2 * RSA padding templates.
4 * Copyright (c) 2015 Intel Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
12 #include <crypto/algapi.h>
13 #include <crypto/akcipher.h>
14 #include <crypto/internal/akcipher.h>
15 #include <linux/err.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/random.h>
22 * Hash algorithm OIDs plus ASN.1 DER wrappings [RFC4880 sec 5.2.2].
24 static const u8 rsa_digest_info_md5
[] = {
25 0x30, 0x20, 0x30, 0x0c, 0x06, 0x08,
26 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05, /* OID */
27 0x05, 0x00, 0x04, 0x10
30 static const u8 rsa_digest_info_sha1
[] = {
31 0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
32 0x2b, 0x0e, 0x03, 0x02, 0x1a,
33 0x05, 0x00, 0x04, 0x14
36 static const u8 rsa_digest_info_rmd160
[] = {
37 0x30, 0x21, 0x30, 0x09, 0x06, 0x05,
38 0x2b, 0x24, 0x03, 0x02, 0x01,
39 0x05, 0x00, 0x04, 0x14
42 static const u8 rsa_digest_info_sha224
[] = {
43 0x30, 0x2d, 0x30, 0x0d, 0x06, 0x09,
44 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04,
45 0x05, 0x00, 0x04, 0x1c
48 static const u8 rsa_digest_info_sha256
[] = {
49 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09,
50 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01,
51 0x05, 0x00, 0x04, 0x20
54 static const u8 rsa_digest_info_sha384
[] = {
55 0x30, 0x41, 0x30, 0x0d, 0x06, 0x09,
56 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02,
57 0x05, 0x00, 0x04, 0x30
60 static const u8 rsa_digest_info_sha512
[] = {
61 0x30, 0x51, 0x30, 0x0d, 0x06, 0x09,
62 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03,
63 0x05, 0x00, 0x04, 0x40
66 static const struct rsa_asn1_template
{
70 } rsa_asn1_templates
[] = {
71 #define _(X) { #X, rsa_digest_info_##X, sizeof(rsa_digest_info_##X) }
83 static const struct rsa_asn1_template
*rsa_lookup_asn1(const char *name
)
85 const struct rsa_asn1_template
*p
;
87 for (p
= rsa_asn1_templates
; p
->name
; p
++)
88 if (strcmp(name
, p
->name
) == 0)
94 struct crypto_akcipher
*child
;
95 const char *hash_name
;
96 unsigned int key_size
;
99 struct pkcs1pad_inst_ctx
{
100 struct crypto_akcipher_spawn spawn
;
101 const char *hash_name
;
104 struct pkcs1pad_request
{
105 struct akcipher_request child_req
;
107 struct scatterlist in_sg
[3], out_sg
[2];
108 uint8_t *in_buf
, *out_buf
;
111 static int pkcs1pad_set_pub_key(struct crypto_akcipher
*tfm
, const void *key
,
114 struct pkcs1pad_ctx
*ctx
= akcipher_tfm_ctx(tfm
);
117 err
= crypto_akcipher_set_pub_key(ctx
->child
, key
, keylen
);
120 /* Find out new modulus size from rsa implementation */
121 size
= crypto_akcipher_maxsize(ctx
->child
);
123 ctx
->key_size
= size
> 0 ? size
: 0;
131 static int pkcs1pad_set_priv_key(struct crypto_akcipher
*tfm
, const void *key
,
134 struct pkcs1pad_ctx
*ctx
= akcipher_tfm_ctx(tfm
);
137 err
= crypto_akcipher_set_priv_key(ctx
->child
, key
, keylen
);
140 /* Find out new modulus size from rsa implementation */
141 size
= crypto_akcipher_maxsize(ctx
->child
);
143 ctx
->key_size
= size
> 0 ? size
: 0;
151 static int pkcs1pad_get_max_size(struct crypto_akcipher
*tfm
)
153 struct pkcs1pad_ctx
*ctx
= akcipher_tfm_ctx(tfm
);
156 * The maximum destination buffer size for the encrypt/sign operations
157 * will be the same as for RSA, even though it's smaller for
161 return ctx
->key_size
?: -EINVAL
;
164 static void pkcs1pad_sg_set_buf(struct scatterlist
