drm/vc4: Add a getparam to signal support for branches.
[linux/fpc-iii.git] / mm / page-writeback.c
blobb9956fdee8f5d0ed55713eef51e13a6ea42b2e0d
1 /*
2 * mm/page-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
10 * 10Apr2002 Andrew Morton
11 * Initial version
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
42 #include "internal.h"
45 * Sleep at most 200ms at a time in balance_dirty_pages().
47 #define MAX_PAUSE max(HZ/5, 1)
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
56 * Estimate write bandwidth at 200ms intervals.
58 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
60 #define RATELIMIT_CALC_SHIFT 10
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
66 static long ratelimit_pages = 32;
68 /* The following parameters are exported via /proc/sys/vm */
71 * Start background writeback (via writeback threads) at this percentage
73 int dirty_background_ratio = 10;
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
79 unsigned long dirty_background_bytes;
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 int vm_highmem_is_dirtyable;
88 * The generator of dirty data starts writeback at this percentage
90 int vm_dirty_ratio = 20;
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
96 unsigned long vm_dirty_bytes;
99 * The interval between `kupdate'-style writebacks
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
106 * The longest time for which data is allowed to remain dirty
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
111 * Flag that makes the machine dump writes/reads and block dirtyings.
113 int block_dump;
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
119 int laptop_mode;
121 EXPORT_SYMBOL(laptop_mode);
123 /* End of sysctl-exported parameters */
125 struct wb_domain global_wb_domain;
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130 struct wb_domain *dom;
131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
132 #endif
133 struct bdi_writeback *wb;
134 struct fprop_local_percpu *wb_completions;
136 unsigned long avail; /* dirtyable */
137 unsigned long dirty; /* file_dirty + write + nfs */
138 unsigned long thresh; /* dirty threshold */
139 unsigned long bg_thresh; /* dirty background threshold */
141 unsigned long wb_dirty; /* per-wb counterparts */
142 unsigned long wb_thresh;
143 unsigned long wb_bg_thresh;
145 unsigned long pos_ratio;
149 * Length of period for aging writeout fractions of bdis. This is an
150 * arbitrarily chosen number. The longer the period, the slower fractions will
151 * reflect changes in current writeout rate.
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155 #ifdef CONFIG_CGROUP_WRITEBACK
157 #define GDTC_INIT(__wb) .wb = (__wb), \
158 .dom = &global_wb_domain, \
159 .wb_completions = &(__wb)->completions
161 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
164 .dom = mem_cgroup_wb_domain(__wb), \
165 .wb_completions = &(__wb)->memcg_completions, \
166 .gdtc = __gdtc
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
170 return dtc->dom;
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175 return dtc->dom;
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180 return mdtc->gdtc;
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185 return &wb->memcg_completions;
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189 unsigned long *minp, unsigned long *maxp)
191 unsigned long this_bw = wb->avg_write_bandwidth;
192 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193 unsigned long long min = wb->bdi->min_ratio;
194 unsigned long long max = wb->bdi->max_ratio;
197 * @wb may already be clean by the time control reaches here and
198 * the total may not include its bw.
200 if (this_bw < tot_bw) {
201 if (min) {
202 min *= this_bw;
203 do_div(min, tot_bw);
205 if (max < 100) {
206 max *= this_bw;
207 do_div(max, tot_bw);
211 *minp = min;
212 *maxp = max;
215 #else /* CONFIG_CGROUP_WRITEBACK */
217 #define GDTC_INIT(__wb) .wb = (__wb), \
218 .wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
224 return false;
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229 return &global_wb_domain;
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234 return NULL;
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239 return NULL;
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243 unsigned long *minp, unsigned long *maxp)
245 *minp = wb->bdi->min_ratio;
246 *maxp = wb->bdi->max_ratio;
249 #endif /* CONFIG_CGROUP_WRITEBACK */
252 * In a memory zone, there is a certain amount of pages we consider
253 * available for the page cache, which is essentially the number of
254 * free and reclaimable pages, minus some zone reserves to protect
255 * lowmem and the ability to uphold the zone's watermarks without
256 * requiring writeback.
258 * This number of dirtyable pages is the base value of which the
259 * user-configurable dirty ratio is the effictive number of pages that
260 * are allowed to be actually dirtied. Per individual zone, or
261 * globally by using the sum of dirtyable pages over all zones.
263 * Because the user is allowed to specify the dirty limit globally as
264 * absolute number of bytes, calculating the per-zone dirty limit can
265 * require translating the configured limit into a percentage of
266 * global dirtyable memory first.
270 * zone_dirtyable_memory - number of dirtyable pages in a zone
271 * @zone: the zone
273 * Returns the zone's number of pages potentially available for dirty
274 * page cache. This is the base value for the per-zone dirty limits.
276 static unsigned long zone_dirtyable_memory(struct zone *zone)
278 unsigned long nr_pages;
280 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
282 * Pages reserved for the kernel should not be considered
283 * dirtyable, to prevent a situation where reclaim has to
284 * clean pages in order to balance the zones.
286 nr_pages -= min(nr_pages, zone->totalreserve_pages);
288 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
289 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
291 return nr_pages;
294 static unsigned long highmem_dirtyable_memory(unsigned long total)
296 #ifdef CONFIG_HIGHMEM
297 int node;
298 unsigned long x = 0;
299 int i;
301 for_each_node_state(node, N_HIGH_MEMORY) {
302 for (i = 0; i < MAX_NR_ZONES; i++) {
303 struct zone *z = &NODE_DATA(node)->node_zones[i];
305 if (is_highmem(z))
306 x += zone_dirtyable_memory(z);
310 * Unreclaimable memory (kernel memory or anonymous memory
311 * without swap) can bring down the dirtyable pages below
312 * the zone's dirty balance reserve and the above calculation
313 * will underflow. However we still want to add in nodes
314 * which are below threshold (negative values) to get a more
315 * accurate calculation but make sure that the total never
316 * underflows.
318 if ((long)x < 0)
319 x = 0;
322 * Make sure that the number of highmem pages is never larger
323 * than the number of the total dirtyable memory. This can only
324 * occur in very strange VM situations but we want to make sure
325 * that this does not occur.
327 return min(x, total);
328 #else
329 return 0;
330 #endif
334 * global_dirtyable_memory - number of globally dirtyable pages
336 * Returns the global number of pages potentially available for dirty
337 * page cache. This is the base value for the global dirty limits.
339 static unsigned long global_dirtyable_memory(void)
341 unsigned long x;
343 x = global_page_state(NR_FREE_PAGES);
345 * Pages reserved for the kernel should not be considered
346 * dirtyable, to prevent a situation where reclaim has to
347 * clean pages in order to balance the zones.
349 x -= min(x, totalreserve_pages);
351 x += global_page_state(NR_INACTIVE_FILE);
352 x += global_page_state(NR_ACTIVE_FILE);
354 if (!vm_highmem_is_dirtyable)
355 x -= highmem_dirtyable_memory(x);
357 return x + 1; /* Ensure that we never return 0 */
361 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
362 * @dtc: dirty_throttle_control of interest
364 * Calculate @dtc->thresh and ->bg_thresh considering
365 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
366 * must ensure that @dtc->avail is set before calling this function. The
367 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
368 * real-time tasks.
370 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
372 const unsigned long available_memory = dtc->avail;
373 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
374 unsigned long bytes = vm_dirty_bytes;
375 unsigned long bg_bytes = dirty_background_bytes;
376 unsigned long ratio = vm_dirty_ratio;
377 unsigned long bg_ratio = dirty_background_ratio;
378 unsigned long thresh;
379 unsigned long bg_thresh;
380 struct task_struct *tsk;
382 /* gdtc is !NULL iff @dtc is for memcg domain */
383 if (gdtc) {
384 unsigned long global_avail = gdtc->avail;
387 * The byte settings can't be applied directly to memcg
388 * domains. Convert them to ratios by scaling against
389 * globally available memory.
391 if (bytes)
392 ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
393 global_avail, 100UL);
394 if (bg_bytes)
395 bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
396 global_avail, 100UL);
397 bytes = bg_bytes = 0;
400 if (bytes)
401 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
402 else
403 thresh = (ratio * available_memory) / 100;
405 if (bg_bytes)
406 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
407 else
408 bg_thresh = (bg_ratio * available_memory) / 100;
410 if (bg_thresh >= thresh)
411 bg_thresh = thresh / 2;
412 tsk = current;
413 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
414 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
415 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
417 dtc->thresh = thresh;
418 dtc->bg_thresh = bg_thresh;
420 /* we should eventually report the domain in the TP */
421 if (!gdtc)
422 trace_global_dirty_state(bg_thresh, thresh);
426 * global_dirty_limits - background-writeback and dirty-throttling thresholds
427 * @pbackground: out parameter for bg_thresh
428 * @pdirty: out parameter for thresh
430 * Calculate bg_thresh and thresh for global_wb_domain. See
431 * domain_dirty_limits() for details.
433 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
435 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
437 gdtc.avail = global_dirtyable_memory();
438 domain_dirty_limits(&gdtc);
440 *pbackground = gdtc.bg_thresh;
441 *pdirty = gdtc.thresh;
445 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
446 * @zone: the zone
448 * Returns the maximum number of dirty pages allowed in a zone, based
449 * on the zone's dirtyable memory.
451 static unsigned long zone_dirty_limit(struct zone *zone)
453 unsigned long zone_memory = zone_dirtyable_memory(zone);
454 struct task_struct *tsk = current;
455 unsigned long dirty;
457 if (vm_dirty_bytes)
458 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
459 zone_memory / global_dirtyable_memory();
460 else
461 dirty = vm_dirty_ratio * zone_memory / 100;
463 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
464 dirty += dirty / 4;
466 return dirty;
470 * zone_dirty_ok - tells whether a zone is within its dirty limits
471 * @zone: the zone to check
473 * Returns %true when the dirty pages in @zone are within the zone's
474 * dirty limit, %false if the limit is exceeded.
