1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include "net_driver.h"
28 #include "workarounds.h"
30 /* Hardware control for SFC4000 (aka Falcon). */
32 /**************************************************************************
36 **************************************************************************
39 static int disable_dma_stats
;
41 /* This is set to 16 for a good reason. In summary, if larger than
42 * 16, the descriptor cache holds more than a default socket
43 * buffer's worth of packets (for UDP we can only have at most one
44 * socket buffer's worth outstanding). This combined with the fact
45 * that we only get 1 TX event per descriptor cache means the NIC
48 #define TX_DC_ENTRIES 16
49 #define TX_DC_ENTRIES_ORDER 1
50 #define TX_DC_BASE 0x130000
52 #define RX_DC_ENTRIES 64
53 #define RX_DC_ENTRIES_ORDER 3
54 #define RX_DC_BASE 0x100000
56 static const unsigned int
57 /* "Large" EEPROM device: Atmel AT25640 or similar
58 * 8 KB, 16-bit address, 32 B write block */
59 large_eeprom_type
= ((13 << SPI_DEV_TYPE_SIZE_LBN
)
60 | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
61 | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
)),
62 /* Default flash device: Atmel AT25F1024
63 * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
64 default_flash_type
= ((17 << SPI_DEV_TYPE_SIZE_LBN
)
65 | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN
)
66 | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN
)
67 | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN
)
68 | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN
));
70 /* RX FIFO XOFF watermark
72 * When the amount of the RX FIFO increases used increases past this
73 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
74 * This also has an effect on RX/TX arbitration
76 static int rx_xoff_thresh_bytes
= -1;
77 module_param(rx_xoff_thresh_bytes
, int, 0644);
78 MODULE_PARM_DESC(rx_xoff_thresh_bytes
, "RX fifo XOFF threshold");
80 /* RX FIFO XON watermark
82 * When the amount of the RX FIFO used decreases below this
83 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
84 * This also has an effect on RX/TX arbitration
86 static int rx_xon_thresh_bytes
= -1;
87 module_param(rx_xon_thresh_bytes
, int, 0644);
88 MODULE_PARM_DESC(rx_xon_thresh_bytes
, "RX fifo XON threshold");
90 /* If FALCON_MAX_INT_ERRORS internal errors occur within
91 * FALCON_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
94 #define FALCON_INT_ERROR_EXPIRE 3600
95 #define FALCON_MAX_INT_ERRORS 5
97 /* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
99 #define FALCON_FLUSH_INTERVAL 10
100 #define FALCON_FLUSH_POLL_COUNT 100
102 /**************************************************************************
106 **************************************************************************
109 /* Size and alignment of special buffers (4KB) */
110 #define FALCON_BUF_SIZE 4096
112 #define FALCON_IS_DUAL_FUNC(efx) \
113 (falcon_rev(efx) < FALCON_REV_B0)
115 /**************************************************************************
117 * Falcon hardware access
119 **************************************************************************/
121 static inline void falcon_write_buf_tbl(struct efx_nic
*efx
, efx_qword_t
*value
,
124 efx_sram_writeq(efx
, efx
->membase
+ efx
->type
->buf_tbl_base
,
128 /* Read the current event from the event queue */
129 static inline efx_qword_t
*falcon_event(struct efx_channel
*channel
,
132 return (((efx_qword_t
*) (channel
->eventq
.addr
)) + index
);
135 /* See if an event is present
137 * We check both the high and low dword of the event for all ones. We
138 * wrote all ones when we cleared the event, and no valid event can
139 * have all ones in either its high or low dwords. This approach is
140 * robust against reordering.
142 * Note that using a single 64-bit comparison is incorrect; even
143 * though the CPU read will be atomic, the DMA write may not be.
145 static inline int falcon_event_present(efx_qword_t
*event
)
147 return (!(EFX_DWORD_IS_ALL_ONES(event
->dword
[0]) |
148 EFX_DWORD_IS_ALL_ONES(event
->dword
[1])));
151 /**************************************************************************
153 * I2C bus - this is a bit-bashing interface using GPIO pins
154 * Note that it uses the output enables to tristate the outputs
155 * SDA is the data pin and SCL is the clock
157 **************************************************************************
159 static void falcon_setsda(void *data
, int state
)
161 struct efx_nic
*efx
= (struct efx_nic
*)data
;
164 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
165 EFX_SET_OWORD_FIELD(reg
, FRF_AB_GPIO3_OEN
, !state
);
166 efx_writeo(efx
, ®
, FR_AB_GPIO_CTL
);
169 static void falcon_setscl(void *data
, int state
)
171 struct efx_nic
*efx
= (struct efx_nic
*)data
;
174 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
175 EFX_SET_OWORD_FIELD(reg
, FRF_AB_GPIO0_OEN
, !state
);
176 efx_writeo(efx
, ®
, FR_AB_GPIO_CTL
);
179 static int falcon_getsda(void *data
)
181 struct efx_nic
*efx
= (struct efx_nic
*)data
;
184 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
185 return EFX_OWORD_FIELD(reg
, FRF_AB_GPIO3_IN
);
188 static int falcon_getscl(void *data
)
190 struct efx_nic
*efx
= (struct efx_nic
*)data
;
193 efx_reado(efx
, ®
, FR_AB_GPIO_CTL
);
194 return EFX_OWORD_FIELD(reg
, FRF_AB_GPIO0_IN
);
197 static struct i2c_algo_bit_data falcon_i2c_bit_operations
= {
198 .setsda
= falcon_setsda
,
199 .setscl
= falcon_setscl
,
200 .getsda
= falcon_getsda
,
201 .getscl
= falcon_getscl
,
203 /* Wait up to 50 ms for slave to let us pull SCL high */
204 .timeout
= DIV_ROUND_UP(HZ
, 20),
207 /**************************************************************************
209 * Falcon special buffer handling
210 * Special buffers are used for event queues and the TX and RX
213 *************************************************************************/
216 * Initialise a Falcon special buffer
218 * This will define a buffer (previously allocated via
219 * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing
220 * it to be used for event queues, descriptor rings etc.
223 falcon_init_special_buffer(struct efx_nic
*efx
,
224 struct efx_special_buffer
*buffer
)
226 efx_qword_t buf_desc
;
231 EFX_BUG_ON_PARANOID(!buffer
->addr
);
233 /* Write buffer descriptors to NIC */
234 for (i
= 0; i
< buffer
->entries
; i
++) {
235 index
= buffer
->index
+ i
;
236 dma_addr
= buffer
->dma_addr
+ (i
* 4096);
237 EFX_LOG(efx
, "mapping special buffer %d at %llx\n",
238 index
, (unsigned long long)dma_addr
);
239 EFX_POPULATE_QWORD_3(buf_desc
,
240 FRF_AZ_BUF_ADR_REGION
, 0,
241 FRF_AZ_BUF_ADR_FBUF
, dma_addr
>> 12,
242 FRF_AZ_BUF_OWNER_ID_FBUF
, 0);
243 falcon_write_buf_tbl(efx
, &buf_desc
, index
);
247 /* Unmaps a buffer from Falcon and clears the buffer table entries */
249 falcon_fini_special_buffer(struct efx_nic
*efx
,
250 struct efx_special_buffer
*buffer
)
252 efx_oword_t buf_tbl_upd
;
253 unsigned int start
= buffer
->index
;
254 unsigned int end
= (buffer
->index
+ buffer
->entries
- 1);
256 if (!buffer
->entries
)
259 EFX_LOG(efx
, "unmapping special buffers %d-%d\n",
260 buffer
->index
, buffer
->index
+ buffer
->entries
- 1);
262 EFX_POPULATE_OWORD_4(buf_tbl_upd
,
263 FRF_AZ_BUF_UPD_CMD
, 0,
264 FRF_AZ_BUF_CLR_CMD
, 1,
265 FRF_AZ_BUF_CLR_END_ID
, end
,
266 FRF_AZ_BUF_CLR_START_ID
, start
);
267 efx_writeo(efx
, &buf_tbl_upd
, FR_AZ_BUF_TBL_UPD
);
271 * Allocate a new Falcon special buffer
273 * This allocates memory for a new buffer, clears it and allocates a
274 * new buffer ID range. It does not write into Falcon's buffer table.
276 * This call will allocate 4KB buffers, since Falcon can't use 8KB
277 * buffers for event queues and descriptor rings.
279 static int falcon_alloc_special_buffer(struct efx_nic
*efx
,
280 struct efx_special_buffer
*buffer
,
283 len
= ALIGN(len
, FALCON_BUF_SIZE
);
285 buffer
->addr
= pci_alloc_consistent(efx
->pci_dev
, len
,
290 buffer
->entries
= len
/ FALCON_BUF_SIZE
;
291 BUG_ON(buffer
->dma_addr
& (FALCON_BUF_SIZE
- 1));
293 /* All zeros is a potentially valid event so memset to 0xff */
294 memset(buffer
->addr
, 0xff, len
);
296 /* Select new buffer ID */
297 buffer
->index
= efx
->next_buffer_table
;
298 efx
->next_buffer_table
+= buffer
->entries
;
300 EFX_LOG(efx
, "allocating special buffers %d-%d at %llx+%x "
301 "(virt %p phys %llx)\n", buffer
->index
,
302 buffer
->index
+ buffer
->entries
- 1,
303 (u64
)buffer
->dma_addr
, len
,
304 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
309 static void falcon_free_special_buffer(struct efx_nic
*efx
,
310 struct efx_special_buffer
*buffer
)
315 EFX_LOG(efx
, "deallocating special buffers %d-%d at %llx+%x "
316 "(virt %p phys %llx)\n", buffer
->index
,
317 buffer
->index
+ buffer
->entries
- 1,
318 (u64
)buffer
->dma_addr
, buffer
->len
,
319 buffer
->addr
, (u64
)virt_to_phys(buffer
->addr
));
321 pci_free_consistent(efx
->pci_dev
, buffer
->len
, buffer
->addr
,
327 /**************************************************************************
329 * Falcon generic buffer handling
330 * These buffers are used for interrupt status and MAC stats
332 **************************************************************************/
334 static int falcon_alloc_buffer(struct efx_nic
*efx
,
335 struct efx_buffer
*buffer
, unsigned int len
)
337 buffer
->addr
= pci_alloc_consistent(efx
->pci_dev
, len
,
342 memset(buffer
->addr
, 0, len
);
346 static void falcon_free_buffer(struct efx_nic
*efx
, struct efx_buffer
*buffer
)
349 pci_free_consistent(efx
->pci_dev
, buffer
->len
,
350 buffer
->addr
, buffer
->dma_addr
);
355 /**************************************************************************
359 **************************************************************************/
361 /* Returns a pointer to the specified transmit descriptor in the TX
362 * descriptor queue belonging to the specified channel.
