)
307 return pte
& PT_PRESENT_MASK
&& !is_mmio_spte(pte
);
310 static int is_large_pte(u64 pte
)
312 return pte
& PT_PAGE_SIZE_MASK
;
315 static int is_last_spte(u64 pte
, int level
)
317 if (level
== PT_PAGE_TABLE_LEVEL
)
319 if (is_large_pte(pte
))
324 static kvm_pfn_t
spte_to_pfn(u64 pte
)
326 return (pte
& PT64_BASE_ADDR_MASK
) >> PAGE_SHIFT
;
329 static gfn_t
pse36_gfn_delta(u32 gpte
)
331 int shift
= 32 - PT32_DIR_PSE36_SHIFT
- PAGE_SHIFT
;
333 return (gpte
& PT32_DIR_PSE36_MASK
) << shift
;
337 static void __set_spte(u64
*sptep
, u64 spte
)
342 static void __update_clear_spte_fast(u64
*sptep
, u64 spte
)
347 static u64
__update_clear_spte_slow(u64
*sptep
, u64 spte
)
349 return xchg(sptep
, spte
);
352 static u64
__get_spte_lockless(u64
*sptep
)
354 return ACCESS_ONCE(*sptep
);
365 static void count_spte_clear(u64
*sptep
, u64 spte
)
367 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
369 if (is_shadow_present_pte(spte
))
372 /* Ensure the spte is completely set before we increase the count */
374 sp
->clear_spte_count
++;
377 static void __set_spte(u64
*sptep
, u64 spte
)
379 union split_spte
*ssptep
, sspte
;
381 ssptep
= (union split_spte
*)sptep
;
382 sspte
= (union split_spte
)spte
;
384 ssptep
->spte_high
= sspte
.spte_high
;
387 * If we map the spte from nonpresent to present, We should store
388 * the high bits firstly, then set present bit, so cpu can not
389 * fetch this spte while we are setting the spte.
393 ssptep
->spte_low
= sspte
.spte_low
;
396 static void __update_clear_spte_fast(u64
*sptep
, u64 spte
)
398 union split_spte
*ssptep
, sspte
;
400 ssptep
= (union split_spte
*)sptep
;
401 sspte
= (union split_spte
)spte
;
403 ssptep
->spte_low
= sspte
.spte_low
;
406 * If we map the spte from present to nonpresent, we should clear
407 * present bit firstly to avoid vcpu fetch the old high bits.
411 ssptep
->spte_high
= sspte
.spte_high
;
412 count_spte_clear(sptep
, spte
);
415 static u64
__update_clear_spte_slow(u64
*sptep
, u64 spte
)
417 union split_spte
*ssptep
, sspte
, orig
;
419 ssptep
= (union split_spte
*)sptep
;
420 sspte
= (union split_spte
)spte
;
422 /* xchg acts as a barrier before the setting of the high bits */
423 orig
.spte_low
= xchg(&ssptep
->spte_low
, sspte
.spte_low
);
424 orig
.spte_high
= ssptep
->spte_high
;
425 ssptep
->spte_high
= sspte
.spte_high
;
426 count_spte_clear(sptep
, spte
);
432 * The idea using the light way get the spte on x86_32 guest is from
433 * gup_get_pte(arch/x86/mm/gup.c).
435 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
436 * coalesces them and we are running out of the MMU lock. Therefore
437 * we need to protect against in-progress updates of the spte.
439 * Reading the spte while an update is in progress may get the old value
440 * for the high part of the spte. The race is fine for a present->non-present
441 * change (because the high part of the spte is ignored for non-present spte),
442 * but for a present->present change we must reread the spte.
444 * All such changes are done in two steps (present->non-present and
445 * non-present->present), hence it is enough to count the number of
446 * present->non-present updates: if it changed while reading the spte,
447 * we might have hit the race. This is done using clear_spte_count.
449 static u64
__get_spte_lockless(u64
*sptep
)
451 struct kvm_mmu_page
*sp
= page_header(__pa(sptep
));
452 union split_spte spte
, *orig
= (union split_spte
*)sptep
;
456 count
= sp
->clear_spte_count
;
459 spte
.spte_low
= orig
->spte_low
;
462 spte
.spte_high
= orig
->spte_high
;
465 if (unlikely(spte
.spte_low
!= orig
->spte_low
||
466 count
!= sp
->clear_spte_count
))
473 static bool spte_is_locklessly_modifiable(u64 spte
)
475 return (spte
& (SPTE_HOST_WRITEABLE
| SPTE_MMU_WRITEABLE
)) ==
476 (SPTE_HOST_WRITEABLE
| SPTE_MMU_WRITEABLE
);
479 static bool spte_has_volatile_bits(u64 spte
)
482 * Always atomically update spte if it can be updated
483 * out of mmu-lock, it can ensure dirty bit is not lost,
484 * also, it can help us to get a stable is_writable_pte()
485 * to ensure tlb flush is not missed.
487 if (spte_is_locklessly_modifiable(spte
))
490 if (!shadow_accessed_mask
)
493 if (!is_shadow_present_pte(spte
))
496 if ((spte
& shadow_accessed_mask
) &&
497 (!is_writable_pte(spte
) || (spte
& shadow_dirty_mask
)))
503 static bool spte_is_bit_cleared(u64 old_spte
, u64 new_spte
, u64 bit_mask
)
505 return (old_spte
& bit_mask
) && !(new_spte
& bit_mask
);
508 static bool spte_is_bit_changed(u64 old_spte
, u64 new_spte
, u64 bit_mask
)
510 return (old_spte
& bit_mask
) != (new_spte
& bit_mask
);
513 /* Rules for using mmu_spte_set:
514 * Set the sptep from nonpresent to present.
515 * Note: the sptep being assigned *must* be either not present
516 * or in a state where the hardware will not attempt to update
519 static void mmu_spte_set(u64
*sptep
, u64 new_spte
)
521 WARN_ON(is_shadow_present_pte(*sptep
));
522 __set_spte(sptep
, new_spte
);
525 /* Rules for using mmu_spte_update:
526 * Update the state bits, it means the mapped pfn is not changged.
528 * Whenever we overwrite a writable spte with a read-only one we
529 * should flush remote TLBs. Otherwise rmap_write_protect
530 * will find a read-only spte, even though the writable spte
531 * might be cached on a CPU's TLB, the return value indicates this
534 static bool mmu_spte_update(u64
*sptep
, u64 new_spte
)
536 u64 old_spte
= *sptep
;
539 WARN_ON(!is_shadow_present_pte(new_spte
));
541 if (!is_shadow_present_pte(old_spte
)) {
542 mmu_spte_set(sptep
, new_spte
);
546 if (!spte_has_volatile_bits(old_spte
))
547 __update_clear_spte_fast(sptep
, new_spte
);
549 old_spte
= __update_clear_spte_slow(sptep
, new_spte
);
552 * For the spte updated out of mmu-lock is safe, since
553 * we always atomically update it, see the comments in
554 * spte_has_volatile_bits().
556 if (spte_is_locklessly_modifiable(old_spte
) &&
557 !is_writable_pte(new_spte
))
560 if (!shadow_accessed_mask
) {
562 * We don't set page dirty when dropping non-writable spte.
563 * So do it now if the new spte is becoming non-writable.
566 kvm_set_pfn_dirty(spte_to_pfn(old_spte
));
571 * Flush TLB when accessed/dirty bits are changed in the page tables,
572 * to guarantee consistency between TLB and page tables.
574 if (spte_is_bit_changed(old_spte
, new_spte
,
575 shadow_accessed_mask
| shadow_dirty_mask
))
578 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_accessed_mask
))
579 kvm_set_pfn_accessed(spte_to_pfn(old_spte
));
580 if (spte_is_bit_cleared(old_spte
, new_spte
, shadow_dirty_mask
))
581 kvm_set_pfn_dirty(spte_to_pfn(old_spte
));
587 * Rules for using mmu_spte_clear_track_bits:
588 * It sets the sptep from present to nonpresent, and track the
589 * state bits, it is used to clear the last level sptep.
591 static int mmu_spte_clear_track_bits(u64
*sptep
)
594 u64 old_spte
= *sptep
;
596 if (!spte_has_volatile_bits(old_spte
))
597 __update_clear_spte_fast(sptep
, 0ull);
599 old_spte
= __update_clear_spte_slow(sptep
, 0ull);
601 if (!is_shadow_present_pte(old_spte
))
604 pfn
= spte_to_pfn(old_spte
);
607 * KVM does not hold the refcount of the page used by
608 * kvm mmu, before reclaiming the page, we should
609 * unmap it from mmu first.
611 WARN_ON(!kvm_is_reserved_pfn(pfn
) && !page_count(pfn_to_page(pfn
)));
613 if (!shadow_accessed_mask
|| old_spte
& shadow_accessed_mask
)
614 kvm_set_pfn_accessed(pfn
);
615 if (old_spte
& (shadow_dirty_mask
? shadow_dirty_mask
:
617 kvm_set_pfn_dirty(pfn
);
622 * Rules for using mmu_spte_clear_no_track:
623 * Directly clear spte without caring the state bits of sptep,
624 * it is used to set the upper level spte.
626 static void mmu_spte_clear_no_track(u64
*sptep
)
628 __update_clear_spte_fast(sptep
, 0ull);
631 static u64
mmu_spte_get_lockless(u64
*sptep
)
633 return __get_spte_lockless(sptep
);
636 static void walk_shadow_page_lockless_begin(struct kvm_vcpu
*vcpu
)
639 * Prevent page table teardown by making any free-er wait during
640 * kvm_flush_remote_tlbs() IPI to all active vcpus.
645 * Make sure a following spte read is not reordered ahead of the write
648 smp_store_mb(vcpu
->mode
, READING_SHADOW_PAGE_TABLES
);
651 static void walk_shadow_page_lockless_end(struct kvm_vcpu
*vcpu
)
654 * Make sure the write to vcpu->mode is not reordered in front of
655 * reads to sptes. If it does, kvm_commit_zap_page() can see us
656 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
658 smp_store_release(&vcpu
->mode
, OUTSIDE_GUEST_MODE
);
662 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache
*cache
,
663 struct kmem_cache
*base_cache
, int min
)
667 if (cache
->nobjs
>= min
)
669 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
670 obj
= kmem_cache_zalloc(base_cache
, GFP_KERNEL
);
673 cache
->objects
[cache
->nobjs
++] = obj
;
678 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache
*cache
)
683 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache
*mc
,
684 struct kmem_cache
*cache
)
687 kmem_cache_free(cache
, mc
->objects
[--mc
->nobjs
]);
690 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache
*cache
,
695 if (cache
->nobjs
>= min
)
697 while (cache
->nobjs
< ARRAY_SIZE(cache
->objects
)) {
698 page
= (void *)__get_free_page(GFP_KERNEL
);
701 cache
->objects
[cache
->nobjs
++] = page
;
706 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache
*mc
)
709 free_page((unsigned long)mc
->objects
[--mc
->nobjs
]);
712 static int mmu_topup_memory_caches(struct kvm_vcpu
*vcpu
)
716 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_pte_list_desc_cache
,
717 pte_list_desc_cache
, 8 + PTE_PREFETCH_NUM
);
720 r
= mmu_topup_memory_cache_page(&vcpu
->arch
.mmu_page_cache
, 8);
723 r
= mmu_topup_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
724 mmu_page_header_cache
, 4);
729 static void mmu_free_memory_caches(struct kvm_vcpu
*vcpu
)
731 mmu_free_memory_cache(&vcpu
->arch
.mmu_pte_list_desc_cache
,
732 pte_list_desc_cache
);
733 mmu_free_memory_cache_page(&vcpu
->arch
.mmu_page_cache
);
734 mmu_free_memory_cache(&vcpu
->arch
.mmu_page_header_cache
,
735 mmu_page_header_cache
);
738 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache
*mc
)
743 p
= mc
->objects
[--mc
->nobjs
];
747 static struct pte_list_desc
*mmu_alloc_pte_list_desc(struct kvm_vcpu
*vcpu
)
749 return mmu_memory_cache_alloc(&vcpu
->arch
.mmu_pte_list_desc_cache
);
752 static void mmu_free_pte_list_desc(struct pte_list_desc
*pte_list_desc
)
754 kmem_cache_free(pte_list_desc_cache
, pte_list_desc
);
757 static gfn_t
kvm_mmu_page_get_gfn(struct kvm_mmu_page
*sp
, int index
)
759 if (!sp
->role
.direct
)
760 return sp
->gfns
[index
];
762 return sp
->gfn
+ (index
<< ((sp
->role
.level
- 1) * PT64_LEVEL_BITS
));
765 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page
*sp
, int index
, gfn_t gfn
)
768 BUG_ON(gfn
!= kvm_mmu_page_get_gfn(sp
, index
));
770 sp
->gfns
[index
] = gfn
;
774 * Return the pointer to the large page information for a given gfn,
775 * handling slots that are not large page aligned.
777 static struct kvm_lpage_info
*lpage_info_slot(gfn_t gfn
,
778 struct kvm_memory_slot
*slot
,
783 idx
= gfn_to_index(gfn
, slot
->base_gfn
, level
);
784 return &slot
->arch
.lpage_info
[level
- 2][idx
];
787 static void update_gfn_disallow_lpage_count(struct kvm_memory_slot
*slot
,
788 gfn_t gfn
, int count
)
790 struct kvm_lpage_info
*linfo
;
793 for (i
= PT_DIRECTORY_LEVEL
; i
<= PT_MAX_HUGEPAGE_LEVEL
; ++i
) {
794 linfo
= lpage_info_slot(gfn
, slot
, i
);
795 linfo
->disallow_lpage
+= count
;
796 WARN_ON(linfo
->disallow_lpage
< 0);
800 void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot
*slot
, gfn_t gfn
)
802 update_gfn_disallow_lpage_count(slot
, gfn
, 1);
805 void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot
*slot
, gfn_t gfn
)
807 update_gfn_disallow_lpage_count(slot
, gfn
, -1);
810 static void account_shadowed(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
812 struct kvm_memslots
*slots
;
813 struct kvm_memory_slot
*slot
;
816 kvm
->arch
.indirect_shadow_pages
++;
818 slots
= kvm_memslots_for_spte_role(kvm
, sp
->role
);
819 slot
= __gfn_to_memslot(slots
, gfn
);
821 /* the non-leaf shadow pages are keeping readonly. */
822 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
823 return kvm_slot_page_track_add_page(kvm
, slot
, gfn
,
824 KVM_PAGE_TRACK_WRITE
);
826 kvm_mmu_gfn_disallow_lpage(slot
, gfn
);
829 static void unaccount_shadowed(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
831 struct kvm_memslots
*slots
;
832 struct kvm_memory_slot
*slot
;
835 kvm
->arch
.indirect_shadow_pages
--;
837 slots
= kvm_memslots_for_spte_role(kvm
, sp
->role
);
838 slot
= __gfn_to_memslot(slots
, gfn
);
839 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
840 return kvm_slot_page_track_remove_page(kvm
, slot
, gfn
,
841 KVM_PAGE_TRACK_WRITE
);
843 kvm_mmu_gfn_allow_lpage(slot
, gfn
);
846 static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn
, int level
,
847 struct kvm_memory_slot
*slot
)
849 struct kvm_lpage_info
*linfo
;
852 linfo
= lpage_info_slot(gfn
, slot
, level
);
853 return !!linfo
->disallow_lpage
;
859 static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
862 struct kvm_memory_slot
*slot
;
864 slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
865 return __mmu_gfn_lpage_is_disallowed(gfn
, level
, slot
);
868 static int host_mapping_level(struct kvm
*kvm
, gfn_t gfn
)
870 unsigned long page_size
;
873 page_size
= kvm_host_page_size(kvm
, gfn
);
875 for (i
= PT_PAGE_TABLE_LEVEL
; i
<= PT_MAX_HUGEPAGE_LEVEL
; ++i
) {
876 if (page_size
>= KVM_HPAGE_SIZE(i
))
885 static inline bool memslot_valid_for_gpte(struct kvm_memory_slot
*slot
,
888 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
890 if (no_dirty_log
&& slot
->dirty_bitmap
)
896 static struct kvm_memory_slot
*
897 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
900 struct kvm_memory_slot
*slot
;
902 slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
903 if (!memslot_valid_for_gpte(slot
, no_dirty_log
))
909 static int mapping_level(struct kvm_vcpu
*vcpu
, gfn_t large_gfn
,
910 bool *force_pt_level
)
912 int host_level
, level
, max_level
;
913 struct kvm_memory_slot
*slot
;
915 if (unlikely(*force_pt_level
))
916 return PT_PAGE_TABLE_LEVEL
;
918 slot
= kvm_vcpu_gfn_to_memslot(vcpu
, large_gfn
);
919 *force_pt_level
= !memslot_valid_for_gpte(slot
, true);
920 if (unlikely(*force_pt_level
))
921 return PT_PAGE_TABLE_LEVEL
;
923 host_level
= host_mapping_level(vcpu
->kvm
, large_gfn
);
925 if (host_level
== PT_PAGE_TABLE_LEVEL
)
928 max_level
= min(kvm_x86_ops
->get_lpage_level(), host_level
);
930 for (level
= PT_DIRECTORY_LEVEL
; level
<= max_level
; ++level
)
931 if (__mmu_gfn_lpage_is_disallowed(large_gfn
, level
, slot
))
938 * About rmap_head encoding:
940 * If the bit zero of rmap_head->val is clear, then it points to the only spte
941 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
942 * pte_list_desc containing more mappings.
946 * Returns the number of pointers in the rmap chain, not counting the new one.
