4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 * Contains functions related to writing back dirty pages at the
10 * 10Apr2002 Andrew Morton
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
45 * Sleep at most 200ms at a time in balance_dirty_pages().
47 #define MAX_PAUSE max(HZ/5, 1)
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
56 * Estimate write bandwidth at 200ms intervals.
58 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
60 #define RATELIMIT_CALC_SHIFT 10
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
66 static long ratelimit_pages
= 32;
68 /* The following parameters are exported via /proc/sys/vm */
71 * Start background writeback (via writeback threads) at this percentage
73 int dirty_background_ratio
= 10;
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
79 unsigned long dirty_background_bytes
;
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 int vm_highmem_is_dirtyable
;
88 * The generator of dirty data starts writeback at this percentage
90 int vm_dirty_ratio
= 20;
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
96 unsigned long vm_dirty_bytes
;
99 * The interval between `kupdate'-style writebacks
101 unsigned int dirty_writeback_interval
= 5 * 100; /* centiseconds */
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval
);
106 * The longest time for which data is allowed to remain dirty
108 unsigned int dirty_expire_interval
= 30 * 100; /* centiseconds */
111 * Flag that makes the machine dump writes/reads and block dirtyings.
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
121 EXPORT_SYMBOL(laptop_mode
);
123 /* End of sysctl-exported parameters */
125 struct wb_domain global_wb_domain
;
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control
{
129 #ifdef CONFIG_CGROUP_WRITEBACK
130 struct wb_domain
*dom
;
131 struct dirty_throttle_control
*gdtc
; /* only set in memcg dtc's */
133 struct bdi_writeback
*wb
;
134 struct fprop_local_percpu
*wb_completions
;
136 unsigned long avail
; /* dirtyable */
137 unsigned long dirty
; /* file_dirty + write + nfs */
138 unsigned long thresh
; /* dirty threshold */
139 unsigned long bg_thresh
; /* dirty background threshold */
141 unsigned long wb_dirty
; /* per-wb counterparts */
142 unsigned long wb_thresh
;
143 unsigned long wb_bg_thresh
;
145 unsigned long pos_ratio
;
149 * Length of period for aging writeout fractions of bdis. This is an
150 * arbitrarily chosen number. The longer the period, the slower fractions will
151 * reflect changes in current writeout rate.
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155 #ifdef CONFIG_CGROUP_WRITEBACK
157 #define GDTC_INIT(__wb) .wb = (__wb), \
158 .dom = &global_wb_domain, \
159 .wb_completions = &(__wb)->completions
161 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
164 .dom = mem_cgroup_wb_domain(__wb), \
165 .wb_completions = &(__wb)->memcg_completions, \
168 static bool mdtc_valid(struct dirty_throttle_control
*dtc
)
173 static struct wb_domain
*dtc_dom(struct dirty_throttle_control
*dtc
)
178 static struct dirty_throttle_control
*mdtc_gdtc(struct dirty_throttle_control
*mdtc
)
183 static struct fprop_local_percpu
*wb_memcg_completions(struct bdi_writeback
*wb
)
185 return &wb
->memcg_completions
;
188 static void wb_min_max_ratio(struct bdi_writeback
*wb
,
189 unsigned long *minp
, unsigned long *maxp
)
191 unsigned long this_bw
= wb
->avg_write_bandwidth
;
192 unsigned long tot_bw
= atomic_long_read(&wb
->bdi
->tot_write_bandwidth
);
193 unsigned long long min
= wb
->bdi
->min_ratio
;
194 unsigned long long max
= wb
->bdi
->max_ratio
;
197 * @wb may already be clean by the time control reaches here and
198 * the total may not include its bw.
200 if (this_bw
< tot_bw
) {
215 #else /* CONFIG_CGROUP_WRITEBACK */
217 #define GDTC_INIT(__wb) .wb = (__wb), \
218 .wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
222 static bool mdtc_valid(struct dirty_throttle_control
*dtc
)
227 static struct wb_domain
*dtc_dom(struct dirty_throttle_control
*dtc
)
229 return &global_wb_domain
;
232 static struct dirty_throttle_control
*mdtc_gdtc(struct dirty_throttle_control
*mdtc
)
237 static struct fprop_local_percpu
*wb_memcg_completions(struct bdi_writeback
*wb
)
242 static void wb_min_max_ratio(struct bdi_writeback
*wb
,
243 unsigned long *minp
, unsigned long *maxp
)
245 *minp
= wb
->bdi
->min_ratio
;
246 *maxp
= wb
->bdi
->max_ratio
;
249 #endif /* CONFIG_CGROUP_WRITEBACK */
252 * In a memory zone, there is a certain amount of pages we consider
253 * available for the page cache, which is essentially the number of
254 * free and reclaimable pages, minus some zone reserves to protect
255 * lowmem and the ability to uphold the zone's watermarks without
256 * requiring writeback.
258 * This number of dirtyable pages is the base value of which the
259 * user-configurable dirty ratio is the effictive number of pages that
260 * are allowed to be actually dirtied. Per individual zone, or
261 * globally by using the sum of dirtyable pages over all zones.
263 * Because the user is allowed to specify the dirty limit globally as
264 * absolute number of bytes, calculating the per-zone dirty limit can
265 * require translating the configured limit into a percentage of
266 * global dirtyable memory first.
270 * zone_dirtyable_memory - number of dirtyable pages in a zone
273 * Returns the zone's number of pages potentially available for dirty
274 * page cache. This is the base value for the per-zone dirty limits.
276 static unsigned long zone_dirtyable_memory(struct zone
*zone
)
278 unsigned long nr_pages
;
280 nr_pages
= zone_page_state(zone
, NR_FREE_PAGES
);
282 * Pages reserved for the kernel should not be considered
283 * dirtyable, to prevent a situation where reclaim has to
284 * clean pages in order to balance the zones.
286 nr_pages
-= min(nr_pages
, zone
->totalreserve_pages
);
288 nr_pages
+= zone_page_state(zone
, NR_INACTIVE_FILE
);
289 nr_pages
+= zone_page_state(zone
, NR_ACTIVE_FILE
);
294 static unsigned long highmem_dirtyable_memory(unsigned long total
)
296 #ifdef CONFIG_HIGHMEM
301 for_each_node_state(node
, N_HIGH_MEMORY
) {
302 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
303 struct zone
*z
= &NODE_DATA(node
)->node_zones
[i
];
306 x
+= zone_dirtyable_memory(z
);
310 * Unreclaimable memory (kernel memory or anonymous memory
311 * without swap) can bring down the dirtyable pages below
312 * the zone's dirty balance reserve and the above calculation
313 * will underflow. However we still want to add in nodes
314 * which are below threshold (negative values) to get a more
315 * accurate calculation but make sure that the total never
322 * Make sure that the number of highmem pages is never larger
323 * than the number of the total dirtyable memory. This can only
324 * occur in very strange VM situations but we want to make sure
325 * that this does not occur.
327 return min(x
, total
);
334 * global_dirtyable_memory - number of globally dirtyable pages
336 * Returns the global number of pages potentially available for dirty
337 * page cache. This is the base value for the global dirty limits.
339 static unsigned long global_dirtyable_memory(void)
343 x
= global_page_state(NR_FREE_PAGES
);
345 * Pages reserved for the kernel should not be considered
346 * dirtyable, to prevent a situation where reclaim has to
347 * clean pages in order to balance the zones.
349 x
-= min(x
, totalreserve_pages
);
351 x
+= global_page_state(NR_INACTIVE_FILE
);
352 x
+= global_page_state(NR_ACTIVE_FILE
);
354 if (!vm_highmem_is_dirtyable
)
355 x
-= highmem_dirtyable_memory(x
);
357 return x
+ 1; /* Ensure that we never return 0 */
361 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
362 * @dtc: dirty_throttle_control of interest
364 * Calculate @dtc->thresh and ->bg_thresh considering
365 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
366 * must ensure that @dtc->avail is set before calling this function. The
367 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
370 static void domain_dirty_limits(struct dirty_throttle_control
*dtc
)
372 const unsigned long available_memory
= dtc
->avail
;
373 struct dirty_throttle_control
*gdtc
= mdtc_gdtc(dtc
);
374 unsigned long bytes
= vm_dirty_bytes
;
375 unsigned long bg_bytes
= dirty_background_bytes
;
376 unsigned long ratio
= vm_dirty_ratio
;
377 unsigned long bg_ratio
= dirty_background_ratio
;
378 unsigned long thresh
;
379 unsigned long bg_thresh
;
380 struct task_struct
*tsk
;
382 /* gdtc is !NULL iff @dtc is for memcg domain */
384 unsigned long global_avail
= gdtc
->avail
;
387 * The byte settings can't be applied directly to memcg
388 * domains. Convert them to ratios by scaling against
389 * globally available memory.
392 ratio
= min(DIV_ROUND_UP(bytes
, PAGE_SIZE
) * 100 /
393 global_avail
, 100UL);
395 bg_ratio
= min(DIV_ROUND_UP(bg_bytes
, PAGE_SIZE
) * 100 /
396 global_avail
, 100UL);
397 bytes
= bg_bytes
= 0;
401 thresh
= DIV_ROUND_UP(bytes
, PAGE_SIZE
);
403 thresh
= (ratio
* available_memory
) / 100;
406 bg_thresh
= DIV_ROUND_UP(bg_bytes
, PAGE_SIZE
);
408 bg_thresh
= (bg_ratio
* available_memory
) / 100;
410 if (bg_thresh
>= thresh
)
411 bg_thresh
= thresh
/ 2;
413 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
414 bg_thresh
+= bg_thresh
/ 4 + global_wb_domain
.dirty_limit
/ 32;
415 thresh
+= thresh
/ 4 + global_wb_domain
.dirty_limit
/ 32;
417 dtc
->thresh
= thresh
;
418 dtc
->bg_thresh
= bg_thresh
;
420 /* we should eventually report the domain in the TP */
422 trace_global_dirty_state(bg_thresh
, thresh
);
426 * global_dirty_limits - background-writeback and dirty-throttling thresholds
427 * @pbackground: out parameter for bg_thresh
428 * @pdirty: out parameter for thresh
430 * Calculate bg_thresh and thresh for global_wb_domain. See
431 * domain_dirty_limits() for details.
433 void global_dirty_limits(unsigned long *pbackground
, unsigned long *pdirty
)
435 struct dirty_throttle_control gdtc
= { GDTC_INIT_NO_WB
};
437 gdtc
.avail
= global_dirtyable_memory();
438 domain_dirty_limits(&gdtc
);
440 *pbackground
= gdtc
.bg_thresh
;
441 *pdirty
= gdtc
.thresh
;
445 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
448 * Returns the maximum number of dirty pages allowed in a zone, based
449 * on the zone's dirtyable memory.