476 bool zone_dirty_ok(struct zone *zone)
478 unsigned long limit = zone_dirty_limit(zone);
480 return zone_page_state(zone, NR_FILE_DIRTY) +
481 zone_page_state(zone, NR_UNSTABLE_NFS) +
482 zone_page_state(zone, NR_WRITEBACK) <= limit;
485 int dirty_background_ratio_handler(struct ctl_table *table, int write,
486 void __user *buffer, size_t *lenp,
487 loff_t *ppos)
489 int ret;
491 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
492 if (ret == 0 && write)
493 dirty_background_bytes = 0;
494 return ret;
497 int dirty_background_bytes_handler(struct ctl_table *table, int write,
498 void __user *buffer, size_t *lenp,
499 loff_t *ppos)
501 int ret;
503 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
504 if (ret == 0 && write)
505 dirty_background_ratio = 0;
506 return ret;
509 int dirty_ratio_handler(struct ctl_table *table, int write,
510 void __user *buffer, size_t *lenp,
511 loff_t *ppos)
513 int old_ratio = vm_dirty_ratio;
514 int ret;
516 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
517 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
518 writeback_set_ratelimit();
519 vm_dirty_bytes = 0;
521 return ret;
524 int dirty_bytes_handler(struct ctl_table *table, int write,
525 void __user *buffer, size_t *lenp,
526 loff_t *ppos)
528 unsigned long old_bytes = vm_dirty_bytes;
529 int ret;
531 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
532 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
533 writeback_set_ratelimit();
534 vm_dirty_ratio = 0;
536 return ret;
539 static unsigned long wp_next_time(unsigned long cur_time)
541 cur_time += VM_COMPLETIONS_PERIOD_LEN;
542 /* 0 has a special meaning... */
543 if (!cur_time)
544 return 1;
545 return cur_time;
548 static void wb_domain_writeout_inc(struct wb_domain *dom,
549 struct fprop_local_percpu *completions,
550 unsigned int max_prop_frac)
552 __fprop_inc_percpu_max(&dom->completions, completions,
553 max_prop_frac);
554 /* First event after period switching was turned off? */
555 if (!unlikely(dom->period_time)) {
557 * We can race with other __bdi_writeout_inc calls here but
558 * it does not cause any harm since the resulting time when
559 * timer will fire and what is in writeout_period_time will be
560 * roughly the same.
562 dom->period_time = wp_next_time(jiffies);
563 mod_timer(&dom->period_timer, dom->period_time);
568 * Increment @wb's writeout completion count and the global writeout
569 * completion count. Called from test_clear_page_writeback().
571 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
573 struct wb_domain *cgdom;
575 __inc_wb_stat(wb, WB_WRITTEN);
576 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
577 wb->bdi->max_prop_frac);
579 cgdom = mem_cgroup_wb_domain(wb);
580 if (cgdom)
581 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
582 wb->bdi->max_prop_frac);
585 void wb_writeout_inc(struct bdi_writeback *wb)
587 unsigned long flags;
589 local_irq_save(flags);
590 __wb_writeout_inc(wb);
591 local_irq_restore(flags);
593 EXPORT_SYMBOL_GPL(wb_writeout_inc);
596 * On idle system, we can be called long after we scheduled because we use
597 * deferred timers so count with missed periods.
599 static void writeout_period(unsigned long t)
601 struct wb_domain *dom = (void *)t;
602 int miss_periods = (jiffies - dom->period_time) /
603 VM_COMPLETIONS_PERIOD_LEN;
605 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
606 dom->period_time = wp_next_time(dom->period_time +
607 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
608 mod_timer(&dom->period_timer, dom->period_time);
609 } else {
611 * Aging has zeroed all fractions. Stop wasting CPU on period
612 * updates.
614 dom->period_time = 0;
618 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
620 memset(dom, 0, sizeof(*dom));
622 spin_lock_init(&dom->lock);
624 init_timer_deferrable(&dom->period_timer);
625 dom->period_timer.function = writeout_period;
626 dom->period_timer.data = (unsigned long)dom;
628 dom->dirty_limit_tstamp = jiffies;
630 return fprop_global_init(&dom->completions, gfp);
633 #ifdef CONFIG_CGROUP_WRITEBACK
634 void wb_domain_exit(struct wb_domain *dom)
636 del_timer_sync(&dom->period_timer);
637 fprop_global_destroy(&dom->completions);
639 #endif
642 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
643 * registered backing devices, which, for obvious reasons, can not
644 * exceed 100%.
646 static unsigned int bdi_min_ratio;
648 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
650 int ret = 0;
652 spin_lock_bh(&bdi_lock);
653 if (min_ratio > bdi->max_ratio) {
654 ret = -EINVAL;
655 } else {
656 min_ratio -= bdi->min_ratio;
657 if (bdi_min_ratio + min_ratio < 100) {
658 bdi_min_ratio += min_ratio;
659 bdi->min_ratio += min_ratio;
660 } else {
661 ret = -EINVAL;
664 spin_unlock_bh(&bdi_lock);
666 return ret;
669 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
671 int ret = 0;
673 if (max_ratio > 100)
674 return -EINVAL;
676 spin_lock_bh(&bdi_lock);
677 if (bdi->min_ratio > max_ratio) {
678 ret = -EINVAL;
679 } else {
680 bdi->max_ratio = max_ratio;
681 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
683 spin_unlock_bh(&bdi_lock);
685 return ret;
687 EXPORT_SYMBOL(bdi_set_max_ratio);
689 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
690 unsigned long bg_thresh)
692 return (thresh + bg_thresh) / 2;
695 static unsigned long hard_dirty_limit(struct wb_domain *dom,
696 unsigned long thresh)
698 return max(thresh, dom->dirty_limit);
702 * Memory which can be further allocated to a memcg domain is capped by
703 * system-wide clean memory excluding the amount being used in the domain.
705 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
706 unsigned long filepages, unsigned long headroom)
708 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
709 unsigned long clean = filepages - min(filepages, mdtc->dirty);
710 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
711 unsigned long other_clean = global_clean - min(global_clean, clean);
713 mdtc->avail = filepages + min(headroom, other_clean);
717 * __wb_calc_thresh - @wb's share of dirty throttling threshold
718 * @dtc: dirty_throttle_context of interest
720 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
721 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
723 * Note that balance_dirty_pages() will only seriously take it as a hard limit
724 * when sleeping max_pause per page is not enough to keep the dirty pages under
725 * control. For example, when the device is completely stalled due to some error
726 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
727 * In the other normal situations, it acts more gently by throttling the tasks
728 * more (rather than completely block them) when the wb dirty pages go high.
730 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
731 * - starving fast devices
732 * - piling up dirty pages (that will take long time to sync) on slow devices
734 * The wb's share of dirty limit will be adapting to its throughput and
735 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
737 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
739 struct wb_domain *dom = dtc_dom(dtc);
740 unsigned long thresh = dtc->thresh;
741 u64 wb_thresh;
742 long numerator, denominator;
743 unsigned long wb_min_ratio, wb_max_ratio;
746 * Calculate this BDI's share of the thresh ratio.
748 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
749 &numerator, &denominator);
751 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
752 wb_thresh *= numerator;
753 do_div(wb_thresh, denominator);
755 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
757 wb_thresh += (thresh * wb_min_ratio) / 100;
758 if (wb_thresh > (thresh * wb_max_ratio) / 100)
759 wb_thresh = thresh * wb_max_ratio / 100;
761 return wb_thresh;
764 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
766 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
767 .thresh = thresh };
768 return __wb_calc_thresh(&gdtc);
772 * setpoint - dirty 3
773 * f(dirty) := 1.0 + (----------------)
774 * limit - setpoint
776 * it's a 3rd order polynomial that subjects to
778 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
779 * (2) f(setpoint) = 1.0 => the balance point
780 * (3) f(limit) = 0 => the hard limit
781 * (4) df/dx <= 0 => negative feedback control
782 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
783 * => fast response on large errors; small oscillation near setpoint
785 static long long pos_ratio_polynom(unsigned long setpoint,
786 unsigned long dirty,
787 unsigned long limit)
789 long long pos_ratio;
790 long x;
792 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
793 (limit - setpoint) | 1);
794 pos_ratio = x;
795 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
796 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
797 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
799 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
803 * Dirty position control.
805 * (o) global/bdi setpoints
807 * We want the dirty pages be balanced around the global/wb setpoints.
808 * When the number of dirty pages is higher/lower than the setpoint, the
809 * dirty position control ratio (and hence task dirty ratelimit) will be
810 * decreased/increased to bring the dirty pages back to the setpoint.
812 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
814 * if (dirty < setpoint) scale up pos_ratio
815 * if (dirty > setpoint) scale down pos_ratio
817 * if (wb_dirty < wb_setpoint) scale up pos_ratio
818 * if (wb_dirty > wb_setpoint) scale down pos_ratio
820 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
822 * (o) global control line
824 * ^ pos_ratio
826 * | |<===== global dirty control scope ======>|
827 * 2.0 .............*
828 * | .*
829 * | . *
830 * | . *
831 * | . *
832 * | . *
833 * | . *
834 * 1.0 ................................*
835 * | . . *
836 * | . . *
837 * | . . *
838 * | . . *
839 * | . . *
840 * 0 +------------.------------------.----------------------*------------->
841 * freerun^ setpoint^ limit^ dirty pages
843 * (o) wb control line
845 * ^ pos_ratio
847 * | *
848 * | *
849 * | *
850 * | *
851 * | * |<=========== span ============>|
852 * 1.0 .......................*
853 * | . *
854 * | . *
855 * | . *
856 * | . *
857 * | . *
858 * | . *
859 * | . *
860 * | . *
861 * | . *
862 * | . *
863 * | . *
864 * 1/4 ...............................................* * * * * * * * * * * *
865 * | . .
