Merge tag 'pm-4.13-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[linux/fpc-iii.git] / arch / x86 / include / asm / bitops.h
blob854022772c5be4d49d2697bd2b66b454f49c9e6f
1 #ifndef _ASM_X86_BITOPS_H
2 #define _ASM_X86_BITOPS_H
4 /*
5 * Copyright 1992, Linus Torvalds.
7 * Note: inlines with more than a single statement should be marked
8 * __always_inline to avoid problems with older gcc's inlining heuristics.
9 */
11 #ifndef _LINUX_BITOPS_H
12 #error only <linux/bitops.h> can be included directly
13 #endif
15 #include <linux/compiler.h>
16 #include <asm/alternative.h>
17 #include <asm/rmwcc.h>
18 #include <asm/barrier.h>
20 #if BITS_PER_LONG == 32
21 # define _BITOPS_LONG_SHIFT 5
22 #elif BITS_PER_LONG == 64
23 # define _BITOPS_LONG_SHIFT 6
24 #else
25 # error "Unexpected BITS_PER_LONG"
26 #endif
28 #define BIT_64(n) (U64_C(1) << (n))
31 * These have to be done with inline assembly: that way the bit-setting
32 * is guaranteed to be atomic. All bit operations return 0 if the bit
33 * was cleared before the operation and != 0 if it was not.
35 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
38 #if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 1)
39 /* Technically wrong, but this avoids compilation errors on some gcc
40 versions. */
41 #define BITOP_ADDR(x) "=m" (*(volatile long *) (x))
42 #else
43 #define BITOP_ADDR(x) "+m" (*(volatile long *) (x))
44 #endif
46 #define ADDR BITOP_ADDR(addr)
49 * We do the locked ops that don't return the old value as
50 * a mask operation on a byte.
52 #define IS_IMMEDIATE(nr) (__builtin_constant_p(nr))
53 #define CONST_MASK_ADDR(nr, addr) BITOP_ADDR((void *)(addr) + ((nr)>>3))
54 #define CONST_MASK(nr) (1 << ((nr) & 7))
56 /**
57 * set_bit - Atomically set a bit in memory
58 * @nr: the bit to set
59 * @addr: the address to start counting from
61 * This function is atomic and may not be reordered. See __set_bit()
62 * if you do not require the atomic guarantees.
64 * Note: there are no guarantees that this function will not be reordered
65 * on non x86 architectures, so if you are writing portable code,
66 * make sure not to rely on its reordering guarantees.
68 * Note that @nr may be almost arbitrarily large; this function is not
69 * restricted to acting on a single-word quantity.
71 static __always_inline void
72 set_bit(long nr, volatile unsigned long *addr)
74 if (IS_IMMEDIATE(nr)) {
75 asm volatile(LOCK_PREFIX "orb %1,%0"
76 : CONST_MASK_ADDR(nr, addr)
77 : "iq" ((u8)CONST_MASK(nr))
78 : "memory");
79 } else {
80 asm volatile(LOCK_PREFIX "bts %1,%0"
81 : BITOP_ADDR(addr) : "Ir" (nr) : "memory");
85 /**
86 * __set_bit - Set a bit in memory
87 * @nr: the bit to set
88 * @addr: the address to start counting from
90 * Unlike set_bit(), this function is non-atomic and may be reordered.
91 * If it's called on the same region of memory simultaneously, the effect
92 * may be that only one operation succeeds.
94 static __always_inline void __set_bit(long nr, volatile unsigned long *addr)
96 asm volatile("bts %1,%0" : ADDR : "Ir" (nr) : "memory");
99 /**
100 * clear_bit - Clears a bit in memory
101 * @nr: Bit to clear
102 * @addr: Address to start counting from
104 * clear_bit() is atomic and may not be reordered. However, it does
105 * not contain a memory barrier, so if it is used for locking purposes,
106 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
107 * in order to ensure changes are visible on other processors.