451 static unsigned long zone_dirty_limit(struct zone
*zone
)
453 unsigned long zone_memory
= zone_dirtyable_memory(zone
);
454 struct task_struct
*tsk
= current
;
458 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
) *
459 zone_memory
/ global_dirtyable_memory();
461 dirty
= vm_dirty_ratio
* zone_memory
/ 100;
463 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
))
470 * zone_dirty_ok - tells whether a zone is within its dirty limits
471 * @zone: the zone to check
473 * Returns %true when the dirty pages in @zone are within the zone's
474 * dirty limit, %false if the limit is exceeded.
476 bool zone_dirty_ok(struct zone
*zone
)
478 unsigned long limit
= zone_dirty_limit(zone
);
480 return zone_page_state(zone
, NR_FILE_DIRTY
) +
481 zone_page_state(zone
, NR_UNSTABLE_NFS
) +
482 zone_page_state(zone
, NR_WRITEBACK
) <= limit
;
485 int dirty_background_ratio_handler(struct ctl_table
*table
, int write
,
486 void __user
*buffer
, size_t *lenp
,
491 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
492 if (ret
== 0 && write
)
493 dirty_background_bytes
= 0;
497 int dirty_background_bytes_handler(struct ctl_table
*table
, int write
,
498 void __user
*buffer
, size_t *lenp
,
503 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
504 if (ret
== 0 && write
)
505 dirty_background_ratio
= 0;
509 int dirty_ratio_handler(struct ctl_table
*table
, int write
,
510 void __user
*buffer
, size_t *lenp
,
513 int old_ratio
= vm_dirty_ratio
;
516 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
517 if (ret
== 0 && write
&& vm_dirty_ratio
!= old_ratio
) {
518 writeback_set_ratelimit();
524 int dirty_bytes_handler(struct ctl_table
*table
, int write
,
525 void __user
*buffer
, size_t *lenp
,
528 unsigned long old_bytes
= vm_dirty_bytes
;
531 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
532 if (ret
== 0 && write
&& vm_dirty_bytes
!= old_bytes
) {
533 writeback_set_ratelimit();
539 static unsigned long wp_next_time(unsigned long cur_time
)
541 cur_time
+= VM_COMPLETIONS_PERIOD_LEN
;
542 /* 0 has a special meaning... */
548 static void wb_domain_writeout_inc(struct wb_domain
*dom
,
549 struct fprop_local_percpu
*completions
,
550 unsigned int max_prop_frac
)
552 __fprop_inc_percpu_max(&dom
->completions
, completions
,
554 /* First event after period switching was turned off? */
555 if (!unlikely(dom
->period_time
)) {
557 * We can race with other __bdi_writeout_inc calls here but
558 * it does not cause any harm since the resulting time when
559 * timer will fire and what is in writeout_period_time will be
562 dom
->period_time
= wp_next_time(jiffies
);
563 mod_timer(&dom
->period_timer
, dom
->period_time
);
568 * Increment @wb's writeout completion count and the global writeout
569 * completion count. Called from test_clear_page_writeback().
571 static inline void __wb_writeout_inc(struct bdi_writeback
*wb
)
573 struct wb_domain
*cgdom
;
575 __inc_wb_stat(wb
, WB_WRITTEN
);
576 wb_domain_writeout_inc(&global_wb_domain
, &wb
->completions
,
577 wb
->bdi
->max_prop_frac
);
579 cgdom
= mem_cgroup_wb_domain(wb
);
581 wb_domain_writeout_inc(cgdom
, wb_memcg_completions(wb
),
582 wb
->bdi
->max_prop_frac
);
585 void wb_writeout_inc(struct bdi_writeback
*wb
)
589 local_irq_save(flags
);
590 __wb_writeout_inc(wb
);
591 local_irq_restore(flags
);
593 EXPORT_SYMBOL_GPL(wb_writeout_inc
);
596 * On idle system, we can be called long after we scheduled because we use
597 * deferred timers so count with missed periods.
599 static void writeout_period(unsigned long t
)
601 struct wb_domain
*dom
= (void *)t
;
602 int miss_periods
= (jiffies
- dom
->period_time
) /
603 VM_COMPLETIONS_PERIOD_LEN
;
605 if (fprop_new_period(&dom
->completions
, miss_periods
+ 1)) {
606 dom
->period_time
= wp_next_time(dom
->period_time
+
607 miss_periods
* VM_COMPLETIONS_PERIOD_LEN
);
608 mod_timer(&dom
->period_timer
, dom
->period_time
);
611 * Aging has zeroed all fractions. Stop wasting CPU on period
614 dom
->period_time
= 0;
618 int wb_domain_init(struct wb_domain
*dom
, gfp_t gfp
)
620 memset(dom
, 0, sizeof(*dom
));
622 spin_lock_init(&dom
->lock
);
624 init_timer_deferrable(&dom
->period_timer
);
625 dom
->period_timer
.function
= writeout_period
;
626 dom
->period_timer
.data
= (unsigned long)dom
;
628 dom
->dirty_limit_tstamp
= jiffies
;
630 return fprop_global_init(&dom
->completions
, gfp
);
633 #ifdef CONFIG_CGROUP_WRITEBACK
634 void wb_domain_exit(struct wb_domain
*dom
)
636 del_timer_sync(&dom
->period_timer
);
637 fprop_global_destroy(&dom
->completions
);
642 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
643 * registered backing devices, which, for obvious reasons, can not
646 static unsigned int bdi_min_ratio
;
648 int bdi_set_min_ratio(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
652 spin_lock_bh(&bdi_lock
);
653 if (min_ratio
> bdi
->max_ratio
) {
656 min_ratio
-= bdi
->min_ratio
;
657 if (bdi_min_ratio
+ min_ratio
< 100) {
658 bdi_min_ratio
+= min_ratio
;
659 bdi
->min_ratio
+= min_ratio
;
664 spin_unlock_bh(&bdi_lock
);
669 int bdi_set_max_ratio(struct backing_dev_info
*bdi
, unsigned max_ratio
)
676 spin_lock_bh(&bdi_lock
);
677 if (bdi
->min_ratio
> max_ratio
) {
680 bdi
->max_ratio
= max_ratio
;
681 bdi
->max_prop_frac
= (FPROP_FRAC_BASE
* max_ratio
) / 100;
683 spin_unlock_bh(&bdi_lock
);
687 EXPORT_SYMBOL(bdi_set_max_ratio
);
689 static unsigned long dirty_freerun_ceiling(unsigned long thresh
,
690 unsigned long bg_thresh
)
692 return (thresh
+ bg_thresh
) / 2;
695 static unsigned long hard_dirty_limit(struct wb_domain
*dom
,
696 unsigned long thresh
)
698 return max(thresh
, dom
->dirty_limit
);
702 * Memory which can be further allocated to a memcg domain is capped by
703 * system-wide clean memory excluding the amount being used in the domain.
705 static void mdtc_calc_avail(struct dirty_throttle_control
*mdtc
,
706 unsigned long filepages
, unsigned long headroom
)
708 struct dirty_throttle_control
*gdtc
= mdtc_gdtc(mdtc
);
709 unsigned long clean
= filepages
- min(filepages
, mdtc
->dirty
);
710 unsigned long global_clean
= gdtc
->avail
- min(gdtc
->avail
, gdtc
->dirty
);
711 unsigned long other_clean
= global_clean
- min(global_clean
, clean
);
713 mdtc
->avail
= filepages
+ min(headroom
, other_clean
);
717 * __wb_calc_thresh - @wb's share of dirty throttling threshold
718 * @dtc: dirty_throttle_context of interest
720 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
721 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
723 * Note that balance_dirty_pages() will only seriously take it as a hard limit
724 * when sleeping max_pause per page is not enough to keep the dirty pages under
725 * control. For example, when the device is completely stalled due to some error
726 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
727 * In the other normal situations, it acts more gently by throttling the tasks
728 * more (rather than completely block them) when the wb dirty pages go high.
730 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
731 * - starving fast devices
732 * - piling up dirty pages (that will take long time to sync) on slow devices
734 * The wb's share of dirty limit will be adapting to its throughput and
735 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
737 static unsigned long __wb_calc_thresh(struct dirty_throttle_control
*dtc
)
739 struct wb_domain
*dom
= dtc_dom(dtc
);
740 unsigned long thresh
= dtc
->thresh
;
742 long numerator
, denominator
;
743 unsigned long wb_min_ratio
, wb_max_ratio
;
746 * Calculate this BDI's share of the thresh ratio.
748 fprop_fraction_percpu(&dom
->completions
, dtc
->wb_completions
,
749 &numerator
, &denominator
);
751 wb_thresh
= (thresh
* (100 - bdi_min_ratio
)) / 100;
752 wb_thresh
*= numerator
;
753 do_div(wb_thresh
, denominator
);
755 wb_min_max_ratio(dtc
->wb
, &wb_min_ratio
, &wb_max_ratio
);
757 wb_thresh
+= (thresh
* wb_min_ratio
) / 100;
758 if (wb_thresh
> (thresh
* wb_max_ratio
) / 100)
759 wb_thresh
= thresh
* wb_max_ratio
/ 100;
764 unsigned long wb_calc_thresh(struct bdi_writeback
*wb
, unsigned long thresh
)
766 struct dirty_throttle_control gdtc
= { GDTC_INIT(wb
),
768 return __wb_calc_thresh(&gdtc
);
773 * f(dirty) := 1.0 + (----------------)
776 * it's a 3rd order polynomial that subjects to
778 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
779 * (2) f(setpoint) = 1.0 => the balance point
780 * (3) f(limit) = 0 => the hard limit
781 * (4) df/dx <= 0 => negative feedback control
782 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
783 * => fast response on large errors; small oscillation near setpoint
785 static long long pos_ratio_polynom(unsigned long setpoint
,
792 x
= div64_s64(((s64
)setpoint
- (s64
)dirty
) << RATELIMIT_CALC_SHIFT
,
793 (limit
- setpoint
) | 1);
795 pos_ratio
= pos_ratio
* x
>> RATELIMIT_CALC_SHIFT
;
796 pos_ratio
= pos_ratio
* x
>> RATELIMIT_CALC_SHIFT
;
797 pos_ratio
+= 1 << RATELIMIT_CALC_SHIFT
;
799 return clamp(pos_ratio
, 0LL, 2LL << RATELIMIT_CALC_SHIFT
);
803 * Dirty position control.