866 * | . .
867 * | . .
868 * 0 +----------------------.-------------------------------.------------->
869 * wb_setpoint^ x_intercept^
871 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
872 * be smoothly throttled down to normal if it starts high in situations like
873 * - start writing to a slow SD card and a fast disk at the same time. The SD
874 * card's wb_dirty may rush to many times higher than wb_setpoint.
875 * - the wb dirty thresh drops quickly due to change of JBOD workload
877 static void wb_position_ratio(struct dirty_throttle_control *dtc)
879 struct bdi_writeback *wb = dtc->wb;
880 unsigned long write_bw = wb->avg_write_bandwidth;
881 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
882 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
883 unsigned long wb_thresh = dtc->wb_thresh;
884 unsigned long x_intercept;
885 unsigned long setpoint; /* dirty pages' target balance point */
886 unsigned long wb_setpoint;
887 unsigned long span;
888 long long pos_ratio; /* for scaling up/down the rate limit */
889 long x;
891 dtc->pos_ratio = 0;
893 if (unlikely(dtc->dirty >= limit))
894 return;
897 * global setpoint
899 * See comment for pos_ratio_polynom().
901 setpoint = (freerun + limit) / 2;
902 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
905 * The strictlimit feature is a tool preventing mistrusted filesystems
906 * from growing a large number of dirty pages before throttling. For
907 * such filesystems balance_dirty_pages always checks wb counters
908 * against wb limits. Even if global "nr_dirty" is under "freerun".
909 * This is especially important for fuse which sets bdi->max_ratio to
910 * 1% by default. Without strictlimit feature, fuse writeback may
911 * consume arbitrary amount of RAM because it is accounted in
912 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
914 * Here, in wb_position_ratio(), we calculate pos_ratio based on
915 * two values: wb_dirty and wb_thresh. Let's consider an example:
916 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
917 * limits are set by default to 10% and 20% (background and throttle).
918 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
919 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
920 * about ~6K pages (as the average of background and throttle wb
921 * limits). The 3rd order polynomial will provide positive feedback if
922 * wb_dirty is under wb_setpoint and vice versa.
924 * Note, that we cannot use global counters in these calculations
925 * because we want to throttle process writing to a strictlimit wb
926 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
927 * in the example above).
929 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
930 long long wb_pos_ratio;
932 if (dtc->wb_dirty < 8) {
933 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
934 2 << RATELIMIT_CALC_SHIFT);
935 return;
938 if (dtc->wb_dirty >= wb_thresh)
939 return;
941 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
942 dtc->wb_bg_thresh);
944 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
945 return;
947 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
948 wb_thresh);
951 * Typically, for strictlimit case, wb_setpoint << setpoint
952 * and pos_ratio >> wb_pos_ratio. In the other words global
953 * state ("dirty") is not limiting factor and we have to
954 * make decision based on wb counters. But there is an
955 * important case when global pos_ratio should get precedence:
956 * global limits are exceeded (e.g. due to activities on other
957 * wb's) while given strictlimit wb is below limit.
959 * "pos_ratio * wb_pos_ratio" would work for the case above,
960 * but it would look too non-natural for the case of all
961 * activity in the system coming from a single strictlimit wb
962 * with bdi->max_ratio == 100%.
964 * Note that min() below somewhat changes the dynamics of the
965 * control system. Normally, pos_ratio value can be well over 3
966 * (when globally we are at freerun and wb is well below wb
967 * setpoint). Now the maximum pos_ratio in the same situation
968 * is 2. We might want to tweak this if we observe the control
969 * system is too slow to adapt.
971 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
972 return;
976 * We have computed basic pos_ratio above based on global situation. If
977 * the wb is over/under its share of dirty pages, we want to scale
978 * pos_ratio further down/up. That is done by the following mechanism.
982 * wb setpoint
984 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
986 * x_intercept - wb_dirty
987 * := --------------------------
988 * x_intercept - wb_setpoint
990 * The main wb control line is a linear function that subjects to
992 * (1) f(wb_setpoint) = 1.0
993 * (2) k = - 1 / (8 * write_bw) (in single wb case)
994 * or equally: x_intercept = wb_setpoint + 8 * write_bw
996 * For single wb case, the dirty pages are observed to fluctuate
997 * regularly within range
998 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
999 * for various filesystems, where (2) can yield in a reasonable 12.5%
1000 * fluctuation range for pos_ratio.
1002 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1003 * own size, so move the slope over accordingly and choose a slope that
1004 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1006 if (unlikely(wb_thresh > dtc->thresh))
1007 wb_thresh = dtc->thresh;
1009 * It's very possible that wb_thresh is close to 0 not because the
1010 * device is slow, but that it has remained inactive for long time.
1011 * Honour such devices a reasonable good (hopefully IO efficient)
1012 * threshold, so that the occasional writes won't be blocked and active
1013 * writes can rampup the threshold quickly.
1015 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1017 * scale global setpoint to wb's:
1018 * wb_setpoint = setpoint * wb_thresh / thresh
1020 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1021 wb_setpoint = setpoint * (u64)x >> 16;
1023 * Use span=(8*write_bw) in single wb case as indicated by
1024 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1026 * wb_thresh thresh - wb_thresh
1027 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1028 * thresh thresh
1030 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1031 x_intercept = wb_setpoint + span;
1033 if (dtc->wb_dirty < x_intercept - span / 4) {
1034 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1035 (x_intercept - wb_setpoint) | 1);
1036 } else
1037 pos_ratio /= 4;
1040 * wb reserve area, safeguard against dirty pool underrun and disk idle
1041 * It may push the desired control point of global dirty pages higher
1042 * than setpoint.
1044 x_intercept = wb_thresh / 2;
1045 if (dtc->wb_dirty < x_intercept) {
1046 if (dtc->wb_dirty > x_intercept / 8)
1047 pos_ratio = div_u64(pos_ratio * x_intercept,
1048 dtc->wb_dirty);
1049 else
1050 pos_ratio *= 8;
1053 dtc->pos_ratio = pos_ratio;
1056 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1057 unsigned long elapsed,
1058 unsigned long written)
1060 const unsigned long period = roundup_pow_of_two(3 * HZ);
1061 unsigned long avg = wb->avg_write_bandwidth;
1062 unsigned long old = wb->write_bandwidth;
1063 u64 bw;
1066 * bw = written * HZ / elapsed
1068 * bw * elapsed + write_bandwidth * (period - elapsed)
1069 * write_bandwidth = ---------------------------------------------------
1070 * period
1072 * @written may have decreased due to account_page_redirty().
1073 * Avoid underflowing @bw calculation.
1075 bw = written - min(written, wb->written_stamp);
1076 bw *= HZ;
1077 if (unlikely(elapsed > period)) {
1078 do_div(bw, elapsed);
1079 avg = bw;
1080 goto out;
1082 bw += (u64)wb->write_bandwidth * (period - elapsed);
1083 bw >>= ilog2(period);
1086 * one more level of smoothing, for filtering out sudden spikes
1088 if (avg > old && old >= (unsigned long)bw)
1089 avg -= (avg - old) >> 3;
1091 if (avg < old && old <= (unsigned long)bw)
1092 avg += (old - avg) >> 3;
1094 out:
1095 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1096 avg = max(avg, 1LU);
1097 if (wb_has_dirty_io(wb)) {
1098 long delta = avg - wb->avg_write_bandwidth;
1099 WARN_ON_ONCE(atomic_long_add_return(delta,
1100 &wb->bdi->tot_write_bandwidth) <= 0);
1102 wb->write_bandwidth = bw;
1103 wb->avg_write_bandwidth = avg;
1106 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1108 struct wb_domain *dom = dtc_dom(dtc);
1109 unsigned long thresh = dtc->thresh;
1110 unsigned long limit = dom->dirty_limit;
1113 * Follow up in one step.
1115 if (limit < thresh) {
1116 limit = thresh;
1117 goto update;
1121 * Follow down slowly. Use the higher one as the target, because thresh
1122 * may drop below dirty. This is exactly the reason to introduce
1123 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1125 thresh = max(thresh, dtc->dirty);
1126 if (limit > thresh) {
1127 limit -= (limit - thresh) >> 5;
1128 goto update;
1130 return;
1131 update:
1132 dom->dirty_limit = limit;
1135 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1136 unsigned long now)
1138 struct wb_domain *dom = dtc_dom(dtc);
1141 * check locklessly first to optimize away locking for the most time
1143 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1144 return;
1146 spin_lock(&dom->lock);
1147 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1148 update_dirty_limit(dtc);
1149 dom->dirty_limit_tstamp = now;
1151 spin_unlock(&dom->lock);
1155 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1157 * Normal wb tasks will be curbed at or below it in long term.
1158 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1160 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1161 unsigned long dirtied,
1162 unsigned long elapsed)
1164 struct bdi_writeback *wb = dtc->wb;
1165 unsigned long dirty = dtc->dirty;
1166 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1167 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1168 unsigned long setpoint = (freerun + limit) / 2;
1169 unsigned long write_bw = wb->avg_write_bandwidth;
1170 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1171 unsigned long dirty_rate;
1172 unsigned long task_ratelimit;
1173 unsigned long balanced_dirty_ratelimit;
1174 unsigned long step;
1175 unsigned long x;
1176 unsigned long shift;
1179 * The dirty rate will match the writeout rate in long term, except
1180 * when dirty pages are truncated by userspace or re-dirtied by FS.