*sg
, void *buf
, size_t len
,
165 struct scatterlist
*next
)
167 int nsegs
= next
? 1 : 0;
169 if (offset_in_page(buf
) + len
<= PAGE_SIZE
) {
171 sg_init_table(sg
, nsegs
);
172 sg_set_buf(sg
, buf
, len
);
175 sg_init_table(sg
, nsegs
);
176 sg_set_buf(sg
+ 0, buf
, PAGE_SIZE
- offset_in_page(buf
));
177 sg_set_buf(sg
+ 1, buf
+ PAGE_SIZE
- offset_in_page(buf
),
178 offset_in_page(buf
) + len
- PAGE_SIZE
);
182 sg_chain(sg
, nsegs
, next
);
185 static int pkcs1pad_encrypt_sign_complete(struct akcipher_request
*req
, int err
)
187 struct crypto_akcipher
*tfm
= crypto_akcipher_reqtfm(req
);
188 struct pkcs1pad_ctx
*ctx
= akcipher_tfm_ctx(tfm
);
189 struct pkcs1pad_request
*req_ctx
= akcipher_request_ctx(req
);
190 size_t pad_len
= ctx
->key_size
- req_ctx
->child_req
.dst_len
;
191 size_t chunk_len
, pad_left
;
192 struct sg_mapping_iter miter
;
196 sg_miter_start(&miter
, req
->dst
,
197 sg_nents_for_len(req
->dst
, pad_len
),
198 SG_MITER_ATOMIC
| SG_MITER_TO_SG
);
202 sg_miter_next(&miter
);
204 chunk_len
= min(miter
.length
, pad_left
);
205 memset(miter
.addr
, 0, chunk_len
);
206 pad_left
-= chunk_len
;
209 sg_miter_stop(&miter
);
212 sg_pcopy_from_buffer(req
->dst
,
213 sg_nents_for_len(req
->dst
, ctx
->key_size
),
214 req_ctx
->out_buf
, req_ctx
->child_req
.dst_len
,
217 req
->dst_len
= ctx
->key_size
;
219 kfree(req_ctx
->in_buf
);
220 kzfree(req_ctx
->out_buf
);
225 static void pkcs1pad_encrypt_sign_complete_cb(
226 struct crypto_async_request
*child_async_req
, int err
)
228 struct akcipher_request
*req
= child_async_req
->data
;
229 struct crypto_async_request async_req
;
231 if (err
== -EINPROGRESS
)
234 async_req
.data
= req
->base
.data
;
235 async_req
.tfm
= crypto_akcipher_tfm(crypto_akcipher_reqtfm(req
));
236 async_req
.flags
= child_async_req
->flags
;
237 req
->base
.complete(&async_req
,
238 pkcs1pad_encrypt_sign_complete(req
, err
));
241 static int pkcs1pad_encrypt(struct akcipher_request
*req
)
243 struct crypto_akcipher
*tfm
= crypto_akcipher_reqtfm(req
);
244 struct pkcs1pad_ctx
*ctx
= akcipher_tfm_ctx(tfm
);
245 struct pkcs1pad_request
*req_ctx
= akcipher_request_ctx(req
);
247 unsigned int i
, ps_end
;
252 if (req
->src_len
> ctx
->key_size
- 11)
255 if (req
->dst_len
< ctx
->key_size
) {
256 req
->dst_len
= ctx
->key_size
;
260 if (ctx
->key_size
> PAGE_SIZE
)
264 * Replace both input and output to add the padding in the input and
265 * the potential missing leading zeros in the output.
267 req_ctx
->child_req
.src
= req_ctx
->in_sg
;
268 req_ctx
->child_req
.src_len
= ctx
->key_size
- 1;
269 req_ctx
->child_req
.dst
= req_ctx
->out_sg
;
270 req_ctx
->child_req
.dst_len
= ctx
->key_size
;
272 req_ctx
->in_buf
= kmalloc(ctx
->key_size
- 1 - req
->src_len
,
273 (req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
) ?
274 GFP_KERNEL
: GFP_ATOMIC
);
275 if (!req_ctx
->in_buf
)
278 ps_end
= ctx
->key_size
- req
->src_len
- 2;
279 req_ctx
->in_buf
[0] = 0x02;
280 for (i
= 1; i
< ps_end
; i
++)
281 req_ctx
->in_buf
[i
] = 1 + prandom_u32_max(255);
282 req_ctx
->in_buf
[ps_end
] = 0x00;
284 pkcs1pad_sg_set_buf(req_ctx
->in_sg
, req_ctx
->in_buf
,
285 ctx
->key_size
- 1 - req
->src_len
, req
->src
);
287 req_ctx
->out_buf
= kmalloc(ctx
->key_size
,
288 (req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
) ?
