2 * Copyright (C) 1994 Linus Torvalds
4 * Pentium III FXSR, SSE support
5 * General FPU state handling cleanups
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 * x86-64 work by Andi Kleen 2002
10 #ifndef _ASM_X86_FPU_INTERNAL_H
11 #define _ASM_X86_FPU_INTERNAL_H
13 #include <linux/compat.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
18 #include <asm/fpu/api.h>
19 #include <asm/fpu/xstate.h>
20 #include <asm/cpufeature.h>
21 #include <asm/trace/fpu.h>
24 * High level FPU state handling functions:
26 extern void fpu__activate_curr(struct fpu
*fpu
);
27 extern void fpu__activate_fpstate_read(struct fpu
*fpu
);
28 extern void fpu__activate_fpstate_write(struct fpu
*fpu
);
29 extern void fpu__current_fpstate_write_begin(void);
30 extern void fpu__current_fpstate_write_end(void);
31 extern void fpu__save(struct fpu
*fpu
);
32 extern void fpu__restore(struct fpu
*fpu
);
33 extern int fpu__restore_sig(void __user
*buf
, int ia32_frame
);
34 extern void fpu__drop(struct fpu
*fpu
);
35 extern int fpu__copy(struct fpu
*dst_fpu
, struct fpu
*src_fpu
);
36 extern void fpu__clear(struct fpu
*fpu
);
37 extern int fpu__exception_code(struct fpu
*fpu
, int trap_nr
);
38 extern int dump_fpu(struct pt_regs
*ptregs
, struct user_i387_struct
*fpstate
);
41 * Boot time FPU initialization functions:
43 extern void fpu__init_cpu(void);
44 extern void fpu__init_system_xstate(void);
45 extern void fpu__init_cpu_xstate(void);
46 extern void fpu__init_system(struct cpuinfo_x86
*c
);
47 extern void fpu__init_check_bugs(void);
48 extern void fpu__resume_cpu(void);
49 extern u64
fpu__get_supported_xfeatures_mask(void);
54 #ifdef CONFIG_X86_DEBUG_FPU
55 # define WARN_ON_FPU(x) WARN_ON_ONCE(x)
57 # define WARN_ON_FPU(x) ({ (void)(x); 0; })
61 * FPU related CPU feature flag helper routines:
63 static __always_inline __pure
bool use_xsaveopt(void)
65 return static_cpu_has(X86_FEATURE_XSAVEOPT
);
68 static __always_inline __pure
bool use_xsave(void)
70 return static_cpu_has(X86_FEATURE_XSAVE
);
73 static __always_inline __pure
bool use_fxsr(void)
75 return static_cpu_has(X86_FEATURE_FXSR
);
79 * fpstate handling functions:
82 extern union fpregs_state init_fpstate
;
84 extern void fpstate_init(union fpregs_state
*state
);
85 #ifdef CONFIG_MATH_EMULATION
86 extern void fpstate_init_soft(struct swregs_state
*soft
);
88 static inline void fpstate_init_soft(struct swregs_state
*soft
) {}
91 static inline void fpstate_init_xstate(struct xregs_state
*xsave
)
94 * XRSTORS requires these bits set in xcomp_bv, or it will
97 xsave
->header
.xcomp_bv
= XCOMP_BV_COMPACTED_FORMAT
| xfeatures_mask
;
100 static inline void fpstate_init_fxstate(struct fxregs_state
*fx
)
103 fx
->mxcsr
= MXCSR_DEFAULT
;
105 extern void fpstate_sanitize_xstate(struct fpu
*fpu
);
107 #define user_insn(insn, output, input...) \
110 asm volatile(ASM_STAC "\n" \
112 "2: " ASM_CLAC "\n" \
113 ".section .fixup,\"ax\"\n" \
114 "3: movl $-1,%[err]\n" \
117 _ASM_EXTABLE(1b, 3b) \
118 : [err] "=r" (err), output \