1182 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1185 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1187 task_ratelimit = (u64)dirty_ratelimit *
1188 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1189 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1192 * A linear estimation of the "balanced" throttle rate. The theory is,
1193 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1194 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1195 * formula will yield the balanced rate limit (write_bw / N).
1197 * Note that the expanded form is not a pure rate feedback:
1198 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1199 * but also takes pos_ratio into account:
1200 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1202 * (1) is not realistic because pos_ratio also takes part in balancing
1203 * the dirty rate. Consider the state
1204 * pos_ratio = 0.5 (3)
1205 * rate = 2 * (write_bw / N) (4)
1206 * If (1) is used, it will stuck in that state! Because each dd will
1207 * be throttled at
1208 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1209 * yielding
1210 * dirty_rate = N * task_ratelimit = write_bw (6)
1211 * put (6) into (1) we get
1212 * rate_(i+1) = rate_(i) (7)
1214 * So we end up using (2) to always keep
1215 * rate_(i+1) ~= (write_bw / N) (8)
1216 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1217 * pos_ratio is able to drive itself to 1.0, which is not only where
1218 * the dirty count meet the setpoint, but also where the slope of
1219 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1221 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1222 dirty_rate | 1);
1224 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1226 if (unlikely(balanced_dirty_ratelimit > write_bw))
1227 balanced_dirty_ratelimit = write_bw;
1230 * We could safely do this and return immediately:
1232 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1234 * However to get a more stable dirty_ratelimit, the below elaborated
1235 * code makes use of task_ratelimit to filter out singular points and
1236 * limit the step size.
1238 * The below code essentially only uses the relative value of
1240 * task_ratelimit - dirty_ratelimit
1241 * = (pos_ratio - 1) * dirty_ratelimit
1243 * which reflects the direction and size of dirty position error.
1247 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1248 * task_ratelimit is on the same side of dirty_ratelimit, too.
1249 * For example, when
1250 * - dirty_ratelimit > balanced_dirty_ratelimit
1251 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1252 * lowering dirty_ratelimit will help meet both the position and rate
1253 * control targets. Otherwise, don't update dirty_ratelimit if it will
1254 * only help meet the rate target. After all, what the users ultimately
1255 * feel and care are stable dirty rate and small position error.
1257 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1258 * and filter out the singular points of balanced_dirty_ratelimit. Which
1259 * keeps jumping around randomly and can even leap far away at times
1260 * due to the small 200ms estimation period of dirty_rate (we want to
1261 * keep that period small to reduce time lags).
1263 step = 0;
1266 * For strictlimit case, calculations above were based on wb counters
1267 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1268 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1269 * Hence, to calculate "step" properly, we have to use wb_dirty as
1270 * "dirty" and wb_setpoint as "setpoint".
1272 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1273 * it's possible that wb_thresh is close to zero due to inactivity
1274 * of backing device.
1276 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1277 dirty = dtc->wb_dirty;
1278 if (dtc->wb_dirty < 8)
1279 setpoint = dtc->wb_dirty + 1;
1280 else
1281 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1284 if (dirty < setpoint) {
1285 x = min3(wb->balanced_dirty_ratelimit,
1286 balanced_dirty_ratelimit, task_ratelimit);
1287 if (dirty_ratelimit < x)
1288 step = x - dirty_ratelimit;
1289 } else {
1290 x = max3(wb->balanced_dirty_ratelimit,
1291 balanced_dirty_ratelimit, task_ratelimit);
1292 if (dirty_ratelimit > x)
1293 step = dirty_ratelimit - x;
1297 * Don't pursue 100% rate matching. It's impossible since the balanced
1298 * rate itself is constantly fluctuating. So decrease the track speed
1299 * when it gets close to the target. Helps eliminate pointless tremors.
1301 shift = dirty_ratelimit / (2 * step + 1);
1302 if (shift < BITS_PER_LONG)
1303 step = DIV_ROUND_UP(step >> shift, 8);
1304 else
1305 step = 0;
1307 if (dirty_ratelimit < balanced_dirty_ratelimit)
1308 dirty_ratelimit += step;
1309 else
1310 dirty_ratelimit -= step;
1312 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1313 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1315 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1318 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1319 struct dirty_throttle_control *mdtc,
1320 unsigned long start_time,
1321 bool update_ratelimit)
1323 struct bdi_writeback *wb = gdtc->wb;
1324 unsigned long now = jiffies;
1325 unsigned long elapsed = now - wb->bw_time_stamp;
1326 unsigned long dirtied;
1327 unsigned long written;
1329 lockdep_assert_held(&wb->list_lock);
1332 * rate-limit, only update once every 200ms.
1334 if (elapsed < BANDWIDTH_INTERVAL)
1335 return;
1337 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1338 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1341 * Skip quiet periods when disk bandwidth is under-utilized.
1342 * (at least 1s idle time between two flusher runs)
1344 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1345 goto snapshot;
1347 if (update_ratelimit) {
1348 domain_update_bandwidth(gdtc, now);
1349 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1352 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1353 * compiler has no way to figure that out. Help it.
1355 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1356 domain_update_bandwidth(mdtc, now);
1357 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1360 wb_update_write_bandwidth(wb, elapsed, written);
1362 snapshot:
1363 wb->dirtied_stamp = dirtied;
1364 wb->written_stamp = written;
1365 wb->bw_time_stamp = now;
1368 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1370 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1372 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1376 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1377 * will look to see if it needs to start dirty throttling.
1379 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1380 * global_page_state() too often. So scale it near-sqrt to the safety margin
1381 * (the number of pages we may dirty without exceeding the dirty limits).
1383 static unsigned long dirty_poll_interval(unsigned long dirty,
1384 unsigned long thresh)
1386 if (thresh > dirty)
1387 return 1UL << (ilog2(thresh - dirty) >> 1);
1389 return 1;
1392 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1393 unsigned long wb_dirty)
1395 unsigned long bw = wb->avg_write_bandwidth;
1396 unsigned long t;
1399 * Limit pause time for small memory systems. If sleeping for too long
1400 * time, a small pool of dirty/writeback pages may go empty and disk go
1401 * idle.
1403 * 8 serves as the safety ratio.
1405 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1406 t++;
1408 return min_t(unsigned long, t, MAX_PAUSE);
1411 static long wb_min_pause(struct bdi_writeback *wb,
1412 long max_pause,
1413 unsigned long task_ratelimit,
1414 unsigned long dirty_ratelimit,
1415 int *nr_dirtied_pause)
1417 long hi = ilog2(wb->avg_write_bandwidth);
1418 long lo = ilog2(wb->dirty_ratelimit);
1419 long t; /* target pause */
1420 long pause; /* estimated next pause */
1421 int pages; /* target nr_dirtied_pause */
1423 /* target for 10ms pause on 1-dd case */
1424 t = max(1, HZ / 100);
1427 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1428 * overheads.
1430 * (N * 10ms) on 2^N concurrent tasks.
1432 if (hi > lo)
1433 t += (hi - lo) * (10 * HZ) / 1024;
1436 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1437 * on the much more stable dirty_ratelimit. However the next pause time
1438 * will be computed based on task_ratelimit and the two rate limits may
1439 * depart considerably at some time. Especially if task_ratelimit goes
1440 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1441 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1442 * result task_ratelimit won't be executed faithfully, which could
1443 * eventually bring down dirty_ratelimit.
1445 * We apply two rules to fix it up:
1446 * 1) try to estimate the next pause time and if necessary, use a lower
1447 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1448 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1449 * 2) limit the target pause time to max_pause/2, so that the normal
1450 * small fluctuations of task_ratelimit won't trigger rule (1) and
1451 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1453 t = min(t, 1 + max_pause / 2);
1454 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1457 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1458 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1459 * When the 16 consecutive reads are often interrupted by some dirty
1460 * throttling pause during the async writes, cfq will go into idles
1461 * (deadline is fine). So push nr_dirtied_pause as high as possible
1462 * until reaches DIRTY_POLL_THRESH=32 pages.
1464 if (pages < DIRTY_POLL_THRESH) {
1465 t = max_pause;
1466 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1467 if (pages > DIRTY_POLL_THRESH) {
1468 pages = DIRTY_POLL_THRESH;
1469 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1473 pause = HZ * pages / (task_ratelimit + 1);
1474 if (pause > max_pause) {
1475 t = max_pause;
1476 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1479 *nr_dirtied_pause = pages;
1481 * The minimal pause time will normally be half the target pause time.
1483 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1486 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1488 struct bdi_writeback *wb = dtc->wb;
1489 unsigned long wb_reclaimable;
1492 * wb_thresh is not treated as some limiting factor as
1493 * dirty_thresh, due to reasons
1494 * - in JBOD setup, wb_thresh can fluctuate a lot
1495 * - in a system with HDD and USB key, the USB key may somehow
1496 * go into state (wb_dirty >> wb_thresh) either because
1497 * wb_dirty starts high, or because wb_thresh drops low.
1498 * In this case we don't want to hard throttle the USB key
1499 * dirtiers for 100 seconds until wb_dirty drops under
1500 * wb_thresh. Instead the auxiliary wb control line in
1501 * wb_position_ratio() will let the dirtier task progress
1502 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1504 dtc->wb_thresh = __wb_calc_thresh(dtc);
1505 dtc->wb_bg_thresh = dtc->thresh ?
1506 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1509 * In order to avoid the stacked BDI deadlock we need
1510 * to ensure we accurately count the 'dirty' pages when
1511 * the threshold is low.
1513 * Otherwise it would be possible to get thresh+n pages
1514 * reported dirty, even though there are thresh-m pages
1515 * actually dirty; with m+n sitting in the percpu
1516 * deltas.