364 static inline efx_qword_t
*falcon_tx_desc(struct efx_tx_queue
*tx_queue
,
367 return (((efx_qword_t
*) (tx_queue
->txd
.addr
)) + index
);
370 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
371 static inline void falcon_notify_tx_desc(struct efx_tx_queue
*tx_queue
)
376 write_ptr
= tx_queue
->write_count
& EFX_TXQ_MASK
;
377 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_TX_DESC_WPTR_DWORD
, write_ptr
);
378 efx_writed_page(tx_queue
->efx
, ®
,
379 FR_AZ_TX_DESC_UPD_DWORD_P0
, tx_queue
->queue
);
383 /* For each entry inserted into the software descriptor ring, create a
384 * descriptor in the hardware TX descriptor ring (in host memory), and
387 void falcon_push_buffers(struct efx_tx_queue
*tx_queue
)
390 struct efx_tx_buffer
*buffer
;
394 BUG_ON(tx_queue
->write_count
== tx_queue
->insert_count
);
397 write_ptr
= tx_queue
->write_count
& EFX_TXQ_MASK
;
398 buffer
= &tx_queue
->buffer
[write_ptr
];
399 txd
= falcon_tx_desc(tx_queue
, write_ptr
);
400 ++tx_queue
->write_count
;
402 /* Create TX descriptor ring entry */
403 EFX_POPULATE_QWORD_4(*txd
,
404 FSF_AZ_TX_KER_CONT
, buffer
->continuation
,
405 FSF_AZ_TX_KER_BYTE_COUNT
, buffer
->len
,
406 FSF_AZ_TX_KER_BUF_REGION
, 0,
407 FSF_AZ_TX_KER_BUF_ADDR
, buffer
->dma_addr
);
408 } while (tx_queue
->write_count
!= tx_queue
->insert_count
);
410 wmb(); /* Ensure descriptors are written before they are fetched */
411 falcon_notify_tx_desc(tx_queue
);
414 /* Allocate hardware resources for a TX queue */
415 int falcon_probe_tx(struct efx_tx_queue
*tx_queue
)
417 struct efx_nic
*efx
= tx_queue
->efx
;
418 BUILD_BUG_ON(EFX_TXQ_SIZE
< 512 || EFX_TXQ_SIZE
> 4096 ||
419 EFX_TXQ_SIZE
& EFX_TXQ_MASK
);
420 return falcon_alloc_special_buffer(efx
, &tx_queue
->txd
,
421 EFX_TXQ_SIZE
* sizeof(efx_qword_t
));
424 void falcon_init_tx(struct efx_tx_queue
*tx_queue
)
426 efx_oword_t tx_desc_ptr
;
427 struct efx_nic
*efx
= tx_queue
->efx
;
429 tx_queue
->flushed
= false;
431 /* Pin TX descriptor ring */
432 falcon_init_special_buffer(efx
, &tx_queue
->txd
);
434 /* Push TX descriptor ring to card */
435 EFX_POPULATE_OWORD_10(tx_desc_ptr
,
436 FRF_AZ_TX_DESCQ_EN
, 1,
437 FRF_AZ_TX_ISCSI_DDIG_EN
, 0,
438 FRF_AZ_TX_ISCSI_HDIG_EN
, 0,
439 FRF_AZ_TX_DESCQ_BUF_BASE_ID
, tx_queue
->txd
.index
,
440 FRF_AZ_TX_DESCQ_EVQ_ID
,
441 tx_queue
->channel
->channel
,
442 FRF_AZ_TX_DESCQ_OWNER_ID
, 0,
443 FRF_AZ_TX_DESCQ_LABEL
, tx_queue
->queue
,
444 FRF_AZ_TX_DESCQ_SIZE
,
445 __ffs(tx_queue
->txd
.entries
),
446 FRF_AZ_TX_DESCQ_TYPE
, 0,
447 FRF_BZ_TX_NON_IP_DROP_DIS
, 1);
449 if (falcon_rev(efx
) >= FALCON_REV_B0
) {
450 int csum
= tx_queue
->queue
== EFX_TX_QUEUE_OFFLOAD_CSUM
;
451 EFX_SET_OWORD_FIELD(tx_desc_ptr
, FRF_BZ_TX_IP_CHKSM_DIS
, !csum
);
452 EFX_SET_OWORD_FIELD(tx_desc_ptr
, FRF_BZ_TX_TCP_CHKSM_DIS
,
456 efx_writeo_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
459 if (falcon_rev(efx
) < FALCON_REV_B0
) {
462 /* Only 128 bits in this register */
463 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT
>= 128);
465 efx_reado(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
466 if (tx_queue
->queue
== EFX_TX_QUEUE_OFFLOAD_CSUM
)
467 clear_bit_le(tx_queue
->queue
, (void *)®
);
469 set_bit_le(tx_queue
->queue
, (void *)®
);
470 efx_writeo(efx
, ®
, FR_AA_TX_CHKSM_CFG
);
474 static void falcon_flush_tx_queue(struct efx_tx_queue
*tx_queue
)
476 struct efx_nic
*efx
= tx_queue
->efx
;
477 efx_oword_t tx_flush_descq
;
479 /* Post a flush command */
480 EFX_POPULATE_OWORD_2(tx_flush_descq
,
481 FRF_AZ_TX_FLUSH_DESCQ_CMD
, 1,
482 FRF_AZ_TX_FLUSH_DESCQ
, tx_queue
->queue
);
483 efx_writeo(efx
, &tx_flush_descq
, FR_AZ_TX_FLUSH_DESCQ
);
486 void falcon_fini_tx(struct efx_tx_queue
*tx_queue
)
488 struct efx_nic
*efx
= tx_queue
->efx
;
489 efx_oword_t tx_desc_ptr
;
491 /* The queue should have been flushed */
492 WARN_ON(!tx_queue
->flushed
);
494 /* Remove TX descriptor ring from card */
495 EFX_ZERO_OWORD(tx_desc_ptr
);
496 efx_writeo_table(efx
, &tx_desc_ptr
, efx
->type
->txd_ptr_tbl_base
,
499 /* Unpin TX descriptor ring */
500 falcon_fini_special_buffer(efx
, &tx_queue
->txd
);
503 /* Free buffers backing TX queue */
504 void falcon_remove_tx(struct efx_tx_queue
*tx_queue
)
506 falcon_free_special_buffer(tx_queue
->efx
, &tx_queue
->txd
);
509 /**************************************************************************
513 **************************************************************************/
515 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
516 static inline efx_qword_t
*falcon_rx_desc(struct efx_rx_queue
*rx_queue
,
519 return (((efx_qword_t
*) (rx_queue
->rxd
.addr
)) + index
);
522 /* This creates an entry in the RX descriptor queue */
523 static inline void falcon_build_rx_desc(struct efx_rx_queue
*rx_queue
,
526 struct efx_rx_buffer
*rx_buf
;
529 rxd
= falcon_rx_desc(rx_queue
, index
);
530 rx_buf
= efx_rx_buffer(rx_queue
, index
);
531 EFX_POPULATE_QWORD_3(*rxd
,
532 FSF_AZ_RX_KER_BUF_SIZE
,
534 rx_queue
->efx
->type
->rx_buffer_padding
,
535 FSF_AZ_RX_KER_BUF_REGION
, 0,
536 FSF_AZ_RX_KER_BUF_ADDR
, rx_buf
->dma_addr
);
539 /* This writes to the RX_DESC_WPTR register for the specified receive
542 void falcon_notify_rx_desc(struct efx_rx_queue
*rx_queue
)
547 while (rx_queue
->notified_count
!= rx_queue
->added_count
) {
548 falcon_build_rx_desc(rx_queue
,
549 rx_queue
->notified_count
&
551 ++rx_queue
->notified_count
;
555 write_ptr
= rx_queue
->added_count
& EFX_RXQ_MASK
;
556 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_RX_DESC_WPTR_DWORD
, write_ptr
);
557 efx_writed_page(rx_queue
->efx
, ®
,
558 FR_AZ_RX_DESC_UPD_DWORD_P0
, rx_queue
->queue
);
561 int falcon_probe_rx(struct efx_rx_queue
*rx_queue
)
563 struct efx_nic
*efx
= rx_queue
->efx
;
564 BUILD_BUG_ON(EFX_RXQ_SIZE
< 512 || EFX_RXQ_SIZE
> 4096 ||
565 EFX_RXQ_SIZE
& EFX_RXQ_MASK
);
566 return falcon_alloc_special_buffer(efx
, &rx_queue
->rxd
,
567 EFX_RXQ_SIZE
* sizeof(efx_qword_t
));
570 void falcon_init_rx(struct efx_rx_queue
*rx_queue
)
572 efx_oword_t rx_desc_ptr
;
573 struct efx_nic
*efx
= rx_queue
->efx
;
574 bool is_b0
= falcon_rev(efx
) >= FALCON_REV_B0
;
575 bool iscsi_digest_en
= is_b0
;
577 EFX_LOG(efx
, "RX queue %d ring in special buffers %d-%d\n",
578 rx_queue
->queue
, rx_queue
->rxd
.index
,
579 rx_queue
->rxd
.index
+ rx_queue
->rxd
.entries
- 1);
581 rx_queue
->flushed
= false;
583 /* Pin RX descriptor ring */
584 falcon_init_special_buffer(efx
, &rx_queue
->rxd
);
586 /* Push RX descriptor ring to card */
587 EFX_POPULATE_OWORD_10(rx_desc_ptr
,
588 FRF_AZ_RX_ISCSI_DDIG_EN
, iscsi_digest_en
,
589 FRF_AZ_RX_ISCSI_HDIG_EN
, iscsi_digest_en
,
590 FRF_AZ_RX_DESCQ_BUF_BASE_ID
, rx_queue
->rxd
.index
,
591 FRF_AZ_RX_DESCQ_EVQ_ID
,
592 rx_queue
->channel
->channel
,
593 FRF_AZ_RX_DESCQ_OWNER_ID
, 0,
594 FRF_AZ_RX_DESCQ_LABEL
, rx_queue
->queue
,
595 FRF_AZ_RX_DESCQ_SIZE
,
596 __ffs(rx_queue
->rxd
.entries
),
597 FRF_AZ_RX_DESCQ_TYPE
, 0 /* kernel queue */ ,
598 /* For >=B0 this is scatter so disable */
599 FRF_AZ_RX_DESCQ_JUMBO
, !is_b0
,
600 FRF_AZ_RX_DESCQ_EN
, 1);
601 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
605 static void falcon_flush_rx_queue(struct efx_rx_queue
*rx_queue
)
607 struct efx_nic
*efx
= rx_queue
->efx
;
608 efx_oword_t rx_flush_descq
;
610 /* Post a flush command */
611 EFX_POPULATE_OWORD_2(rx_flush_descq
,
612 FRF_AZ_RX_FLUSH_DESCQ_CMD
, 1,
613 FRF_AZ_RX_FLUSH_DESCQ
, rx_queue
->queue
);
614 efx_writeo(efx
, &rx_flush_descq
, FR_AZ_RX_FLUSH_DESCQ
);
617 void falcon_fini_rx(struct efx_rx_queue
*rx_queue
)
619 efx_oword_t rx_desc_ptr
;
620 struct efx_nic
*efx
= rx_queue
->efx
;
622 /* The queue should already have been flushed */
623 WARN_ON(!rx_queue
->flushed
);
625 /* Remove RX descriptor ring from card */
626 EFX_ZERO_OWORD(rx_desc_ptr
);
627 efx_writeo_table(efx
, &rx_desc_ptr
, efx
->type
->rxd_ptr_tbl_base
,
630 /* Unpin RX descriptor ring */
631 falcon_fini_special_buffer(efx
, &rx_queue
->rxd
);
634 /* Free buffers backing RX queue */
635 void falcon_remove_rx(struct efx_rx_queue
*rx_queue
)
637 falcon_free_special_buffer(rx_queue
->efx
, &rx_queue
->rxd
);
640 /**************************************************************************
642 * Falcon event queue processing
643 * Event queues are processed by per-channel tasklets.
645 **************************************************************************/
647 /* Update a channel's event queue's read pointer (RPTR) register
649 * This writes the EVQ_RPTR_REG register for the specified channel's
652 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
653 * whereas channel->eventq_read_ptr contains the index of the "next to
656 void falcon_eventq_read_ack(struct efx_channel
*channel
)
659 struct efx_nic
*efx
= channel
->efx
;
661 EFX_POPULATE_DWORD_1(reg
, FRF_AZ_EVQ_RPTR
, channel
->eventq_read_ptr
);
662 efx_writed_table(efx
, ®
, efx
->type
->evq_rptr_tbl_base
,
666 /* Use HW to insert a SW defined event */
667 void falcon_generate_event(struct efx_channel
*channel
, efx_qword_t
*event
)
669 efx_oword_t drv_ev_reg
;
671 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN
!= 0 ||
672 FRF_AZ_DRV_EV_DATA_WIDTH
!= 64);
673 drv_ev_reg
.u32
[0] = event
->u32
[0];
674 drv_ev_reg
.u32
[1] = event
->u32
[1];
675 drv_ev_reg
.u32
[2] = 0;
676 drv_ev_reg
.u32
[3] = 0;
677 EFX_SET_OWORD_FIELD(drv_ev_reg
, FRF_AZ_DRV_EV_QID
, channel
->channel
);
678 efx_writeo(channel
->efx
, &drv_ev_reg
, FR_AZ_DRV_EV
);
681 /* Handle a transmit completion event
683 * Falcon batches TX completion events; the message we receive is of
684 * the form "complete all TX events up to this index".
686 static void falcon_handle_tx_event(struct efx_channel
*channel
,
689 unsigned int tx_ev_desc_ptr
;
690 unsigned int tx_ev_q_label
;
691 struct efx_tx_queue
*tx_queue
;
692 struct efx_nic
*efx
= channel
->efx
;
694 if (likely(EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_COMP
))) {
695 /* Transmit completion */
696 tx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_DESC_PTR
);
697 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
698 tx_queue
= &efx
->tx_queue
[tx_ev_q_label
];
699 channel
->irq_mod_score
+=
700 (tx_ev_desc_ptr
- tx_queue
->read_count
) &
702 efx_xmit_done(tx_queue
, tx_ev_desc_ptr
);
703 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_WQ_FF_FULL
)) {
704 /* Rewrite the FIFO write pointer */
705 tx_ev_q_label
= EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_Q_LABEL
);
706 tx_queue
= &efx
->tx_queue
[tx_ev_q_label
];
708 if (efx_dev_registered(efx
))
709 netif_tx_lock(efx
->net_dev
);
710 falcon_notify_tx_desc(tx_queue
);
711 if (efx_dev_registered(efx
))
712 netif_tx_unlock(efx
->net_dev
);
713 } else if (EFX_QWORD_FIELD(*event
, FSF_AZ_TX_EV_PKT_ERR
) &&
714 EFX_WORKAROUND_10727(efx
)) {
715 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
717 EFX_ERR(efx
, "channel %d unexpected TX event "
718 EFX_QWORD_FMT
"\n", channel
->channel
,
719 EFX_QWORD_VAL(*event
));
723 /* Detect errors included in the rx_evt_pkt_ok bit. */
724 static void falcon_handle_rx_not_ok(struct efx_rx_queue
*rx_queue
,
725 const efx_qword_t
*event
,
729 struct efx_nic
*efx
= rx_queue
->efx
;
730 bool rx_ev_buf_owner_id_err
, rx_ev_ip_hdr_chksum_err
;
731 bool rx_ev_tcp_udp_chksum_err
, rx_ev_eth_crc_err
;
732 bool rx_ev_frm_trunc
, rx_ev_drib_nib
, rx_ev_tobe_disc
;
733 bool rx_ev_other_err
, rx_ev_pause_frm
;
734 bool rx_ev_ip_frag_err
, rx_ev_hdr_type
, rx_ev_mcast_pkt
;
735 unsigned rx_ev_pkt_type
;
737 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
738 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
739 rx_ev_tobe_disc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_TOBE_DISC
);
740 rx_ev_pkt_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_TYPE
);
741 rx_ev_buf_owner_id_err
= EFX_QWORD_FIELD(*event
,
742 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR
);
743 rx_ev_ip_frag_err
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_IP_FRAG_ERR
);
744 rx_ev_ip_hdr_chksum_err
= EFX_QWORD_FIELD(*event
,
745 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR
);
746 rx_ev_tcp_udp_chksum_err
= EFX_QWORD_FIELD(*event
,
747 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR
);
748 rx_ev_eth_crc_err
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_ETH_CRC_ERR
);
749 rx_ev_frm_trunc
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_FRM_TRUNC
);
750 rx_ev_drib_nib
= ((falcon_rev(efx
) >= FALCON_REV_B0
) ?
751 0 : EFX_QWORD_FIELD(*event
, FSF_AA_RX_EV_DRIB_NIB
));
752 rx_ev_pause_frm
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PAUSE_FRM_ERR
);
754 /* Every error apart from tobe_disc and pause_frm */
755 rx_ev_other_err
= (rx_ev_drib_nib
| rx_ev_tcp_udp_chksum_err
|
756 rx_ev_buf_owner_id_err
| rx_ev_eth_crc_err
|
757 rx_ev_frm_trunc
| rx_ev_ip_hdr_chksum_err
);
759 /* Count errors that are not in MAC stats. Ignore expected
760 * checksum errors during self-test. */
762 ++rx_queue
->channel
->n_rx_frm_trunc
;
763 else if (rx_ev_tobe_disc
)
764 ++rx_queue
->channel
->n_rx_tobe_disc
;
765 else if (!efx
->loopback_selftest
) {
766 if (rx_ev_ip_hdr_chksum_err
)
767 ++rx_queue
->channel
->n_rx_ip_hdr_chksum_err
;
768 else if (rx_ev_tcp_udp_chksum_err
)
769 ++rx_queue
->channel
->n_rx_tcp_udp_chksum_err
;
771 if (rx_ev_ip_frag_err
)
772 ++rx_queue
->channel
->n_rx_ip_frag_err
;
774 /* The frame must be discarded if any of these are true. */
775 *discard
= (rx_ev_eth_crc_err
| rx_ev_frm_trunc
| rx_ev_drib_nib
|
776 rx_ev_tobe_disc
| rx_ev_pause_frm
);
778 /* TOBE_DISC is expected on unicast mismatches; don't print out an
779 * error message. FRM_TRUNC indicates RXDP dropped the packet due
780 * to a FIFO overflow.