948 static int pte_list_add(struct kvm_vcpu
*vcpu
, u64
*spte
,
949 struct kvm_rmap_head
*rmap_head
)
951 struct pte_list_desc
*desc
;
954 if (!rmap_head
->val
) {
955 rmap_printk("pte_list_add: %p %llx 0->1\n", spte
, *spte
);
956 rmap_head
->val
= (unsigned long)spte
;
957 } else if (!(rmap_head
->val
& 1)) {
958 rmap_printk("pte_list_add: %p %llx 1->many\n", spte
, *spte
);
959 desc
= mmu_alloc_pte_list_desc(vcpu
);
960 desc
->sptes
[0] = (u64
*)rmap_head
->val
;
961 desc
->sptes
[1] = spte
;
962 rmap_head
->val
= (unsigned long)desc
| 1;
965 rmap_printk("pte_list_add: %p %llx many->many\n", spte
, *spte
);
966 desc
= (struct pte_list_desc
*)(rmap_head
->val
& ~1ul);
967 while (desc
->sptes
[PTE_LIST_EXT
-1] && desc
->more
) {
969 count
+= PTE_LIST_EXT
;
971 if (desc
->sptes
[PTE_LIST_EXT
-1]) {
972 desc
->more
= mmu_alloc_pte_list_desc(vcpu
);
975 for (i
= 0; desc
->sptes
[i
]; ++i
)
977 desc
->sptes
[i
] = spte
;
983 pte_list_desc_remove_entry(struct kvm_rmap_head
*rmap_head
,
984 struct pte_list_desc
*desc
, int i
,
985 struct pte_list_desc
*prev_desc
)
989 for (j
= PTE_LIST_EXT
- 1; !desc
->sptes
[j
] && j
> i
; --j
)
991 desc
->sptes
[i
] = desc
->sptes
[j
];
992 desc
->sptes
[j
] = NULL
;
995 if (!prev_desc
&& !desc
->more
)
996 rmap_head
->val
= (unsigned long)desc
->sptes
[0];
999 prev_desc
->more
= desc
->more
;
1001 rmap_head
->val
= (unsigned long)desc
->more
| 1;
1002 mmu_free_pte_list_desc(desc
);
1005 static void pte_list_remove(u64
*spte
, struct kvm_rmap_head
*rmap_head
)
1007 struct pte_list_desc
*desc
;
1008 struct pte_list_desc
*prev_desc
;
1011 if (!rmap_head
->val
) {
1012 printk(KERN_ERR
"pte_list_remove: %p 0->BUG\n", spte
);
1014 } else if (!(rmap_head
->val
& 1)) {
1015 rmap_printk("pte_list_remove: %p 1->0\n", spte
);
1016 if ((u64
*)rmap_head
->val
!= spte
) {
1017 printk(KERN_ERR
"pte_list_remove: %p 1->BUG\n", spte
);
1022 rmap_printk("pte_list_remove: %p many->many\n", spte
);
1023 desc
= (struct pte_list_desc
*)(rmap_head
->val
& ~1ul);
1026 for (i
= 0; i
< PTE_LIST_EXT
&& desc
->sptes
[i
]; ++i
) {
1027 if (desc
->sptes
[i
] == spte
) {
1028 pte_list_desc_remove_entry(rmap_head
,
1029 desc
, i
, prev_desc
);
1036 pr_err("pte_list_remove: %p many->many\n", spte
);
1041 static struct kvm_rmap_head
*__gfn_to_rmap(gfn_t gfn
, int level
,
1042 struct kvm_memory_slot
*slot
)
1046 idx
= gfn_to_index(gfn
, slot
->base_gfn
, level
);
1047 return &slot
->arch
.rmap
[level
- PT_PAGE_TABLE_LEVEL
][idx
];
1050 static struct kvm_rmap_head
*gfn_to_rmap(struct kvm
*kvm
, gfn_t gfn
,
1051 struct kvm_mmu_page
*sp
)
1053 struct kvm_memslots
*slots
;
1054 struct kvm_memory_slot
*slot
;
1056 slots
= kvm_memslots_for_spte_role(kvm
, sp
->role
);
1057 slot
= __gfn_to_memslot(slots
, gfn
);
1058 return __gfn_to_rmap(gfn
, sp
->role
.level
, slot
);
1061 static bool rmap_can_add(struct kvm_vcpu
*vcpu
)
1063 struct kvm_mmu_memory_cache
*cache
;
1065 cache
= &vcpu
->arch
.mmu_pte_list_desc_cache
;
1066 return mmu_memory_cache_free_objects(cache
);
1069 static int rmap_add(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
1071 struct kvm_mmu_page
*sp
;
1072 struct kvm_rmap_head
*rmap_head
;
1074 sp
= page_header(__pa(spte
));
1075 kvm_mmu_page_set_gfn(sp
, spte
- sp
->spt
, gfn
);
1076 rmap_head
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
);
1077 return pte_list_add(vcpu
, spte
, rmap_head
);
1080 static void rmap_remove(struct kvm
*kvm
, u64
*spte
)
1082 struct kvm_mmu_page
*sp
;
1084 struct kvm_rmap_head
*rmap_head
;
1086 sp
= page_header(__pa(spte
));
1087 gfn
= kvm_mmu_page_get_gfn(sp
, spte
- sp
->spt
);
1088 rmap_head
= gfn_to_rmap(kvm
, gfn
, sp
);
1089 pte_list_remove(spte
, rmap_head
);
1093 * Used by the following functions to iterate through the sptes linked by a
1094 * rmap. All fields are private and not assumed to be used outside.
1096 struct rmap_iterator
{
1097 /* private fields */
1098 struct pte_list_desc
*desc
; /* holds the sptep if not NULL */
1099 int pos
; /* index of the sptep */
1103 * Iteration must be started by this function. This should also be used after
1104 * removing/dropping sptes from the rmap link because in such cases the
1105 * information in the itererator may not be valid.
1107 * Returns sptep if found, NULL otherwise.
1109 static u64
*rmap_get_first(struct kvm_rmap_head
*rmap_head
,
1110 struct rmap_iterator
*iter
)
1114 if (!rmap_head
->val
)
1117 if (!(rmap_head
->val
& 1)) {
1119 sptep
= (u64
*)rmap_head
->val
;
1123 iter
->desc
= (struct pte_list_desc
*)(rmap_head
->val
& ~1ul);
1125 sptep
= iter
->desc
->sptes
[iter
->pos
];
1127 BUG_ON(!is_shadow_present_pte(*sptep
));
1132 * Must be used with a valid iterator: e.g. after rmap_get_first().
1134 * Returns sptep if found, NULL otherwise.
1136 static u64
*rmap_get_next(struct rmap_iterator
*iter
)
1141 if (iter
->pos
< PTE_LIST_EXT
- 1) {
1143 sptep
= iter
->desc
->sptes
[iter
->pos
];
1148 iter
->desc
= iter
->desc
->more
;
1152 /* desc->sptes[0] cannot be NULL */
1153 sptep
= iter
->desc
->sptes
[iter
->pos
];
1160 BUG_ON(!is_shadow_present_pte(*sptep
));
1164 #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1165 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
1166 _spte_; _spte_ = rmap_get_next(_iter_))
1168 static void drop_spte(struct kvm
*kvm
, u64
*sptep
)
1170 if (mmu_spte_clear_track_bits(sptep
))
1171 rmap_remove(kvm
, sptep
);
1175 static bool __drop_large_spte(struct kvm
*kvm
, u64
*sptep
)
1177 if (is_large_pte(*sptep
)) {
1178 WARN_ON(page_header(__pa(sptep
))->role
.level
==
1179 PT_PAGE_TABLE_LEVEL
);
1180 drop_spte(kvm
, sptep
);
1188 static void drop_large_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
)
1190 if (__drop_large_spte(vcpu
->kvm
, sptep
))
1191 kvm_flush_remote_tlbs(vcpu
->kvm
);
1195 * Write-protect on the specified @sptep, @pt_protect indicates whether
1196 * spte write-protection is caused by protecting shadow page table.
1198 * Note: write protection is difference between dirty logging and spte
1200 * - for dirty logging, the spte can be set to writable at anytime if
1201 * its dirty bitmap is properly set.
1202 * - for spte protection, the spte can be writable only after unsync-ing
1205 * Return true if tlb need be flushed.
1207 static bool spte_write_protect(struct kvm
*kvm
, u64
*sptep
, bool pt_protect
)
1211 if (!is_writable_pte(spte
) &&
1212 !(pt_protect
&& spte_is_locklessly_modifiable(spte
)))
1215 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep
, *sptep
);
1218 spte
&= ~SPTE_MMU_WRITEABLE
;
1219 spte
= spte
& ~PT_WRITABLE_MASK
;
1221 return mmu_spte_update(sptep
, spte
);
1224 static bool __rmap_write_protect(struct kvm
*kvm
,
1225 struct kvm_rmap_head
*rmap_head
,
1229 struct rmap_iterator iter
;
1232 for_each_rmap_spte(rmap_head
, &iter
, sptep
)
1233 flush
|= spte_write_protect(kvm
, sptep
, pt_protect
);
1238 static bool spte_clear_dirty(struct kvm
*kvm
, u64
*sptep
)
1242 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep
, *sptep
);
1244 spte
&= ~shadow_dirty_mask
;
1246 return mmu_spte_update(sptep
, spte
);
1249 static bool __rmap_clear_dirty(struct kvm
*kvm
, struct kvm_rmap_head
*rmap_head
)
1252 struct rmap_iterator iter
;
1255 for_each_rmap_spte(rmap_head
, &iter
, sptep
)
1256 flush
|= spte_clear_dirty(kvm
, sptep
);
1261 static bool spte_set_dirty(struct kvm
*kvm
, u64
*sptep
)
1265 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep
, *sptep
);
1267 spte
|= shadow_dirty_mask
;
1269 return mmu_spte_update(sptep
, spte
);
1272 static bool __rmap_set_dirty(struct kvm
*kvm
, struct kvm_rmap_head
*rmap_head
)
1275 struct rmap_iterator iter
;
1278 for_each_rmap_spte(rmap_head
, &iter
, sptep
)
1279 flush
|= spte_set_dirty(kvm
, sptep
);
1285 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1286 * @kvm: kvm instance
1287 * @slot: slot to protect
1288 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1289 * @mask: indicates which pages we should protect
1291 * Used when we do not need to care about huge page mappings: e.g. during dirty
1292 * logging we do not have any such mappings.
1294 static void kvm_mmu_write_protect_pt_masked(struct kvm
*kvm
,
1295 struct kvm_memory_slot
*slot
,
1296 gfn_t gfn_offset
, unsigned long mask
)
1298 struct kvm_rmap_head
*rmap_head
;
1301 rmap_head
= __gfn_to_rmap(slot
->base_gfn
+ gfn_offset
+ __ffs(mask
),
1302 PT_PAGE_TABLE_LEVEL
, slot
);
1303 __rmap_write_protect(kvm
, rmap_head
, false);
1305 /* clear the first set bit */
1311 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1312 * @kvm: kvm instance
1313 * @slot: slot to clear D-bit
1314 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1315 * @mask: indicates which pages we should clear D-bit
1317 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1319 void kvm_mmu_clear_dirty_pt_masked(struct kvm
*kvm
,
1320 struct kvm_memory_slot
*slot
,
1321 gfn_t gfn_offset
, unsigned long mask
)
1323 struct kvm_rmap_head
*rmap_head
;
1326 rmap_head
= __gfn_to_rmap(slot
->base_gfn
+ gfn_offset
+ __ffs(mask
),
1327 PT_PAGE_TABLE_LEVEL
, slot
);
1328 __rmap_clear_dirty(kvm
, rmap_head
);
1330 /* clear the first set bit */
1334 EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked
);
1337 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1340 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1341 * enable dirty logging for them.
1343 * Used when we do not need to care about huge page mappings: e.g. during dirty
1344 * logging we do not have any such mappings.
1346 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm
*kvm
,
1347 struct kvm_memory_slot
*slot
,
1348 gfn_t gfn_offset
, unsigned long mask
)
1350 if (kvm_x86_ops
->enable_log_dirty_pt_masked
)
1351 kvm_x86_ops
->enable_log_dirty_pt_masked(kvm
, slot
, gfn_offset
,
1354 kvm_mmu_write_protect_pt_masked(kvm
, slot
, gfn_offset
, mask
);
1357 bool kvm_mmu_slot_gfn_write_protect(struct kvm
*kvm
,
1358 struct kvm_memory_slot
*slot
, u64 gfn
)
1360 struct kvm_rmap_head
*rmap_head
;
1362 bool write_protected
= false;
1364 for (i
= PT_PAGE_TABLE_LEVEL
; i
<= PT_MAX_HUGEPAGE_LEVEL
; ++i
) {
1365 rmap_head
= __gfn_to_rmap(gfn
, i
, slot
);
1366 write_protected
|= __rmap_write_protect(kvm
, rmap_head
, true);
1369 return write_protected
;
1372 static bool rmap_write_protect(struct kvm_vcpu
*vcpu
, u64 gfn
)
1374 struct kvm_memory_slot
*slot
;
1376 slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
1377 return kvm_mmu_slot_gfn_write_protect(vcpu
->kvm
, slot
, gfn
);
1380 static bool kvm_zap_rmapp(struct kvm
*kvm
, struct kvm_rmap_head
*rmap_head
)
1383 struct rmap_iterator iter
;
1386 while ((sptep
= rmap_get_first(rmap_head
, &iter
))) {
1387 rmap_printk("%s: spte %p %llx.\n", __func__
, sptep
, *sptep
);
1389 drop_spte(kvm
, sptep
);
1396 static int kvm_unmap_rmapp(struct kvm
*kvm
, struct kvm_rmap_head
*rmap_head
,
1397 struct kvm_memory_slot
*slot
, gfn_t gfn
, int level
,
1400 return kvm_zap_rmapp(kvm
, rmap_head
);
1403 static int kvm_set_pte_rmapp(struct kvm
*kvm
, struct kvm_rmap_head
*rmap_head
,
1404 struct kvm_memory_slot
*slot
, gfn_t gfn
, int level
,
1408 struct rmap_iterator iter
;
1411 pte_t
*ptep
= (pte_t
*)data
;
1414 WARN_ON(pte_huge(*ptep
));
1415 new_pfn
= pte_pfn(*ptep
);
1418 for_each_rmap_spte(rmap_head
, &iter
, sptep
) {
1419 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1420 sptep
, *sptep
, gfn
, level
);
1424 if (pte_write(*ptep
)) {
1425 drop_spte(kvm
, sptep
);
1428 new_spte
= *sptep
& ~PT64_BASE_ADDR_MASK
;
1429 new_spte
|= (u64
)new_pfn
<< PAGE_SHIFT
;
1431 new_spte
&= ~PT_WRITABLE_MASK
;
1432 new_spte
&= ~SPTE_HOST_WRITEABLE
;
1433 new_spte
&= ~shadow_accessed_mask
;
1435 mmu_spte_clear_track_bits(sptep
);
1436 mmu_spte_set(sptep
, new_spte
);
1441 kvm_flush_remote_tlbs(kvm
);
1446 struct slot_rmap_walk_iterator
{
1448 struct kvm_memory_slot
*slot
;
1454 /* output fields. */
1456 struct kvm_rmap_head
*rmap
;
1459 /* private field. */
1460 struct kvm_rmap_head
*end_rmap
;
1464 rmap_walk_init_level(struct slot_rmap_walk_iterator
*iterator
, int level
)
1466 iterator
->level
= level
;
1467 iterator
->gfn
= iterator
->start_gfn
;
1468 iterator
->rmap
= __gfn_to_rmap(iterator
->gfn
, level
, iterator
->slot
);
1469 iterator
->end_rmap
= __gfn_to_rmap(iterator
->end_gfn
, level
,
1474 slot_rmap_walk_init(struct slot_rmap_walk_iterator
*iterator
,
1475 struct kvm_memory_slot
*slot
, int start_level
,
1476 int end_level
, gfn_t start_gfn
, gfn_t end_gfn
)
1478 iterator
->slot
= slot
;
1479 iterator
->start_level
= start_level
;
1480 iterator
->end_level
= end_level
;
1481 iterator
->start_gfn
= start_gfn
;
1482 iterator
->end_gfn
= end_gfn
;
1484 rmap_walk_init_level(iterator
, iterator
->start_level
);
1487 static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator
*iterator
)
1489 return !!iterator
->rmap
;
1492 static void slot_rmap_walk_next(struct slot_rmap_walk_iterator
*iterator
)
1494 if (++iterator
->rmap
<= iterator
->end_rmap
) {
1495 iterator
->gfn
+= (1UL << KVM_HPAGE_GFN_SHIFT(iterator
->level
));
1499 if (++iterator
->level
> iterator
->end_level
) {
1500 iterator
->rmap
= NULL
;
1504 rmap_walk_init_level(iterator
, iterator
->level
);
1507 #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1508 _start_gfn, _end_gfn, _iter_) \
1509 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1510 _end_level_, _start_gfn, _end_gfn); \
1511 slot_rmap_walk_okay(_iter_); \
1512 slot_rmap_walk_next(_iter_))
1514 static int kvm_handle_hva_range(struct kvm
*kvm
,
1515 unsigned long start
,
1518 int (*handler
)(struct kvm
*kvm
,
1519 struct kvm_rmap_head
*rmap_head
,
1520 struct kvm_memory_slot
*slot
,
1523 unsigned long data
))
1525 struct kvm_memslots
*slots
;
1526 struct kvm_memory_slot
*memslot
;
1527 struct slot_rmap_walk_iterator iterator
;
1531 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
1532 slots
= __kvm_memslots(kvm
, i
);
1533 kvm_for_each_memslot(memslot
, slots
) {
1534 unsigned long hva_start
, hva_end
;
1535 gfn_t gfn_start
, gfn_end
;
1537 hva_start
= max(start
, memslot
->userspace_addr
);
1538 hva_end
= min(end
, memslot
->userspace_addr
+
1539 (memslot
->npages
<< PAGE_SHIFT
));
1540 if (hva_start
>= hva_end
)
1543 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1544 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1546 gfn_start
= hva_to_gfn_memslot(hva_start
, memslot
);
1547 gfn_end
= hva_to_gfn_memslot(hva_end
+ PAGE_SIZE
- 1, memslot
);
1549 for_each_slot_rmap_range(memslot
, PT_PAGE_TABLE_LEVEL
,
1550 PT_MAX_HUGEPAGE_LEVEL
,
1551 gfn_start
, gfn_end
- 1,
1553 ret
|= handler(kvm
, iterator
.rmap
, memslot
,
1554 iterator
.gfn
, iterator
.level
, data
);
1561 static int kvm_handle_hva(struct kvm
*kvm
, unsigned long hva
,
1563 int (*handler
)(struct kvm
*kvm
,
1564 struct kvm_rmap_head
*rmap_head
,
1565 struct kvm_memory_slot
*slot
,
1566 gfn_t gfn
, int level
,
1567 unsigned long data
))
1569 return kvm_handle_hva_range(kvm
, hva
, hva
+ 1, data
, handler
);
1572 int kvm_unmap_hva(struct kvm
*kvm
, unsigned long hva
)
1574 return kvm_handle_hva(kvm
, hva
, 0, kvm_unmap_rmapp
);
1577 int kvm_unmap_hva_range(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
1579 return kvm_handle_hva_range(kvm
, start
, end
, 0, kvm_unmap_rmapp
);
1582 void kvm_set_spte_hva(struct kvm
*kvm
, unsigned long hva
, pte_t pte
)
1584 kvm_handle_hva(kvm
, hva
, (unsigned long)&pte
, kvm_set_pte_rmapp
);
1587 static int kvm_age_rmapp(struct kvm
*kvm
, struct kvm_rmap_head
*rmap_head
,
1588 struct kvm_memory_slot
*slot
, gfn_t gfn
, int level
,
1592 struct rmap_iterator
uninitialized_var(iter
);
1595 BUG_ON(!shadow_accessed_mask
);
1597 for_each_rmap_spte(rmap_head
, &iter
, sptep
) {
1598 if (*sptep
& shadow_accessed_mask
) {
1600 clear_bit((ffs(shadow_accessed_mask
) - 1),
1601 (unsigned long *)sptep
);
1605 trace_kvm_age_page(gfn
, level
, slot
, young
);
1609 static int kvm_test_age_rmapp(struct kvm
*kvm
, struct kvm_rmap_head
*rmap_head
,
1610 struct kvm_memory_slot
*slot
, gfn_t gfn
,
1611 int level
, unsigned long data
)
1614 struct rmap_iterator iter
;
1618 * If there's no access bit in the secondary pte set by the
1619 * hardware it's up to gup-fast/gup to set the access bit in
1620 * the primary pte or in the page structure.
