Merge branch 'rc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[linux/fpc-iii.git] / arch / x86 / kernel / nmi.c
blobb9c8628974af3ae4eeb7cc73891140618df589b2
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4 * Copyright (C) 2011 Don Zickus Red Hat, Inc.
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
11 * Handle hardware traps and faults.
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/nmi.h>
17 #include <linux/delay.h>
18 #include <linux/hardirq.h>
19 #include <linux/slab.h>
20 #include <linux/export.h>
22 #include <linux/mca.h>
24 #if defined(CONFIG_EDAC)
25 #include <linux/edac.h>
26 #endif
28 #include <linux/atomic.h>
29 #include <asm/traps.h>
30 #include <asm/mach_traps.h>
31 #include <asm/nmi.h>
33 #define NMI_MAX_NAMELEN 16
34 struct nmiaction {
35 struct list_head list;
36 nmi_handler_t handler;
37 unsigned int flags;
38 char *name;
41 struct nmi_desc {
42 spinlock_t lock;
43 struct list_head head;
46 static struct nmi_desc nmi_desc[NMI_MAX] =
49 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
50 .head = LIST_HEAD_INIT(nmi_desc[0].head),
53 .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
54 .head = LIST_HEAD_INIT(nmi_desc[1].head),
59 struct nmi_stats {
60 unsigned int normal;
61 unsigned int unknown;
62 unsigned int external;
63 unsigned int swallow;
66 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
68 static int ignore_nmis;
70 int unknown_nmi_panic;
72 * Prevent NMI reason port (0x61) being accessed simultaneously, can
73 * only be used in NMI handler.
75 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
77 static int __init setup_unknown_nmi_panic(char *str)
79 unknown_nmi_panic = 1;
80 return 1;
82 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
84 #define nmi_to_desc(type) (&nmi_desc[type])
86 static int notrace __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
88 struct nmi_desc *desc = nmi_to_desc(type);
89 struct nmiaction *a;
90 int handled=0;
92 rcu_read_lock();
95 * NMIs are edge-triggered, which means if you have enough
96 * of them concurrently, you can lose some because only one
97 * can be latched at any given time. Walk the whole list
98 * to handle those situations.
100 list_for_each_entry_rcu(a, &desc->head, list)
101 handled += a->handler(type, regs);
103 rcu_read_unlock();
105 /* return total number of NMI events handled */
106 return handled;
109 static int __setup_nmi(unsigned int type, struct nmiaction *action)
111 struct nmi_desc *desc = nmi_to_desc(type);
112 unsigned long flags;
114 spin_lock_irqsave(&desc->lock, flags);
117 * most handlers of type NMI_UNKNOWN never return because
118 * they just assume the NMI is theirs. Just a sanity check
119 * to manage expectations
121 WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
124 * some handlers need to be executed first otherwise a fake
125 * event confuses some handlers (kdump uses this flag)
127 if (action->flags & NMI_FLAG_FIRST)
128 list_add_rcu(&action->list, &desc->head);
129 else
130 list_add_tail_rcu(&action->list, &desc->head);
132 spin_unlock_irqrestore(&desc->lock, flags);
133 return 0;
136 static struct nmiaction *__free_nmi(unsigned int type, const char *name)
138 struct nmi_desc *desc = nmi_to_desc(type);
139 struct nmiaction *n;
140 unsigned long flags;
142 spin_lock_irqsave(&desc->lock, flags);
144 list_for_each_entry_rcu(n, &desc->head, list) {
146 * the name passed in to describe the nmi handler
147 * is used as the lookup key
149 if (!strcmp(n->name, name)) {
150 WARN(in_nmi(),
151 "Trying to free NMI (%s) from NMI context!\n", n->name);
152 list_del_rcu(&n->list);
153 break;
157 spin_unlock_irqrestore(&desc->lock, flags);
158 synchronize_rcu();
159 return (n);