109 static __always_inline void
110 clear_bit(long nr, volatile unsigned long *addr)
112 if (IS_IMMEDIATE(nr)) {
113 asm volatile(LOCK_PREFIX "andb %1,%0"
114 : CONST_MASK_ADDR(nr, addr)
115 : "iq" ((u8)~CONST_MASK(nr)));
116 } else {
117 asm volatile(LOCK_PREFIX "btr %1,%0"
118 : BITOP_ADDR(addr)
119 : "Ir" (nr));
124 * clear_bit_unlock - Clears a bit in memory
125 * @nr: Bit to clear
126 * @addr: Address to start counting from
128 * clear_bit() is atomic and implies release semantics before the memory
129 * operation. It can be used for an unlock.
131 static __always_inline void clear_bit_unlock(long nr, volatile unsigned long *addr)
133 barrier();
134 clear_bit(nr, addr);
137 static __always_inline void __clear_bit(long nr, volatile unsigned long *addr)
139 asm volatile("btr %1,%0" : ADDR : "Ir" (nr));
142 static __always_inline bool clear_bit_unlock_is_negative_byte(long nr, volatile unsigned long *addr)
144 bool negative;
145 asm volatile(LOCK_PREFIX "andb %2,%1\n\t"
146 CC_SET(s)
147 : CC_OUT(s) (negative), ADDR
148 : "ir" ((char) ~(1 << nr)) : "memory");
149 return negative;
152 // Let everybody know we have it
153 #define clear_bit_unlock_is_negative_byte clear_bit_unlock_is_negative_byte
156 * __clear_bit_unlock - Clears a bit in memory
157 * @nr: Bit to clear
158 * @addr: Address to start counting from
160 * __clear_bit() is non-atomic and implies release semantics before the memory
161 * operation. It can be used for an unlock if no other CPUs can concurrently
162 * modify other bits in the word.
164 * No memory barrier is required here, because x86 cannot reorder stores past
165 * older loads. Same principle as spin_unlock.
167 static __always_inline void __clear_bit_unlock(long nr, volatile unsigned long *addr)
169 barrier();
170 __clear_bit(nr, addr);
174 * __change_bit - Toggle a bit in memory
175 * @nr: the bit to change
176 * @addr: the address to start counting from
178 * Unlike change_bit(), this function is non-atomic and may be reordered.
179 * If it's called on the same region of memory simultaneously, the effect
180 * may be that only one operation succeeds.
182 static __always_inline void __change_bit(long nr, volatile unsigned long *addr)
184 asm volatile("btc %1,%0" : ADDR : "Ir" (nr));
188 * change_bit - Toggle a bit in memory
189 * @nr: Bit to change
190 * @addr: Address to start counting from
192 * change_bit() is atomic and may not be reordered.
193 * Note that @nr may be almost arbitrarily large; this function is not
194 * restricted to acting on a single-word quantity.
196 static __always_inline void change_bit(long nr, volatile unsigned long *addr)
198 if (IS_IMMEDIATE(nr)) {
199 asm volatile(LOCK_PREFIX "xorb %1,%0"
200 : CONST_MASK_ADDR(nr, addr)
201 : "iq" ((u8)CONST_MASK(nr)));
202 } else {
203 asm volatile(LOCK_PREFIX "btc %1,%0"
204 : BITOP_ADDR(addr)
205 : "Ir" (nr));
210 * test_and_set_bit - Set a bit and return its old value
211 * @nr: Bit to set
212 * @addr: Address to count from
214 * This operation is atomic and cannot be reordered.
215 * It also implies a memory barrier.
217 static __always_inline bool test_and_set_bit(long nr, volatile unsigned long *addr)
219 GEN_BINARY_RMWcc(LOCK_PREFIX "bts", *addr, "Ir", nr, "%0", c);
223 * test_and_set_bit_lock - Set a bit and return its old value for lock
224 * @nr: Bit to set
225 * @addr: Address to count from
227 * This is the same as test_and_set_bit on x86.
229 static __always_inline bool
230 test_and_set_bit_lock(long nr, volatile unsigned long *addr)
232 return test_and_set_bit(nr, addr);
236 * __test_and_set_bit - Set a bit and return its old value
237 * @nr: Bit to set
238 * @addr: Address to count from
240 * This operation is non-atomic and can be reordered.
241 * If two examples of this operation race, one can appear to succeed
242 * but actually fail. You must protect multiple accesses with a lock.