1518 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1519 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1520 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1521 } else {
1522 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1523 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1528 * balance_dirty_pages() must be called by processes which are generating dirty
1529 * data. It looks at the number of dirty pages in the machine and will force
1530 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1531 * If we're over `background_thresh' then the writeback threads are woken to
1532 * perform some writeout.
1534 static void balance_dirty_pages(struct address_space *mapping,
1535 struct bdi_writeback *wb,
1536 unsigned long pages_dirtied)
1538 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1539 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1540 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1541 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1542 &mdtc_stor : NULL;
1543 struct dirty_throttle_control *sdtc;
1544 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1545 long period;
1546 long pause;
1547 long max_pause;
1548 long min_pause;
1549 int nr_dirtied_pause;
1550 bool dirty_exceeded = false;
1551 unsigned long task_ratelimit;
1552 unsigned long dirty_ratelimit;
1553 struct backing_dev_info *bdi = wb->bdi;
1554 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1555 unsigned long start_time = jiffies;
1557 for (;;) {
1558 unsigned long now = jiffies;
1559 unsigned long dirty, thresh, bg_thresh;
1560 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1561 unsigned long m_thresh = 0;
1562 unsigned long m_bg_thresh = 0;
1565 * Unstable writes are a feature of certain networked
1566 * filesystems (i.e. NFS) in which data may have been
1567 * written to the server's write cache, but has not yet
1568 * been flushed to permanent storage.
1570 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1571 global_page_state(NR_UNSTABLE_NFS);
1572 gdtc->avail = global_dirtyable_memory();
1573 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1575 domain_dirty_limits(gdtc);
1577 if (unlikely(strictlimit)) {
1578 wb_dirty_limits(gdtc);
1580 dirty = gdtc->wb_dirty;
1581 thresh = gdtc->wb_thresh;
1582 bg_thresh = gdtc->wb_bg_thresh;
1583 } else {
1584 dirty = gdtc->dirty;
1585 thresh = gdtc->thresh;
1586 bg_thresh = gdtc->bg_thresh;
1589 if (mdtc) {
1590 unsigned long filepages, headroom, writeback;
1593 * If @wb belongs to !root memcg, repeat the same
1594 * basic calculations for the memcg domain.
1596 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1597 &mdtc->dirty, &writeback);
1598 mdtc->dirty += writeback;
1599 mdtc_calc_avail(mdtc, filepages, headroom);
1601 domain_dirty_limits(mdtc);
1603 if (unlikely(strictlimit)) {
1604 wb_dirty_limits(mdtc);
1605 m_dirty = mdtc->wb_dirty;
1606 m_thresh = mdtc->wb_thresh;
1607 m_bg_thresh = mdtc->wb_bg_thresh;
1608 } else {
1609 m_dirty = mdtc->dirty;
1610 m_thresh = mdtc->thresh;
1611 m_bg_thresh = mdtc->bg_thresh;
1616 * Throttle it only when the background writeback cannot
1617 * catch-up. This avoids (excessively) small writeouts
1618 * when the wb limits are ramping up in case of !strictlimit.
1620 * In strictlimit case make decision based on the wb counters
1621 * and limits. Small writeouts when the wb limits are ramping
1622 * up are the price we consciously pay for strictlimit-ing.
1624 * If memcg domain is in effect, @dirty should be under
1625 * both global and memcg freerun ceilings.
1627 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1628 (!mdtc ||
1629 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1630 unsigned long intv = dirty_poll_interval(dirty, thresh);
1631 unsigned long m_intv = ULONG_MAX;
1633 current->dirty_paused_when = now;
1634 current->nr_dirtied = 0;
1635 if (mdtc)
1636 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1637 current->nr_dirtied_pause = min(intv, m_intv);
1638 break;
1641 if (unlikely(!writeback_in_progress(wb)))
1642 wb_start_background_writeback(wb);
1645 * Calculate global domain's pos_ratio and select the
1646 * global dtc by default.
1648 if (!strictlimit)
1649 wb_dirty_limits(gdtc);
1651 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1652 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1654 wb_position_ratio(gdtc);
1655 sdtc = gdtc;
1657 if (mdtc) {
1659 * If memcg domain is in effect, calculate its
1660 * pos_ratio. @wb should satisfy constraints from
1661 * both global and memcg domains. Choose the one
1662 * w/ lower pos_ratio.
1664 if (!strictlimit)
1665 wb_dirty_limits(mdtc);
1667 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1668 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1670 wb_position_ratio(mdtc);
1671 if (mdtc->pos_ratio < gdtc->pos_ratio)
1672 sdtc = mdtc;
1675 if (dirty_exceeded && !wb->dirty_exceeded)
1676 wb->dirty_exceeded = 1;
1678 if (time_is_before_jiffies(wb->bw_time_stamp +
1679 BANDWIDTH_INTERVAL)) {
1680 spin_lock(&wb->list_lock);
1681 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1682 spin_unlock(&wb->list_lock);
1685 /* throttle according to the chosen dtc */
1686 dirty_ratelimit = wb->dirty_ratelimit;
1687 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1688 RATELIMIT_CALC_SHIFT;
1689 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1690 min_pause = wb_min_pause(wb, max_pause,
1691 task_ratelimit, dirty_ratelimit,
1692 &nr_dirtied_pause);
1694 if (unlikely(task_ratelimit == 0)) {
1695 period = max_pause;
1696 pause = max_pause;
1697 goto pause;
1699 period = HZ * pages_dirtied / task_ratelimit;
1700 pause = period;
1701 if (current->dirty_paused_when)
1702 pause -= now - current->dirty_paused_when;
1704 * For less than 1s think time (ext3/4 may block the dirtier
1705 * for up to 800ms from time to time on 1-HDD; so does xfs,
1706 * however at much less frequency), try to compensate it in
1707 * future periods by updating the virtual time; otherwise just
1708 * do a reset, as it may be a light dirtier.
1710 if (pause < min_pause) {
1711 trace_balance_dirty_pages(wb,
1712 sdtc->thresh,
1713 sdtc->bg_thresh,
1714 sdtc->dirty,
1715 sdtc->wb_thresh,
1716 sdtc->wb_dirty,
1717 dirty_ratelimit,
1718 task_ratelimit,
1719 pages_dirtied,
1720 period,
1721 min(pause, 0L),
1722 start_time);
1723 if (pause < -HZ) {
1724 current->dirty_paused_when = now;
1725 current->nr_dirtied = 0;
1726 } else if (period) {
1727 current->dirty_paused_when += period;
1728 current->nr_dirtied = 0;
1729 } else if (current->nr_dirtied_pause <= pages_dirtied)
1730 current->nr_dirtied_pause += pages_dirtied;
1731 break;
1733 if (unlikely(pause > max_pause)) {
1734 /* for occasional dropped task_ratelimit */
1735 now += min(pause - max_pause, max_pause);
1736 pause = max_pause;
1739 pause:
1740 trace_balance_dirty_pages(wb,
1741 sdtc->thresh,
1742 sdtc->bg_thresh,
1743 sdtc->dirty,
1744 sdtc->wb_thresh,
1745 sdtc->wb_dirty,
1746 dirty_ratelimit,
1747 task_ratelimit,
1748 pages_dirtied,
1749 period,
1750 pause,
1751 start_time);
1752 __set_current_state(TASK_KILLABLE);
1753 io_schedule_timeout(pause);
1755 current->dirty_paused_when = now + pause;
1756 current->nr_dirtied = 0;
1757 current->nr_dirtied_pause = nr_dirtied_pause;
1760 * This is typically equal to (dirty < thresh) and can also
1761 * keep "1000+ dd on a slow USB stick" under control.
1763 if (task_ratelimit)
1764 break;
1767 * In the case of an unresponding NFS server and the NFS dirty
1768 * pages exceeds dirty_thresh, give the other good wb's a pipe
1769 * to go through, so that tasks on them still remain responsive.
1771 * In theory 1 page is enough to keep the comsumer-producer
1772 * pipe going: the flusher cleans 1 page => the task dirties 1
1773 * more page. However wb_dirty has accounting errors. So use
1774 * the larger and more IO friendly wb_stat_error.
1776 if (sdtc->wb_dirty <= wb_stat_error(wb))
1777 break;
1779 if (fatal_signal_pending(current))
1780 break;
1783 if (!dirty_exceeded && wb->dirty_exceeded)
1784 wb->dirty_exceeded = 0;
1786 if (writeback_in_progress(wb))
1787 return;
1790 * In laptop mode, we wait until hitting the higher threshold before
1791 * starting background writeout, and then write out all the way down
1792 * to the lower threshold. So slow writers cause minimal disk activity.
1794 * In normal mode, we start background writeout at the lower
1795 * background_thresh, to keep the amount of dirty memory low.
1797 if (laptop_mode)
1798 return;
1800 if (nr_reclaimable > gdtc->bg_thresh)
1801 wb_start_background_writeback(wb);
1804 static DEFINE_PER_CPU(int, bdp_ratelimits);
1807 * Normal tasks are throttled by
1808 * loop {
1809 * dirty tsk->nr_dirtied_pause pages;
1810 * take a snap in balance_dirty_pages();
1812 * However there is a worst case. If every task exit immediately when dirtied
1813 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1814 * called to throttle the page dirties. The solution is to save the not yet
1815 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1816 * randomly into the running tasks. This works well for the above worst case,
1817 * as the new task will pick up and accumulate the old task's leaked dirty
1818 * count and eventually get throttled.
1820 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1823 * balance_dirty_pages_ratelimited - balance dirty memory state
1824 * @mapping: address_space which was dirtied
1826 * Processes which are dirtying memory should call in here once for each page
1827 * which was newly dirtied. The function will periodically check the system's
1828 * dirty state and will initiate writeback if needed.
