1 #ifndef _ASM_X86_PGTABLE_3LEVEL_H
2 #define _ASM_X86_PGTABLE_3LEVEL_H
5 * Intel Physical Address Extension (PAE) Mode - three-level page
6 * tables on PPro+ CPUs.
8 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
11 #define pte_ERROR(e) \
12 pr_err("%s:%d: bad pte %p(%08lx%08lx)\n", \
13 __FILE__, __LINE__, &(e), (e).pte_high, (e).pte_low)
14 #define pmd_ERROR(e) \
15 pr_err("%s:%d: bad pmd %p(%016Lx)\n", \
16 __FILE__, __LINE__, &(e), pmd_val(e))
17 #define pgd_ERROR(e) \
18 pr_err("%s:%d: bad pgd %p(%016Lx)\n", \
19 __FILE__, __LINE__, &(e), pgd_val(e))
21 /* Rules for using set_pte: the pte being assigned *must* be
22 * either not present or in a state where the hardware will
23 * not attempt to update the pte. In places where this is
24 * not possible, use pte_get_and_clear to obtain the old pte
25 * value and then use set_pte to update it. -ben
27 static inline void native_set_pte(pte_t
*ptep
, pte_t pte
)
29 ptep
->pte_high
= pte
.pte_high
;
31 ptep
->pte_low
= pte
.pte_low
;
34 #define pmd_read_atomic pmd_read_atomic
36 * pte_offset_map_lock on 32bit PAE kernels was reading the pmd_t with
37 * a "*pmdp" dereference done by gcc. Problem is, in certain places
38 * where pte_offset_map_lock is called, concurrent page faults are
39 * allowed, if the mmap_sem is hold for reading. An example is mincore
40 * vs page faults vs MADV_DONTNEED. On the page fault side
41 * pmd_populate rightfully does a set_64bit, but if we're reading the
42 * pmd_t with a "*pmdp" on the mincore side, a SMP race can happen
43 * because gcc will not read the 64bit of the pmd atomically. To fix
44 * this all places running pmd_offset_map_lock() while holding the
45 * mmap_sem in read mode, shall read the pmdp pointer using this
46 * function to know if the pmd is null nor not, and in turn to know if
47 * they can run pmd_offset_map_lock or pmd_trans_huge or other pmd
50 * Without THP if the mmap_sem is hold for reading, the pmd can only
51 * transition from null to not null while pmd_read_atomic runs. So
52 * we can always return atomic pmd values with this function.
54 * With THP if the mmap_sem is hold for reading, the pmd can become
55 * trans_huge or none or point to a pte (and in turn become "stable")
56 * at any time under pmd_read_atomic. We could read it really
57 * atomically here with a atomic64_read for the THP enabled case (and
58 * it would be a whole lot simpler), but to avoid using cmpxchg8b we
59 * only return an atomic pmdval if the low part of the pmdval is later
60 * found stable (i.e. pointing to a pte). And we're returning a none
61 * pmdval if the low part of the pmd is none. In some cases the high
62 * and low part of the pmdval returned may not be consistent if THP is
63 * enabled (the low part may point to previously mapped hugepage,
64 * while the high part may point to a more recently mapped hugepage),
65 * but pmd_none_or_trans_huge_or_clear_bad() only needs the low part
66 * of the pmd to be read atomically to decide if the pmd is unstable
67 * or not, with the only exception of when the low part of the pmd is
68 * zero in which case we return a none pmd.
70 static inline pmd_t
pmd_read_atomic(pmd_t
*pmdp
)
73 u32
*tmp
= (u32
*)pmdp
;
75 ret
= (pmdval_t
) (*tmp
);
78 * If the low part is null, we must not read the high part
79 * or we can end up with a partial pmd.