782 #ifdef EFX_ENABLE_DEBUG
783 if (rx_ev_other_err
) {
784 EFX_INFO_RL(efx
, " RX queue %d unexpected RX event "
785 EFX_QWORD_FMT
"%s%s%s%s%s%s%s%s\n",
786 rx_queue
->queue
, EFX_QWORD_VAL(*event
),
787 rx_ev_buf_owner_id_err
? " [OWNER_ID_ERR]" : "",
788 rx_ev_ip_hdr_chksum_err
?
789 " [IP_HDR_CHKSUM_ERR]" : "",
790 rx_ev_tcp_udp_chksum_err
?
791 " [TCP_UDP_CHKSUM_ERR]" : "",
792 rx_ev_eth_crc_err
? " [ETH_CRC_ERR]" : "",
793 rx_ev_frm_trunc
? " [FRM_TRUNC]" : "",
794 rx_ev_drib_nib
? " [DRIB_NIB]" : "",
795 rx_ev_tobe_disc
? " [TOBE_DISC]" : "",
796 rx_ev_pause_frm
? " [PAUSE]" : "");
801 /* Handle receive events that are not in-order. */
802 static void falcon_handle_rx_bad_index(struct efx_rx_queue
*rx_queue
,
805 struct efx_nic
*efx
= rx_queue
->efx
;
806 unsigned expected
, dropped
;
808 expected
= rx_queue
->removed_count
& EFX_RXQ_MASK
;
809 dropped
= (index
- expected
) & EFX_RXQ_MASK
;
810 EFX_INFO(efx
, "dropped %d events (index=%d expected=%d)\n",
811 dropped
, index
, expected
);
813 efx_schedule_reset(efx
, EFX_WORKAROUND_5676(efx
) ?
814 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
817 /* Handle a packet received event
819 * Falcon silicon gives a "discard" flag if it's a unicast packet with the
820 * wrong destination address
821 * Also "is multicast" and "matches multicast filter" flags can be used to
822 * discard non-matching multicast packets.
824 static void falcon_handle_rx_event(struct efx_channel
*channel
,
825 const efx_qword_t
*event
)
827 unsigned int rx_ev_desc_ptr
, rx_ev_byte_cnt
;
828 unsigned int rx_ev_hdr_type
, rx_ev_mcast_pkt
;
829 unsigned expected_ptr
;
830 bool rx_ev_pkt_ok
, discard
= false, checksummed
;
831 struct efx_rx_queue
*rx_queue
;
832 struct efx_nic
*efx
= channel
->efx
;
834 /* Basic packet information */
835 rx_ev_byte_cnt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_BYTE_CNT
);
836 rx_ev_pkt_ok
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_PKT_OK
);
837 rx_ev_hdr_type
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_HDR_TYPE
);
838 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_JUMBO_CONT
));
839 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_SOP
) != 1);
840 WARN_ON(EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_Q_LABEL
) !=
843 rx_queue
= &efx
->rx_queue
[channel
->channel
];
845 rx_ev_desc_ptr
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_DESC_PTR
);
846 expected_ptr
= rx_queue
->removed_count
& EFX_RXQ_MASK
;
847 if (unlikely(rx_ev_desc_ptr
!= expected_ptr
))
848 falcon_handle_rx_bad_index(rx_queue
, rx_ev_desc_ptr
);
850 if (likely(rx_ev_pkt_ok
)) {
851 /* If packet is marked as OK and packet type is TCP/IPv4 or
852 * UDP/IPv4, then we can rely on the hardware checksum.
855 efx
->rx_checksum_enabled
&&
856 (rx_ev_hdr_type
== FSE_AB_RX_EV_HDR_TYPE_IPV4_TCP
||
857 rx_ev_hdr_type
== FSE_AB_RX_EV_HDR_TYPE_IPV4_UDP
);
859 falcon_handle_rx_not_ok(rx_queue
, event
, &rx_ev_pkt_ok
,
864 /* Detect multicast packets that didn't match the filter */
865 rx_ev_mcast_pkt
= EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_PKT
);
866 if (rx_ev_mcast_pkt
) {
867 unsigned int rx_ev_mcast_hash_match
=
868 EFX_QWORD_FIELD(*event
, FSF_AZ_RX_EV_MCAST_HASH_MATCH
);
870 if (unlikely(!rx_ev_mcast_hash_match
))
874 channel
->irq_mod_score
+= 2;
876 /* Handle received packet */
877 efx_rx_packet(rx_queue
, rx_ev_desc_ptr
, rx_ev_byte_cnt
,
878 checksummed
, discard
);
881 /* Global events are basically PHY events */
882 static void falcon_handle_global_event(struct efx_channel
*channel
,
885 struct efx_nic
*efx
= channel
->efx
;
886 bool handled
= false;
888 if (EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_G_PHY0_INTR
) ||
889 EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_XG_PHY0_INTR
) ||
890 EFX_QWORD_FIELD(*event
, FSF_AB_GLB_EV_XFP_PHY0_INTR
)) {
891 efx
->phy_op
->clear_interrupt(efx
);
892 queue_work(efx
->workqueue
, &efx
->phy_work
);
896 if ((falcon_rev(efx
) >= FALCON_REV_B0
) &&
897 EFX_QWORD_FIELD(*event
, FSF_BB_GLB_EV_XG_MGT_INTR
)) {
898 queue_work(efx
->workqueue
, &efx
->mac_work
);
902 if (falcon_rev(efx
) <= FALCON_REV_A1
?
903 EFX_QWORD_FIELD(*event
, FSF_AA_GLB_EV_RX_RECOVERY
) :
904 EFX_QWORD_FIELD(*event
, FSF_BB_GLB_EV_RX_RECOVERY
)) {
905 EFX_ERR(efx
, "channel %d seen global RX_RESET "
906 "event. Resetting.\n", channel
->channel
);
908 atomic_inc(&efx
->rx_reset
);
909 efx_schedule_reset(efx
, EFX_WORKAROUND_6555(efx
) ?
910 RESET_TYPE_RX_RECOVERY
: RESET_TYPE_DISABLE
);
915 EFX_ERR(efx
, "channel %d unknown global event "
916 EFX_QWORD_FMT
"\n", channel
->channel
,
917 EFX_QWORD_VAL(*event
));
920 static void falcon_handle_driver_event(struct efx_channel
*channel
,
923 struct efx_nic
*efx
= channel
->efx
;
924 unsigned int ev_sub_code
;
925 unsigned int ev_sub_data
;
927 ev_sub_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBCODE
);
928 ev_sub_data
= EFX_QWORD_FIELD(*event
, FSF_AZ_DRIVER_EV_SUBDATA
);
930 switch (ev_sub_code
) {
931 case FSE_AZ_TX_DESCQ_FLS_DONE_EV
:
932 EFX_TRACE(efx
, "channel %d TXQ %d flushed\n",
933 channel
->channel
, ev_sub_data
);
935 case FSE_AZ_RX_DESCQ_FLS_DONE_EV
:
936 EFX_TRACE(efx
, "channel %d RXQ %d flushed\n",
937 channel
->channel
, ev_sub_data
);
939 case FSE_AZ_EVQ_INIT_DONE_EV
:
940 EFX_LOG(efx
, "channel %d EVQ %d initialised\n",
941 channel
->channel
, ev_sub_data
);
943 case FSE_AZ_SRM_UPD_DONE_EV
:
944 EFX_TRACE(efx
, "channel %d SRAM update done\n",
947 case FSE_AZ_WAKE_UP_EV
:
948 EFX_TRACE(efx
, "channel %d RXQ %d wakeup event\n",
949 channel
->channel
, ev_sub_data
);
951 case FSE_AZ_TIMER_EV
:
952 EFX_TRACE(efx
, "channel %d RX queue %d timer expired\n",
953 channel
->channel
, ev_sub_data
);
955 case FSE_AA_RX_RECOVER_EV
:
956 EFX_ERR(efx
, "channel %d seen DRIVER RX_RESET event. "
957 "Resetting.\n", channel
->channel
);
958 atomic_inc(&efx
->rx_reset
);
959 efx_schedule_reset(efx
,
960 EFX_WORKAROUND_6555(efx
) ?
961 RESET_TYPE_RX_RECOVERY
:
964 case FSE_BZ_RX_DSC_ERROR_EV
:
965 EFX_ERR(efx
, "RX DMA Q %d reports descriptor fetch error."
966 " RX Q %d is disabled.\n", ev_sub_data
, ev_sub_data
);
967 efx_schedule_reset(efx
, RESET_TYPE_RX_DESC_FETCH
);
969 case FSE_BZ_TX_DSC_ERROR_EV
:
970 EFX_ERR(efx
, "TX DMA Q %d reports descriptor fetch error."
971 " TX Q %d is disabled.\n", ev_sub_data
, ev_sub_data
);
972 efx_schedule_reset(efx
, RESET_TYPE_TX_DESC_FETCH
);
975 EFX_TRACE(efx
, "channel %d unknown driver event code %d "
976 "data %04x\n", channel
->channel
, ev_sub_code
,
982 int falcon_process_eventq(struct efx_channel
*channel
, int rx_quota
)
984 unsigned int read_ptr
;
985 efx_qword_t event
, *p_event
;
989 read_ptr
= channel
->eventq_read_ptr
;
992 p_event
= falcon_event(channel
, read_ptr
);
995 if (!falcon_event_present(&event
))
999 EFX_TRACE(channel
->efx
, "channel %d event is "EFX_QWORD_FMT
"\n",
1000 channel
->channel
, EFX_QWORD_VAL(event
));
1002 /* Clear this event by marking it all ones */
1003 EFX_SET_QWORD(*p_event
);
1005 ev_code
= EFX_QWORD_FIELD(event
, FSF_AZ_EV_CODE
);
1008 case FSE_AZ_EV_CODE_RX_EV
:
1009 falcon_handle_rx_event(channel
, &event
);
1012 case FSE_AZ_EV_CODE_TX_EV
:
1013 falcon_handle_tx_event(channel
, &event
);
1015 case FSE_AZ_EV_CODE_DRV_GEN_EV
:
1016 channel
->eventq_magic
= EFX_QWORD_FIELD(
1017 event
, FSF_AZ_DRV_GEN_EV_MAGIC
);
1018 EFX_LOG(channel
->efx
, "channel %d received generated "
1019 "event "EFX_QWORD_FMT
"\n", channel
->channel
,
1020 EFX_QWORD_VAL(event
));
1022 case FSE_AZ_EV_CODE_GLOBAL_EV
:
1023 falcon_handle_global_event(channel
, &event
);
1025 case FSE_AZ_EV_CODE_DRIVER_EV
:
1026 falcon_handle_driver_event(channel
, &event
);
1029 EFX_ERR(channel
->efx
, "channel %d unknown event type %d"
1030 " (data " EFX_QWORD_FMT
")\n", channel
->channel
,
1031 ev_code
, EFX_QWORD_VAL(event
));
1034 /* Increment read pointer */
1035 read_ptr
= (read_ptr
+ 1) & EFX_EVQ_MASK
;
1037 } while (rx_packets
< rx_quota
);
1039 channel
->eventq_read_ptr
= read_ptr
;
1043 void falcon_set_int_moderation(struct efx_channel
*channel
)
1045 efx_dword_t timer_cmd
;
1046 struct efx_nic
*efx
= channel
->efx
;
1048 /* Set timer register */
1049 if (channel
->irq_moderation
) {
1050 EFX_POPULATE_DWORD_2(timer_cmd
,
1051 FRF_AB_TC_TIMER_MODE
,
1052 FFE_BB_TIMER_MODE_INT_HLDOFF
,
1053 FRF_AB_TC_TIMER_VAL
,
1054 channel
->irq_moderation
- 1);
1056 EFX_POPULATE_DWORD_2(timer_cmd
,
1057 FRF_AB_TC_TIMER_MODE
,
1058 FFE_BB_TIMER_MODE_DIS
,
1059 FRF_AB_TC_TIMER_VAL
, 0);
1061 BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER
!= FR_BZ_TIMER_COMMAND_P0
);
1062 efx_writed_page_locked(efx
, &timer_cmd
, FR_BZ_TIMER_COMMAND_P0
,
1067 /* Allocate buffer table entries for event queue */
1068 int falcon_probe_eventq(struct efx_channel
*channel
)
1070 struct efx_nic
*efx
= channel
->efx
;
1071 BUILD_BUG_ON(EFX_EVQ_SIZE
< 512 || EFX_EVQ_SIZE
> 32768 ||
1072 EFX_EVQ_SIZE
& EFX_EVQ_MASK
);
1073 return falcon_alloc_special_buffer(efx
, &channel
->eventq
,
1074 EFX_EVQ_SIZE
* sizeof(efx_qword_t
));
1077 void falcon_init_eventq(struct efx_channel
*channel
)
1079 efx_oword_t evq_ptr
;
1080 struct efx_nic
*efx
= channel
->efx
;
1082 EFX_LOG(efx
, "channel %d event queue in special buffers %d-%d\n",
1083 channel
->channel
, channel
->eventq
.index
,
1084 channel
->eventq
.index
+ channel
->eventq
.entries
- 1);
1086 /* Pin event queue buffer */
1087 falcon_init_special_buffer(efx
, &channel
->eventq
);
1089 /* Fill event queue with all ones (i.e. empty events) */
1090 memset(channel
->eventq
.addr
, 0xff, channel
->eventq
.len
);
1092 /* Push event queue to card */
1093 EFX_POPULATE_OWORD_3(evq_ptr
,
1095 FRF_AZ_EVQ_SIZE
, __ffs(channel
->eventq
.entries
),
1096 FRF_AZ_EVQ_BUF_BASE_ID
, channel
->eventq
.index
);
1097 efx_writeo_table(efx
, &evq_ptr
, efx
->type
->evq_ptr_tbl_base
,
1100 falcon_set_int_moderation(channel
);
1103 void falcon_fini_eventq(struct efx_channel
*channel
)
1105 efx_oword_t eventq_ptr
;
1106 struct efx_nic
*efx
= channel
->efx
;
1108 /* Remove event queue from card */
1109 EFX_ZERO_OWORD(eventq_ptr
);
1110 efx_writeo_table(efx
, &eventq_ptr
, efx
->type
->evq_ptr_tbl_base
,
1113 /* Unpin event queue */
1114 falcon_fini_special_buffer(efx
, &channel
->eventq
);
1117 /* Free buffers backing event queue */
1118 void falcon_remove_eventq(struct efx_channel
*channel
)
1120 falcon_free_special_buffer(channel
->efx
, &channel
->eventq
);
1124 /* Generates a test event on the event queue. A subsequent call to
1125 * process_eventq() should pick up the event and place the value of
1126 * "magic" into channel->eventq_magic;
1128 void falcon_generate_test_event(struct efx_channel
*channel
, unsigned int magic
)
1130 efx_qword_t test_event
;
1132 EFX_POPULATE_QWORD_2(test_event
, FSF_AZ_EV_CODE
,
1133 FSE_AZ_EV_CODE_DRV_GEN_EV
,
1134 FSF_AZ_DRV_GEN_EV_MAGIC
, magic
);
1135 falcon_generate_event(channel
, &test_event
);
1138 void falcon_sim_phy_event(struct efx_nic
*efx
)
1140 efx_qword_t phy_event
;
1142 EFX_POPULATE_QWORD_1(phy_event
, FSF_AZ_EV_CODE
,
1143 FSE_AZ_EV_CODE_GLOBAL_EV
);