289 GFP_KERNEL
: GFP_ATOMIC
);
290 if (!req_ctx
->out_buf
) {
291 kfree(req_ctx
->in_buf
);
295 pkcs1pad_sg_set_buf(req_ctx
->out_sg
, req_ctx
->out_buf
,
296 ctx
->key_size
, NULL
);
298 akcipher_request_set_tfm(&req_ctx
->child_req
, ctx
->child
);
299 akcipher_request_set_callback(&req_ctx
->child_req
, req
->base
.flags
,
300 pkcs1pad_encrypt_sign_complete_cb
, req
);
302 err
= crypto_akcipher_encrypt(&req_ctx
->child_req
);
303 if (err
!= -EINPROGRESS
&&
305 !(req
->base
.flags
& CRYPTO_TFM_REQ_MAY_BACKLOG
)))
306 return pkcs1pad_encrypt_sign_complete(req
, err
);
311 static int pkcs1pad_decrypt_complete(struct akcipher_request
*req
, int err
)
313 struct crypto_akcipher
*tfm
= crypto_akcipher_reqtfm(req
);
314 struct pkcs1pad_ctx
*ctx
= akcipher_tfm_ctx(tfm
);
315 struct pkcs1pad_request
*req_ctx
= akcipher_request_ctx(req
);
318 if (err
== -EOVERFLOW
)
319 /* Decrypted value had no leading 0 byte */
325 if (req_ctx
->child_req
.dst_len
!= ctx
->key_size
- 1) {
330 if (req_ctx
->out_buf
[0] != 0x02) {
334 for (pos
= 1; pos
< req_ctx
->child_req
.dst_len
; pos
++)
335 if (req_ctx
->out_buf
[pos
] == 0x00)
337 if (pos
< 9 || pos
== req_ctx
->child_req
.dst_len
) {
343 if (req
->dst_len
< req_ctx
->child_req
.dst_len
- pos
)
345 req
->dst_len
= req_ctx
->child_req
.dst_len
- pos
;
348 sg_copy_from_buffer(req
->dst
,
349 sg_nents_for_len(req
->dst
, req
->dst_len
),
350 req_ctx
->out_buf
+ pos
, req
->dst_len
);
353 kzfree(req_ctx
->out_buf
);
358 static void pkcs1pad_decrypt_complete_cb(
359 struct crypto_async_request
*child_async_req
, int err
)
361 struct akcipher_request
*req
= child_async_req
->data
;
362 struct crypto_async_request async_req
;
364 if (err
== -EINPROGRESS
)
367 async_req
.data
= req
->base
.data
;
368 async_req
.tfm
= crypto_akcipher_tfm(crypto_akcipher_reqtfm(req
));
369 async_req
.flags
= child_async_req
->flags
;
370 req
->base
.complete(&async_req
, pkcs1pad_decrypt_complete(req
, err
));
373 static int pkcs1pad_decrypt(struct akcipher_request
*req
)
375 struct crypto_akcipher
*tfm
= crypto_akcipher_reqtfm(req
);
376 struct pkcs1pad_ctx
*ctx
= akcipher_tfm_ctx(tfm
);
377 struct pkcs1pad_request
*req_ctx
= akcipher_request_ctx(req
);
380 if (!ctx
->key_size
|| req
->src_len
!= ctx
->key_size
)
383 if (ctx
->key_size
> PAGE_SIZE
)
386 /* Reuse input buffer, output to a new buffer */
387 req_ctx
->child_req
.src
= req
->src
;
388 req_ctx
->child_req
.src_len
= req
->src_len
;
389 req_ctx
->child_req
.dst
= req_ctx
->out_sg
;
390 req_ctx
->child_req
.dst_len
= ctx
->key_size
- 1;
392 req_ctx
->out_buf
= kmalloc(ctx
->key_size
- 1,
393 (req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
) ?