805 * (o) global/bdi setpoints
807 * We want the dirty pages be balanced around the global/wb setpoints.
808 * When the number of dirty pages is higher/lower than the setpoint, the
809 * dirty position control ratio (and hence task dirty ratelimit) will be
810 * decreased/increased to bring the dirty pages back to the setpoint.
812 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
814 * if (dirty < setpoint) scale up pos_ratio
815 * if (dirty > setpoint) scale down pos_ratio
817 * if (wb_dirty < wb_setpoint) scale up pos_ratio
818 * if (wb_dirty > wb_setpoint) scale down pos_ratio
820 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
822 * (o) global control line
826 * | |<===== global dirty control scope ======>|
834 * 1.0 ................................*
840 * 0 +------------.------------------.----------------------*------------->
841 * freerun^ setpoint^ limit^ dirty pages
843 * (o) wb control line
851 * | * |<=========== span ============>|
852 * 1.0 .......................*
864 * 1/4 ...............................................* * * * * * * * * * * *
868 * 0 +----------------------.-------------------------------.------------->
869 * wb_setpoint^ x_intercept^
871 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
872 * be smoothly throttled down to normal if it starts high in situations like
873 * - start writing to a slow SD card and a fast disk at the same time. The SD
874 * card's wb_dirty may rush to many times higher than wb_setpoint.
875 * - the wb dirty thresh drops quickly due to change of JBOD workload
877 static void wb_position_ratio(struct dirty_throttle_control
*dtc
)
879 struct bdi_writeback
*wb
= dtc
->wb
;
880 unsigned long write_bw
= wb
->avg_write_bandwidth
;
881 unsigned long freerun
= dirty_freerun_ceiling(dtc
->thresh
, dtc
->bg_thresh
);
882 unsigned long limit
= hard_dirty_limit(dtc_dom(dtc
), dtc
->thresh
);
883 unsigned long wb_thresh
= dtc
->wb_thresh
;
884 unsigned long x_intercept
;
885 unsigned long setpoint
; /* dirty pages' target balance point */
886 unsigned long wb_setpoint
;
888 long long pos_ratio
; /* for scaling up/down the rate limit */
893 if (unlikely(dtc
->dirty
>= limit
))
899 * See comment for pos_ratio_polynom().
901 setpoint
= (freerun
+ limit
) / 2;
902 pos_ratio
= pos_ratio_polynom(setpoint
, dtc
->dirty
, limit
);
905 * The strictlimit feature is a tool preventing mistrusted filesystems
906 * from growing a large number of dirty pages before throttling. For
907 * such filesystems balance_dirty_pages always checks wb counters
908 * against wb limits. Even if global "nr_dirty" is under "freerun".
909 * This is especially important for fuse which sets bdi->max_ratio to
910 * 1% by default. Without strictlimit feature, fuse writeback may
911 * consume arbitrary amount of RAM because it is accounted in
912 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
914 * Here, in wb_position_ratio(), we calculate pos_ratio based on
915 * two values: wb_dirty and wb_thresh. Let's consider an example:
916 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
917 * limits are set by default to 10% and 20% (background and throttle).
918 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
919 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
920 * about ~6K pages (as the average of background and throttle wb
921 * limits). The 3rd order polynomial will provide positive feedback if
922 * wb_dirty is under wb_setpoint and vice versa.
924 * Note, that we cannot use global counters in these calculations
925 * because we want to throttle process writing to a strictlimit wb
926 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
927 * in the example above).
929 if (unlikely(wb
->bdi
->capabilities
& BDI_CAP_STRICTLIMIT
)) {
930 long long wb_pos_ratio
;
932 if (dtc
->wb_dirty
< 8) {
933 dtc
->pos_ratio
= min_t(long long, pos_ratio
* 2,
934 2 << RATELIMIT_CALC_SHIFT
);
938 if (dtc
->wb_dirty
>= wb_thresh
)
941 wb_setpoint
= dirty_freerun_ceiling(wb_thresh
,
944 if (wb_setpoint
== 0 || wb_setpoint
== wb_thresh
)
947 wb_pos_ratio
= pos_ratio_polynom(wb_setpoint
, dtc
->wb_dirty
,
951 * Typically, for strictlimit case, wb_setpoint << setpoint
952 * and pos_ratio >> wb_pos_ratio. In the other words global
953 * state ("dirty") is not limiting factor and we have to
954 * make decision based on wb counters. But there is an
955 * important case when global pos_ratio should get precedence:
956 * global limits are exceeded (e.g. due to activities on other
957 * wb's) while given strictlimit wb is below limit.
959 * "pos_ratio * wb_pos_ratio" would work for the case above,
960 * but it would look too non-natural for the case of all
961 * activity in the system coming from a single strictlimit wb
962 * with bdi->max_ratio == 100%.
964 * Note that min() below somewhat changes the dynamics of the
965 * control system. Normally, pos_ratio value can be well over 3
966 * (when globally we are at freerun and wb is well below wb
967 * setpoint). Now the maximum pos_ratio in the same situation
968 * is 2. We might want to tweak this if we observe the control
969 * system is too slow to adapt.
971 dtc
->pos_ratio
= min(pos_ratio
, wb_pos_ratio
);
976 * We have computed basic pos_ratio above based on global situation. If
977 * the wb is over/under its share of dirty pages, we want to scale
978 * pos_ratio further down/up. That is done by the following mechanism.
984 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
986 * x_intercept - wb_dirty
987 * := --------------------------
988 * x_intercept - wb_setpoint
990 * The main wb control line is a linear function that subjects to
992 * (1) f(wb_setpoint) = 1.0
993 * (2) k = - 1 / (8 * write_bw) (in single wb case)
994 * or equally: x_intercept = wb_setpoint + 8 * write_bw
996 * For single wb case, the dirty pages are observed to fluctuate
997 * regularly within range
998 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
999 * for various filesystems, where (2) can yield in a reasonable 12.5%
1000 * fluctuation range for pos_ratio.
1002 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1003 * own size, so move the slope over accordingly and choose a slope that
1004 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1006 if (unlikely(wb_thresh
> dtc
->thresh
))
1007 wb_thresh
= dtc
->thresh
;
1009 * It's very possible that wb_thresh is close to 0 not because the
1010 * device is slow, but that it has remained inactive for long time.
1011 * Honour such devices a reasonable good (hopefully IO efficient)
1012 * threshold, so that the occasional writes won't be blocked and active
1013 * writes can rampup the threshold quickly.
1015 wb_thresh
= max(wb_thresh
, (limit
- dtc
->dirty
) / 8);
1017 * scale global setpoint to wb's:
1018 * wb_setpoint = setpoint * wb_thresh / thresh
1020 x
= div_u64((u64
)wb_thresh
<< 16, dtc
->thresh
| 1);
1021 wb_setpoint
= setpoint
* (u64
)x
>> 16;
1023 * Use span=(8*write_bw) in single wb case as indicated by
1024 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1026 * wb_thresh thresh - wb_thresh
1027 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1030 span
= (dtc
->thresh
- wb_thresh
+ 8 * write_bw
) * (u64
)x
>> 16;
1031 x_intercept
= wb_setpoint
+ span
;
1033 if (dtc
->wb_dirty
< x_intercept
- span
/ 4) {
1034 pos_ratio
= div64_u64(pos_ratio
* (x_intercept
- dtc
->wb_dirty
),
1035 (x_intercept
- wb_setpoint
) | 1);
1040 * wb reserve area, safeguard against dirty pool underrun and disk idle
1041 * It may push the desired control point of global dirty pages higher
1044 x_intercept
= wb_thresh
/ 2;
1045 if (dtc
->wb_dirty
< x_intercept
) {
1046 if (dtc
->wb_dirty
> x_intercept
/ 8)
1047 pos_ratio
= div_u64(pos_ratio
* x_intercept
,
1053 dtc
->pos_ratio
= pos_ratio
;
1056 static void wb_update_write_bandwidth(struct bdi_writeback
*wb
,
1057 unsigned long elapsed
,
1058 unsigned long written
)
1060 const unsigned long period
= roundup_pow_of_two(3 * HZ
);
1061 unsigned long avg
= wb
->avg_write_bandwidth
;
1062 unsigned long old
= wb
->write_bandwidth
;
1066 * bw = written * HZ / elapsed
1068 * bw * elapsed + write_bandwidth * (period - elapsed)
1069 * write_bandwidth = ---------------------------------------------------
1072 * @written may have decreased due to account_page_redirty().
1073 * Avoid underflowing @bw calculation.
1075 bw
= written
- min(written
, wb
->written_stamp
);
1077 if (unlikely(elapsed
> period
)) {
1078 do_div(bw
, elapsed
);
1082 bw
+= (u64
)wb
->write_bandwidth
* (period
- elapsed
);
1083 bw
>>= ilog2(period
);
1086 * one more level of smoothing, for filtering out sudden spikes
1088 if (avg
> old
&& old
>= (unsigned long)bw
)
1089 avg
-= (avg
- old
) >> 3;
1091 if (avg
< old
&& old
<= (unsigned long)bw
)
1092 avg
+= (old
- avg
) >> 3;
1095 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1096 avg
= max(avg
, 1LU);
1097 if (wb_has_dirty_io(wb
)) {
1098 long delta
= avg
- wb
->avg_write_bandwidth
;
1099 WARN_ON_ONCE(atomic_long_add_return(delta
,
1100 &wb
->bdi
->tot_write_bandwidth
) <= 0);
1102 wb
->write_bandwidth
= bw
;
1103 wb
->avg_write_bandwidth
= avg
;
1106 static void update_dirty_limit(struct dirty_throttle_control
*dtc
)
1108 struct wb_domain
*dom
= dtc_dom(dtc
);
1109 unsigned long thresh
= dtc
->thresh
;
1110 unsigned long limit
= dom
->dirty_limit
;
1113 * Follow up in one step.
1115 if (limit
< thresh
) {
1121 * Follow down slowly. Use the higher one as the target, because thresh
1122 * may drop below dirty. This is exactly the reason to introduce
1123 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1125 thresh
= max(thresh
, dtc
->dirty
);
1126 if (limit
> thresh
) {
1127 limit
-= (limit
- thresh
) >> 5;
1132 dom
->dirty_limit
= limit
;
1135 static void domain_update_bandwidth(struct dirty_throttle_control
*dtc
,
1138 struct wb_domain
*dom
= dtc_dom(dtc
);
1141 * check locklessly first to optimize away locking for the most time
1143 if (time_before(now
, dom
->dirty_limit_tstamp
+ BANDWIDTH_INTERVAL
))
1146 spin_lock(&dom
->lock
);
1147 if (time_after_eq(now
, dom
->dirty_limit_tstamp
+ BANDWIDTH_INTERVAL
)) {
1148 update_dirty_limit(dtc
);
1149 dom
->dirty_limit_tstamp
= now
;
1151 spin_unlock(&dom
->lock
);
1155 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1157 * Normal wb tasks will be curbed at or below it in long term.