123 #define check_insn(insn, output, input...) \
126 asm volatile("1:" #insn "\n\t" \
128 ".section .fixup,\"ax\"\n" \
129 "3: movl $-1,%[err]\n" \
132 _ASM_EXTABLE(1b, 3b) \
133 : [err] "=r" (err), output \
138 static inline int copy_fregs_to_user(struct fregs_state __user
*fx
)
140 return user_insn(fnsave
%[fx
]; fwait
, [fx
] "=m" (*fx
), "m" (*fx
));
143 static inline int copy_fxregs_to_user(struct fxregs_state __user
*fx
)
145 if (IS_ENABLED(CONFIG_X86_32
))
146 return user_insn(fxsave
%[fx
], [fx
] "=m" (*fx
), "m" (*fx
));
147 else if (IS_ENABLED(CONFIG_AS_FXSAVEQ
))
148 return user_insn(fxsaveq
%[fx
], [fx
] "=m" (*fx
), "m" (*fx
));
150 /* See comment in copy_fxregs_to_kernel() below. */
151 return user_insn(rex64
/fxsave (%[fx
]), "=m" (*fx
), [fx
] "R" (fx
));
154 static inline void copy_kernel_to_fxregs(struct fxregs_state
*fx
)
158 if (IS_ENABLED(CONFIG_X86_32
)) {
159 err
= check_insn(fxrstor
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
161 if (IS_ENABLED(CONFIG_AS_FXSAVEQ
)) {
162 err
= check_insn(fxrstorq
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
164 /* See comment in copy_fxregs_to_kernel() below. */
165 err
= check_insn(rex64
/fxrstor (%[fx
]), "=m" (*fx
), [fx
] "R" (fx
), "m" (*fx
));
168 /* Copying from a kernel buffer to FPU registers should never fail: */
172 static inline int copy_user_to_fxregs(struct fxregs_state __user
*fx
)
174 if (IS_ENABLED(CONFIG_X86_32
))
175 return user_insn(fxrstor
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
176 else if (IS_ENABLED(CONFIG_AS_FXSAVEQ
))
177 return user_insn(fxrstorq
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
179 /* See comment in copy_fxregs_to_kernel() below. */
180 return user_insn(rex64
/fxrstor (%[fx
]), "=m" (*fx
), [fx
] "R" (fx
),
184 static inline void copy_kernel_to_fregs(struct fregs_state
*fx
)
186 int err
= check_insn(frstor
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
191 static inline int copy_user_to_fregs(struct fregs_state __user
*fx
)
193 return user_insn(frstor
%[fx
], "=m" (*fx
), [fx
] "m" (*fx
));
196 static inline void copy_fxregs_to_kernel(struct fpu
*fpu
)
198 if (IS_ENABLED(CONFIG_X86_32
))
199 asm volatile( "fxsave %[fx]" : [fx
] "=m" (fpu
->state
.fxsave
));
200 else if (IS_ENABLED(CONFIG_AS_FXSAVEQ
))
201 asm volatile("fxsaveq %[fx]" : [fx
] "=m" (fpu
->state
.fxsave
));
203 /* Using "rex64; fxsave %0" is broken because, if the memory
204 * operand uses any extended registers for addressing, a second
205 * REX prefix will be generated (to the assembler, rex64
206 * followed by semicolon is a separate instruction), and hence
207 * the 64-bitness is lost.
209 * Using "fxsaveq %0" would be the ideal choice, but is only
210 * supported starting with gas 2.16.
212 * Using, as a workaround, the properly prefixed form below
213 * isn't accepted by any binutils version so far released,
214 * complaining that the same type of prefix is used twice if
215 * an extended register is needed for addressing (fix submitted
216 * to mainline 2005-11-21).
