2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include "assigned-dev.h"
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
38 #include <linux/vmalloc.h>
39 #include <linux/module.h>
40 #include <linux/mman.h>
41 #include <linux/highmem.h>
42 #include <linux/iommu.h>
43 #include <linux/intel-iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <trace/events/kvm.h>
58 #define CREATE_TRACE_POINTS
61 #include <asm/debugreg.h>
65 #include <linux/kernel_stat.h>
66 #include <asm/fpu/internal.h> /* Ugh! */
67 #include <asm/pvclock.h>
68 #include <asm/div64.h>
69 #include <asm/irq_remapping.h>
71 #define MAX_IO_MSRS 256
72 #define KVM_MAX_MCE_BANKS 32
73 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
75 #define emul_to_vcpu(ctxt) \
76 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
79 * - enable syscall per default because its emulated by KVM
80 * - enable LME and LMA per default on 64 bit KVM
84 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
86 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
89 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
90 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
92 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
93 static void process_nmi(struct kvm_vcpu
*vcpu
);
94 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
);
96 struct kvm_x86_ops
*kvm_x86_ops __read_mostly
;
97 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
99 static bool __read_mostly ignore_msrs
= 0;
100 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
102 unsigned int min_timer_period_us
= 500;
103 module_param(min_timer_period_us
, uint
, S_IRUGO
| S_IWUSR
);
105 static bool __read_mostly kvmclock_periodic_sync
= true;
106 module_param(kvmclock_periodic_sync
, bool, S_IRUGO
);
108 bool __read_mostly kvm_has_tsc_control
;
109 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
110 u32 __read_mostly kvm_max_guest_tsc_khz
;
111 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
112 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits
;
113 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits
);
114 u64 __read_mostly kvm_max_tsc_scaling_ratio
;
115 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio
);
116 static u64 __read_mostly kvm_default_tsc_scaling_ratio
;
118 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
119 static u32 __read_mostly tsc_tolerance_ppm
= 250;
120 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
122 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
123 unsigned int __read_mostly lapic_timer_advance_ns
= 0;
124 module_param(lapic_timer_advance_ns
, uint
, S_IRUGO
| S_IWUSR
);
126 static bool __read_mostly vector_hashing
= true;
127 module_param(vector_hashing
, bool, S_IRUGO
);
129 static bool __read_mostly backwards_tsc_observed
= false;
131 #define KVM_NR_SHARED_MSRS 16
133 struct kvm_shared_msrs_global
{
135 u32 msrs
[KVM_NR_SHARED_MSRS
];
138 struct kvm_shared_msrs
{
139 struct user_return_notifier urn
;
141 struct kvm_shared_msr_values
{
144 } values
[KVM_NR_SHARED_MSRS
];
147 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
148 static struct kvm_shared_msrs __percpu
*shared_msrs
;
150 struct kvm_stats_debugfs_item debugfs_entries
[] = {
151 { "pf_fixed", VCPU_STAT(pf_fixed
) },
152 { "pf_guest", VCPU_STAT(pf_guest
) },
153 { "tlb_flush", VCPU_STAT(tlb_flush
) },
154 { "invlpg", VCPU_STAT(invlpg
) },
155 { "exits", VCPU_STAT(exits
) },
156 { "io_exits", VCPU_STAT(io_exits
) },
157 { "mmio_exits", VCPU_STAT(mmio_exits
) },
158 { "signal_exits", VCPU_STAT(signal_exits
) },
159 { "irq_window", VCPU_STAT(irq_window_exits
) },
160 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
161 { "halt_exits", VCPU_STAT(halt_exits
) },
162 { "halt_successful_poll", VCPU_STAT(halt_successful_poll
) },
163 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll
) },
164 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
165 { "hypercalls", VCPU_STAT(hypercalls
) },
166 { "request_irq", VCPU_STAT(request_irq_exits
) },
167 { "irq_exits", VCPU_STAT(irq_exits
) },
168 { "host_state_reload", VCPU_STAT(host_state_reload
) },
169 { "efer_reload", VCPU_STAT(efer_reload
) },
170 { "fpu_reload", VCPU_STAT(fpu_reload
) },
171 { "insn_emulation", VCPU_STAT(insn_emulation
) },
172 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
173 { "irq_injections", VCPU_STAT(irq_injections
) },
174 { "nmi_injections", VCPU_STAT(nmi_injections
) },
175 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
176 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
177 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
178 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
179 { "mmu_flooded", VM_STAT(mmu_flooded
) },
180 { "mmu_recycled", VM_STAT(mmu_recycled
) },
181 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
182 { "mmu_unsync", VM_STAT(mmu_unsync
) },
183 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
184 { "largepages", VM_STAT(lpages
) },
188 u64 __read_mostly host_xcr0
;
190 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
192 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
195 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
196 vcpu
->arch
.apf
.gfns
[i
] = ~0;
199 static void kvm_on_user_return(struct user_return_notifier
*urn
)
202 struct kvm_shared_msrs
*locals
203 = container_of(urn
, struct kvm_shared_msrs
, urn
);
204 struct kvm_shared_msr_values
*values
;
206 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
207 values
= &locals
->values
[slot
];
208 if (values
->host
!= values
->curr
) {
209 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
210 values
->curr
= values
->host
;
213 locals
->registered
= false;
214 user_return_notifier_unregister(urn
);
217 static void shared_msr_update(unsigned slot
, u32 msr
)
220 unsigned int cpu
= smp_processor_id();
221 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
223 /* only read, and nobody should modify it at this time,
224 * so don't need lock */
225 if (slot
>= shared_msrs_global
.nr
) {
226 printk(KERN_ERR
"kvm: invalid MSR slot!");
229 rdmsrl_safe(msr
, &value
);
230 smsr
->values
[slot
].host
= value
;
231 smsr
->values
[slot
].curr
= value
;
234 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
236 BUG_ON(slot
>= KVM_NR_SHARED_MSRS
);
237 shared_msrs_global
.msrs
[slot
] = msr
;
238 if (slot
>= shared_msrs_global
.nr
)
239 shared_msrs_global
.nr
= slot
+ 1;
241 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
243 static void kvm_shared_msr_cpu_online(void)
247 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
248 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
251 int kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
253 unsigned int cpu
= smp_processor_id();
254 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
257 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
259 smsr
->values
[slot
].curr
= value
;
260 err
= wrmsrl_safe(shared_msrs_global
.msrs
[slot
], value
);
264 if (!smsr
->registered
) {
265 smsr
->urn
.on_user_return
= kvm_on_user_return
;
266 user_return_notifier_register(&smsr
->urn
);
267 smsr
->registered
= true;
271 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
273 static void drop_user_return_notifiers(void)
275 unsigned int cpu
= smp_processor_id();
276 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
278 if (smsr
->registered
)
279 kvm_on_user_return(&smsr
->urn
);
282 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
284 return vcpu
->arch
.apic_base
;
286 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
288 int kvm_set_apic_base(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
290 u64 old_state
= vcpu
->arch
.apic_base
&
291 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
292 u64 new_state
= msr_info
->data
&
293 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
294 u64 reserved_bits
= ((~0ULL) << cpuid_maxphyaddr(vcpu
)) |
295 0x2ff | (guest_cpuid_has_x2apic(vcpu
) ? 0 : X2APIC_ENABLE
);
297 if (!msr_info
->host_initiated
&&
298 ((msr_info
->data
& reserved_bits
) != 0 ||
299 new_state
== X2APIC_ENABLE
||
300 (new_state
== MSR_IA32_APICBASE_ENABLE
&&
301 old_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
)) ||
302 (new_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
) &&
306 kvm_lapic_set_base(vcpu
, msr_info
->data
);
309 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
311 asmlinkage __visible
void kvm_spurious_fault(void)
313 /* Fault while not rebooting. We want the trace. */
316 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
318 #define EXCPT_BENIGN 0
319 #define EXCPT_CONTRIBUTORY 1
322 static int exception_class(int vector
)
332 return EXCPT_CONTRIBUTORY
;
339 #define EXCPT_FAULT 0
341 #define EXCPT_ABORT 2
342 #define EXCPT_INTERRUPT 3
344 static int exception_type(int vector
)
348 if (WARN_ON(vector
> 31 || vector
== NMI_VECTOR
))
349 return EXCPT_INTERRUPT
;
353 /* #DB is trap, as instruction watchpoints are handled elsewhere */
354 if (mask
& ((1 << DB_VECTOR
) | (1 << BP_VECTOR
) | (1 << OF_VECTOR
)))
357 if (mask
& ((1 << DF_VECTOR
) | (1 << MC_VECTOR
)))
360 /* Reserved exceptions will result in fault */
364 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
365 unsigned nr
, bool has_error
, u32 error_code
,
371 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
373 if (!vcpu
->arch
.exception
.pending
) {
375 if (has_error
&& !is_protmode(vcpu
))
377 vcpu
->arch
.exception
.pending
= true;
378 vcpu
->arch
.exception
.has_error_code
= has_error
;
379 vcpu
->arch
.exception
.nr
= nr
;
380 vcpu
->arch
.exception
.error_code
= error_code
;
381 vcpu
->arch
.exception
.reinject
= reinject
;
385 /* to check exception */
386 prev_nr
= vcpu
->arch
.exception
.nr
;
387 if (prev_nr
== DF_VECTOR
) {
388 /* triple fault -> shutdown */
389 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
392 class1
= exception_class(prev_nr
);
393 class2
= exception_class(nr
);
394 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
395 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
396 /* generate double fault per SDM Table 5-5 */
397 vcpu
->arch
.exception
.pending
= true;
398 vcpu
->arch
.exception
.has_error_code
= true;
399 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
400 vcpu
->arch
.exception
.error_code
= 0;
402 /* replace previous exception with a new one in a hope
403 that instruction re-execution will regenerate lost
408 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
410 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
412 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
414 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
416 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
418 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
420 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
423 kvm_inject_gp(vcpu
, 0);
425 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
427 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
429 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
431 ++vcpu
->stat
.pf_guest
;
432 vcpu
->arch
.cr2
= fault
->address
;
433 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
435 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
437 static bool kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
439 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
440 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
442 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
444 return fault
->nested_page_fault
;
447 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
449 atomic_inc(&vcpu
->arch
.nmi_queued
);
450 kvm_make_request(KVM_REQ_NMI
, vcpu
);
452 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
454 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
456 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
458 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
460 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
462 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
464 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
467 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
468 * a #GP and return false.
470 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
472 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
474 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
477 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
479 bool kvm_require_dr(struct kvm_vcpu
*vcpu
, int dr
)
481 if ((dr
!= 4 && dr
!= 5) || !kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
484 kvm_queue_exception(vcpu
, UD_VECTOR
);
487 EXPORT_SYMBOL_GPL(kvm_require_dr
);
490 * This function will be used to read from the physical memory of the currently
491 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
492 * can read from guest physical or from the guest's guest physical memory.
494 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
495 gfn_t ngfn
, void *data
, int offset
, int len
,
498 struct x86_exception exception
;
502 ngpa
= gfn_to_gpa(ngfn
);
503 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
, &exception
);
504 if (real_gfn
== UNMAPPED_GVA
)
507 real_gfn
= gpa_to_gfn(real_gfn
);
509 return kvm_vcpu_read_guest_page(vcpu
, real_gfn
, data
, offset
, len
);
511 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
513 static int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
514 void *data
, int offset
, int len
, u32 access
)
516 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
517 data
, offset
, len
, access
);
521 * Load the pae pdptrs. Return true is they are all valid.
523 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
525 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
526 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
529 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
531 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
532 offset
* sizeof(u64
), sizeof(pdpte
),
533 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
538 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
539 if (is_present_gpte(pdpte
[i
]) &&
541 vcpu
->arch
.mmu
.guest_rsvd_check
.rsvd_bits_mask
[0][2])) {
548 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
549 __set_bit(VCPU_EXREG_PDPTR
,
550 (unsigned long *)&vcpu
->arch
.regs_avail
);
551 __set_bit(VCPU_EXREG_PDPTR
,
552 (unsigned long *)&vcpu
->arch
.regs_dirty
);
557 EXPORT_SYMBOL_GPL(load_pdptrs
);
559 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
561 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
567 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
570 if (!test_bit(VCPU_EXREG_PDPTR
,
571 (unsigned long *)&vcpu
->arch
.regs_avail
))
574 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
575 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
576 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
577 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
580 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
586 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
588 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
589 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
;
594 if (cr0
& 0xffffffff00000000UL
)
598 cr0
&= ~CR0_RESERVED_BITS
;
600 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
603 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
606 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
608 if ((vcpu
->arch
.efer
& EFER_LME
)) {
613 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
618 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
623 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
626 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
628 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
629 kvm_clear_async_pf_completion_queue(vcpu
);
630 kvm_async_pf_hash_reset(vcpu
);
633 if ((cr0
^ old_cr0
) & update_bits
)
634 kvm_mmu_reset_context(vcpu
);
636 if (((cr0
^ old_cr0
) & X86_CR0_CD
) &&
637 kvm_arch_has_noncoherent_dma(vcpu
->kvm
) &&
638 !kvm_check_has_quirk(vcpu
->kvm
, KVM_X86_QUIRK_CD_NW_CLEARED
))
639 kvm_zap_gfn_range(vcpu
->kvm
, 0, ~0ULL);
643 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
645 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
647 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
649 EXPORT_SYMBOL_GPL(kvm_lmsw
);
651 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
653 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
654 !vcpu
->guest_xcr0_loaded
) {
655 /* kvm_set_xcr() also depends on this */
656 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
657 vcpu
->guest_xcr0_loaded
= 1;
661 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
663 if (vcpu
->guest_xcr0_loaded
) {
664 if (vcpu
->arch
.xcr0
!= host_xcr0
)
665 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
666 vcpu
->guest_xcr0_loaded
= 0;
670 static int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
673 u64 old_xcr0
= vcpu
->arch
.xcr0
;
676 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
677 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
679 if (!(xcr0
& XFEATURE_MASK_FP
))
681 if ((xcr0
& XFEATURE_MASK_YMM
) && !(xcr0
& XFEATURE_MASK_SSE
))
685 * Do not allow the guest to set bits that we do not support
686 * saving. However, xcr0 bit 0 is always set, even if the
687 * emulated CPU does not support XSAVE (see fx_init).
689 valid_bits
= vcpu
->arch
.guest_supported_xcr0
| XFEATURE_MASK_FP
;
690 if (xcr0
& ~valid_bits
)
693 if ((!(xcr0
& XFEATURE_MASK_BNDREGS
)) !=
694 (!(xcr0
& XFEATURE_MASK_BNDCSR
)))
697 if (xcr0
& XFEATURE_MASK_AVX512
) {
698 if (!(xcr0
& XFEATURE_MASK_YMM
))
700 if ((xcr0
& XFEATURE_MASK_AVX512
) != XFEATURE_MASK_AVX512
)
703 vcpu
->arch
.xcr0
= xcr0
;
705 if ((xcr0
^ old_xcr0
) & XFEATURE_MASK_EXTEND
)
706 kvm_update_cpuid(vcpu
);
710 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
712 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 ||
713 __kvm_set_xcr(vcpu
, index
, xcr
)) {
714 kvm_inject_gp(vcpu
, 0);
719 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
721 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
723 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
724 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
|
725 X86_CR4_SMEP
| X86_CR4_SMAP
| X86_CR4_PKE
;
727 if (cr4
& CR4_RESERVED_BITS
)
730 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
733 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
736 if (!guest_cpuid_has_smap(vcpu
) && (cr4
& X86_CR4_SMAP
))
739 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_FSGSBASE
))
742 if (!guest_cpuid_has_pku(vcpu
) && (cr4
& X86_CR4_PKE
))
745 if (is_long_mode(vcpu
)) {
746 if (!(cr4
& X86_CR4_PAE
))
748 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
749 && ((cr4
^ old_cr4
) & pdptr_bits
)
750 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
754 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
755 if (!guest_cpuid_has_pcid(vcpu
))
758 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
759 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
763 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
766 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
767 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
768 kvm_mmu_reset_context(vcpu
);
770 if ((cr4
^ old_cr4
) & (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
771 kvm_update_cpuid(vcpu
);
775 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
777 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
780 cr3
&= ~CR3_PCID_INVD
;
783 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
784 kvm_mmu_sync_roots(vcpu
);
785 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
789 if (is_long_mode(vcpu
)) {
790 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
792 } else if (is_pae(vcpu
) && is_paging(vcpu
) &&
793 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
796 vcpu
->arch
.cr3
= cr3
;
797 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
798 kvm_mmu_new_cr3(vcpu
);
801 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
803 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
805 if (cr8
& CR8_RESERVED_BITS
)
807 if (lapic_in_kernel(vcpu
))
808 kvm_lapic_set_tpr(vcpu
, cr8
);
810 vcpu
->arch
.cr8
= cr8
;
813 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
815 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
817 if (lapic_in_kernel(vcpu
))
818 return kvm_lapic_get_cr8(vcpu
);
820 return vcpu
->arch
.cr8
;
822 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
824 static void kvm_update_dr0123(struct kvm_vcpu
*vcpu
)
828 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
829 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
830 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
831 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_RELOAD
;
835 static void kvm_update_dr6(struct kvm_vcpu
*vcpu
)
837 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
838 kvm_x86_ops
->set_dr6(vcpu
, vcpu
->arch
.dr6
);
841 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
845 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
846 dr7
= vcpu
->arch
.guest_debug_dr7
;
848 dr7
= vcpu
->arch
.dr7
;
849 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
850 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_BP_ENABLED
;
851 if (dr7
& DR7_BP_EN_MASK
)
852 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_BP_ENABLED
;
855 static u64
kvm_dr6_fixed(struct kvm_vcpu
*vcpu
)
857 u64 fixed
= DR6_FIXED_1
;
859 if (!guest_cpuid_has_rtm(vcpu
))
864 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
868 vcpu
->arch
.db
[dr
] = val
;
869 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
870 vcpu
->arch
.eff_db
[dr
] = val
;
875 if (val
& 0xffffffff00000000ULL
)
877 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | kvm_dr6_fixed(vcpu
);
878 kvm_update_dr6(vcpu
);
883 if (val
& 0xffffffff00000000ULL
)
885 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
886 kvm_update_dr7(vcpu
);
893 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
895 if (__kvm_set_dr(vcpu
, dr
, val
)) {
896 kvm_inject_gp(vcpu
, 0);
901 EXPORT_SYMBOL_GPL(kvm_set_dr
);
903 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
907 *val
= vcpu
->arch
.db
[dr
];
912 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
913 *val
= vcpu
->arch
.dr6
;
915 *val
= kvm_x86_ops
->get_dr6(vcpu
);
920 *val
= vcpu
->arch
.dr7
;
925 EXPORT_SYMBOL_GPL(kvm_get_dr
);
927 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
929 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
933 err
= kvm_pmu_rdpmc(vcpu
, ecx
, &data
);
936 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
937 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
940 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
943 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
944 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
946 * This list is modified at module load time to reflect the
947 * capabilities of the host cpu. This capabilities test skips MSRs that are
948 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
949 * may depend on host virtualization features rather than host cpu features.
952 static u32 msrs_to_save
[] = {
953 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
956 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
958 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
959 MSR_IA32_FEATURE_CONTROL
, MSR_IA32_BNDCFGS
, MSR_TSC_AUX
,
962 static unsigned num_msrs_to_save
;
964 static u32 emulated_msrs
[] = {
965 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
966 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
967 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
968 HV_X64_MSR_TIME_REF_COUNT
, HV_X64_MSR_REFERENCE_TSC
,
969 HV_X64_MSR_CRASH_P0
, HV_X64_MSR_CRASH_P1
, HV_X64_MSR_CRASH_P2
,
970 HV_X64_MSR_CRASH_P3
, HV_X64_MSR_CRASH_P4
, HV_X64_MSR_CRASH_CTL
,
973 HV_X64_MSR_VP_RUNTIME
,
975 HV_X64_MSR_STIMER0_CONFIG
,
976 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
980 MSR_IA32_TSCDEADLINE
,
981 MSR_IA32_MISC_ENABLE
,
987 static unsigned num_emulated_msrs
;
989 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
991 if (efer
& efer_reserved_bits
)
994 if (efer
& EFER_FFXSR
) {
995 struct kvm_cpuid_entry2
*feat
;
997 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
998 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
1002 if (efer
& EFER_SVME
) {
1003 struct kvm_cpuid_entry2
*feat
;
1005 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
1006 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
1012 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
1014 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
1016 u64 old_efer
= vcpu
->arch
.efer
;
1018 if (!kvm_valid_efer(vcpu
, efer
))
1022 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
1026 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
1028 kvm_x86_ops
->set_efer(vcpu
, efer
);
1030 /* Update reserved bits */
1031 if ((efer
^ old_efer
) & EFER_NX
)
1032 kvm_mmu_reset_context(vcpu
);
1037 void kvm_enable_efer_bits(u64 mask
)
1039 efer_reserved_bits
&= ~mask
;
1041 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
1044 * Writes msr value into into the appropriate "register".
1045 * Returns 0 on success, non-0 otherwise.
1046 * Assumes vcpu_load() was already called.
1048 int kvm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1050 switch (msr
->index
) {
1053 case MSR_KERNEL_GS_BASE
:
1056 if (is_noncanonical_address(msr
->data
))
1059 case MSR_IA32_SYSENTER_EIP
:
1060 case MSR_IA32_SYSENTER_ESP
:
1062 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1063 * non-canonical address is written on Intel but not on
1064 * AMD (which ignores the top 32-bits, because it does
1065 * not implement 64-bit SYSENTER).
1067 * 64-bit code should hence be able to write a non-canonical
1068 * value on AMD. Making the address canonical ensures that
1069 * vmentry does not fail on Intel after writing a non-canonical
1070 * value, and that something deterministic happens if the guest
1071 * invokes 64-bit SYSENTER.
1073 msr
->data
= get_canonical(msr
->data
);
1075 return kvm_x86_ops
->set_msr(vcpu
, msr
);
1077 EXPORT_SYMBOL_GPL(kvm_set_msr
);
1080 * Adapt set_msr() to msr_io()'s calling convention
1082 static int do_get_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1084 struct msr_data msr
;
1088 msr
.host_initiated
= true;
1089 r
= kvm_get_msr(vcpu
, &msr
);
1097 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1099 struct msr_data msr
;
1103 msr
.host_initiated
= true;
1104 return kvm_set_msr(vcpu
, &msr
);
1107 #ifdef CONFIG_X86_64
1108 struct pvclock_gtod_data
{
1111 struct { /* extract of a clocksource struct */
1123 static struct pvclock_gtod_data pvclock_gtod_data
;
1125 static void update_pvclock_gtod(struct timekeeper
*tk
)
1127 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
1130 boot_ns
= ktime_to_ns(ktime_add(tk
->tkr_mono
.base
, tk
->offs_boot
));
1132 write_seqcount_begin(&vdata
->seq
);
1134 /* copy pvclock gtod data */
1135 vdata
->clock
.vclock_mode
= tk
->tkr_mono
.clock
->archdata
.vclock_mode
;
1136 vdata
->clock
.cycle_last
= tk
->tkr_mono
.cycle_last
;
1137 vdata
->clock
.mask
= tk
->tkr_mono
.mask
;
1138 vdata
->clock
.mult
= tk
->tkr_mono
.mult
;
1139 vdata
->clock
.shift
= tk
->tkr_mono
.shift
;
1141 vdata
->boot_ns
= boot_ns
;
1142 vdata
->nsec_base
= tk
->tkr_mono
.xtime_nsec
;
1144 write_seqcount_end(&vdata
->seq
);
1148 void kvm_set_pending_timer(struct kvm_vcpu
*vcpu
)
1151 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1152 * vcpu_enter_guest. This function is only called from
1153 * the physical CPU that is running vcpu.
1155 kvm_make_request(KVM_REQ_PENDING_TIMER
, vcpu
);
1158 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
1162 struct pvclock_wall_clock wc
;
1163 struct timespec boot
;
1168 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1173 ++version
; /* first time write, random junk */
1177 if (kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
)))
1181 * The guest calculates current wall clock time by adding
1182 * system time (updated by kvm_guest_time_update below) to the
1183 * wall clock specified here. guest system time equals host
1184 * system time for us, thus we must fill in host boot time here.