162 int register_nmi_handler(unsigned int type, nmi_handler_t handler,
163 unsigned long nmiflags, const char *devname)
165 struct nmiaction *action;
166 int retval = -ENOMEM;
168 if (!handler)
169 return -EINVAL;
171 action = kzalloc(sizeof(struct nmiaction), GFP_KERNEL);
172 if (!action)
173 goto fail_action;
175 action->handler = handler;
176 action->flags = nmiflags;
177 action->name = kstrndup(devname, NMI_MAX_NAMELEN, GFP_KERNEL);
178 if (!action->name)
179 goto fail_action_name;
181 retval = __setup_nmi(type, action);
183 if (retval)
184 goto fail_setup_nmi;
186 return retval;
188 fail_setup_nmi:
189 kfree(action->name);
190 fail_action_name:
191 kfree(action);
192 fail_action:
194 return retval;
196 EXPORT_SYMBOL_GPL(register_nmi_handler);
198 void unregister_nmi_handler(unsigned int type, const char *name)
200 struct nmiaction *a;
202 a = __free_nmi(type, name);
203 if (a) {
204 kfree(a->name);
205 kfree(a);
209 EXPORT_SYMBOL_GPL(unregister_nmi_handler);
211 static notrace __kprobes void
212 pci_serr_error(unsigned char reason, struct pt_regs *regs)
214 pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
215 reason, smp_processor_id());
218 * On some machines, PCI SERR line is used to report memory
219 * errors. EDAC makes use of it.
221 #if defined(CONFIG_EDAC)
222 if (edac_handler_set()) {
223 edac_atomic_assert_error();
224 return;
226 #endif
228 if (panic_on_unrecovered_nmi)
229 panic("NMI: Not continuing");
231 pr_emerg("Dazed and confused, but trying to continue\n");
233 /* Clear and disable the PCI SERR error line. */
234 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
235 outb(reason, NMI_REASON_PORT);
238 static notrace __kprobes void
239 io_check_error(unsigned char reason, struct pt_regs *regs)
241 unsigned long i;
243 pr_emerg(
244 "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
245 reason, smp_processor_id());
246 show_registers(regs);
248 if (panic_on_io_nmi)
249 panic("NMI IOCK error: Not continuing");
251 /* Re-enable the IOCK line, wait for a few seconds */
252 reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
253 outb(reason, NMI_REASON_PORT);
255 i = 20000;
256 while (--i) {
257 touch_nmi_watchdog();
258 udelay(100);
261 reason &= ~NMI_REASON_CLEAR_IOCHK;
262 outb(reason, NMI_REASON_PORT);
265 static notrace __kprobes void
266 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
268 int handled;
271 * Use 'false' as back-to-back NMIs are dealt with one level up.
272 * Of course this makes having multiple 'unknown' handlers useless
273 * as only the first one is ever run (unless it can actually determine
274 * if it caused the NMI)
276 handled = nmi_handle(NMI_UNKNOWN, regs, false);
277 if (handled) {
278 __this_cpu_add(nmi_stats.unknown, handled);
279 return;
282 __this_cpu_add(nmi_stats.unknown, 1);
284 #ifdef CONFIG_MCA
286 * Might actually be able to figure out what the guilty party
287 * is:
289 if (MCA_bus) {
290 mca_handle_nmi();
291 return;
293 #endif
294 pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
295 reason, smp_processor_id());
297 pr_emerg("Do you have a strange power saving mode enabled?\n");
298 if (unknown_nmi_panic || panic_on_unrecovered_nmi)
299 panic("NMI: Not continuing");
301 pr_emerg("Dazed and confused, but trying to continue\n");
304 static DEFINE_PER_CPU(bool, swallow_nmi);
305 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
307 static notrace __kprobes void default_do_nmi(struct pt_regs *regs)
309 unsigned char reason = 0;
310 int handled;
311 bool b2b = false;
314 * CPU-specific NMI must be processed before non-CPU-specific
315 * NMI, otherwise we may lose it, because the CPU-specific
316 * NMI can not be detected/processed on other CPUs.