1158 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1160 static void wb_update_dirty_ratelimit(struct dirty_throttle_control
*dtc
,
1161 unsigned long dirtied
,
1162 unsigned long elapsed
)
1164 struct bdi_writeback
*wb
= dtc
->wb
;
1165 unsigned long dirty
= dtc
->dirty
;
1166 unsigned long freerun
= dirty_freerun_ceiling(dtc
->thresh
, dtc
->bg_thresh
);
1167 unsigned long limit
= hard_dirty_limit(dtc_dom(dtc
), dtc
->thresh
);
1168 unsigned long setpoint
= (freerun
+ limit
) / 2;
1169 unsigned long write_bw
= wb
->avg_write_bandwidth
;
1170 unsigned long dirty_ratelimit
= wb
->dirty_ratelimit
;
1171 unsigned long dirty_rate
;
1172 unsigned long task_ratelimit
;
1173 unsigned long balanced_dirty_ratelimit
;
1176 unsigned long shift
;
1179 * The dirty rate will match the writeout rate in long term, except
1180 * when dirty pages are truncated by userspace or re-dirtied by FS.
1182 dirty_rate
= (dirtied
- wb
->dirtied_stamp
) * HZ
/ elapsed
;
1185 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1187 task_ratelimit
= (u64
)dirty_ratelimit
*
1188 dtc
->pos_ratio
>> RATELIMIT_CALC_SHIFT
;
1189 task_ratelimit
++; /* it helps rampup dirty_ratelimit from tiny values */
1192 * A linear estimation of the "balanced" throttle rate. The theory is,
1193 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1194 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1195 * formula will yield the balanced rate limit (write_bw / N).
1197 * Note that the expanded form is not a pure rate feedback:
1198 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1199 * but also takes pos_ratio into account:
1200 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1202 * (1) is not realistic because pos_ratio also takes part in balancing
1203 * the dirty rate. Consider the state
1204 * pos_ratio = 0.5 (3)
1205 * rate = 2 * (write_bw / N) (4)
1206 * If (1) is used, it will stuck in that state! Because each dd will
1208 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1210 * dirty_rate = N * task_ratelimit = write_bw (6)
1211 * put (6) into (1) we get
1212 * rate_(i+1) = rate_(i) (7)
1214 * So we end up using (2) to always keep
1215 * rate_(i+1) ~= (write_bw / N) (8)
1216 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1217 * pos_ratio is able to drive itself to 1.0, which is not only where
1218 * the dirty count meet the setpoint, but also where the slope of
1219 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1221 balanced_dirty_ratelimit
= div_u64((u64
)task_ratelimit
* write_bw
,
1224 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1226 if (unlikely(balanced_dirty_ratelimit
> write_bw
))
1227 balanced_dirty_ratelimit
= write_bw
;
1230 * We could safely do this and return immediately:
1232 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1234 * However to get a more stable dirty_ratelimit, the below elaborated
1235 * code makes use of task_ratelimit to filter out singular points and
1236 * limit the step size.
1238 * The below code essentially only uses the relative value of
1240 * task_ratelimit - dirty_ratelimit
1241 * = (pos_ratio - 1) * dirty_ratelimit
1243 * which reflects the direction and size of dirty position error.
1247 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1248 * task_ratelimit is on the same side of dirty_ratelimit, too.
1250 * - dirty_ratelimit > balanced_dirty_ratelimit
1251 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1252 * lowering dirty_ratelimit will help meet both the position and rate
1253 * control targets. Otherwise, don't update dirty_ratelimit if it will
1254 * only help meet the rate target. After all, what the users ultimately
1255 * feel and care are stable dirty rate and small position error.
1257 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1258 * and filter out the singular points of balanced_dirty_ratelimit. Which
1259 * keeps jumping around randomly and can even leap far away at times
1260 * due to the small 200ms estimation period of dirty_rate (we want to
1261 * keep that period small to reduce time lags).
1266 * For strictlimit case, calculations above were based on wb counters
1267 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1268 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1269 * Hence, to calculate "step" properly, we have to use wb_dirty as
1270 * "dirty" and wb_setpoint as "setpoint".
1272 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1273 * it's possible that wb_thresh is close to zero due to inactivity
1274 * of backing device.
1276 if (unlikely(wb
->bdi
->capabilities
& BDI_CAP_STRICTLIMIT
)) {
1277 dirty
= dtc
->wb_dirty
;
1278 if (dtc
->wb_dirty
< 8)
1279 setpoint
= dtc
->wb_dirty
+ 1;
1281 setpoint
= (dtc
->wb_thresh
+ dtc
->wb_bg_thresh
) / 2;
1284 if (dirty
< setpoint
) {
1285 x
= min3(wb
->balanced_dirty_ratelimit
,
1286 balanced_dirty_ratelimit
, task_ratelimit
);
1287 if (dirty_ratelimit
< x
)
1288 step
= x
- dirty_ratelimit
;
1290 x
= max3(wb
->balanced_dirty_ratelimit
,
1291 balanced_dirty_ratelimit
, task_ratelimit
);
1292 if (dirty_ratelimit
> x
)
1293 step
= dirty_ratelimit
- x
;
1297 * Don't pursue 100% rate matching. It's impossible since the balanced
1298 * rate itself is constantly fluctuating. So decrease the track speed
1299 * when it gets close to the target. Helps eliminate pointless tremors.
1301 shift
= dirty_ratelimit
/ (2 * step
+ 1);
1302 if (shift
< BITS_PER_LONG
)
1303 step
= DIV_ROUND_UP(step
>> shift
, 8);
1307 if (dirty_ratelimit
< balanced_dirty_ratelimit
)
1308 dirty_ratelimit
+= step
;
1310 dirty_ratelimit
-= step
;
1312 wb
->dirty_ratelimit
= max(dirty_ratelimit
, 1UL);
1313 wb
->balanced_dirty_ratelimit
= balanced_dirty_ratelimit
;
1315 trace_bdi_dirty_ratelimit(wb
, dirty_rate
, task_ratelimit
);
1318 static void __wb_update_bandwidth(struct dirty_throttle_control
*gdtc
,
1319 struct dirty_throttle_control
*mdtc
,
1320 unsigned long start_time
,
1321 bool update_ratelimit
)
1323 struct bdi_writeback
*wb
= gdtc
->wb
;
1324 unsigned long now
= jiffies
;
1325 unsigned long elapsed
= now
- wb
->bw_time_stamp
;
1326 unsigned long dirtied
;
1327 unsigned long written
;
1329 lockdep_assert_held(&wb
->list_lock
);
1332 * rate-limit, only update once every 200ms.
1334 if (elapsed
< BANDWIDTH_INTERVAL
)
1337 dirtied
= percpu_counter_read(&wb
->stat
[WB_DIRTIED
]);
1338 written
= percpu_counter_read(&wb
->stat
[WB_WRITTEN
]);
1341 * Skip quiet periods when disk bandwidth is under-utilized.
1342 * (at least 1s idle time between two flusher runs)
1344 if (elapsed
> HZ
&& time_before(wb
->bw_time_stamp
, start_time
))
1347 if (update_ratelimit
) {
1348 domain_update_bandwidth(gdtc
, now
);
1349 wb_update_dirty_ratelimit(gdtc
, dirtied
, elapsed
);
1352 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1353 * compiler has no way to figure that out. Help it.
1355 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK
) && mdtc
) {
1356 domain_update_bandwidth(mdtc
, now
);
1357 wb_update_dirty_ratelimit(mdtc
, dirtied
, elapsed
);
1360 wb_update_write_bandwidth(wb
, elapsed
, written
);
1363 wb
->dirtied_stamp
= dirtied
;
1364 wb
->written_stamp
= written
;
1365 wb
->bw_time_stamp
= now
;
1368 void wb_update_bandwidth(struct bdi_writeback
*wb
, unsigned long start_time
)
1370 struct dirty_throttle_control gdtc
= { GDTC_INIT(wb
) };
1372 __wb_update_bandwidth(&gdtc
, NULL
, start_time
, false);
1376 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1377 * will look to see if it needs to start dirty throttling.
1379 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1380 * global_page_state() too often. So scale it near-sqrt to the safety margin
1381 * (the number of pages we may dirty without exceeding the dirty limits).
1383 static unsigned long dirty_poll_interval(unsigned long dirty
,
1384 unsigned long thresh
)
1387 return 1UL << (ilog2(thresh
- dirty
) >> 1);
1392 static unsigned long wb_max_pause(struct bdi_writeback
*wb
,
1393 unsigned long wb_dirty
)
1395 unsigned long bw
= wb
->avg_write_bandwidth
;
1399 * Limit pause time for small memory systems. If sleeping for too long
1400 * time, a small pool of dirty/writeback pages may go empty and disk go
1403 * 8 serves as the safety ratio.
1405 t
= wb_dirty
/ (1 + bw
/ roundup_pow_of_two(1 + HZ
/ 8));
1408 return min_t(unsigned long, t
, MAX_PAUSE
);
1411 static long wb_min_pause(struct bdi_writeback
*wb
,
1413 unsigned long task_ratelimit
,
1414 unsigned long dirty_ratelimit
,
1415 int *nr_dirtied_pause
)
1417 long hi
= ilog2(wb
->avg_write_bandwidth
);
1418 long lo
= ilog2(wb
->dirty_ratelimit
);
1419 long t
; /* target pause */
1420 long pause
; /* estimated next pause */
1421 int pages
; /* target nr_dirtied_pause */
1423 /* target for 10ms pause on 1-dd case */
1424 t
= max(1, HZ
/ 100);
1427 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1430 * (N * 10ms) on 2^N concurrent tasks.
1433 t
+= (hi
- lo
) * (10 * HZ
) / 1024;
1436 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1437 * on the much more stable dirty_ratelimit. However the next pause time
1438 * will be computed based on task_ratelimit and the two rate limits may
1439 * depart considerably at some time. Especially if task_ratelimit goes
1440 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1441 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1442 * result task_ratelimit won't be executed faithfully, which could
1443 * eventually bring down dirty_ratelimit.