1622 if (!shadow_accessed_mask
)
1625 for_each_rmap_spte(rmap_head
, &iter
, sptep
) {
1626 if (*sptep
& shadow_accessed_mask
) {
1635 #define RMAP_RECYCLE_THRESHOLD 1000
1637 static void rmap_recycle(struct kvm_vcpu
*vcpu
, u64
*spte
, gfn_t gfn
)
1639 struct kvm_rmap_head
*rmap_head
;
1640 struct kvm_mmu_page
*sp
;
1642 sp
= page_header(__pa(spte
));
1644 rmap_head
= gfn_to_rmap(vcpu
->kvm
, gfn
, sp
);
1646 kvm_unmap_rmapp(vcpu
->kvm
, rmap_head
, NULL
, gfn
, sp
->role
.level
, 0);
1647 kvm_flush_remote_tlbs(vcpu
->kvm
);
1650 int kvm_age_hva(struct kvm
*kvm
, unsigned long start
, unsigned long end
)
1653 * In case of absence of EPT Access and Dirty Bits supports,
1654 * emulate the accessed bit for EPT, by checking if this page has
1655 * an EPT mapping, and clearing it if it does. On the next access,
1656 * a new EPT mapping will be established.
1657 * This has some overhead, but not as much as the cost of swapping
1658 * out actively used pages or breaking up actively used hugepages.
1660 if (!shadow_accessed_mask
) {
1662 * We are holding the kvm->mmu_lock, and we are blowing up
1663 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1664 * This is correct as long as we don't decouple the mmu_lock
1665 * protected regions (like invalidate_range_start|end does).
1667 kvm
->mmu_notifier_seq
++;
1668 return kvm_handle_hva_range(kvm
, start
, end
, 0,
1672 return kvm_handle_hva_range(kvm
, start
, end
, 0, kvm_age_rmapp
);
1675 int kvm_test_age_hva(struct kvm
*kvm
, unsigned long hva
)
1677 return kvm_handle_hva(kvm
, hva
, 0, kvm_test_age_rmapp
);
1681 static int is_empty_shadow_page(u64
*spt
)
1686 for (pos
= spt
, end
= pos
+ PAGE_SIZE
/ sizeof(u64
); pos
!= end
; pos
++)
1687 if (is_shadow_present_pte(*pos
)) {
1688 printk(KERN_ERR
"%s: %p %llx\n", __func__
,
1697 * This value is the sum of all of the kvm instances's
1698 * kvm->arch.n_used_mmu_pages values. We need a global,
1699 * aggregate version in order to make the slab shrinker
1702 static inline void kvm_mod_used_mmu_pages(struct kvm
*kvm
, int nr
)
1704 kvm
->arch
.n_used_mmu_pages
+= nr
;
1705 percpu_counter_add(&kvm_total_used_mmu_pages
, nr
);
1708 static void kvm_mmu_free_page(struct kvm_mmu_page
*sp
)
1710 MMU_WARN_ON(!is_empty_shadow_page(sp
->spt
));
1711 hlist_del(&sp
->hash_link
);
1712 list_del(&sp
->link
);
1713 free_page((unsigned long)sp
->spt
);
1714 if (!sp
->role
.direct
)
1715 free_page((unsigned long)sp
->gfns
);
1716 kmem_cache_free(mmu_page_header_cache
, sp
);
1719 static unsigned kvm_page_table_hashfn(gfn_t gfn
)
1721 return gfn
& ((1 << KVM_MMU_HASH_SHIFT
) - 1);
1724 static void mmu_page_add_parent_pte(struct kvm_vcpu
*vcpu
,
1725 struct kvm_mmu_page
*sp
, u64
*parent_pte
)
1730 pte_list_add(vcpu
, parent_pte
, &sp
->parent_ptes
);
1733 static void mmu_page_remove_parent_pte(struct kvm_mmu_page
*sp
,
1736 pte_list_remove(parent_pte
, &sp
->parent_ptes
);
1739 static void drop_parent_pte(struct kvm_mmu_page
*sp
,
1742 mmu_page_remove_parent_pte(sp
, parent_pte
);
1743 mmu_spte_clear_no_track(parent_pte
);
1746 static struct kvm_mmu_page
*kvm_mmu_alloc_page(struct kvm_vcpu
*vcpu
, int direct
)
1748 struct kvm_mmu_page
*sp
;
1750 sp
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_header_cache
);
1751 sp
->spt
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
);
1753 sp
->gfns
= mmu_memory_cache_alloc(&vcpu
->arch
.mmu_page_cache
);
1754 set_page_private(virt_to_page(sp
->spt
), (unsigned long)sp
);
1757 * The active_mmu_pages list is the FIFO list, do not move the
1758 * page until it is zapped. kvm_zap_obsolete_pages depends on
1759 * this feature. See the comments in kvm_zap_obsolete_pages().
1761 list_add(&sp
->link
, &vcpu
->kvm
->arch
.active_mmu_pages
);
1762 kvm_mod_used_mmu_pages(vcpu
->kvm
, +1);
1766 static void mark_unsync(u64
*spte
);
1767 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page
*sp
)
1770 struct rmap_iterator iter
;
1772 for_each_rmap_spte(&sp
->parent_ptes
, &iter
, sptep
) {
1777 static void mark_unsync(u64
*spte
)
1779 struct kvm_mmu_page
*sp
;
1782 sp
= page_header(__pa(spte
));
1783 index
= spte
- sp
->spt
;
1784 if (__test_and_set_bit(index
, sp
->unsync_child_bitmap
))
1786 if (sp
->unsync_children
++)
1788 kvm_mmu_mark_parents_unsync(sp
);
1791 static int nonpaging_sync_page(struct kvm_vcpu
*vcpu
,
1792 struct kvm_mmu_page
*sp
)
1797 static void nonpaging_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
1801 static void nonpaging_update_pte(struct kvm_vcpu
*vcpu
,
1802 struct kvm_mmu_page
*sp
, u64
*spte
,
1808 #define KVM_PAGE_ARRAY_NR 16
1810 struct kvm_mmu_pages
{
1811 struct mmu_page_and_offset
{
1812 struct kvm_mmu_page
*sp
;
1814 } page
[KVM_PAGE_ARRAY_NR
];
1818 static int mmu_pages_add(struct kvm_mmu_pages
*pvec
, struct kvm_mmu_page
*sp
,
1824 for (i
=0; i
< pvec
->nr
; i
++)
1825 if (pvec
->page
[i
].sp
== sp
)
1828 pvec
->page
[pvec
->nr
].sp
= sp
;
1829 pvec
->page
[pvec
->nr
].idx
= idx
;
1831 return (pvec
->nr
== KVM_PAGE_ARRAY_NR
);
1834 static inline void clear_unsync_child_bit(struct kvm_mmu_page
*sp
, int idx
)
1836 --sp
->unsync_children
;
1837 WARN_ON((int)sp
->unsync_children
< 0);
1838 __clear_bit(idx
, sp
->unsync_child_bitmap
);
1841 static int __mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1842 struct kvm_mmu_pages
*pvec
)
1844 int i
, ret
, nr_unsync_leaf
= 0;
1846 for_each_set_bit(i
, sp
->unsync_child_bitmap
, 512) {
1847 struct kvm_mmu_page
*child
;
1848 u64 ent
= sp
->spt
[i
];
1850 if (!is_shadow_present_pte(ent
) || is_large_pte(ent
)) {
1851 clear_unsync_child_bit(sp
, i
);
1855 child
= page_header(ent
& PT64_BASE_ADDR_MASK
);
1857 if (child
->unsync_children
) {
1858 if (mmu_pages_add(pvec
, child
, i
))
1861 ret
= __mmu_unsync_walk(child
, pvec
);
1863 clear_unsync_child_bit(sp
, i
);
1865 } else if (ret
> 0) {
1866 nr_unsync_leaf
+= ret
;
1869 } else if (child
->unsync
) {
1871 if (mmu_pages_add(pvec
, child
, i
))
1874 clear_unsync_child_bit(sp
, i
);
1877 return nr_unsync_leaf
;
1880 #define INVALID_INDEX (-1)
1882 static int mmu_unsync_walk(struct kvm_mmu_page
*sp
,
1883 struct kvm_mmu_pages
*pvec
)
1886 if (!sp
->unsync_children
)
1889 mmu_pages_add(pvec
, sp
, INVALID_INDEX
);
1890 return __mmu_unsync_walk(sp
, pvec
);
1893 static void kvm_unlink_unsync_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
1895 WARN_ON(!sp
->unsync
);
1896 trace_kvm_mmu_sync_page(sp
);
1898 --kvm
->stat
.mmu_unsync
;
1901 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
1902 struct list_head
*invalid_list
);
1903 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
1904 struct list_head
*invalid_list
);
1907 * NOTE: we should pay more attention on the zapped-obsolete page
1908 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1909 * since it has been deleted from active_mmu_pages but still can be found
1912 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1913 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1914 * all the obsolete pages.
1916 #define for_each_gfn_sp(_kvm, _sp, _gfn) \
1917 hlist_for_each_entry(_sp, \
1918 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1919 if ((_sp)->gfn != (_gfn)) {} else
1921 #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1922 for_each_gfn_sp(_kvm, _sp, _gfn) \
1923 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
1925 /* @sp->gfn should be write-protected at the call site */
1926 static bool __kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1927 struct list_head
*invalid_list
)
1929 if (sp
->role
.cr4_pae
!= !!is_pae(vcpu
)) {
1930 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1934 if (vcpu
->arch
.mmu
.sync_page(vcpu
, sp
) == 0) {
1935 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, invalid_list
);
1942 static void kvm_mmu_flush_or_zap(struct kvm_vcpu
*vcpu
,
1943 struct list_head
*invalid_list
,
1944 bool remote_flush
, bool local_flush
)
1946 if (!list_empty(invalid_list
)) {
1947 kvm_mmu_commit_zap_page(vcpu
->kvm
, invalid_list
);
1952 kvm_flush_remote_tlbs(vcpu
->kvm
);
1953 else if (local_flush
)
1954 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
1957 #ifdef CONFIG_KVM_MMU_AUDIT
1958 #include "mmu_audit.c"
1960 static void kvm_mmu_audit(struct kvm_vcpu
*vcpu
, int point
) { }
1961 static void mmu_audit_disable(void) { }
1964 static bool kvm_sync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
1965 struct list_head
*invalid_list
)
1967 kvm_unlink_unsync_page(vcpu
->kvm
, sp
);
1968 return __kvm_sync_page(vcpu
, sp
, invalid_list
);
1971 /* @gfn should be write-protected at the call site */
1972 static bool kvm_sync_pages(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
1973 struct list_head
*invalid_list
)
1975 struct kvm_mmu_page
*s
;
1978 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, s
, gfn
) {
1982 WARN_ON(s
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
1983 ret
|= kvm_sync_page(vcpu
, s
, invalid_list
);
1989 struct mmu_page_path
{
1990 struct kvm_mmu_page
*parent
[PT64_ROOT_LEVEL
];
1991 unsigned int idx
[PT64_ROOT_LEVEL
];
1994 #define for_each_sp(pvec, sp, parents, i) \
1995 for (i = mmu_pages_first(&pvec, &parents); \
1996 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1997 i = mmu_pages_next(&pvec, &parents, i))
1999 static int mmu_pages_next(struct kvm_mmu_pages
*pvec
,
2000 struct mmu_page_path
*parents
,
2005 for (n
= i
+1; n
< pvec
->nr
; n
++) {
2006 struct kvm_mmu_page
*sp
= pvec
->page
[n
].sp
;
2007 unsigned idx
= pvec
->page
[n
].idx
;
2008 int level
= sp
->role
.level
;
2010 parents
->idx
[level
-1] = idx
;
2011 if (level
== PT_PAGE_TABLE_LEVEL
)
2014 parents
->parent
[level
-2] = sp
;
2020 static int mmu_pages_first(struct kvm_mmu_pages
*pvec
,
2021 struct mmu_page_path
*parents
)
2023 struct kvm_mmu_page
*sp
;
2029 WARN_ON(pvec
->page
[0].idx
!= INVALID_INDEX
);
2031 sp
= pvec
->page
[0].sp
;
2032 level
= sp
->role
.level
;
2033 WARN_ON(level
== PT_PAGE_TABLE_LEVEL
);
2035 parents
->parent
[level
-2] = sp
;
2037 /* Also set up a sentinel. Further entries in pvec are all
2038 * children of sp, so this element is never overwritten.
2040 parents
->parent
[level
-1] = NULL
;
2041 return mmu_pages_next(pvec
, parents
, 0);
2044 static void mmu_pages_clear_parents(struct mmu_page_path
*parents
)
2046 struct kvm_mmu_page
*sp
;
2047 unsigned int level
= 0;
2050 unsigned int idx
= parents
->idx
[level
];
2051 sp
= parents
->parent
[level
];
2055 WARN_ON(idx
== INVALID_INDEX
);
2056 clear_unsync_child_bit(sp
, idx
);
2058 } while (!sp
->unsync_children
);
2061 static void mmu_sync_children(struct kvm_vcpu
*vcpu
,
2062 struct kvm_mmu_page
*parent
)
2065 struct kvm_mmu_page
*sp
;
2066 struct mmu_page_path parents
;
2067 struct kvm_mmu_pages pages
;
2068 LIST_HEAD(invalid_list
);
2071 while (mmu_unsync_walk(parent
, &pages
)) {
2072 bool protected = false;
2074 for_each_sp(pages
, sp
, parents
, i
)
2075 protected |= rmap_write_protect(vcpu
, sp
->gfn
);
2078 kvm_flush_remote_tlbs(vcpu
->kvm
);
2082 for_each_sp(pages
, sp
, parents
, i
) {
2083 flush
|= kvm_sync_page(vcpu
, sp
, &invalid_list
);
2084 mmu_pages_clear_parents(&parents
);
2086 if (need_resched() || spin_needbreak(&vcpu
->kvm
->mmu_lock
)) {
2087 kvm_mmu_flush_or_zap(vcpu
, &invalid_list
, false, flush
);
2088 cond_resched_lock(&vcpu
->kvm
->mmu_lock
);
2093 kvm_mmu_flush_or_zap(vcpu
, &invalid_list
, false, flush
);
2096 static void __clear_sp_write_flooding_count(struct kvm_mmu_page
*sp
)
2098 atomic_set(&sp
->write_flooding_count
, 0);
2101 static void clear_sp_write_flooding_count(u64
*spte
)
2103 struct kvm_mmu_page
*sp
= page_header(__pa(spte
));
2105 __clear_sp_write_flooding_count(sp
);
2108 static bool is_obsolete_sp(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
2110 return unlikely(sp
->mmu_valid_gen
!= kvm
->arch
.mmu_valid_gen
);
2113 static struct kvm_mmu_page
*kvm_mmu_get_page(struct kvm_vcpu
*vcpu
,
2120 union kvm_mmu_page_role role
;
2122 struct kvm_mmu_page
*sp
;
2123 bool need_sync
= false;
2125 LIST_HEAD(invalid_list
);
2127 role
= vcpu
->arch
.mmu
.base_role
;
2129 role
.direct
= direct
;
2132 role
.access
= access
;
2133 if (!vcpu
->arch
.mmu
.direct_map
2134 && vcpu
->arch
.mmu
.root_level
<= PT32_ROOT_LEVEL
) {
2135 quadrant
= gaddr
>> (PAGE_SHIFT
+ (PT64_PT_BITS
* level
));
2136 quadrant
&= (1 << ((PT32_PT_BITS
- PT64_PT_BITS
) * level
)) - 1;
2137 role
.quadrant
= quadrant
;
2139 for_each_gfn_sp(vcpu
->kvm
, sp
, gfn
) {
2140 if (is_obsolete_sp(vcpu
->kvm
, sp
))
2143 if (!need_sync
&& sp
->unsync
)
2146 if (sp
->role
.word
!= role
.word
)
2150 /* The page is good, but __kvm_sync_page might still end
2151 * up zapping it. If so, break in order to rebuild it.
2153 if (!__kvm_sync_page(vcpu
, sp
, &invalid_list
))
2156 WARN_ON(!list_empty(&invalid_list
));
2157 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
2160 if (sp
->unsync_children
)
2161 kvm_make_request(KVM_REQ_MMU_SYNC
, vcpu
);
2163 __clear_sp_write_flooding_count(sp
);
2164 trace_kvm_mmu_get_page(sp
, false);
2168 ++vcpu
->kvm
->stat
.mmu_cache_miss
;
2170 sp
= kvm_mmu_alloc_page(vcpu
, direct
);
2174 hlist_add_head(&sp
->hash_link
,
2175 &vcpu
->kvm
->arch
.mmu_page_hash
[kvm_page_table_hashfn(gfn
)]);
2178 * we should do write protection before syncing pages
2179 * otherwise the content of the synced shadow page may
2180 * be inconsistent with guest page table.