1830 * On really big machines, get_writeback_state is expensive, so try to avoid
1831 * calling it too often (ratelimiting). But once we're over the dirty memory
1832 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1833 * from overshooting the limit by (ratelimit_pages) each.
1835 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1837 struct inode *inode = mapping->host;
1838 struct backing_dev_info *bdi = inode_to_bdi(inode);
1839 struct bdi_writeback *wb = NULL;
1840 int ratelimit;
1841 int *p;
1843 if (!bdi_cap_account_dirty(bdi))
1844 return;
1846 if (inode_cgwb_enabled(inode))
1847 wb = wb_get_create_current(bdi, GFP_KERNEL);
1848 if (!wb)
1849 wb = &bdi->wb;
1851 ratelimit = current->nr_dirtied_pause;
1852 if (wb->dirty_exceeded)
1853 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1855 preempt_disable();
1857 * This prevents one CPU to accumulate too many dirtied pages without
1858 * calling into balance_dirty_pages(), which can happen when there are
1859 * 1000+ tasks, all of them start dirtying pages at exactly the same
1860 * time, hence all honoured too large initial task->nr_dirtied_pause.
1862 p = this_cpu_ptr(&bdp_ratelimits);
1863 if (unlikely(current->nr_dirtied >= ratelimit))
1864 *p = 0;
1865 else if (unlikely(*p >= ratelimit_pages)) {
1866 *p = 0;
1867 ratelimit = 0;
1870 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1871 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1872 * the dirty throttling and livelock other long-run dirtiers.
1874 p = this_cpu_ptr(&dirty_throttle_leaks);
1875 if (*p > 0 && current->nr_dirtied < ratelimit) {
1876 unsigned long nr_pages_dirtied;
1877 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1878 *p -= nr_pages_dirtied;
1879 current->nr_dirtied += nr_pages_dirtied;
1881 preempt_enable();
1883 if (unlikely(current->nr_dirtied >= ratelimit))
1884 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1886 wb_put(wb);
1888 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1891 * wb_over_bg_thresh - does @wb need to be written back?
1892 * @wb: bdi_writeback of interest
1894 * Determines whether background writeback should keep writing @wb or it's
1895 * clean enough. Returns %true if writeback should continue.
1897 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1899 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1900 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1901 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1902 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1903 &mdtc_stor : NULL;
1906 * Similar to balance_dirty_pages() but ignores pages being written
1907 * as we're trying to decide whether to put more under writeback.
1909 gdtc->avail = global_dirtyable_memory();
1910 gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1911 global_page_state(NR_UNSTABLE_NFS);
1912 domain_dirty_limits(gdtc);
1914 if (gdtc->dirty > gdtc->bg_thresh)
1915 return true;
1917 if (wb_stat(wb, WB_RECLAIMABLE) >
1918 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1919 return true;
1921 if (mdtc) {
1922 unsigned long filepages, headroom, writeback;
1924 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1925 &writeback);
1926 mdtc_calc_avail(mdtc, filepages, headroom);
1927 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1929 if (mdtc->dirty > mdtc->bg_thresh)
1930 return true;
1932 if (wb_stat(wb, WB_RECLAIMABLE) >
1933 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1934 return true;
1937 return false;
1940 void throttle_vm_writeout(gfp_t gfp_mask)
1942 unsigned long background_thresh;
1943 unsigned long dirty_thresh;
1945 for ( ; ; ) {
1946 global_dirty_limits(&background_thresh, &dirty_thresh);
1947 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1950 * Boost the allowable dirty threshold a bit for page
1951 * allocators so they don't get DoS'ed by heavy writers
1953 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1955 if (global_page_state(NR_UNSTABLE_NFS) +
1956 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1957 break;
1958 congestion_wait(BLK_RW_ASYNC, HZ/10);
1961 * The caller might hold locks which can prevent IO completion
1962 * or progress in the filesystem. So we cannot just sit here
1963 * waiting for IO to complete.
1965 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1966 break;
1971 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1973 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1974 void __user *buffer, size_t *length, loff_t *ppos)
1976 proc_dointvec(table, write, buffer, length, ppos);
1977 return 0;
1980 #ifdef CONFIG_BLOCK
1981 void laptop_mode_timer_fn(unsigned long data)
1983 struct request_queue *q = (struct request_queue *)data;
1984 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1985 global_page_state(NR_UNSTABLE_NFS);
1986 struct bdi_writeback *wb;
1989 * We want to write everything out, not just down to the dirty
1990 * threshold
1992 if (!bdi_has_dirty_io(&q->backing_dev_info))
1993 return;
1995 rcu_read_lock();
1996 list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1997 if (wb_has_dirty_io(wb))
1998 wb_start_writeback(wb, nr_pages, true,
1999 WB_REASON_LAPTOP_TIMER);
2000 rcu_read_unlock();
2004 * We've spun up the disk and we're in laptop mode: schedule writeback
2005 * of all dirty data a few seconds from now. If the flush is already scheduled
2006 * then push it back - the user is still using the disk.
2008 void laptop_io_completion(struct backing_dev_info *info)
2010 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2014 * We're in laptop mode and we've just synced. The sync's writes will have
2015 * caused another writeback to be scheduled by laptop_io_completion.
2016 * Nothing needs to be written back anymore, so we unschedule the writeback.
2018 void laptop_sync_completion(void)
2020 struct backing_dev_info *bdi;
2022 rcu_read_lock();
2024 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2025 del_timer(&bdi->laptop_mode_wb_timer);
2027 rcu_read_unlock();
2029 #endif
2032 * If ratelimit_pages is too high then we can get into dirty-data overload
2033 * if a large number of processes all perform writes at the same time.
2034 * If it is too low then SMP machines will call the (expensive)
2035 * get_writeback_state too often.
2037 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2038 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2039 * thresholds.
2042 void writeback_set_ratelimit(void)
2044 struct wb_domain *dom = &global_wb_domain;
2045 unsigned long background_thresh;
2046 unsigned long dirty_thresh;
2048 global_dirty_limits(&background_thresh, &dirty_thresh);
2049 dom->dirty_limit = dirty_thresh;
2050 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2051 if (ratelimit_pages < 16)
2052 ratelimit_pages = 16;
2055 static int
2056 ratelimit_handler(struct notifier_block *self, unsigned long action,
2057 void *hcpu)
2060 switch (action & ~CPU_TASKS_FROZEN) {
2061 case CPU_ONLINE:
2062 case CPU_DEAD:
2063 writeback_set_ratelimit();
2064 return NOTIFY_OK;
2065 default:
2066 return NOTIFY_DONE;
2070 static struct notifier_block ratelimit_nb = {
2071 .notifier_call = ratelimit_handler,
2072 .next = NULL,
2076 * Called early on to tune the page writeback dirty limits.
2078 * We used to scale dirty pages according to how total memory
2079 * related to pages that could be allocated for buffers (by
2080 * comparing nr_free_buffer_pages() to vm_total_pages.
2082 * However, that was when we used "dirty_ratio" to scale with
2083 * all memory, and we don't do that any more. "dirty_ratio"
2084 * is now applied to total non-HIGHPAGE memory (by subtracting
2085 * totalhigh_pages from vm_total_pages), and as such we can't
2086 * get into the old insane situation any more where we had
2087 * large amounts of dirty pages compared to a small amount of
2088 * non-HIGHMEM memory.
2090 * But we might still want to scale the dirty_ratio by how
2091 * much memory the box has..
2093 void __init page_writeback_init(void)
2095 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2097 writeback_set_ratelimit();
2098 register_cpu_notifier(&ratelimit_nb);
2102 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2103 * @mapping: address space structure to write
2104 * @start: starting page index
2105 * @end: ending page index (inclusive)
2107 * This function scans the page range from @start to @end (inclusive) and tags
2108 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2109 * that write_cache_pages (or whoever calls this function) will then use
2110 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2111 * used to avoid livelocking of writeback by a process steadily creating new
2112 * dirty pages in the file (thus it is important for this function to be quick
2113 * so that it can tag pages faster than a dirtying process can create them).
2116 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2118 void tag_pages_for_writeback(struct address_space *mapping,
2119 pgoff_t start, pgoff_t end)
2121 #define WRITEBACK_TAG_BATCH 4096
2122 unsigned long tagged;
2124 do {
2125 spin_lock_irq(&mapping->tree_lock);
2126 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2127 &start, end, WRITEBACK_TAG_BATCH,
2128 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2129 spin_unlock_irq(&mapping->tree_lock);
2130 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2131 cond_resched();
2132 /* We check 'start' to handle wrapping when end == ~0UL */
2133 } while (tagged >= WRITEBACK_TAG_BATCH && start);
2135 EXPORT_SYMBOL(tag_pages_for_writeback);
2138 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2139 * @mapping: address space structure to write
2140 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2141 * @writepage: function called for each page
2142 * @data: data passed to writepage function
2144 * If a page is already under I/O, write_cache_pages() skips it, even
2145 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2146 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2147 * and msync() need to guarantee that all the data which was dirty at the time
2148 * the call was made get new I/O started against them. If wbc->sync_mode is
2149 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2150 * existing IO to complete.
2152 * To avoid livelocks (when other process dirties new pages), we first tag
2153 * pages which should be written back with TOWRITE tag and only then start
2154 * writing them. For data-integrity sync we have to be careful so that we do
2155 * not miss some pages (e.g., because some other process has cleared TOWRITE
2156 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2157 * by the process clearing the DIRTY tag (and submitting the page for IO).