1445 * We apply two rules to fix it up:
1446 * 1) try to estimate the next pause time and if necessary, use a lower
1447 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1448 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1449 * 2) limit the target pause time to max_pause/2, so that the normal
1450 * small fluctuations of task_ratelimit won't trigger rule (1) and
1451 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1453 t
= min(t
, 1 + max_pause
/ 2);
1454 pages
= dirty_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1457 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1458 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1459 * When the 16 consecutive reads are often interrupted by some dirty
1460 * throttling pause during the async writes, cfq will go into idles
1461 * (deadline is fine). So push nr_dirtied_pause as high as possible
1462 * until reaches DIRTY_POLL_THRESH=32 pages.
1464 if (pages
< DIRTY_POLL_THRESH
) {
1466 pages
= dirty_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1467 if (pages
> DIRTY_POLL_THRESH
) {
1468 pages
= DIRTY_POLL_THRESH
;
1469 t
= HZ
* DIRTY_POLL_THRESH
/ dirty_ratelimit
;
1473 pause
= HZ
* pages
/ (task_ratelimit
+ 1);
1474 if (pause
> max_pause
) {
1476 pages
= task_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1479 *nr_dirtied_pause
= pages
;
1481 * The minimal pause time will normally be half the target pause time.
1483 return pages
>= DIRTY_POLL_THRESH
? 1 + t
/ 2 : t
;
1486 static inline void wb_dirty_limits(struct dirty_throttle_control
*dtc
)
1488 struct bdi_writeback
*wb
= dtc
->wb
;
1489 unsigned long wb_reclaimable
;
1492 * wb_thresh is not treated as some limiting factor as
1493 * dirty_thresh, due to reasons
1494 * - in JBOD setup, wb_thresh can fluctuate a lot
1495 * - in a system with HDD and USB key, the USB key may somehow
1496 * go into state (wb_dirty >> wb_thresh) either because
1497 * wb_dirty starts high, or because wb_thresh drops low.
1498 * In this case we don't want to hard throttle the USB key
1499 * dirtiers for 100 seconds until wb_dirty drops under
1500 * wb_thresh. Instead the auxiliary wb control line in
1501 * wb_position_ratio() will let the dirtier task progress
1502 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1504 dtc
->wb_thresh
= __wb_calc_thresh(dtc
);
1505 dtc
->wb_bg_thresh
= dtc
->thresh
?
1506 div_u64((u64
)dtc
->wb_thresh
* dtc
->bg_thresh
, dtc
->thresh
) : 0;
1509 * In order to avoid the stacked BDI deadlock we need
1510 * to ensure we accurately count the 'dirty' pages when
1511 * the threshold is low.
1513 * Otherwise it would be possible to get thresh+n pages
1514 * reported dirty, even though there are thresh-m pages
1515 * actually dirty; with m+n sitting in the percpu
1518 if (dtc
->wb_thresh
< 2 * wb_stat_error(wb
)) {
1519 wb_reclaimable
= wb_stat_sum(wb
, WB_RECLAIMABLE
);
1520 dtc
->wb_dirty
= wb_reclaimable
+ wb_stat_sum(wb
, WB_WRITEBACK
);
1522 wb_reclaimable
= wb_stat(wb
, WB_RECLAIMABLE
);
1523 dtc
->wb_dirty
= wb_reclaimable
+ wb_stat(wb
, WB_WRITEBACK
);
1528 * balance_dirty_pages() must be called by processes which are generating dirty
1529 * data. It looks at the number of dirty pages in the machine and will force
1530 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1531 * If we're over `background_thresh' then the writeback threads are woken to
1532 * perform some writeout.
1534 static void balance_dirty_pages(struct address_space
*mapping
,
1535 struct bdi_writeback
*wb
,
1536 unsigned long pages_dirtied
)
1538 struct dirty_throttle_control gdtc_stor
= { GDTC_INIT(wb
) };
1539 struct dirty_throttle_control mdtc_stor
= { MDTC_INIT(wb
, &gdtc_stor
) };
1540 struct dirty_throttle_control
* const gdtc
= &gdtc_stor
;
1541 struct dirty_throttle_control
* const mdtc
= mdtc_valid(&mdtc_stor
) ?
1543 struct dirty_throttle_control
*sdtc
;
1544 unsigned long nr_reclaimable
; /* = file_dirty + unstable_nfs */
1549 int nr_dirtied_pause
;
1550 bool dirty_exceeded
= false;
1551 unsigned long task_ratelimit
;
1552 unsigned long dirty_ratelimit
;
1553 struct backing_dev_info
*bdi
= wb
->bdi
;
1554 bool strictlimit
= bdi
->capabilities
& BDI_CAP_STRICTLIMIT
;
1555 unsigned long start_time
= jiffies
;
1558 unsigned long now
= jiffies
;
1559 unsigned long dirty
, thresh
, bg_thresh
;
1560 unsigned long m_dirty
= 0; /* stop bogus uninit warnings */
1561 unsigned long m_thresh
= 0;
1562 unsigned long m_bg_thresh
= 0;
1565 * Unstable writes are a feature of certain networked
1566 * filesystems (i.e. NFS) in which data may have been
1567 * written to the server's write cache, but has not yet
1568 * been flushed to permanent storage.
1570 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
1571 global_page_state(NR_UNSTABLE_NFS
);
1572 gdtc
->avail
= global_dirtyable_memory();
1573 gdtc
->dirty
= nr_reclaimable
+ global_page_state(NR_WRITEBACK
);
1575 domain_dirty_limits(gdtc
);
1577 if (unlikely(strictlimit
)) {
1578 wb_dirty_limits(gdtc
);
1580 dirty
= gdtc
->wb_dirty
;
1581 thresh
= gdtc
->wb_thresh
;
1582 bg_thresh
= gdtc
->wb_bg_thresh
;
1584 dirty
= gdtc
->dirty
;
1585 thresh
= gdtc
->thresh
;
1586 bg_thresh
= gdtc
->bg_thresh
;
1590 unsigned long filepages
, headroom
, writeback
;
1593 * If @wb belongs to !root memcg, repeat the same
1594 * basic calculations for the memcg domain.
1596 mem_cgroup_wb_stats(wb
, &filepages
, &headroom
,
1597 &mdtc
->dirty
, &writeback
);
1598 mdtc
->dirty
+= writeback
;
1599 mdtc_calc_avail(mdtc
, filepages
, headroom
);
1601 domain_dirty_limits(mdtc
);
1603 if (unlikely(strictlimit
)) {
1604 wb_dirty_limits(mdtc
);
1605 m_dirty
= mdtc
->wb_dirty
;
1606 m_thresh
= mdtc
->wb_thresh
;
1607 m_bg_thresh
= mdtc
->wb_bg_thresh
;
1609 m_dirty
= mdtc
->dirty
;
1610 m_thresh
= mdtc
->thresh
;
1611 m_bg_thresh
= mdtc
->bg_thresh
;
1616 * Throttle it only when the background writeback cannot
1617 * catch-up. This avoids (excessively) small writeouts
1618 * when the wb limits are ramping up in case of !strictlimit.
1620 * In strictlimit case make decision based on the wb counters
1621 * and limits. Small writeouts when the wb limits are ramping
1622 * up are the price we consciously pay for strictlimit-ing.
1624 * If memcg domain is in effect, @dirty should be under
1625 * both global and memcg freerun ceilings.
1627 if (dirty
<= dirty_freerun_ceiling(thresh
, bg_thresh
) &&
1629 m_dirty
<= dirty_freerun_ceiling(m_thresh
, m_bg_thresh
))) {
1630 unsigned long intv
= dirty_poll_interval(dirty
, thresh
);
1631 unsigned long m_intv
= ULONG_MAX
;
1633 current
->dirty_paused_when
= now
;
1634 current
->nr_dirtied
= 0;
1636 m_intv
= dirty_poll_interval(m_dirty
, m_thresh
);
1637 current
->nr_dirtied_pause
= min(intv
, m_intv
);
1641 if (unlikely(!writeback_in_progress(wb
)))
1642 wb_start_background_writeback(wb
);
1645 * Calculate global domain's pos_ratio and select the
1646 * global dtc by default.
1649 wb_dirty_limits(gdtc
);
1651 dirty_exceeded
= (gdtc
->wb_dirty
> gdtc
->wb_thresh
) &&
1652 ((gdtc
->dirty
> gdtc
->thresh
) || strictlimit
);
1654 wb_position_ratio(gdtc
);
1659 * If memcg domain is in effect, calculate its
1660 * pos_ratio. @wb should satisfy constraints from
1661 * both global and memcg domains. Choose the one
1662 * w/ lower pos_ratio.
1665 wb_dirty_limits(mdtc
);
1667 dirty_exceeded
|= (mdtc
->wb_dirty
> mdtc
->wb_thresh
) &&
1668 ((mdtc
->dirty
> mdtc
->thresh
) || strictlimit
);
1670 wb_position_ratio(mdtc
);
1671 if (mdtc
->pos_ratio
< gdtc
->pos_ratio
)
1675 if (dirty_exceeded
&& !wb
->dirty_exceeded
)
1676 wb
->dirty_exceeded
= 1;
1678 if (time_is_before_jiffies(wb
->bw_time_stamp
+
1679 BANDWIDTH_INTERVAL
)) {
1680 spin_lock(&wb
->list_lock
);
1681 __wb_update_bandwidth(gdtc
, mdtc
, start_time
, true);
1682 spin_unlock(&wb
->list_lock
);
1685 /* throttle according to the chosen dtc */
1686 dirty_ratelimit
= wb
->dirty_ratelimit
;
1687 task_ratelimit
= ((u64
)dirty_ratelimit
* sdtc
->pos_ratio
) >>
1688 RATELIMIT_CALC_SHIFT
;
1689 max_pause
= wb_max_pause(wb
, sdtc
->wb_dirty
);
1690 min_pause
= wb_min_pause(wb
, max_pause
,
1691 task_ratelimit
, dirty_ratelimit
,
1694 if (unlikely(task_ratelimit
== 0)) {
1699 period
= HZ
* pages_dirtied
/ task_ratelimit
;
1701 if (current
->dirty_paused_when
)
1702 pause
-= now
- current
->dirty_paused_when
;
1704 * For less than 1s think time (ext3/4 may block the dirtier
1705 * for up to 800ms from time to time on 1-HDD; so does xfs,
1706 * however at much less frequency), try to compensate it in
1707 * future periods by updating the virtual time; otherwise just
1708 * do a reset, as it may be a light dirtier.