394 GFP_KERNEL
: GFP_ATOMIC
);
395 if (!req_ctx
->out_buf
)
398 pkcs1pad_sg_set_buf(req_ctx
->out_sg
, req_ctx
->out_buf
,
399 ctx
->key_size
- 1, NULL
);
401 akcipher_request_set_tfm(&req_ctx
->child_req
, ctx
->child
);
402 akcipher_request_set_callback(&req_ctx
->child_req
, req
->base
.flags
,
403 pkcs1pad_decrypt_complete_cb
, req
);
405 err
= crypto_akcipher_decrypt(&req_ctx
->child_req
);
406 if (err
!= -EINPROGRESS
&&
408 !(req
->base
.flags
& CRYPTO_TFM_REQ_MAY_BACKLOG
)))
409 return pkcs1pad_decrypt_complete(req
, err
);
414 static int pkcs1pad_sign(struct akcipher_request
*req
)
416 struct crypto_akcipher
*tfm
= crypto_akcipher_reqtfm(req
);
417 struct pkcs1pad_ctx
*ctx
= akcipher_tfm_ctx(tfm
);
418 struct pkcs1pad_request
*req_ctx
= akcipher_request_ctx(req
);
419 const struct rsa_asn1_template
*digest_info
= NULL
;
421 unsigned int ps_end
, digest_size
= 0;
426 if (ctx
->hash_name
) {
427 digest_info
= rsa_lookup_asn1(ctx
->hash_name
);
431 digest_size
= digest_info
->size
;
434 if (req
->src_len
+ digest_size
> ctx
->key_size
- 11)
437 if (req
->dst_len
< ctx
->key_size
) {
438 req
->dst_len
= ctx
->key_size
;
442 if (ctx
->key_size
> PAGE_SIZE
)
446 * Replace both input and output to add the padding in the input and
447 * the potential missing leading zeros in the output.
449 req_ctx
->child_req
.src
= req_ctx
->in_sg
;
450 req_ctx
->child_req
.src_len
= ctx
->key_size
- 1;
451 req_ctx
->child_req
.dst
= req_ctx
->out_sg
;
452 req_ctx
->child_req
.dst_len
= ctx
->key_size
;
454 req_ctx
->in_buf
= kmalloc(ctx
->key_size
- 1 - req
->src_len
,
455 (req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
) ?
456 GFP_KERNEL
: GFP_ATOMIC
);
457 if (!req_ctx
->in_buf
)
460 ps_end
= ctx
->key_size
- digest_size
- req
->src_len
- 2;
461 req_ctx
->in_buf
[0] = 0x01;
462 memset(req_ctx
->in_buf
+ 1, 0xff, ps_end
- 1);
463 req_ctx
->in_buf
[ps_end
] = 0x00;
466 memcpy(req_ctx
->in_buf
+ ps_end
+ 1, digest_info
->data
,
470 pkcs1pad_sg_set_buf(req_ctx
->in_sg
, req_ctx
->in_buf
,
471 ctx
->key_size
- 1 - req
->src_len
, req
->src
);
473 req_ctx
->out_buf
= kmalloc(ctx
->key_size
,
474 (req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
) ?
475 GFP_KERNEL
: GFP_ATOMIC
);
476 if (!req_ctx
->out_buf
) {
477 kfree(req_ctx
->in_buf
);
481 pkcs1pad_sg_set_buf(req_ctx
->out_sg
, req_ctx
->out_buf
,
482 ctx
->key_size
, NULL
);
484 akcipher_request_set_tfm(&req_ctx
->child_req
, ctx
->child
);
485 akcipher_request_set_callback(&req_ctx
->child_req
, req
->base
.flags
,
486 pkcs1pad_encrypt_sign_complete_cb
, req
);
488 err
= crypto_akcipher_sign(&req_ctx
->child_req
);
489 if (err
!= -EINPROGRESS
&&
491 !(req
->base
.flags
& CRYPTO_TFM_REQ_MAY_BACKLOG
)))
492 return pkcs1pad_encrypt_sign_complete(req
, err
);
497 static int pkcs1pad_verify_complete(struct akcipher_request
*req
, int err
)
499 struct crypto_akcipher
*tfm
= crypto_akcipher_reqtfm(req
);
500 struct pkcs1pad_ctx
*ctx
= akcipher_tfm_ctx(tfm
);
501 struct pkcs1pad_request
*req_ctx
= akcipher_request_ctx(req
);
502 const struct rsa_asn1_template
*digest_info
;
505 if (err
== -EOVERFLOW
)
506 /* Decrypted value had no leading 0 byte */
512 if (req_ctx
->child_req
.dst_len
!= ctx