82 ret
|= ((pmdval_t
)*(tmp
+ 1)) << 32;
85 return (pmd_t
) { ret
};
88 static inline void native_set_pte_atomic(pte_t
*ptep
, pte_t pte
)
90 set_64bit((unsigned long long *)(ptep
), native_pte_val(pte
));
93 static inline void native_set_pmd(pmd_t
*pmdp
, pmd_t pmd
)
95 set_64bit((unsigned long long *)(pmdp
), native_pmd_val(pmd
));
98 static inline void native_set_pud(pud_t
*pudp
, pud_t pud
)
100 set_64bit((unsigned long long *)(pudp
), native_pud_val(pud
));
104 * For PTEs and PDEs, we must clear the P-bit first when clearing a page table
105 * entry, so clear the bottom half first and enforce ordering with a compiler
108 static inline void native_pte_clear(struct mm_struct
*mm
, unsigned long addr
,
116 static inline void native_pmd_clear(pmd_t
*pmd
)
118 u32
*tmp
= (u32
*)pmd
;
124 static inline void native_pud_clear(pud_t
*pudp
)
128 static inline void pud_clear(pud_t
*pudp
)
130 set_pud(pudp
, __pud(0));
133 * According to Intel App note "TLBs, Paging-Structure Caches,
134 * and Their Invalidation", April 2007, document 317080-001,
135 * section 8.1: in PAE mode we explicitly have to flush the
136 * TLB via cr3 if the top-level pgd is changed...
138 * Currently all places where pud_clear() is called either have
139 * flush_tlb_mm() followed or don't need TLB flush (x86_64 code or
140 * pud_clear_bad()), so we don't need TLB flush here.
145 static inline pte_t
native_ptep_get_and_clear(pte_t
*ptep
)
149 /* xchg acts as a barrier before the setting of the high bits */
150 res
.pte_low
= xchg(&ptep
->pte_low
, 0);
151 res
.pte_high
= ptep
->pte_high
;
157 #define native_ptep_get_and_clear(xp) native_local_ptep_get_and_clear(xp)
168 static inline pmd_t
native_pmdp_get_and_clear(pmd_t
*pmdp
)
170 union split_pmd res
, *orig
= (union split_pmd
*)pmdp
;
172 /* xchg acts as a barrier before setting of the high bits */
173 res
.pmd_low
= xchg(&orig
->pmd_low
, 0);
174 res
.pmd_high
= orig
->pmd_high
;
180 #define native_pmdp_get_and_clear(xp) native_local_pmdp_get_and_clear(xp)
192 static inline pud_t
native_pudp_get_and_clear(pud_t
*pudp
)
194 union split_pud res
, *orig
= (union split_pud
*)pudp
;
196 /* xchg acts as a barrier before setting of the high bits */
197 res
.pud_low
= xchg(&orig
->pud_low
, 0);
198 res
.pud_high
= orig
->pud_high
;
204 #define native_pudp_get_and_clear(xp) native_local_pudp_get_and_clear(xp)
207 /* Encode and de-code a swap entry */
208 #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > 5)
209 #define __swp_type(x) (((x).val) & 0x1f)
210 #define __swp_offset(x) ((x).val >> 5)
211 #define __swp_entry(type, offset) ((swp_entry_t){(type) | (offset) << 5})
212 #define __pte_to_swp_entry(pte) ((swp_entry_t){ (pte).pte_high })
213 #define __swp_entry_to_pte(x) ((pte_t){ { .pte_high = (x).val } })
215 #define gup_get_pte gup_get_pte
217 * WARNING: only to be used in the get_user_pages_fast() implementation.
219 * With get_user_pages_fast(), we walk down the pagetables without taking
220 * any locks. For this we would like to load the pointers atomically,
221 * but that is not possible (without expensive cmpxchg8b) on PAE. What
222 * we do have is the guarantee that a PTE will only either go from not
223 * present to present, or present to not present or both -- it will not
224 * switch to a completely different present page without a TLB flush in
225 * between; something that we are blocking by holding interrupts off.
227 * Setting ptes from not present to present goes:
229 * ptep->pte_high = h;
233 * And present to not present goes:
237 * ptep->pte_high = 0;
239 * We must ensure here that the load of pte_low sees 'l' iff pte_high
240 * sees 'h'. We load pte_high *after* loading pte_low, which ensures we
241 * don't see an older value of pte_high. *Then* we recheck pte_low,
242 * which ensures that we haven't picked up a changed pte high. We might
243 * have gotten rubbish values from pte_low and pte_high, but we are
244 * guaranteed that pte_low will not have the present bit set *unless*
245 * it is 'l'. Because get_user_pages_fast() only operates on present ptes
248 static inline pte_t
gup_get_pte(pte_t
*ptep
)
253 pte
.pte_low
= ptep
->pte_low
;
255 pte
.pte_high
= ptep
->pte_high
;
257 } while (unlikely(pte
.pte_low
!= ptep
->pte_low
));
262 #endif /* _ASM_X86_PGTABLE_3LEVEL_H */