1145 EFX_SET_QWORD_FIELD(phy_event
, FSF_AB_GLB_EV_XG_PHY0_INTR
, 1);
1147 EFX_SET_QWORD_FIELD(phy_event
, FSF_AB_GLB_EV_G_PHY0_INTR
, 1);
1149 falcon_generate_event(&efx
->channel
[0], &phy_event
);
1152 /**************************************************************************
1156 **************************************************************************/
1159 static void falcon_poll_flush_events(struct efx_nic
*efx
)
1161 struct efx_channel
*channel
= &efx
->channel
[0];
1162 struct efx_tx_queue
*tx_queue
;
1163 struct efx_rx_queue
*rx_queue
;
1164 unsigned int read_ptr
= channel
->eventq_read_ptr
;
1165 unsigned int end_ptr
= (read_ptr
- 1) & EFX_EVQ_MASK
;
1168 efx_qword_t
*event
= falcon_event(channel
, read_ptr
);
1169 int ev_code
, ev_sub_code
, ev_queue
;
1172 if (!falcon_event_present(event
))
1175 ev_code
= EFX_QWORD_FIELD(*event
, FSF_AZ_EV_CODE
);
1176 ev_sub_code
= EFX_QWORD_FIELD(*event
,
1177 FSF_AZ_DRIVER_EV_SUBCODE
);
1178 if (ev_code
== FSE_AZ_EV_CODE_DRIVER_EV
&&
1179 ev_sub_code
== FSE_AZ_TX_DESCQ_FLS_DONE_EV
) {
1180 ev_queue
= EFX_QWORD_FIELD(*event
,
1181 FSF_AZ_DRIVER_EV_SUBDATA
);
1182 if (ev_queue
< EFX_TX_QUEUE_COUNT
) {
1183 tx_queue
= efx
->tx_queue
+ ev_queue
;
1184 tx_queue
->flushed
= true;
1186 } else if (ev_code
== FSE_AZ_EV_CODE_DRIVER_EV
&&
1187 ev_sub_code
== FSE_AZ_RX_DESCQ_FLS_DONE_EV
) {
1188 ev_queue
= EFX_QWORD_FIELD(
1189 *event
, FSF_AZ_DRIVER_EV_RX_DESCQ_ID
);
1190 ev_failed
= EFX_QWORD_FIELD(
1191 *event
, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL
);
1192 if (ev_queue
< efx
->n_rx_queues
) {
1193 rx_queue
= efx
->rx_queue
+ ev_queue
;
1195 /* retry the rx flush */
1197 falcon_flush_rx_queue(rx_queue
);
1199 rx_queue
->flushed
= true;
1203 read_ptr
= (read_ptr
+ 1) & EFX_EVQ_MASK
;
1204 } while (read_ptr
!= end_ptr
);
1207 /* Handle tx and rx flushes at the same time, since they run in
1208 * parallel in the hardware and there's no reason for us to
1210 int falcon_flush_queues(struct efx_nic
*efx
)
1212 struct efx_rx_queue
*rx_queue
;
1213 struct efx_tx_queue
*tx_queue
;
1217 /* Issue flush requests */
1218 efx_for_each_tx_queue(tx_queue
, efx
) {
1219 tx_queue
->flushed
= false;
1220 falcon_flush_tx_queue(tx_queue
);
1222 efx_for_each_rx_queue(rx_queue
, efx
) {
1223 rx_queue
->flushed
= false;
1224 falcon_flush_rx_queue(rx_queue
);
1227 /* Poll the evq looking for flush completions. Since we're not pushing
1228 * any more rx or tx descriptors at this point, we're in no danger of
1229 * overflowing the evq whilst we wait */
1230 for (i
= 0; i
< FALCON_FLUSH_POLL_COUNT
; ++i
) {
1231 msleep(FALCON_FLUSH_INTERVAL
);
1232 falcon_poll_flush_events(efx
);
1234 /* Check if every queue has been succesfully flushed */
1235 outstanding
= false;
1236 efx_for_each_tx_queue(tx_queue
, efx
)
1237 outstanding
|= !tx_queue
->flushed
;
1238 efx_for_each_rx_queue(rx_queue
, efx
)
1239 outstanding
|= !rx_queue
->flushed
;
1244 /* Mark the queues as all flushed. We're going to return failure
1245 * leading to a reset, or fake up success anyway. "flushed" now
1246 * indicates that we tried to flush. */
1247 efx_for_each_tx_queue(tx_queue
, efx
) {
1248 if (!tx_queue
->flushed
)
1249 EFX_ERR(efx
, "tx queue %d flush command timed out\n",
1251 tx_queue
->flushed
= true;
1253 efx_for_each_rx_queue(rx_queue
, efx
) {
1254 if (!rx_queue
->flushed
)
1255 EFX_ERR(efx
, "rx queue %d flush command timed out\n",
1257 rx_queue
->flushed
= true;
1260 if (EFX_WORKAROUND_7803(efx
))
1266 /**************************************************************************
1268 * Falcon hardware interrupts
1269 * The hardware interrupt handler does very little work; all the event
1270 * queue processing is carried out by per-channel tasklets.
1272 **************************************************************************/
1274 /* Enable/disable/generate Falcon interrupts */
1275 static inline void falcon_interrupts(struct efx_nic
*efx
, int enabled
,
1278 efx_oword_t int_en_reg_ker
;
1280 EFX_POPULATE_OWORD_2(int_en_reg_ker
,
1281 FRF_AZ_KER_INT_KER
, force
,
1282 FRF_AZ_DRV_INT_EN_KER
, enabled
);
1283 efx_writeo(efx
, &int_en_reg_ker
, FR_AZ_INT_EN_KER
);
1286 void falcon_enable_interrupts(struct efx_nic
*efx
)
1288 efx_oword_t int_adr_reg_ker
;
1289 struct efx_channel
*channel
;
1291 EFX_ZERO_OWORD(*((efx_oword_t
*) efx
->irq_status
.addr
));
1292 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1294 /* Program address */
1295 EFX_POPULATE_OWORD_2(int_adr_reg_ker
,
1296 FRF_AZ_NORM_INT_VEC_DIS_KER
,
1297 EFX_INT_MODE_USE_MSI(efx
),
1298 FRF_AZ_INT_ADR_KER
, efx
->irq_status
.dma_addr
);
1299 efx_writeo(efx
, &int_adr_reg_ker
, FR_AZ_INT_ADR_KER
);
1301 /* Enable interrupts */
1302 falcon_interrupts(efx
, 1, 0);
1304 /* Force processing of all the channels to get the EVQ RPTRs up to
1306 efx_for_each_channel(channel
, efx
)
1307 efx_schedule_channel(channel
);
1310 void falcon_disable_interrupts(struct efx_nic
*efx
)
1312 /* Disable interrupts */
1313 falcon_interrupts(efx
, 0, 0);
1316 /* Generate a Falcon test interrupt
1317 * Interrupt must already have been enabled, otherwise nasty things
1320 void falcon_generate_interrupt(struct efx_nic
*efx
)
1322 falcon_interrupts(efx
, 1, 1);
1325 /* Acknowledge a legacy interrupt from Falcon
1327 * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
1329 * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
1330 * BIU. Interrupt acknowledge is read sensitive so must write instead
1331 * (then read to ensure the BIU collector is flushed)
1333 * NB most hardware supports MSI interrupts
1335 static inline void falcon_irq_ack_a1(struct efx_nic
*efx
)
1339 EFX_POPULATE_DWORD_1(reg
, FRF_AA_INT_ACK_KER_FIELD
, 0xb7eb7e);
1340 efx_writed(efx
, ®
, FR_AA_INT_ACK_KER
);
1341 efx_readd(efx
, ®
, FR_AA_WORK_AROUND_BROKEN_PCI_READS
);
1344 /* Process a fatal interrupt
1345 * Disable bus mastering ASAP and schedule a reset
1347 static irqreturn_t
falcon_fatal_interrupt(struct efx_nic
*efx
)
1349 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
1350 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1351 efx_oword_t fatal_intr
;
1352 int error
, mem_perr
;
1354 efx_reado(efx
, &fatal_intr
, FR_AZ_FATAL_INTR_KER
);
1355 error
= EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_FATAL_INTR
);
1357 EFX_ERR(efx
, "SYSTEM ERROR " EFX_OWORD_FMT
" status "
1358 EFX_OWORD_FMT
": %s\n", EFX_OWORD_VAL(*int_ker
),
1359 EFX_OWORD_VAL(fatal_intr
),
1360 error
? "disabling bus mastering" : "no recognised error");
1364 /* If this is a memory parity error dump which blocks are offending */
1365 mem_perr
= EFX_OWORD_FIELD(fatal_intr
, FRF_AZ_MEM_PERR_INT_KER
);
1368 efx_reado(efx
, ®
, FR_AZ_MEM_STAT
);
1369 EFX_ERR(efx
, "SYSTEM ERROR: memory parity error "
1370 EFX_OWORD_FMT
"\n", EFX_OWORD_VAL(reg
));
1373 /* Disable both devices */
1374 pci_clear_master(efx
->pci_dev
);
1375 if (FALCON_IS_DUAL_FUNC(efx
))
1376 pci_clear_master(nic_data
->pci_dev2
);
1377 falcon_disable_interrupts(efx
);
1379 /* Count errors and reset or disable the NIC accordingly */
1380 if (efx
->int_error_count
== 0 ||
1381 time_after(jiffies
, efx
->int_error_expire
)) {
1382 efx
->int_error_count
= 0;
1383 efx
->int_error_expire
=
1384 jiffies
+ FALCON_INT_ERROR_EXPIRE
* HZ
;
1386 if (++efx
->int_error_count
< FALCON_MAX_INT_ERRORS
) {
1387 EFX_ERR(efx
, "SYSTEM ERROR - reset scheduled\n");
1388 efx_schedule_reset(efx
, RESET_TYPE_INT_ERROR
);
1390 EFX_ERR(efx
, "SYSTEM ERROR - max number of errors seen."
1391 "NIC will be disabled\n");
1392 efx_schedule_reset(efx
, RESET_TYPE_DISABLE
);
1398 /* Handle a legacy interrupt from Falcon
1399 * Acknowledges the interrupt and schedule event queue processing.
1401 static irqreturn_t
falcon_legacy_interrupt_b0(int irq
, void *dev_id
)
1403 struct efx_nic
*efx
= dev_id
;
1404 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1405 irqreturn_t result
= IRQ_NONE
;
1406 struct efx_channel
*channel
;
1411 /* Read the ISR which also ACKs the interrupts */
1412 efx_readd(efx
, ®
, FR_BZ_INT_ISR0
);
1413 queues
= EFX_EXTRACT_DWORD(reg
, 0, 31);
1415 /* Check to see if we have a serious error condition */
1416 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1417 if (unlikely(syserr
))
1418 return falcon_fatal_interrupt(efx
);
1420 /* Schedule processing of any interrupting queues */
1421 efx_for_each_channel(channel
, efx
) {
1423 falcon_event_present(
1424 falcon_event(channel
, channel
->eventq_read_ptr
))) {
1425 efx_schedule_channel(channel
);
1426 result
= IRQ_HANDLED
;
1431 if (result
== IRQ_HANDLED
) {
1432 efx
->last_irq_cpu
= raw_smp_processor_id();
1433 EFX_TRACE(efx
, "IRQ %d on CPU %d status " EFX_DWORD_FMT
"\n",
1434 irq
, raw_smp_processor_id(), EFX_DWORD_VAL(reg
));
1441 static irqreturn_t
falcon_legacy_interrupt_a1(int irq
, void *dev_id
)
1443 struct efx_nic
*efx
= dev_id
;
1444 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1445 struct efx_channel
*channel
;
1449 /* Check to see if this is our interrupt. If it isn't, we
1450 * exit without having touched the hardware.
1452 if (unlikely(EFX_OWORD_IS_ZERO(*int_ker
))) {
1453 EFX_TRACE(efx
, "IRQ %d on CPU %d not for me\n", irq
,
1454 raw_smp_processor_id());
1457 efx
->last_irq_cpu
= raw_smp_processor_id();
1458 EFX_TRACE(efx
, "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
1459 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
1461 /* Check to see if we have a serious error condition */
1462 syserr
= EFX_OWORD_FIELD(*int_ker
, FSF_AZ_NET_IVEC_FATAL_INT
);
1463 if (unlikely(syserr
))
1464 return falcon_fatal_interrupt(efx
);
1466 /* Determine interrupting queues, clear interrupt status
1467 * register and acknowledge the device interrupt.
1469 BUILD_BUG_ON(INT_EVQS_WIDTH
> EFX_MAX_CHANNELS
);
1470 queues
= EFX_OWORD_FIELD(*int_ker
, INT_EVQS
);
1471 EFX_ZERO_OWORD(*int_ker
);
1472 wmb(); /* Ensure the vector is cleared before interrupt ack */
1473 falcon_irq_ack_a1(efx
);
1475 /* Schedule processing of any interrupting queues */
1476 channel
= &efx
->channel
[0];
1479 efx_schedule_channel(channel
);
1487 /* Handle an MSI interrupt from Falcon
1489 * Handle an MSI hardware interrupt. This routine schedules event
1490 * queue processing. No interrupt acknowledgement cycle is necessary.
1491 * Also, we never need to check that the interrupt is for us, since
1492 * MSI interrupts cannot be shared.
1494 static irqreturn_t
falcon_msi_interrupt(int irq
, void *dev_id
)
1496 struct efx_channel
*channel
= dev_id
;
1497 struct efx_nic
*efx
= channel
->efx
;
1498 efx_oword_t
*int_ker
= efx
->irq_status
.addr
;
1501 efx
->last_irq_cpu
= raw_smp_processor_id();
1502 EFX_TRACE(efx
, "IRQ %d on CPU %d status " EFX_OWORD_FMT
"\n",
1503 irq
, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker
));
1505 /* Check to see if we have a serious error condition */
1506 syserr
= EFX_OWORD_FIELD(*int_ker
, FATAL_INT
);
1507 if (unlikely(syserr
))
1508 return falcon_fatal_interrupt(efx
);
1510 /* Schedule processing of the channel */
1511 efx_schedule_channel(channel
);
1517 /* Setup RSS indirection table.