->key_size
- 1) {
518 if (req_ctx
->out_buf
[0] != 0x01)
521 for (pos
= 1; pos
< req_ctx
->child_req
.dst_len
; pos
++)
522 if (req_ctx
->out_buf
[pos
] != 0xff)
525 if (pos
< 9 || pos
== req_ctx
->child_req
.dst_len
||
526 req_ctx
->out_buf
[pos
] != 0x00)
530 if (ctx
->hash_name
) {
531 digest_info
= rsa_lookup_asn1(ctx
->hash_name
);
535 if (memcmp(req_ctx
->out_buf
+ pos
, digest_info
->data
,
539 pos
+= digest_info
->size
;
544 if (req
->dst_len
< req_ctx
->child_req
.dst_len
- pos
)
546 req
->dst_len
= req_ctx
->child_req
.dst_len
- pos
;
549 sg_copy_from_buffer(req
->dst
,
550 sg_nents_for_len(req
->dst
, req
->dst_len
),
551 req_ctx
->out_buf
+ pos
, req
->dst_len
);
553 kzfree(req_ctx
->out_buf
);
558 static void pkcs1pad_verify_complete_cb(
559 struct crypto_async_request
*child_async_req
, int err
)
561 struct akcipher_request
*req
= child_async_req
->data
;
562 struct crypto_async_request async_req
;
564 if (err
== -EINPROGRESS
)
567 async_req
.data
= req
->base
.data
;
568 async_req
.tfm
= crypto_akcipher_tfm(crypto_akcipher_reqtfm(req
));
569 async_req
.flags
= child_async_req
->flags
;
570 req
->base
.complete(&async_req
, pkcs1pad_verify_complete(req
, err
));
574 * The verify operation is here for completeness similar to the verification
575 * defined in RFC2313 section 10.2 except that block type 0 is not accepted,
576 * as in RFC2437. RFC2437 section 9.2 doesn't define any operation to
577 * retrieve the DigestInfo from a signature, instead the user is expected
578 * to call the sign operation to generate the expected signature and compare
579 * signatures instead of the message-digests.
581 static int pkcs1pad_verify(struct akcipher_request
*req
)
583 struct crypto_akcipher
*tfm
= crypto_akcipher_reqtfm(req
);
584 struct pkcs1pad_ctx
*ctx
= akcipher_tfm_ctx(tfm
);
585 struct pkcs1pad_request
*req_ctx
= akcipher_request_ctx(req
);
588 if (!ctx
->key_size
|| req
->src_len
< ctx
->key_size
)
591 if (ctx
->key_size
> PAGE_SIZE
)
594 /* Reuse input buffer, output to a new buffer */
595 req_ctx
->child_req
.src
= req
->src
;
596 req_ctx
->child_req
.src_len
= req
->src_len
;
597 req_ctx
->child_req
.dst
= req_ctx
->out_sg
;
598 req_ctx
->child_req
.dst_len
= ctx
->key_size
- 1;
600 req_ctx
->out_buf
= kmalloc(ctx
->key_size
- 1,
601 (req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
) ?
602 GFP_KERNEL
: GFP_ATOMIC
);
603 if (!req_ctx
->out_buf
)
606 pkcs1pad_sg_set_buf(req_ctx
->out_sg
, req_ctx
->out_buf
,
607 ctx
->key_size
- 1, NULL
);
609 akcipher_request_set_tfm(&req_ctx
->child_req
, ctx
->child
);
610 akcipher_request_set_callback(&req_ctx
->child_req
, req
->base
.flags
,
611 pkcs1pad_verify_complete_cb
, req
);
613 err
= crypto_akcipher_verify(&req_ctx
->child_req
);
614 if (err
!= -EINPROGRESS
&&
616 !(req
->base
.flags
& CRYPTO_TFM_REQ_MAY_BACKLOG
)))
617 return pkcs1pad_verify_complete(req
, err
);
622 static int pkcs1pad_init_tfm(struct crypto_akcipher
*tfm
)
624 struct akcipher_instance
*inst
= akcipher_alg_instance(tfm
);
625 struct pkcs1pad_inst_ctx
*ictx
= akcipher_instance_ctx(inst
);
626 struct pkcs1pad_ctx
*ctx
= akcipher_tfm_ctx(tfm
);
627 struct crypto_akcipher
*child_tfm
;
629 child_tfm