218 * asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
220 * This, however, we can work around by forcing the compiler to
221 * select an addressing mode that doesn't require extended
224 asm volatile( "rex64/fxsave (%[fx])"
225 : "=m" (fpu
->state
.fxsave
)
226 : [fx
] "R" (&fpu
->state
.fxsave
));
230 /* These macros all use (%edi)/(%rdi) as the single memory argument. */
231 #define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27"
232 #define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37"
233 #define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f"
234 #define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f"
235 #define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f"
237 #define XSTATE_OP(op, st, lmask, hmask, err) \
238 asm volatile("1:" op "\n\t" \
239 "xor %[err], %[err]\n" \
241 ".pushsection .fixup,\"ax\"\n\t" \
242 "3: movl $-2,%[err]\n\t" \
245 _ASM_EXTABLE(1b, 3b) \
247 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
251 * If XSAVES is enabled, it replaces XSAVEOPT because it supports a compact
252 * format and supervisor states in addition to modified optimization in
255 * Otherwise, if XSAVEOPT is enabled, XSAVEOPT replaces XSAVE because XSAVEOPT
256 * supports modified optimization which is not supported by XSAVE.
258 * We use XSAVE as a fallback.
260 * The 661 label is defined in the ALTERNATIVE* macros as the address of the
261 * original instruction which gets replaced. We need to use it here as the
262 * address of the instruction where we might get an exception at.
264 #define XSTATE_XSAVE(st, lmask, hmask, err) \
265 asm volatile(ALTERNATIVE_2(XSAVE, \
266 XSAVEOPT, X86_FEATURE_XSAVEOPT, \
267 XSAVES, X86_FEATURE_XSAVES) \
269 "xor %[err], %[err]\n" \
271 ".pushsection .fixup,\"ax\"\n" \
272 "4: movl $-2, %[err]\n" \
275 _ASM_EXTABLE(661b, 4b) \
277 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
281 * Use XRSTORS to restore context if it is enabled. XRSTORS supports compact
284 #define XSTATE_XRESTORE(st, lmask, hmask, err) \
285 asm volatile(ALTERNATIVE(XRSTOR, \
286 XRSTORS, X86_FEATURE_XSAVES) \
288 "xor %[err], %[err]\n" \
290 ".pushsection .fixup,\"ax\"\n" \
291 "4: movl $-2, %[err]\n" \
294 _ASM_EXTABLE(661b, 4b) \
296 : "D" (st), "m" (*st), "a" (lmask), "d" (hmask) \
300 * This function is called only during boot time when x86 caps are not set
301 * up and alternative can not be used yet.
303 static inline void copy_xregs_to_kernel_booting(struct xregs_state
*xstate
)
307 u32 hmask
= mask
>> 32;
310 WARN_ON(system_state
!= SYSTEM_BOOTING
);
312 if (static_cpu_has(X86_FEATURE_XSAVES
))
313 XSTATE_OP(XSAVES
, xstate
, lmask
, hmask
, err
);
315 XSTATE_OP(XSAVE
, xstate
, lmask
, hmask
, err
);
317 /* We should never fault when copying to a kernel buffer: */
322 * This function is called only during boot time when x86 caps are not set
323 * up and alternative can not be used yet.
325 static inline void copy_kernel_to_xregs_booting(struct xregs_state
*xstate
)
329 u32 hmask
= mask
>> 32;
332 WARN_ON(system_state
!= SYSTEM_BOOTING
);
334 if (static_cpu_has(X86_FEATURE_XSAVES
))
335 XSTATE_OP(XRSTORS
, xstate
, lmask
, hmask
, err
);
337 XSTATE_OP(XRSTOR
, xstate
, lmask
, hmask
, err
);
339 /* We should never fault when copying from a kernel buffer: */
344 * Save processor xstate to xsave area.
346 static inline void copy_xregs_to_kernel(struct xregs_state
*xstate
)
350 u32 hmask
= mask
>> 32;
353 WARN_ON(!alternatives_patched
);
355 XSTATE_XSAVE(xstate
, lmask
, hmask
, err
);
357 /* We should never fault when copying to a kernel buffer: */
362 * Restore processor xstate from xsave area.