244 static __always_inline bool __test_and_set_bit(long nr, volatile unsigned long *addr)
246 bool oldbit;
248 asm("bts %2,%1\n\t"
249 CC_SET(c)
250 : CC_OUT(c) (oldbit), ADDR
251 : "Ir" (nr));
252 return oldbit;
256 * test_and_clear_bit - Clear a bit and return its old value
257 * @nr: Bit to clear
258 * @addr: Address to count from
260 * This operation is atomic and cannot be reordered.
261 * It also implies a memory barrier.
263 static __always_inline bool test_and_clear_bit(long nr, volatile unsigned long *addr)
265 GEN_BINARY_RMWcc(LOCK_PREFIX "btr", *addr, "Ir", nr, "%0", c);
269 * __test_and_clear_bit - Clear a bit and return its old value
270 * @nr: Bit to clear
271 * @addr: Address to count from
273 * This operation is non-atomic and can be reordered.
274 * If two examples of this operation race, one can appear to succeed
275 * but actually fail. You must protect multiple accesses with a lock.
277 * Note: the operation is performed atomically with respect to
278 * the local CPU, but not other CPUs. Portable code should not
279 * rely on this behaviour.
280 * KVM relies on this behaviour on x86 for modifying memory that is also
281 * accessed from a hypervisor on the same CPU if running in a VM: don't change
282 * this without also updating arch/x86/kernel/kvm.c
284 static __always_inline bool __test_and_clear_bit(long nr, volatile unsigned long *addr)
286 bool oldbit;
288 asm volatile("btr %2,%1\n\t"
289 CC_SET(c)
290 : CC_OUT(c) (oldbit), ADDR
291 : "Ir" (nr));
292 return oldbit;
295 /* WARNING: non atomic and it can be reordered! */
296 static __always_inline bool __test_and_change_bit(long nr, volatile unsigned long *addr)
298 bool oldbit;
300 asm volatile("btc %2,%1\n\t"
301 CC_SET(c)
302 : CC_OUT(c) (oldbit), ADDR
303 : "Ir" (nr) : "memory");
305 return oldbit;
309 * test_and_change_bit - Change a bit and return its old value
310 * @nr: Bit to change
311 * @addr: Address to count from
313 * This operation is atomic and cannot be reordered.
314 * It also implies a memory barrier.
316 static __always_inline bool test_and_change_bit(long nr, volatile unsigned long *addr)
318 GEN_BINARY_RMWcc(LOCK_PREFIX "btc", *addr, "Ir", nr, "%0", c);
321 static __always_inline bool constant_test_bit(long nr, const volatile unsigned long *addr)
323 return ((1UL << (nr & (BITS_PER_LONG-1))) &
324 (addr[nr >> _BITOPS_LONG_SHIFT])) != 0;
327 static __always_inline bool variable_test_bit(long nr, volatile const unsigned long *addr)
329 bool oldbit;
331 asm volatile("bt %2,%1\n\t"
332 CC_SET(c)
333 : CC_OUT(c) (oldbit)
334 : "m" (*(unsigned long *)addr), "Ir" (nr));
336 return oldbit;
339 #if 0 /* Fool kernel-doc since it doesn't do macros yet */
341 * test_bit - Determine whether a bit is set
342 * @nr: bit number to test
343 * @addr: Address to start counting from
345 static bool test_bit(int nr, const volatile unsigned long *addr);
346 #endif
348 #define test_bit(nr, addr) \
349 (__builtin_constant_p((nr)) \
350 ? constant_test_bit((nr), (addr)) \
351 : variable_test_bit((nr), (addr)))
354 * __ffs - find first set bit in word
355 * @word: The word to search
357 * Undefined if no bit exists, so code should check against 0 first.
359 static __always_inline unsigned long __ffs(unsigned long word)
361 asm("rep; bsf %1,%0"
362 : "=r" (word)
363 : "rm" (word));
364 return word;
368 * ffz - find first zero bit in word
369 * @word: The word to search
371 * Undefined if no zero exists, so code should check against ~0UL first.
373 static __always_inline unsigned long ffz(unsigned long word)
375 asm("rep; bsf %1,%0"
376 : "=r" (word)
377 : "r" (~word));
378 return word;
382 * __fls: find last set bit in word
383 * @word: The word to search
385 * Undefined if no set bit exists, so code should check against 0 first.