1188 if (kvm
->arch
.kvmclock_offset
) {
1189 struct timespec ts
= ns_to_timespec(kvm
->arch
.kvmclock_offset
);
1190 boot
= timespec_sub(boot
, ts
);
1192 wc
.sec
= boot
.tv_sec
;
1193 wc
.nsec
= boot
.tv_nsec
;
1194 wc
.version
= version
;
1196 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1199 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1202 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1204 do_shl32_div32(dividend
, divisor
);
1208 static void kvm_get_time_scale(uint64_t scaled_hz
, uint64_t base_hz
,
1209 s8
*pshift
, u32
*pmultiplier
)
1217 scaled64
= scaled_hz
;
1218 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1223 tps32
= (uint32_t)tps64
;
1224 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1225 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1233 *pmultiplier
= div_frac(scaled64
, tps32
);
1235 pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1236 __func__
, base_hz
, scaled_hz
, shift
, *pmultiplier
);
1239 #ifdef CONFIG_X86_64
1240 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1243 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1244 static unsigned long max_tsc_khz
;
1246 static inline u64
nsec_to_cycles(struct kvm_vcpu
*vcpu
, u64 nsec
)
1248 return pvclock_scale_delta(nsec
, vcpu
->arch
.virtual_tsc_mult
,
1249 vcpu
->arch
.virtual_tsc_shift
);
1252 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1254 u64 v
= (u64
)khz
* (1000000 + ppm
);
1259 static int set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
, bool scale
)
1263 /* Guest TSC same frequency as host TSC? */
1265 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1269 /* TSC scaling supported? */
1270 if (!kvm_has_tsc_control
) {
1271 if (user_tsc_khz
> tsc_khz
) {
1272 vcpu
->arch
.tsc_catchup
= 1;
1273 vcpu
->arch
.tsc_always_catchup
= 1;
1276 WARN(1, "user requested TSC rate below hardware speed\n");
1281 /* TSC scaling required - calculate ratio */
1282 ratio
= mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits
,
1283 user_tsc_khz
, tsc_khz
);
1285 if (ratio
== 0 || ratio
>= kvm_max_tsc_scaling_ratio
) {
1286 WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1291 vcpu
->arch
.tsc_scaling_ratio
= ratio
;
1295 static int kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 user_tsc_khz
)
1297 u32 thresh_lo
, thresh_hi
;
1298 int use_scaling
= 0;
1300 /* tsc_khz can be zero if TSC calibration fails */
1301 if (user_tsc_khz
== 0) {
1302 /* set tsc_scaling_ratio to a safe value */
1303 vcpu
->arch
.tsc_scaling_ratio
= kvm_default_tsc_scaling_ratio
;
1307 /* Compute a scale to convert nanoseconds in TSC cycles */
1308 kvm_get_time_scale(user_tsc_khz
* 1000LL, NSEC_PER_SEC
,
1309 &vcpu
->arch
.virtual_tsc_shift
,
1310 &vcpu
->arch
.virtual_tsc_mult
);
1311 vcpu
->arch
.virtual_tsc_khz
= user_tsc_khz
;
1314 * Compute the variation in TSC rate which is acceptable
1315 * within the range of tolerance and decide if the
1316 * rate being applied is within that bounds of the hardware
1317 * rate. If so, no scaling or compensation need be done.
1319 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1320 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1321 if (user_tsc_khz
< thresh_lo
|| user_tsc_khz
> thresh_hi
) {
1322 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz
, thresh_lo
, thresh_hi
);
1325 return set_tsc_khz(vcpu
, user_tsc_khz
, use_scaling
);
1328 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1330 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1331 vcpu
->arch
.virtual_tsc_mult
,
1332 vcpu
->arch
.virtual_tsc_shift
);
1333 tsc
+= vcpu
->arch
.this_tsc_write
;
1337 static void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1339 #ifdef CONFIG_X86_64
1341 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1342 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1344 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1345 atomic_read(&vcpu
->kvm
->online_vcpus
));
1348 * Once the masterclock is enabled, always perform request in
1349 * order to update it.
1351 * In order to enable masterclock, the host clocksource must be TSC
1352 * and the vcpus need to have matched TSCs. When that happens,
1353 * perform request to enable masterclock.
1355 if (ka
->use_master_clock
||
1356 (gtod
->clock
.vclock_mode
== VCLOCK_TSC
&& vcpus_matched
))
1357 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1359 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1360 atomic_read(&vcpu
->kvm
->online_vcpus
),
1361 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1365 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1367 u64 curr_offset
= kvm_x86_ops
->read_tsc_offset(vcpu
);
1368 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1372 * Multiply tsc by a fixed point number represented by ratio.
1374 * The most significant 64-N bits (mult) of ratio represent the
1375 * integral part of the fixed point number; the remaining N bits
1376 * (frac) represent the fractional part, ie. ratio represents a fixed
1377 * point number (mult + frac * 2^(-N)).
1379 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1381 static inline u64
__scale_tsc(u64 ratio
, u64 tsc
)
1383 return mul_u64_u64_shr(tsc
, ratio
, kvm_tsc_scaling_ratio_frac_bits
);
1386 u64
kvm_scale_tsc(struct kvm_vcpu
*vcpu
, u64 tsc
)
1389 u64 ratio
= vcpu
->arch
.tsc_scaling_ratio
;
1391 if (ratio
!= kvm_default_tsc_scaling_ratio
)
1392 _tsc
= __scale_tsc(ratio
, tsc
);
1396 EXPORT_SYMBOL_GPL(kvm_scale_tsc
);
1398 static u64
kvm_compute_tsc_offset(struct kvm_vcpu
*vcpu
, u64 target_tsc
)
1402 tsc
= kvm_scale_tsc(vcpu
, rdtsc());
1404 return target_tsc
- tsc
;
1407 u64
kvm_read_l1_tsc(struct kvm_vcpu
*vcpu
, u64 host_tsc
)
1409 return kvm_x86_ops
->read_l1_tsc(vcpu
, kvm_scale_tsc(vcpu
, host_tsc
));
1411 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc
);
1413 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1415 struct kvm
*kvm
= vcpu
->kvm
;
1416 u64 offset
, ns
, elapsed
;
1417 unsigned long flags
;
1420 bool already_matched
;
1421 u64 data
= msr
->data
;
1423 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1424 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1425 ns
= get_kernel_ns();
1426 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1428 if (vcpu
->arch
.virtual_tsc_khz
) {
1431 /* n.b - signed multiplication and division required */
1432 usdiff
= data
- kvm
->arch
.last_tsc_write
;
1433 #ifdef CONFIG_X86_64
1434 usdiff
= (usdiff
* 1000) / vcpu
->arch
.virtual_tsc_khz
;
1436 /* do_div() only does unsigned */
1437 asm("1: idivl %[divisor]\n"
1438 "2: xor %%edx, %%edx\n"
1439 " movl $0, %[faulted]\n"
1441 ".section .fixup,\"ax\"\n"
1442 "4: movl $1, %[faulted]\n"
1446 _ASM_EXTABLE(1b
, 4b
)
1448 : "=A"(usdiff
), [faulted
] "=r" (faulted
)
1449 : "A"(usdiff
* 1000), [divisor
] "rm"(vcpu
->arch
.virtual_tsc_khz
));
1452 do_div(elapsed
, 1000);
1457 /* idivl overflow => difference is larger than USEC_PER_SEC */
1459 usdiff
= USEC_PER_SEC
;
1461 usdiff
= USEC_PER_SEC
; /* disable TSC match window below */
1464 * Special case: TSC write with a small delta (1 second) of virtual
1465 * cycle time against real time is interpreted as an attempt to
1466 * synchronize the CPU.
1468 * For a reliable TSC, we can match TSC offsets, and for an unstable
1469 * TSC, we add elapsed time in this computation. We could let the
1470 * compensation code attempt to catch up if we fall behind, but
1471 * it's better to try to match offsets from the beginning.
1473 if (usdiff
< USEC_PER_SEC
&&
1474 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1475 if (!check_tsc_unstable()) {
1476 offset
= kvm
->arch
.cur_tsc_offset
;
1477 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1479 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1481 offset
= kvm_compute_tsc_offset(vcpu
, data
);
1482 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1485 already_matched
= (vcpu
->arch
.this_tsc_generation
== kvm
->arch
.cur_tsc_generation
);
1488 * We split periods of matched TSC writes into generations.
1489 * For each generation, we track the original measured
1490 * nanosecond time, offset, and write, so if TSCs are in
1491 * sync, we can match exact offset, and if not, we can match
1492 * exact software computation in compute_guest_tsc()
1494 * These values are tracked in kvm->arch.cur_xxx variables.
1496 kvm
->arch
.cur_tsc_generation
++;
1497 kvm
->arch
.cur_tsc_nsec
= ns
;
1498 kvm
->arch
.cur_tsc_write
= data
;
1499 kvm
->arch
.cur_tsc_offset
= offset
;
1501 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1502 kvm
->arch
.cur_tsc_generation
, data
);
1506 * We also track th most recent recorded KHZ, write and time to
1507 * allow the matching interval to be extended at each write.
1509 kvm
->arch
.last_tsc_nsec
= ns
;
1510 kvm
->arch
.last_tsc_write
= data
;
1511 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1513 vcpu
->arch
.last_guest_tsc
= data
;
1515 /* Keep track of which generation this VCPU has synchronized to */
1516 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1517 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1518 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1520 if (guest_cpuid_has_tsc_adjust(vcpu
) && !msr
->host_initiated
)
1521 update_ia32_tsc_adjust_msr(vcpu
, offset
);
1522 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1523 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1525 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1527 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
1528 } else if (!already_matched
) {
1529 kvm
->arch
.nr_vcpus_matched_tsc
++;
1532 kvm_track_tsc_matching(vcpu
);
1533 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1536 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1538 static inline void adjust_tsc_offset_guest(struct kvm_vcpu
*vcpu
,
1541 kvm_x86_ops
->adjust_tsc_offset_guest(vcpu
, adjustment
);
1544 static inline void adjust_tsc_offset_host(struct kvm_vcpu
*vcpu
, s64 adjustment
)
1546 if (vcpu
->arch
.tsc_scaling_ratio
!= kvm_default_tsc_scaling_ratio
)
1547 WARN_ON(adjustment
< 0);
1548 adjustment
= kvm_scale_tsc(vcpu
, (u64
) adjustment
);
1549 kvm_x86_ops
->adjust_tsc_offset_guest(vcpu
, adjustment
);
1552 #ifdef CONFIG_X86_64
1554 static cycle_t
read_tsc(void)
1556 cycle_t ret
= (cycle_t
)rdtsc_ordered();
1557 u64 last
= pvclock_gtod_data
.clock
.cycle_last
;
1559 if (likely(ret
>= last
))
1563 * GCC likes to generate cmov here, but this branch is extremely
1564 * predictable (it's just a function of time and the likely is
1565 * very likely) and there's a data dependence, so force GCC
1566 * to generate a branch instead. I don't barrier() because
1567 * we don't actually need a barrier, and if this function
1568 * ever gets inlined it will generate worse code.
1574 static inline u64
vgettsc(cycle_t
*cycle_now
)
1577 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1579 *cycle_now
= read_tsc();
1581 v
= (*cycle_now
- gtod
->clock
.cycle_last
) & gtod
->clock
.mask
;
1582 return v
* gtod
->clock
.mult
;
1585 static int do_monotonic_boot(s64
*t
, cycle_t
*cycle_now
)
1587 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1593 seq
= read_seqcount_begin(>od
->seq
);
1594 mode
= gtod
->clock
.vclock_mode
;
1595 ns
= gtod
->nsec_base
;
1596 ns
+= vgettsc(cycle_now
);
1597 ns
>>= gtod
->clock
.shift
;
1598 ns
+= gtod
->boot_ns
;
1599 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1605 /* returns true if host is using tsc clocksource */
1606 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, cycle_t
*cycle_now
)
1608 /* checked again under seqlock below */
1609 if (pvclock_gtod_data
.clock
.vclock_mode
!= VCLOCK_TSC
)
1612 return do_monotonic_boot(kernel_ns
, cycle_now
) == VCLOCK_TSC
;
1618 * Assuming a stable TSC across physical CPUS, and a stable TSC
1619 * across virtual CPUs, the following condition is possible.
1620 * Each numbered line represents an event visible to both
1621 * CPUs at the next numbered event.
1623 * "timespecX" represents host monotonic time. "tscX" represents
1626 * VCPU0 on CPU0 | VCPU1 on CPU1
1628 * 1. read timespec0,tsc0
1629 * 2. | timespec1 = timespec0 + N
1631 * 3. transition to guest | transition to guest
1632 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1633 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1634 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1636 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1639 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1641 * - 0 < N - M => M < N
1643 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1644 * always the case (the difference between two distinct xtime instances
1645 * might be smaller then the difference between corresponding TSC reads,
1646 * when updating guest vcpus pvclock areas).
1648 * To avoid that problem, do not allow visibility of distinct
1649 * system_timestamp/tsc_timestamp values simultaneously: use a master
1650 * copy of host monotonic time values. Update that master copy
1653 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1657 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
1659 #ifdef CONFIG_X86_64
1660 struct kvm_arch
*ka
= &kvm
->arch
;
1662 bool host_tsc_clocksource
, vcpus_matched
;
1664 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1665 atomic_read(&kvm
->online_vcpus
));
1668 * If the host uses TSC clock, then passthrough TSC as stable
1671 host_tsc_clocksource
= kvm_get_time_and_clockread(
1672 &ka
->master_kernel_ns
,
1673 &ka
->master_cycle_now
);
1675 ka
->use_master_clock
= host_tsc_clocksource
&& vcpus_matched
1676 && !backwards_tsc_observed
1677 && !ka
->boot_vcpu_runs_old_kvmclock
;
1679 if (ka
->use_master_clock
)
1680 atomic_set(&kvm_guest_has_master_clock
, 1);
1682 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
1683 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
1688 void kvm_make_mclock_inprogress_request(struct kvm
*kvm
)
1690 kvm_make_all_cpus_request(kvm
, KVM_REQ_MCLOCK_INPROGRESS
);
1693 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
1695 #ifdef CONFIG_X86_64
1697 struct kvm_vcpu
*vcpu
;
1698 struct kvm_arch
*ka
= &kvm
->arch
;
1700 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1701 kvm_make_mclock_inprogress_request(kvm
);
1702 /* no guest entries from this point */
1703 pvclock_update_vm_gtod_copy(kvm
);
1705 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1706 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1708 /* guest entries allowed */
1709 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1710 clear_bit(KVM_REQ_MCLOCK_INPROGRESS
, &vcpu
->requests
);
1712 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1716 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1718 unsigned long flags
, tgt_tsc_khz
;
1719 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1720 struct kvm_arch
*ka
= &v
->kvm
->arch
;
1722 u64 tsc_timestamp
, host_tsc
;
1723 struct pvclock_vcpu_time_info guest_hv_clock
;
1725 bool use_master_clock
;
1731 * If the host uses TSC clock, then passthrough TSC as stable
1734 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1735 use_master_clock
= ka
->use_master_clock
;
1736 if (use_master_clock
) {
1737 host_tsc
= ka
->master_cycle_now
;
1738 kernel_ns
= ka
->master_kernel_ns
;
1740 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1742 /* Keep irq disabled to prevent changes to the clock */
1743 local_irq_save(flags
);
1744 tgt_tsc_khz
= __this_cpu_read(cpu_tsc_khz
);
1745 if (unlikely(tgt_tsc_khz
== 0)) {
1746 local_irq_restore(flags
);
1747 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1750 if (!use_master_clock
) {
1752 kernel_ns
= get_kernel_ns();
1755 tsc_timestamp
= kvm_read_l1_tsc(v
, host_tsc
);
1758 * We may have to catch up the TSC to match elapsed wall clock
1759 * time for two reasons, even if kvmclock is used.
1760 * 1) CPU could have been running below the maximum TSC rate
1761 * 2) Broken TSC compensation resets the base at each VCPU
1762 * entry to avoid unknown leaps of TSC even when running
1763 * again on the same CPU. This may cause apparent elapsed
1764 * time to disappear, and the guest to stand still or run
1767 if (vcpu
->tsc_catchup
) {
1768 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1769 if (tsc
> tsc_timestamp
) {
1770 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
1771 tsc_timestamp
= tsc
;
1775 local_irq_restore(flags
);
1777 if (!vcpu
->pv_time_enabled
)
1780 if (kvm_has_tsc_control
)
1781 tgt_tsc_khz
= kvm_scale_tsc(v
, tgt_tsc_khz
);
1783 if (unlikely(vcpu
->hw_tsc_khz
!= tgt_tsc_khz
)) {
1784 kvm_get_time_scale(NSEC_PER_SEC
, tgt_tsc_khz
* 1000LL,
1785 &vcpu
->hv_clock
.tsc_shift
,
1786 &vcpu
->hv_clock
.tsc_to_system_mul
);
1787 vcpu
->hw_tsc_khz
= tgt_tsc_khz
;
1790 /* With all the info we got, fill in the values */
1791 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1792 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1793 vcpu
->last_guest_tsc
= tsc_timestamp
;
1795 if (unlikely(kvm_read_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1796 &guest_hv_clock
, sizeof(guest_hv_clock
))))
1799 /* This VCPU is paused, but it's legal for a guest to read another
1800 * VCPU's kvmclock, so we really have to follow the specification where
1801 * it says that version is odd if data is being modified, and even after
1804 * Version field updates must be kept separate. This is because
1805 * kvm_write_guest_cached might use a "rep movs" instruction, and
1806 * writes within a string instruction are weakly ordered. So there
1807 * are three writes overall.
1809 * As a small optimization, only write the version field in the first
1810 * and third write. The vcpu->pv_time cache is still valid, because the
1811 * version field is the first in the struct.
1813 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info
, version
) != 0);
1815 vcpu
->hv_clock
.version
= guest_hv_clock
.version
+ 1;
1816 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1818 sizeof(vcpu
->hv_clock
.version
));
1822 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1823 pvclock_flags
= (guest_hv_clock
.flags
& PVCLOCK_GUEST_STOPPED
);
1825 if (vcpu
->pvclock_set_guest_stopped_request
) {
1826 pvclock_flags
|= PVCLOCK_GUEST_STOPPED
;
1827 vcpu
->pvclock_set_guest_stopped_request
= false;
1830 /* If the host uses TSC clocksource, then it is stable */
1831 if (use_master_clock
)
1832 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
1834 vcpu
->hv_clock
.flags
= pvclock_flags
;
1836 trace_kvm_pvclock_update(v
->vcpu_id
, &vcpu
->hv_clock
);
1838 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1840 sizeof(vcpu
->hv_clock
));
1844 vcpu
->hv_clock
.version
++;
1845 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1847 sizeof(vcpu
->hv_clock
.version
));
1852 * kvmclock updates which are isolated to a given vcpu, such as
1853 * vcpu->cpu migration, should not allow system_timestamp from
1854 * the rest of the vcpus to remain static. Otherwise ntp frequency
1855 * correction applies to one vcpu's system_timestamp but not
1858 * So in those cases, request a kvmclock update for all vcpus.
1859 * We need to rate-limit these requests though, as they can
1860 * considerably slow guests that have a large number of vcpus.
1861 * The time for a remote vcpu to update its kvmclock is bound
1862 * by the delay we use to rate-limit the updates.
1865 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1867 static void kvmclock_update_fn(struct work_struct
*work
)
1870 struct delayed_work
*dwork
= to_delayed_work(work
);
1871 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1872 kvmclock_update_work
);
1873 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1874 struct kvm_vcpu
*vcpu
;
1876 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1877 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1878 kvm_vcpu_kick(vcpu
);
1882 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
1884 struct kvm
*kvm
= v
->kvm
;
1886 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1887 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
,
1888 KVMCLOCK_UPDATE_DELAY
);
1891 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1893 static void kvmclock_sync_fn(struct work_struct
*work
)
1895 struct delayed_work
*dwork
= to_delayed_work(work
);
1896 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1897 kvmclock_sync_work
);
1898 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1900 if (!kvmclock_periodic_sync
)
1903 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
, 0);
1904 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
1905 KVMCLOCK_SYNC_PERIOD
);
1908 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1910 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1911 unsigned bank_num
= mcg_cap
& 0xff;
1914 case MSR_IA32_MCG_STATUS
:
1915 vcpu
->arch
.mcg_status
= data
;
1917 case MSR_IA32_MCG_CTL
:
1918 if (!(mcg_cap
& MCG_CTL_P
))
1920 if (data
!= 0 && data
!= ~(u64
)0)
1922 vcpu
->arch
.mcg_ctl
= data
;
1925 if (msr
>= MSR_IA32_MC0_CTL
&&
1926 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
1927 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1928 /* only 0 or all 1s can be written to IA32_MCi_CTL
1929 * some Linux kernels though clear bit 10 in bank 4 to
1930 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1931 * this to avoid an uncatched #GP in the guest
1933 if ((offset
& 0x3) == 0 &&
1934 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1936 vcpu
->arch
.mce_banks
[offset
] = data
;
1944 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1946 struct kvm
*kvm
= vcpu
->kvm
;
1947 int lm
= is_long_mode(vcpu
);
1948 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1949 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1950 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1951 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1952 u32 page_num
= data
& ~PAGE_MASK
;
1953 u64 page_addr
= data
& PAGE_MASK
;
1958 if (page_num
>= blob_size
)
1961 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
1966 if (kvm_vcpu_write_guest(vcpu
, page_addr
, page
, PAGE_SIZE
))
1975 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
1977 gpa_t gpa
= data
& ~0x3f;
1979 /* Bits 2:5 are reserved, Should be zero */
1983 vcpu
->arch
.apf
.msr_val
= data
;
1985 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
1986 kvm_clear_async_pf_completion_queue(vcpu
);
1987 kvm_async_pf_hash_reset(vcpu
);
1991 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
1995 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
1996 kvm_async_pf_wakeup_all(vcpu
);
2000 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
2002 vcpu
->arch
.pv_time_enabled
= false;
2005 static void accumulate_steal_time(struct kvm_vcpu
*vcpu
)
2009 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2012 delta
= current
->sched_info
.run_delay
- vcpu
->arch
.st
.last_steal
;
2013 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2014 vcpu
->arch
.st
.accum_steal
= delta
;
2017 static void record_steal_time(struct kvm_vcpu
*vcpu
)
2019 accumulate_steal_time(vcpu
);
2021 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2024 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2025 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
2028 vcpu
->arch
.st
.steal
.steal
+= vcpu
->arch
.st
.accum_steal
;
2029 vcpu
->arch
.st
.steal
.version
+= 2;
2030 vcpu
->arch
.st
.accum_steal
= 0;
2032 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2033 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2036 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2039 u32 msr
= msr_info
->index
;
2040 u64 data
= msr_info
->data
;
2043 case MSR_AMD64_NB_CFG
:
2044 case MSR_IA32_UCODE_REV
:
2045 case MSR_IA32_UCODE_WRITE
:
2046 case MSR_VM_HSAVE_PA
:
2047 case MSR_AMD64_PATCH_LOADER
:
2048 case MSR_AMD64_BU_CFG2
:
2052 return set_efer(vcpu
, data
);
2054 data
&= ~(u64
)0x40; /* ignore flush filter disable */
2055 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
2056 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
2057 data
&= ~(u64
)0x40000; /* ignore Mc status write enable */
2059 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
2064 case MSR_FAM10H_MMIO_CONF_BASE
:
2066 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
2071 case MSR_IA32_DEBUGCTLMSR
:
2073 /* We support the non-activated case already */
2075 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
2076 /* Values other than LBR and BTF are vendor-specific,
2077 thus reserved and should throw a #GP */
2080 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2083 case 0x200 ... 0x2ff:
2084 return kvm_mtrr_set_msr(vcpu
, msr
, data
);
2085 case MSR_IA32_APICBASE
:
2086 return kvm_set_apic_base(vcpu
, msr_info
);
2087 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2088 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
2089 case MSR_IA32_TSCDEADLINE
:
2090 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2092 case MSR_IA32_TSC_ADJUST
:
2093 if (guest_cpuid_has_tsc_adjust(vcpu
)) {
2094 if (!msr_info
->host_initiated
) {
2095 s64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
2096 adjust_tsc_offset_guest(vcpu
, adj
);
2098 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
2101 case MSR_IA32_MISC_ENABLE
:
2102 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2104 case MSR_IA32_SMBASE
:
2105 if (!msr_info
->host_initiated
)
2107 vcpu
->arch
.smbase
= data
;
2109 case MSR_KVM_WALL_CLOCK_NEW
:
2110 case MSR_KVM_WALL_CLOCK
:
2111 vcpu
->kvm
->arch
.wall_clock
= data
;
2112 kvm_write_wall_clock(vcpu
->kvm
, data
);
2114 case MSR_KVM_SYSTEM_TIME_NEW
:
2115 case MSR_KVM_SYSTEM_TIME
: {
2117 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
2119 kvmclock_reset(vcpu
);
2121 if (vcpu
->vcpu_id
== 0 && !msr_info
->host_initiated
) {
2122 bool tmp
= (msr
== MSR_KVM_SYSTEM_TIME
);
2124 if (ka
->boot_vcpu_runs_old_kvmclock
!= tmp
)
2125 set_bit(KVM_REQ_MASTERCLOCK_UPDATE
,
2128 ka
->boot_vcpu_runs_old_kvmclock
= tmp
;
2131 vcpu
->arch
.time
= data
;
2132 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2134 /* we verify if the enable bit is set... */
2138 gpa_offset
= data
& ~(PAGE_MASK
| 1);
2140 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
2141 &vcpu
->arch
.pv_time
, data
& ~1ULL,
2142 sizeof(struct pvclock_vcpu_time_info
)))
2143 vcpu
->arch
.pv_time_enabled
= false;
2145 vcpu
->arch
.pv_time_enabled
= true;
2149 case MSR_KVM_ASYNC_PF_EN
:
2150 if (kvm_pv_enable_async_pf(vcpu
, data
))
2153 case MSR_KVM_STEAL_TIME
:
2155 if (unlikely(!sched_info_on()))
2158 if (data
& KVM_STEAL_RESERVED_MASK
)
2161 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2162 data
& KVM_STEAL_VALID_BITS
,
2163 sizeof(struct kvm_steal_time
)))
2166 vcpu
->arch
.st
.msr_val
= data
;
2168 if (!(data
& KVM_MSR_ENABLED
))
2171 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2174 case MSR_KVM_PV_EOI_EN
:
2175 if (kvm_lapic_enable_pv_eoi(vcpu
, data
))
2179 case MSR_IA32_MCG_CTL
:
2180 case MSR_IA32_MCG_STATUS
:
2181 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2182 return set_msr_mce(vcpu
, msr
, data
);
2184 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2185 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2186 pr
= true; /* fall through */
2187 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2188 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2189 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2190 return kvm_pmu_set_msr(vcpu
, msr_info
);
2192 if (pr
|| data
!= 0)
2193 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2194 "0x%x data 0x%llx\n", msr
, data
);
2196 case MSR_K7_CLK_CTL
:
2198 * Ignore all writes to this no longer documented MSR.