1518 * This maps from the hash value of the packet to RXQ
1520 static void falcon_setup_rss_indir_table(struct efx_nic
*efx
)
1523 unsigned long offset
;
1526 if (falcon_rev(efx
) < FALCON_REV_B0
)
1529 for (offset
= FR_BZ_RX_INDIRECTION_TBL
;
1530 offset
< FR_BZ_RX_INDIRECTION_TBL
+ 0x800;
1532 EFX_POPULATE_DWORD_1(dword
, FRF_BZ_IT_QUEUE
,
1533 i
% efx
->n_rx_queues
);
1534 efx_writed(efx
, &dword
, offset
);
1539 /* Hook interrupt handler(s)
1540 * Try MSI and then legacy interrupts.
1542 int falcon_init_interrupt(struct efx_nic
*efx
)
1544 struct efx_channel
*channel
;
1547 if (!EFX_INT_MODE_USE_MSI(efx
)) {
1548 irq_handler_t handler
;
1549 if (falcon_rev(efx
) >= FALCON_REV_B0
)
1550 handler
= falcon_legacy_interrupt_b0
;
1552 handler
= falcon_legacy_interrupt_a1
;
1554 rc
= request_irq(efx
->legacy_irq
, handler
, IRQF_SHARED
,
1557 EFX_ERR(efx
, "failed to hook legacy IRQ %d\n",
1564 /* Hook MSI or MSI-X interrupt */
1565 efx_for_each_channel(channel
, efx
) {
1566 rc
= request_irq(channel
->irq
, falcon_msi_interrupt
,
1567 IRQF_PROBE_SHARED
, /* Not shared */
1568 channel
->name
, channel
);
1570 EFX_ERR(efx
, "failed to hook IRQ %d\n", channel
->irq
);
1578 efx_for_each_channel(channel
, efx
)
1579 free_irq(channel
->irq
, channel
);
1584 void falcon_fini_interrupt(struct efx_nic
*efx
)
1586 struct efx_channel
*channel
;
1589 /* Disable MSI/MSI-X interrupts */
1590 efx_for_each_channel(channel
, efx
) {
1592 free_irq(channel
->irq
, channel
);
1595 /* ACK legacy interrupt */
1596 if (falcon_rev(efx
) >= FALCON_REV_B0
)
1597 efx_reado(efx
, ®
, FR_BZ_INT_ISR0
);
1599 falcon_irq_ack_a1(efx
);
1601 /* Disable legacy interrupt */
1602 if (efx
->legacy_irq
)
1603 free_irq(efx
->legacy_irq
, efx
);
1606 /**************************************************************************
1610 **************************************************************************
1613 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
1615 static int falcon_spi_poll(struct efx_nic
*efx
)
1618 efx_reado(efx
, ®
, FR_AB_EE_SPI_HCMD
);
1619 return EFX_OWORD_FIELD(reg
, FRF_AB_EE_SPI_HCMD_CMD_EN
) ? -EBUSY
: 0;
1622 /* Wait for SPI command completion */
1623 static int falcon_spi_wait(struct efx_nic
*efx
)
1625 /* Most commands will finish quickly, so we start polling at
1626 * very short intervals. Sometimes the command may have to
1627 * wait for VPD or expansion ROM access outside of our
1628 * control, so we allow up to 100 ms. */
1629 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 10);
1632 for (i
= 0; i
< 10; i
++) {
1633 if (!falcon_spi_poll(efx
))
1639 if (!falcon_spi_poll(efx
))
1641 if (time_after_eq(jiffies
, timeout
)) {
1642 EFX_ERR(efx
, "timed out waiting for SPI\n");
1645 schedule_timeout_uninterruptible(1);
1649 int falcon_spi_cmd(const struct efx_spi_device
*spi
,
1650 unsigned int command
, int address
,
1651 const void *in
, void *out
, size_t len
)
1653 struct efx_nic
*efx
= spi
->efx
;
1654 bool addressed
= (address
>= 0);
1655 bool reading
= (out
!= NULL
);
1659 /* Input validation */
1660 if (len
> FALCON_SPI_MAX_LEN
)
1662 BUG_ON(!mutex_is_locked(&efx
->spi_lock
));
1664 /* Check that previous command is not still running */
1665 rc
= falcon_spi_poll(efx
);
1669 /* Program address register, if we have an address */
1671 EFX_POPULATE_OWORD_1(reg
, FRF_AB_EE_SPI_HADR_ADR
, address
);
1672 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HADR
);
1675 /* Program data register, if we have data */
1677 memcpy(®
, in
, len
);
1678 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HDATA
);
1681 /* Issue read/write command */
1682 EFX_POPULATE_OWORD_7(reg
,
1683 FRF_AB_EE_SPI_HCMD_CMD_EN
, 1,
1684 FRF_AB_EE_SPI_HCMD_SF_SEL
, spi
->device_id
,
1685 FRF_AB_EE_SPI_HCMD_DABCNT
, len
,
1686 FRF_AB_EE_SPI_HCMD_READ
, reading
,
1687 FRF_AB_EE_SPI_HCMD_DUBCNT
, 0,
1688 FRF_AB_EE_SPI_HCMD_ADBCNT
,
1689 (addressed
? spi
->addr_len
: 0),
1690 FRF_AB_EE_SPI_HCMD_ENC
, command
);
1691 efx_writeo(efx
, ®
, FR_AB_EE_SPI_HCMD
);
1693 /* Wait for read/write to complete */
1694 rc
= falcon_spi_wait(efx
);
1700 efx_reado(efx
, ®
, FR_AB_EE_SPI_HDATA
);
1701 memcpy(out
, ®
, len
);
1708 falcon_spi_write_limit(const struct efx_spi_device
*spi
, size_t start
)
1710 return min(FALCON_SPI_MAX_LEN
,
1711 (spi
->block_size
- (start
& (spi
->block_size
- 1))));
1715 efx_spi_munge_command(const struct efx_spi_device
*spi
,
1716 const u8 command
, const unsigned int address
)
1718 return command
| (((address
>> 8) & spi
->munge_address
) << 3);
1721 /* Wait up to 10 ms for buffered write completion */
1722 int falcon_spi_wait_write(const struct efx_spi_device
*spi
)
1724 struct efx_nic
*efx
= spi
->efx
;
1725 unsigned long timeout
= jiffies
+ 1 + DIV_ROUND_UP(HZ
, 100);
1730 rc
= falcon_spi_cmd(spi
, SPI_RDSR
, -1, NULL
,
1731 &status
, sizeof(status
));
1734 if (!(status
& SPI_STATUS_NRDY
))
1736 if (time_after_eq(jiffies
, timeout
)) {
1737 EFX_ERR(efx
, "SPI write timeout on device %d"
1738 " last status=0x%02x\n",
1739 spi
->device_id
, status
);
1742 schedule_timeout_uninterruptible(1);
1746 int falcon_spi_read(const struct efx_spi_device
*spi
, loff_t start
,
1747 size_t len
, size_t *retlen
, u8
*buffer
)
1749 size_t block_len
, pos
= 0;
1750 unsigned int command
;
1754 block_len
= min(len
- pos
, FALCON_SPI_MAX_LEN
);
1756 command
= efx_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
1757 rc
= falcon_spi_cmd(spi
, command
, start
+ pos
, NULL
,
1758 buffer
+ pos
, block_len
);
1763 /* Avoid locking up the system */
1765 if (signal_pending(current
)) {
1776 int falcon_spi_write(const struct efx_spi_device
*spi
, loff_t start
,
1777 size_t len
, size_t *retlen
, const u8
*buffer
)
1779 u8 verify_buffer
[FALCON_SPI_MAX_LEN
];
1780 size_t block_len
, pos
= 0;
1781 unsigned int command
;
1785 rc
= falcon_spi_cmd(spi
, SPI_WREN
, -1, NULL
, NULL
, 0);
1789 block_len
= min(len
- pos
,
1790 falcon_spi_write_limit(spi
, start
+ pos
));
1791 command
= efx_spi_munge_command(spi
, SPI_WRITE
, start
+ pos
);
1792 rc
= falcon_spi_cmd(spi
, command
, start
+ pos
,
1793 buffer
+ pos
, NULL
, block_len
);
1797 rc
= falcon_spi_wait_write(spi
);
1801 command
= efx_spi_munge_command(spi
, SPI_READ
, start
+ pos
);
1802 rc
= falcon_spi_cmd(spi
, command
, start
+ pos
,
1803 NULL
, verify_buffer
, block_len
);
1804 if (memcmp(verify_buffer
, buffer
+ pos
, block_len
)) {
1811 /* Avoid locking up the system */
1813 if (signal_pending(current
)) {
1824 /**************************************************************************
1828 **************************************************************************
1831 static int falcon_reset_macs(struct efx_nic
*efx
)
1836 if (falcon_rev(efx
) < FALCON_REV_B0
) {
1837 /* It's not safe to use GLB_CTL_REG to reset the
1838 * macs, so instead use the internal MAC resets
1840 if (!EFX_IS10G(efx
)) {
1841 EFX_POPULATE_OWORD_1(reg
, FRF_AB_GM_SW_RST
, 1);
1842 efx_writeo(efx
, ®
, FR_AB_GM_CFG1
);
1845 EFX_POPULATE_OWORD_1(reg
, FRF_AB_GM_SW_RST
, 0);
1846 efx_writeo(efx
, ®
, FR_AB_GM_CFG1
);
1850 EFX_POPULATE_OWORD_1(reg
, FRF_AB_XM_CORE_RST
, 1);
1851 efx_writeo(efx
, ®
, FR_AB_XM_GLB_CFG
);
1853 for (count
= 0; count
< 10000; count
++) {
1854 efx_reado(efx
, ®
, FR_AB_XM_GLB_CFG
);
1855 if (EFX_OWORD_FIELD(reg
, FRF_AB_XM_CORE_RST
) ==
1861 EFX_ERR(efx
, "timed out waiting for XMAC core reset\n");
1866 /* MAC stats will fail whilst the TX fifo is draining. Serialise
1867 * the drain sequence with the statistics fetch */
1868 efx_stats_disable(efx
);
1870 efx_reado(efx
, ®
, FR_AB_MAC_CTRL
);
1871 EFX_SET_OWORD_FIELD(reg
, FRF_BB_TXFIFO_DRAIN_EN
, 1);
1872 efx_writeo(efx
, ®
, FR_AB_MAC_CTRL
);
1874 efx_reado(efx
, ®
, FR_AB_GLB_CTL
);
1875 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_XGTX
, 1);
1876 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_XGRX
, 1);
1877 EFX_SET_OWORD_FIELD(reg
, FRF_AB_RST_EM
, 1);
1878 efx_writeo(efx
, ®
, FR_AB_GLB_CTL
);
1882 efx_reado(efx
, ®
, FR_AB_GLB_CTL
);
1883 if (!EFX_OWORD_FIELD(reg
, FRF_AB_RST_XGTX
) &&
1884 !EFX_OWORD_FIELD(reg
, FRF_AB_RST_XGRX
) &&
1885 !EFX_OWORD_FIELD(reg
, FRF_AB_RST_EM
)) {
1886 EFX_LOG(efx
, "Completed MAC reset after %d loops\n",
1891 EFX_ERR(efx
, "MAC reset failed\n");
1898 efx_stats_enable(efx
);
1900 /* If we've reset the EM block and the link is up, then
1901 * we'll have to kick the XAUI link so the PHY can recover */
1902 if (efx
->link_state
.up
&& EFX_IS10G(efx
) && EFX_WORKAROUND_5147(efx
))
1903 falcon_reset_xaui(efx
);
1908 void falcon_drain_tx_fifo(struct efx_nic
*efx
)
1912 if ((falcon_rev(efx
) < FALCON_REV_B0
) ||
1913 (efx
->loopback_mode
!= LOOPBACK_NONE
))
1916 efx_reado(efx
, ®
, FR_AB_MAC_CTRL
);
1917 /* There is no point in draining more than once */
1918 if (EFX_OWORD_FIELD(reg
, FRF_BB_TXFIFO_DRAIN_EN
))
1921 falcon_reset_macs(efx
);
1924 void falcon_deconfigure_mac_wrapper(struct efx_nic
*efx
)
1928 if (falcon_rev(efx
) < FALCON_REV_B0
)
1931 /* Isolate the MAC -> RX */
1932 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
1933 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 0);
1934 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
1936 if (!efx
->link_state
.up
)
1937 falcon_drain_tx_fifo(efx
);
1940 void falcon_reconfigure_mac_wrapper(struct efx_nic
*efx
)
1942 struct efx_link_state
*link_state
= &efx
->link_state
;
1947 switch (link_state
->speed
) {
1948 case 10000: link_speed
= 3; break;
1949 case 1000: link_speed
= 2; break;
1950 case 100: link_speed
= 1; break;
1951 default: link_speed
= 0; break;
1953 /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1954 * as advertised. Disable to ensure packets are not
1955 * indefinitely held and TX queue can be flushed at any point
1956 * while the link is down. */
1957 EFX_POPULATE_OWORD_5(reg
,
1958 FRF_AB_MAC_XOFF_VAL
, 0xffff /* max pause time */,
1959 FRF_AB_MAC_BCAD_ACPT
, 1,
1960 FRF_AB_MAC_UC_PROM
, efx
->promiscuous
,
1961 FRF_AB_MAC_LINK_STATUS
, 1, /* always set */
1962 FRF_AB_MAC_SPEED
, link_speed
);
1963 /* On B0, MAC backpressure can be disabled and packets get
1965 if (falcon_rev(efx
) >= FALCON_REV_B0
) {
1966 EFX_SET_OWORD_FIELD(reg
, FRF_BB_TXFIFO_DRAIN_EN
,
1970 efx_writeo(efx
, ®
, FR_AB_MAC_CTRL
);
1972 /* Restore the multicast hash registers. */
1973 falcon_set_multicast_hash(efx
);
1975 /* Transmission of pause frames when RX crosses the threshold is
1976 * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL.