2159 int write_cache_pages(struct address_space *mapping,
2160 struct writeback_control *wbc, writepage_t writepage,
2161 void *data)
2163 int ret = 0;
2164 int done = 0;
2165 struct pagevec pvec;
2166 int nr_pages;
2167 pgoff_t uninitialized_var(writeback_index);
2168 pgoff_t index;
2169 pgoff_t end; /* Inclusive */
2170 pgoff_t done_index;
2171 int cycled;
2172 int range_whole = 0;
2173 int tag;
2175 pagevec_init(&pvec, 0);
2176 if (wbc->range_cyclic) {
2177 writeback_index = mapping->writeback_index; /* prev offset */
2178 index = writeback_index;
2179 if (index == 0)
2180 cycled = 1;
2181 else
2182 cycled = 0;
2183 end = -1;
2184 } else {
2185 index = wbc->range_start >> PAGE_SHIFT;
2186 end = wbc->range_end >> PAGE_SHIFT;
2187 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2188 range_whole = 1;
2189 cycled = 1; /* ignore range_cyclic tests */
2191 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2192 tag = PAGECACHE_TAG_TOWRITE;
2193 else
2194 tag = PAGECACHE_TAG_DIRTY;
2195 retry:
2196 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2197 tag_pages_for_writeback(mapping, index, end);
2198 done_index = index;
2199 while (!done && (index <= end)) {
2200 int i;
2202 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2203 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2204 if (nr_pages == 0)
2205 break;
2207 for (i = 0; i < nr_pages; i++) {
2208 struct page *page = pvec.pages[i];
2211 * At this point, the page may be truncated or
2212 * invalidated (changing page->mapping to NULL), or
2213 * even swizzled back from swapper_space to tmpfs file
2214 * mapping. However, page->index will not change
2215 * because we have a reference on the page.
2217 if (page->index > end) {
2219 * can't be range_cyclic (1st pass) because
2220 * end == -1 in that case.
2222 done = 1;
2223 break;
2226 done_index = page->index;
2228 lock_page(page);
2231 * Page truncated or invalidated. We can freely skip it
2232 * then, even for data integrity operations: the page
2233 * has disappeared concurrently, so there could be no
2234 * real expectation of this data interity operation
2235 * even if there is now a new, dirty page at the same
2236 * pagecache address.
2238 if (unlikely(page->mapping != mapping)) {
2239 continue_unlock:
2240 unlock_page(page);
2241 continue;
2244 if (!PageDirty(page)) {
2245 /* someone wrote it for us */
2246 goto continue_unlock;
2249 if (PageWriteback(page)) {
2250 if (wbc->sync_mode != WB_SYNC_NONE)
2251 wait_on_page_writeback(page);
2252 else
2253 goto continue_unlock;
2256 BUG_ON(PageWriteback(page));
2257 if (!clear_page_dirty_for_io(page))
2258 goto continue_unlock;
2260 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2261 ret = (*writepage)(page, wbc, data);
2262 if (unlikely(ret)) {
2263 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2264 unlock_page(page);
2265 ret = 0;
2266 } else {
2268 * done_index is set past this page,
2269 * so media errors will not choke
2270 * background writeout for the entire
2271 * file. This has consequences for
2272 * range_cyclic semantics (ie. it may
2273 * not be suitable for data integrity
2274 * writeout).
2276 done_index = page->index + 1;
2277 done = 1;
2278 break;
2283 * We stop writing back only if we are not doing
2284 * integrity sync. In case of integrity sync we have to
2285 * keep going until we have written all the pages
2286 * we tagged for writeback prior to entering this loop.
2288 if (--wbc->nr_to_write <= 0 &&
2289 wbc->sync_mode == WB_SYNC_NONE) {
2290 done = 1;
2291 break;
2294 pagevec_release(&pvec);
2295 cond_resched();
2297 if (!cycled && !done) {
2299 * range_cyclic:
2300 * We hit the last page and there is more work to be done: wrap
2301 * back to the start of the file
2303 cycled = 1;
2304 index = 0;
2305 end = writeback_index - 1;
2306 goto retry;
2308 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2309 mapping->writeback_index = done_index;
2311 return ret;
2313 EXPORT_SYMBOL(write_cache_pages);
2316 * Function used by generic_writepages to call the real writepage
2317 * function and set the mapping flags on error
2319 static int __writepage(struct page *page, struct writeback_control *wbc,
2320 void *data)
2322 struct address_space *mapping = data;
2323 int ret = mapping->a_ops->writepage(page, wbc);
2324 mapping_set_error(mapping, ret);
2325 return ret;
2329 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2330 * @mapping: address space structure to write
2331 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2333 * This is a library function, which implements the writepages()
2334 * address_space_operation.
2336 int generic_writepages(struct address_space *mapping,
2337 struct writeback_control *wbc)
2339 struct blk_plug plug;
2340 int ret;
2342 /* deal with chardevs and other special file */
2343 if (!mapping->a_ops->writepage)
2344 return 0;
2346 blk_start_plug(&plug);
2347 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2348 blk_finish_plug(&plug);
2349 return ret;
2352 EXPORT_SYMBOL(generic_writepages);
2354 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2356 int ret;
2358 if (wbc->nr_to_write <= 0)
2359 return 0;
2360 if (mapping->a_ops->writepages)
2361 ret = mapping->a_ops->writepages(mapping, wbc);
2362 else
2363 ret = generic_writepages(mapping, wbc);
2364 return ret;
2368 * write_one_page - write out a single page and optionally wait on I/O
2369 * @page: the page to write
2370 * @wait: if true, wait on writeout
2372 * The page must be locked by the caller and will be unlocked upon return.
2374 * write_one_page() returns a negative error code if I/O failed.
2376 int write_one_page(struct page *page, int wait)
2378 struct address_space *mapping = page->mapping;
2379 int ret = 0;
2380 struct writeback_control wbc = {
2381 .sync_mode = WB_SYNC_ALL,
2382 .nr_to_write = 1,
2385 BUG_ON(!PageLocked(page));
2387 if (wait)
2388 wait_on_page_writeback(page);
2390 if (clear_page_dirty_for_io(page)) {
2391 get_page(page);
2392 ret = mapping->a_ops->writepage(page, &wbc);
2393 if (ret == 0 && wait) {
2394 wait_on_page_writeback(page);
2395 if (PageError(page))
2396 ret = -EIO;
2398 put_page(page);
2399 } else {
2400 unlock_page(page);
2402 return ret;
2404 EXPORT_SYMBOL(write_one_page);
2407 * For address_spaces which do not use buffers nor write back.
2409 int __set_page_dirty_no_writeback(struct page *page)
2411 if (!PageDirty(page))
2412 return !TestSetPageDirty(page);
2413 return 0;
2417 * Helper function for set_page_dirty family.
2419 * Caller must hold lock_page_memcg().
2421 * NOTE: This relies on being atomic wrt interrupts.
2423 void account_page_dirtied(struct page *page, struct address_space *mapping)
2425 struct inode *inode = mapping->host;
2427 trace_writeback_dirty_page(page, mapping);
2429 if (mapping_cap_account_dirty(mapping)) {
2430 struct bdi_writeback *wb;
2432 inode_attach_wb(inode, page);
2433 wb = inode_to_wb(inode);
2435 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2436 __inc_zone_page_state(page, NR_FILE_DIRTY);
2437 __inc_zone_page_state(page, NR_DIRTIED);
2438 __inc_wb_stat(wb, WB_RECLAIMABLE);
2439 __inc_wb_stat(wb, WB_DIRTIED);
2440 task_io_account_write(PAGE_SIZE);
2441 current->nr_dirtied++;
2442 this_cpu_inc(bdp_ratelimits);
2445 EXPORT_SYMBOL(account_page_dirtied);
2448 * Helper function for deaccounting dirty page without writeback.
2450 * Caller must hold lock_page_memcg().
2452 void account_page_cleaned(struct page *page, struct address_space *mapping,
2453 struct bdi_writeback *wb)
2455 if (mapping_cap_account_dirty(mapping)) {
2456 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2457 dec_zone_page_state(page, NR_FILE_DIRTY);
2458 dec_wb_stat(wb, WB_RECLAIMABLE);
2459 task_io_account_cancelled_write(PAGE_SIZE);
2464 * For address_spaces which do not use buffers. Just tag the page as dirty in
2465 * its radix tree.
2467 * This is also used when a single buffer is being dirtied: we want to set the
2468 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2469 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2471 * The caller must ensure this doesn't race with truncation. Most will simply
2472 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2473 * the pte lock held, which also locks out truncation.
2475 int __set_page_dirty_nobuffers(struct page *page)
2477 lock_page_memcg(page);
2478 if (!TestSetPageDirty(page)) {
2479 struct address_space *mapping = page_mapping(page);
2480 unsigned long flags;
2482 if (!mapping) {
2483 unlock_page_memcg(page);
2484 return 1;
2487 spin_lock_irqsave(&mapping->tree_lock, flags);
2488 BUG_ON(page_mapping(page) != mapping);
2489 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2490 account_page_dirtied(page, mapping);
2491 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2492 PAGECACHE_TAG_DIRTY);
2493 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2494 unlock_page_memcg(page);
2496 if (mapping->host) {
2497 /* !PageAnon && !swapper_space */
2498 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2500 return 1;
2502 unlock_page_memcg(page);
2503 return 0;
2505 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2508 * Call this whenever redirtying a page, to de-account the dirty counters
2509 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2510 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2511 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2512 * control.