2182 account_shadowed(vcpu
->kvm
, sp
);
2183 if (level
== PT_PAGE_TABLE_LEVEL
&&
2184 rmap_write_protect(vcpu
, gfn
))
2185 kvm_flush_remote_tlbs(vcpu
->kvm
);
2187 if (level
> PT_PAGE_TABLE_LEVEL
&& need_sync
)
2188 flush
|= kvm_sync_pages(vcpu
, gfn
, &invalid_list
);
2190 sp
->mmu_valid_gen
= vcpu
->kvm
->arch
.mmu_valid_gen
;
2191 clear_page(sp
->spt
);
2192 trace_kvm_mmu_get_page(sp
, true);
2194 kvm_mmu_flush_or_zap(vcpu
, &invalid_list
, false, flush
);
2198 static void shadow_walk_init(struct kvm_shadow_walk_iterator
*iterator
,
2199 struct kvm_vcpu
*vcpu
, u64 addr
)
2201 iterator
->addr
= addr
;
2202 iterator
->shadow_addr
= vcpu
->arch
.mmu
.root_hpa
;
2203 iterator
->level
= vcpu
->arch
.mmu
.shadow_root_level
;
2205 if (iterator
->level
== PT64_ROOT_LEVEL
&&
2206 vcpu
->arch
.mmu
.root_level
< PT64_ROOT_LEVEL
&&
2207 !vcpu
->arch
.mmu
.direct_map
)
2210 if (iterator
->level
== PT32E_ROOT_LEVEL
) {
2211 iterator
->shadow_addr
2212 = vcpu
->arch
.mmu
.pae_root
[(addr
>> 30) & 3];
2213 iterator
->shadow_addr
&= PT64_BASE_ADDR_MASK
;
2215 if (!iterator
->shadow_addr
)
2216 iterator
->level
= 0;
2220 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator
*iterator
)
2222 if (iterator
->level
< PT_PAGE_TABLE_LEVEL
)
2225 iterator
->index
= SHADOW_PT_INDEX(iterator
->addr
, iterator
->level
);
2226 iterator
->sptep
= ((u64
*)__va(iterator
->shadow_addr
)) + iterator
->index
;
2230 static void __shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
,
2233 if (is_last_spte(spte
, iterator
->level
)) {
2234 iterator
->level
= 0;
2238 iterator
->shadow_addr
= spte
& PT64_BASE_ADDR_MASK
;
2242 static void shadow_walk_next(struct kvm_shadow_walk_iterator
*iterator
)
2244 return __shadow_walk_next(iterator
, *iterator
->sptep
);
2247 static void link_shadow_page(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2248 struct kvm_mmu_page
*sp
)
2252 BUILD_BUG_ON(VMX_EPT_READABLE_MASK
!= PT_PRESENT_MASK
||
2253 VMX_EPT_WRITABLE_MASK
!= PT_WRITABLE_MASK
);
2255 spte
= __pa(sp
->spt
) | PT_PRESENT_MASK
| PT_WRITABLE_MASK
|
2256 shadow_user_mask
| shadow_x_mask
| shadow_accessed_mask
;
2258 mmu_spte_set(sptep
, spte
);
2260 mmu_page_add_parent_pte(vcpu
, sp
, sptep
);
2262 if (sp
->unsync_children
|| sp
->unsync
)
2266 static void validate_direct_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2267 unsigned direct_access
)
2269 if (is_shadow_present_pte(*sptep
) && !is_large_pte(*sptep
)) {
2270 struct kvm_mmu_page
*child
;
2273 * For the direct sp, if the guest pte's dirty bit
2274 * changed form clean to dirty, it will corrupt the
2275 * sp's access: allow writable in the read-only sp,
2276 * so we should update the spte at this point to get
2277 * a new sp with the correct access.
2279 child
= page_header(*sptep
& PT64_BASE_ADDR_MASK
);
2280 if (child
->role
.access
== direct_access
)
2283 drop_parent_pte(child
, sptep
);
2284 kvm_flush_remote_tlbs(vcpu
->kvm
);
2288 static bool mmu_page_zap_pte(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
2292 struct kvm_mmu_page
*child
;
2295 if (is_shadow_present_pte(pte
)) {
2296 if (is_last_spte(pte
, sp
->role
.level
)) {
2297 drop_spte(kvm
, spte
);
2298 if (is_large_pte(pte
))
2301 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2302 drop_parent_pte(child
, spte
);
2307 if (is_mmio_spte(pte
))
2308 mmu_spte_clear_no_track(spte
);
2313 static void kvm_mmu_page_unlink_children(struct kvm
*kvm
,
2314 struct kvm_mmu_page
*sp
)
2318 for (i
= 0; i
< PT64_ENT_PER_PAGE
; ++i
)
2319 mmu_page_zap_pte(kvm
, sp
, sp
->spt
+ i
);
2322 static void kvm_mmu_unlink_parents(struct kvm
*kvm
, struct kvm_mmu_page
*sp
)
2325 struct rmap_iterator iter
;
2327 while ((sptep
= rmap_get_first(&sp
->parent_ptes
, &iter
)))
2328 drop_parent_pte(sp
, sptep
);
2331 static int mmu_zap_unsync_children(struct kvm
*kvm
,
2332 struct kvm_mmu_page
*parent
,
2333 struct list_head
*invalid_list
)
2336 struct mmu_page_path parents
;
2337 struct kvm_mmu_pages pages
;
2339 if (parent
->role
.level
== PT_PAGE_TABLE_LEVEL
)
2342 while (mmu_unsync_walk(parent
, &pages
)) {
2343 struct kvm_mmu_page
*sp
;
2345 for_each_sp(pages
, sp
, parents
, i
) {
2346 kvm_mmu_prepare_zap_page(kvm
, sp
, invalid_list
);
2347 mmu_pages_clear_parents(&parents
);
2355 static int kvm_mmu_prepare_zap_page(struct kvm
*kvm
, struct kvm_mmu_page
*sp
,
2356 struct list_head
*invalid_list
)
2360 trace_kvm_mmu_prepare_zap_page(sp
);
2361 ++kvm
->stat
.mmu_shadow_zapped
;
2362 ret
= mmu_zap_unsync_children(kvm
, sp
, invalid_list
);
2363 kvm_mmu_page_unlink_children(kvm
, sp
);
2364 kvm_mmu_unlink_parents(kvm
, sp
);
2366 if (!sp
->role
.invalid
&& !sp
->role
.direct
)
2367 unaccount_shadowed(kvm
, sp
);
2370 kvm_unlink_unsync_page(kvm
, sp
);
2371 if (!sp
->root_count
) {
2374 list_move(&sp
->link
, invalid_list
);
2375 kvm_mod_used_mmu_pages(kvm
, -1);
2377 list_move(&sp
->link
, &kvm
->arch
.active_mmu_pages
);
2380 * The obsolete pages can not be used on any vcpus.
2381 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2383 if (!sp
->role
.invalid
&& !is_obsolete_sp(kvm
, sp
))
2384 kvm_reload_remote_mmus(kvm
);
2387 sp
->role
.invalid
= 1;
2391 static void kvm_mmu_commit_zap_page(struct kvm
*kvm
,
2392 struct list_head
*invalid_list
)
2394 struct kvm_mmu_page
*sp
, *nsp
;
2396 if (list_empty(invalid_list
))
2400 * We need to make sure everyone sees our modifications to
2401 * the page tables and see changes to vcpu->mode here. The barrier
2402 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2403 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2405 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2406 * guest mode and/or lockless shadow page table walks.
2408 kvm_flush_remote_tlbs(kvm
);
2410 list_for_each_entry_safe(sp
, nsp
, invalid_list
, link
) {
2411 WARN_ON(!sp
->role
.invalid
|| sp
->root_count
);
2412 kvm_mmu_free_page(sp
);
2416 static bool prepare_zap_oldest_mmu_page(struct kvm
*kvm
,
2417 struct list_head
*invalid_list
)
2419 struct kvm_mmu_page
*sp
;
2421 if (list_empty(&kvm
->arch
.active_mmu_pages
))
2424 sp
= list_last_entry(&kvm
->arch
.active_mmu_pages
,
2425 struct kvm_mmu_page
, link
);
2426 kvm_mmu_prepare_zap_page(kvm
, sp
, invalid_list
);
2432 * Changing the number of mmu pages allocated to the vm
2433 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2435 void kvm_mmu_change_mmu_pages(struct kvm
*kvm
, unsigned int goal_nr_mmu_pages
)
2437 LIST_HEAD(invalid_list
);
2439 spin_lock(&kvm
->mmu_lock
);
2441 if (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
) {
2442 /* Need to free some mmu pages to achieve the goal. */
2443 while (kvm
->arch
.n_used_mmu_pages
> goal_nr_mmu_pages
)
2444 if (!prepare_zap_oldest_mmu_page(kvm
, &invalid_list
))
2447 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
2448 goal_nr_mmu_pages
= kvm
->arch
.n_used_mmu_pages
;
2451 kvm
->arch
.n_max_mmu_pages
= goal_nr_mmu_pages
;
2453 spin_unlock(&kvm
->mmu_lock
);
2456 int kvm_mmu_unprotect_page(struct kvm
*kvm
, gfn_t gfn
)
2458 struct kvm_mmu_page
*sp
;
2459 LIST_HEAD(invalid_list
);
2462 pgprintk("%s: looking for gfn %llx\n", __func__
, gfn
);
2464 spin_lock(&kvm
->mmu_lock
);
2465 for_each_gfn_indirect_valid_sp(kvm
, sp
, gfn
) {
2466 pgprintk("%s: gfn %llx role %x\n", __func__
, gfn
,
2469 kvm_mmu_prepare_zap_page(kvm
, sp
, &invalid_list
);
2471 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
2472 spin_unlock(&kvm
->mmu_lock
);
2476 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page
);
2478 static void kvm_unsync_page(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
2480 trace_kvm_mmu_unsync_page(sp
);
2481 ++vcpu
->kvm
->stat
.mmu_unsync
;
2484 kvm_mmu_mark_parents_unsync(sp
);
2487 static bool mmu_need_write_protect(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2490 struct kvm_mmu_page
*sp
;
2492 if (kvm_page_track_is_active(vcpu
, gfn
, KVM_PAGE_TRACK_WRITE
))
2495 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, sp
, gfn
) {
2502 WARN_ON(sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
);
2503 kvm_unsync_page(vcpu
, sp
);
2509 static bool kvm_is_mmio_pfn(kvm_pfn_t pfn
)
2512 return !is_zero_pfn(pfn
) && PageReserved(pfn_to_page(pfn
));
2517 static int set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
,
2518 unsigned pte_access
, int level
,
2519 gfn_t gfn
, kvm_pfn_t pfn
, bool speculative
,
2520 bool can_unsync
, bool host_writable
)
2525 if (set_mmio_spte(vcpu
, sptep
, gfn
, pfn
, pte_access
))
2528 spte
= PT_PRESENT_MASK
;
2530 spte
|= shadow_accessed_mask
;
2532 if (pte_access
& ACC_EXEC_MASK
)
2533 spte
|= shadow_x_mask
;
2535 spte
|= shadow_nx_mask
;
2537 if (pte_access
& ACC_USER_MASK
)
2538 spte
|= shadow_user_mask
;
2540 if (level
> PT_PAGE_TABLE_LEVEL
)
2541 spte
|= PT_PAGE_SIZE_MASK
;
2543 spte
|= kvm_x86_ops
->get_mt_mask(vcpu
, gfn
,
2544 kvm_is_mmio_pfn(pfn
));
2547 spte
|= SPTE_HOST_WRITEABLE
;
2549 pte_access
&= ~ACC_WRITE_MASK
;
2551 spte
|= (u64
)pfn
<< PAGE_SHIFT
;
2553 if (pte_access
& ACC_WRITE_MASK
) {
2556 * Other vcpu creates new sp in the window between
2557 * mapping_level() and acquiring mmu-lock. We can
2558 * allow guest to retry the access, the mapping can
2559 * be fixed if guest refault.
2561 if (level
> PT_PAGE_TABLE_LEVEL
&&
2562 mmu_gfn_lpage_is_disallowed(vcpu
, gfn
, level
))
2565 spte
|= PT_WRITABLE_MASK
| SPTE_MMU_WRITEABLE
;
2568 * Optimization: for pte sync, if spte was writable the hash
2569 * lookup is unnecessary (and expensive). Write protection
2570 * is responsibility of mmu_get_page / kvm_sync_page.
2571 * Same reasoning can be applied to dirty page accounting.
2573 if (!can_unsync
&& is_writable_pte(*sptep
))
2576 if (mmu_need_write_protect(vcpu
, gfn
, can_unsync
)) {
2577 pgprintk("%s: found shadow page for %llx, marking ro\n",
2580 pte_access
&= ~ACC_WRITE_MASK
;
2581 spte
&= ~(PT_WRITABLE_MASK
| SPTE_MMU_WRITEABLE
);
2585 if (pte_access
& ACC_WRITE_MASK
) {
2586 kvm_vcpu_mark_page_dirty(vcpu
, gfn
);
2587 spte
|= shadow_dirty_mask
;
2591 if (mmu_spte_update(sptep
, spte
))
2592 kvm_flush_remote_tlbs(vcpu
->kvm
);
2597 static bool mmu_set_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
, unsigned pte_access
,
2598 int write_fault
, int level
, gfn_t gfn
, kvm_pfn_t pfn
,
2599 bool speculative
, bool host_writable
)
2601 int was_rmapped
= 0;
2603 bool emulate
= false;
2605 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__
,
2606 *sptep
, write_fault
, gfn
);
2608 if (is_shadow_present_pte(*sptep
)) {
2610 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2611 * the parent of the now unreachable PTE.
2613 if (level
> PT_PAGE_TABLE_LEVEL
&&
2614 !is_large_pte(*sptep
)) {
2615 struct kvm_mmu_page
*child
;
2618 child
= page_header(pte
& PT64_BASE_ADDR_MASK
);
2619 drop_parent_pte(child
, sptep
);
2620 kvm_flush_remote_tlbs(vcpu
->kvm
);
2621 } else if (pfn
!= spte_to_pfn(*sptep
)) {
2622 pgprintk("hfn old %llx new %llx\n",
2623 spte_to_pfn(*sptep
), pfn
);
2624 drop_spte(vcpu
->kvm
, sptep
);
2625 kvm_flush_remote_tlbs(vcpu
->kvm
);
2630 if (set_spte(vcpu
, sptep
, pte_access
, level
, gfn
, pfn
, speculative
,
2631 true, host_writable
)) {
2634 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
2637 if (unlikely(is_mmio_spte(*sptep
)))
2640 pgprintk("%s: setting spte %llx\n", __func__
, *sptep
);
2641 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2642 is_large_pte(*sptep
)? "2MB" : "4kB",
2643 *sptep
& PT_PRESENT_MASK
?"RW":"R", gfn
,
2645 if (!was_rmapped
&& is_large_pte(*sptep
))
2646 ++vcpu
->kvm
->stat
.lpages
;
2648 if (is_shadow_present_pte(*sptep
)) {
2650 rmap_count
= rmap_add(vcpu
, sptep
, gfn
);
2651 if (rmap_count
> RMAP_RECYCLE_THRESHOLD
)
2652 rmap_recycle(vcpu
, sptep
, gfn
);
2656 kvm_release_pfn_clean(pfn
);
2661 static kvm_pfn_t
pte_prefetch_gfn_to_pfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
2664 struct kvm_memory_slot
*slot
;
2666 slot
= gfn_to_memslot_dirty_bitmap(vcpu
, gfn
, no_dirty_log
);
2668 return KVM_PFN_ERR_FAULT
;
2670 return gfn_to_pfn_memslot_atomic(slot
, gfn
);
2673 static int direct_pte_prefetch_many(struct kvm_vcpu
*vcpu
,
2674 struct kvm_mmu_page
*sp
,
2675 u64
*start
, u64
*end
)
2677 struct page
*pages
[PTE_PREFETCH_NUM
];
2678 struct kvm_memory_slot
*slot
;
2679 unsigned access
= sp
->role
.access
;
2683 gfn
= kvm_mmu_page_get_gfn(sp
, start
- sp
->spt
);
2684 slot
= gfn_to_memslot_dirty_bitmap(vcpu
, gfn
, access
& ACC_WRITE_MASK
);
2688 ret
= gfn_to_page_many_atomic(slot
, gfn
, pages
, end
- start
);
2692 for (i
= 0; i
< ret
; i
++, gfn
++, start
++)
2693 mmu_set_spte(vcpu
, start
, access
, 0, sp
->role
.level
, gfn
,
2694 page_to_pfn(pages
[i
]), true, true);
2699 static void __direct_pte_prefetch(struct kvm_vcpu
*vcpu
,
2700 struct kvm_mmu_page
*sp
, u64
*sptep
)
2702 u64
*spte
, *start
= NULL
;
2705 WARN_ON(!sp
->role
.direct
);
2707 i
= (sptep
- sp
->spt
) & ~(PTE_PREFETCH_NUM
- 1);
2710 for (i
= 0; i
< PTE_PREFETCH_NUM
; i
++, spte
++) {
2711 if (is_shadow_present_pte(*spte
) || spte
== sptep
) {
2714 if (direct_pte_prefetch_many(vcpu
, sp
, start
, spte
) < 0)
2722 static void direct_pte_prefetch(struct kvm_vcpu
*vcpu
, u64
*sptep
)
2724 struct kvm_mmu_page
*sp
;
2727 * Since it's no accessed bit on EPT, it's no way to
2728 * distinguish between actually accessed translations
2729 * and prefetched, so disable pte prefetch if EPT is
2732 if (!shadow_accessed_mask
)
2735 sp
= page_header(__pa(sptep
));
2736 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
2739 __direct_pte_prefetch(vcpu
, sp
, sptep
);
2742 static int __direct_map(struct kvm_vcpu
*vcpu
, int write
, int map_writable
,
2743 int level
, gfn_t gfn
, kvm_pfn_t pfn
, bool prefault
)
2745 struct kvm_shadow_walk_iterator iterator
;
2746 struct kvm_mmu_page
*sp
;
2750 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2753 for_each_shadow_entry(vcpu
, (u64
)gfn
<< PAGE_SHIFT
, iterator
) {
2754 if (iterator
.level
== level
) {
2755 emulate
= mmu_set_spte(vcpu
, iterator
.sptep
, ACC_ALL
,
2756 write
, level
, gfn
, pfn
, prefault
,
2758 direct_pte_prefetch(vcpu
, iterator
.sptep
);
2759 ++vcpu
->stat
.pf_fixed
;
2763 drop_large_spte(vcpu
, iterator
.sptep
);
2764 if (!is_shadow_present_pte(*iterator
.sptep
)) {
2765 u64 base_addr
= iterator
.addr
;
2767 base_addr
&= PT64_LVL_ADDR_MASK(iterator
.level
);
2768 pseudo_gfn
= base_addr
>> PAGE_SHIFT
;
2769 sp
= kvm_mmu_get_page(vcpu
, pseudo_gfn
, iterator
.addr
,
2770 iterator
.level
- 1, 1, ACC_ALL
);
2772 link_shadow_page(vcpu
, iterator
.sptep
, sp
);
2778 static void kvm_send_hwpoison_signal(unsigned long address
, struct task_struct
*tsk
)
2782 info
.si_signo
= SIGBUS
;
2784 info
.si_code
= BUS_MCEERR_AR
;
2785 info
.si_addr
= (void __user
*)address
;
2786 info
.si_addr_lsb
= PAGE_SHIFT
;
2788 send_sig_info(SIGBUS
, &info
, tsk
);
2791 static int kvm_handle_bad_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
, kvm_pfn_t pfn
)
2794 * Do not cache the mmio info caused by writing the readonly gfn
2795 * into the spte otherwise read access on readonly gfn also can
2796 * caused mmio page fault and treat it as mmio access.
2797 * Return 1 to tell kvm to emulate it.