1977 * Action on receipt of pause frames is controller by XM_DIS_FCNTL */
1978 tx_fc
= !!(efx
->link_state
.fc
& EFX_FC_TX
);
1979 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
1980 EFX_SET_OWORD_FIELD(reg
, FRF_AZ_RX_XOFF_MAC_EN
, tx_fc
);
1982 /* Unisolate the MAC -> RX */
1983 if (falcon_rev(efx
) >= FALCON_REV_B0
)
1984 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 1);
1985 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
1988 int falcon_dma_stats(struct efx_nic
*efx
, unsigned int done_offset
)
1994 if (disable_dma_stats
)
1997 /* Statistics fetch will fail if the MAC is in TX drain */
1998 if (falcon_rev(efx
) >= FALCON_REV_B0
) {
2000 efx_reado(efx
, &temp
, FR_AB_MAC_CTRL
);
2001 if (EFX_OWORD_FIELD(temp
, FRF_BB_TXFIFO_DRAIN_EN
))
2005 dma_done
= (efx
->stats_buffer
.addr
+ done_offset
);
2006 *dma_done
= FALCON_STATS_NOT_DONE
;
2007 wmb(); /* ensure done flag is clear */
2009 /* Initiate DMA transfer of stats */
2010 EFX_POPULATE_OWORD_2(reg
,
2011 FRF_AB_MAC_STAT_DMA_CMD
, 1,
2012 FRF_AB_MAC_STAT_DMA_ADR
,
2013 efx
->stats_buffer
.dma_addr
);
2014 efx_writeo(efx
, ®
, FR_AB_MAC_STAT_DMA
);
2016 /* Wait for transfer to complete */
2017 for (i
= 0; i
< 400; i
++) {
2018 if (*(volatile u32
*)dma_done
== FALCON_STATS_DONE
) {
2019 rmb(); /* Ensure the stats are valid. */
2025 EFX_ERR(efx
, "timed out waiting for statistics\n");
2029 /**************************************************************************
2031 * PHY access via GMII
2033 **************************************************************************
2036 /* Wait for GMII access to complete */
2037 static int falcon_gmii_wait(struct efx_nic
*efx
)
2039 efx_oword_t md_stat
;
2042 /* wait upto 50ms - taken max from datasheet */
2043 for (count
= 0; count
< 5000; count
++) {
2044 efx_reado(efx
, &md_stat
, FR_AB_MD_STAT
);
2045 if (EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_BSY
) == 0) {
2046 if (EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_LNFL
) != 0 ||
2047 EFX_OWORD_FIELD(md_stat
, FRF_AB_MD_BSERR
) != 0) {
2048 EFX_ERR(efx
, "error from GMII access "
2050 EFX_OWORD_VAL(md_stat
));
2057 EFX_ERR(efx
, "timed out waiting for GMII\n");
2061 /* Write an MDIO register of a PHY connected to Falcon. */
2062 static int falcon_mdio_write(struct net_device
*net_dev
,
2063 int prtad
, int devad
, u16 addr
, u16 value
)
2065 struct efx_nic
*efx
= netdev_priv(net_dev
);
2069 EFX_REGDUMP(efx
, "writing MDIO %d register %d.%d with 0x%04x\n",
2070 prtad
, devad
, addr
, value
);
2072 spin_lock_bh(&efx
->phy_lock
);
2074 /* Check MDIO not currently being accessed */
2075 rc
= falcon_gmii_wait(efx
);
2079 /* Write the address/ID register */
2080 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_PHY_ADR
, addr
);
2081 efx_writeo(efx
, ®
, FR_AB_MD_PHY_ADR
);
2083 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_PRT_ADR
, prtad
,
2084 FRF_AB_MD_DEV_ADR
, devad
);
2085 efx_writeo(efx
, ®
, FR_AB_MD_ID
);
2088 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_TXD
, value
);
2089 efx_writeo(efx
, ®
, FR_AB_MD_TXD
);
2091 EFX_POPULATE_OWORD_2(reg
,
2094 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
2096 /* Wait for data to be written */
2097 rc
= falcon_gmii_wait(efx
);
2099 /* Abort the write operation */
2100 EFX_POPULATE_OWORD_2(reg
,
2103 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
2108 spin_unlock_bh(&efx
->phy_lock
);
2112 /* Read an MDIO register of a PHY connected to Falcon. */
2113 static int falcon_mdio_read(struct net_device
*net_dev
,
2114 int prtad
, int devad
, u16 addr
)
2116 struct efx_nic
*efx
= netdev_priv(net_dev
);
2120 spin_lock_bh(&efx
->phy_lock
);
2122 /* Check MDIO not currently being accessed */
2123 rc
= falcon_gmii_wait(efx
);
2127 EFX_POPULATE_OWORD_1(reg
, FRF_AB_MD_PHY_ADR
, addr
);
2128 efx_writeo(efx
, ®
, FR_AB_MD_PHY_ADR
);
2130 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_PRT_ADR
, prtad
,
2131 FRF_AB_MD_DEV_ADR
, devad
);
2132 efx_writeo(efx
, ®
, FR_AB_MD_ID
);
2134 /* Request data to be read */
2135 EFX_POPULATE_OWORD_2(reg
, FRF_AB_MD_RDC
, 1, FRF_AB_MD_GC
, 0);
2136 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
2138 /* Wait for data to become available */
2139 rc
= falcon_gmii_wait(efx
);
2141 efx_reado(efx
, ®
, FR_AB_MD_RXD
);
2142 rc
= EFX_OWORD_FIELD(reg
, FRF_AB_MD_RXD
);
2143 EFX_REGDUMP(efx
, "read from MDIO %d register %d.%d, got %04x\n",
2144 prtad
, devad
, addr
, rc
);
2146 /* Abort the read operation */
2147 EFX_POPULATE_OWORD_2(reg
,
2150 efx_writeo(efx
, ®
, FR_AB_MD_CS
);
2152 EFX_LOG(efx
, "read from MDIO %d register %d.%d, got error %d\n",
2153 prtad
, devad
, addr
, rc
);
2157 spin_unlock_bh(&efx
->phy_lock
);
2161 int falcon_switch_mac(struct efx_nic
*efx
)
2163 struct efx_mac_operations
*old_mac_op
= efx
->mac_op
;
2164 efx_oword_t nic_stat
;
2168 /* Don't try to fetch MAC stats while we're switching MACs */
2169 efx_stats_disable(efx
);
2171 /* Internal loopbacks override the phy speed setting */
2172 if (efx
->loopback_mode
== LOOPBACK_GMAC
) {
2173 efx
->link_state
.speed
= 1000;
2174 efx
->link_state
.fd
= true;
2175 } else if (LOOPBACK_INTERNAL(efx
)) {
2176 efx
->link_state
.speed
= 10000;
2177 efx
->link_state
.fd
= true;
2180 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
2181 efx
->mac_op
= (EFX_IS10G(efx
) ?
2182 &falcon_xmac_operations
: &falcon_gmac_operations
);
2184 /* Always push the NIC_STAT_REG setting even if the mac hasn't
2185 * changed, because this function is run post online reset */
2186 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
2187 strap_val
= EFX_IS10G(efx
) ? 5 : 3;
2188 if (falcon_rev(efx
) >= FALCON_REV_B0
) {
2189 EFX_SET_OWORD_FIELD(nic_stat
, FRF_BB_EE_STRAP_EN
, 1);
2190 EFX_SET_OWORD_FIELD(nic_stat
, FRF_BB_EE_STRAP
, strap_val
);
2191 efx_writeo(efx
, &nic_stat
, FR_AB_NIC_STAT
);
2193 /* Falcon A1 does not support 1G/10G speed switching
2194 * and must not be used with a PHY that does. */
2195 BUG_ON(EFX_OWORD_FIELD(nic_stat
, FRF_AB_STRAP_PINS
) !=
2199 if (old_mac_op
== efx
->mac_op
)
2202 EFX_LOG(efx
, "selected %cMAC\n", EFX_IS10G(efx
) ? 'X' : 'G');
2203 /* Not all macs support a mac-level link state */
2206 rc
= falcon_reset_macs(efx
);
2208 efx_stats_enable(efx
);
2212 /* This call is responsible for hooking in the MAC and PHY operations */
2213 int falcon_probe_port(struct efx_nic
*efx
)
2217 switch (efx
->phy_type
) {
2218 case PHY_TYPE_SFX7101
:
2219 efx
->phy_op
= &falcon_sfx7101_phy_ops
;
2221 case PHY_TYPE_SFT9001A
:
2222 case PHY_TYPE_SFT9001B
:
2223 efx
->phy_op
= &falcon_sft9001_phy_ops
;
2225 case PHY_TYPE_QT2022C2
:
2226 case PHY_TYPE_QT2025C
:
2227 efx
->phy_op
= &falcon_qt202x_phy_ops
;
2230 EFX_ERR(efx
, "Unknown PHY type %d\n",
2235 if (efx
->phy_op
->macs
& EFX_XMAC
)
2236 efx
->loopback_modes
|= ((1 << LOOPBACK_XGMII
) |
2237 (1 << LOOPBACK_XGXS
) |
2238 (1 << LOOPBACK_XAUI
));
2239 if (efx
->phy_op
->macs
& EFX_GMAC
)
2240 efx
->loopback_modes
|= (1 << LOOPBACK_GMAC
);
2241 efx
->loopback_modes
|= efx
->phy_op
->loopbacks
;
2243 /* Set up MDIO structure for PHY */
2244 efx
->mdio
.mmds
= efx
->phy_op
->mmds
;
2245 efx
->mdio
.mode_support
= MDIO_SUPPORTS_C45
| MDIO_EMULATE_C22
;
2246 efx
->mdio
.mdio_read
= falcon_mdio_read
;
2247 efx
->mdio
.mdio_write
= falcon_mdio_write
;
2249 /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
2250 if (falcon_rev(efx
) >= FALCON_REV_B0
)
2251 efx
->wanted_fc
= EFX_FC_RX
| EFX_FC_TX
;
2253 efx
->wanted_fc
= EFX_FC_RX
;
2255 /* Allocate buffer for stats */
2256 rc
= falcon_alloc_buffer(efx
, &efx
->stats_buffer
,
2257 FALCON_MAC_STATS_SIZE
);
2260 EFX_LOG(efx
, "stats buffer at %llx (virt %p phys %llx)\n",
2261 (u64
)efx
->stats_buffer
.dma_addr
,
2262 efx
->stats_buffer
.addr
,
2263 (u64
)virt_to_phys(efx
->stats_buffer
.addr
));
2268 void falcon_remove_port(struct efx_nic
*efx
)
2270 falcon_free_buffer(efx
, &efx
->stats_buffer
);
2273 /**************************************************************************
2275 * Multicast filtering
2277 **************************************************************************
2280 void falcon_set_multicast_hash(struct efx_nic
*efx
)
2282 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
2284 /* Broadcast packets go through the multicast hash filter.
2285 * ether_crc_le() of the broadcast address is 0xbe2612ff
2286 * so we always add bit 0xff to the mask.
2288 set_bit_le(0xff, mc_hash
->byte
);
2290 efx_writeo(efx
, &mc_hash
->oword
[0], FR_AB_MAC_MC_HASH_REG0
);
2291 efx_writeo(efx
, &mc_hash
->oword
[1], FR_AB_MAC_MC_HASH_REG1
);
2295 /**************************************************************************
2299 **************************************************************************/
2301 int falcon_read_nvram(struct efx_nic
*efx
, struct falcon_nvconfig
*nvconfig_out
)
2303 struct falcon_nvconfig
*nvconfig
;
2304 struct efx_spi_device
*spi
;
2306 int rc
, magic_num
, struct_ver
;
2307 __le16
*word
, *limit
;
2310 spi
= efx
->spi_flash
? efx
->spi_flash
: efx
->spi_eeprom
;
2314 region
= kmalloc(FALCON_NVCONFIG_END
, GFP_KERNEL
);
2317 nvconfig
= region
+ FALCON_NVCONFIG_OFFSET
;
2319 mutex_lock(&efx
->spi_lock
);
2320 rc
= falcon_spi_read(spi
, 0, FALCON_NVCONFIG_END
, NULL
, region
);
2321 mutex_unlock(&efx
->spi_lock
);
2323 EFX_ERR(efx
, "Failed to read %s\n",
2324 efx
->spi_flash
? "flash" : "EEPROM");
2329 magic_num
= le16_to_cpu(nvconfig
->board_magic_num
);
2330 struct_ver
= le16_to_cpu(nvconfig
->board_struct_ver
);
2333 if (magic_num
!= FALCON_NVCONFIG_BOARD_MAGIC_NUM
) {
2334 EFX_ERR(efx
, "NVRAM bad magic 0x%x\n", magic_num
);
2337 if (struct_ver
< 2) {
2338 EFX_ERR(efx
, "NVRAM has ancient version 0x%x\n", struct_ver
);
2340 } else if (struct_ver
< 4) {
2341 word
= &nvconfig
->board_magic_num
;
2342 limit
= (__le16
*) (nvconfig
+ 1);
2345 limit
= region
+ FALCON_NVCONFIG_END
;
2347 for (csum
= 0; word
< limit
; ++word
)
2348 csum
+= le16_to_cpu(*word
);
2350 if (~csum
& 0xffff) {
2351 EFX_ERR(efx
, "NVRAM has incorrect checksum\n");
2357 memcpy(nvconfig_out
, nvconfig
, sizeof(*nvconfig
));
2364 /* Registers tested in the falcon register test */
2368 } efx_test_registers
[] = {
2370 EFX_OWORD32(0x0001FFFF, 0x0001FFFF, 0x0001FFFF, 0x0001FFFF) },
2372 EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