2199 * Writes are only relevant for old K7 processors,
2200 * all pre-dating SVM, but a recommended workaround from
2201 * AMD for these chips. It is possible to specify the
2202 * affected processor models on the command line, hence
2203 * the need to ignore the workaround.
2206 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2207 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2208 case HV_X64_MSR_CRASH_CTL
:
2209 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2210 return kvm_hv_set_msr_common(vcpu
, msr
, data
,
2211 msr_info
->host_initiated
);
2212 case MSR_IA32_BBL_CR_CTL3
:
2213 /* Drop writes to this legacy MSR -- see rdmsr
2214 * counterpart for further detail.
2216 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n", msr
, data
);
2218 case MSR_AMD64_OSVW_ID_LENGTH
:
2219 if (!guest_cpuid_has_osvw(vcpu
))
2221 vcpu
->arch
.osvw
.length
= data
;
2223 case MSR_AMD64_OSVW_STATUS
:
2224 if (!guest_cpuid_has_osvw(vcpu
))
2226 vcpu
->arch
.osvw
.status
= data
;
2229 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2230 return xen_hvm_config(vcpu
, data
);
2231 if (kvm_pmu_is_valid_msr(vcpu
, msr
))
2232 return kvm_pmu_set_msr(vcpu
, msr_info
);
2234 vcpu_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
2238 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
2245 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2249 * Reads an msr value (of 'msr_index') into 'pdata'.
2250 * Returns 0 on success, non-0 otherwise.
2251 * Assumes vcpu_load() was already called.
2253 int kvm_get_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
2255 return kvm_x86_ops
->get_msr(vcpu
, msr
);
2257 EXPORT_SYMBOL_GPL(kvm_get_msr
);
2259 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2262 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2263 unsigned bank_num
= mcg_cap
& 0xff;
2266 case MSR_IA32_P5_MC_ADDR
:
2267 case MSR_IA32_P5_MC_TYPE
:
2270 case MSR_IA32_MCG_CAP
:
2271 data
= vcpu
->arch
.mcg_cap
;
2273 case MSR_IA32_MCG_CTL
:
2274 if (!(mcg_cap
& MCG_CTL_P
))
2276 data
= vcpu
->arch
.mcg_ctl
;
2278 case MSR_IA32_MCG_STATUS
:
2279 data
= vcpu
->arch
.mcg_status
;
2282 if (msr
>= MSR_IA32_MC0_CTL
&&
2283 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2284 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2285 data
= vcpu
->arch
.mce_banks
[offset
];
2294 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2296 switch (msr_info
->index
) {
2297 case MSR_IA32_PLATFORM_ID
:
2298 case MSR_IA32_EBL_CR_POWERON
:
2299 case MSR_IA32_DEBUGCTLMSR
:
2300 case MSR_IA32_LASTBRANCHFROMIP
:
2301 case MSR_IA32_LASTBRANCHTOIP
:
2302 case MSR_IA32_LASTINTFROMIP
:
2303 case MSR_IA32_LASTINTTOIP
:
2305 case MSR_K8_TSEG_ADDR
:
2306 case MSR_K8_TSEG_MASK
:
2308 case MSR_VM_HSAVE_PA
:
2309 case MSR_K8_INT_PENDING_MSG
:
2310 case MSR_AMD64_NB_CFG
:
2311 case MSR_FAM10H_MMIO_CONF_BASE
:
2312 case MSR_AMD64_BU_CFG2
:
2315 case MSR_K7_EVNTSEL0
... MSR_K7_EVNTSEL3
:
2316 case MSR_K7_PERFCTR0
... MSR_K7_PERFCTR3
:
2317 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR1
:
2318 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL1
:
2319 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2320 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2323 case MSR_IA32_UCODE_REV
:
2324 msr_info
->data
= 0x100000000ULL
;
2327 case 0x200 ... 0x2ff:
2328 return kvm_mtrr_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2329 case 0xcd: /* fsb frequency */
2333 * MSR_EBC_FREQUENCY_ID
2334 * Conservative value valid for even the basic CPU models.
2335 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2336 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2337 * and 266MHz for model 3, or 4. Set Core Clock
2338 * Frequency to System Bus Frequency Ratio to 1 (bits
2339 * 31:24) even though these are only valid for CPU
2340 * models > 2, however guests may end up dividing or
2341 * multiplying by zero otherwise.
2343 case MSR_EBC_FREQUENCY_ID
:
2344 msr_info
->data
= 1 << 24;
2346 case MSR_IA32_APICBASE
:
2347 msr_info
->data
= kvm_get_apic_base(vcpu
);
2349 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2350 return kvm_x2apic_msr_read(vcpu
, msr_info
->index
, &msr_info
->data
);
2352 case MSR_IA32_TSCDEADLINE
:
2353 msr_info
->data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
2355 case MSR_IA32_TSC_ADJUST
:
2356 msr_info
->data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
2358 case MSR_IA32_MISC_ENABLE
:
2359 msr_info
->data
= vcpu
->arch
.ia32_misc_enable_msr
;
2361 case MSR_IA32_SMBASE
:
2362 if (!msr_info
->host_initiated
)
2364 msr_info
->data
= vcpu
->arch
.smbase
;
2366 case MSR_IA32_PERF_STATUS
:
2367 /* TSC increment by tick */
2368 msr_info
->data
= 1000ULL;
2369 /* CPU multiplier */
2370 msr_info
->data
|= (((uint64_t)4ULL) << 40);
2373 msr_info
->data
= vcpu
->arch
.efer
;
2375 case MSR_KVM_WALL_CLOCK
:
2376 case MSR_KVM_WALL_CLOCK_NEW
:
2377 msr_info
->data
= vcpu
->kvm
->arch
.wall_clock
;
2379 case MSR_KVM_SYSTEM_TIME
:
2380 case MSR_KVM_SYSTEM_TIME_NEW
:
2381 msr_info
->data
= vcpu
->arch
.time
;
2383 case MSR_KVM_ASYNC_PF_EN
:
2384 msr_info
->data
= vcpu
->arch
.apf
.msr_val
;
2386 case MSR_KVM_STEAL_TIME
:
2387 msr_info
->data
= vcpu
->arch
.st
.msr_val
;
2389 case MSR_KVM_PV_EOI_EN
:
2390 msr_info
->data
= vcpu
->arch
.pv_eoi
.msr_val
;
2392 case MSR_IA32_P5_MC_ADDR
:
2393 case MSR_IA32_P5_MC_TYPE
:
2394 case MSR_IA32_MCG_CAP
:
2395 case MSR_IA32_MCG_CTL
:
2396 case MSR_IA32_MCG_STATUS
:
2397 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2398 return get_msr_mce(vcpu
, msr_info
->index
, &msr_info
->data
);
2399 case MSR_K7_CLK_CTL
:
2401 * Provide expected ramp-up count for K7. All other
2402 * are set to zero, indicating minimum divisors for
2405 * This prevents guest kernels on AMD host with CPU
2406 * type 6, model 8 and higher from exploding due to
2407 * the rdmsr failing.
2409 msr_info
->data
= 0x20000000;
2411 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2412 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2413 case HV_X64_MSR_CRASH_CTL
:
2414 case HV_X64_MSR_STIMER0_CONFIG
... HV_X64_MSR_STIMER3_COUNT
:
2415 return kvm_hv_get_msr_common(vcpu
,
2416 msr_info
->index
, &msr_info
->data
);
2418 case MSR_IA32_BBL_CR_CTL3
:
2419 /* This legacy MSR exists but isn't fully documented in current
2420 * silicon. It is however accessed by winxp in very narrow
2421 * scenarios where it sets bit #19, itself documented as
2422 * a "reserved" bit. Best effort attempt to source coherent
2423 * read data here should the balance of the register be
2424 * interpreted by the guest:
2426 * L2 cache control register 3: 64GB range, 256KB size,
2427 * enabled, latency 0x1, configured
2429 msr_info
->data
= 0xbe702111;
2431 case MSR_AMD64_OSVW_ID_LENGTH
:
2432 if (!guest_cpuid_has_osvw(vcpu
))
2434 msr_info
->data
= vcpu
->arch
.osvw
.length
;
2436 case MSR_AMD64_OSVW_STATUS
:
2437 if (!guest_cpuid_has_osvw(vcpu
))
2439 msr_info
->data
= vcpu
->arch
.osvw
.status
;
2442 if (kvm_pmu_is_valid_msr(vcpu
, msr_info
->index
))
2443 return kvm_pmu_get_msr(vcpu
, msr_info
->index
, &msr_info
->data
);
2445 vcpu_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr_info
->index
);
2448 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr_info
->index
);
2455 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2458 * Read or write a bunch of msrs. All parameters are kernel addresses.
2460 * @return number of msrs set successfully.
2462 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2463 struct kvm_msr_entry
*entries
,
2464 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2465 unsigned index
, u64
*data
))
2469 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2470 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2471 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2473 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2479 * Read or write a bunch of msrs. Parameters are user addresses.
2481 * @return number of msrs set successfully.
2483 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2484 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2485 unsigned index
, u64
*data
),
2488 struct kvm_msrs msrs
;
2489 struct kvm_msr_entry
*entries
;
2494 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2498 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2501 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2502 entries
= memdup_user(user_msrs
->entries
, size
);
2503 if (IS_ERR(entries
)) {
2504 r
= PTR_ERR(entries
);
2508 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2513 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2524 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
2529 case KVM_CAP_IRQCHIP
:
2531 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2532 case KVM_CAP_SET_TSS_ADDR
:
2533 case KVM_CAP_EXT_CPUID
:
2534 case KVM_CAP_EXT_EMUL_CPUID
:
2535 case KVM_CAP_CLOCKSOURCE
:
2537 case KVM_CAP_NOP_IO_DELAY
:
2538 case KVM_CAP_MP_STATE
:
2539 case KVM_CAP_SYNC_MMU
:
2540 case KVM_CAP_USER_NMI
:
2541 case KVM_CAP_REINJECT_CONTROL
:
2542 case KVM_CAP_IRQ_INJECT_STATUS
:
2543 case KVM_CAP_IOEVENTFD
:
2544 case KVM_CAP_IOEVENTFD_NO_LENGTH
:
2546 case KVM_CAP_PIT_STATE2
:
2547 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2548 case KVM_CAP_XEN_HVM
:
2549 case KVM_CAP_ADJUST_CLOCK
:
2550 case KVM_CAP_VCPU_EVENTS
:
2551 case KVM_CAP_HYPERV
:
2552 case KVM_CAP_HYPERV_VAPIC
:
2553 case KVM_CAP_HYPERV_SPIN
:
2554 case KVM_CAP_HYPERV_SYNIC
:
2555 case KVM_CAP_PCI_SEGMENT
:
2556 case KVM_CAP_DEBUGREGS
:
2557 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2559 case KVM_CAP_ASYNC_PF
:
2560 case KVM_CAP_GET_TSC_KHZ
:
2561 case KVM_CAP_KVMCLOCK_CTRL
:
2562 case KVM_CAP_READONLY_MEM
:
2563 case KVM_CAP_HYPERV_TIME
:
2564 case KVM_CAP_IOAPIC_POLARITY_IGNORED
:
2565 case KVM_CAP_TSC_DEADLINE_TIMER
:
2566 case KVM_CAP_ENABLE_CAP_VM
:
2567 case KVM_CAP_DISABLE_QUIRKS
:
2568 case KVM_CAP_SET_BOOT_CPU_ID
:
2569 case KVM_CAP_SPLIT_IRQCHIP
:
2570 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2571 case KVM_CAP_ASSIGN_DEV_IRQ
:
2572 case KVM_CAP_PCI_2_3
:
2576 case KVM_CAP_X86_SMM
:
2577 /* SMBASE is usually relocated above 1M on modern chipsets,
2578 * and SMM handlers might indeed rely on 4G segment limits,
2579 * so do not report SMM to be available if real mode is
2580 * emulated via vm86 mode. Still, do not go to great lengths
2581 * to avoid userspace's usage of the feature, because it is a
2582 * fringe case that is not enabled except via specific settings
2583 * of the module parameters.
2585 r
= kvm_x86_ops
->cpu_has_high_real_mode_segbase();
2587 case KVM_CAP_COALESCED_MMIO
:
2588 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2591 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2593 case KVM_CAP_NR_VCPUS
:
2594 r
= KVM_SOFT_MAX_VCPUS
;
2596 case KVM_CAP_MAX_VCPUS
:
2599 case KVM_CAP_NR_MEMSLOTS
:
2600 r
= KVM_USER_MEM_SLOTS
;
2602 case KVM_CAP_PV_MMU
: /* obsolete */
2605 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2607 r
= iommu_present(&pci_bus_type
);
2611 r
= KVM_MAX_MCE_BANKS
;
2616 case KVM_CAP_TSC_CONTROL
:
2617 r
= kvm_has_tsc_control
;
2627 long kvm_arch_dev_ioctl(struct file
*filp
,
2628 unsigned int ioctl
, unsigned long arg
)
2630 void __user
*argp
= (void __user
*)arg
;
2634 case KVM_GET_MSR_INDEX_LIST
: {
2635 struct kvm_msr_list __user
*user_msr_list
= argp
;
2636 struct kvm_msr_list msr_list
;
2640 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2643 msr_list
.nmsrs
= num_msrs_to_save
+ num_emulated_msrs
;
2644 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2647 if (n
< msr_list
.nmsrs
)
2650 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2651 num_msrs_to_save
* sizeof(u32
)))
2653 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2655 num_emulated_msrs
* sizeof(u32
)))
2660 case KVM_GET_SUPPORTED_CPUID
:
2661 case KVM_GET_EMULATED_CPUID
: {
2662 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2663 struct kvm_cpuid2 cpuid
;
2666 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2669 r
= kvm_dev_ioctl_get_cpuid(&cpuid
, cpuid_arg
->entries
,
2675 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2680 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2683 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
2685 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
2697 static void wbinvd_ipi(void *garbage
)
2702 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2704 return kvm_arch_has_noncoherent_dma(vcpu
->kvm
);
2707 static inline void kvm_migrate_timers(struct kvm_vcpu
*vcpu
)
2709 set_bit(KVM_REQ_MIGRATE_TIMER
, &vcpu
->requests
);
2712 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2714 /* Address WBINVD may be executed by guest */
2715 if (need_emulate_wbinvd(vcpu
)) {
2716 if (kvm_x86_ops
->has_wbinvd_exit())
2717 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2718 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2719 smp_call_function_single(vcpu
->cpu
,
2720 wbinvd_ipi
, NULL
, 1);
2723 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2725 /* Apply any externally detected TSC adjustments (due to suspend) */
2726 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
2727 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
2728 vcpu
->arch
.tsc_offset_adjustment
= 0;
2729 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2732 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2733 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2734 rdtsc() - vcpu
->arch
.last_host_tsc
;
2736 mark_tsc_unstable("KVM discovered backwards TSC");
2737 if (check_tsc_unstable()) {
2738 u64 offset
= kvm_compute_tsc_offset(vcpu
,
2739 vcpu
->arch
.last_guest_tsc
);
2740 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
2741 vcpu
->arch
.tsc_catchup
= 1;
2744 * On a host with synchronized TSC, there is no need to update
2745 * kvmclock on vcpu->cpu migration
2747 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
2748 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2749 if (vcpu
->cpu
!= cpu
)
2750 kvm_migrate_timers(vcpu
);
2754 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2757 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2759 kvm_x86_ops
->vcpu_put(vcpu
);
2760 kvm_put_guest_fpu(vcpu
);
2761 vcpu
->arch
.last_host_tsc
= rdtsc();
2764 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2765 struct kvm_lapic_state
*s
)
2767 if (vcpu
->arch
.apicv_active
)
2768 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
2770 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2775 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2776 struct kvm_lapic_state
*s
)
2778 kvm_apic_post_state_restore(vcpu
, s
);
2779 update_cr8_intercept(vcpu
);
2784 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu
*vcpu
)
2786 return (!lapic_in_kernel(vcpu
) ||
2787 kvm_apic_accept_pic_intr(vcpu
));
2791 * if userspace requested an interrupt window, check that the
2792 * interrupt window is open.
2794 * No need to exit to userspace if we already have an interrupt queued.
2796 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu
*vcpu
)
2798 return kvm_arch_interrupt_allowed(vcpu
) &&
2799 !kvm_cpu_has_interrupt(vcpu
) &&
2800 !kvm_event_needs_reinjection(vcpu
) &&
2801 kvm_cpu_accept_dm_intr(vcpu
);
2804 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2805 struct kvm_interrupt
*irq
)
2807 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
2810 if (!irqchip_in_kernel(vcpu
->kvm
)) {
2811 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
2812 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2817 * With in-kernel LAPIC, we only use this to inject EXTINT, so
2818 * fail for in-kernel 8259.
2820 if (pic_in_kernel(vcpu
->kvm
))
2823 if (vcpu
->arch
.pending_external_vector
!= -1)
2826 vcpu
->arch
.pending_external_vector
= irq
->irq
;
2827 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
2831 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
2833 kvm_inject_nmi(vcpu
);
2838 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu
*vcpu
)
2840 kvm_make_request(KVM_REQ_SMI
, vcpu
);
2845 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
2846 struct kvm_tpr_access_ctl
*tac
)
2850 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
2854 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
2858 unsigned bank_num
= mcg_cap
& 0xff, bank
;
2861 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
2863 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
2866 vcpu
->arch
.mcg_cap
= mcg_cap
;
2867 /* Init IA32_MCG_CTL to all 1s */
2868 if (mcg_cap
& MCG_CTL_P
)
2869 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
2870 /* Init IA32_MCi_CTL to all 1s */
2871 for (bank
= 0; bank
< bank_num
; bank
++)
2872 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
2877 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
2878 struct kvm_x86_mce
*mce
)
2880 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2881 unsigned bank_num
= mcg_cap
& 0xff;
2882 u64
*banks
= vcpu
->arch
.mce_banks
;
2884 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
2887 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2888 * reporting is disabled
2890 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
2891 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
2893 banks
+= 4 * mce
->bank
;
2895 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2896 * reporting is disabled for the bank
2898 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
2900 if (mce
->status
& MCI_STATUS_UC
) {
2901 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
2902 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
2903 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
2906 if (banks
[1] & MCI_STATUS_VAL
)
2907 mce
->status
|= MCI_STATUS_OVER
;
2908 banks
[2] = mce
->addr
;
2909 banks
[3] = mce
->misc
;
2910 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
2911 banks
[1] = mce
->status
;
2912 kvm_queue_exception(vcpu
, MC_VECTOR
);
2913 } else if (!(banks
[1] & MCI_STATUS_VAL
)
2914 || !(banks
[1] & MCI_STATUS_UC
)) {
2915 if (banks
[1] & MCI_STATUS_VAL
)
2916 mce
->status
|= MCI_STATUS_OVER
;
2917 banks
[2] = mce
->addr
;
2918 banks
[3] = mce
->misc
;
2919 banks
[1] = mce
->status
;
2921 banks
[1] |= MCI_STATUS_OVER
;
2925 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
2926 struct kvm_vcpu_events
*events
)
2929 events
->exception
.injected
=
2930 vcpu
->arch
.exception
.pending
&&
2931 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
2932 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
2933 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
2934 events
->exception
.pad
= 0;
2935 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
2937 events
->interrupt
.injected
=
2938 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
2939 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
2940 events
->interrupt
.soft
= 0;
2941 events
->interrupt
.shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
2943 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
2944 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
2945 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
2946 events
->nmi
.pad
= 0;
2948 events
->sipi_vector
= 0; /* never valid when reporting to user space */
2950 events
->smi
.smm
= is_smm(vcpu
);
2951 events
->smi
.pending
= vcpu
->arch
.smi_pending
;
2952 events
->smi
.smm_inside_nmi
=
2953 !!(vcpu
->arch
.hflags
& HF_SMM_INSIDE_NMI_MASK
);
2954 events
->smi
.latched_init
= kvm_lapic_latched_init(vcpu
);
2956 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
2957 | KVM_VCPUEVENT_VALID_SHADOW
2958 | KVM_VCPUEVENT_VALID_SMM
);
2959 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
2962 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
2963 struct kvm_vcpu_events
*events
)
2965 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2966 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2967 | KVM_VCPUEVENT_VALID_SHADOW
2968 | KVM_VCPUEVENT_VALID_SMM
))
2972 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
2973 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
2974 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
2975 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
2977 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
2978 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
2979 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
2980 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
2981 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
2982 events
->interrupt
.shadow
);
2984 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
2985 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
2986 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
2987 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
2989 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
2990 lapic_in_kernel(vcpu
))
2991 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
2993 if (events
->flags
& KVM_VCPUEVENT_VALID_SMM
) {
2994 if (events
->smi
.smm
)
2995 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
2997 vcpu
->arch
.hflags
&= ~HF_SMM_MASK
;
2998 vcpu
->arch
.smi_pending
= events
->smi
.pending
;
2999 if (events
->smi
.smm_inside_nmi
)
3000 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
3002 vcpu
->arch
.hflags
&= ~HF_SMM_INSIDE_NMI_MASK
;
3003 if (lapic_in_kernel(vcpu
)) {
3004 if (events
->smi
.latched_init
)
3005 set_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3007 clear_bit(KVM_APIC_INIT
, &vcpu
->arch
.apic
->pending_events
);
3011 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3016 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
3017 struct kvm_debugregs
*dbgregs
)
3021 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
3022 kvm_get_dr(vcpu
, 6, &val
);
3024 dbgregs
->dr7
= vcpu
->arch
.dr7
;
3026 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
3029 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
3030 struct kvm_debugregs
*dbgregs
)
3035 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
3036 kvm_update_dr0123(vcpu
);
3037 vcpu
->arch
.dr6
= dbgregs
->dr6
;
3038 kvm_update_dr6(vcpu
);
3039 vcpu
->arch
.dr7
= dbgregs
->dr7
;
3040 kvm_update_dr7(vcpu
);
3045 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3047 static void fill_xsave(u8
*dest
, struct kvm_vcpu
*vcpu
)
3049 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3050 u64 xstate_bv
= xsave
->header
.xfeatures
;
3054 * Copy legacy XSAVE area, to avoid complications with CPUID
3055 * leaves 0 and 1 in the loop below.
3057 memcpy(dest
, xsave
, XSAVE_HDR_OFFSET
);
3060 *(u64
*)(dest
+ XSAVE_HDR_OFFSET
) = xstate_bv
;
3063 * Copy each region from the possibly compacted offset to the
3064 * non-compacted offset.
3066 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3068 u64 feature
= valid
& -valid
;
3069 int index
= fls64(feature
) - 1;
3070 void *src
= get_xsave_addr(xsave
, feature
);
3073 u32 size
, offset
, ecx
, edx
;
3074 cpuid_count(XSTATE_CPUID
, index
,
3075 &size
, &offset
, &ecx
, &edx
);
3076 memcpy(dest
+ offset
, src
, size
);
3083 static void load_xsave(struct kvm_vcpu
*vcpu
, u8
*src
)
3085 struct xregs_state
*xsave
= &vcpu
->arch
.guest_fpu
.state
.xsave
;
3086 u64 xstate_bv
= *(u64
*)(src
+ XSAVE_HDR_OFFSET
);
3090 * Copy legacy XSAVE area, to avoid complications with CPUID
3091 * leaves 0 and 1 in the loop below.