1710 if (pause
< min_pause
) {
1711 trace_balance_dirty_pages(wb
,
1724 current
->dirty_paused_when
= now
;
1725 current
->nr_dirtied
= 0;
1726 } else if (period
) {
1727 current
->dirty_paused_when
+= period
;
1728 current
->nr_dirtied
= 0;
1729 } else if (current
->nr_dirtied_pause
<= pages_dirtied
)
1730 current
->nr_dirtied_pause
+= pages_dirtied
;
1733 if (unlikely(pause
> max_pause
)) {
1734 /* for occasional dropped task_ratelimit */
1735 now
+= min(pause
- max_pause
, max_pause
);
1740 trace_balance_dirty_pages(wb
,
1752 __set_current_state(TASK_KILLABLE
);
1753 io_schedule_timeout(pause
);
1755 current
->dirty_paused_when
= now
+ pause
;
1756 current
->nr_dirtied
= 0;
1757 current
->nr_dirtied_pause
= nr_dirtied_pause
;
1760 * This is typically equal to (dirty < thresh) and can also
1761 * keep "1000+ dd on a slow USB stick" under control.
1767 * In the case of an unresponding NFS server and the NFS dirty
1768 * pages exceeds dirty_thresh, give the other good wb's a pipe
1769 * to go through, so that tasks on them still remain responsive.
1771 * In theory 1 page is enough to keep the comsumer-producer
1772 * pipe going: the flusher cleans 1 page => the task dirties 1
1773 * more page. However wb_dirty has accounting errors. So use
1774 * the larger and more IO friendly wb_stat_error.
1776 if (sdtc
->wb_dirty
<= wb_stat_error(wb
))
1779 if (fatal_signal_pending(current
))
1783 if (!dirty_exceeded
&& wb
->dirty_exceeded
)
1784 wb
->dirty_exceeded
= 0;
1786 if (writeback_in_progress(wb
))
1790 * In laptop mode, we wait until hitting the higher threshold before
1791 * starting background writeout, and then write out all the way down
1792 * to the lower threshold. So slow writers cause minimal disk activity.
1794 * In normal mode, we start background writeout at the lower
1795 * background_thresh, to keep the amount of dirty memory low.
1800 if (nr_reclaimable
> gdtc
->bg_thresh
)
1801 wb_start_background_writeback(wb
);
1804 static DEFINE_PER_CPU(int, bdp_ratelimits
);
1807 * Normal tasks are throttled by
1809 * dirty tsk->nr_dirtied_pause pages;
1810 * take a snap in balance_dirty_pages();
1812 * However there is a worst case. If every task exit immediately when dirtied
1813 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1814 * called to throttle the page dirties. The solution is to save the not yet
1815 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1816 * randomly into the running tasks. This works well for the above worst case,
1817 * as the new task will pick up and accumulate the old task's leaked dirty
1818 * count and eventually get throttled.
1820 DEFINE_PER_CPU(int, dirty_throttle_leaks
) = 0;
1823 * balance_dirty_pages_ratelimited - balance dirty memory state
1824 * @mapping: address_space which was dirtied
1826 * Processes which are dirtying memory should call in here once for each page
1827 * which was newly dirtied. The function will periodically check the system's
1828 * dirty state and will initiate writeback if needed.
1830 * On really big machines, get_writeback_state is expensive, so try to avoid
1831 * calling it too often (ratelimiting). But once we're over the dirty memory
1832 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1833 * from overshooting the limit by (ratelimit_pages) each.
1835 void balance_dirty_pages_ratelimited(struct address_space
*mapping
)
1837 struct inode
*inode
= mapping
->host
;
1838 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
1839 struct bdi_writeback
*wb
= NULL
;
1843 if (!bdi_cap_account_dirty(bdi
))
1846 if (inode_cgwb_enabled(inode
))
1847 wb
= wb_get_create_current(bdi
, GFP_KERNEL
);
1851 ratelimit
= current
->nr_dirtied_pause
;
1852 if (wb
->dirty_exceeded
)
1853 ratelimit
= min(ratelimit
, 32 >> (PAGE_SHIFT
- 10));
1857 * This prevents one CPU to accumulate too many dirtied pages without
1858 * calling into balance_dirty_pages(), which can happen when there are
1859 * 1000+ tasks, all of them start dirtying pages at exactly the same
1860 * time, hence all honoured too large initial task->nr_dirtied_pause.
1862 p
= this_cpu_ptr(&bdp_ratelimits
);
1863 if (unlikely(current
->nr_dirtied
>= ratelimit
))
1865 else if (unlikely(*p
>= ratelimit_pages
)) {
1870 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1871 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1872 * the dirty throttling and livelock other long-run dirtiers.
1874 p
= this_cpu_ptr(&dirty_throttle_leaks
);
1875 if (*p
> 0 && current
->nr_dirtied
< ratelimit
) {
1876 unsigned long nr_pages_dirtied
;
1877 nr_pages_dirtied
= min(*p
, ratelimit
- current
->nr_dirtied
);
1878 *p
-= nr_pages_dirtied
;
1879 current
->nr_dirtied
+= nr_pages_dirtied
;
1883 if (unlikely(current
->nr_dirtied
>= ratelimit
))
1884 balance_dirty_pages(mapping
, wb
, current
->nr_dirtied
);
1888 EXPORT_SYMBOL(balance_dirty_pages_ratelimited
);
1891 * wb_over_bg_thresh - does @wb need to be written back?
1892 * @wb: bdi_writeback of interest
1894 * Determines whether background writeback should keep writing @wb or it's
1895 * clean enough. Returns %true if writeback should continue.
1897 bool wb_over_bg_thresh(struct bdi_writeback
*wb
)
1899 struct dirty_throttle_control gdtc_stor
= { GDTC_INIT(wb
) };
1900 struct dirty_throttle_control mdtc_stor
= { MDTC_INIT(wb
, &gdtc_stor
) };
1901 struct dirty_throttle_control
* const gdtc
= &gdtc_stor
;
1902 struct dirty_throttle_control
* const mdtc
= mdtc_valid(&mdtc_stor
) ?
1906 * Similar to balance_dirty_pages() but ignores pages being written
1907 * as we're trying to decide whether to put more under writeback.
1909 gdtc
->avail
= global_dirtyable_memory();
1910 gdtc
->dirty
= global_page_state(NR_FILE_DIRTY
) +
1911 global_page_state(NR_UNSTABLE_NFS
);
1912 domain_dirty_limits(gdtc
);
1914 if (gdtc
->dirty
> gdtc
->bg_thresh
)
1917 if (wb_stat(wb
, WB_RECLAIMABLE
) >
1918 wb_calc_thresh(gdtc
->wb
, gdtc
->bg_thresh
))
1922 unsigned long filepages
, headroom
, writeback
;
1924 mem_cgroup_wb_stats(wb
, &filepages
, &headroom
, &mdtc
->dirty
,
1926 mdtc_calc_avail(mdtc
, filepages
, headroom
);
1927 domain_dirty_limits(mdtc
); /* ditto, ignore writeback */
1929 if (mdtc
->dirty
> mdtc
->bg_thresh
)
1932 if (wb_stat(wb
, WB_RECLAIMABLE
) >
1933 wb_calc_thresh(mdtc
->wb
, mdtc
->bg_thresh
))
1940 void throttle_vm_writeout(gfp_t gfp_mask
)
1942 unsigned long background_thresh
;
1943 unsigned long dirty_thresh
;
1946 global_dirty_limits(&background_thresh
, &dirty_thresh
);
1947 dirty_thresh
= hard_dirty_limit(&global_wb_domain
, dirty_thresh
);
1950 * Boost the allowable dirty threshold a bit for page
1951 * allocators so they don't get DoS'ed by heavy writers
1953 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
1955 if (global_page_state(NR_UNSTABLE_NFS
) +
1956 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
1958 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1961 * The caller might hold locks which can prevent IO completion
1962 * or progress in the filesystem. So we cannot just sit here
1963 * waiting for IO to complete.
1965 if ((gfp_mask
& (__GFP_FS
|__GFP_IO
)) != (__GFP_FS
|__GFP_IO
))
1971 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1973 int dirty_writeback_centisecs_handler(struct ctl_table
*table
, int write
,
1974 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1976 proc_dointvec(table
, write
, buffer
, length
, ppos
);
1981 void laptop_mode_timer_fn(unsigned long data
)
1983 struct request_queue
*q
= (struct request_queue
*)data
;
1984 int nr_pages
= global_page_state(NR_FILE_DIRTY
) +
1985 global_page_state(NR_UNSTABLE_NFS
);
1986 struct bdi_writeback
*wb
;
1989 * We want to write everything out, not just down to the dirty
1992 if (!bdi_has_dirty_io(&q
->backing_dev_info
))
1996 list_for_each_entry_rcu(wb
, &q
->backing_dev_info
.wb_list
, bdi_node
)
1997 if (wb_has_dirty_io(wb
))
1998 wb_start_writeback(wb
, nr_pages
, true,
1999 WB_REASON_LAPTOP_TIMER
);
2004 * We've spun up the disk and we're in laptop mode: schedule writeback
2005 * of all dirty data a few seconds from now. If the flush is already scheduled
2006 * then push it back - the user is still using the disk.
2008 void laptop_io_completion(struct backing_dev_info
*info
)
2010 mod_timer(&info
->laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
2014 * We're in laptop mode and we've just synced. The sync's writes will have
2015 * caused another writeback to be scheduled by laptop_io_completion.
2016 * Nothing needs to be written back anymore, so we unschedule the writeback.
2018 void laptop_sync_completion(void)
2020 struct backing_dev_info
*bdi
;
2024 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
)
2025 del_timer(&bdi
->laptop_mode_wb_timer
);
2032 * If ratelimit_pages is too high then we can get into dirty-data overload
2033 * if a large number of processes all perform writes at the same time.
2034 * If it is too low then SMP machines will call the (expensive)
2035 * get_writeback_state too often.
2037 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2038 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2042 void writeback_set_ratelimit(void)
2044 struct wb_domain
*dom
= &global_wb_domain
;
2045 unsigned long background_thresh
;
2046 unsigned long dirty_thresh
;
2048 global_dirty_limits(&background_thresh
, &dirty_thresh
);
2049 dom
->dirty_limit
= dirty_thresh
;
2050 ratelimit_pages
= dirty_thresh
/ (num_online_cpus() * 32);
2051 if (ratelimit_pages
< 16)
2052 ratelimit_pages
= 16;
2056 ratelimit_handler(struct notifier_block
*self
, unsigned long action
,
2060 switch (action
& ~CPU_TASKS_FROZEN
) {
2063 writeback_set_ratelimit();
2070 static struct notifier_block ratelimit_nb
= {
2071 .notifier_call
= ratelimit_handler
,
2076 * Called early on to tune the page writeback dirty limits.