2514 void account_page_redirty(struct page *page)
2516 struct address_space *mapping = page->mapping;
2518 if (mapping && mapping_cap_account_dirty(mapping)) {
2519 struct inode *inode = mapping->host;
2520 struct bdi_writeback *wb;
2521 bool locked;
2523 wb = unlocked_inode_to_wb_begin(inode, &locked);
2524 current->nr_dirtied--;
2525 dec_zone_page_state(page, NR_DIRTIED);
2526 dec_wb_stat(wb, WB_DIRTIED);
2527 unlocked_inode_to_wb_end(inode, locked);
2530 EXPORT_SYMBOL(account_page_redirty);
2533 * When a writepage implementation decides that it doesn't want to write this
2534 * page for some reason, it should redirty the locked page via
2535 * redirty_page_for_writepage() and it should then unlock the page and return 0
2537 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2539 int ret;
2541 wbc->pages_skipped++;
2542 ret = __set_page_dirty_nobuffers(page);
2543 account_page_redirty(page);
2544 return ret;
2546 EXPORT_SYMBOL(redirty_page_for_writepage);
2549 * Dirty a page.
2551 * For pages with a mapping this should be done under the page lock
2552 * for the benefit of asynchronous memory errors who prefer a consistent
2553 * dirty state. This rule can be broken in some special cases,
2554 * but should be better not to.
2556 * If the mapping doesn't provide a set_page_dirty a_op, then
2557 * just fall through and assume that it wants buffer_heads.
2559 int set_page_dirty(struct page *page)
2561 struct address_space *mapping = page_mapping(page);
2563 if (likely(mapping)) {
2564 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2566 * readahead/lru_deactivate_page could remain
2567 * PG_readahead/PG_reclaim due to race with end_page_writeback
2568 * About readahead, if the page is written, the flags would be
2569 * reset. So no problem.
2570 * About lru_deactivate_page, if the page is redirty, the flag
2571 * will be reset. So no problem. but if the page is used by readahead
2572 * it will confuse readahead and make it restart the size rampup
2573 * process. But it's a trivial problem.
2575 if (PageReclaim(page))
2576 ClearPageReclaim(page);
2577 #ifdef CONFIG_BLOCK
2578 if (!spd)
2579 spd = __set_page_dirty_buffers;
2580 #endif
2581 return (*spd)(page);
2583 if (!PageDirty(page)) {
2584 if (!TestSetPageDirty(page))
2585 return 1;
2587 return 0;
2589 EXPORT_SYMBOL(set_page_dirty);
2592 * set_page_dirty() is racy if the caller has no reference against
2593 * page->mapping->host, and if the page is unlocked. This is because another
2594 * CPU could truncate the page off the mapping and then free the mapping.
2596 * Usually, the page _is_ locked, or the caller is a user-space process which
2597 * holds a reference on the inode by having an open file.
2599 * In other cases, the page should be locked before running set_page_dirty().
2601 int set_page_dirty_lock(struct page *page)
2603 int ret;
2605 lock_page(page);
2606 ret = set_page_dirty(page);
2607 unlock_page(page);
2608 return ret;
2610 EXPORT_SYMBOL(set_page_dirty_lock);
2613 * This cancels just the dirty bit on the kernel page itself, it does NOT
2614 * actually remove dirty bits on any mmap's that may be around. It also
2615 * leaves the page tagged dirty, so any sync activity will still find it on
2616 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2617 * look at the dirty bits in the VM.
2619 * Doing this should *normally* only ever be done when a page is truncated,
2620 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2621 * this when it notices that somebody has cleaned out all the buffers on a
2622 * page without actually doing it through the VM. Can you say "ext3 is
2623 * horribly ugly"? Thought you could.
2625 void cancel_dirty_page(struct page *page)
2627 struct address_space *mapping = page_mapping(page);
2629 if (mapping_cap_account_dirty(mapping)) {
2630 struct inode *inode = mapping->host;
2631 struct bdi_writeback *wb;
2632 bool locked;
2634 lock_page_memcg(page);
2635 wb = unlocked_inode_to_wb_begin(inode, &locked);
2637 if (TestClearPageDirty(page))
2638 account_page_cleaned(page, mapping, wb);
2640 unlocked_inode_to_wb_end(inode, locked);
2641 unlock_page_memcg(page);
2642 } else {
2643 ClearPageDirty(page);
2646 EXPORT_SYMBOL(cancel_dirty_page);
2649 * Clear a page's dirty flag, while caring for dirty memory accounting.
2650 * Returns true if the page was previously dirty.
2652 * This is for preparing to put the page under writeout. We leave the page
2653 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2654 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2655 * implementation will run either set_page_writeback() or set_page_dirty(),
2656 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2657 * back into sync.
2659 * This incoherency between the page's dirty flag and radix-tree tag is
2660 * unfortunate, but it only exists while the page is locked.
2662 int clear_page_dirty_for_io(struct page *page)
2664 struct address_space *mapping = page_mapping(page);
2665 int ret = 0;
2667 BUG_ON(!PageLocked(page));
2669 if (mapping && mapping_cap_account_dirty(mapping)) {
2670 struct inode *inode = mapping->host;
2671 struct bdi_writeback *wb;
2672 bool locked;
2675 * Yes, Virginia, this is indeed insane.
2677 * We use this sequence to make sure that
2678 * (a) we account for dirty stats properly
2679 * (b) we tell the low-level filesystem to
2680 * mark the whole page dirty if it was
2681 * dirty in a pagetable. Only to then
2682 * (c) clean the page again and return 1 to
2683 * cause the writeback.
2685 * This way we avoid all nasty races with the
2686 * dirty bit in multiple places and clearing
2687 * them concurrently from different threads.
2689 * Note! Normally the "set_page_dirty(page)"
2690 * has no effect on the actual dirty bit - since
2691 * that will already usually be set. But we
2692 * need the side effects, and it can help us
2693 * avoid races.
2695 * We basically use the page "master dirty bit"
2696 * as a serialization point for all the different
2697 * threads doing their things.
2699 if (page_mkclean(page))
2700 set_page_dirty(page);
2702 * We carefully synchronise fault handlers against
2703 * installing a dirty pte and marking the page dirty
2704 * at this point. We do this by having them hold the
2705 * page lock while dirtying the page, and pages are
2706 * always locked coming in here, so we get the desired
2707 * exclusion.
2709 wb = unlocked_inode_to_wb_begin(inode, &locked);
2710 if (TestClearPageDirty(page)) {
2711 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2712 dec_zone_page_state(page, NR_FILE_DIRTY);
2713 dec_wb_stat(wb, WB_RECLAIMABLE);
2714 ret = 1;
2716 unlocked_inode_to_wb_end(inode, locked);
2717 return ret;
2719 return TestClearPageDirty(page);
2721 EXPORT_SYMBOL(clear_page_dirty_for_io);
2723 int test_clear_page_writeback(struct page *page)
2725 struct address_space *mapping = page_mapping(page);
2726 int ret;
2728 lock_page_memcg(page);
2729 if (mapping) {
2730 struct inode *inode = mapping->host;
2731 struct backing_dev_info *bdi = inode_to_bdi(inode);
2732 unsigned long flags;
2734 spin_lock_irqsave(&mapping->tree_lock, flags);
2735 ret = TestClearPageWriteback(page);
2736 if (ret) {
2737 radix_tree_tag_clear(&mapping->page_tree,
2738 page_index(page),
2739 PAGECACHE_TAG_WRITEBACK);
2740 if (bdi_cap_account_writeback(bdi)) {
2741 struct bdi_writeback *wb = inode_to_wb(inode);
2743 __dec_wb_stat(wb, WB_WRITEBACK);
2744 __wb_writeout_inc(wb);
2747 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2748 } else {
2749 ret = TestClearPageWriteback(page);
2751 if (ret) {
2752 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2753 dec_zone_page_state(page, NR_WRITEBACK);
2754 inc_zone_page_state(page, NR_WRITTEN);
2756 unlock_page_memcg(page);
2757 return ret;
2760 int __test_set_page_writeback(struct page *page, bool keep_write)
2762 struct address_space *mapping = page_mapping(page);
2763 int ret;
2765 lock_page_memcg(page);
2766 if (mapping) {
2767 struct inode *inode = mapping->host;
2768 struct backing_dev_info *bdi = inode_to_bdi(inode);
2769 unsigned long flags;
2771 spin_lock_irqsave(&mapping->tree_lock, flags);
2772 ret = TestSetPageWriteback(page);
2773 if (!ret) {
2774 radix_tree_tag_set(&mapping->page_tree,
2775 page_index(page),
2776 PAGECACHE_TAG_WRITEBACK);
2777 if (bdi_cap_account_writeback(bdi))
2778 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2780 if (!PageDirty(page))
2781 radix_tree_tag_clear(&mapping->page_tree,
2782 page_index(page),
2783 PAGECACHE_TAG_DIRTY);
2784 if (!keep_write)
2785 radix_tree_tag_clear(&mapping->page_tree,
2786 page_index(page),
2787 PAGECACHE_TAG_TOWRITE);
2788 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2789 } else {
2790 ret = TestSetPageWriteback(page);
2792 if (!ret) {
2793 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2794 inc_zone_page_state(page, NR_WRITEBACK);
2796 unlock_page_memcg(page);
2797 return ret;
2800 EXPORT_SYMBOL(__test_set_page_writeback);
2803 * Return true if any of the pages in the mapping are marked with the
2804 * passed tag.
2806 int mapping_tagged(struct address_space *mapping, int tag)
2808 return radix_tree_tagged(&mapping->page_tree, tag);
2810 EXPORT_SYMBOL(mapping_tagged);
2813 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2814 * @page: The page to wait on.
2816 * This function determines if the given page is related to a backing device
2817 * that requires page contents to be held stable during writeback. If so, then
2818 * it will wait for any pending writeback to complete.
2820 void wait_for_stable_page(struct page *page)
2822 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2823 wait_on_page_writeback(page);
2825 EXPORT_SYMBOL_GPL(wait_for_stable_page);