3093 memcpy(xsave
, src
, XSAVE_HDR_OFFSET
);
3095 /* Set XSTATE_BV and possibly XCOMP_BV. */
3096 xsave
->header
.xfeatures
= xstate_bv
;
3098 xsave
->header
.xcomp_bv
= host_xcr0
| XSTATE_COMPACTION_ENABLED
;
3101 * Copy each region from the non-compacted offset to the
3102 * possibly compacted offset.
3104 valid
= xstate_bv
& ~XFEATURE_MASK_FPSSE
;
3106 u64 feature
= valid
& -valid
;
3107 int index
= fls64(feature
) - 1;
3108 void *dest
= get_xsave_addr(xsave
, feature
);
3111 u32 size
, offset
, ecx
, edx
;
3112 cpuid_count(XSTATE_CPUID
, index
,
3113 &size
, &offset
, &ecx
, &edx
);
3114 memcpy(dest
, src
+ offset
, size
);
3121 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
3122 struct kvm_xsave
*guest_xsave
)
3124 if (cpu_has_xsave
) {
3125 memset(guest_xsave
, 0, sizeof(struct kvm_xsave
));
3126 fill_xsave((u8
*) guest_xsave
->region
, vcpu
);
3128 memcpy(guest_xsave
->region
,
3129 &vcpu
->arch
.guest_fpu
.state
.fxsave
,
3130 sizeof(struct fxregs_state
));
3131 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
3132 XFEATURE_MASK_FPSSE
;
3136 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
3137 struct kvm_xsave
*guest_xsave
)
3140 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
3142 if (cpu_has_xsave
) {
3144 * Here we allow setting states that are not present in
3145 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3146 * with old userspace.
3148 if (xstate_bv
& ~kvm_supported_xcr0())
3150 load_xsave(vcpu
, (u8
*)guest_xsave
->region
);
3152 if (xstate_bv
& ~XFEATURE_MASK_FPSSE
)
3154 memcpy(&vcpu
->arch
.guest_fpu
.state
.fxsave
,
3155 guest_xsave
->region
, sizeof(struct fxregs_state
));
3160 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
3161 struct kvm_xcrs
*guest_xcrs
)
3163 if (!cpu_has_xsave
) {
3164 guest_xcrs
->nr_xcrs
= 0;
3168 guest_xcrs
->nr_xcrs
= 1;
3169 guest_xcrs
->flags
= 0;
3170 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
3171 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
3174 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
3175 struct kvm_xcrs
*guest_xcrs
)
3182 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
3185 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
3186 /* Only support XCR0 currently */
3187 if (guest_xcrs
->xcrs
[i
].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
3188 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
3189 guest_xcrs
->xcrs
[i
].value
);
3198 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3199 * stopped by the hypervisor. This function will be called from the host only.
3200 * EINVAL is returned when the host attempts to set the flag for a guest that
3201 * does not support pv clocks.
3203 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
3205 if (!vcpu
->arch
.pv_time_enabled
)
3207 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
3208 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3212 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu
*vcpu
,
3213 struct kvm_enable_cap
*cap
)
3219 case KVM_CAP_HYPERV_SYNIC
:
3220 return kvm_hv_activate_synic(vcpu
);
3226 long kvm_arch_vcpu_ioctl(struct file
*filp
,
3227 unsigned int ioctl
, unsigned long arg
)
3229 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3230 void __user
*argp
= (void __user
*)arg
;
3233 struct kvm_lapic_state
*lapic
;
3234 struct kvm_xsave
*xsave
;
3235 struct kvm_xcrs
*xcrs
;
3241 case KVM_GET_LAPIC
: {
3243 if (!lapic_in_kernel(vcpu
))
3245 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3250 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3254 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3259 case KVM_SET_LAPIC
: {
3261 if (!lapic_in_kernel(vcpu
))
3263 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
3264 if (IS_ERR(u
.lapic
))
3265 return PTR_ERR(u
.lapic
);
3267 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3270 case KVM_INTERRUPT
: {
3271 struct kvm_interrupt irq
;
3274 if (copy_from_user(&irq
, argp
, sizeof irq
))
3276 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3280 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3284 r
= kvm_vcpu_ioctl_smi(vcpu
);
3287 case KVM_SET_CPUID
: {
3288 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3289 struct kvm_cpuid cpuid
;
3292 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3294 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3297 case KVM_SET_CPUID2
: {
3298 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3299 struct kvm_cpuid2 cpuid
;
3302 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3304 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3305 cpuid_arg
->entries
);
3308 case KVM_GET_CPUID2
: {
3309 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3310 struct kvm_cpuid2 cpuid
;
3313 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3315 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3316 cpuid_arg
->entries
);
3320 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3326 r
= msr_io(vcpu
, argp
, do_get_msr
, 1);
3329 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3331 case KVM_TPR_ACCESS_REPORTING
: {
3332 struct kvm_tpr_access_ctl tac
;
3335 if (copy_from_user(&tac
, argp
, sizeof tac
))
3337 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3341 if (copy_to_user(argp
, &tac
, sizeof tac
))
3346 case KVM_SET_VAPIC_ADDR
: {
3347 struct kvm_vapic_addr va
;
3350 if (!lapic_in_kernel(vcpu
))
3353 if (copy_from_user(&va
, argp
, sizeof va
))
3355 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3358 case KVM_X86_SETUP_MCE
: {
3362 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3364 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3367 case KVM_X86_SET_MCE
: {
3368 struct kvm_x86_mce mce
;
3371 if (copy_from_user(&mce
, argp
, sizeof mce
))
3373 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3376 case KVM_GET_VCPU_EVENTS
: {
3377 struct kvm_vcpu_events events
;
3379 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3382 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3387 case KVM_SET_VCPU_EVENTS
: {
3388 struct kvm_vcpu_events events
;
3391 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3394 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3397 case KVM_GET_DEBUGREGS
: {
3398 struct kvm_debugregs dbgregs
;
3400 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3403 if (copy_to_user(argp
, &dbgregs
,
3404 sizeof(struct kvm_debugregs
)))
3409 case KVM_SET_DEBUGREGS
: {
3410 struct kvm_debugregs dbgregs
;
3413 if (copy_from_user(&dbgregs
, argp
,
3414 sizeof(struct kvm_debugregs
)))
3417 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3420 case KVM_GET_XSAVE
: {
3421 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3426 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3429 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3434 case KVM_SET_XSAVE
: {
3435 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
3436 if (IS_ERR(u
.xsave
))
3437 return PTR_ERR(u
.xsave
);
3439 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3442 case KVM_GET_XCRS
: {
3443 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3448 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3451 if (copy_to_user(argp
, u
.xcrs
,
3452 sizeof(struct kvm_xcrs
)))
3457 case KVM_SET_XCRS
: {
3458 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
3460 return PTR_ERR(u
.xcrs
);
3462 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3465 case KVM_SET_TSC_KHZ
: {
3469 user_tsc_khz
= (u32
)arg
;
3471 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3474 if (user_tsc_khz
== 0)
3475 user_tsc_khz
= tsc_khz
;
3477 if (!kvm_set_tsc_khz(vcpu
, user_tsc_khz
))
3482 case KVM_GET_TSC_KHZ
: {
3483 r
= vcpu
->arch
.virtual_tsc_khz
;
3486 case KVM_KVMCLOCK_CTRL
: {
3487 r
= kvm_set_guest_paused(vcpu
);
3490 case KVM_ENABLE_CAP
: {
3491 struct kvm_enable_cap cap
;
3494 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
3496 r
= kvm_vcpu_ioctl_enable_cap(vcpu
, &cap
);
3507 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
3509 return VM_FAULT_SIGBUS
;
3512 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3516 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3518 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3522 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3525 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3529 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3530 u32 kvm_nr_mmu_pages
)
3532 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3535 mutex_lock(&kvm
->slots_lock
);
3537 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3538 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3540 mutex_unlock(&kvm
->slots_lock
);
3544 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3546 return kvm
->arch
.n_max_mmu_pages
;
3549 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3554 switch (chip
->chip_id
) {
3555 case KVM_IRQCHIP_PIC_MASTER
:
3556 memcpy(&chip
->chip
.pic
,
3557 &pic_irqchip(kvm
)->pics
[0],
3558 sizeof(struct kvm_pic_state
));
3560 case KVM_IRQCHIP_PIC_SLAVE
:
3561 memcpy(&chip
->chip
.pic
,
3562 &pic_irqchip(kvm
)->pics
[1],
3563 sizeof(struct kvm_pic_state
));
3565 case KVM_IRQCHIP_IOAPIC
:
3566 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3575 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3580 switch (chip
->chip_id
) {
3581 case KVM_IRQCHIP_PIC_MASTER
:
3582 spin_lock(&pic_irqchip(kvm
)->lock
);
3583 memcpy(&pic_irqchip(kvm
)->pics
[0],
3585 sizeof(struct kvm_pic_state
));
3586 spin_unlock(&pic_irqchip(kvm
)->lock
);
3588 case KVM_IRQCHIP_PIC_SLAVE
:
3589 spin_lock(&pic_irqchip(kvm
)->lock
);
3590 memcpy(&pic_irqchip(kvm
)->pics
[1],
3592 sizeof(struct kvm_pic_state
));
3593 spin_unlock(&pic_irqchip(kvm
)->lock
);
3595 case KVM_IRQCHIP_IOAPIC
:
3596 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3602 kvm_pic_update_irq(pic_irqchip(kvm
));
3606 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3608 struct kvm_kpit_state
*kps
= &kvm
->arch
.vpit
->pit_state
;
3610 BUILD_BUG_ON(sizeof(*ps
) != sizeof(kps
->channels
));
3612 mutex_lock(&kps
->lock
);
3613 memcpy(ps
, &kps
->channels
, sizeof(*ps
));
3614 mutex_unlock(&kps
->lock
);
3618 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3621 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3623 mutex_lock(&pit
->pit_state
.lock
);
3624 memcpy(&pit
->pit_state
.channels
, ps
, sizeof(*ps
));
3625 for (i
= 0; i
< 3; i
++)
3626 kvm_pit_load_count(pit
, i
, ps
->channels
[i
].count
, 0);
3627 mutex_unlock(&pit
->pit_state
.lock
);
3631 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3633 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3634 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3635 sizeof(ps
->channels
));
3636 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3637 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3638 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3642 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3646 u32 prev_legacy
, cur_legacy
;
3647 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3649 mutex_lock(&pit
->pit_state
.lock
);
3650 prev_legacy
= pit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3651 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3652 if (!prev_legacy
&& cur_legacy
)
3654 memcpy(&pit
->pit_state
.channels
, &ps
->channels
,
3655 sizeof(pit
->pit_state
.channels
));
3656 pit
->pit_state
.flags
= ps
->flags
;
3657 for (i
= 0; i
< 3; i
++)
3658 kvm_pit_load_count(pit
, i
, pit
->pit_state
.channels
[i
].count
,
3660 mutex_unlock(&pit
->pit_state
.lock
);
3664 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3665 struct kvm_reinject_control
*control
)
3667 struct kvm_pit
*pit
= kvm
->arch
.vpit
;
3672 /* pit->pit_state.lock was overloaded to prevent userspace from getting
3673 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3674 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
3676 mutex_lock(&pit
->pit_state
.lock
);
3677 kvm_pit_set_reinject(pit
, control
->pit_reinject
);
3678 mutex_unlock(&pit
->pit_state
.lock
);
3684 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3685 * @kvm: kvm instance
3686 * @log: slot id and address to which we copy the log
3688 * Steps 1-4 below provide general overview of dirty page logging. See
3689 * kvm_get_dirty_log_protect() function description for additional details.
3691 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3692 * always flush the TLB (step 4) even if previous step failed and the dirty
3693 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3694 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3695 * writes will be marked dirty for next log read.
3697 * 1. Take a snapshot of the bit and clear it if needed.
3698 * 2. Write protect the corresponding page.
3699 * 3. Copy the snapshot to the userspace.
3700 * 4. Flush TLB's if needed.
3702 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
3704 bool is_dirty
= false;
3707 mutex_lock(&kvm
->slots_lock
);
3710 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3712 if (kvm_x86_ops
->flush_log_dirty
)
3713 kvm_x86_ops
->flush_log_dirty(kvm
);
3715 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
3718 * All the TLBs can be flushed out of mmu lock, see the comments in
3719 * kvm_mmu_slot_remove_write_access().
3721 lockdep_assert_held(&kvm
->slots_lock
);
3723 kvm_flush_remote_tlbs(kvm
);
3725 mutex_unlock(&kvm
->slots_lock
);
3729 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
3732 if (!irqchip_in_kernel(kvm
))
3735 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3736 irq_event
->irq
, irq_event
->level
,
3741 static int kvm_vm_ioctl_enable_cap(struct kvm
*kvm
,
3742 struct kvm_enable_cap
*cap
)
3750 case KVM_CAP_DISABLE_QUIRKS
:
3751 kvm
->arch
.disabled_quirks
= cap
->args
[0];
3754 case KVM_CAP_SPLIT_IRQCHIP
: {
3755 mutex_lock(&kvm
->lock
);
3757 if (cap
->args
[0] > MAX_NR_RESERVED_IOAPIC_PINS
)
3758 goto split_irqchip_unlock
;
3760 if (irqchip_in_kernel(kvm
))
3761 goto split_irqchip_unlock
;
3762 if (atomic_read(&kvm
->online_vcpus
))
3763 goto split_irqchip_unlock
;
3764 r
= kvm_setup_empty_irq_routing(kvm
);
3766 goto split_irqchip_unlock
;
3767 /* Pairs with irqchip_in_kernel. */
3769 kvm
->arch
.irqchip_split
= true;
3770 kvm
->arch
.nr_reserved_ioapic_pins
= cap
->args
[0];
3772 split_irqchip_unlock
:
3773 mutex_unlock(&kvm
->lock
);
3783 long kvm_arch_vm_ioctl(struct file
*filp
,
3784 unsigned int ioctl
, unsigned long arg
)
3786 struct kvm
*kvm
= filp
->private_data
;
3787 void __user
*argp
= (void __user
*)arg
;
3790 * This union makes it completely explicit to gcc-3.x
3791 * that these two variables' stack usage should be
3792 * combined, not added together.
3795 struct kvm_pit_state ps
;
3796 struct kvm_pit_state2 ps2
;
3797 struct kvm_pit_config pit_config
;
3801 case KVM_SET_TSS_ADDR
:
3802 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3804 case KVM_SET_IDENTITY_MAP_ADDR
: {
3808 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3810 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3813 case KVM_SET_NR_MMU_PAGES
:
3814 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3816 case KVM_GET_NR_MMU_PAGES
:
3817 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3819 case KVM_CREATE_IRQCHIP
: {
3820 struct kvm_pic
*vpic
;
3822 mutex_lock(&kvm
->lock
);
3825 goto create_irqchip_unlock
;
3827 if (atomic_read(&kvm
->online_vcpus
))
3828 goto create_irqchip_unlock
;
3830 vpic
= kvm_create_pic(kvm
);
3832 r
= kvm_ioapic_init(kvm
);
3834 mutex_lock(&kvm
->slots_lock
);
3835 kvm_destroy_pic(vpic
);
3836 mutex_unlock(&kvm
->slots_lock
);
3837 goto create_irqchip_unlock
;
3840 goto create_irqchip_unlock
;
3841 r
= kvm_setup_default_irq_routing(kvm
);
3843 mutex_lock(&kvm
->slots_lock
);
3844 mutex_lock(&kvm
->irq_lock
);
3845 kvm_ioapic_destroy(kvm
);
3846 kvm_destroy_pic(vpic
);
3847 mutex_unlock(&kvm
->irq_lock
);
3848 mutex_unlock(&kvm
->slots_lock
);
3849 goto create_irqchip_unlock
;
3851 /* Write kvm->irq_routing before kvm->arch.vpic. */
3853 kvm
->arch
.vpic
= vpic
;
3854 create_irqchip_unlock
:
3855 mutex_unlock(&kvm
->lock
);
3858 case KVM_CREATE_PIT
:
3859 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3861 case KVM_CREATE_PIT2
:
3863 if (copy_from_user(&u
.pit_config
, argp
,
3864 sizeof(struct kvm_pit_config
)))
3867 mutex_lock(&kvm
->slots_lock
);
3870 goto create_pit_unlock
;
3872 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3876 mutex_unlock(&kvm
->slots_lock
);
3878 case KVM_GET_IRQCHIP
: {
3879 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3880 struct kvm_irqchip
*chip
;
3882 chip
= memdup_user(argp
, sizeof(*chip
));
3889 if (!irqchip_in_kernel(kvm
) || irqchip_split(kvm
))
3890 goto get_irqchip_out
;
3891 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3893 goto get_irqchip_out
;
3895 if (copy_to_user(argp
, chip
, sizeof *chip
))
3896 goto get_irqchip_out
;
3902 case KVM_SET_IRQCHIP
: {
3903 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3904 struct kvm_irqchip
*chip
;
3906 chip
= memdup_user(argp
, sizeof(*chip
));
3913 if (!irqchip_in_kernel(kvm
) || irqchip_split(kvm
))
3914 goto set_irqchip_out
;
3915 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3917 goto set_irqchip_out
;
3925 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3928 if (!kvm
->arch
.vpit
)
3930 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
3934 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
3941 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
3944 if (!kvm
->arch
.vpit
)
3946 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
3949 case KVM_GET_PIT2
: {
3951 if (!kvm
->arch
.vpit
)
3953 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
3957 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
3962 case KVM_SET_PIT2
: {
3964 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
3967 if (!kvm
->arch
.vpit
)
3969 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
3972 case KVM_REINJECT_CONTROL
: {
3973 struct kvm_reinject_control control
;
3975 if (copy_from_user(&control
, argp
, sizeof(control
)))
3977 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
3980 case KVM_SET_BOOT_CPU_ID
:
3982 mutex_lock(&kvm
->lock
);
3983 if (atomic_read(&kvm
->online_vcpus
) != 0)
3986 kvm
->arch
.bsp_vcpu_id
= arg
;
3987 mutex_unlock(&kvm
->lock
);
3989 case KVM_XEN_HVM_CONFIG
: {
3991 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
3992 sizeof(struct kvm_xen_hvm_config
)))
3995 if (kvm
->arch
.xen_hvm_config
.flags
)
4000 case KVM_SET_CLOCK
: {
4001 struct kvm_clock_data user_ns
;
4006 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
4014 local_irq_disable();
4015 now_ns
= get_kernel_ns();
4016 delta
= user_ns
.clock
- now_ns
;
4018 kvm
->arch
.kvmclock_offset
= delta
;
4019 kvm_gen_update_masterclock(kvm
);
4022 case KVM_GET_CLOCK
: {
4023 struct kvm_clock_data user_ns
;
4026 local_irq_disable();
4027 now_ns
= get_kernel_ns();
4028 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
4031 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
4034 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
4039 case KVM_ENABLE_CAP
: {
4040 struct kvm_enable_cap cap
;
4043 if (copy_from_user(&cap
, argp
, sizeof(cap
)))
4045 r
= kvm_vm_ioctl_enable_cap(kvm
, &cap
);
4049 r
= kvm_vm_ioctl_assigned_device(kvm
, ioctl
, arg
);
4055 static void kvm_init_msr_list(void)
4060 for (i
= j
= 0; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
4061 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
4065 * Even MSRs that are valid in the host may not be exposed
4066 * to the guests in some cases.
4068 switch (msrs_to_save
[i
]) {
4069 case MSR_IA32_BNDCFGS
:
4070 if (!kvm_x86_ops
->mpx_supported())
4074 if (!kvm_x86_ops
->rdtscp_supported())
4082 msrs_to_save
[j
] = msrs_to_save
[i
];
4085 num_msrs_to_save
= j
;
4087 for (i
= j
= 0; i
< ARRAY_SIZE(emulated_msrs
); i
++) {
4088 switch (emulated_msrs
[i
]) {
4089 case MSR_IA32_SMBASE
:
4090 if (!kvm_x86_ops
->cpu_has_high_real_mode_segbase())
4098 emulated_msrs
[j
] = emulated_msrs
[i
];
4101 num_emulated_msrs
= j
;
4104 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
4112 if (!(lapic_in_kernel(vcpu
) &&
4113 !kvm_iodevice_write(vcpu
, &vcpu
->arch
.apic
->dev
, addr
, n
, v
))
4114 && kvm_io_bus_write(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4125 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
4132 if (!(lapic_in_kernel(vcpu
) &&
4133 !kvm_iodevice_read(vcpu
, &vcpu
->arch
.apic
->dev
,
4135 && kvm_io_bus_read(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4137 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
4147 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
4148 struct kvm_segment
*var
, int seg
)
4150 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
4153 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
4154 struct kvm_segment
*var
, int seg
)
4156 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
4159 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
,
4160 struct x86_exception
*exception
)
4164 BUG_ON(!mmu_is_nested(vcpu
));
4166 /* NPT walks are always user-walks */
4167 access
|= PFERR_USER_MASK
;
4168 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, exception
);
4173 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
4174 struct x86_exception
*exception
)
4176 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4177 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4180 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
4181 struct x86_exception
*exception
)
4183 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4184 access
|= PFERR_FETCH_MASK
;
4185 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4188 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
4189 struct x86_exception
*exception
)
4191 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4192 access
|= PFERR_WRITE_MASK
;
4193 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4196 /* uses this to access any guest's mapped memory without checking CPL */
4197 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
4198 struct x86_exception
*exception
)
4200 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
4203 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
4204 struct kvm_vcpu
*vcpu
, u32 access
,
4205 struct x86_exception
*exception
)
4208 int r
= X86EMUL_CONTINUE
;
4211 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
4213 unsigned offset
= addr
& (PAGE_SIZE
-1);
4214 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4217 if (gpa
== UNMAPPED_GVA
)
4218 return X86EMUL_PROPAGATE_FAULT
;
4219 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, data
,
4222 r
= X86EMUL_IO_NEEDED
;
4234 /* used for instruction fetching */
4235 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4236 gva_t addr
, void *val
, unsigned int bytes
,
4237 struct x86_exception
*exception
)
4239 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4240 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4244 /* Inline kvm_read_guest_virt_helper for speed. */
4245 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
|PFERR_FETCH_MASK
,
4247 if (unlikely(gpa
== UNMAPPED_GVA
))
4248 return X86EMUL_PROPAGATE_FAULT
;
4250 offset
= addr
& (PAGE_SIZE
-1);
4251 if (WARN_ON(offset
+ bytes
> PAGE_SIZE
))
4252 bytes
= (unsigned)PAGE_SIZE
- offset
;
4253 ret
= kvm_vcpu_read_guest_page(vcpu
, gpa
>> PAGE_SHIFT
, val
,
4255 if (unlikely(ret
< 0))
4256 return X86EMUL_IO_NEEDED
;
4258 return X86EMUL_CONTINUE
;
4261 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4262 gva_t addr
, void *val
, unsigned int bytes
,
4263 struct x86_exception
*exception
)
4265 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4266 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4268 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
4271 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
4273 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4274 gva_t addr
, void *val
, unsigned int bytes
,
4275 struct x86_exception
*exception
)
4277 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4278 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
4281 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt
*ctxt
,
4282 unsigned long addr
, void *val
, unsigned int bytes
)
4284 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4285 int r
= kvm_vcpu_read_guest(vcpu
, addr
, val
, bytes
);
4287 return r
< 0 ? X86EMUL_IO_NEEDED
: X86EMUL_CONTINUE
;
4290 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4291 gva_t addr
, void *val
,
4293 struct x86_exception
*exception
)
4295 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4297 int r
= X86EMUL_CONTINUE
;
4300 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
4303 unsigned offset
= addr
& (PAGE_SIZE
-1);
4304 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4307 if (gpa
== UNMAPPED_GVA
)
4308 return X86EMUL_PROPAGATE_FAULT
;
4309 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, data
, towrite
);
4311 r
= X86EMUL_IO_NEEDED
;
4322 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4324 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4325 gpa_t
*gpa
, struct x86_exception
*exception
,
4328 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
4329 | (write
? PFERR_WRITE_MASK
: 0);
4332 * currently PKRU is only applied to ept enabled guest so
4333 * there is no pkey in EPT page table for L1 guest or EPT
4334 * shadow page table for L2 guest.