2078 * We used to scale dirty pages according to how total memory
2079 * related to pages that could be allocated for buffers (by
2080 * comparing nr_free_buffer_pages() to vm_total_pages.
2082 * However, that was when we used "dirty_ratio" to scale with
2083 * all memory, and we don't do that any more. "dirty_ratio"
2084 * is now applied to total non-HIGHPAGE memory (by subtracting
2085 * totalhigh_pages from vm_total_pages), and as such we can't
2086 * get into the old insane situation any more where we had
2087 * large amounts of dirty pages compared to a small amount of
2088 * non-HIGHMEM memory.
2090 * But we might still want to scale the dirty_ratio by how
2091 * much memory the box has..
2093 void __init
page_writeback_init(void)
2095 BUG_ON(wb_domain_init(&global_wb_domain
, GFP_KERNEL
));
2097 writeback_set_ratelimit();
2098 register_cpu_notifier(&ratelimit_nb
);
2102 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2103 * @mapping: address space structure to write
2104 * @start: starting page index
2105 * @end: ending page index (inclusive)
2107 * This function scans the page range from @start to @end (inclusive) and tags
2108 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2109 * that write_cache_pages (or whoever calls this function) will then use
2110 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2111 * used to avoid livelocking of writeback by a process steadily creating new
2112 * dirty pages in the file (thus it is important for this function to be quick
2113 * so that it can tag pages faster than a dirtying process can create them).
2116 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2118 void tag_pages_for_writeback(struct address_space
*mapping
,
2119 pgoff_t start
, pgoff_t end
)
2121 #define WRITEBACK_TAG_BATCH 4096
2122 unsigned long tagged
;
2125 spin_lock_irq(&mapping
->tree_lock
);
2126 tagged
= radix_tree_range_tag_if_tagged(&mapping
->page_tree
,
2127 &start
, end
, WRITEBACK_TAG_BATCH
,
2128 PAGECACHE_TAG_DIRTY
, PAGECACHE_TAG_TOWRITE
);
2129 spin_unlock_irq(&mapping
->tree_lock
);
2130 WARN_ON_ONCE(tagged
> WRITEBACK_TAG_BATCH
);
2132 /* We check 'start' to handle wrapping when end == ~0UL */
2133 } while (tagged
>= WRITEBACK_TAG_BATCH
&& start
);
2135 EXPORT_SYMBOL(tag_pages_for_writeback
);
2138 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2139 * @mapping: address space structure to write
2140 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2141 * @writepage: function called for each page
2142 * @data: data passed to writepage function
2144 * If a page is already under I/O, write_cache_pages() skips it, even
2145 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2146 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2147 * and msync() need to guarantee that all the data which was dirty at the time
2148 * the call was made get new I/O started against them. If wbc->sync_mode is
2149 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2150 * existing IO to complete.
2152 * To avoid livelocks (when other process dirties new pages), we first tag
2153 * pages which should be written back with TOWRITE tag and only then start
2154 * writing them. For data-integrity sync we have to be careful so that we do
2155 * not miss some pages (e.g., because some other process has cleared TOWRITE
2156 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2157 * by the process clearing the DIRTY tag (and submitting the page for IO).
2159 int write_cache_pages(struct address_space
*mapping
,
2160 struct writeback_control
*wbc
, writepage_t writepage
,
2165 struct pagevec pvec
;
2167 pgoff_t
uninitialized_var(writeback_index
);
2169 pgoff_t end
; /* Inclusive */
2172 int range_whole
= 0;
2175 pagevec_init(&pvec
, 0);
2176 if (wbc
->range_cyclic
) {
2177 writeback_index
= mapping
->writeback_index
; /* prev offset */
2178 index
= writeback_index
;
2185 index
= wbc
->range_start
>> PAGE_SHIFT
;
2186 end
= wbc
->range_end
>> PAGE_SHIFT
;
2187 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2189 cycled
= 1; /* ignore range_cyclic tests */
2191 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2192 tag
= PAGECACHE_TAG_TOWRITE
;
2194 tag
= PAGECACHE_TAG_DIRTY
;
2196 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2197 tag_pages_for_writeback(mapping
, index
, end
);
2199 while (!done
&& (index
<= end
)) {
2202 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2203 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2207 for (i
= 0; i
< nr_pages
; i
++) {
2208 struct page
*page
= pvec
.pages
[i
];
2211 * At this point, the page may be truncated or
2212 * invalidated (changing page->mapping to NULL), or
2213 * even swizzled back from swapper_space to tmpfs file
2214 * mapping. However, page->index will not change
2215 * because we have a reference on the page.
2217 if (page
->index
> end
) {
2219 * can't be range_cyclic (1st pass) because
2220 * end == -1 in that case.
2226 done_index
= page
->index
;
2231 * Page truncated or invalidated. We can freely skip it
2232 * then, even for data integrity operations: the page
2233 * has disappeared concurrently, so there could be no
2234 * real expectation of this data interity operation
2235 * even if there is now a new, dirty page at the same
2236 * pagecache address.
2238 if (unlikely(page
->mapping
!= mapping
)) {
2244 if (!PageDirty(page
)) {
2245 /* someone wrote it for us */
2246 goto continue_unlock
;
2249 if (PageWriteback(page
)) {
2250 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
2251 wait_on_page_writeback(page
);
2253 goto continue_unlock
;
2256 BUG_ON(PageWriteback(page
));
2257 if (!clear_page_dirty_for_io(page
))
2258 goto continue_unlock
;
2260 trace_wbc_writepage(wbc
, inode_to_bdi(mapping
->host
));
2261 ret
= (*writepage
)(page
, wbc
, data
);
2262 if (unlikely(ret
)) {
2263 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
2268 * done_index is set past this page,
2269 * so media errors will not choke
2270 * background writeout for the entire
2271 * file. This has consequences for
2272 * range_cyclic semantics (ie. it may
2273 * not be suitable for data integrity
2276 done_index
= page
->index
+ 1;
2283 * We stop writing back only if we are not doing
2284 * integrity sync. In case of integrity sync we have to
2285 * keep going until we have written all the pages
2286 * we tagged for writeback prior to entering this loop.
2288 if (--wbc
->nr_to_write
<= 0 &&
2289 wbc
->sync_mode
== WB_SYNC_NONE
) {
2294 pagevec_release(&pvec
);
2297 if (!cycled
&& !done
) {
2300 * We hit the last page and there is more work to be done: wrap
2301 * back to the start of the file
2305 end
= writeback_index
- 1;
2308 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2309 mapping
->writeback_index
= done_index
;
2313 EXPORT_SYMBOL(write_cache_pages
);
2316 * Function used by generic_writepages to call the real writepage
2317 * function and set the mapping flags on error
2319 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
2322 struct address_space
*mapping
= data
;
2323 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
2324 mapping_set_error(mapping
, ret
);
2329 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2330 * @mapping: address space structure to write
2331 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2333 * This is a library function, which implements the writepages()
2334 * address_space_operation.
2336 int generic_writepages(struct address_space
*mapping
,
2337 struct writeback_control
*wbc
)
2339 struct blk_plug plug
;
2342 /* deal with chardevs and other special file */
2343 if (!mapping
->a_ops
->writepage
)
2346 blk_start_plug(&plug
);
2347 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
2348 blk_finish_plug(&plug
);
2352 EXPORT_SYMBOL(generic_writepages
);
2354 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
2358 if (wbc
->nr_to_write
<= 0)
2360 if (mapping
->a_ops
->writepages
)
2361 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
2363 ret
= generic_writepages(mapping
, wbc
);
2368 * write_one_page - write out a single page and optionally wait on I/O
2369 * @page: the page to write
2370 * @wait: if true, wait on writeout
2372 * The page must be locked by the caller and will be unlocked upon return.
2374 * write_one_page() returns a negative error code if I/O failed.
2376 int write_one_page(struct page
*page
, int wait
)
2378 struct address_space
*mapping
= page
->mapping
;
2380 struct writeback_control wbc
= {
2381 .sync_mode
= WB_SYNC_ALL
,
2385 BUG_ON(!PageLocked(page
));
2388 wait_on_page_writeback(page
);
2390 if (clear_page_dirty_for_io(page
)) {
2392 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
2393 if (ret
== 0 && wait
) {
2394 wait_on_page_writeback(page
);
2395 if (PageError(page
))
2404 EXPORT_SYMBOL(write_one_page
);
2407 * For address_spaces which do not use buffers nor write back.
2409 int __set_page_dirty_no_writeback(struct page
*page
)
2411 if (!PageDirty(page
))
2412 return !TestSetPageDirty(page
);
2417 * Helper function for set_page_dirty family.
2419 * Caller must hold lock_page_memcg().
2421 * NOTE: This relies on being atomic wrt interrupts.
2423 void account_page_dirtied(struct page
*page
, struct address_space
*mapping
)
2425 struct inode
*inode
= mapping
->host
;
2427 trace_writeback_dirty_page(page
, mapping
);
2429 if (mapping_cap_account_dirty(mapping
)) {
2430 struct bdi_writeback
*wb
;
2432 inode_attach_wb(inode
, page
);
2433 wb
= inode_to_wb(inode
);
2435 mem_cgroup_inc_page_stat(page
, MEM_CGROUP_STAT_DIRTY
);
2436 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
2437 __inc_zone_page_state(page
, NR_DIRTIED
);
2438 __inc_wb_stat(wb
, WB_RECLAIMABLE
);
2439 __inc_wb_stat(wb
, WB_DIRTIED
);
2440 task_io_account_write(PAGE_SIZE
);
2441 current
->nr_dirtied
++;
2442 this_cpu_inc(bdp_ratelimits
);
2445 EXPORT_SYMBOL(account_page_dirtied
);
2448 * Helper function for deaccounting dirty page without writeback.
2450 * Caller must hold lock_page_memcg().
2452 void account_page_cleaned(struct page
*page
, struct address_space
*mapping
,
2453 struct bdi_writeback
*wb
)
2455 if (mapping_cap_account_dirty(mapping
)) {
2456 mem_cgroup_dec_page_stat(page
, MEM_CGROUP_STAT_DIRTY
);
2457 dec_zone_page_state(page
, NR_FILE_DIRTY
);
2458 dec_wb_stat(wb
, WB_RECLAIMABLE
);
2459 task_io_account_cancelled_write(PAGE_SIZE
);
2464 * For address_spaces which do not use buffers. Just tag the page as dirty in
2467 * This is also used when a single buffer is being dirtied: we want to set the
2468 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2469 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2471 * The caller must ensure this doesn't race with truncation. Most will simply
2472 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2473 * the pte lock held, which also locks out truncation.