2374 EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
2375 { FR_AZ_TX_RESERVED
,
2376 EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
2378 EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
2379 { FR_AZ_SRM_TX_DC_CFG
,
2380 EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
2382 EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
2383 { FR_AZ_RX_DC_PF_WM
,
2384 EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
2386 EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
2388 EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
2390 EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
2392 EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
2394 EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
2396 EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
2397 { FR_AB_XM_RX_PARAM
,
2398 EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
2400 EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
2402 EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
2404 EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
2407 static bool efx_masked_compare_oword(const efx_oword_t
*a
, const efx_oword_t
*b
,
2408 const efx_oword_t
*mask
)
2410 return ((a
->u64
[0] ^ b
->u64
[0]) & mask
->u64
[0]) ||
2411 ((a
->u64
[1] ^ b
->u64
[1]) & mask
->u64
[1]);
2414 int falcon_test_registers(struct efx_nic
*efx
)
2416 unsigned address
= 0, i
, j
;
2417 efx_oword_t mask
, imask
, original
, reg
, buf
;
2419 /* Falcon should be in loopback to isolate the XMAC from the PHY */
2420 WARN_ON(!LOOPBACK_INTERNAL(efx
));
2422 for (i
= 0; i
< ARRAY_SIZE(efx_test_registers
); ++i
) {
2423 address
= efx_test_registers
[i
].address
;
2424 mask
= imask
= efx_test_registers
[i
].mask
;
2425 EFX_INVERT_OWORD(imask
);
2427 efx_reado(efx
, &original
, address
);
2429 /* bit sweep on and off */
2430 for (j
= 0; j
< 128; j
++) {
2431 if (!EFX_EXTRACT_OWORD32(mask
, j
, j
))
2434 /* Test this testable bit can be set in isolation */
2435 EFX_AND_OWORD(reg
, original
, mask
);
2436 EFX_SET_OWORD32(reg
, j
, j
, 1);
2438 efx_writeo(efx
, ®
, address
);
2439 efx_reado(efx
, &buf
, address
);
2441 if (efx_masked_compare_oword(®
, &buf
, &mask
))
2444 /* Test this testable bit can be cleared in isolation */
2445 EFX_OR_OWORD(reg
, original
, mask
);
2446 EFX_SET_OWORD32(reg
, j
, j
, 0);
2448 efx_writeo(efx
, ®
, address
);
2449 efx_reado(efx
, &buf
, address
);
2451 if (efx_masked_compare_oword(®
, &buf
, &mask
))
2455 efx_writeo(efx
, &original
, address
);
2461 EFX_ERR(efx
, "wrote "EFX_OWORD_FMT
" read "EFX_OWORD_FMT
2462 " at address 0x%x mask "EFX_OWORD_FMT
"\n", EFX_OWORD_VAL(reg
),
2463 EFX_OWORD_VAL(buf
), address
, EFX_OWORD_VAL(mask
));
2467 /**************************************************************************
2471 **************************************************************************
2474 /* Resets NIC to known state. This routine must be called in process
2475 * context and is allowed to sleep. */
2476 int falcon_reset_hw(struct efx_nic
*efx
, enum reset_type method
)
2478 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
2479 efx_oword_t glb_ctl_reg_ker
;
2482 EFX_LOG(efx
, "performing %s hardware reset\n", RESET_TYPE(method
));
2484 /* Initiate device reset */
2485 if (method
== RESET_TYPE_WORLD
) {
2486 rc
= pci_save_state(efx
->pci_dev
);
2488 EFX_ERR(efx
, "failed to backup PCI state of primary "
2489 "function prior to hardware reset\n");
2492 if (FALCON_IS_DUAL_FUNC(efx
)) {
2493 rc
= pci_save_state(nic_data
->pci_dev2
);
2495 EFX_ERR(efx
, "failed to backup PCI state of "
2496 "secondary function prior to "
2497 "hardware reset\n");
2502 EFX_POPULATE_OWORD_2(glb_ctl_reg_ker
,
2503 FRF_AB_EXT_PHY_RST_DUR
,
2504 FFE_AB_EXT_PHY_RST_DUR_10240US
,
2507 EFX_POPULATE_OWORD_7(glb_ctl_reg_ker
,
2508 /* exclude PHY from "invisible" reset */
2509 FRF_AB_EXT_PHY_RST_CTL
,
2510 method
== RESET_TYPE_INVISIBLE
,
2511 /* exclude EEPROM/flash and PCIe */
2512 FRF_AB_PCIE_CORE_RST_CTL
, 1,
2513 FRF_AB_PCIE_NSTKY_RST_CTL
, 1,
2514 FRF_AB_PCIE_SD_RST_CTL
, 1,
2515 FRF_AB_EE_RST_CTL
, 1,
2516 FRF_AB_EXT_PHY_RST_DUR
,
2517 FFE_AB_EXT_PHY_RST_DUR_10240US
,
2520 efx_writeo(efx
, &glb_ctl_reg_ker
, FR_AB_GLB_CTL
);
2522 EFX_LOG(efx
, "waiting for hardware reset\n");
2523 schedule_timeout_uninterruptible(HZ
/ 20);
2525 /* Restore PCI configuration if needed */
2526 if (method
== RESET_TYPE_WORLD
) {
2527 if (FALCON_IS_DUAL_FUNC(efx
)) {
2528 rc
= pci_restore_state(nic_data
->pci_dev2
);
2530 EFX_ERR(efx
, "failed to restore PCI config for "
2531 "the secondary function\n");
2535 rc
= pci_restore_state(efx
->pci_dev
);
2537 EFX_ERR(efx
, "failed to restore PCI config for the "
2538 "primary function\n");
2541 EFX_LOG(efx
, "successfully restored PCI config\n");
2544 /* Assert that reset complete */
2545 efx_reado(efx
, &glb_ctl_reg_ker
, FR_AB_GLB_CTL
);
2546 if (EFX_OWORD_FIELD(glb_ctl_reg_ker
, FRF_AB_SWRST
) != 0) {
2548 EFX_ERR(efx
, "timed out waiting for hardware reset\n");
2551 EFX_LOG(efx
, "hardware reset complete\n");
2555 /* pci_save_state() and pci_restore_state() MUST be called in pairs */
2558 pci_restore_state(efx
->pci_dev
);
2565 /* Zeroes out the SRAM contents. This routine must be called in
2566 * process context and is allowed to sleep.
2568 static int falcon_reset_sram(struct efx_nic
*efx
)
2570 efx_oword_t srm_cfg_reg_ker
, gpio_cfg_reg_ker
;
2573 /* Set the SRAM wake/sleep GPIO appropriately. */
2574 efx_reado(efx
, &gpio_cfg_reg_ker
, FR_AB_GPIO_CTL
);
2575 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, FRF_AB_GPIO1_OEN
, 1);
2576 EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker
, FRF_AB_GPIO1_OUT
, 1);
2577 efx_writeo(efx
, &gpio_cfg_reg_ker
, FR_AB_GPIO_CTL
);
2579 /* Initiate SRAM reset */
2580 EFX_POPULATE_OWORD_2(srm_cfg_reg_ker
,
2581 FRF_AZ_SRM_INIT_EN
, 1,
2582 FRF_AZ_SRM_NB_SZ
, 0);
2583 efx_writeo(efx
, &srm_cfg_reg_ker
, FR_AZ_SRM_CFG
);
2585 /* Wait for SRAM reset to complete */
2588 EFX_LOG(efx
, "waiting for SRAM reset (attempt %d)...\n", count
);
2590 /* SRAM reset is slow; expect around 16ms */
2591 schedule_timeout_uninterruptible(HZ
/ 50);
2593 /* Check for reset complete */
2594 efx_reado(efx
, &srm_cfg_reg_ker
, FR_AZ_SRM_CFG
);
2595 if (!EFX_OWORD_FIELD(srm_cfg_reg_ker
, FRF_AZ_SRM_INIT_EN
)) {
2596 EFX_LOG(efx
, "SRAM reset complete\n");
2600 } while (++count
< 20); /* wait upto 0.4 sec */
2602 EFX_ERR(efx
, "timed out waiting for SRAM reset\n");
2606 static int falcon_spi_device_init(struct efx_nic
*efx
,
2607 struct efx_spi_device
**spi_device_ret
,
2608 unsigned int device_id
, u32 device_type
)
2610 struct efx_spi_device
*spi_device
;
2612 if (device_type
!= 0) {
2613 spi_device
= kzalloc(sizeof(*spi_device
), GFP_KERNEL
);
2616 spi_device
->device_id
= device_id
;
2618 1 << SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_SIZE
);
2619 spi_device
->addr_len
=
2620 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ADDR_LEN
);
2621 spi_device
->munge_address
= (spi_device
->size
== 1 << 9 &&
2622 spi_device
->addr_len
== 1);
2623 spi_device
->erase_command
=
2624 SPI_DEV_TYPE_FIELD(device_type
, SPI_DEV_TYPE_ERASE_CMD
);
2625 spi_device
->erase_size
=
2626 1 << SPI_DEV_TYPE_FIELD(device_type
,
2627 SPI_DEV_TYPE_ERASE_SIZE
);
2628 spi_device
->block_size
=
2629 1 << SPI_DEV_TYPE_FIELD(device_type
,
2630 SPI_DEV_TYPE_BLOCK_SIZE
);
2632 spi_device
->efx
= efx
;
2637 kfree(*spi_device_ret
);
2638 *spi_device_ret
= spi_device
;
2643 static void falcon_remove_spi_devices(struct efx_nic
*efx
)
2645 kfree(efx
->spi_eeprom
);
2646 efx
->spi_eeprom
= NULL
;
2647 kfree(efx
->spi_flash
);
2648 efx
->spi_flash
= NULL
;
2651 /* Extract non-volatile configuration */
2652 static int falcon_probe_nvconfig(struct efx_nic
*efx
)
2654 struct falcon_nvconfig
*nvconfig
;
2658 nvconfig
= kmalloc(sizeof(*nvconfig
), GFP_KERNEL
);
2662 rc
= falcon_read_nvram(efx
, nvconfig
);
2663 if (rc
== -EINVAL
) {
2664 EFX_ERR(efx
, "NVRAM is invalid therefore using defaults\n");
2665 efx
->phy_type
= PHY_TYPE_NONE
;
2666 efx
->mdio
.prtad
= MDIO_PRTAD_NONE
;
2672 struct falcon_nvconfig_board_v2
*v2
= &nvconfig
->board_v2
;
2673 struct falcon_nvconfig_board_v3
*v3
= &nvconfig
->board_v3
;
2675 efx
->phy_type
= v2
->port0_phy_type
;
2676 efx
->mdio
.prtad
= v2
->port0_phy_addr
;
2677 board_rev
= le16_to_cpu(v2
->board_revision
);
2679 if (le16_to_cpu(nvconfig
->board_struct_ver
) >= 3) {
2680 rc
= falcon_spi_device_init(
2681 efx
, &efx
->spi_flash
, FFE_AB_SPI_DEVICE_FLASH
,
2682 le32_to_cpu(v3
->spi_device_type
2683 [FFE_AB_SPI_DEVICE_FLASH
]));
2686 rc
= falcon_spi_device_init(
2687 efx
, &efx
->spi_eeprom
, FFE_AB_SPI_DEVICE_EEPROM
,
2688 le32_to_cpu(v3
->spi_device_type
2689 [FFE_AB_SPI_DEVICE_EEPROM
]));
2695 /* Read the MAC addresses */
2696 memcpy(efx
->mac_address
, nvconfig
->mac_address
[0], ETH_ALEN
);
2698 EFX_LOG(efx
, "PHY is %d phy_id %d\n", efx
->phy_type
, efx
->mdio
.prtad
);
2700 falcon_probe_board(efx
, board_rev
);
2706 falcon_remove_spi_devices(efx
);
2712 /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port
2713 * count, port speed). Set workaround and feature flags accordingly.
2715 static int falcon_probe_nic_variant(struct efx_nic
*efx
)
2717 efx_oword_t altera_build
;
2718 efx_oword_t nic_stat
;
2720 efx_reado(efx
, &altera_build
, FR_AZ_ALTERA_BUILD
);
2721 if (EFX_OWORD_FIELD(altera_build
, FRF_AZ_ALTERA_BUILD_VER
)) {
2722 EFX_ERR(efx
, "Falcon FPGA not supported\n");
2726 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
2728 switch (falcon_rev(efx
)) {
2731 EFX_ERR(efx
, "Falcon rev A0 not supported\n");
2735 if (EFX_OWORD_FIELD(nic_stat
, FRF_AA_STRAP_PCIE
) == 0) {
2736 EFX_ERR(efx
, "Falcon rev A1 PCI-X not supported\n");
2745 EFX_ERR(efx
, "Unknown Falcon rev %d\n", falcon_rev(efx
));
2749 /* Initial assumed speed */
2750 efx
->link_state
.speed
= EFX_OWORD_FIELD(nic_stat
, FRF_AB_STRAP_10G
) ? 10000 : 1000;
2755 /* Probe all SPI devices on the NIC */
2756 static void falcon_probe_spi_devices(struct efx_nic
*efx
)
2758 efx_oword_t nic_stat
, gpio_ctl
, ee_vpd_cfg
;
2761 efx_reado(efx
, &gpio_ctl
, FR_AB_GPIO_CTL
);
2762 efx_reado(efx
, &nic_stat
, FR_AB_NIC_STAT
);
2763 efx_reado(efx
, &ee_vpd_cfg
, FR_AB_EE_VPD_CFG0
);
2765 if (EFX_OWORD_FIELD(gpio_ctl
, FRF_AB_GPIO3_PWRUP_VALUE
)) {
2766 boot_dev
= (EFX_OWORD_FIELD(nic_stat
, FRF_AB_SF_PRST
) ?