4336 if (vcpu_match_mmio_gva(vcpu
, gva
)
4337 && !permission_fault(vcpu
, vcpu
->arch
.walk_mmu
,
4338 vcpu
->arch
.access
, 0, access
)) {
4339 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4340 (gva
& (PAGE_SIZE
- 1));
4341 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4345 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4347 if (*gpa
== UNMAPPED_GVA
)
4350 /* For APIC access vmexit */
4351 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4354 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
4355 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
4362 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4363 const void *val
, int bytes
)
4367 ret
= kvm_vcpu_write_guest(vcpu
, gpa
, val
, bytes
);
4370 kvm_page_track_write(vcpu
, gpa
, val
, bytes
);
4374 struct read_write_emulator_ops
{
4375 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4377 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4378 void *val
, int bytes
);
4379 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4380 int bytes
, void *val
);
4381 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4382 void *val
, int bytes
);
4386 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
4388 if (vcpu
->mmio_read_completed
) {
4389 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4390 vcpu
->mmio_fragments
[0].gpa
, *(u64
*)val
);
4391 vcpu
->mmio_read_completed
= 0;
4398 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4399 void *val
, int bytes
)
4401 return !kvm_vcpu_read_guest(vcpu
, gpa
, val
, bytes
);
4404 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4405 void *val
, int bytes
)
4407 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
4410 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
4412 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
4413 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4416 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4417 void *val
, int bytes
)
4419 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
4420 return X86EMUL_IO_NEEDED
;
4423 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4424 void *val
, int bytes
)
4426 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
4428 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
4429 return X86EMUL_CONTINUE
;
4432 static const struct read_write_emulator_ops read_emultor
= {
4433 .read_write_prepare
= read_prepare
,
4434 .read_write_emulate
= read_emulate
,
4435 .read_write_mmio
= vcpu_mmio_read
,
4436 .read_write_exit_mmio
= read_exit_mmio
,
4439 static const struct read_write_emulator_ops write_emultor
= {
4440 .read_write_emulate
= write_emulate
,
4441 .read_write_mmio
= write_mmio
,
4442 .read_write_exit_mmio
= write_exit_mmio
,
4446 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
4448 struct x86_exception
*exception
,
4449 struct kvm_vcpu
*vcpu
,
4450 const struct read_write_emulator_ops
*ops
)
4454 bool write
= ops
->write
;
4455 struct kvm_mmio_fragment
*frag
;
4457 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
4460 return X86EMUL_PROPAGATE_FAULT
;
4462 /* For APIC access vmexit */
4466 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
4467 return X86EMUL_CONTINUE
;
4471 * Is this MMIO handled locally?
4473 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
4474 if (handled
== bytes
)
4475 return X86EMUL_CONTINUE
;
4481 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
4482 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
4486 return X86EMUL_CONTINUE
;
4489 static int emulator_read_write(struct x86_emulate_ctxt
*ctxt
,
4491 void *val
, unsigned int bytes
,
4492 struct x86_exception
*exception
,
4493 const struct read_write_emulator_ops
*ops
)
4495 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4499 if (ops
->read_write_prepare
&&
4500 ops
->read_write_prepare(vcpu
, val
, bytes
))
4501 return X86EMUL_CONTINUE
;
4503 vcpu
->mmio_nr_fragments
= 0;
4505 /* Crossing a page boundary? */
4506 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4509 now
= -addr
& ~PAGE_MASK
;
4510 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
4513 if (rc
!= X86EMUL_CONTINUE
)
4516 if (ctxt
->mode
!= X86EMUL_MODE_PROT64
)
4522 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
4524 if (rc
!= X86EMUL_CONTINUE
)
4527 if (!vcpu
->mmio_nr_fragments
)
4530 gpa
= vcpu
->mmio_fragments
[0].gpa
;
4532 vcpu
->mmio_needed
= 1;
4533 vcpu
->mmio_cur_fragment
= 0;
4535 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
4536 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
4537 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4538 vcpu
->run
->mmio
.phys_addr
= gpa
;
4540 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
4543 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4547 struct x86_exception
*exception
)
4549 return emulator_read_write(ctxt
, addr
, val
, bytes
,
4550 exception
, &read_emultor
);
4553 static int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4557 struct x86_exception
*exception
)
4559 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
4560 exception
, &write_emultor
);
4563 #define CMPXCHG_TYPE(t, ptr, old, new) \
4564 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4566 #ifdef CONFIG_X86_64
4567 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4569 # define CMPXCHG64(ptr, old, new) \
4570 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4573 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4578 struct x86_exception
*exception
)
4580 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4586 /* guests cmpxchg8b have to be emulated atomically */
4587 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4590 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4592 if (gpa
== UNMAPPED_GVA
||
4593 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4596 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4599 page
= kvm_vcpu_gfn_to_page(vcpu
, gpa
>> PAGE_SHIFT
);
4600 if (is_error_page(page
))
4603 kaddr
= kmap_atomic(page
);
4604 kaddr
+= offset_in_page(gpa
);
4607 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4610 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4613 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4616 exchanged
= CMPXCHG64(kaddr
, old
, new);
4621 kunmap_atomic(kaddr
);
4622 kvm_release_page_dirty(page
);
4625 return X86EMUL_CMPXCHG_FAILED
;
4627 kvm_vcpu_mark_page_dirty(vcpu
, gpa
>> PAGE_SHIFT
);
4628 kvm_page_track_write(vcpu
, gpa
, new, bytes
);
4630 return X86EMUL_CONTINUE
;
4633 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
4635 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
4638 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
4640 /* TODO: String I/O for in kernel device */
4643 if (vcpu
->arch
.pio
.in
)
4644 r
= kvm_io_bus_read(vcpu
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
4645 vcpu
->arch
.pio
.size
, pd
);
4647 r
= kvm_io_bus_write(vcpu
, KVM_PIO_BUS
,
4648 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
4653 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
4654 unsigned short port
, void *val
,
4655 unsigned int count
, bool in
)
4657 vcpu
->arch
.pio
.port
= port
;
4658 vcpu
->arch
.pio
.in
= in
;
4659 vcpu
->arch
.pio
.count
= count
;
4660 vcpu
->arch
.pio
.size
= size
;
4662 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4663 vcpu
->arch
.pio
.count
= 0;
4667 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4668 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
4669 vcpu
->run
->io
.size
= size
;
4670 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4671 vcpu
->run
->io
.count
= count
;
4672 vcpu
->run
->io
.port
= port
;
4677 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4678 int size
, unsigned short port
, void *val
,
4681 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4684 if (vcpu
->arch
.pio
.count
)
4687 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
4690 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4691 trace_kvm_pio(KVM_PIO_IN
, port
, size
, count
, vcpu
->arch
.pio_data
);
4692 vcpu
->arch
.pio
.count
= 0;
4699 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4700 int size
, unsigned short port
,
4701 const void *val
, unsigned int count
)
4703 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4705 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4706 trace_kvm_pio(KVM_PIO_OUT
, port
, size
, count
, vcpu
->arch
.pio_data
);
4707 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
4710 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4712 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4715 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4717 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4720 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu
*vcpu
)
4722 if (!need_emulate_wbinvd(vcpu
))
4723 return X86EMUL_CONTINUE
;
4725 if (kvm_x86_ops
->has_wbinvd_exit()) {
4726 int cpu
= get_cpu();
4728 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4729 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4730 wbinvd_ipi
, NULL
, 1);
4732 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4735 return X86EMUL_CONTINUE
;
4738 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4740 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
4741 return kvm_emulate_wbinvd_noskip(vcpu
);
4743 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4747 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
4749 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt
));
4752 static int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
4753 unsigned long *dest
)
4755 return kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
4758 static int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
4759 unsigned long value
)
4762 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4765 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4767 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4770 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
4772 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4773 unsigned long value
;
4777 value
= kvm_read_cr0(vcpu
);
4780 value
= vcpu
->arch
.cr2
;
4783 value
= kvm_read_cr3(vcpu
);
4786 value
= kvm_read_cr4(vcpu
);
4789 value
= kvm_get_cr8(vcpu
);
4792 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4799 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4801 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4806 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4809 vcpu
->arch
.cr2
= val
;
4812 res
= kvm_set_cr3(vcpu
, val
);
4815 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4818 res
= kvm_set_cr8(vcpu
, val
);
4821 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4828 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4830 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4833 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4835 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4838 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4840 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4843 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4845 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4848 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4850 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4853 static unsigned long emulator_get_cached_segment_base(
4854 struct x86_emulate_ctxt
*ctxt
, int seg
)
4856 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4859 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4860 struct desc_struct
*desc
, u32
*base3
,
4863 struct kvm_segment var
;
4865 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4866 *selector
= var
.selector
;
4869 memset(desc
, 0, sizeof(*desc
));
4875 set_desc_limit(desc
, var
.limit
);
4876 set_desc_base(desc
, (unsigned long)var
.base
);
4877 #ifdef CONFIG_X86_64
4879 *base3
= var
.base
>> 32;
4881 desc
->type
= var
.type
;
4883 desc
->dpl
= var
.dpl
;
4884 desc
->p
= var
.present
;
4885 desc
->avl
= var
.avl
;
4893 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
4894 struct desc_struct
*desc
, u32 base3
,
4897 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4898 struct kvm_segment var
;
4900 var
.selector
= selector
;
4901 var
.base
= get_desc_base(desc
);
4902 #ifdef CONFIG_X86_64
4903 var
.base
|= ((u64
)base3
) << 32;
4905 var
.limit
= get_desc_limit(desc
);
4907 var
.limit
= (var
.limit
<< 12) | 0xfff;
4908 var
.type
= desc
->type
;
4909 var
.dpl
= desc
->dpl
;
4914 var
.avl
= desc
->avl
;
4915 var
.present
= desc
->p
;
4916 var
.unusable
= !var
.present
;
4919 kvm_set_segment(vcpu
, &var
, seg
);
4923 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
4924 u32 msr_index
, u64
*pdata
)
4926 struct msr_data msr
;
4929 msr
.index
= msr_index
;
4930 msr
.host_initiated
= false;
4931 r
= kvm_get_msr(emul_to_vcpu(ctxt
), &msr
);
4939 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
4940 u32 msr_index
, u64 data
)
4942 struct msr_data msr
;
4945 msr
.index
= msr_index
;
4946 msr
.host_initiated
= false;
4947 return kvm_set_msr(emul_to_vcpu(ctxt
), &msr
);
4950 static u64
emulator_get_smbase(struct x86_emulate_ctxt
*ctxt
)
4952 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4954 return vcpu
->arch
.smbase
;
4957 static void emulator_set_smbase(struct x86_emulate_ctxt
*ctxt
, u64 smbase
)
4959 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4961 vcpu
->arch
.smbase
= smbase
;
4964 static int emulator_check_pmc(struct x86_emulate_ctxt
*ctxt
,
4967 return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt
), pmc
);
4970 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
4971 u32 pmc
, u64
*pdata
)
4973 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
4976 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
4978 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
4981 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
4984 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
4986 * CR0.TS may reference the host fpu state, not the guest fpu state,
4987 * so it may be clear at this point.
4992 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
4997 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
4998 struct x86_instruction_info
*info
,
4999 enum x86_intercept_stage stage
)
5001 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
5004 static void emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
5005 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
5007 kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
);
5010 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
5012 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
5015 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
5017 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
5020 static void emulator_set_nmi_mask(struct x86_emulate_ctxt
*ctxt
, bool masked
)
5022 kvm_x86_ops
->set_nmi_mask(emul_to_vcpu(ctxt
), masked
);
5025 static const struct x86_emulate_ops emulate_ops
= {
5026 .read_gpr
= emulator_read_gpr
,
5027 .write_gpr
= emulator_write_gpr
,
5028 .read_std
= kvm_read_guest_virt_system
,
5029 .write_std
= kvm_write_guest_virt_system
,
5030 .read_phys
= kvm_read_guest_phys_system
,
5031 .fetch
= kvm_fetch_guest_virt
,
5032 .read_emulated
= emulator_read_emulated
,
5033 .write_emulated
= emulator_write_emulated
,
5034 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
5035 .invlpg
= emulator_invlpg
,
5036 .pio_in_emulated
= emulator_pio_in_emulated
,
5037 .pio_out_emulated
= emulator_pio_out_emulated
,
5038 .get_segment
= emulator_get_segment
,
5039 .set_segment
= emulator_set_segment
,
5040 .get_cached_segment_base
= emulator_get_cached_segment_base
,
5041 .get_gdt
= emulator_get_gdt
,
5042 .get_idt
= emulator_get_idt
,
5043 .set_gdt
= emulator_set_gdt
,
5044 .set_idt
= emulator_set_idt
,
5045 .get_cr
= emulator_get_cr
,
5046 .set_cr
= emulator_set_cr
,
5047 .cpl
= emulator_get_cpl
,
5048 .get_dr
= emulator_get_dr
,
5049 .set_dr
= emulator_set_dr
,
5050 .get_smbase
= emulator_get_smbase
,
5051 .set_smbase
= emulator_set_smbase
,
5052 .set_msr
= emulator_set_msr
,
5053 .get_msr
= emulator_get_msr
,
5054 .check_pmc
= emulator_check_pmc
,
5055 .read_pmc
= emulator_read_pmc
,
5056 .halt
= emulator_halt
,
5057 .wbinvd
= emulator_wbinvd
,
5058 .fix_hypercall
= emulator_fix_hypercall
,
5059 .get_fpu
= emulator_get_fpu
,
5060 .put_fpu
= emulator_put_fpu
,
5061 .intercept
= emulator_intercept
,
5062 .get_cpuid
= emulator_get_cpuid
,
5063 .set_nmi_mask
= emulator_set_nmi_mask
,
5066 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
5068 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
5070 * an sti; sti; sequence only disable interrupts for the first
5071 * instruction. So, if the last instruction, be it emulated or
5072 * not, left the system with the INT_STI flag enabled, it
5073 * means that the last instruction is an sti. We should not
5074 * leave the flag on in this case. The same goes for mov ss
5076 if (int_shadow
& mask
)
5078 if (unlikely(int_shadow
|| mask
)) {
5079 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
5081 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5085 static bool inject_emulated_exception(struct kvm_vcpu
*vcpu
)
5087 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5088 if (ctxt
->exception
.vector
== PF_VECTOR
)
5089 return kvm_propagate_fault(vcpu
, &ctxt
->exception
);
5091 if (ctxt
->exception
.error_code_valid
)
5092 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
5093 ctxt
->exception
.error_code
);
5095 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
5099 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
5101 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5104 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5106 ctxt
->eflags
= kvm_get_rflags(vcpu
);
5107 ctxt
->eip
= kvm_rip_read(vcpu
);
5108 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
5109 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
5110 (cs_l
&& is_long_mode(vcpu
)) ? X86EMUL_MODE_PROT64
:
5111 cs_db
? X86EMUL_MODE_PROT32
:
5112 X86EMUL_MODE_PROT16
;
5113 BUILD_BUG_ON(HF_GUEST_MASK
!= X86EMUL_GUEST_MASK
);
5114 BUILD_BUG_ON(HF_SMM_MASK
!= X86EMUL_SMM_MASK
);
5115 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK
!= X86EMUL_SMM_INSIDE_NMI_MASK
);
5116 ctxt
->emul_flags
= vcpu
->arch
.hflags
;
5118 init_decode_cache(ctxt
);
5119 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5122 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
5124 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5127 init_emulate_ctxt(vcpu
);
5131 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
5132 ret
= emulate_int_real(ctxt
, irq
);
5134 if (ret
!= X86EMUL_CONTINUE
)
5135 return EMULATE_FAIL
;
5137 ctxt
->eip
= ctxt
->_eip
;
5138 kvm_rip_write(vcpu
, ctxt
->eip
);
5139 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5141 if (irq
== NMI_VECTOR
)
5142 vcpu
->arch
.nmi_pending
= 0;
5144 vcpu
->arch
.interrupt
.pending
= false;
5146 return EMULATE_DONE
;
5148 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
5150 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
5152 int r
= EMULATE_DONE
;
5154 ++vcpu
->stat
.insn_emulation_fail
;
5155 trace_kvm_emulate_insn_failed(vcpu
);
5156 if (!is_guest_mode(vcpu
) && kvm_x86_ops
->get_cpl(vcpu
) == 0) {
5157 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5158 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5159 vcpu
->run
->internal
.ndata
= 0;
5162 kvm_queue_exception(vcpu
, UD_VECTOR
);
5167 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t cr2
,
5168 bool write_fault_to_shadow_pgtable
,
5174 if (emulation_type
& EMULTYPE_NO_REEXECUTE
)
5177 if (!vcpu
->arch
.mmu
.direct_map
) {
5179 * Write permission should be allowed since only
5180 * write access need to be emulated.
5182 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5185 * If the mapping is invalid in guest, let cpu retry
5186 * it to generate fault.
5188 if (gpa
== UNMAPPED_GVA
)
5193 * Do not retry the unhandleable instruction if it faults on the
5194 * readonly host memory, otherwise it will goto a infinite loop:
5195 * retry instruction -> write #PF -> emulation fail -> retry
5196 * instruction -> ...
5198 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
5201 * If the instruction failed on the error pfn, it can not be fixed,
5202 * report the error to userspace.
5204 if (is_error_noslot_pfn(pfn
))
5207 kvm_release_pfn_clean(pfn
);
5209 /* The instructions are well-emulated on direct mmu. */
5210 if (vcpu
->arch
.mmu
.direct_map
) {
5211 unsigned int indirect_shadow_pages
;
5213 spin_lock(&vcpu
->kvm
->mmu_lock
);
5214 indirect_shadow_pages
= vcpu
->kvm
->arch
.indirect_shadow_pages
;
5215 spin_unlock(&vcpu
->kvm
->mmu_lock
);
5217 if (indirect_shadow_pages
)
5218 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5224 * if emulation was due to access to shadowed page table
5225 * and it failed try to unshadow page and re-enter the
5226 * guest to let CPU execute the instruction.
5228 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5231 * If the access faults on its page table, it can not
5232 * be fixed by unprotecting shadow page and it should
5233 * be reported to userspace.
5235 return !write_fault_to_shadow_pgtable
;
5238 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
5239 unsigned long cr2
, int emulation_type
)
5241 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5242 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
5244 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
5245 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
5248 * If the emulation is caused by #PF and it is non-page_table
5249 * writing instruction, it means the VM-EXIT is caused by shadow
5250 * page protected, we can zap the shadow page and retry this
5251 * instruction directly.
5253 * Note: if the guest uses a non-page-table modifying instruction
5254 * on the PDE that points to the instruction, then we will unmap
5255 * the instruction and go to an infinite loop. So, we cache the
5256 * last retried eip and the last fault address, if we meet the eip
5257 * and the address again, we can break out of the potential infinite
5260 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
5262 if (!(emulation_type
& EMULTYPE_RETRY
))
5265 if (x86_page_table_writing_insn(ctxt
))
5268 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
5271 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
5272 vcpu
->arch
.last_retry_addr
= cr2
;
5274 if (!vcpu
->arch
.mmu
.direct_map
)
5275 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5277 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5282 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
5283 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
5285 static void kvm_smm_changed(struct kvm_vcpu
*vcpu
)
5287 if (!(vcpu
->arch
.hflags
& HF_SMM_MASK
)) {
5288 /* This is a good place to trace that we are exiting SMM. */
5289 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, false);
5291 if (unlikely(vcpu
->arch
.smi_pending
)) {
5292 kvm_make_request(KVM_REQ_SMI
, vcpu
);
5293 vcpu
->arch
.smi_pending
= 0;
5295 /* Process a latched INIT, if any. */
5296 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5300 kvm_mmu_reset_context(vcpu
);
5303 static void kvm_set_hflags(struct kvm_vcpu
*vcpu
, unsigned emul_flags
)
5305 unsigned changed
= vcpu
->arch
.hflags
^ emul_flags
;
5307 vcpu
->arch
.hflags
= emul_flags
;
5309 if (changed
& HF_SMM_MASK
)
5310 kvm_smm_changed(vcpu
);
5313 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
5322 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
5323 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
5328 static void kvm_vcpu_check_singlestep(struct kvm_vcpu
*vcpu
, unsigned long rflags
, int *r
)
5330 struct kvm_run
*kvm_run
= vcpu
->run
;
5333 * rflags is the old, "raw" value of the flags. The new value has
5334 * not been saved yet.
5336 * This is correct even for TF set by the guest, because "the
5337 * processor will not generate this exception after the instruction
5338 * that sets the TF flag".
5340 if (unlikely(rflags
& X86_EFLAGS_TF
)) {
5341 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
5342 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_FIXED_1
|
5344 kvm_run
->debug
.arch
.pc
= vcpu
->arch
.singlestep_rip
;
5345 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5346 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5347 *r
= EMULATE_USER_EXIT
;
5349 vcpu
->arch
.emulate_ctxt
.eflags
&= ~X86_EFLAGS_TF
;
5351 * "Certain debug exceptions may clear bit 0-3. The
5352 * remaining contents of the DR6 register are never
5353 * cleared by the processor".
5355 vcpu
->arch
.dr6
&= ~15;
5356 vcpu
->arch
.dr6
|= DR6_BS
| DR6_RTM
;
5357 kvm_queue_exception(vcpu
, DB_VECTOR
);
5362 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu
*vcpu
, int *r
)
5364 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
5365 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
5366 struct kvm_run
*kvm_run
= vcpu
->run
;
5367 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5368 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5369 vcpu
->arch
.guest_debug_dr7
,
5373 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
| DR6_RTM
;
5374 kvm_run
->debug
.arch
.pc
= eip
;
5375 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5376 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5377 *r
= EMULATE_USER_EXIT
;
5382 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
) &&
5383 !(kvm_get_rflags(vcpu
) & X86_EFLAGS_RF
)) {
5384 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5385 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5390 vcpu
->arch
.dr6
&= ~15;
5391 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
5392 kvm_queue_exception(vcpu
, DB_VECTOR
);
5401 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
5408 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5409 bool writeback
= true;
5410 bool write_fault_to_spt
= vcpu
->arch
.write_fault_to_shadow_pgtable
;
5413 * Clear write_fault_to_shadow_pgtable here to ensure it is
5416 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
5417 kvm_clear_exception_queue(vcpu
);
5419 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
5420 init_emulate_ctxt(vcpu
);
5423 * We will reenter on the same instruction since
5424 * we do not set complete_userspace_io. This does not
5425 * handle watchpoints yet, those would be handled in
5428 if (kvm_vcpu_check_breakpoint(vcpu
, &r
))
5431 ctxt
->interruptibility
= 0;
5432 ctxt
->have_exception
= false;
5433 ctxt
->exception
.vector
= -1;
5434 ctxt
->perm_ok
= false;
5436 ctxt
->ud
= emulation_type
& EMULTYPE_TRAP_UD
;
5438 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
5440 trace_kvm_emulate_insn_start(vcpu
);
5441 ++vcpu
->stat
.insn_emulation
;
5442 if (r
!= EMULATION_OK
) {
5443 if (emulation_type
& EMULTYPE_TRAP_UD
)
5444 return EMULATE_FAIL
;
5445 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5447 return EMULATE_DONE
;
5448 if (emulation_type
& EMULTYPE_SKIP
)
5449 return EMULATE_FAIL
;
5450 return handle_emulation_failure(vcpu
);
5454 if (emulation_type
& EMULTYPE_SKIP
) {
5455 kvm_rip_write(vcpu
, ctxt
->_eip
);
5456 if (ctxt
->eflags
& X86_EFLAGS_RF
)
5457 kvm_set_rflags(vcpu
, ctxt
->eflags
& ~X86_EFLAGS_RF
);
5458 return EMULATE_DONE
;
5461 if (retry_instruction(ctxt
, cr2
, emulation_type
))
5462 return EMULATE_DONE
;
5464 /* this is needed for vmware backdoor interface to work since it
5465 changes registers values during IO operation */
5466 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
5467 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5468 emulator_invalidate_register_cache(ctxt
);
5472 r
= x86_emulate_insn(ctxt
);
5474 if (r
== EMULATION_INTERCEPTED
)
5475 return EMULATE_DONE
;
5477 if (r
== EMULATION_FAILED
) {
5478 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5480 return EMULATE_DONE
;
5482 return handle_emulation_failure(vcpu
);
5485 if (ctxt
->have_exception
) {
5487 if (inject_emulated_exception(vcpu
))
5489 } else if (vcpu
->arch
.pio
.count
) {
5490 if (!vcpu
->arch
.pio
.in
) {
5491 /* FIXME: return into emulator if single-stepping. */
5492 vcpu
->arch
.pio
.count
= 0;
5495 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
5497 r
= EMULATE_USER_EXIT
;
5498 } else if (vcpu
->mmio_needed
) {
5499 if (!vcpu
->mmio_is_write
)
5501 r
= EMULATE_USER_EXIT
;
5502 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
5503 } else if (r
== EMULATION_RESTART
)
5509 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5510 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
5511 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5512 if (vcpu
->arch
.hflags
!= ctxt
->emul_flags
)
5513 kvm_set_hflags(vcpu
, ctxt
->emul_flags
);
5514 kvm_rip_write(vcpu
, ctxt
->eip
);
5515 if (r
== EMULATE_DONE
)
5516 kvm_vcpu_check_singlestep(vcpu
, rflags
, &r
);
5517 if (!ctxt
->have_exception
||
5518 exception_type(ctxt
->exception
.vector
) == EXCPT_TRAP
)
5519 __kvm_set_rflags(vcpu
, ctxt
->eflags
);
5522 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5523 * do nothing, and it will be requested again as soon as
5524 * the shadow expires. But we still need to check here,
5525 * because POPF has no interrupt shadow.