2475 int __set_page_dirty_nobuffers(struct page
*page
)
2477 lock_page_memcg(page
);
2478 if (!TestSetPageDirty(page
)) {
2479 struct address_space
*mapping
= page_mapping(page
);
2480 unsigned long flags
;
2483 unlock_page_memcg(page
);
2487 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
2488 BUG_ON(page_mapping(page
) != mapping
);
2489 WARN_ON_ONCE(!PagePrivate(page
) && !PageUptodate(page
));
2490 account_page_dirtied(page
, mapping
);
2491 radix_tree_tag_set(&mapping
->page_tree
, page_index(page
),
2492 PAGECACHE_TAG_DIRTY
);
2493 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
2494 unlock_page_memcg(page
);
2496 if (mapping
->host
) {
2497 /* !PageAnon && !swapper_space */
2498 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
2502 unlock_page_memcg(page
);
2505 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
2508 * Call this whenever redirtying a page, to de-account the dirty counters
2509 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2510 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2511 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2514 void account_page_redirty(struct page
*page
)
2516 struct address_space
*mapping
= page
->mapping
;
2518 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
2519 struct inode
*inode
= mapping
->host
;
2520 struct bdi_writeback
*wb
;
2523 wb
= unlocked_inode_to_wb_begin(inode
, &locked
);
2524 current
->nr_dirtied
--;
2525 dec_zone_page_state(page
, NR_DIRTIED
);
2526 dec_wb_stat(wb
, WB_DIRTIED
);
2527 unlocked_inode_to_wb_end(inode
, locked
);
2530 EXPORT_SYMBOL(account_page_redirty
);
2533 * When a writepage implementation decides that it doesn't want to write this
2534 * page for some reason, it should redirty the locked page via
2535 * redirty_page_for_writepage() and it should then unlock the page and return 0
2537 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
2541 wbc
->pages_skipped
++;
2542 ret
= __set_page_dirty_nobuffers(page
);
2543 account_page_redirty(page
);
2546 EXPORT_SYMBOL(redirty_page_for_writepage
);
2551 * For pages with a mapping this should be done under the page lock
2552 * for the benefit of asynchronous memory errors who prefer a consistent
2553 * dirty state. This rule can be broken in some special cases,
2554 * but should be better not to.
2556 * If the mapping doesn't provide a set_page_dirty a_op, then
2557 * just fall through and assume that it wants buffer_heads.
2559 int set_page_dirty(struct page
*page
)
2561 struct address_space
*mapping
= page_mapping(page
);
2563 if (likely(mapping
)) {
2564 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
2566 * readahead/lru_deactivate_page could remain
2567 * PG_readahead/PG_reclaim due to race with end_page_writeback
2568 * About readahead, if the page is written, the flags would be
2569 * reset. So no problem.
2570 * About lru_deactivate_page, if the page is redirty, the flag
2571 * will be reset. So no problem. but if the page is used by readahead
2572 * it will confuse readahead and make it restart the size rampup
2573 * process. But it's a trivial problem.
2575 if (PageReclaim(page
))
2576 ClearPageReclaim(page
);
2579 spd
= __set_page_dirty_buffers
;
2581 return (*spd
)(page
);
2583 if (!PageDirty(page
)) {
2584 if (!TestSetPageDirty(page
))
2589 EXPORT_SYMBOL(set_page_dirty
);
2592 * set_page_dirty() is racy if the caller has no reference against
2593 * page->mapping->host, and if the page is unlocked. This is because another
2594 * CPU could truncate the page off the mapping and then free the mapping.
2596 * Usually, the page _is_ locked, or the caller is a user-space process which
2597 * holds a reference on the inode by having an open file.
2599 * In other cases, the page should be locked before running set_page_dirty().
2601 int set_page_dirty_lock(struct page
*page
)
2606 ret
= set_page_dirty(page
);
2610 EXPORT_SYMBOL(set_page_dirty_lock
);
2613 * This cancels just the dirty bit on the kernel page itself, it does NOT
2614 * actually remove dirty bits on any mmap's that may be around. It also
2615 * leaves the page tagged dirty, so any sync activity will still find it on
2616 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2617 * look at the dirty bits in the VM.
2619 * Doing this should *normally* only ever be done when a page is truncated,
2620 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2621 * this when it notices that somebody has cleaned out all the buffers on a
2622 * page without actually doing it through the VM. Can you say "ext3 is
2623 * horribly ugly"? Thought you could.
2625 void cancel_dirty_page(struct page
*page
)
2627 struct address_space
*mapping
= page_mapping(page
);
2629 if (mapping_cap_account_dirty(mapping
)) {
2630 struct inode
*inode
= mapping
->host
;
2631 struct bdi_writeback
*wb
;
2634 lock_page_memcg(page
);
2635 wb
= unlocked_inode_to_wb_begin(inode
, &locked
);
2637 if (TestClearPageDirty(page
))
2638 account_page_cleaned(page
, mapping
, wb
);
2640 unlocked_inode_to_wb_end(inode
, locked
);
2641 unlock_page_memcg(page
);
2643 ClearPageDirty(page
);
2646 EXPORT_SYMBOL(cancel_dirty_page
);
2649 * Clear a page's dirty flag, while caring for dirty memory accounting.
2650 * Returns true if the page was previously dirty.
2652 * This is for preparing to put the page under writeout. We leave the page
2653 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2654 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2655 * implementation will run either set_page_writeback() or set_page_dirty(),
2656 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2659 * This incoherency between the page's dirty flag and radix-tree tag is
2660 * unfortunate, but it only exists while the page is locked.
2662 int clear_page_dirty_for_io(struct page
*page
)
2664 struct address_space
*mapping
= page_mapping(page
);
2667 BUG_ON(!PageLocked(page
));
2669 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
2670 struct inode
*inode
= mapping
->host
;
2671 struct bdi_writeback
*wb
;
2675 * Yes, Virginia, this is indeed insane.
2677 * We use this sequence to make sure that
2678 * (a) we account for dirty stats properly
2679 * (b) we tell the low-level filesystem to
2680 * mark the whole page dirty if it was
2681 * dirty in a pagetable. Only to then
2682 * (c) clean the page again and return 1 to
2683 * cause the writeback.
2685 * This way we avoid all nasty races with the
2686 * dirty bit in multiple places and clearing
2687 * them concurrently from different threads.
2689 * Note! Normally the "set_page_dirty(page)"
2690 * has no effect on the actual dirty bit - since
2691 * that will already usually be set. But we
2692 * need the side effects, and it can help us
2695 * We basically use the page "master dirty bit"
2696 * as a serialization point for all the different
2697 * threads doing their things.
2699 if (page_mkclean(page
))
2700 set_page_dirty(page
);
2702 * We carefully synchronise fault handlers against
2703 * installing a dirty pte and marking the page dirty
2704 * at this point. We do this by having them hold the
2705 * page lock while dirtying the page, and pages are
2706 * always locked coming in here, so we get the desired
2709 wb
= unlocked_inode_to_wb_begin(inode
, &locked
);
2710 if (TestClearPageDirty(page
)) {
2711 mem_cgroup_dec_page_stat(page
, MEM_CGROUP_STAT_DIRTY
);
2712 dec_zone_page_state(page
, NR_FILE_DIRTY
);
2713 dec_wb_stat(wb
, WB_RECLAIMABLE
);
2716 unlocked_inode_to_wb_end(inode
, locked
);
2719 return TestClearPageDirty(page
);
2721 EXPORT_SYMBOL(clear_page_dirty_for_io
);
2723 int test_clear_page_writeback(struct page
*page
)
2725 struct address_space
*mapping
= page_mapping(page
);
2728 lock_page_memcg(page
);
2730 struct inode
*inode
= mapping
->host
;
2731 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
2732 unsigned long flags
;
2734 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
2735 ret
= TestClearPageWriteback(page
);
2737 radix_tree_tag_clear(&mapping
->page_tree
,
2739 PAGECACHE_TAG_WRITEBACK
);
2740 if (bdi_cap_account_writeback(bdi
)) {
2741 struct bdi_writeback
*wb
= inode_to_wb(inode
);
2743 __dec_wb_stat(wb
, WB_WRITEBACK
);
2744 __wb_writeout_inc(wb
);
2747 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
2749 ret
= TestClearPageWriteback(page
);
2752 mem_cgroup_dec_page_stat(page
, MEM_CGROUP_STAT_WRITEBACK
);
2753 dec_zone_page_state(page
, NR_WRITEBACK
);
2754 inc_zone_page_state(page
, NR_WRITTEN
);
2756 unlock_page_memcg(page
);
2760 int __test_set_page_writeback(struct page
*page
, bool keep_write
)
2762 struct address_space
*mapping
= page_mapping(page
);
2765 lock_page_memcg(page
);
2767 struct inode
*inode
= mapping
->host
;
2768 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
2769 unsigned long flags
;
2771 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
2772 ret
= TestSetPageWriteback(page
);
2774 radix_tree_tag_set(&mapping
->page_tree
,
2776 PAGECACHE_TAG_WRITEBACK
);
2777 if (bdi_cap_account_writeback(bdi
))
2778 __inc_wb_stat(inode_to_wb(inode
), WB_WRITEBACK
);
2780 if (!PageDirty(page
))
2781 radix_tree_tag_clear(&mapping
->page_tree
,
2783 PAGECACHE_TAG_DIRTY
);
2785 radix_tree_tag_clear(&mapping
->page_tree
,
2787 PAGECACHE_TAG_TOWRITE
);
2788 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
2790 ret
= TestSetPageWriteback(page
);
2793 mem_cgroup_inc_page_stat(page
, MEM_CGROUP_STAT_WRITEBACK
);
2794 inc_zone_page_state(page
, NR_WRITEBACK
);
2796 unlock_page_memcg(page
);
2800 EXPORT_SYMBOL(__test_set_page_writeback
);
2803 * Return true if any of the pages in the mapping are marked with the
2806 int mapping_tagged(struct address_space
*mapping
, int tag
)
2808 return radix_tree_tagged(&mapping
->page_tree
, tag
);
2810 EXPORT_SYMBOL(mapping_tagged
);
2813 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2814 * @page: The page to wait on.
2816 * This function determines if the given page is related to a backing device
2817 * that requires page contents to be held stable during writeback. If so, then
2818 * it will wait for any pending writeback to complete.
2820 void wait_for_stable_page(struct page
*page
)
2822 if (bdi_cap_stable_pages_required(inode_to_bdi(page
->mapping
->host
)))
2823 wait_on_page_writeback(page
);
2825 EXPORT_SYMBOL_GPL(wait_for_stable_page
);