364 static inline void copy_kernel_to_xregs(struct xregs_state
*xstate
, u64 mask
)
367 u32 hmask
= mask
>> 32;
370 XSTATE_XRESTORE(xstate
, lmask
, hmask
, err
);
372 /* We should never fault when copying from a kernel buffer: */
377 * Save xstate to user space xsave area.
379 * We don't use modified optimization because xrstor/xrstors might track
380 * a different application.
382 * We don't use compacted format xsave area for
383 * backward compatibility for old applications which don't understand
384 * compacted format of xsave area.
386 static inline int copy_xregs_to_user(struct xregs_state __user
*buf
)
391 * Clear the xsave header first, so that reserved fields are
392 * initialized to zero.
394 err
= __clear_user(&buf
->header
, sizeof(buf
->header
));
399 XSTATE_OP(XSAVE
, buf
, -1, -1, err
);
406 * Restore xstate from user space xsave area.
408 static inline int copy_user_to_xregs(struct xregs_state __user
*buf
, u64 mask
)
410 struct xregs_state
*xstate
= ((__force
struct xregs_state
*)buf
);
412 u32 hmask
= mask
>> 32;
416 XSTATE_OP(XRSTOR
, xstate
, lmask
, hmask
, err
);
423 * These must be called with preempt disabled. Returns
424 * 'true' if the FPU state is still intact and we can
425 * keep registers active.
427 * The legacy FNSAVE instruction cleared all FPU state
428 * unconditionally, so registers are essentially destroyed.
429 * Modern FPU state can be kept in registers, if there are
430 * no pending FP exceptions.
432 static inline int copy_fpregs_to_fpstate(struct fpu
*fpu
)
434 if (likely(use_xsave())) {
435 copy_xregs_to_kernel(&fpu
->state
.xsave
);
439 if (likely(use_fxsr())) {
440 copy_fxregs_to_kernel(fpu
);
445 * Legacy FPU register saving, FNSAVE always clears FPU registers,
446 * so we have to mark them inactive:
448 asm volatile("fnsave %[fp]; fwait" : [fp
] "=m" (fpu
->state
.fsave
));
453 static inline void __copy_kernel_to_fpregs(union fpregs_state
*fpstate
)
456 copy_kernel_to_xregs(&fpstate
->xsave
, -1);
459 copy_kernel_to_fxregs(&fpstate
->fxsave
);
461 copy_kernel_to_fregs(&fpstate
->fsave
);
465 static inline void copy_kernel_to_fpregs(union fpregs_state
*fpstate
)
468 * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
469 * pending. Clear the x87 state here by setting it to fixed values.
470 * "m" is a random variable that should be in L1.
472 if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK
))) {
476 "fildl %P[addr]" /* set F?P to defined value */
477 : : [addr
] "m" (fpstate
));
480 __copy_kernel_to_fpregs(fpstate
);
483 extern int copy_fpstate_to_sigframe(void __user
*buf
, void __user
*fp
, int size
);
486 * FPU context switch related helper methods:
489 DECLARE_PER_CPU(struct fpu
*, fpu_fpregs_owner_ctx
);
492 * The in-register FPU state for an FPU context on a CPU is assumed to be
493 * valid if the fpu->last_cpu matches the CPU, and the fpu_fpregs_owner_ctx
496 * If the FPU register state is valid, the kernel can skip restoring the
497 * FPU state from memory.
499 * Any code that clobbers the FPU registers or updates the in-memory
500 * FPU state for a task MUST let the rest of the kernel know that the
501 * FPU registers are no longer valid for this task.
503 * Either one of these invalidation functions is enough. Invalidate
504 * a resource you control: CPU if using the CPU for something else
505 * (with preemption disabled), FPU for the current task, or a task that
506 * is prevented from running by the current task.