5527 if (unlikely((ctxt
->eflags
& ~rflags
) & X86_EFLAGS_IF
))
5528 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5530 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
5534 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
5536 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5538 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5539 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
5540 size
, port
, &val
, 1);
5541 /* do not return to emulator after return from userspace */
5542 vcpu
->arch
.pio
.count
= 0;
5545 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
5547 static void tsc_bad(void *info
)
5549 __this_cpu_write(cpu_tsc_khz
, 0);
5552 static void tsc_khz_changed(void *data
)
5554 struct cpufreq_freqs
*freq
= data
;
5555 unsigned long khz
= 0;
5559 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5560 khz
= cpufreq_quick_get(raw_smp_processor_id());
5563 __this_cpu_write(cpu_tsc_khz
, khz
);
5566 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
5569 struct cpufreq_freqs
*freq
= data
;
5571 struct kvm_vcpu
*vcpu
;
5572 int i
, send_ipi
= 0;
5575 * We allow guests to temporarily run on slowing clocks,
5576 * provided we notify them after, or to run on accelerating
5577 * clocks, provided we notify them before. Thus time never
5580 * However, we have a problem. We can't atomically update
5581 * the frequency of a given CPU from this function; it is
5582 * merely a notifier, which can be called from any CPU.
5583 * Changing the TSC frequency at arbitrary points in time
5584 * requires a recomputation of local variables related to
5585 * the TSC for each VCPU. We must flag these local variables
5586 * to be updated and be sure the update takes place with the
5587 * new frequency before any guests proceed.
5589 * Unfortunately, the combination of hotplug CPU and frequency
5590 * change creates an intractable locking scenario; the order
5591 * of when these callouts happen is undefined with respect to
5592 * CPU hotplug, and they can race with each other. As such,
5593 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5594 * undefined; you can actually have a CPU frequency change take
5595 * place in between the computation of X and the setting of the
5596 * variable. To protect against this problem, all updates of
5597 * the per_cpu tsc_khz variable are done in an interrupt
5598 * protected IPI, and all callers wishing to update the value
5599 * must wait for a synchronous IPI to complete (which is trivial
5600 * if the caller is on the CPU already). This establishes the
5601 * necessary total order on variable updates.
5603 * Note that because a guest time update may take place
5604 * anytime after the setting of the VCPU's request bit, the
5605 * correct TSC value must be set before the request. However,
5606 * to ensure the update actually makes it to any guest which
5607 * starts running in hardware virtualization between the set
5608 * and the acquisition of the spinlock, we must also ping the
5609 * CPU after setting the request bit.
5613 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
5615 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
5618 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5620 spin_lock(&kvm_lock
);
5621 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
5622 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
5623 if (vcpu
->cpu
!= freq
->cpu
)
5625 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5626 if (vcpu
->cpu
!= smp_processor_id())
5630 spin_unlock(&kvm_lock
);
5632 if (freq
->old
< freq
->new && send_ipi
) {
5634 * We upscale the frequency. Must make the guest
5635 * doesn't see old kvmclock values while running with
5636 * the new frequency, otherwise we risk the guest sees
5637 * time go backwards.
5639 * In case we update the frequency for another cpu
5640 * (which might be in guest context) send an interrupt
5641 * to kick the cpu out of guest context. Next time
5642 * guest context is entered kvmclock will be updated,
5643 * so the guest will not see stale values.
5645 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5650 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
5651 .notifier_call
= kvmclock_cpufreq_notifier
5654 static int kvmclock_cpu_notifier(struct notifier_block
*nfb
,
5655 unsigned long action
, void *hcpu
)
5657 unsigned int cpu
= (unsigned long)hcpu
;
5661 case CPU_DOWN_FAILED
:
5662 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5664 case CPU_DOWN_PREPARE
:
5665 smp_call_function_single(cpu
, tsc_bad
, NULL
, 1);
5671 static struct notifier_block kvmclock_cpu_notifier_block
= {
5672 .notifier_call
= kvmclock_cpu_notifier
,
5673 .priority
= -INT_MAX
5676 static void kvm_timer_init(void)
5680 max_tsc_khz
= tsc_khz
;
5682 cpu_notifier_register_begin();
5683 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5684 #ifdef CONFIG_CPU_FREQ
5685 struct cpufreq_policy policy
;
5686 memset(&policy
, 0, sizeof(policy
));
5688 cpufreq_get_policy(&policy
, cpu
);
5689 if (policy
.cpuinfo
.max_freq
)
5690 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
5693 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
5694 CPUFREQ_TRANSITION_NOTIFIER
);
5696 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
5697 for_each_online_cpu(cpu
)
5698 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5700 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5701 cpu_notifier_register_done();
5705 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
5707 int kvm_is_in_guest(void)
5709 return __this_cpu_read(current_vcpu
) != NULL
;
5712 static int kvm_is_user_mode(void)
5716 if (__this_cpu_read(current_vcpu
))
5717 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
5719 return user_mode
!= 0;
5722 static unsigned long kvm_get_guest_ip(void)
5724 unsigned long ip
= 0;
5726 if (__this_cpu_read(current_vcpu
))
5727 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
5732 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
5733 .is_in_guest
= kvm_is_in_guest
,
5734 .is_user_mode
= kvm_is_user_mode
,
5735 .get_guest_ip
= kvm_get_guest_ip
,
5738 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
5740 __this_cpu_write(current_vcpu
, vcpu
);
5742 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
5744 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
5746 __this_cpu_write(current_vcpu
, NULL
);
5748 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
5750 static void kvm_set_mmio_spte_mask(void)
5753 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
5756 * Set the reserved bits and the present bit of an paging-structure
5757 * entry to generate page fault with PFER.RSV = 1.
5759 /* Mask the reserved physical address bits. */
5760 mask
= rsvd_bits(maxphyaddr
, 51);
5762 /* Bit 62 is always reserved for 32bit host. */
5763 mask
|= 0x3ull
<< 62;
5765 /* Set the present bit. */
5768 #ifdef CONFIG_X86_64
5770 * If reserved bit is not supported, clear the present bit to disable
5773 if (maxphyaddr
== 52)
5777 kvm_mmu_set_mmio_spte_mask(mask
);
5780 #ifdef CONFIG_X86_64
5781 static void pvclock_gtod_update_fn(struct work_struct
*work
)
5785 struct kvm_vcpu
*vcpu
;
5788 spin_lock(&kvm_lock
);
5789 list_for_each_entry(kvm
, &vm_list
, vm_list
)
5790 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5791 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
5792 atomic_set(&kvm_guest_has_master_clock
, 0);
5793 spin_unlock(&kvm_lock
);
5796 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
5799 * Notification about pvclock gtod data update.
5801 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
5804 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
5805 struct timekeeper
*tk
= priv
;
5807 update_pvclock_gtod(tk
);
5809 /* disable master clock if host does not trust, or does not
5810 * use, TSC clocksource
5812 if (gtod
->clock
.vclock_mode
!= VCLOCK_TSC
&&
5813 atomic_read(&kvm_guest_has_master_clock
) != 0)
5814 queue_work(system_long_wq
, &pvclock_gtod_work
);
5819 static struct notifier_block pvclock_gtod_notifier
= {
5820 .notifier_call
= pvclock_gtod_notify
,
5824 int kvm_arch_init(void *opaque
)
5827 struct kvm_x86_ops
*ops
= opaque
;
5830 printk(KERN_ERR
"kvm: already loaded the other module\n");
5835 if (!ops
->cpu_has_kvm_support()) {
5836 printk(KERN_ERR
"kvm: no hardware support\n");
5840 if (ops
->disabled_by_bios()) {
5841 printk(KERN_ERR
"kvm: disabled by bios\n");
5847 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
5849 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
5853 r
= kvm_mmu_module_init();
5855 goto out_free_percpu
;
5857 kvm_set_mmio_spte_mask();
5861 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
5862 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
5866 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
5869 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
5872 #ifdef CONFIG_X86_64
5873 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
5879 free_percpu(shared_msrs
);
5884 void kvm_arch_exit(void)
5886 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
5888 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5889 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
5890 CPUFREQ_TRANSITION_NOTIFIER
);
5891 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5892 #ifdef CONFIG_X86_64
5893 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
5896 kvm_mmu_module_exit();
5897 free_percpu(shared_msrs
);
5900 int kvm_vcpu_halt(struct kvm_vcpu
*vcpu
)
5902 ++vcpu
->stat
.halt_exits
;
5903 if (lapic_in_kernel(vcpu
)) {
5904 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
5907 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
5911 EXPORT_SYMBOL_GPL(kvm_vcpu_halt
);
5913 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
5915 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5916 return kvm_vcpu_halt(vcpu
);
5918 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
5921 * kvm_pv_kick_cpu_op: Kick a vcpu.
5923 * @apicid - apicid of vcpu to be kicked.
5925 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, unsigned long flags
, int apicid
)
5927 struct kvm_lapic_irq lapic_irq
;
5929 lapic_irq
.shorthand
= 0;
5930 lapic_irq
.dest_mode
= 0;
5931 lapic_irq
.dest_id
= apicid
;
5932 lapic_irq
.msi_redir_hint
= false;
5934 lapic_irq
.delivery_mode
= APIC_DM_REMRD
;
5935 kvm_irq_delivery_to_apic(kvm
, NULL
, &lapic_irq
, NULL
);
5938 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu
*vcpu
)
5940 vcpu
->arch
.apicv_active
= false;
5941 kvm_x86_ops
->refresh_apicv_exec_ctrl(vcpu
);
5944 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
5946 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
5947 int op_64_bit
, r
= 1;
5949 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5951 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
5952 return kvm_hv_hypercall(vcpu
);
5954 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5955 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5956 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5957 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5958 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5960 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
5962 op_64_bit
= is_64_bit_mode(vcpu
);
5971 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
5977 case KVM_HC_VAPIC_POLL_IRQ
:
5980 case KVM_HC_KICK_CPU
:
5981 kvm_pv_kick_cpu_op(vcpu
->kvm
, a0
, a1
);
5991 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5992 ++vcpu
->stat
.hypercalls
;
5995 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
5997 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
5999 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
6000 char instruction
[3];
6001 unsigned long rip
= kvm_rip_read(vcpu
);
6003 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
6005 return emulator_write_emulated(ctxt
, rip
, instruction
, 3, NULL
);
6008 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
6010 return vcpu
->run
->request_interrupt_window
&&
6011 likely(!pic_in_kernel(vcpu
->kvm
));
6014 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
6016 struct kvm_run
*kvm_run
= vcpu
->run
;
6018 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
6019 kvm_run
->flags
= is_smm(vcpu
) ? KVM_RUN_X86_SMM
: 0;
6020 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
6021 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
6022 kvm_run
->ready_for_interrupt_injection
=
6023 pic_in_kernel(vcpu
->kvm
) ||
6024 kvm_vcpu_ready_for_interrupt_injection(vcpu
);
6027 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
6031 if (!kvm_x86_ops
->update_cr8_intercept
)
6034 if (!lapic_in_kernel(vcpu
))
6037 if (vcpu
->arch
.apicv_active
)
6040 if (!vcpu
->arch
.apic
->vapic_addr
)
6041 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
6048 tpr
= kvm_lapic_get_cr8(vcpu
);
6050 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
6053 static int inject_pending_event(struct kvm_vcpu
*vcpu
, bool req_int_win
)
6057 /* try to reinject previous events if any */
6058 if (vcpu
->arch
.exception
.pending
) {
6059 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
6060 vcpu
->arch
.exception
.has_error_code
,
6061 vcpu
->arch
.exception
.error_code
);
6063 if (exception_type(vcpu
->arch
.exception
.nr
) == EXCPT_FAULT
)
6064 __kvm_set_rflags(vcpu
, kvm_get_rflags(vcpu
) |
6067 if (vcpu
->arch
.exception
.nr
== DB_VECTOR
&&
6068 (vcpu
->arch
.dr7
& DR7_GD
)) {
6069 vcpu
->arch
.dr7
&= ~DR7_GD
;
6070 kvm_update_dr7(vcpu
);
6073 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
6074 vcpu
->arch
.exception
.has_error_code
,
6075 vcpu
->arch
.exception
.error_code
,
6076 vcpu
->arch
.exception
.reinject
);
6080 if (vcpu
->arch
.nmi_injected
) {
6081 kvm_x86_ops
->set_nmi(vcpu
);
6085 if (vcpu
->arch
.interrupt
.pending
) {
6086 kvm_x86_ops
->set_irq(vcpu
);
6090 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6091 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6096 /* try to inject new event if pending */
6097 if (vcpu
->arch
.nmi_pending
&& kvm_x86_ops
->nmi_allowed(vcpu
)) {
6098 --vcpu
->arch
.nmi_pending
;
6099 vcpu
->arch
.nmi_injected
= true;
6100 kvm_x86_ops
->set_nmi(vcpu
);
6101 } else if (kvm_cpu_has_injectable_intr(vcpu
)) {
6103 * Because interrupts can be injected asynchronously, we are
6104 * calling check_nested_events again here to avoid a race condition.
6105 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6106 * proposal and current concerns. Perhaps we should be setting
6107 * KVM_REQ_EVENT only on certain events and not unconditionally?
6109 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6110 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6114 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
6115 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
6117 kvm_x86_ops
->set_irq(vcpu
);
6123 static void process_nmi(struct kvm_vcpu
*vcpu
)
6128 * x86 is limited to one NMI running, and one NMI pending after it.
6129 * If an NMI is already in progress, limit further NMIs to just one.
6130 * Otherwise, allow two (and we'll inject the first one immediately).
6132 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
6135 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
6136 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
6137 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6140 #define put_smstate(type, buf, offset, val) \
6141 *(type *)((buf) + (offset) - 0x7e00) = val
6143 static u32
process_smi_get_segment_flags(struct kvm_segment
*seg
)
6146 flags
|= seg
->g
<< 23;
6147 flags
|= seg
->db
<< 22;
6148 flags
|= seg
->l
<< 21;
6149 flags
|= seg
->avl
<< 20;
6150 flags
|= seg
->present
<< 15;
6151 flags
|= seg
->dpl
<< 13;
6152 flags
|= seg
->s
<< 12;
6153 flags
|= seg
->type
<< 8;
6157 static void process_smi_save_seg_32(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6159 struct kvm_segment seg
;
6162 kvm_get_segment(vcpu
, &seg
, n
);
6163 put_smstate(u32
, buf
, 0x7fa8 + n
* 4, seg
.selector
);
6166 offset
= 0x7f84 + n
* 12;
6168 offset
= 0x7f2c + (n
- 3) * 12;
6170 put_smstate(u32
, buf
, offset
+ 8, seg
.base
);
6171 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6172 put_smstate(u32
, buf
, offset
, process_smi_get_segment_flags(&seg
));
6175 #ifdef CONFIG_X86_64
6176 static void process_smi_save_seg_64(struct kvm_vcpu
*vcpu
, char *buf
, int n
)
6178 struct kvm_segment seg
;
6182 kvm_get_segment(vcpu
, &seg
, n
);
6183 offset
= 0x7e00 + n
* 16;
6185 flags
= process_smi_get_segment_flags(&seg
) >> 8;
6186 put_smstate(u16
, buf
, offset
, seg
.selector
);
6187 put_smstate(u16
, buf
, offset
+ 2, flags
);
6188 put_smstate(u32
, buf
, offset
+ 4, seg
.limit
);
6189 put_smstate(u64
, buf
, offset
+ 8, seg
.base
);
6193 static void process_smi_save_state_32(struct kvm_vcpu
*vcpu
, char *buf
)
6196 struct kvm_segment seg
;
6200 put_smstate(u32
, buf
, 0x7ffc, kvm_read_cr0(vcpu
));
6201 put_smstate(u32
, buf
, 0x7ff8, kvm_read_cr3(vcpu
));
6202 put_smstate(u32
, buf
, 0x7ff4, kvm_get_rflags(vcpu
));
6203 put_smstate(u32
, buf
, 0x7ff0, kvm_rip_read(vcpu
));
6205 for (i
= 0; i
< 8; i
++)
6206 put_smstate(u32
, buf
, 0x7fd0 + i
* 4, kvm_register_read(vcpu
, i
));
6208 kvm_get_dr(vcpu
, 6, &val
);
6209 put_smstate(u32
, buf
, 0x7fcc, (u32
)val
);
6210 kvm_get_dr(vcpu
, 7, &val
);
6211 put_smstate(u32
, buf
, 0x7fc8, (u32
)val
);
6213 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6214 put_smstate(u32
, buf
, 0x7fc4, seg
.selector
);
6215 put_smstate(u32
, buf
, 0x7f64, seg
.base
);
6216 put_smstate(u32
, buf
, 0x7f60, seg
.limit
);
6217 put_smstate(u32
, buf
, 0x7f5c, process_smi_get_segment_flags(&seg
));
6219 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6220 put_smstate(u32
, buf
, 0x7fc0, seg
.selector
);
6221 put_smstate(u32
, buf
, 0x7f80, seg
.base
);
6222 put_smstate(u32
, buf
, 0x7f7c, seg
.limit
);
6223 put_smstate(u32
, buf
, 0x7f78, process_smi_get_segment_flags(&seg
));
6225 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6226 put_smstate(u32
, buf
, 0x7f74, dt
.address
);
6227 put_smstate(u32
, buf
, 0x7f70, dt
.size
);
6229 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6230 put_smstate(u32
, buf
, 0x7f58, dt
.address
);
6231 put_smstate(u32
, buf
, 0x7f54, dt
.size
);
6233 for (i
= 0; i
< 6; i
++)
6234 process_smi_save_seg_32(vcpu
, buf
, i
);
6236 put_smstate(u32
, buf
, 0x7f14, kvm_read_cr4(vcpu
));
6239 put_smstate(u32
, buf
, 0x7efc, 0x00020000);
6240 put_smstate(u32
, buf
, 0x7ef8, vcpu
->arch
.smbase
);
6243 static void process_smi_save_state_64(struct kvm_vcpu
*vcpu
, char *buf
)
6245 #ifdef CONFIG_X86_64
6247 struct kvm_segment seg
;
6251 for (i
= 0; i
< 16; i
++)
6252 put_smstate(u64
, buf
, 0x7ff8 - i
* 8, kvm_register_read(vcpu
, i
));
6254 put_smstate(u64
, buf
, 0x7f78, kvm_rip_read(vcpu
));
6255 put_smstate(u32
, buf
, 0x7f70, kvm_get_rflags(vcpu
));
6257 kvm_get_dr(vcpu
, 6, &val
);
6258 put_smstate(u64
, buf
, 0x7f68, val
);
6259 kvm_get_dr(vcpu
, 7, &val
);
6260 put_smstate(u64
, buf
, 0x7f60, val
);
6262 put_smstate(u64
, buf
, 0x7f58, kvm_read_cr0(vcpu
));
6263 put_smstate(u64
, buf
, 0x7f50, kvm_read_cr3(vcpu
));
6264 put_smstate(u64
, buf
, 0x7f48, kvm_read_cr4(vcpu
));
6266 put_smstate(u32
, buf
, 0x7f00, vcpu
->arch
.smbase
);
6269 put_smstate(u32
, buf
, 0x7efc, 0x00020064);
6271 put_smstate(u64
, buf
, 0x7ed0, vcpu
->arch
.efer
);
6273 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_TR
);
6274 put_smstate(u16
, buf
, 0x7e90, seg
.selector
);
6275 put_smstate(u16
, buf
, 0x7e92, process_smi_get_segment_flags(&seg
) >> 8);
6276 put_smstate(u32
, buf
, 0x7e94, seg
.limit
);
6277 put_smstate(u64
, buf
, 0x7e98, seg
.base
);
6279 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6280 put_smstate(u32
, buf
, 0x7e84, dt
.size
);
6281 put_smstate(u64
, buf
, 0x7e88, dt
.address
);
6283 kvm_get_segment(vcpu
, &seg
, VCPU_SREG_LDTR
);
6284 put_smstate(u16
, buf
, 0x7e70, seg
.selector
);
6285 put_smstate(u16
, buf
, 0x7e72, process_smi_get_segment_flags(&seg
) >> 8);
6286 put_smstate(u32
, buf
, 0x7e74, seg
.limit
);
6287 put_smstate(u64
, buf
, 0x7e78, seg
.base
);
6289 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6290 put_smstate(u32
, buf
, 0x7e64, dt
.size
);
6291 put_smstate(u64
, buf
, 0x7e68, dt
.address
);
6293 for (i
= 0; i
< 6; i
++)
6294 process_smi_save_seg_64(vcpu
, buf
, i
);
6300 static void process_smi(struct kvm_vcpu
*vcpu
)
6302 struct kvm_segment cs
, ds
;
6308 vcpu
->arch
.smi_pending
= true;
6312 trace_kvm_enter_smm(vcpu
->vcpu_id
, vcpu
->arch
.smbase
, true);
6313 vcpu
->arch
.hflags
|= HF_SMM_MASK
;
6314 memset(buf
, 0, 512);
6315 if (guest_cpuid_has_longmode(vcpu
))
6316 process_smi_save_state_64(vcpu
, buf
);
6318 process_smi_save_state_32(vcpu
, buf
);
6320 kvm_vcpu_write_guest(vcpu
, vcpu
->arch
.smbase
+ 0xfe00, buf
, sizeof(buf
));
6322 if (kvm_x86_ops
->get_nmi_mask(vcpu
))
6323 vcpu
->arch
.hflags
|= HF_SMM_INSIDE_NMI_MASK
;
6325 kvm_x86_ops
->set_nmi_mask(vcpu
, true);
6327 kvm_set_rflags(vcpu
, X86_EFLAGS_FIXED
);
6328 kvm_rip_write(vcpu
, 0x8000);
6330 cr0
= vcpu
->arch
.cr0
& ~(X86_CR0_PE
| X86_CR0_EM
| X86_CR0_TS
| X86_CR0_PG
);
6331 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
6332 vcpu
->arch
.cr0
= cr0
;
6334 kvm_x86_ops
->set_cr4(vcpu
, 0);
6336 /* Undocumented: IDT limit is set to zero on entry to SMM. */
6337 dt
.address
= dt
.size
= 0;
6338 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6340 __kvm_set_dr(vcpu
, 7, DR7_FIXED_1
);
6342 cs
.selector
= (vcpu
->arch
.smbase
>> 4) & 0xffff;
6343 cs
.base
= vcpu
->arch
.smbase
;
6348 cs
.limit
= ds
.limit
= 0xffffffff;
6349 cs
.type
= ds
.type
= 0x3;
6350 cs
.dpl
= ds
.dpl
= 0;
6355 cs
.avl
= ds
.avl
= 0;
6356 cs
.present
= ds
.present
= 1;
6357 cs
.unusable
= ds
.unusable
= 0;
6358 cs
.padding
= ds
.padding
= 0;
6360 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6361 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_DS
);
6362 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_ES
);
6363 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_FS
);
6364 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_GS
);
6365 kvm_set_segment(vcpu
, &ds
, VCPU_SREG_SS
);
6367 if (guest_cpuid_has_longmode(vcpu
))
6368 kvm_x86_ops
->set_efer(vcpu
, 0);
6370 kvm_update_cpuid(vcpu
);
6371 kvm_mmu_reset_context(vcpu
);
6374 void kvm_make_scan_ioapic_request(struct kvm
*kvm
)
6376 kvm_make_all_cpus_request(kvm
, KVM_REQ_SCAN_IOAPIC
);
6379 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
6381 u64 eoi_exit_bitmap
[4];
6383 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
6386 bitmap_zero(vcpu
->arch
.ioapic_handled_vectors
, 256);
6388 if (irqchip_split(vcpu
->kvm
))
6389 kvm_scan_ioapic_routes(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
6391 if (vcpu
->arch
.apicv_active
)
6392 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
6393 kvm_ioapic_scan_entry(vcpu
, vcpu
->arch
.ioapic_handled_vectors
);
6395 bitmap_or((ulong
*)eoi_exit_bitmap
, vcpu
->arch
.ioapic_handled_vectors
,
6396 vcpu_to_synic(vcpu
)->vec_bitmap
, 256);
6397 kvm_x86_ops
->load_eoi_exitmap(vcpu
, eoi_exit_bitmap
);
6400 static void kvm_vcpu_flush_tlb(struct kvm_vcpu
*vcpu
)
6402 ++vcpu
->stat
.tlb_flush
;
6403 kvm_x86_ops
->tlb_flush(vcpu
);
6406 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu
*vcpu
)
6408 struct page
*page
= NULL
;
6410 if (!lapic_in_kernel(vcpu
))
6413 if (!kvm_x86_ops
->set_apic_access_page_addr
)
6416 page
= gfn_to_page(vcpu
->kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
6417 if (is_error_page(page
))
6419 kvm_x86_ops
->set_apic_access_page_addr(vcpu
, page_to_phys(page
));
6422 * Do not pin apic access page in memory, the MMU notifier
6423 * will call us again if it is migrated or swapped out.