2799 if (pfn
== KVM_PFN_ERR_RO_FAULT
)
2802 if (pfn
== KVM_PFN_ERR_HWPOISON
) {
2803 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu
, gfn
), current
);
2810 static void transparent_hugepage_adjust(struct kvm_vcpu
*vcpu
,
2811 gfn_t
*gfnp
, kvm_pfn_t
*pfnp
,
2814 kvm_pfn_t pfn
= *pfnp
;
2816 int level
= *levelp
;
2819 * Check if it's a transparent hugepage. If this would be an
2820 * hugetlbfs page, level wouldn't be set to
2821 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2824 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
) &&
2825 level
== PT_PAGE_TABLE_LEVEL
&&
2826 PageTransCompound(pfn_to_page(pfn
)) &&
2827 !mmu_gfn_lpage_is_disallowed(vcpu
, gfn
, PT_DIRECTORY_LEVEL
)) {
2830 * mmu_notifier_retry was successful and we hold the
2831 * mmu_lock here, so the pmd can't become splitting
2832 * from under us, and in turn
2833 * __split_huge_page_refcount() can't run from under
2834 * us and we can safely transfer the refcount from
2835 * PG_tail to PG_head as we switch the pfn to tail to
2838 *levelp
= level
= PT_DIRECTORY_LEVEL
;
2839 mask
= KVM_PAGES_PER_HPAGE(level
) - 1;
2840 VM_BUG_ON((gfn
& mask
) != (pfn
& mask
));
2844 kvm_release_pfn_clean(pfn
);
2852 static bool handle_abnormal_pfn(struct kvm_vcpu
*vcpu
, gva_t gva
, gfn_t gfn
,
2853 kvm_pfn_t pfn
, unsigned access
, int *ret_val
)
2855 /* The pfn is invalid, report the error! */
2856 if (unlikely(is_error_pfn(pfn
))) {
2857 *ret_val
= kvm_handle_bad_page(vcpu
, gfn
, pfn
);
2861 if (unlikely(is_noslot_pfn(pfn
)))
2862 vcpu_cache_mmio_info(vcpu
, gva
, gfn
, access
);
2867 static bool page_fault_can_be_fast(u32 error_code
)
2870 * Do not fix the mmio spte with invalid generation number which
2871 * need to be updated by slow page fault path.
2873 if (unlikely(error_code
& PFERR_RSVD_MASK
))
2877 * #PF can be fast only if the shadow page table is present and it
2878 * is caused by write-protect, that means we just need change the
2879 * W bit of the spte which can be done out of mmu-lock.
2881 if (!(error_code
& PFERR_PRESENT_MASK
) ||
2882 !(error_code
& PFERR_WRITE_MASK
))
2889 fast_pf_fix_direct_spte(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
2890 u64
*sptep
, u64 spte
)
2894 WARN_ON(!sp
->role
.direct
);
2897 * The gfn of direct spte is stable since it is calculated
2900 gfn
= kvm_mmu_page_get_gfn(sp
, sptep
- sp
->spt
);
2903 * Theoretically we could also set dirty bit (and flush TLB) here in
2904 * order to eliminate unnecessary PML logging. See comments in
2905 * set_spte. But fast_page_fault is very unlikely to happen with PML
2906 * enabled, so we do not do this. This might result in the same GPA
2907 * to be logged in PML buffer again when the write really happens, and
2908 * eventually to be called by mark_page_dirty twice. But it's also no
2909 * harm. This also avoids the TLB flush needed after setting dirty bit
2910 * so non-PML cases won't be impacted.
2912 * Compare with set_spte where instead shadow_dirty_mask is set.
2914 if (cmpxchg64(sptep
, spte
, spte
| PT_WRITABLE_MASK
) == spte
)
2915 kvm_vcpu_mark_page_dirty(vcpu
, gfn
);
2922 * - true: let the vcpu to access on the same address again.
2923 * - false: let the real page fault path to fix it.
2925 static bool fast_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
, int level
,
2928 struct kvm_shadow_walk_iterator iterator
;
2929 struct kvm_mmu_page
*sp
;
2933 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
2936 if (!page_fault_can_be_fast(error_code
))
2939 walk_shadow_page_lockless_begin(vcpu
);
2940 for_each_shadow_entry_lockless(vcpu
, gva
, iterator
, spte
)
2941 if (!is_shadow_present_pte(spte
) || iterator
.level
< level
)
2945 * If the mapping has been changed, let the vcpu fault on the
2946 * same address again.
2948 if (!is_shadow_present_pte(spte
)) {
2953 sp
= page_header(__pa(iterator
.sptep
));
2954 if (!is_last_spte(spte
, sp
->role
.level
))
2958 * Check if it is a spurious fault caused by TLB lazily flushed.
2960 * Need not check the access of upper level table entries since
2961 * they are always ACC_ALL.
2963 if (is_writable_pte(spte
)) {
2969 * Currently, to simplify the code, only the spte write-protected
2970 * by dirty-log can be fast fixed.
2972 if (!spte_is_locklessly_modifiable(spte
))
2976 * Do not fix write-permission on the large spte since we only dirty
2977 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2978 * that means other pages are missed if its slot is dirty-logged.
2980 * Instead, we let the slow page fault path create a normal spte to
2983 * See the comments in kvm_arch_commit_memory_region().
2985 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
2989 * Currently, fast page fault only works for direct mapping since
2990 * the gfn is not stable for indirect shadow page.
2991 * See Documentation/virtual/kvm/locking.txt to get more detail.
2993 ret
= fast_pf_fix_direct_spte(vcpu
, sp
, iterator
.sptep
, spte
);
2995 trace_fast_page_fault(vcpu
, gva
, error_code
, iterator
.sptep
,
2997 walk_shadow_page_lockless_end(vcpu
);
3002 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
3003 gva_t gva
, kvm_pfn_t
*pfn
, bool write
, bool *writable
);
3004 static void make_mmu_pages_available(struct kvm_vcpu
*vcpu
);
3006 static int nonpaging_map(struct kvm_vcpu
*vcpu
, gva_t v
, u32 error_code
,
3007 gfn_t gfn
, bool prefault
)
3011 bool force_pt_level
= false;
3013 unsigned long mmu_seq
;
3014 bool map_writable
, write
= error_code
& PFERR_WRITE_MASK
;
3016 level
= mapping_level(vcpu
, gfn
, &force_pt_level
);
3017 if (likely(!force_pt_level
)) {
3019 * This path builds a PAE pagetable - so we can map
3020 * 2mb pages at maximum. Therefore check if the level
3021 * is larger than that.
3023 if (level
> PT_DIRECTORY_LEVEL
)
3024 level
= PT_DIRECTORY_LEVEL
;
3026 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
3029 if (fast_page_fault(vcpu
, v
, level
, error_code
))
3032 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
3035 if (try_async_pf(vcpu
, prefault
, gfn
, v
, &pfn
, write
, &map_writable
))
3038 if (handle_abnormal_pfn(vcpu
, v
, gfn
, pfn
, ACC_ALL
, &r
))
3041 spin_lock(&vcpu
->kvm
->mmu_lock
);
3042 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
))
3044 make_mmu_pages_available(vcpu
);
3045 if (likely(!force_pt_level
))
3046 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
3047 r
= __direct_map(vcpu
, write
, map_writable
, level
, gfn
, pfn
, prefault
);
3048 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3053 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3054 kvm_release_pfn_clean(pfn
);
3059 static void mmu_free_roots(struct kvm_vcpu
*vcpu
)
3062 struct kvm_mmu_page
*sp
;
3063 LIST_HEAD(invalid_list
);
3065 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3068 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
&&
3069 (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
||
3070 vcpu
->arch
.mmu
.direct_map
)) {
3071 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3073 spin_lock(&vcpu
->kvm
->mmu_lock
);
3074 sp
= page_header(root
);
3076 if (!sp
->root_count
&& sp
->role
.invalid
) {
3077 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, &invalid_list
);
3078 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
3080 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3081 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
3085 spin_lock(&vcpu
->kvm
->mmu_lock
);
3086 for (i
= 0; i
< 4; ++i
) {
3087 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3090 root
&= PT64_BASE_ADDR_MASK
;
3091 sp
= page_header(root
);
3093 if (!sp
->root_count
&& sp
->role
.invalid
)
3094 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
,
3097 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
3099 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
3100 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3101 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
3104 static int mmu_check_root(struct kvm_vcpu
*vcpu
, gfn_t root_gfn
)
3108 if (!kvm_is_visible_gfn(vcpu
->kvm
, root_gfn
)) {
3109 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
3116 static int mmu_alloc_direct_roots(struct kvm_vcpu
*vcpu
)
3118 struct kvm_mmu_page
*sp
;
3121 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
3122 spin_lock(&vcpu
->kvm
->mmu_lock
);
3123 make_mmu_pages_available(vcpu
);
3124 sp
= kvm_mmu_get_page(vcpu
, 0, 0, PT64_ROOT_LEVEL
, 1, ACC_ALL
);
3126 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3127 vcpu
->arch
.mmu
.root_hpa
= __pa(sp
->spt
);
3128 } else if (vcpu
->arch
.mmu
.shadow_root_level
== PT32E_ROOT_LEVEL
) {
3129 for (i
= 0; i
< 4; ++i
) {
3130 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3132 MMU_WARN_ON(VALID_PAGE(root
));
3133 spin_lock(&vcpu
->kvm
->mmu_lock
);
3134 make_mmu_pages_available(vcpu
);
3135 sp
= kvm_mmu_get_page(vcpu
, i
<< (30 - PAGE_SHIFT
),
3136 i
<< 30, PT32_ROOT_LEVEL
, 1, ACC_ALL
);
3137 root
= __pa(sp
->spt
);
3139 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3140 vcpu
->arch
.mmu
.pae_root
[i
] = root
| PT_PRESENT_MASK
;
3142 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
3149 static int mmu_alloc_shadow_roots(struct kvm_vcpu
*vcpu
)
3151 struct kvm_mmu_page
*sp
;
3156 root_gfn
= vcpu
->arch
.mmu
.get_cr3(vcpu
) >> PAGE_SHIFT
;
3158 if (mmu_check_root(vcpu
, root_gfn
))
3162 * Do we shadow a long mode page table? If so we need to
3163 * write-protect the guests page table root.
3165 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
3166 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3168 MMU_WARN_ON(VALID_PAGE(root
));
3170 spin_lock(&vcpu
->kvm
->mmu_lock
);
3171 make_mmu_pages_available(vcpu
);
3172 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, 0, PT64_ROOT_LEVEL
,
3174 root
= __pa(sp
->spt
);
3176 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3177 vcpu
->arch
.mmu
.root_hpa
= root
;
3182 * We shadow a 32 bit page table. This may be a legacy 2-level
3183 * or a PAE 3-level page table. In either case we need to be aware that
3184 * the shadow page table may be a PAE or a long mode page table.
3186 pm_mask
= PT_PRESENT_MASK
;
3187 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
)
3188 pm_mask
|= PT_ACCESSED_MASK
| PT_WRITABLE_MASK
| PT_USER_MASK
;
3190 for (i
= 0; i
< 4; ++i
) {
3191 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3193 MMU_WARN_ON(VALID_PAGE(root
));
3194 if (vcpu
->arch
.mmu
.root_level
== PT32E_ROOT_LEVEL
) {
3195 pdptr
= vcpu
->arch
.mmu
.get_pdptr(vcpu
, i
);
3196 if (!is_present_gpte(pdptr
)) {
3197 vcpu
->arch
.mmu
.pae_root
[i
] = 0;
3200 root_gfn
= pdptr
>> PAGE_SHIFT
;
3201 if (mmu_check_root(vcpu
, root_gfn
))
3204 spin_lock(&vcpu
->kvm
->mmu_lock
);
3205 make_mmu_pages_available(vcpu
);
3206 sp
= kvm_mmu_get_page(vcpu
, root_gfn
, i
<< 30, PT32_ROOT_LEVEL
,
3208 root
= __pa(sp
->spt
);
3210 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3212 vcpu
->arch
.mmu
.pae_root
[i
] = root
| pm_mask
;
3214 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.pae_root
);
3217 * If we shadow a 32 bit page table with a long mode page
3218 * table we enter this path.
3220 if (vcpu
->arch
.mmu
.shadow_root_level
== PT64_ROOT_LEVEL
) {
3221 if (vcpu
->arch
.mmu
.lm_root
== NULL
) {
3223 * The additional page necessary for this is only
3224 * allocated on demand.
3229 lm_root
= (void*)get_zeroed_page(GFP_KERNEL
);
3230 if (lm_root
== NULL
)
3233 lm_root
[0] = __pa(vcpu
->arch
.mmu
.pae_root
) | pm_mask
;
3235 vcpu
->arch
.mmu
.lm_root
= lm_root
;
3238 vcpu
->arch
.mmu
.root_hpa
= __pa(vcpu
->arch
.mmu
.lm_root
);
3244 static int mmu_alloc_roots(struct kvm_vcpu
*vcpu
)
3246 if (vcpu
->arch
.mmu
.direct_map
)
3247 return mmu_alloc_direct_roots(vcpu
);
3249 return mmu_alloc_shadow_roots(vcpu
);
3252 static void mmu_sync_roots(struct kvm_vcpu
*vcpu
)
3255 struct kvm_mmu_page
*sp
;
3257 if (vcpu
->arch
.mmu
.direct_map
)
3260 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3263 vcpu_clear_mmio_info(vcpu
, MMIO_GVA_ANY
);
3264 kvm_mmu_audit(vcpu
, AUDIT_PRE_SYNC
);
3265 if (vcpu
->arch
.mmu
.root_level
== PT64_ROOT_LEVEL
) {
3266 hpa_t root
= vcpu
->arch
.mmu
.root_hpa
;
3267 sp
= page_header(root
);
3268 mmu_sync_children(vcpu
, sp
);
3269 kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
3272 for (i
= 0; i
< 4; ++i
) {
3273 hpa_t root
= vcpu
->arch
.mmu
.pae_root
[i
];
3275 if (root
&& VALID_PAGE(root
)) {
3276 root
&= PT64_BASE_ADDR_MASK
;
3277 sp
= page_header(root
);
3278 mmu_sync_children(vcpu
, sp
);
3281 kvm_mmu_audit(vcpu
, AUDIT_POST_SYNC
);
3284 void kvm_mmu_sync_roots(struct kvm_vcpu
*vcpu
)
3286 spin_lock(&vcpu
->kvm
->mmu_lock
);
3287 mmu_sync_roots(vcpu
);
3288 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3290 EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots
);
3292 static gpa_t
nonpaging_gva_to_gpa(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
3293 u32 access
, struct x86_exception
*exception
)
3296 exception
->error_code
= 0;
3300 static gpa_t
nonpaging_gva_to_gpa_nested(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
3302 struct x86_exception
*exception
)
3305 exception
->error_code
= 0;
3306 return vcpu
->arch
.nested_mmu
.translate_gpa(vcpu
, vaddr
, access
, exception
);
3310 __is_rsvd_bits_set(struct rsvd_bits_validate
*rsvd_check
, u64 pte
, int level
)
3312 int bit7
= (pte
>> 7) & 1, low6
= pte
& 0x3f;
3314 return (pte
& rsvd_check
->rsvd_bits_mask
[bit7
][level
-1]) |
3315 ((rsvd_check
->bad_mt_xwr
& (1ull << low6
)) != 0);
3318 static bool is_rsvd_bits_set(struct kvm_mmu
*mmu
, u64 gpte
, int level
)
3320 return __is_rsvd_bits_set(&mmu
->guest_rsvd_check
, gpte
, level
);
3323 static bool is_shadow_zero_bits_set(struct kvm_mmu
*mmu
, u64 spte
, int level
)
3325 return __is_rsvd_bits_set(&mmu
->shadow_zero_check
, spte
, level
);
3328 static bool mmio_info_in_cache(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
)
3331 return vcpu_match_mmio_gpa(vcpu
, addr
);
3333 return vcpu_match_mmio_gva(vcpu
, addr
);
3336 /* return true if reserved bit is detected on spte. */
3338 walk_shadow_page_get_mmio_spte(struct kvm_vcpu
*vcpu
, u64 addr
, u64
*sptep
)
3340 struct kvm_shadow_walk_iterator iterator
;
3341 u64 sptes
[PT64_ROOT_LEVEL
], spte
= 0ull;
3343 bool reserved
= false;
3345 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3348 walk_shadow_page_lockless_begin(vcpu
);
3350 for (shadow_walk_init(&iterator
, vcpu
, addr
),
3351 leaf
= root
= iterator
.level
;
3352 shadow_walk_okay(&iterator
);
3353 __shadow_walk_next(&iterator
, spte
)) {
3354 spte
= mmu_spte_get_lockless(iterator
.sptep
);
3356 sptes
[leaf
- 1] = spte
;
3359 if (!is_shadow_present_pte(spte
))
3362 reserved
|= is_shadow_zero_bits_set(&vcpu
->arch
.mmu
, spte
,
3366 walk_shadow_page_lockless_end(vcpu
);
3369 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3371 while (root
> leaf
) {
3372 pr_err("------ spte 0x%llx level %d.\n",
3373 sptes
[root
- 1], root
);
3382 int handle_mmio_page_fault(struct kvm_vcpu
*vcpu
, u64 addr
, bool direct
)
3387 if (mmio_info_in_cache(vcpu
, addr
, direct
))
3388 return RET_MMIO_PF_EMULATE
;
3390 reserved
= walk_shadow_page_get_mmio_spte(vcpu
, addr
, &spte
);
3391 if (WARN_ON(reserved
))
3392 return RET_MMIO_PF_BUG
;
3394 if (is_mmio_spte(spte
)) {
3395 gfn_t gfn
= get_mmio_spte_gfn(spte
);
3396 unsigned access
= get_mmio_spte_access(spte
);
3398 if (!check_mmio_spte(vcpu
, spte
))
3399 return RET_MMIO_PF_INVALID
;
3404 trace_handle_mmio_page_fault(addr
, gfn
, access
);
3405 vcpu_cache_mmio_info(vcpu
, addr
, gfn
, access
);
3406 return RET_MMIO_PF_EMULATE
;
3410 * If the page table is zapped by other cpus, let CPU fault again on
3413 return RET_MMIO_PF_RETRY
;
3415 EXPORT_SYMBOL_GPL(handle_mmio_page_fault
);
3417 static bool page_fault_handle_page_track(struct kvm_vcpu
*vcpu
,
3418 u32 error_code
, gfn_t gfn
)
3420 if (unlikely(error_code
& PFERR_RSVD_MASK
))
3423 if (!(error_code
& PFERR_PRESENT_MASK
) ||
3424 !(error_code
& PFERR_WRITE_MASK
))
3428 * guest is writing the page which is write tracked which can
3429 * not be fixed by page fault handler.