320 * Back-to-back NMIs are interesting because they can either
321 * be two NMI or more than two NMIs (any thing over two is dropped
322 * due to NMI being edge-triggered). If this is the second half
323 * of the back-to-back NMI, assume we dropped things and process
324 * more handlers. Otherwise reset the 'swallow' NMI behaviour
326 if (regs->ip == __this_cpu_read(last_nmi_rip))
327 b2b = true;
328 else
329 __this_cpu_write(swallow_nmi, false);
331 __this_cpu_write(last_nmi_rip, regs->ip);
333 handled = nmi_handle(NMI_LOCAL, regs, b2b);
334 __this_cpu_add(nmi_stats.normal, handled);
335 if (handled) {
337 * There are cases when a NMI handler handles multiple
338 * events in the current NMI. One of these events may
339 * be queued for in the next NMI. Because the event is
340 * already handled, the next NMI will result in an unknown
341 * NMI. Instead lets flag this for a potential NMI to
342 * swallow.
344 if (handled > 1)
345 __this_cpu_write(swallow_nmi, true);
346 return;
349 /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
350 raw_spin_lock(&nmi_reason_lock);
351 reason = get_nmi_reason();
353 if (reason & NMI_REASON_MASK) {
354 if (reason & NMI_REASON_SERR)
355 pci_serr_error(reason, regs);
356 else if (reason & NMI_REASON_IOCHK)
357 io_check_error(reason, regs);
358 #ifdef CONFIG_X86_32
360 * Reassert NMI in case it became active
361 * meanwhile as it's edge-triggered:
363 reassert_nmi();
364 #endif
365 __this_cpu_add(nmi_stats.external, 1);
366 raw_spin_unlock(&nmi_reason_lock);
367 return;
369 raw_spin_unlock(&nmi_reason_lock);
372 * Only one NMI can be latched at a time. To handle
373 * this we may process multiple nmi handlers at once to
374 * cover the case where an NMI is dropped. The downside
375 * to this approach is we may process an NMI prematurely,
376 * while its real NMI is sitting latched. This will cause
377 * an unknown NMI on the next run of the NMI processing.
379 * We tried to flag that condition above, by setting the
380 * swallow_nmi flag when we process more than one event.
381 * This condition is also only present on the second half
382 * of a back-to-back NMI, so we flag that condition too.
384 * If both are true, we assume we already processed this
385 * NMI previously and we swallow it. Otherwise we reset
386 * the logic.
388 * There are scenarios where we may accidentally swallow
389 * a 'real' unknown NMI. For example, while processing
390 * a perf NMI another perf NMI comes in along with a
391 * 'real' unknown NMI. These two NMIs get combined into
392 * one (as descibed above). When the next NMI gets
393 * processed, it will be flagged by perf as handled, but
394 * noone will know that there was a 'real' unknown NMI sent
395 * also. As a result it gets swallowed. Or if the first
396 * perf NMI returns two events handled then the second
397 * NMI will get eaten by the logic below, again losing a
398 * 'real' unknown NMI. But this is the best we can do
399 * for now.
401 if (b2b && __this_cpu_read(swallow_nmi))
402 __this_cpu_add(nmi_stats.swallow, 1);
403 else
404 unknown_nmi_error(reason, regs);
407 dotraplinkage notrace __kprobes void
408 do_nmi(struct pt_regs *regs, long error_code)
410 nmi_enter();
412 inc_irq_stat(__nmi_count);
414 if (!ignore_nmis)
415 default_do_nmi(regs);
417 nmi_exit();
420 void stop_nmi(void)
422 ignore_nmis++;
425 void restart_nmi(void)
427 ignore_nmis--;
430 /* reset the back-to-back NMI logic */
431 void local_touch_nmi(void)
433 __this_cpu_write(last_nmi_rip, 0);