6427 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page
);
6429 void kvm_arch_mmu_notifier_invalidate_page(struct kvm
*kvm
,
6430 unsigned long address
)
6433 * The physical address of apic access page is stored in the VMCS.
6434 * Update it when it becomes invalid.
6436 if (address
== gfn_to_hva(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
))
6437 kvm_make_all_cpus_request(kvm
, KVM_REQ_APIC_PAGE_RELOAD
);
6441 * Returns 1 to let vcpu_run() continue the guest execution loop without
6442 * exiting to the userspace. Otherwise, the value will be returned to the
6445 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
6449 dm_request_for_irq_injection(vcpu
) &&
6450 kvm_cpu_accept_dm_intr(vcpu
);
6452 bool req_immediate_exit
= false;
6454 if (vcpu
->requests
) {
6455 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
6456 kvm_mmu_unload(vcpu
);
6457 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
6458 __kvm_migrate_timers(vcpu
);
6459 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
6460 kvm_gen_update_masterclock(vcpu
->kvm
);
6461 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
6462 kvm_gen_kvmclock_update(vcpu
);
6463 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
6464 r
= kvm_guest_time_update(vcpu
);
6468 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
6469 kvm_mmu_sync_roots(vcpu
);
6470 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
6471 kvm_vcpu_flush_tlb(vcpu
);
6472 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
6473 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
6477 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
6478 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
6482 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
6483 vcpu
->fpu_active
= 0;
6484 kvm_x86_ops
->fpu_deactivate(vcpu
);
6486 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
6487 /* Page is swapped out. Do synthetic halt */
6488 vcpu
->arch
.apf
.halted
= true;
6492 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
6493 record_steal_time(vcpu
);
6494 if (kvm_check_request(KVM_REQ_SMI
, vcpu
))
6496 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
6498 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
6499 kvm_pmu_handle_event(vcpu
);
6500 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
6501 kvm_pmu_deliver_pmi(vcpu
);
6502 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT
, vcpu
)) {
6503 BUG_ON(vcpu
->arch
.pending_ioapic_eoi
> 255);
6504 if (test_bit(vcpu
->arch
.pending_ioapic_eoi
,
6505 vcpu
->arch
.ioapic_handled_vectors
)) {
6506 vcpu
->run
->exit_reason
= KVM_EXIT_IOAPIC_EOI
;
6507 vcpu
->run
->eoi
.vector
=
6508 vcpu
->arch
.pending_ioapic_eoi
;
6513 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
6514 vcpu_scan_ioapic(vcpu
);
6515 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
))
6516 kvm_vcpu_reload_apic_access_page(vcpu
);
6517 if (kvm_check_request(KVM_REQ_HV_CRASH
, vcpu
)) {
6518 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
6519 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_CRASH
;
6523 if (kvm_check_request(KVM_REQ_HV_RESET
, vcpu
)) {
6524 vcpu
->run
->exit_reason
= KVM_EXIT_SYSTEM_EVENT
;
6525 vcpu
->run
->system_event
.type
= KVM_SYSTEM_EVENT_RESET
;
6529 if (kvm_check_request(KVM_REQ_HV_EXIT
, vcpu
)) {
6530 vcpu
->run
->exit_reason
= KVM_EXIT_HYPERV
;
6531 vcpu
->run
->hyperv
= vcpu
->arch
.hyperv
.exit
;
6537 * KVM_REQ_HV_STIMER has to be processed after
6538 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6539 * depend on the guest clock being up-to-date
6541 if (kvm_check_request(KVM_REQ_HV_STIMER
, vcpu
))
6542 kvm_hv_process_stimers(vcpu
);
6546 * KVM_REQ_EVENT is not set when posted interrupts are set by
6547 * VT-d hardware, so we have to update RVI unconditionally.
6549 if (kvm_lapic_enabled(vcpu
)) {
6551 * Update architecture specific hints for APIC
6552 * virtual interrupt delivery.
6554 if (vcpu
->arch
.apicv_active
)
6555 kvm_x86_ops
->hwapic_irr_update(vcpu
,
6556 kvm_lapic_find_highest_irr(vcpu
));
6559 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
6560 kvm_apic_accept_events(vcpu
);
6561 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
6566 if (inject_pending_event(vcpu
, req_int_win
) != 0)
6567 req_immediate_exit
= true;
6568 /* enable NMI/IRQ window open exits if needed */
6570 if (vcpu
->arch
.nmi_pending
)
6571 kvm_x86_ops
->enable_nmi_window(vcpu
);
6572 if (kvm_cpu_has_injectable_intr(vcpu
) || req_int_win
)
6573 kvm_x86_ops
->enable_irq_window(vcpu
);
6576 if (kvm_lapic_enabled(vcpu
)) {
6577 update_cr8_intercept(vcpu
);
6578 kvm_lapic_sync_to_vapic(vcpu
);
6582 r
= kvm_mmu_reload(vcpu
);
6584 goto cancel_injection
;
6589 kvm_x86_ops
->prepare_guest_switch(vcpu
);
6590 if (vcpu
->fpu_active
)
6591 kvm_load_guest_fpu(vcpu
);
6592 vcpu
->mode
= IN_GUEST_MODE
;
6594 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6597 * We should set ->mode before check ->requests,
6598 * Please see the comment in kvm_make_all_cpus_request.
6599 * This also orders the write to mode from any reads
6600 * to the page tables done while the VCPU is running.
6601 * Please see the comment in kvm_flush_remote_tlbs.
6603 smp_mb__after_srcu_read_unlock();
6605 local_irq_disable();
6607 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
6608 || need_resched() || signal_pending(current
)) {
6609 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6613 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6615 goto cancel_injection
;
6618 kvm_load_guest_xcr0(vcpu
);
6620 if (req_immediate_exit
)
6621 smp_send_reschedule(vcpu
->cpu
);
6623 trace_kvm_entry(vcpu
->vcpu_id
);
6624 wait_lapic_expire(vcpu
);
6625 __kvm_guest_enter();
6627 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
6629 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
6630 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
6631 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
6632 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
6633 set_debugreg(vcpu
->arch
.dr6
, 6);
6634 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
6637 kvm_x86_ops
->run(vcpu
);
6640 * Do this here before restoring debug registers on the host. And
6641 * since we do this before handling the vmexit, a DR access vmexit
6642 * can (a) read the correct value of the debug registers, (b) set
6643 * KVM_DEBUGREG_WONT_EXIT again.
6645 if (unlikely(vcpu
->arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)) {
6646 WARN_ON(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
);
6647 kvm_x86_ops
->sync_dirty_debug_regs(vcpu
);
6648 kvm_update_dr0123(vcpu
);
6649 kvm_update_dr6(vcpu
);
6650 kvm_update_dr7(vcpu
);
6651 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
6655 * If the guest has used debug registers, at least dr7
6656 * will be disabled while returning to the host.
6657 * If we don't have active breakpoints in the host, we don't
6658 * care about the messed up debug address registers. But if
6659 * we have some of them active, restore the old state.
6661 if (hw_breakpoint_active())
6662 hw_breakpoint_restore();
6664 vcpu
->arch
.last_guest_tsc
= kvm_read_l1_tsc(vcpu
, rdtsc());
6666 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6669 kvm_put_guest_xcr0(vcpu
);
6671 /* Interrupt is enabled by handle_external_intr() */
6672 kvm_x86_ops
->handle_external_intr(vcpu
);
6677 * We must have an instruction between local_irq_enable() and
6678 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6679 * the interrupt shadow. The stat.exits increment will do nicely.
6680 * But we need to prevent reordering, hence this barrier():
6688 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6691 * Profile KVM exit RIPs:
6693 if (unlikely(prof_on
== KVM_PROFILING
)) {
6694 unsigned long rip
= kvm_rip_read(vcpu
);
6695 profile_hit(KVM_PROFILING
, (void *)rip
);
6698 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
6699 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6701 if (vcpu
->arch
.apic_attention
)
6702 kvm_lapic_sync_from_vapic(vcpu
);
6704 r
= kvm_x86_ops
->handle_exit(vcpu
);
6708 kvm_x86_ops
->cancel_injection(vcpu
);
6709 if (unlikely(vcpu
->arch
.apic_attention
))
6710 kvm_lapic_sync_from_vapic(vcpu
);
6715 static inline int vcpu_block(struct kvm
*kvm
, struct kvm_vcpu
*vcpu
)
6717 if (!kvm_arch_vcpu_runnable(vcpu
) &&
6718 (!kvm_x86_ops
->pre_block
|| kvm_x86_ops
->pre_block(vcpu
) == 0)) {
6719 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6720 kvm_vcpu_block(vcpu
);
6721 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6723 if (kvm_x86_ops
->post_block
)
6724 kvm_x86_ops
->post_block(vcpu
);
6726 if (!kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
6730 kvm_apic_accept_events(vcpu
);
6731 switch(vcpu
->arch
.mp_state
) {
6732 case KVM_MP_STATE_HALTED
:
6733 vcpu
->arch
.pv
.pv_unhalted
= false;
6734 vcpu
->arch
.mp_state
=
6735 KVM_MP_STATE_RUNNABLE
;
6736 case KVM_MP_STATE_RUNNABLE
:
6737 vcpu
->arch
.apf
.halted
= false;
6739 case KVM_MP_STATE_INIT_RECEIVED
:
6748 static inline bool kvm_vcpu_running(struct kvm_vcpu
*vcpu
)
6750 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6751 !vcpu
->arch
.apf
.halted
);
6754 static int vcpu_run(struct kvm_vcpu
*vcpu
)
6757 struct kvm
*kvm
= vcpu
->kvm
;
6759 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6762 if (kvm_vcpu_running(vcpu
)) {
6763 r
= vcpu_enter_guest(vcpu
);
6765 r
= vcpu_block(kvm
, vcpu
);
6771 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
6772 if (kvm_cpu_has_pending_timer(vcpu
))
6773 kvm_inject_pending_timer_irqs(vcpu
);
6775 if (dm_request_for_irq_injection(vcpu
) &&
6776 kvm_vcpu_ready_for_interrupt_injection(vcpu
)) {
6778 vcpu
->run
->exit_reason
= KVM_EXIT_IRQ_WINDOW_OPEN
;
6779 ++vcpu
->stat
.request_irq_exits
;
6783 kvm_check_async_pf_completion(vcpu
);
6785 if (signal_pending(current
)) {
6787 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
6788 ++vcpu
->stat
.signal_exits
;
6791 if (need_resched()) {
6792 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6794 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6798 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6803 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
6806 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6807 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
6808 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6809 if (r
!= EMULATE_DONE
)
6814 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
6816 BUG_ON(!vcpu
->arch
.pio
.count
);
6818 return complete_emulated_io(vcpu
);
6822 * Implements the following, as a state machine:
6826 * for each mmio piece in the fragment
6834 * for each mmio piece in the fragment
6839 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
6841 struct kvm_run
*run
= vcpu
->run
;
6842 struct kvm_mmio_fragment
*frag
;
6845 BUG_ON(!vcpu
->mmio_needed
);
6847 /* Complete previous fragment */
6848 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
6849 len
= min(8u, frag
->len
);
6850 if (!vcpu
->mmio_is_write
)
6851 memcpy(frag
->data
, run
->mmio
.data
, len
);
6853 if (frag
->len
<= 8) {
6854 /* Switch to the next fragment. */
6856 vcpu
->mmio_cur_fragment
++;
6858 /* Go forward to the next mmio piece. */
6864 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
6865 vcpu
->mmio_needed
= 0;
6867 /* FIXME: return into emulator if single-stepping. */
6868 if (vcpu
->mmio_is_write
)
6870 vcpu
->mmio_read_completed
= 1;
6871 return complete_emulated_io(vcpu
);
6874 run
->exit_reason
= KVM_EXIT_MMIO
;
6875 run
->mmio
.phys_addr
= frag
->gpa
;
6876 if (vcpu
->mmio_is_write
)
6877 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
6878 run
->mmio
.len
= min(8u, frag
->len
);
6879 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
6880 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
6885 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
6887 struct fpu
*fpu
= ¤t
->thread
.fpu
;
6891 fpu__activate_curr(fpu
);
6893 if (vcpu
->sigset_active
)
6894 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
6896 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
6897 kvm_vcpu_block(vcpu
);
6898 kvm_apic_accept_events(vcpu
);
6899 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
6904 /* re-sync apic's tpr */
6905 if (!lapic_in_kernel(vcpu
)) {
6906 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
6912 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
6913 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
6914 vcpu
->arch
.complete_userspace_io
= NULL
;
6919 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
6924 post_kvm_run_save(vcpu
);
6925 if (vcpu
->sigset_active
)
6926 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
6931 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6933 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
6935 * We are here if userspace calls get_regs() in the middle of
6936 * instruction emulation. Registers state needs to be copied
6937 * back from emulation context to vcpu. Userspace shouldn't do
6938 * that usually, but some bad designed PV devices (vmware
6939 * backdoor interface) need this to work
6941 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
6942 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6944 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6945 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
6946 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6947 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
6948 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
6949 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
6950 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
6951 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
6952 #ifdef CONFIG_X86_64
6953 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
6954 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
6955 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
6956 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
6957 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
6958 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
6959 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
6960 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
6963 regs
->rip
= kvm_rip_read(vcpu
);
6964 regs
->rflags
= kvm_get_rflags(vcpu
);
6969 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6971 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
6972 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6974 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
6975 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
6976 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
6977 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
6978 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
6979 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
6980 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
6981 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
6982 #ifdef CONFIG_X86_64
6983 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
6984 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
6985 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
6986 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
6987 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
6988 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
6989 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
6990 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
6993 kvm_rip_write(vcpu
, regs
->rip
);
6994 kvm_set_rflags(vcpu
, regs
->rflags
);
6996 vcpu
->arch
.exception
.pending
= false;
6998 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7003 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
7005 struct kvm_segment cs
;
7007 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7011 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
7013 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
7014 struct kvm_sregs
*sregs
)
7018 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
7019 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
7020 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
7021 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
7022 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
7023 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
7025 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
7026 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
7028 kvm_x86_ops
->get_idt(vcpu
, &dt
);
7029 sregs
->idt
.limit
= dt
.size
;
7030 sregs
->idt
.base
= dt
.address
;
7031 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
7032 sregs
->gdt
.limit
= dt
.size
;
7033 sregs
->gdt
.base
= dt
.address
;
7035 sregs
->cr0
= kvm_read_cr0(vcpu
);
7036 sregs
->cr2
= vcpu
->arch
.cr2
;
7037 sregs
->cr3
= kvm_read_cr3(vcpu
);
7038 sregs
->cr4
= kvm_read_cr4(vcpu
);
7039 sregs
->cr8
= kvm_get_cr8(vcpu
);
7040 sregs
->efer
= vcpu
->arch
.efer
;
7041 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
7043 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
7045 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
7046 set_bit(vcpu
->arch
.interrupt
.nr
,
7047 (unsigned long *)sregs
->interrupt_bitmap
);
7052 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
7053 struct kvm_mp_state
*mp_state
)
7055 kvm_apic_accept_events(vcpu
);
7056 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
&&
7057 vcpu
->arch
.pv
.pv_unhalted
)
7058 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
7060 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
7065 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
7066 struct kvm_mp_state
*mp_state
)
7068 if (!lapic_in_kernel(vcpu
) &&
7069 mp_state
->mp_state
!= KVM_MP_STATE_RUNNABLE
)
7072 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
7073 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
7074 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
7076 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
7077 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7081 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
7082 int reason
, bool has_error_code
, u32 error_code
)
7084 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
7087 init_emulate_ctxt(vcpu
);
7089 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
7090 has_error_code
, error_code
);
7093 return EMULATE_FAIL
;
7095 kvm_rip_write(vcpu
, ctxt
->eip
);
7096 kvm_set_rflags(vcpu
, ctxt
->eflags
);
7097 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7098 return EMULATE_DONE
;
7100 EXPORT_SYMBOL_GPL(kvm_task_switch
);
7102 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
7103 struct kvm_sregs
*sregs
)
7105 struct msr_data apic_base_msr
;
7106 int mmu_reset_needed
= 0;
7107 int pending_vec
, max_bits
, idx
;
7110 if (!guest_cpuid_has_xsave(vcpu
) && (sregs
->cr4
& X86_CR4_OSXSAVE
))
7113 dt
.size
= sregs
->idt
.limit
;
7114 dt
.address
= sregs
->idt
.base
;
7115 kvm_x86_ops
->set_idt(vcpu
, &dt
);
7116 dt
.size
= sregs
->gdt
.limit
;
7117 dt
.address
= sregs
->gdt
.base
;
7118 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
7120 vcpu
->arch
.cr2
= sregs
->cr2
;
7121 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
7122 vcpu
->arch
.cr3
= sregs
->cr3
;
7123 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
7125 kvm_set_cr8(vcpu
, sregs
->cr8
);
7127 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
7128 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
7129 apic_base_msr
.data
= sregs
->apic_base
;
7130 apic_base_msr
.host_initiated
= true;
7131 kvm_set_apic_base(vcpu
, &apic_base_msr
);
7133 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
7134 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
7135 vcpu
->arch
.cr0
= sregs
->cr0
;
7137 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
7138 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
7139 if (sregs
->cr4
& (X86_CR4_OSXSAVE
| X86_CR4_PKE
))
7140 kvm_update_cpuid(vcpu
);
7142 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7143 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
7144 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
7145 mmu_reset_needed
= 1;
7147 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7149 if (mmu_reset_needed
)
7150 kvm_mmu_reset_context(vcpu
);
7152 max_bits
= KVM_NR_INTERRUPTS
;
7153 pending_vec
= find_first_bit(
7154 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
7155 if (pending_vec
< max_bits
) {
7156 kvm_queue_interrupt(vcpu
, pending_vec
, false);
7157 pr_debug("Set back pending irq %d\n", pending_vec
);
7160 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
7161 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
7162 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
7163 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
7164 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
7165 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
7167 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
7168 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
7170 update_cr8_intercept(vcpu
);
7172 /* Older userspace won't unhalt the vcpu on reset. */
7173 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
7174 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
7176 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7178 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7183 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
7184 struct kvm_guest_debug
*dbg
)
7186 unsigned long rflags
;
7189 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
7191 if (vcpu
->arch
.exception
.pending
)
7193 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
7194 kvm_queue_exception(vcpu
, DB_VECTOR
);
7196 kvm_queue_exception(vcpu
, BP_VECTOR
);
7200 * Read rflags as long as potentially injected trace flags are still
7203 rflags
= kvm_get_rflags(vcpu
);
7205 vcpu
->guest_debug
= dbg
->control
;
7206 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
7207 vcpu
->guest_debug
= 0;
7209 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
7210 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
7211 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
7212 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
7214 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
7215 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
7217 kvm_update_dr7(vcpu
);
7219 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7220 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
7221 get_segment_base(vcpu
, VCPU_SREG_CS
);
7224 * Trigger an rflags update that will inject or remove the trace
7227 kvm_set_rflags(vcpu
, rflags
);
7229 kvm_x86_ops
->update_bp_intercept(vcpu
);
7239 * Translate a guest virtual address to a guest physical address.
7241 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
7242 struct kvm_translation
*tr
)
7244 unsigned long vaddr
= tr
->linear_address
;
7248 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7249 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
7250 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7251 tr
->physical_address
= gpa
;
7252 tr
->valid
= gpa
!= UNMAPPED_GVA
;
7259 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7261 struct fxregs_state
*fxsave
=
7262 &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7264 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
7265 fpu
->fcw
= fxsave
->cwd
;
7266 fpu
->fsw
= fxsave
->swd
;
7267 fpu
->ftwx
= fxsave
->twd
;
7268 fpu
->last_opcode
= fxsave
->fop
;
7269 fpu
->last_ip
= fxsave
->rip
;
7270 fpu
->last_dp
= fxsave
->rdp
;
7271 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
7276 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
7278 struct fxregs_state
*fxsave
=
7279 &vcpu
->arch
.guest_fpu
.state
.fxsave
;
7281 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
7282 fxsave
->cwd
= fpu
->fcw
;
7283 fxsave
->swd
= fpu
->fsw
;
7284 fxsave
->twd
= fpu
->ftwx
;
7285 fxsave
->fop
= fpu
->last_opcode
;
7286 fxsave
->rip
= fpu
->last_ip
;
7287 fxsave
->rdp
= fpu
->last_dp
;
7288 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
7293 static void fx_init(struct kvm_vcpu
*vcpu
)
7295 fpstate_init(&vcpu
->arch
.guest_fpu
.state
);
7297 vcpu
->arch
.guest_fpu
.state
.xsave
.header
.xcomp_bv
=
7298 host_xcr0
| XSTATE_COMPACTION_ENABLED
;
7301 * Ensure guest xcr0 is valid for loading
7303 vcpu
->arch
.xcr0
= XFEATURE_MASK_FP
;
7305 vcpu
->arch
.cr0
|= X86_CR0_ET
;
7308 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
7310 if (vcpu
->guest_fpu_loaded
)
7314 * Restore all possible states in the guest,
7315 * and assume host would use all available bits.
7316 * Guest xcr0 would be loaded later.
7318 vcpu
->guest_fpu_loaded
= 1;
7319 __kernel_fpu_begin();
7320 __copy_kernel_to_fpregs(&vcpu
->arch
.guest_fpu
.state
);
7324 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
7326 if (!vcpu
->guest_fpu_loaded
) {
7327 vcpu
->fpu_counter
= 0;
7331 vcpu
->guest_fpu_loaded
= 0;
7332 copy_fpregs_to_fpstate(&vcpu
->arch
.guest_fpu
);
7334 ++vcpu
->stat
.fpu_reload
;
7336 * If using eager FPU mode, or if the guest is a frequent user
7337 * of the FPU, just leave the FPU active for next time.
7338 * Every 255 times fpu_counter rolls over to 0; a guest that uses
7339 * the FPU in bursts will revert to loading it on demand.
7341 if (!use_eager_fpu()) {
7342 if (++vcpu
->fpu_counter
< 5)
7343 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
7348 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
7350 kvmclock_reset(vcpu
);
7352 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
7353 kvm_x86_ops
->vcpu_free(vcpu
);
7356 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
7359 struct kvm_vcpu
*vcpu
;
7361 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
7362 printk_once(KERN_WARNING
7363 "kvm: SMP vm created on host with unstable TSC; "
7364 "guest TSC will not be reliable\n");
7366 vcpu
= kvm_x86_ops
->vcpu_create(kvm
, id
);
7371 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
7375 kvm_vcpu_mtrr_init(vcpu
);
7376 r
= vcpu_load(vcpu
);
7379 kvm_vcpu_reset(vcpu
, false);
7380 kvm_mmu_setup(vcpu
);
7385 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
7387 struct msr_data msr
;
7388 struct kvm
*kvm
= vcpu
->kvm
;
7390 if (vcpu_load(vcpu
))
7393 msr
.index
= MSR_IA32_TSC
;
7394 msr
.host_initiated
= true;
7395 kvm_write_tsc(vcpu
, &msr
);
7398 if (!kvmclock_periodic_sync
)
7401 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
7402 KVMCLOCK_SYNC_PERIOD
);
7405 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
7408 vcpu
->arch
.apf
.msr_val
= 0;
7410 r
= vcpu_load(vcpu
);
7412 kvm_mmu_unload(vcpu
);
7415 kvm_x86_ops
->vcpu_free(vcpu
);
7418 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
, bool init_event
)
7420 vcpu
->arch
.hflags
= 0;
7422 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
7423 vcpu
->arch
.nmi_pending
= 0;
7424 vcpu
->arch
.nmi_injected
= false;
7425 kvm_clear_interrupt_queue(vcpu
);
7426 kvm_clear_exception_queue(vcpu
);
7428 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
7429 kvm_update_dr0123(vcpu
);
7430 vcpu
->arch
.dr6
= DR6_INIT
;
7431 kvm_update_dr6(vcpu
);
7432 vcpu
->arch
.dr7
= DR7_FIXED_1
;
7433 kvm_update_dr7(vcpu
);
7437 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7438 vcpu
->arch
.apf
.msr_val
= 0;
7439 vcpu
->arch
.st
.msr_val
= 0;
7441 kvmclock_reset(vcpu
);
7443 kvm_clear_async_pf_completion_queue(vcpu
);
7444 kvm_async_pf_hash_reset(vcpu
);
7445 vcpu
->arch
.apf
.halted
= false;
7448 kvm_pmu_reset(vcpu
);
7449 vcpu
->arch
.smbase
= 0x30000;
7452 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
7453 vcpu
->arch
.regs_avail
= ~0;
7454 vcpu
->arch
.regs_dirty
= ~0;
7456 kvm_x86_ops
->vcpu_reset(vcpu
, init_event
);
7459 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, u8 vector
)
7461 struct kvm_segment cs
;
7463 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7464 cs
.selector
= vector
<< 8;
7465 cs
.base
= vector
<< 12;
7466 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7467 kvm_rip_write(vcpu
, 0);
7470 int kvm_arch_hardware_enable(void)
7473 struct kvm_vcpu
*vcpu
;
7478 bool stable
, backwards_tsc
= false;
7480 kvm_shared_msr_cpu_online();
7481 ret
= kvm_x86_ops
->hardware_enable();
7485 local_tsc
= rdtsc();
7486 stable
= !check_tsc_unstable();
7487 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7488 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7489 if (!stable
&& vcpu
->cpu
== smp_processor_id())
7490 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
7491 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
7492 backwards_tsc
= true;
7493 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
7494 max_tsc
= vcpu
->arch
.last_host_tsc
;
7500 * Sometimes, even reliable TSCs go backwards. This happens on
7501 * platforms that reset TSC during suspend or hibernate actions, but
7502 * maintain synchronization. We must compensate. Fortunately, we can
7503 * detect that condition here, which happens early in CPU bringup,
7504 * before any KVM threads can be running. Unfortunately, we can't
7505 * bring the TSCs fully up to date with real time, as we aren't yet far
7506 * enough into CPU bringup that we know how much real time has actually
7507 * elapsed; our helper function, get_kernel_ns() will be using boot
7508 * variables that haven't been updated yet.