3431 if (kvm_page_track_is_active(vcpu
, gfn
, KVM_PAGE_TRACK_WRITE
))
3437 static void shadow_page_table_clear_flood(struct kvm_vcpu
*vcpu
, gva_t addr
)
3439 struct kvm_shadow_walk_iterator iterator
;
3442 if (!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
))
3445 walk_shadow_page_lockless_begin(vcpu
);
3446 for_each_shadow_entry_lockless(vcpu
, addr
, iterator
, spte
) {
3447 clear_sp_write_flooding_count(iterator
.sptep
);
3448 if (!is_shadow_present_pte(spte
))
3451 walk_shadow_page_lockless_end(vcpu
);
3454 static int nonpaging_page_fault(struct kvm_vcpu
*vcpu
, gva_t gva
,
3455 u32 error_code
, bool prefault
)
3457 gfn_t gfn
= gva
>> PAGE_SHIFT
;
3460 pgprintk("%s: gva %lx error %x\n", __func__
, gva
, error_code
);
3462 if (page_fault_handle_page_track(vcpu
, error_code
, gfn
))
3465 r
= mmu_topup_memory_caches(vcpu
);
3469 MMU_WARN_ON(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3472 return nonpaging_map(vcpu
, gva
& PAGE_MASK
,
3473 error_code
, gfn
, prefault
);
3476 static int kvm_arch_setup_async_pf(struct kvm_vcpu
*vcpu
, gva_t gva
, gfn_t gfn
)
3478 struct kvm_arch_async_pf arch
;
3480 arch
.token
= (vcpu
->arch
.apf
.id
++ << 12) | vcpu
->vcpu_id
;
3482 arch
.direct_map
= vcpu
->arch
.mmu
.direct_map
;
3483 arch
.cr3
= vcpu
->arch
.mmu
.get_cr3(vcpu
);
3485 return kvm_setup_async_pf(vcpu
, gva
, kvm_vcpu_gfn_to_hva(vcpu
, gfn
), &arch
);
3488 static bool can_do_async_pf(struct kvm_vcpu
*vcpu
)
3490 if (unlikely(!lapic_in_kernel(vcpu
) ||
3491 kvm_event_needs_reinjection(vcpu
)))
3494 return kvm_x86_ops
->interrupt_allowed(vcpu
);
3497 static bool try_async_pf(struct kvm_vcpu
*vcpu
, bool prefault
, gfn_t gfn
,
3498 gva_t gva
, kvm_pfn_t
*pfn
, bool write
, bool *writable
)
3500 struct kvm_memory_slot
*slot
;
3503 slot
= kvm_vcpu_gfn_to_memslot(vcpu
, gfn
);
3505 *pfn
= __gfn_to_pfn_memslot(slot
, gfn
, false, &async
, write
, writable
);
3507 return false; /* *pfn has correct page already */
3509 if (!prefault
&& can_do_async_pf(vcpu
)) {
3510 trace_kvm_try_async_get_page(gva
, gfn
);
3511 if (kvm_find_async_pf_gfn(vcpu
, gfn
)) {
3512 trace_kvm_async_pf_doublefault(gva
, gfn
);
3513 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
3515 } else if (kvm_arch_setup_async_pf(vcpu
, gva
, gfn
))
3519 *pfn
= __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, write
, writable
);
3524 check_hugepage_cache_consistency(struct kvm_vcpu
*vcpu
, gfn_t gfn
, int level
)
3526 int page_num
= KVM_PAGES_PER_HPAGE(level
);
3528 gfn
&= ~(page_num
- 1);
3530 return kvm_mtrr_check_gfn_range_consistency(vcpu
, gfn
, page_num
);
3533 static int tdp_page_fault(struct kvm_vcpu
*vcpu
, gva_t gpa
, u32 error_code
,
3539 bool force_pt_level
;
3540 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
3541 unsigned long mmu_seq
;
3542 int write
= error_code
& PFERR_WRITE_MASK
;
3545 MMU_WARN_ON(!VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
3547 if (page_fault_handle_page_track(vcpu
, error_code
, gfn
))
3550 r
= mmu_topup_memory_caches(vcpu
);
3554 force_pt_level
= !check_hugepage_cache_consistency(vcpu
, gfn
,
3555 PT_DIRECTORY_LEVEL
);
3556 level
= mapping_level(vcpu
, gfn
, &force_pt_level
);
3557 if (likely(!force_pt_level
)) {
3558 if (level
> PT_DIRECTORY_LEVEL
&&
3559 !check_hugepage_cache_consistency(vcpu
, gfn
, level
))
3560 level
= PT_DIRECTORY_LEVEL
;
3561 gfn
&= ~(KVM_PAGES_PER_HPAGE(level
) - 1);
3564 if (fast_page_fault(vcpu
, gpa
, level
, error_code
))
3567 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
3570 if (try_async_pf(vcpu
, prefault
, gfn
, gpa
, &pfn
, write
, &map_writable
))
3573 if (handle_abnormal_pfn(vcpu
, 0, gfn
, pfn
, ACC_ALL
, &r
))
3576 spin_lock(&vcpu
->kvm
->mmu_lock
);
3577 if (mmu_notifier_retry(vcpu
->kvm
, mmu_seq
))
3579 make_mmu_pages_available(vcpu
);
3580 if (likely(!force_pt_level
))
3581 transparent_hugepage_adjust(vcpu
, &gfn
, &pfn
, &level
);
3582 r
= __direct_map(vcpu
, write
, map_writable
, level
, gfn
, pfn
, prefault
);
3583 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3588 spin_unlock(&vcpu
->kvm
->mmu_lock
);
3589 kvm_release_pfn_clean(pfn
);
3593 static void nonpaging_init_context(struct kvm_vcpu
*vcpu
,
3594 struct kvm_mmu
*context
)
3596 context
->page_fault
= nonpaging_page_fault
;
3597 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
3598 context
->sync_page
= nonpaging_sync_page
;
3599 context
->invlpg
= nonpaging_invlpg
;
3600 context
->update_pte
= nonpaging_update_pte
;
3601 context
->root_level
= 0;
3602 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
3603 context
->root_hpa
= INVALID_PAGE
;
3604 context
->direct_map
= true;
3605 context
->nx
= false;
3608 void kvm_mmu_new_cr3(struct kvm_vcpu
*vcpu
)
3610 mmu_free_roots(vcpu
);
3613 static unsigned long get_cr3(struct kvm_vcpu
*vcpu
)
3615 return kvm_read_cr3(vcpu
);
3618 static void inject_page_fault(struct kvm_vcpu
*vcpu
,
3619 struct x86_exception
*fault
)
3621 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
3624 static bool sync_mmio_spte(struct kvm_vcpu
*vcpu
, u64
*sptep
, gfn_t gfn
,
3625 unsigned access
, int *nr_present
)
3627 if (unlikely(is_mmio_spte(*sptep
))) {
3628 if (gfn
!= get_mmio_spte_gfn(*sptep
)) {
3629 mmu_spte_clear_no_track(sptep
);
3634 mark_mmio_spte(vcpu
, sptep
, gfn
, access
);
3641 static inline bool is_last_gpte(struct kvm_mmu
*mmu
,
3642 unsigned level
, unsigned gpte
)
3645 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
3646 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
3647 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
3649 gpte
|= level
- PT_PAGE_TABLE_LEVEL
- 1;
3652 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3653 * If it is clear, there are no large pages at this level, so clear
3654 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3656 gpte
&= level
- mmu
->last_nonleaf_level
;
3658 return gpte
& PT_PAGE_SIZE_MASK
;
3661 #define PTTYPE_EPT 18 /* arbitrary */
3662 #define PTTYPE PTTYPE_EPT
3663 #include "paging_tmpl.h"
3667 #include "paging_tmpl.h"
3671 #include "paging_tmpl.h"
3675 __reset_rsvds_bits_mask(struct kvm_vcpu
*vcpu
,
3676 struct rsvd_bits_validate
*rsvd_check
,
3677 int maxphyaddr
, int level
, bool nx
, bool gbpages
,
3680 u64 exb_bit_rsvd
= 0;
3681 u64 gbpages_bit_rsvd
= 0;
3682 u64 nonleaf_bit8_rsvd
= 0;
3684 rsvd_check
->bad_mt_xwr
= 0;
3687 exb_bit_rsvd
= rsvd_bits(63, 63);
3689 gbpages_bit_rsvd
= rsvd_bits(7, 7);
3692 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3693 * leaf entries) on AMD CPUs only.
3696 nonleaf_bit8_rsvd
= rsvd_bits(8, 8);
3699 case PT32_ROOT_LEVEL
:
3700 /* no rsvd bits for 2 level 4K page table entries */
3701 rsvd_check
->rsvd_bits_mask
[0][1] = 0;
3702 rsvd_check
->rsvd_bits_mask
[0][0] = 0;
3703 rsvd_check
->rsvd_bits_mask
[1][0] =
3704 rsvd_check
->rsvd_bits_mask
[0][0];
3707 rsvd_check
->rsvd_bits_mask
[1][1] = 0;
3711 if (is_cpuid_PSE36())
3712 /* 36bits PSE 4MB page */
3713 rsvd_check
->rsvd_bits_mask
[1][1] = rsvd_bits(17, 21);
3715 /* 32 bits PSE 4MB page */
3716 rsvd_check
->rsvd_bits_mask
[1][1] = rsvd_bits(13, 21);
3718 case PT32E_ROOT_LEVEL
:
3719 rsvd_check
->rsvd_bits_mask
[0][2] =
3720 rsvd_bits(maxphyaddr
, 63) |
3721 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
3722 rsvd_check
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
3723 rsvd_bits(maxphyaddr
, 62); /* PDE */
3724 rsvd_check
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
3725 rsvd_bits(maxphyaddr
, 62); /* PTE */
3726 rsvd_check
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
3727 rsvd_bits(maxphyaddr
, 62) |
3728 rsvd_bits(13, 20); /* large page */
3729 rsvd_check
->rsvd_bits_mask
[1][0] =
3730 rsvd_check
->rsvd_bits_mask
[0][0];
3732 case PT64_ROOT_LEVEL
:
3733 rsvd_check
->rsvd_bits_mask
[0][3] = exb_bit_rsvd
|
3734 nonleaf_bit8_rsvd
| rsvd_bits(7, 7) |
3735 rsvd_bits(maxphyaddr
, 51);
3736 rsvd_check
->rsvd_bits_mask
[0][2] = exb_bit_rsvd
|
3737 nonleaf_bit8_rsvd
| gbpages_bit_rsvd
|
3738 rsvd_bits(maxphyaddr
, 51);
3739 rsvd_check
->rsvd_bits_mask
[0][1] = exb_bit_rsvd
|
3740 rsvd_bits(maxphyaddr
, 51);
3741 rsvd_check
->rsvd_bits_mask
[0][0] = exb_bit_rsvd
|
3742 rsvd_bits(maxphyaddr
, 51);
3743 rsvd_check
->rsvd_bits_mask
[1][3] =
3744 rsvd_check
->rsvd_bits_mask
[0][3];
3745 rsvd_check
->rsvd_bits_mask
[1][2] = exb_bit_rsvd
|
3746 gbpages_bit_rsvd
| rsvd_bits(maxphyaddr
, 51) |
3748 rsvd_check
->rsvd_bits_mask
[1][1] = exb_bit_rsvd
|
3749 rsvd_bits(maxphyaddr
, 51) |
3750 rsvd_bits(13, 20); /* large page */
3751 rsvd_check
->rsvd_bits_mask
[1][0] =
3752 rsvd_check
->rsvd_bits_mask
[0][0];
3757 static void reset_rsvds_bits_mask(struct kvm_vcpu
*vcpu
,
3758 struct kvm_mmu
*context
)
3760 __reset_rsvds_bits_mask(vcpu
, &context
->guest_rsvd_check
,
3761 cpuid_maxphyaddr(vcpu
), context
->root_level
,
3762 context
->nx
, guest_cpuid_has_gbpages(vcpu
),
3763 is_pse(vcpu
), guest_cpuid_is_amd(vcpu
));
3767 __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate
*rsvd_check
,
3768 int maxphyaddr
, bool execonly
)
3772 rsvd_check
->rsvd_bits_mask
[0][3] =
3773 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 7);
3774 rsvd_check
->rsvd_bits_mask
[0][2] =
3775 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 6);
3776 rsvd_check
->rsvd_bits_mask
[0][1] =
3777 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(3, 6);
3778 rsvd_check
->rsvd_bits_mask
[0][0] = rsvd_bits(maxphyaddr
, 51);
3781 rsvd_check
->rsvd_bits_mask
[1][3] = rsvd_check
->rsvd_bits_mask
[0][3];
3782 rsvd_check
->rsvd_bits_mask
[1][2] =
3783 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(12, 29);
3784 rsvd_check
->rsvd_bits_mask
[1][1] =
3785 rsvd_bits(maxphyaddr
, 51) | rsvd_bits(12, 20);
3786 rsvd_check
->rsvd_bits_mask
[1][0] = rsvd_check
->rsvd_bits_mask
[0][0];
3788 bad_mt_xwr
= 0xFFull
<< (2 * 8); /* bits 3..5 must not be 2 */
3789 bad_mt_xwr
|= 0xFFull
<< (3 * 8); /* bits 3..5 must not be 3 */
3790 bad_mt_xwr
|= 0xFFull
<< (7 * 8); /* bits 3..5 must not be 7 */
3791 bad_mt_xwr
|= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
3792 bad_mt_xwr
|= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
3794 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
3795 bad_mt_xwr
|= REPEAT_BYTE(1ull << 4);
3797 rsvd_check
->bad_mt_xwr
= bad_mt_xwr
;
3800 static void reset_rsvds_bits_mask_ept(struct kvm_vcpu
*vcpu
,
3801 struct kvm_mmu
*context
, bool execonly
)
3803 __reset_rsvds_bits_mask_ept(&context
->guest_rsvd_check
,
3804 cpuid_maxphyaddr(vcpu
), execonly
);
3808 * the page table on host is the shadow page table for the page
3809 * table in guest or amd nested guest, its mmu features completely
3810 * follow the features in guest.
3813 reset_shadow_zero_bits_mask(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*context
)
3815 bool uses_nx
= context
->nx
|| context
->base_role
.smep_andnot_wp
;
3818 * Passing "true" to the last argument is okay; it adds a check
3819 * on bit 8 of the SPTEs which KVM doesn't use anyway.
3821 __reset_rsvds_bits_mask(vcpu
, &context
->shadow_zero_check
,
3822 boot_cpu_data
.x86_phys_bits
,
3823 context
->shadow_root_level
, uses_nx
,
3824 guest_cpuid_has_gbpages(vcpu
), is_pse(vcpu
),
3827 EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask
);
3829 static inline bool boot_cpu_is_amd(void)
3831 WARN_ON_ONCE(!tdp_enabled
);
3832 return shadow_x_mask
== 0;
3836 * the direct page table on host, use as much mmu features as
3837 * possible, however, kvm currently does not do execution-protection.
3840 reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu
*vcpu
,
3841 struct kvm_mmu
*context
)
3843 if (boot_cpu_is_amd())
3844 __reset_rsvds_bits_mask(vcpu
, &context
->shadow_zero_check
,
3845 boot_cpu_data
.x86_phys_bits
,
3846 context
->shadow_root_level
, false,
3847 cpu_has_gbpages
, true, true);
3849 __reset_rsvds_bits_mask_ept(&context
->shadow_zero_check
,
3850 boot_cpu_data
.x86_phys_bits
,
3856 * as the comments in reset_shadow_zero_bits_mask() except it
3857 * is the shadow page table for intel nested guest.
3860 reset_ept_shadow_zero_bits_mask(struct kvm_vcpu
*vcpu
,
3861 struct kvm_mmu
*context
, bool execonly
)
3863 __reset_rsvds_bits_mask_ept(&context
->shadow_zero_check
,
3864 boot_cpu_data
.x86_phys_bits
, execonly
);
3867 static void update_permission_bitmask(struct kvm_vcpu
*vcpu
,
3868 struct kvm_mmu
*mmu
, bool ept
)
3870 unsigned bit
, byte
, pfec
;
3872 bool fault
, x
, w
, u
, wf
, uf
, ff
, smapf
, cr4_smap
, cr4_smep
, smap
= 0;
3874 cr4_smep
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
);
3875 cr4_smap
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMAP
);
3876 for (byte
= 0; byte
< ARRAY_SIZE(mmu
->permissions
); ++byte
) {
3879 wf
= pfec
& PFERR_WRITE_MASK
;
3880 uf
= pfec
& PFERR_USER_MASK
;
3881 ff
= pfec
& PFERR_FETCH_MASK
;
3883 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3884 * subject to SMAP restrictions, and cleared otherwise. The
3885 * bit is only meaningful if the SMAP bit is set in CR4.
3887 smapf
= !(pfec
& PFERR_RSVD_MASK
);
3888 for (bit
= 0; bit
< 8; ++bit
) {
3889 x
= bit
& ACC_EXEC_MASK
;
3890 w
= bit
& ACC_WRITE_MASK
;
3891 u
= bit
& ACC_USER_MASK
;
3894 /* Not really needed: !nx will cause pte.nx to fault */
3896 /* Allow supervisor writes if !cr0.wp */
3897 w
|= !is_write_protection(vcpu
) && !uf
;
3898 /* Disallow supervisor fetches of user code if cr4.smep */
3899 x
&= !(cr4_smep
&& u
&& !uf
);
3902 * SMAP:kernel-mode data accesses from user-mode
3903 * mappings should fault. A fault is considered
3904 * as a SMAP violation if all of the following
3905 * conditions are ture:
3906 * - X86_CR4_SMAP is set in CR4
3907 * - An user page is accessed
3908 * - Page fault in kernel mode
3909 * - if CPL = 3 or X86_EFLAGS_AC is clear
3911 * Here, we cover the first three conditions.
3912 * The fourth is computed dynamically in
3913 * permission_fault() and is in smapf.
3915 * Also, SMAP does not affect instruction
3916 * fetches, add the !ff check here to make it
3919 smap
= cr4_smap
&& u
&& !uf
&& !ff
;
3921 /* Not really needed: no U/S accesses on ept */
3924 fault
= (ff
&& !x
) || (uf
&& !u
) || (wf
&& !w
) ||
3926 map
|= fault
<< bit
;
3928 mmu
->permissions
[byte
] = map
;
3933 * PKU is an additional mechanism by which the paging controls access to
3934 * user-mode addresses based on the value in the PKRU register. Protection
3935 * key violations are reported through a bit in the page fault error code.
3936 * Unlike other bits of the error code, the PK bit is not known at the
3937 * call site of e.g. gva_to_gpa; it must be computed directly in
3938 * permission_fault based on two bits of PKRU, on some machine state (CR4,
3939 * CR0, EFER, CPL), and on other bits of the error code and the page tables.
3941 * In particular the following conditions come from the error code, the
3942 * page tables and the machine state:
3943 * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
3944 * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
3945 * - PK is always zero if U=0 in the page tables
3946 * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
3948 * The PKRU bitmask caches the result of these four conditions. The error
3949 * code (minus the P bit) and the page table's U bit form an index into the
3950 * PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
3951 * with the two bits of the PKRU register corresponding to the protection key.
3952 * For the first three conditions above the bits will be 00, thus masking
3953 * away both AD and WD. For all reads or if the last condition holds, WD
3954 * only will be masked away.
3956 static void update_pkru_bitmask(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
3967 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
3968 if (!kvm_read_cr4_bits(vcpu
, X86_CR4_PKE
) || !is_long_mode(vcpu
)) {
3973 wp
= is_write_protection(vcpu
);
3975 for (bit
= 0; bit
< ARRAY_SIZE(mmu
->permissions
); ++bit
) {
3976 unsigned pfec
, pkey_bits
;
3977 bool check_pkey
, check_write
, ff
, uf
, wf
, pte_user
;
3980 ff
= pfec
& PFERR_FETCH_MASK
;
3981 uf
= pfec
& PFERR_USER_MASK
;
3982 wf
= pfec
& PFERR_WRITE_MASK
;
3984 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
3985 pte_user
= pfec
& PFERR_RSVD_MASK
;
3988 * Only need to check the access which is not an
3989 * instruction fetch and is to a user page.