2767 FFE_AB_SPI_DEVICE_FLASH
: FFE_AB_SPI_DEVICE_EEPROM
);
2768 EFX_LOG(efx
, "Booted from %s\n",
2769 boot_dev
== FFE_AB_SPI_DEVICE_FLASH
? "flash" : "EEPROM");
2771 /* Disable VPD and set clock dividers to safe
2772 * values for initial programming. */
2774 EFX_LOG(efx
, "Booted from internal ASIC settings;"
2775 " setting SPI config\n");
2776 EFX_POPULATE_OWORD_3(ee_vpd_cfg
, FRF_AB_EE_VPD_EN
, 0,
2777 /* 125 MHz / 7 ~= 20 MHz */
2778 FRF_AB_EE_SF_CLOCK_DIV
, 7,
2779 /* 125 MHz / 63 ~= 2 MHz */
2780 FRF_AB_EE_EE_CLOCK_DIV
, 63);
2781 efx_writeo(efx
, &ee_vpd_cfg
, FR_AB_EE_VPD_CFG0
);
2784 if (boot_dev
== FFE_AB_SPI_DEVICE_FLASH
)
2785 falcon_spi_device_init(efx
, &efx
->spi_flash
,
2786 FFE_AB_SPI_DEVICE_FLASH
,
2787 default_flash_type
);
2788 if (boot_dev
== FFE_AB_SPI_DEVICE_EEPROM
)
2789 falcon_spi_device_init(efx
, &efx
->spi_eeprom
,
2790 FFE_AB_SPI_DEVICE_EEPROM
,
2794 int falcon_probe_nic(struct efx_nic
*efx
)
2796 struct falcon_nic_data
*nic_data
;
2797 struct falcon_board
*board
;
2800 /* Allocate storage for hardware specific data */
2801 nic_data
= kzalloc(sizeof(*nic_data
), GFP_KERNEL
);
2804 efx
->nic_data
= nic_data
;
2806 /* Determine number of ports etc. */
2807 rc
= falcon_probe_nic_variant(efx
);
2811 /* Probe secondary function if expected */
2812 if (FALCON_IS_DUAL_FUNC(efx
)) {
2813 struct pci_dev
*dev
= pci_dev_get(efx
->pci_dev
);
2815 while ((dev
= pci_get_device(EFX_VENDID_SFC
, FALCON_A_S_DEVID
,
2817 if (dev
->bus
== efx
->pci_dev
->bus
&&
2818 dev
->devfn
== efx
->pci_dev
->devfn
+ 1) {
2819 nic_data
->pci_dev2
= dev
;
2823 if (!nic_data
->pci_dev2
) {
2824 EFX_ERR(efx
, "failed to find secondary function\n");
2830 /* Now we can reset the NIC */
2831 rc
= falcon_reset_hw(efx
, RESET_TYPE_ALL
);
2833 EFX_ERR(efx
, "failed to reset NIC\n");
2837 /* Allocate memory for INT_KER */
2838 rc
= falcon_alloc_buffer(efx
, &efx
->irq_status
, sizeof(efx_oword_t
));
2841 BUG_ON(efx
->irq_status
.dma_addr
& 0x0f);
2843 EFX_LOG(efx
, "INT_KER at %llx (virt %p phys %llx)\n",
2844 (u64
)efx
->irq_status
.dma_addr
,
2845 efx
->irq_status
.addr
, (u64
)virt_to_phys(efx
->irq_status
.addr
));
2847 falcon_probe_spi_devices(efx
);
2849 /* Read in the non-volatile configuration */
2850 rc
= falcon_probe_nvconfig(efx
);
2854 /* Initialise I2C adapter */
2855 board
= falcon_board(efx
);
2856 board
->i2c_adap
.owner
= THIS_MODULE
;
2857 board
->i2c_data
= falcon_i2c_bit_operations
;
2858 board
->i2c_data
.data
= efx
;
2859 board
->i2c_adap
.algo_data
= &board
->i2c_data
;
2860 board
->i2c_adap
.dev
.parent
= &efx
->pci_dev
->dev
;
2861 strlcpy(board
->i2c_adap
.name
, "SFC4000 GPIO",
2862 sizeof(board
->i2c_adap
.name
));
2863 rc
= i2c_bit_add_bus(&board
->i2c_adap
);
2867 rc
= falcon_board(efx
)->init(efx
);
2869 EFX_ERR(efx
, "failed to initialise board\n");
2876 BUG_ON(i2c_del_adapter(&board
->i2c_adap
));
2877 memset(&board
->i2c_adap
, 0, sizeof(board
->i2c_adap
));
2879 falcon_remove_spi_devices(efx
);
2880 falcon_free_buffer(efx
, &efx
->irq_status
);
2883 if (nic_data
->pci_dev2
) {
2884 pci_dev_put(nic_data
->pci_dev2
);
2885 nic_data
->pci_dev2
= NULL
;
2889 kfree(efx
->nic_data
);
2893 static void falcon_init_rx_cfg(struct efx_nic
*efx
)
2895 /* Prior to Siena the RX DMA engine will split each frame at
2896 * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
2897 * be so large that that never happens. */
2898 const unsigned huge_buf_size
= (3 * 4096) >> 5;
2899 /* RX control FIFO thresholds (32 entries) */
2900 const unsigned ctrl_xon_thr
= 20;
2901 const unsigned ctrl_xoff_thr
= 25;
2902 /* RX data FIFO thresholds (256-byte units; size varies) */
2903 int data_xon_thr
= rx_xon_thresh_bytes
>> 8;
2904 int data_xoff_thr
= rx_xoff_thresh_bytes
>> 8;
2907 efx_reado(efx
, ®
, FR_AZ_RX_CFG
);
2908 if (falcon_rev(efx
) <= FALCON_REV_A1
) {
2909 /* Data FIFO size is 5.5K */
2910 if (data_xon_thr
< 0)
2911 data_xon_thr
= 512 >> 8;
2912 if (data_xoff_thr
< 0)
2913 data_xoff_thr
= 2048 >> 8;
2914 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_DESC_PUSH_EN
, 0);
2915 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_USR_BUF_SIZE
,
2917 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XON_MAC_TH
, data_xon_thr
);
2918 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XOFF_MAC_TH
, data_xoff_thr
);
2919 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XON_TX_TH
, ctrl_xon_thr
);
2920 EFX_SET_OWORD_FIELD(reg
, FRF_AA_RX_XOFF_TX_TH
, ctrl_xoff_thr
);
2922 /* Data FIFO size is 80K; register fields moved */
2923 if (data_xon_thr
< 0)
2924 data_xon_thr
= 27648 >> 8; /* ~3*max MTU */
2925 if (data_xoff_thr
< 0)
2926 data_xoff_thr
= 54272 >> 8; /* ~80Kb - 3*max MTU */
2927 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_DESC_PUSH_EN
, 0);
2928 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_USR_BUF_SIZE
,
2930 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XON_MAC_TH
, data_xon_thr
);
2931 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XOFF_MAC_TH
, data_xoff_thr
);
2932 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XON_TX_TH
, ctrl_xon_thr
);
2933 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_XOFF_TX_TH
, ctrl_xoff_thr
);
2934 EFX_SET_OWORD_FIELD(reg
, FRF_BZ_RX_INGR_EN
, 1);
2936 efx_writeo(efx
, ®
, FR_AZ_RX_CFG
);
2939 /* This call performs hardware-specific global initialisation, such as
2940 * defining the descriptor cache sizes and number of RSS channels.
2941 * It does not set up any buffers, descriptor rings or event queues.
2943 int falcon_init_nic(struct efx_nic
*efx
)
2948 /* Use on-chip SRAM */
2949 efx_reado(efx
, &temp
, FR_AB_NIC_STAT
);
2950 EFX_SET_OWORD_FIELD(temp
, FRF_AB_ONCHIP_SRAM
, 1);
2951 efx_writeo(efx
, &temp
, FR_AB_NIC_STAT
);
2953 /* Set the source of the GMAC clock */
2954 if (falcon_rev(efx
) == FALCON_REV_B0
) {
2955 efx_reado(efx
, &temp
, FR_AB_GPIO_CTL
);
2956 EFX_SET_OWORD_FIELD(temp
, FRF_AB_USE_NIC_CLK
, true);
2957 efx_writeo(efx
, &temp
, FR_AB_GPIO_CTL
);
2960 rc
= falcon_reset_sram(efx
);
2964 /* Set positions of descriptor caches in SRAM. */
2965 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_TX_DC_BASE_ADR
, TX_DC_BASE
/ 8);
2966 efx_writeo(efx
, &temp
, FR_AZ_SRM_TX_DC_CFG
);
2967 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_SRM_RX_DC_BASE_ADR
, RX_DC_BASE
/ 8);
2968 efx_writeo(efx
, &temp
, FR_AZ_SRM_RX_DC_CFG
);
2970 /* Set TX descriptor cache size. */
2971 BUILD_BUG_ON(TX_DC_ENTRIES
!= (8 << TX_DC_ENTRIES_ORDER
));
2972 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_TX_DC_SIZE
, TX_DC_ENTRIES_ORDER
);
2973 efx_writeo(efx
, &temp
, FR_AZ_TX_DC_CFG
);
2975 /* Set RX descriptor cache size. Set low watermark to size-8, as
2976 * this allows most efficient prefetching.
2978 BUILD_BUG_ON(RX_DC_ENTRIES
!= (8 << RX_DC_ENTRIES_ORDER
));
2979 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_SIZE
, RX_DC_ENTRIES_ORDER
);
2980 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_CFG
);
2981 EFX_POPULATE_OWORD_1(temp
, FRF_AZ_RX_DC_PF_LWM
, RX_DC_ENTRIES
- 8);
2982 efx_writeo(efx
, &temp
, FR_AZ_RX_DC_PF_WM
);
2984 /* Clear the parity enables on the TX data fifos as
2985 * they produce false parity errors because of timing issues
2987 if (EFX_WORKAROUND_5129(efx
)) {
2988 efx_reado(efx
, &temp
, FR_AZ_CSR_SPARE
);
2989 EFX_SET_OWORD_FIELD(temp
, FRF_AB_MEM_PERR_EN_TX_DATA
, 0);
2990 efx_writeo(efx
, &temp
, FR_AZ_CSR_SPARE
);
2993 /* Enable all the genuinely fatal interrupts. (They are still
2994 * masked by the overall interrupt mask, controlled by
2995 * falcon_interrupts()).
2997 * Note: All other fatal interrupts are enabled
2999 EFX_POPULATE_OWORD_3(temp
,
3000 FRF_AZ_ILL_ADR_INT_KER_EN
, 1,
3001 FRF_AZ_RBUF_OWN_INT_KER_EN
, 1,
3002 FRF_AZ_TBUF_OWN_INT_KER_EN
, 1);
3003 EFX_INVERT_OWORD(temp
);
3004 efx_writeo(efx
, &temp
, FR_AZ_FATAL_INTR_KER
);
3006 if (EFX_WORKAROUND_7244(efx
)) {
3007 efx_reado(efx
, &temp
, FR_BZ_RX_FILTER_CTL
);
3008 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_UDP_FULL_SRCH_LIMIT
, 8);
3009 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_UDP_WILD_SRCH_LIMIT
, 8);
3010 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TCP_FULL_SRCH_LIMIT
, 8);
3011 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TCP_WILD_SRCH_LIMIT
, 8);
3012 efx_writeo(efx
, &temp
, FR_BZ_RX_FILTER_CTL
);
3015 falcon_setup_rss_indir_table(efx
);
3017 /* XXX This is documented only for Falcon A0/A1 */
3018 /* Setup RX. Wait for descriptor is broken and must
3019 * be disabled. RXDP recovery shouldn't be needed, but is.
3021 efx_reado(efx
, &temp
, FR_AA_RX_SELF_RST
);
3022 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_NODESC_WAIT_DIS
, 1);
3023 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_SELF_RST_EN
, 1);
3024 if (EFX_WORKAROUND_5583(efx
))
3025 EFX_SET_OWORD_FIELD(temp
, FRF_AA_RX_ISCSI_DIS
, 1);
3026 efx_writeo(efx
, &temp
, FR_AA_RX_SELF_RST
);
3028 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
3029 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
3031 efx_reado(efx
, &temp
, FR_AZ_TX_RESERVED
);
3032 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER
, 0xfe);
3033 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_RX_SPACER_EN
, 1);
3034 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_ONE_PKT_PER_Q
, 1);
3035 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PUSH_EN
, 0);
3036 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_DIS_NON_IP_EV
, 1);
3037 /* Enable SW_EV to inherit in char driver - assume harmless here */
3038 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_SOFT_EVT_EN
, 1);
3039 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
3040 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_PREF_THRESHOLD
, 2);
3041 /* Squash TX of packets of 16 bytes or less */
3042 if (falcon_rev(efx
) >= FALCON_REV_B0
&& EFX_WORKAROUND_9141(efx
))
3043 EFX_SET_OWORD_FIELD(temp
, FRF_BZ_TX_FLUSH_MIN_LEN_EN
, 1);
3044 efx_writeo(efx
, &temp
, FR_AZ_TX_RESERVED
);
3046 /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
3047 * descriptors (which is bad).
3049 efx_reado(efx
, &temp
, FR_AZ_TX_CFG
);
3050 EFX_SET_OWORD_FIELD(temp
, FRF_AZ_TX_NO_EOP_DISC_EN
, 0);
3051 efx_writeo(efx
, &temp
, FR_AZ_TX_CFG
);
3053 falcon_init_rx_cfg(efx
);
3055 /* Set destination of both TX and RX Flush events */
3056 if (falcon_rev(efx
) >= FALCON_REV_B0
) {
3057 EFX_POPULATE_OWORD_1(temp
, FRF_BZ_FLS_EVQ_ID
, 0);
3058 efx_writeo(efx
, &temp
, FR_BZ_DP_CTRL
);
3064 void falcon_remove_nic(struct efx_nic
*efx
)
3066 struct falcon_nic_data
*nic_data
= efx
->nic_data
;
3067 struct falcon_board
*board
= falcon_board(efx
);
3070 falcon_board(efx
)->fini(efx
);
3072 /* Remove I2C adapter and clear it in preparation for a retry */
3073 rc
= i2c_del_adapter(&board
->i2c_adap
);
3075 memset(&board
->i2c_adap
, 0, sizeof(board
->i2c_adap
));
3077 falcon_remove_spi_devices(efx
);
3078 falcon_free_buffer(efx
, &efx
->irq_status
);
3080 falcon_reset_hw(efx
, RESET_TYPE_ALL
);
3082 /* Release the second function after the reset */
3083 if (nic_data
->pci_dev2
) {
3084 pci_dev_put(nic_data
->pci_dev2
);
3085 nic_data
->pci_dev2
= NULL
;
3088 /* Tear down the private nic state */
3089 kfree(efx
->nic_data
);
3090 efx
->nic_data
= NULL
;
3093 void falcon_update_nic_stats(struct efx_nic
*efx
)
3097 efx_reado(efx
, &cnt
, FR_AZ_RX_NODESC_DROP
);
3098 efx
->n_rx_nodesc_drop_cnt
+=
3099 EFX_OWORD_FIELD(cnt
, FRF_AB_RX_NODESC_DROP_CNT
);
3102 /**************************************************************************
3104 * Revision-dependent attributes used by efx.c
3106 **************************************************************************
3109 struct efx_nic_type falcon_a_nic_type
= {
3110 .mem_map_size
= 0x20000,
3111 .txd_ptr_tbl_base
= FR_AA_TX_DESC_PTR_TBL_KER
,
3112 .rxd_ptr_tbl_base
= FR_AA_RX_DESC_PTR_TBL_KER
,
3113 .buf_tbl_base
= FR_AA_BUF_FULL_TBL_KER
,
3114 .evq_ptr_tbl_base
= FR_AA_EVQ_PTR_TBL_KER
,
3115 .evq_rptr_tbl_base
= FR_AA_EVQ_RPTR_KER
,
3116 .max_dma_mask
= DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH
),
3117 .rx_buffer_padding
= 0x24,
3118 .max_interrupt_mode
= EFX_INT_MODE_MSI
,
3119 .phys_addr_channels
= 4,
3122 struct efx_nic_type falcon_b_nic_type
= {
3123 /* Map everything up to and including the RSS indirection
3124 * table. Don't map MSI-X table, MSI-X PBA since Linux
3125 * requires that they not be mapped. */
3126 .mem_map_size
= (FR_BZ_RX_INDIRECTION_TBL
+
3127 FR_BZ_RX_INDIRECTION_TBL_STEP
*
3128 FR_BZ_RX_INDIRECTION_TBL_ROWS
),
3129 .txd_ptr_tbl_base
= FR_BZ_TX_DESC_PTR_TBL
,
3130 .rxd_ptr_tbl_base
= FR_BZ_RX_DESC_PTR_TBL
,
3131 .buf_tbl_base
= FR_BZ_BUF_FULL_TBL
,
3132 .evq_ptr_tbl_base
= FR_BZ_EVQ_PTR_TBL
,
3133 .evq_rptr_tbl_base
= FR_BZ_EVQ_RPTR
,
3134 .max_dma_mask
= DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH
),
3135 .rx_buffer_padding
= 0,
3136 .max_interrupt_mode
= EFX_INT_MODE_MSIX
,
3137 .phys_addr_channels
= 32, /* Hardware limit is 64, but the legacy
3138 * interrupt handler only supports 32