7510 * So we simply find the maximum observed TSC above, then record the
7511 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7512 * the adjustment will be applied. Note that we accumulate
7513 * adjustments, in case multiple suspend cycles happen before some VCPU
7514 * gets a chance to run again. In the event that no KVM threads get a
7515 * chance to run, we will miss the entire elapsed period, as we'll have
7516 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7517 * loose cycle time. This isn't too big a deal, since the loss will be
7518 * uniform across all VCPUs (not to mention the scenario is extremely
7519 * unlikely). It is possible that a second hibernate recovery happens
7520 * much faster than a first, causing the observed TSC here to be
7521 * smaller; this would require additional padding adjustment, which is
7522 * why we set last_host_tsc to the local tsc observed here.
7524 * N.B. - this code below runs only on platforms with reliable TSC,
7525 * as that is the only way backwards_tsc is set above. Also note
7526 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7527 * have the same delta_cyc adjustment applied if backwards_tsc
7528 * is detected. Note further, this adjustment is only done once,
7529 * as we reset last_host_tsc on all VCPUs to stop this from being
7530 * called multiple times (one for each physical CPU bringup).
7532 * Platforms with unreliable TSCs don't have to deal with this, they
7533 * will be compensated by the logic in vcpu_load, which sets the TSC to
7534 * catchup mode. This will catchup all VCPUs to real time, but cannot
7535 * guarantee that they stay in perfect synchronization.
7537 if (backwards_tsc
) {
7538 u64 delta_cyc
= max_tsc
- local_tsc
;
7539 backwards_tsc_observed
= true;
7540 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7541 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7542 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
7543 vcpu
->arch
.last_host_tsc
= local_tsc
;
7544 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
7548 * We have to disable TSC offset matching.. if you were
7549 * booting a VM while issuing an S4 host suspend....
7550 * you may have some problem. Solving this issue is
7551 * left as an exercise to the reader.
7553 kvm
->arch
.last_tsc_nsec
= 0;
7554 kvm
->arch
.last_tsc_write
= 0;
7561 void kvm_arch_hardware_disable(void)
7563 kvm_x86_ops
->hardware_disable();
7564 drop_user_return_notifiers();
7567 int kvm_arch_hardware_setup(void)
7571 r
= kvm_x86_ops
->hardware_setup();
7575 if (kvm_has_tsc_control
) {
7577 * Make sure the user can only configure tsc_khz values that
7578 * fit into a signed integer.
7579 * A min value is not calculated needed because it will always
7580 * be 1 on all machines.
7582 u64 max
= min(0x7fffffffULL
,
7583 __scale_tsc(kvm_max_tsc_scaling_ratio
, tsc_khz
));
7584 kvm_max_guest_tsc_khz
= max
;
7586 kvm_default_tsc_scaling_ratio
= 1ULL << kvm_tsc_scaling_ratio_frac_bits
;
7589 kvm_init_msr_list();
7593 void kvm_arch_hardware_unsetup(void)
7595 kvm_x86_ops
->hardware_unsetup();
7598 void kvm_arch_check_processor_compat(void *rtn
)
7600 kvm_x86_ops
->check_processor_compatibility(rtn
);
7603 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu
*vcpu
)
7605 return vcpu
->kvm
->arch
.bsp_vcpu_id
== vcpu
->vcpu_id
;
7607 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp
);
7609 bool kvm_vcpu_is_bsp(struct kvm_vcpu
*vcpu
)
7611 return (vcpu
->arch
.apic_base
& MSR_IA32_APICBASE_BSP
) != 0;
7614 bool kvm_vcpu_compatible(struct kvm_vcpu
*vcpu
)
7616 return irqchip_in_kernel(vcpu
->kvm
) == lapic_in_kernel(vcpu
);
7619 struct static_key kvm_no_apic_vcpu __read_mostly
;
7620 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu
);
7622 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
7628 BUG_ON(vcpu
->kvm
== NULL
);
7631 vcpu
->arch
.apicv_active
= kvm_x86_ops
->get_enable_apicv();
7632 vcpu
->arch
.pv
.pv_unhalted
= false;
7633 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
7634 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_reset_bsp(vcpu
))
7635 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7637 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
7639 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
7644 vcpu
->arch
.pio_data
= page_address(page
);
7646 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
7648 r
= kvm_mmu_create(vcpu
);
7650 goto fail_free_pio_data
;
7652 if (irqchip_in_kernel(kvm
)) {
7653 r
= kvm_create_lapic(vcpu
);
7655 goto fail_mmu_destroy
;
7657 static_key_slow_inc(&kvm_no_apic_vcpu
);
7659 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
7661 if (!vcpu
->arch
.mce_banks
) {
7663 goto fail_free_lapic
;
7665 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
7667 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
)) {
7669 goto fail_free_mce_banks
;
7674 vcpu
->arch
.ia32_tsc_adjust_msr
= 0x0;
7675 vcpu
->arch
.pv_time_enabled
= false;
7677 vcpu
->arch
.guest_supported_xcr0
= 0;
7678 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
7680 vcpu
->arch
.maxphyaddr
= cpuid_query_maxphyaddr(vcpu
);
7682 vcpu
->arch
.pat
= MSR_IA32_CR_PAT_DEFAULT
;
7684 kvm_async_pf_hash_reset(vcpu
);
7687 vcpu
->arch
.pending_external_vector
= -1;
7689 kvm_hv_vcpu_init(vcpu
);
7693 fail_free_mce_banks
:
7694 kfree(vcpu
->arch
.mce_banks
);
7696 kvm_free_lapic(vcpu
);
7698 kvm_mmu_destroy(vcpu
);
7700 free_page((unsigned long)vcpu
->arch
.pio_data
);
7705 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
7709 kvm_hv_vcpu_uninit(vcpu
);
7710 kvm_pmu_destroy(vcpu
);
7711 kfree(vcpu
->arch
.mce_banks
);
7712 kvm_free_lapic(vcpu
);
7713 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7714 kvm_mmu_destroy(vcpu
);
7715 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7716 free_page((unsigned long)vcpu
->arch
.pio_data
);
7717 if (!lapic_in_kernel(vcpu
))
7718 static_key_slow_dec(&kvm_no_apic_vcpu
);
7721 void kvm_arch_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
7723 kvm_x86_ops
->sched_in(vcpu
, cpu
);
7726 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
7731 INIT_HLIST_HEAD(&kvm
->arch
.mask_notifier_list
);
7732 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
7733 INIT_LIST_HEAD(&kvm
->arch
.zapped_obsolete_pages
);
7734 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
7735 atomic_set(&kvm
->arch
.noncoherent_dma_count
, 0);
7737 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7738 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
7739 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7740 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
7741 &kvm
->arch
.irq_sources_bitmap
);
7743 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
7744 mutex_init(&kvm
->arch
.apic_map_lock
);
7745 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
7747 pvclock_update_vm_gtod_copy(kvm
);
7749 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_update_work
, kvmclock_update_fn
);
7750 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_sync_work
, kvmclock_sync_fn
);
7752 kvm_page_track_init(kvm
);
7753 kvm_mmu_init_vm(kvm
);
7758 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
7761 r
= vcpu_load(vcpu
);
7763 kvm_mmu_unload(vcpu
);
7767 static void kvm_free_vcpus(struct kvm
*kvm
)
7770 struct kvm_vcpu
*vcpu
;
7773 * Unpin any mmu pages first.
7775 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7776 kvm_clear_async_pf_completion_queue(vcpu
);
7777 kvm_unload_vcpu_mmu(vcpu
);
7779 kvm_for_each_vcpu(i
, vcpu
, kvm
)
7780 kvm_arch_vcpu_free(vcpu
);
7782 mutex_lock(&kvm
->lock
);
7783 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
7784 kvm
->vcpus
[i
] = NULL
;
7786 atomic_set(&kvm
->online_vcpus
, 0);
7787 mutex_unlock(&kvm
->lock
);
7790 void kvm_arch_sync_events(struct kvm
*kvm
)
7792 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_sync_work
);
7793 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_update_work
);
7794 kvm_free_all_assigned_devices(kvm
);
7798 int __x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
7802 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
7803 struct kvm_memory_slot
*slot
, old
;
7805 /* Called with kvm->slots_lock held. */
7806 if (WARN_ON(id
>= KVM_MEM_SLOTS_NUM
))
7809 slot
= id_to_memslot(slots
, id
);
7811 if (WARN_ON(slot
->npages
))
7815 * MAP_SHARED to prevent internal slot pages from being moved
7818 hva
= vm_mmap(NULL
, 0, size
, PROT_READ
| PROT_WRITE
,
7819 MAP_SHARED
| MAP_ANONYMOUS
, 0);
7820 if (IS_ERR((void *)hva
))
7821 return PTR_ERR((void *)hva
);
7830 for (i
= 0; i
< KVM_ADDRESS_SPACE_NUM
; i
++) {
7831 struct kvm_userspace_memory_region m
;
7833 m
.slot
= id
| (i
<< 16);
7835 m
.guest_phys_addr
= gpa
;
7836 m
.userspace_addr
= hva
;
7837 m
.memory_size
= size
;
7838 r
= __kvm_set_memory_region(kvm
, &m
);
7844 r
= vm_munmap(old
.userspace_addr
, old
.npages
* PAGE_SIZE
);
7850 EXPORT_SYMBOL_GPL(__x86_set_memory_region
);
7852 int x86_set_memory_region(struct kvm
*kvm
, int id
, gpa_t gpa
, u32 size
)
7856 mutex_lock(&kvm
->slots_lock
);
7857 r
= __x86_set_memory_region(kvm
, id
, gpa
, size
);
7858 mutex_unlock(&kvm
->slots_lock
);
7862 EXPORT_SYMBOL_GPL(x86_set_memory_region
);
7864 void kvm_arch_destroy_vm(struct kvm
*kvm
)
7866 if (current
->mm
== kvm
->mm
) {
7868 * Free memory regions allocated on behalf of userspace,
7869 * unless the the memory map has changed due to process exit
7872 x86_set_memory_region(kvm
, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
, 0, 0);
7873 x86_set_memory_region(kvm
, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
, 0, 0);
7874 x86_set_memory_region(kvm
, TSS_PRIVATE_MEMSLOT
, 0, 0);
7876 kvm_iommu_unmap_guest(kvm
);
7877 kfree(kvm
->arch
.vpic
);
7878 kfree(kvm
->arch
.vioapic
);
7879 kvm_free_vcpus(kvm
);
7880 kfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
7881 kvm_mmu_uninit_vm(kvm
);
7884 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
7885 struct kvm_memory_slot
*dont
)
7889 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7890 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
7891 kvfree(free
->arch
.rmap
[i
]);
7892 free
->arch
.rmap
[i
] = NULL
;
7897 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
7898 dont
->arch
.lpage_info
[i
- 1]) {
7899 kvfree(free
->arch
.lpage_info
[i
- 1]);
7900 free
->arch
.lpage_info
[i
- 1] = NULL
;
7904 kvm_page_track_free_memslot(free
, dont
);
7907 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
7908 unsigned long npages
)
7912 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7913 struct kvm_lpage_info
*linfo
;
7918 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
7919 slot
->base_gfn
, level
) + 1;
7921 slot
->arch
.rmap
[i
] =
7922 kvm_kvzalloc(lpages
* sizeof(*slot
->arch
.rmap
[i
]));
7923 if (!slot
->arch
.rmap
[i
])
7928 linfo
= kvm_kvzalloc(lpages
* sizeof(*linfo
));
7932 slot
->arch
.lpage_info
[i
- 1] = linfo
;
7934 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
7935 linfo
[0].disallow_lpage
= 1;
7936 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
7937 linfo
[lpages
- 1].disallow_lpage
= 1;
7938 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
7940 * If the gfn and userspace address are not aligned wrt each
7941 * other, or if explicitly asked to, disable large page
7942 * support for this slot
7944 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
7945 !kvm_largepages_enabled()) {
7948 for (j
= 0; j
< lpages
; ++j
)
7949 linfo
[j
].disallow_lpage
= 1;
7953 if (kvm_page_track_create_memslot(slot
, npages
))
7959 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7960 kvfree(slot
->arch
.rmap
[i
]);
7961 slot
->arch
.rmap
[i
] = NULL
;
7965 kvfree(slot
->arch
.lpage_info
[i
- 1]);
7966 slot
->arch
.lpage_info
[i
- 1] = NULL
;
7971 void kvm_arch_memslots_updated(struct kvm
*kvm
, struct kvm_memslots
*slots
)
7974 * memslots->generation has been incremented.
7975 * mmio generation may have reached its maximum value.
7977 kvm_mmu_invalidate_mmio_sptes(kvm
, slots
);
7980 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
7981 struct kvm_memory_slot
*memslot
,
7982 const struct kvm_userspace_memory_region
*mem
,
7983 enum kvm_mr_change change
)
7988 static void kvm_mmu_slot_apply_flags(struct kvm
*kvm
,
7989 struct kvm_memory_slot
*new)
7991 /* Still write protect RO slot */
7992 if (new->flags
& KVM_MEM_READONLY
) {
7993 kvm_mmu_slot_remove_write_access(kvm
, new);
7998 * Call kvm_x86_ops dirty logging hooks when they are valid.
8000 * kvm_x86_ops->slot_disable_log_dirty is called when:
8002 * - KVM_MR_CREATE with dirty logging is disabled
8003 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8005 * The reason is, in case of PML, we need to set D-bit for any slots
8006 * with dirty logging disabled in order to eliminate unnecessary GPA
8007 * logging in PML buffer (and potential PML buffer full VMEXT). This
8008 * guarantees leaving PML enabled during guest's lifetime won't have
8009 * any additonal overhead from PML when guest is running with dirty
8010 * logging disabled for memory slots.
8012 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8013 * to dirty logging mode.
8015 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8017 * In case of write protect:
8019 * Write protect all pages for dirty logging.
8021 * All the sptes including the large sptes which point to this
8022 * slot are set to readonly. We can not create any new large
8023 * spte on this slot until the end of the logging.
8025 * See the comments in fast_page_fault().
8027 if (new->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
8028 if (kvm_x86_ops
->slot_enable_log_dirty
)
8029 kvm_x86_ops
->slot_enable_log_dirty(kvm
, new);
8031 kvm_mmu_slot_remove_write_access(kvm
, new);
8033 if (kvm_x86_ops
->slot_disable_log_dirty
)
8034 kvm_x86_ops
->slot_disable_log_dirty(kvm
, new);
8038 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
8039 const struct kvm_userspace_memory_region
*mem
,
8040 const struct kvm_memory_slot
*old
,
8041 const struct kvm_memory_slot
*new,
8042 enum kvm_mr_change change
)
8044 int nr_mmu_pages
= 0;
8046 if (!kvm
->arch
.n_requested_mmu_pages
)
8047 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
8050 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
8053 * Dirty logging tracks sptes in 4k granularity, meaning that large
8054 * sptes have to be split. If live migration is successful, the guest
8055 * in the source machine will be destroyed and large sptes will be
8056 * created in the destination. However, if the guest continues to run
8057 * in the source machine (for example if live migration fails), small
8058 * sptes will remain around and cause bad performance.
8060 * Scan sptes if dirty logging has been stopped, dropping those
8061 * which can be collapsed into a single large-page spte. Later
8062 * page faults will create the large-page sptes.
8064 if ((change
!= KVM_MR_DELETE
) &&
8065 (old
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) &&
8066 !(new->flags
& KVM_MEM_LOG_DIRTY_PAGES
))
8067 kvm_mmu_zap_collapsible_sptes(kvm
, new);
8070 * Set up write protection and/or dirty logging for the new slot.
8072 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8073 * been zapped so no dirty logging staff is needed for old slot. For
8074 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8075 * new and it's also covered when dealing with the new slot.
8077 * FIXME: const-ify all uses of struct kvm_memory_slot.
8079 if (change
!= KVM_MR_DELETE
)
8080 kvm_mmu_slot_apply_flags(kvm
, (struct kvm_memory_slot
*) new);
8083 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
8085 kvm_mmu_invalidate_zap_all_pages(kvm
);
8088 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
8089 struct kvm_memory_slot
*slot
)
8091 kvm_mmu_invalidate_zap_all_pages(kvm
);
8094 static inline bool kvm_vcpu_has_events(struct kvm_vcpu
*vcpu
)
8096 if (!list_empty_careful(&vcpu
->async_pf
.done
))
8099 if (kvm_apic_has_events(vcpu
))
8102 if (vcpu
->arch
.pv
.pv_unhalted
)
8105 if (atomic_read(&vcpu
->arch
.nmi_queued
))
8108 if (test_bit(KVM_REQ_SMI
, &vcpu
->requests
))
8111 if (kvm_arch_interrupt_allowed(vcpu
) &&
8112 kvm_cpu_has_interrupt(vcpu
))
8115 if (kvm_hv_has_stimer_pending(vcpu
))
8121 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
8123 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
)
8124 kvm_x86_ops
->check_nested_events(vcpu
, false);
8126 return kvm_vcpu_running(vcpu
) || kvm_vcpu_has_events(vcpu
);
8129 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
8131 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
8134 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
8136 return kvm_x86_ops
->interrupt_allowed(vcpu
);
8139 unsigned long kvm_get_linear_rip(struct kvm_vcpu
*vcpu
)
8141 if (is_64_bit_mode(vcpu
))
8142 return kvm_rip_read(vcpu
);
8143 return (u32
)(get_segment_base(vcpu
, VCPU_SREG_CS
) +
8144 kvm_rip_read(vcpu
));
8146 EXPORT_SYMBOL_GPL(kvm_get_linear_rip
);
8148 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
8150 return kvm_get_linear_rip(vcpu
) == linear_rip
;
8152 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
8154 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
8156 unsigned long rflags
;
8158 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
8159 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
8160 rflags
&= ~X86_EFLAGS_TF
;
8163 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
8165 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8167 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
8168 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
8169 rflags
|= X86_EFLAGS_TF
;
8170 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
8173 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
8175 __kvm_set_rflags(vcpu
, rflags
);
8176 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
8178 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
8180 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
8184 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
8188 r
= kvm_mmu_reload(vcpu
);
8192 if (!vcpu
->arch
.mmu
.direct_map
&&
8193 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
8196 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
8199 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
8201 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
8204 static inline u32
kvm_async_pf_next_probe(u32 key
)
8206 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
8209 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8211 u32 key
= kvm_async_pf_hash_fn(gfn
);
8213 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
8214 key
= kvm_async_pf_next_probe(key
);
8216 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
8219 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8222 u32 key
= kvm_async_pf_hash_fn(gfn
);
8224 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
8225 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
8226 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
8227 key
= kvm_async_pf_next_probe(key
);
8232 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8234 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
8237 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
8241 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
8243 vcpu
->arch
.apf
.gfns
[i
] = ~0;
8245 j
= kvm_async_pf_next_probe(j
);
8246 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
8248 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
8250 * k lies cyclically in ]i,j]
8252 * |....j i.k.| or |.k..j i...|
8254 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
8255 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
8260 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
8263 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
8267 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
8268 struct kvm_async_pf
*work
)
8270 struct x86_exception fault
;
8272 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
8273 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8275 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
8276 (vcpu
->arch
.apf
.send_user_only
&&
8277 kvm_x86_ops
->get_cpl(vcpu
) == 0))
8278 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
8279 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
8280 fault
.vector
= PF_VECTOR
;
8281 fault
.error_code_valid
= true;
8282 fault
.error_code
= 0;
8283 fault
.nested_page_fault
= false;
8284 fault
.address
= work
->arch
.token
;
8285 kvm_inject_page_fault(vcpu
, &fault
);
8289 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
8290 struct kvm_async_pf
*work
)
8292 struct x86_exception fault
;
8294 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
8295 if (work
->wakeup_all
)
8296 work
->arch
.token
= ~0; /* broadcast wakeup */
8298 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
8300 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
8301 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
8302 fault
.vector
= PF_VECTOR
;
8303 fault
.error_code_valid
= true;
8304 fault
.error_code
= 0;
8305 fault
.nested_page_fault
= false;
8306 fault
.address
= work
->arch
.token
;
8307 kvm_inject_page_fault(vcpu
, &fault
);
8309 vcpu
->arch
.apf
.halted
= false;
8310 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
8313 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
8315 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
8318 return !kvm_event_needs_reinjection(vcpu
) &&
8319 kvm_x86_ops
->interrupt_allowed(vcpu
);
8322 void kvm_arch_start_assignment(struct kvm
*kvm
)
8324 atomic_inc(&kvm
->arch
.assigned_device_count
);
8326 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment
);
8328 void kvm_arch_end_assignment(struct kvm
*kvm
)
8330 atomic_dec(&kvm
->arch
.assigned_device_count
);
8332 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment
);
8334 bool kvm_arch_has_assigned_device(struct kvm
*kvm
)
8336 return atomic_read(&kvm
->arch
.assigned_device_count
);
8338 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device
);
8340 void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
)
8342 atomic_inc(&kvm
->arch
.noncoherent_dma_count
);
8344 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma
);
8346 void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
)
8348 atomic_dec(&kvm
->arch
.noncoherent_dma_count
);
8350 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma
);
8352 bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
)
8354 return atomic_read(&kvm
->arch
.noncoherent_dma_count
);
8356 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma
);
8358 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer
*cons
,
8359 struct irq_bypass_producer
*prod
)
8361 struct kvm_kernel_irqfd
*irqfd
=
8362 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
8364 if (kvm_x86_ops
->update_pi_irte
) {
8365 irqfd
->producer
= prod
;
8366 return kvm_x86_ops
->update_pi_irte(irqfd
->kvm
,
8367 prod
->irq
, irqfd
->gsi
, 1);
8373 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer
*cons
,
8374 struct irq_bypass_producer
*prod
)
8377 struct kvm_kernel_irqfd
*irqfd
=
8378 container_of(cons
, struct kvm_kernel_irqfd
, consumer
);
8380 if (!kvm_x86_ops
->update_pi_irte
) {
8381 WARN_ON(irqfd
->producer
!= NULL
);
8385 WARN_ON(irqfd
->producer
!= prod
);
8386 irqfd
->producer
= NULL
;
8389 * When producer of consumer is unregistered, we change back to
8390 * remapped mode, so we can re-use the current implementation
8391 * when the irq is masked/disabed or the consumer side (KVM
8392 * int this case doesn't want to receive the interrupts.
8394 ret
= kvm_x86_ops
->update_pi_irte(irqfd
->kvm
, prod
->irq
, irqfd
->gsi
, 0);
8396 printk(KERN_INFO
"irq bypass consumer (token %p) unregistration"
8397 " fails: %d\n", irqfd
->consumer
.token
, ret
);
8400 int kvm_arch_update_irqfd_routing(struct kvm
*kvm
, unsigned int host_irq
,
8401 uint32_t guest_irq
, bool set
)
8403 if (!kvm_x86_ops
->update_pi_irte
)
8406 return kvm_x86_ops
->update_pi_irte(kvm
, host_irq
, guest_irq
, set
);
8409 bool kvm_vector_hashing_enabled(void)
8411 return vector_hashing
;
8413 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled
);
8415 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
8416 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio
);
8417 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
8418 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
8419 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
8420 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
8421 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
8422 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
8423 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
8424 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
8425 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
8426 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
8427 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
8428 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);
8429 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window
);
8430 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full
);
8431 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update
);