3991 check_pkey
= (!ff
&& pte_user
);
3993 * write access is controlled by PKRU if it is a
3994 * user access or CR0.WP = 1.
3996 check_write
= check_pkey
&& wf
&& (uf
|| wp
);
3998 /* PKRU.AD stops both read and write access. */
3999 pkey_bits
= !!check_pkey
;
4000 /* PKRU.WD stops write access. */
4001 pkey_bits
|= (!!check_write
) << 1;
4003 mmu
->pkru_mask
|= (pkey_bits
& 3) << pfec
;
4007 static void update_last_nonleaf_level(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
)
4009 unsigned root_level
= mmu
->root_level
;
4011 mmu
->last_nonleaf_level
= root_level
;
4012 if (root_level
== PT32_ROOT_LEVEL
&& is_pse(vcpu
))
4013 mmu
->last_nonleaf_level
++;
4016 static void paging64_init_context_common(struct kvm_vcpu
*vcpu
,
4017 struct kvm_mmu
*context
,
4020 context
->nx
= is_nx(vcpu
);
4021 context
->root_level
= level
;
4023 reset_rsvds_bits_mask(vcpu
, context
);
4024 update_permission_bitmask(vcpu
, context
, false);
4025 update_pkru_bitmask(vcpu
, context
, false);
4026 update_last_nonleaf_level(vcpu
, context
);
4028 MMU_WARN_ON(!is_pae(vcpu
));
4029 context
->page_fault
= paging64_page_fault
;
4030 context
->gva_to_gpa
= paging64_gva_to_gpa
;
4031 context
->sync_page
= paging64_sync_page
;
4032 context
->invlpg
= paging64_invlpg
;
4033 context
->update_pte
= paging64_update_pte
;
4034 context
->shadow_root_level
= level
;
4035 context
->root_hpa
= INVALID_PAGE
;
4036 context
->direct_map
= false;
4039 static void paging64_init_context(struct kvm_vcpu
*vcpu
,
4040 struct kvm_mmu
*context
)
4042 paging64_init_context_common(vcpu
, context
, PT64_ROOT_LEVEL
);
4045 static void paging32_init_context(struct kvm_vcpu
*vcpu
,
4046 struct kvm_mmu
*context
)
4048 context
->nx
= false;
4049 context
->root_level
= PT32_ROOT_LEVEL
;
4051 reset_rsvds_bits_mask(vcpu
, context
);
4052 update_permission_bitmask(vcpu
, context
, false);
4053 update_pkru_bitmask(vcpu
, context
, false);
4054 update_last_nonleaf_level(vcpu
, context
);
4056 context
->page_fault
= paging32_page_fault
;
4057 context
->gva_to_gpa
= paging32_gva_to_gpa
;
4058 context
->sync_page
= paging32_sync_page
;
4059 context
->invlpg
= paging32_invlpg
;
4060 context
->update_pte
= paging32_update_pte
;
4061 context
->shadow_root_level
= PT32E_ROOT_LEVEL
;
4062 context
->root_hpa
= INVALID_PAGE
;
4063 context
->direct_map
= false;
4066 static void paging32E_init_context(struct kvm_vcpu
*vcpu
,
4067 struct kvm_mmu
*context
)
4069 paging64_init_context_common(vcpu
, context
, PT32E_ROOT_LEVEL
);
4072 static void init_kvm_tdp_mmu(struct kvm_vcpu
*vcpu
)
4074 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
4076 context
->base_role
.word
= 0;
4077 context
->base_role
.smm
= is_smm(vcpu
);
4078 context
->page_fault
= tdp_page_fault
;
4079 context
->sync_page
= nonpaging_sync_page
;
4080 context
->invlpg
= nonpaging_invlpg
;
4081 context
->update_pte
= nonpaging_update_pte
;
4082 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
4083 context
->root_hpa
= INVALID_PAGE
;
4084 context
->direct_map
= true;
4085 context
->set_cr3
= kvm_x86_ops
->set_tdp_cr3
;
4086 context
->get_cr3
= get_cr3
;
4087 context
->get_pdptr
= kvm_pdptr_read
;
4088 context
->inject_page_fault
= kvm_inject_page_fault
;
4090 if (!is_paging(vcpu
)) {
4091 context
->nx
= false;
4092 context
->gva_to_gpa
= nonpaging_gva_to_gpa
;
4093 context
->root_level
= 0;
4094 } else if (is_long_mode(vcpu
)) {
4095 context
->nx
= is_nx(vcpu
);
4096 context
->root_level
= PT64_ROOT_LEVEL
;
4097 reset_rsvds_bits_mask(vcpu
, context
);
4098 context
->gva_to_gpa
= paging64_gva_to_gpa
;
4099 } else if (is_pae(vcpu
)) {
4100 context
->nx
= is_nx(vcpu
);
4101 context
->root_level
= PT32E_ROOT_LEVEL
;
4102 reset_rsvds_bits_mask(vcpu
, context
);
4103 context
->gva_to_gpa
= paging64_gva_to_gpa
;
4105 context
->nx
= false;
4106 context
->root_level
= PT32_ROOT_LEVEL
;
4107 reset_rsvds_bits_mask(vcpu
, context
);
4108 context
->gva_to_gpa
= paging32_gva_to_gpa
;
4111 update_permission_bitmask(vcpu
, context
, false);
4112 update_pkru_bitmask(vcpu
, context
, false);
4113 update_last_nonleaf_level(vcpu
, context
);
4114 reset_tdp_shadow_zero_bits_mask(vcpu
, context
);
4117 void kvm_init_shadow_mmu(struct kvm_vcpu
*vcpu
)
4119 bool smep
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
);
4120 bool smap
= kvm_read_cr4_bits(vcpu
, X86_CR4_SMAP
);
4121 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
4123 MMU_WARN_ON(VALID_PAGE(context
->root_hpa
));
4125 if (!is_paging(vcpu
))
4126 nonpaging_init_context(vcpu
, context
);
4127 else if (is_long_mode(vcpu
))
4128 paging64_init_context(vcpu
, context
);
4129 else if (is_pae(vcpu
))
4130 paging32E_init_context(vcpu
, context
);
4132 paging32_init_context(vcpu
, context
);
4134 context
->base_role
.nxe
= is_nx(vcpu
);
4135 context
->base_role
.cr4_pae
= !!is_pae(vcpu
);
4136 context
->base_role
.cr0_wp
= is_write_protection(vcpu
);
4137 context
->base_role
.smep_andnot_wp
4138 = smep
&& !is_write_protection(vcpu
);
4139 context
->base_role
.smap_andnot_wp
4140 = smap
&& !is_write_protection(vcpu
);
4141 context
->base_role
.smm
= is_smm(vcpu
);
4142 reset_shadow_zero_bits_mask(vcpu
, context
);
4144 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu
);
4146 void kvm_init_shadow_ept_mmu(struct kvm_vcpu
*vcpu
, bool execonly
)
4148 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
4150 MMU_WARN_ON(VALID_PAGE(context
->root_hpa
));
4152 context
->shadow_root_level
= kvm_x86_ops
->get_tdp_level();
4155 context
->page_fault
= ept_page_fault
;
4156 context
->gva_to_gpa
= ept_gva_to_gpa
;
4157 context
->sync_page
= ept_sync_page
;
4158 context
->invlpg
= ept_invlpg
;
4159 context
->update_pte
= ept_update_pte
;
4160 context
->root_level
= context
->shadow_root_level
;
4161 context
->root_hpa
= INVALID_PAGE
;
4162 context
->direct_map
= false;
4164 update_permission_bitmask(vcpu
, context
, true);
4165 update_pkru_bitmask(vcpu
, context
, true);
4166 reset_rsvds_bits_mask_ept(vcpu
, context
, execonly
);
4167 reset_ept_shadow_zero_bits_mask(vcpu
, context
, execonly
);
4169 EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu
);
4171 static void init_kvm_softmmu(struct kvm_vcpu
*vcpu
)
4173 struct kvm_mmu
*context
= &vcpu
->arch
.mmu
;
4175 kvm_init_shadow_mmu(vcpu
);
4176 context
->set_cr3
= kvm_x86_ops
->set_cr3
;
4177 context
->get_cr3
= get_cr3
;
4178 context
->get_pdptr
= kvm_pdptr_read
;
4179 context
->inject_page_fault
= kvm_inject_page_fault
;
4182 static void init_kvm_nested_mmu(struct kvm_vcpu
*vcpu
)
4184 struct kvm_mmu
*g_context
= &vcpu
->arch
.nested_mmu
;
4186 g_context
->get_cr3
= get_cr3
;
4187 g_context
->get_pdptr
= kvm_pdptr_read
;
4188 g_context
->inject_page_fault
= kvm_inject_page_fault
;
4191 * Note that arch.mmu.gva_to_gpa translates l2_gpa to l1_gpa using
4192 * L1's nested page tables (e.g. EPT12). The nested translation
4193 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4194 * L2's page tables as the first level of translation and L1's
4195 * nested page tables as the second level of translation. Basically
4196 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4198 if (!is_paging(vcpu
)) {
4199 g_context
->nx
= false;
4200 g_context
->root_level
= 0;
4201 g_context
->gva_to_gpa
= nonpaging_gva_to_gpa_nested
;
4202 } else if (is_long_mode(vcpu
)) {
4203 g_context
->nx
= is_nx(vcpu
);
4204 g_context
->root_level
= PT64_ROOT_LEVEL
;
4205 reset_rsvds_bits_mask(vcpu
, g_context
);
4206 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
4207 } else if (is_pae(vcpu
)) {
4208 g_context
->nx
= is_nx(vcpu
);
4209 g_context
->root_level
= PT32E_ROOT_LEVEL
;
4210 reset_rsvds_bits_mask(vcpu
, g_context
);
4211 g_context
->gva_to_gpa
= paging64_gva_to_gpa_nested
;
4213 g_context
->nx
= false;
4214 g_context
->root_level
= PT32_ROOT_LEVEL
;
4215 reset_rsvds_bits_mask(vcpu
, g_context
);
4216 g_context
->gva_to_gpa
= paging32_gva_to_gpa_nested
;
4219 update_permission_bitmask(vcpu
, g_context
, false);
4220 update_pkru_bitmask(vcpu
, g_context
, false);
4221 update_last_nonleaf_level(vcpu
, g_context
);
4224 static void init_kvm_mmu(struct kvm_vcpu
*vcpu
)
4226 if (mmu_is_nested(vcpu
))
4227 init_kvm_nested_mmu(vcpu
);
4228 else if (tdp_enabled
)
4229 init_kvm_tdp_mmu(vcpu
);
4231 init_kvm_softmmu(vcpu
);
4234 void kvm_mmu_reset_context(struct kvm_vcpu
*vcpu
)
4236 kvm_mmu_unload(vcpu
);
4239 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context
);
4241 int kvm_mmu_load(struct kvm_vcpu
*vcpu
)
4245 r
= mmu_topup_memory_caches(vcpu
);
4248 r
= mmu_alloc_roots(vcpu
);
4249 kvm_mmu_sync_roots(vcpu
);
4252 /* set_cr3() should ensure TLB has been flushed */
4253 vcpu
->arch
.mmu
.set_cr3(vcpu
, vcpu
->arch
.mmu
.root_hpa
);
4257 EXPORT_SYMBOL_GPL(kvm_mmu_load
);
4259 void kvm_mmu_unload(struct kvm_vcpu
*vcpu
)
4261 mmu_free_roots(vcpu
);
4262 WARN_ON(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
4264 EXPORT_SYMBOL_GPL(kvm_mmu_unload
);
4266 static void mmu_pte_write_new_pte(struct kvm_vcpu
*vcpu
,
4267 struct kvm_mmu_page
*sp
, u64
*spte
,
4270 if (sp
->role
.level
!= PT_PAGE_TABLE_LEVEL
) {
4271 ++vcpu
->kvm
->stat
.mmu_pde_zapped
;
4275 ++vcpu
->kvm
->stat
.mmu_pte_updated
;
4276 vcpu
->arch
.mmu
.update_pte(vcpu
, sp
, spte
, new);
4279 static bool need_remote_flush(u64 old
, u64
new)
4281 if (!is_shadow_present_pte(old
))
4283 if (!is_shadow_present_pte(new))
4285 if ((old
^ new) & PT64_BASE_ADDR_MASK
)
4287 old
^= shadow_nx_mask
;
4288 new ^= shadow_nx_mask
;
4289 return (old
& ~new & PT64_PERM_MASK
) != 0;
4292 static u64
mmu_pte_write_fetch_gpte(struct kvm_vcpu
*vcpu
, gpa_t
*gpa
,
4293 const u8
*new, int *bytes
)
4299 * Assume that the pte write on a page table of the same type
4300 * as the current vcpu paging mode since we update the sptes only
4301 * when they have the same mode.
4303 if (is_pae(vcpu
) && *bytes
== 4) {
4304 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4307 r
= kvm_vcpu_read_guest(vcpu
, *gpa
, &gentry
, 8);
4310 new = (const u8
*)&gentry
;
4315 gentry
= *(const u32
*)new;
4318 gentry
= *(const u64
*)new;
4329 * If we're seeing too many writes to a page, it may no longer be a page table,
4330 * or we may be forking, in which case it is better to unmap the page.
4332 static bool detect_write_flooding(struct kvm_mmu_page
*sp
)
4335 * Skip write-flooding detected for the sp whose level is 1, because
4336 * it can become unsync, then the guest page is not write-protected.
4338 if (sp
->role
.level
== PT_PAGE_TABLE_LEVEL
)
4341 atomic_inc(&sp
->write_flooding_count
);
4342 return atomic_read(&sp
->write_flooding_count
) >= 3;
4346 * Misaligned accesses are too much trouble to fix up; also, they usually
4347 * indicate a page is not used as a page table.
4349 static bool detect_write_misaligned(struct kvm_mmu_page
*sp
, gpa_t gpa
,
4352 unsigned offset
, pte_size
, misaligned
;
4354 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4355 gpa
, bytes
, sp
->role
.word
);
4357 offset
= offset_in_page(gpa
);
4358 pte_size
= sp
->role
.cr4_pae
? 8 : 4;
4361 * Sometimes, the OS only writes the last one bytes to update status
4362 * bits, for example, in linux, andb instruction is used in clear_bit().
4364 if (!(offset
& (pte_size
- 1)) && bytes
== 1)
4367 misaligned
= (offset
^ (offset
+ bytes
- 1)) & ~(pte_size
- 1);
4368 misaligned
|= bytes
< 4;
4373 static u64
*get_written_sptes(struct kvm_mmu_page
*sp
, gpa_t gpa
, int *nspte
)
4375 unsigned page_offset
, quadrant
;
4379 page_offset
= offset_in_page(gpa
);
4380 level
= sp
->role
.level
;
4382 if (!sp
->role
.cr4_pae
) {
4383 page_offset
<<= 1; /* 32->64 */
4385 * A 32-bit pde maps 4MB while the shadow pdes map
4386 * only 2MB. So we need to double the offset again
4387 * and zap two pdes instead of one.
4389 if (level
== PT32_ROOT_LEVEL
) {
4390 page_offset
&= ~7; /* kill rounding error */
4394 quadrant
= page_offset
>> PAGE_SHIFT
;
4395 page_offset
&= ~PAGE_MASK
;
4396 if (quadrant
!= sp
->role
.quadrant
)
4400 spte
= &sp
->spt
[page_offset
/ sizeof(*spte
)];
4404 static void kvm_mmu_pte_write(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4405 const u8
*new, int bytes
)
4407 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
4408 struct kvm_mmu_page
*sp
;
4409 LIST_HEAD(invalid_list
);
4410 u64 entry
, gentry
, *spte
;
4412 bool remote_flush
, local_flush
;
4413 union kvm_mmu_page_role mask
= { };
4418 mask
.smep_andnot_wp
= 1;
4419 mask
.smap_andnot_wp
= 1;
4423 * If we don't have indirect shadow pages, it means no page is
4424 * write-protected, so we can exit simply.
4426 if (!ACCESS_ONCE(vcpu
->kvm
->arch
.indirect_shadow_pages
))
4429 remote_flush
= local_flush
= false;
4431 pgprintk("%s: gpa %llx bytes %d\n", __func__
, gpa
, bytes
);
4433 gentry
= mmu_pte_write_fetch_gpte(vcpu
, &gpa
, new, &bytes
);
4436 * No need to care whether allocation memory is successful
4437 * or not since pte prefetch is skiped if it does not have
4438 * enough objects in the cache.
4440 mmu_topup_memory_caches(vcpu
);
4442 spin_lock(&vcpu
->kvm
->mmu_lock
);
4443 ++vcpu
->kvm
->stat
.mmu_pte_write
;
4444 kvm_mmu_audit(vcpu
, AUDIT_PRE_PTE_WRITE
);
4446 for_each_gfn_indirect_valid_sp(vcpu
->kvm
, sp
, gfn
) {
4447 if (detect_write_misaligned(sp
, gpa
, bytes
) ||
4448 detect_write_flooding(sp
)) {
4449 kvm_mmu_prepare_zap_page(vcpu
->kvm
, sp
, &invalid_list
);
4450 ++vcpu
->kvm
->stat
.mmu_flooded
;
4454 spte
= get_written_sptes(sp
, gpa
, &npte
);
4461 mmu_page_zap_pte(vcpu
->kvm
, sp
, spte
);
4463 !((sp
->role
.word
^ vcpu
->arch
.mmu
.base_role
.word
)
4464 & mask
.word
) && rmap_can_add(vcpu
))
4465 mmu_pte_write_new_pte(vcpu
, sp
, spte
, &gentry
);
4466 if (need_remote_flush(entry
, *spte
))
4467 remote_flush
= true;
4471 kvm_mmu_flush_or_zap(vcpu
, &invalid_list
, remote_flush
, local_flush
);
4472 kvm_mmu_audit(vcpu
, AUDIT_POST_PTE_WRITE
);
4473 spin_unlock(&vcpu
->kvm
->mmu_lock
);
4476 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu
*vcpu
, gva_t gva
)
4481 if (vcpu
->arch
.mmu
.direct_map
)
4484 gpa
= kvm_mmu_gva_to_gpa_read(vcpu
, gva
, NULL
);
4486 r
= kvm_mmu_unprotect_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4490 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt
);
4492 static void make_mmu_pages_available(struct kvm_vcpu
*vcpu
)
4494 LIST_HEAD(invalid_list
);
4496 if (likely(kvm_mmu_available_pages(vcpu
->kvm
) >= KVM_MIN_FREE_MMU_PAGES
))
4499 while (kvm_mmu_available_pages(vcpu
->kvm
) < KVM_REFILL_PAGES
) {
4500 if (!prepare_zap_oldest_mmu_page(vcpu
->kvm
, &invalid_list
))
4503 ++vcpu
->kvm
->stat
.mmu_recycled
;
4505 kvm_mmu_commit_zap_page(vcpu
->kvm
, &invalid_list
);
4508 int kvm_mmu_page_fault(struct kvm_vcpu
*vcpu
, gva_t cr2
, u32 error_code
,
4509 void *insn
, int insn_len
)
4511 int r
, emulation_type
= EMULTYPE_RETRY
;
4512 enum emulation_result er
;
4513 bool direct
= vcpu
->arch
.mmu
.direct_map
|| mmu_is_nested(vcpu
);
4515 if (unlikely(error_code
& PFERR_RSVD_MASK
)) {
4516 r
= handle_mmio_page_fault(vcpu
, cr2
, direct
);
4517 if (r
== RET_MMIO_PF_EMULATE
) {
4521 if (r
== RET_MMIO_PF_RETRY
)
4527 r
= vcpu
->arch
.mmu
.page_fault(vcpu
, cr2
, error_code
, false);
4533 if (mmio_info_in_cache(vcpu
, cr2
, direct
))
4536 er
= x86_emulate_instruction(vcpu
, cr2
, emulation_type
, insn
, insn_len
);
4541 case EMULATE_USER_EXIT
:
4542 ++vcpu
->stat
.mmio_exits
;
4550 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault
);
4552 void kvm_mmu_invlpg(struct kvm_vcpu
*vcpu
, gva_t gva
)
4554 vcpu
->arch
.mmu
.invlpg(vcpu
, gva
);
4555 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
4556 ++vcpu
->stat
.invlpg
;
4558 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg
);
4560 void kvm_enable_tdp(void)
4564 EXPORT_SYMBOL_GPL(kvm_enable_tdp
);
4566 void kvm_disable_tdp(void)
4568 tdp_enabled
= false;
4570 EXPORT_SYMBOL_GPL(kvm_disable_tdp
);
4572 static void free_mmu_pages(struct kvm_vcpu
*vcpu
)
4574 free_page((unsigned long)vcpu
->arch
.mmu
.pae_root
);
4575 if (vcpu
->arch
.mmu
.lm_root
!= NULL
)
4576 free_page((unsigned long)vcpu
->arch
.mmu
.lm_root
);
4579 static int alloc_mmu_pages(struct kvm_vcpu
*vcpu
)
4585 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4586 * Therefore we need to allocate shadow page tables in the first
4587 * 4GB of memory, which happens to fit the DMA32 zone.