= crypto_spawn_akcipher(akcipher_instance_ctx(inst
));
630 if (IS_ERR(child_tfm
))
631 return PTR_ERR(child_tfm
);
633 ctx
->child
= child_tfm
;
634 ctx
->hash_name
= ictx
->hash_name
;
638 static void pkcs1pad_exit_tfm(struct crypto_akcipher
*tfm
)
640 struct pkcs1pad_ctx
*ctx
= akcipher_tfm_ctx(tfm
);
642 crypto_free_akcipher(ctx
->child
);
645 static void pkcs1pad_free(struct akcipher_instance
*inst
)
647 struct pkcs1pad_inst_ctx
*ctx
= akcipher_instance_ctx(inst
);
648 struct crypto_akcipher_spawn
*spawn
= &ctx
->spawn
;
650 crypto_drop_akcipher(spawn
);
651 kfree(ctx
->hash_name
);
655 static int pkcs1pad_create(struct crypto_template
*tmpl
, struct rtattr
**tb
)
657 struct crypto_attr_type
*algt
;
658 struct akcipher_instance
*inst
;
659 struct pkcs1pad_inst_ctx
*ctx
;
660 struct crypto_akcipher_spawn
*spawn
;
661 struct akcipher_alg
*rsa_alg
;
662 const char *rsa_alg_name
;
663 const char *hash_name
;
666 algt
= crypto_get_attr_type(tb
);
668 return PTR_ERR(algt
);
670 if ((algt
->type
^ CRYPTO_ALG_TYPE_AKCIPHER
) & algt
->mask
)
673 rsa_alg_name
= crypto_attr_alg_name(tb
[1]);
674 if (IS_ERR(rsa_alg_name
))
675 return PTR_ERR(rsa_alg_name
);
677 hash_name
= crypto_attr_alg_name(tb
[2]);
678 if (IS_ERR(hash_name
))
681 inst
= kzalloc(sizeof(*inst
) + sizeof(*ctx
), GFP_KERNEL
);
685 ctx
= akcipher_instance_ctx(inst
);
687 ctx
->hash_name
= hash_name
? kstrdup(hash_name
, GFP_KERNEL
) : NULL
;
689 crypto_set_spawn(&spawn
->base
, akcipher_crypto_instance(inst
));
690 err
= crypto_grab_akcipher(spawn
, rsa_alg_name
, 0,
691 crypto_requires_sync(algt
->type
, algt
->mask
));
695 rsa_alg
= crypto_spawn_akcipher_alg(spawn
);
700 if (snprintf(inst
->alg
.base
.cra_name
,
701 CRYPTO_MAX_ALG_NAME
, "pkcs1pad(%s)",
702 rsa_alg
->base
.cra_name
) >=
703 CRYPTO_MAX_ALG_NAME
||
704 snprintf(inst
->alg
.base
.cra_driver_name
,
705 CRYPTO_MAX_ALG_NAME
, "pkcs1pad(%s)",
706 rsa_alg
->base
.cra_driver_name
) >=
710 if (snprintf(inst
->alg
.base
.cra_name
,
711 CRYPTO_MAX_ALG_NAME
, "pkcs1pad(%s,%s)",
712 rsa_alg
->base
.cra_name
, hash_name
) >=
713 CRYPTO_MAX_ALG_NAME
||
714 snprintf(inst
->alg
.base
.cra_driver_name
,
715 CRYPTO_MAX_ALG_NAME
, "pkcs1pad(%s,%s)",
716 rsa_alg
->base
.cra_driver_name
, hash_name
) >=
721 inst
->alg
.base
.cra_flags
= rsa_alg
->base
.cra_flags
& CRYPTO_ALG_ASYNC
;
722 inst
->alg
.base
.cra_priority
= rsa_alg
->base
.cra_priority
;
723 inst
->alg
.base
.cra_ctxsize
= sizeof(struct pkcs1pad_ctx
);
725 inst
->alg
.init
= pkcs1pad_init_tfm
;
726 inst
->alg
.exit
= pkcs1pad_exit_tfm
;
728 inst
->alg
.encrypt
= pkcs1pad_encrypt
;
729 inst
->alg
.decrypt
= pkcs1pad_decrypt
;
730 inst
->alg
.sign
= pkcs1pad_sign
;
731 inst
->alg
.verify
= pkcs1pad_verify
;
732 inst
->alg
.set_pub_key
= pkcs1pad_set_pub_key
;
733 inst
->alg
.set_priv_key
= pkcs1pad_set_priv_key
;
734 inst
->alg
.max_size
= pkcs1pad_get_max_size
;
735 inst
->alg
.reqsize
= sizeof(struct pkcs1pad_request
) + rsa_alg
->reqsize
;
737 inst
->free
= pkcs1pad_free
;
739 err
= akcipher_register_instance(tmpl
, inst
);
746 kfree(ctx
->hash_name
);
748 crypto_drop_akcipher(spawn
);
754 struct crypto_template rsa_pkcs1pad_tmpl
= {
756 .create
= pkcs1pad_create
,
757 .module
= THIS_MODULE
,