387 static __always_inline unsigned long __fls(unsigned long word)
389 asm("bsr %1,%0"
390 : "=r" (word)
391 : "rm" (word));
392 return word;
395 #undef ADDR
397 #ifdef __KERNEL__
399 * ffs - find first set bit in word
400 * @x: the word to search
402 * This is defined the same way as the libc and compiler builtin ffs
403 * routines, therefore differs in spirit from the other bitops.
405 * ffs(value) returns 0 if value is 0 or the position of the first
406 * set bit if value is nonzero. The first (least significant) bit
407 * is at position 1.
409 static __always_inline int ffs(int x)
411 int r;
413 #ifdef CONFIG_X86_64
415 * AMD64 says BSFL won't clobber the dest reg if x==0; Intel64 says the
416 * dest reg is undefined if x==0, but their CPU architect says its
417 * value is written to set it to the same as before, except that the
418 * top 32 bits will be cleared.
420 * We cannot do this on 32 bits because at the very least some
421 * 486 CPUs did not behave this way.
423 asm("bsfl %1,%0"
424 : "=r" (r)
425 : "rm" (x), "0" (-1));
426 #elif defined(CONFIG_X86_CMOV)
427 asm("bsfl %1,%0\n\t"
428 "cmovzl %2,%0"
429 : "=&r" (r) : "rm" (x), "r" (-1));
430 #else
431 asm("bsfl %1,%0\n\t"
432 "jnz 1f\n\t"
433 "movl $-1,%0\n"
434 "1:" : "=r" (r) : "rm" (x));
435 #endif
436 return r + 1;
440 * fls - find last set bit in word
441 * @x: the word to search
443 * This is defined in a similar way as the libc and compiler builtin
444 * ffs, but returns the position of the most significant set bit.
446 * fls(value) returns 0 if value is 0 or the position of the last
447 * set bit if value is nonzero. The last (most significant) bit is
448 * at position 32.
450 static __always_inline int fls(int x)
452 int r;
454 #ifdef CONFIG_X86_64
456 * AMD64 says BSRL won't clobber the dest reg if x==0; Intel64 says the
457 * dest reg is undefined if x==0, but their CPU architect says its
458 * value is written to set it to the same as before, except that the
459 * top 32 bits will be cleared.
461 * We cannot do this on 32 bits because at the very least some
462 * 486 CPUs did not behave this way.
464 asm("bsrl %1,%0"
465 : "=r" (r)
466 : "rm" (x), "0" (-1));
467 #elif defined(CONFIG_X86_CMOV)
468 asm("bsrl %1,%0\n\t"
469 "cmovzl %2,%0"
470 : "=&r" (r) : "rm" (x), "rm" (-1));
471 #else
472 asm("bsrl %1,%0\n\t"
473 "jnz 1f\n\t"
474 "movl $-1,%0\n"
475 "1:" : "=r" (r) : "rm" (x));
476 #endif
477 return r + 1;
481 * fls64 - find last set bit in a 64-bit word
482 * @x: the word to search
484 * This is defined in a similar way as the libc and compiler builtin
485 * ffsll, but returns the position of the most significant set bit.
487 * fls64(value) returns 0 if value is 0 or the position of the last
488 * set bit if value is nonzero. The last (most significant) bit is
489 * at position 64.
491 #ifdef CONFIG_X86_64
492 static __always_inline int fls64(__u64 x)
494 int bitpos = -1;
496 * AMD64 says BSRQ won't clobber the dest reg if x==0; Intel64 says the
497 * dest reg is undefined if x==0, but their CPU architect says its
498 * value is written to set it to the same as before.
500 asm("bsrq %1,%q0"
501 : "+r" (bitpos)
502 : "rm" (x));
503 return bitpos + 1;
505 #else
506 #include <asm-generic/bitops/fls64.h>
507 #endif
509 #include <asm-generic/bitops/find.h>
511 #include <asm-generic/bitops/sched.h>
513 #include <asm/arch_hweight.h>
515 #include <asm-generic/bitops/const_hweight.h>
517 #include <asm-generic/bitops/le.h>
519 #include <asm-generic/bitops/ext2-atomic-setbit.h>
521 #endif /* __KERNEL__ */
522 #endif /* _ASM_X86_BITOPS_H */