4589 page
= alloc_page(GFP_KERNEL
| __GFP_DMA32
);
4593 vcpu
->arch
.mmu
.pae_root
= page_address(page
);
4594 for (i
= 0; i
< 4; ++i
)
4595 vcpu
->arch
.mmu
.pae_root
[i
] = INVALID_PAGE
;
4600 int kvm_mmu_create(struct kvm_vcpu
*vcpu
)
4602 vcpu
->arch
.walk_mmu
= &vcpu
->arch
.mmu
;
4603 vcpu
->arch
.mmu
.root_hpa
= INVALID_PAGE
;
4604 vcpu
->arch
.mmu
.translate_gpa
= translate_gpa
;
4605 vcpu
->arch
.nested_mmu
.translate_gpa
= translate_nested_gpa
;
4607 return alloc_mmu_pages(vcpu
);
4610 void kvm_mmu_setup(struct kvm_vcpu
*vcpu
)
4612 MMU_WARN_ON(VALID_PAGE(vcpu
->arch
.mmu
.root_hpa
));
4617 void kvm_mmu_init_vm(struct kvm
*kvm
)
4619 struct kvm_page_track_notifier_node
*node
= &kvm
->arch
.mmu_sp_tracker
;
4621 node
->track_write
= kvm_mmu_pte_write
;
4622 kvm_page_track_register_notifier(kvm
, node
);
4625 void kvm_mmu_uninit_vm(struct kvm
*kvm
)
4627 struct kvm_page_track_notifier_node
*node
= &kvm
->arch
.mmu_sp_tracker
;
4629 kvm_page_track_unregister_notifier(kvm
, node
);
4632 /* The return value indicates if tlb flush on all vcpus is needed. */
4633 typedef bool (*slot_level_handler
) (struct kvm
*kvm
, struct kvm_rmap_head
*rmap_head
);
4635 /* The caller should hold mmu-lock before calling this function. */
4637 slot_handle_level_range(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
4638 slot_level_handler fn
, int start_level
, int end_level
,
4639 gfn_t start_gfn
, gfn_t end_gfn
, bool lock_flush_tlb
)
4641 struct slot_rmap_walk_iterator iterator
;
4644 for_each_slot_rmap_range(memslot
, start_level
, end_level
, start_gfn
,
4645 end_gfn
, &iterator
) {
4647 flush
|= fn(kvm
, iterator
.rmap
);
4649 if (need_resched() || spin_needbreak(&kvm
->mmu_lock
)) {
4650 if (flush
&& lock_flush_tlb
) {
4651 kvm_flush_remote_tlbs(kvm
);
4654 cond_resched_lock(&kvm
->mmu_lock
);
4658 if (flush
&& lock_flush_tlb
) {
4659 kvm_flush_remote_tlbs(kvm
);
4667 slot_handle_level(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
4668 slot_level_handler fn
, int start_level
, int end_level
,
4669 bool lock_flush_tlb
)
4671 return slot_handle_level_range(kvm
, memslot
, fn
, start_level
,
4672 end_level
, memslot
->base_gfn
,
4673 memslot
->base_gfn
+ memslot
->npages
- 1,
4678 slot_handle_all_level(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
4679 slot_level_handler fn
, bool lock_flush_tlb
)
4681 return slot_handle_level(kvm
, memslot
, fn
, PT_PAGE_TABLE_LEVEL
,
4682 PT_MAX_HUGEPAGE_LEVEL
, lock_flush_tlb
);
4686 slot_handle_large_level(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
4687 slot_level_handler fn
, bool lock_flush_tlb
)
4689 return slot_handle_level(kvm
, memslot
, fn
, PT_PAGE_TABLE_LEVEL
+ 1,
4690 PT_MAX_HUGEPAGE_LEVEL
, lock_flush_tlb
);
4694 slot_handle_leaf(struct kvm
*kvm
, struct kvm_memory_slot
*memslot
,
4695 slot_level_handler fn
, bool lock_flush_tlb
)
4697 return slot_handle_level(kvm
, memslot
, fn
, PT_PAGE_TABLE_LEVEL
,
4698 PT_PAGE_TABLE_LEVEL
, lock_flush_tlb
);
4701 void kvm_zap_gfn_range(struct kvm
*kvm
, gfn_t gfn_start
, gfn_t gfn_end
)
4703 struct kvm_memslots
*slots
;
4704 struct kvm_memory_slot
*memslot
;
4707 spin_lock(&kvm
->mmu_lock
);
4708 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
4709 slots
= __kvm_memslots(kvm
, i
);
4710 kvm_for_each_memslot(memslot
, slots
) {
4713 start
= max(gfn_start
, memslot
->base_gfn
);
4714 end
= min(gfn_end
, memslot
->base_gfn
+ memslot
->npages
);
4718 slot_handle_level_range(kvm
, memslot
, kvm_zap_rmapp
,
4719 PT_PAGE_TABLE_LEVEL
, PT_MAX_HUGEPAGE_LEVEL
,
4720 start
, end
- 1, true);
4724 spin_unlock(&kvm
->mmu_lock
);
4727 static bool slot_rmap_write_protect(struct kvm
*kvm
,
4728 struct kvm_rmap_head
*rmap_head
)
4730 return __rmap_write_protect(kvm
, rmap_head
, false);
4733 void kvm_mmu_slot_remove_write_access(struct kvm
*kvm
,
4734 struct kvm_memory_slot
*memslot
)
4738 spin_lock(&kvm
->mmu_lock
);
4739 flush
= slot_handle_all_level(kvm
, memslot
, slot_rmap_write_protect
,
4741 spin_unlock(&kvm
->mmu_lock
);
4744 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4745 * which do tlb flush out of mmu-lock should be serialized by
4746 * kvm->slots_lock otherwise tlb flush would be missed.
4748 lockdep_assert_held(&kvm
->slots_lock
);
4751 * We can flush all the TLBs out of the mmu lock without TLB
4752 * corruption since we just change the spte from writable to
4753 * readonly so that we only need to care the case of changing
4754 * spte from present to present (changing the spte from present
4755 * to nonpresent will flush all the TLBs immediately), in other
4756 * words, the only case we care is mmu_spte_update() where we
4757 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4758 * instead of PT_WRITABLE_MASK, that means it does not depend
4759 * on PT_WRITABLE_MASK anymore.
4762 kvm_flush_remote_tlbs(kvm
);
4765 static bool kvm_mmu_zap_collapsible_spte(struct kvm
*kvm
,
4766 struct kvm_rmap_head
*rmap_head
)
4769 struct rmap_iterator iter
;
4770 int need_tlb_flush
= 0;
4772 struct kvm_mmu_page
*sp
;
4775 for_each_rmap_spte(rmap_head
, &iter
, sptep
) {
4776 sp
= page_header(__pa(sptep
));
4777 pfn
= spte_to_pfn(*sptep
);
4780 * We cannot do huge page mapping for indirect shadow pages,
4781 * which are found on the last rmap (level = 1) when not using
4782 * tdp; such shadow pages are synced with the page table in
4783 * the guest, and the guest page table is using 4K page size
4784 * mapping if the indirect sp has level = 1.
4786 if (sp
->role
.direct
&&
4787 !kvm_is_reserved_pfn(pfn
) &&
4788 PageTransCompound(pfn_to_page(pfn
))) {
4789 drop_spte(kvm
, sptep
);
4795 return need_tlb_flush
;
4798 void kvm_mmu_zap_collapsible_sptes(struct kvm
*kvm
,
4799 const struct kvm_memory_slot
*memslot
)
4801 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
4802 spin_lock(&kvm
->mmu_lock
);
4803 slot_handle_leaf(kvm
, (struct kvm_memory_slot
*)memslot
,
4804 kvm_mmu_zap_collapsible_spte
, true);
4805 spin_unlock(&kvm
->mmu_lock
);
4808 void kvm_mmu_slot_leaf_clear_dirty(struct kvm
*kvm
,
4809 struct kvm_memory_slot
*memslot
)
4813 spin_lock(&kvm
->mmu_lock
);
4814 flush
= slot_handle_leaf(kvm
, memslot
, __rmap_clear_dirty
, false);
4815 spin_unlock(&kvm
->mmu_lock
);
4817 lockdep_assert_held(&kvm
->slots_lock
);
4820 * It's also safe to flush TLBs out of mmu lock here as currently this
4821 * function is only used for dirty logging, in which case flushing TLB
4822 * out of mmu lock also guarantees no dirty pages will be lost in
4826 kvm_flush_remote_tlbs(kvm
);
4828 EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty
);
4830 void kvm_mmu_slot_largepage_remove_write_access(struct kvm
*kvm
,
4831 struct kvm_memory_slot
*memslot
)
4835 spin_lock(&kvm
->mmu_lock
);
4836 flush
= slot_handle_large_level(kvm
, memslot
, slot_rmap_write_protect
,
4838 spin_unlock(&kvm
->mmu_lock
);
4840 /* see kvm_mmu_slot_remove_write_access */
4841 lockdep_assert_held(&kvm
->slots_lock
);
4844 kvm_flush_remote_tlbs(kvm
);
4846 EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access
);
4848 void kvm_mmu_slot_set_dirty(struct kvm
*kvm
,
4849 struct kvm_memory_slot
*memslot
)
4853 spin_lock(&kvm
->mmu_lock
);
4854 flush
= slot_handle_all_level(kvm
, memslot
, __rmap_set_dirty
, false);
4855 spin_unlock(&kvm
->mmu_lock
);
4857 lockdep_assert_held(&kvm
->slots_lock
);
4859 /* see kvm_mmu_slot_leaf_clear_dirty */
4861 kvm_flush_remote_tlbs(kvm
);
4863 EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty
);
4865 #define BATCH_ZAP_PAGES 10
4866 static void kvm_zap_obsolete_pages(struct kvm
*kvm
)
4868 struct kvm_mmu_page
*sp
, *node
;
4872 list_for_each_entry_safe_reverse(sp
, node
,
4873 &kvm
->arch
.active_mmu_pages
, link
) {
4877 * No obsolete page exists before new created page since
4878 * active_mmu_pages is the FIFO list.
4880 if (!is_obsolete_sp(kvm
, sp
))
4884 * Since we are reversely walking the list and the invalid
4885 * list will be moved to the head, skip the invalid page
4886 * can help us to avoid the infinity list walking.
4888 if (sp
->role
.invalid
)
4892 * Need not flush tlb since we only zap the sp with invalid
4893 * generation number.
4895 if (batch
>= BATCH_ZAP_PAGES
&&
4896 cond_resched_lock(&kvm
->mmu_lock
)) {
4901 ret
= kvm_mmu_prepare_zap_page(kvm
, sp
,
4902 &kvm
->arch
.zapped_obsolete_pages
);
4910 * Should flush tlb before free page tables since lockless-walking
4911 * may use the pages.
4913 kvm_mmu_commit_zap_page(kvm
, &kvm
->arch
.zapped_obsolete_pages
);
4917 * Fast invalidate all shadow pages and use lock-break technique
4918 * to zap obsolete pages.
4920 * It's required when memslot is being deleted or VM is being
4921 * destroyed, in these cases, we should ensure that KVM MMU does
4922 * not use any resource of the being-deleted slot or all slots
4923 * after calling the function.
4925 void kvm_mmu_invalidate_zap_all_pages(struct kvm
*kvm
)
4927 spin_lock(&kvm
->mmu_lock
);
4928 trace_kvm_mmu_invalidate_zap_all_pages(kvm
);
4929 kvm
->arch
.mmu_valid_gen
++;
4932 * Notify all vcpus to reload its shadow page table
4933 * and flush TLB. Then all vcpus will switch to new
4934 * shadow page table with the new mmu_valid_gen.
4936 * Note: we should do this under the protection of
4937 * mmu-lock, otherwise, vcpu would purge shadow page
4938 * but miss tlb flush.
4940 kvm_reload_remote_mmus(kvm
);
4942 kvm_zap_obsolete_pages(kvm
);
4943 spin_unlock(&kvm
->mmu_lock
);
4946 static bool kvm_has_zapped_obsolete_pages(struct kvm
*kvm
)
4948 return unlikely(!list_empty_careful(&kvm
->arch
.zapped_obsolete_pages
));
4951 void kvm_mmu_invalidate_mmio_sptes(struct kvm
*kvm
, struct kvm_memslots
*slots
)
4954 * The very rare case: if the generation-number is round,
4955 * zap all shadow pages.
4957 if (unlikely((slots
->generation
& MMIO_GEN_MASK
) == 0)) {
4958 printk_ratelimited(KERN_DEBUG
"kvm: zapping shadow pages for mmio generation wraparound\n");
4959 kvm_mmu_invalidate_zap_all_pages(kvm
);
4963 static unsigned long
4964 mmu_shrink_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
4967 int nr_to_scan
= sc
->nr_to_scan
;
4968 unsigned long freed
= 0;
4970 spin_lock(&kvm_lock
);
4972 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
4974 LIST_HEAD(invalid_list
);
4977 * Never scan more than sc->nr_to_scan VM instances.
4978 * Will not hit this condition practically since we do not try
4979 * to shrink more than one VM and it is very unlikely to see
4980 * !n_used_mmu_pages so many times.
4985 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4986 * here. We may skip a VM instance errorneosly, but we do not
4987 * want to shrink a VM that only started to populate its MMU
4990 if (!kvm
->arch
.n_used_mmu_pages
&&
4991 !kvm_has_zapped_obsolete_pages(kvm
))
4994 idx
= srcu_read_lock(&kvm
->srcu
);
4995 spin_lock(&kvm
->mmu_lock
);
4997 if (kvm_has_zapped_obsolete_pages(kvm
)) {
4998 kvm_mmu_commit_zap_page(kvm
,
4999 &kvm
->arch
.zapped_obsolete_pages
);
5003 if (prepare_zap_oldest_mmu_page(kvm
, &invalid_list
))
5005 kvm_mmu_commit_zap_page(kvm
, &invalid_list
);
5008 spin_unlock(&kvm
->mmu_lock
);
5009 srcu_read_unlock(&kvm
->srcu
, idx
);
5012 * unfair on small ones
5013 * per-vm shrinkers cry out
5014 * sadness comes quickly
5016 list_move_tail(&kvm
->vm_list
, &vm_list
);
5020 spin_unlock(&kvm_lock
);
5024 static unsigned long
5025 mmu_shrink_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
5027 return percpu_counter_read_positive(&kvm_total_used_mmu_pages
);
5030 static struct shrinker mmu_shrinker
= {
5031 .count_objects
= mmu_shrink_count
,
5032 .scan_objects
= mmu_shrink_scan
,
5033 .seeks
= DEFAULT_SEEKS
* 10,
5036 static void mmu_destroy_caches(void)
5038 if (pte_list_desc_cache
)
5039 kmem_cache_destroy(pte_list_desc_cache
);
5040 if (mmu_page_header_cache
)
5041 kmem_cache_destroy(mmu_page_header_cache
);
5044 int kvm_mmu_module_init(void)
5046 pte_list_desc_cache
= kmem_cache_create("pte_list_desc",
5047 sizeof(struct pte_list_desc
),
5049 if (!pte_list_desc_cache
)
5052 mmu_page_header_cache
= kmem_cache_create("kvm_mmu_page_header",
5053 sizeof(struct kvm_mmu_page
),
5055 if (!mmu_page_header_cache
)
5058 if (percpu_counter_init(&kvm_total_used_mmu_pages
, 0, GFP_KERNEL
))
5061 register_shrinker(&mmu_shrinker
);
5066 mmu_destroy_caches();
5071 * Caculate mmu pages needed for kvm.
5073 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm
*kvm
)
5075 unsigned int nr_mmu_pages
;
5076 unsigned int nr_pages
= 0;
5077 struct kvm_memslots
*slots
;
5078 struct kvm_memory_slot
*memslot
;
5081 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
5082 slots
= __kvm_memslots(kvm
, i
);
5084 kvm_for_each_memslot(memslot
, slots
)
5085 nr_pages
+= memslot
->npages
;
5088 nr_mmu_pages
= nr_pages
* KVM_PERMILLE_MMU_PAGES
/ 1000;
5089 nr_mmu_pages
= max(nr_mmu_pages
,
5090 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES
);
5092 return nr_mmu_pages
;
5095 void kvm_mmu_destroy(struct kvm_vcpu
*vcpu
)
5097 kvm_mmu_unload(vcpu
);
5098 free_mmu_pages(vcpu
);
5099 mmu_free_memory_caches(vcpu
);
5102 void kvm_mmu_module_exit(void)
5104 mmu_destroy_caches();
5105 percpu_counter_destroy(&kvm_total_used_mmu_pages
);
5106 unregister_shrinker(&mmu_shrinker
);
5107 mmu_audit_disable();