508 static inline void __cpu_invalidate_fpregs_state(void)
510 __this_cpu_write(fpu_fpregs_owner_ctx
, NULL
);
513 static inline void __fpu_invalidate_fpregs_state(struct fpu
*fpu
)
518 static inline int fpregs_state_valid(struct fpu
*fpu
, unsigned int cpu
)
520 return fpu
== this_cpu_read_stable(fpu_fpregs_owner_ctx
) && cpu
== fpu
->last_cpu
;
524 * These generally need preemption protection to work,
525 * do try to avoid using these on their own:
527 static inline void fpregs_deactivate(struct fpu
*fpu
)
529 WARN_ON_FPU(!fpu
->fpregs_active
);
531 fpu
->fpregs_active
= 0;
532 this_cpu_write(fpu_fpregs_owner_ctx
, NULL
);
533 trace_x86_fpu_regs_deactivated(fpu
);
536 static inline void fpregs_activate(struct fpu
*fpu
)
538 WARN_ON_FPU(fpu
->fpregs_active
);
540 fpu
->fpregs_active
= 1;
541 this_cpu_write(fpu_fpregs_owner_ctx
, fpu
);
542 trace_x86_fpu_regs_activated(fpu
);
546 * The question "does this thread have fpu access?"
547 * is slightly racy, since preemption could come in
548 * and revoke it immediately after the test.
550 * However, even in that very unlikely scenario,
551 * we can just assume we have FPU access - typically
552 * to save the FP state - we'll just take a #NM
553 * fault and get the FPU access back.
555 static inline int fpregs_active(void)
557 return current
->thread
.fpu
.fpregs_active
;
561 * FPU state switching for scheduling.
563 * This is a two-stage process:
565 * - switch_fpu_prepare() saves the old state.
566 * This is done within the context of the old process.
568 * - switch_fpu_finish() restores the new state as
572 switch_fpu_prepare(struct fpu
*old_fpu
, int cpu
)
574 if (old_fpu
->fpregs_active
) {
575 if (!copy_fpregs_to_fpstate(old_fpu
))
576 old_fpu
->last_cpu
= -1;
578 old_fpu
->last_cpu
= cpu
;
580 /* But leave fpu_fpregs_owner_ctx! */
581 old_fpu
->fpregs_active
= 0;
582 trace_x86_fpu_regs_deactivated(old_fpu
);
584 old_fpu
->last_cpu
= -1;
588 * Misc helper functions:
592 * Set up the userspace FPU context for the new task, if the task
595 static inline void switch_fpu_finish(struct fpu
*new_fpu
, int cpu
)
597 bool preload
= static_cpu_has(X86_FEATURE_FPU
) &&
598 new_fpu
->fpstate_active
;
601 if (!fpregs_state_valid(new_fpu
, cpu
))
602 copy_kernel_to_fpregs(&new_fpu
->state
);
603 fpregs_activate(new_fpu
);
608 * Needs to be preemption-safe.
610 * NOTE! user_fpu_begin() must be used only immediately before restoring
611 * the save state. It does not do any saving/restoring on its own. In
612 * lazy FPU mode, it is just an optimization to avoid a #NM exception,
613 * the task can lose the FPU right after preempt_enable().
615 static inline void user_fpu_begin(void)
617 struct fpu
*fpu
= ¤t
->thread
.fpu
;
620 if (!fpregs_active())
621 fpregs_activate(fpu
);
626 * MXCSR and XCR definitions:
629 extern unsigned int mxcsr_feature_mask
;
631 #define XCR_XFEATURE_ENABLED_MASK 0x00000000
633 static inline u64
xgetbv(u32 index
)
637 asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
638 : "=a" (eax
), "=d" (edx
)
640 return eax
+ ((u64
)edx
<< 32);
643 static inline void xsetbv(u32 index
, u64 value
)
646 u32 edx
= value
>> 32;
648 asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
649 : : "a" (eax
), "d" (edx
), "c" (index
));
652 #endif /* _ASM_X86_FPU_INTERNAL_H */