2 * x86_64 specific EFI support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
5 * Copyright (C) 2005-2008 Intel Co.
6 * Fenghua Yu <fenghua.yu@intel.com>
7 * Bibo Mao <bibo.mao@intel.com>
8 * Chandramouli Narayanan <mouli@linux.intel.com>
9 * Huang Ying <ying.huang@intel.com>
11 * Code to convert EFI to E820 map has been implemented in elilo bootloader
12 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
13 * is setup appropriately for EFI runtime code.
18 #define pr_fmt(fmt) "efi: " fmt
20 #include <linux/kernel.h>
21 #include <linux/init.h>
23 #include <linux/types.h>
24 #include <linux/spinlock.h>
25 #include <linux/bootmem.h>
26 #include <linux/ioport.h>
27 #include <linux/init.h>
28 #include <linux/mc146818rtc.h>
29 #include <linux/efi.h>
30 #include <linux/uaccess.h>
32 #include <linux/reboot.h>
33 #include <linux/slab.h>
34 #include <linux/ucs2_string.h>
36 #include <asm/setup.h>
38 #include <asm/e820/api.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <asm/proto.h>
43 #include <asm/cacheflush.h>
44 #include <asm/fixmap.h>
45 #include <asm/realmode.h>
47 #include <asm/pgalloc.h>
50 * We allocate runtime services regions top-down, starting from -4G, i.e.
51 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
53 static u64 efi_va
= EFI_VA_START
;
55 struct efi_scratch efi_scratch
;
57 static void __init
early_code_mapping_set_exec(int executable
)
59 efi_memory_desc_t
*md
;
61 if (!(__supported_pte_mask
& _PAGE_NX
))
64 /* Make EFI service code area executable */
65 for_each_efi_memory_desc(md
) {
66 if (md
->type
== EFI_RUNTIME_SERVICES_CODE
||
67 md
->type
== EFI_BOOT_SERVICES_CODE
)
68 efi_set_executable(md
, executable
);
72 pgd_t
* __init
efi_call_phys_prolog(void)
74 unsigned long vaddr
, addr_pgd
, addr_p4d
, addr_pud
;
75 pgd_t
*save_pgd
, *pgd_k
, *pgd_efi
;
76 p4d_t
*p4d
, *p4d_k
, *p4d_efi
;
82 if (!efi_enabled(EFI_OLD_MEMMAP
)) {
83 save_pgd
= (pgd_t
*)__read_cr3();
84 write_cr3((unsigned long)efi_scratch
.efi_pgt
);
88 early_code_mapping_set_exec(1);
90 n_pgds
= DIV_ROUND_UP((max_pfn
<< PAGE_SHIFT
), PGDIR_SIZE
);
91 save_pgd
= kmalloc_array(n_pgds
, sizeof(*save_pgd
), GFP_KERNEL
);
94 * Build 1:1 identity mapping for efi=old_map usage. Note that
95 * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
96 * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
97 * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
98 * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
99 * This means here we can only reuse the PMD tables of the direct mapping.
101 for (pgd
= 0; pgd
< n_pgds
; pgd
++) {
102 addr_pgd
= (unsigned long)(pgd
* PGDIR_SIZE
);
103 vaddr
= (unsigned long)__va(pgd
* PGDIR_SIZE
);
104 pgd_efi
= pgd_offset_k(addr_pgd
);
105 save_pgd
[pgd
] = *pgd_efi
;
107 p4d
= p4d_alloc(&init_mm
, pgd_efi
, addr_pgd
);
109 pr_err("Failed to allocate p4d table!\n");
113 for (i
= 0; i
< PTRS_PER_P4D
; i
++) {
114 addr_p4d
= addr_pgd
+ i
* P4D_SIZE
;
115 p4d_efi
= p4d
+ p4d_index(addr_p4d
);
117 pud
= pud_alloc(&init_mm
, p4d_efi
, addr_p4d
);
119 pr_err("Failed to allocate pud table!\n");
123 for (j
= 0; j
< PTRS_PER_PUD
; j
++) {
124 addr_pud
= addr_p4d
+ j
* PUD_SIZE
;
126 if (addr_pud
> (max_pfn
<< PAGE_SHIFT
))
129 vaddr
= (unsigned long)__va(addr_pud
);
131 pgd_k
= pgd_offset_k(vaddr
);
132 p4d_k
= p4d_offset(pgd_k
, vaddr
);
133 pud
[j
] = *pud_offset(p4d_k
, vaddr
);
143 void __init
efi_call_phys_epilog(pgd_t
*save_pgd
)
146 * After the lock is released, the original page table is restored.
154 if (!efi_enabled(EFI_OLD_MEMMAP
)) {
155 write_cr3((unsigned long)save_pgd
);
160 nr_pgds
= DIV_ROUND_UP((max_pfn
<< PAGE_SHIFT
) , PGDIR_SIZE
);
162 for (pgd_idx
= 0; pgd_idx
< nr_pgds
; pgd_idx
++) {
163 pgd
= pgd_offset_k(pgd_idx
* PGDIR_SIZE
);
164 set_pgd(pgd_offset_k(pgd_idx
* PGDIR_SIZE
), save_pgd
[pgd_idx
]);
166 if (!(pgd_val(*pgd
) & _PAGE_PRESENT
))
169 for (i
= 0; i
< PTRS_PER_P4D
; i
++) {
170 p4d
= p4d_offset(pgd
,
171 pgd_idx
* PGDIR_SIZE
+ i
* P4D_SIZE
);
173 if (!(p4d_val(*p4d
) & _PAGE_PRESENT
))
176 pud
= (pud_t
*)p4d_page_vaddr(*p4d
);
177 pud_free(&init_mm
, pud
);
180 p4d
= (p4d_t
*)pgd_page_vaddr(*pgd
);
181 p4d_free(&init_mm
, p4d
);
187 early_code_mapping_set_exec(0);
190 static pgd_t
*efi_pgd
;
193 * We need our own copy of the higher levels of the page tables
194 * because we want to avoid inserting EFI region mappings (EFI_VA_END
195 * to EFI_VA_START) into the standard kernel page tables. Everything
196 * else can be shared, see efi_sync_low_kernel_mappings().
198 int __init
efi_alloc_page_tables(void)
205 if (efi_enabled(EFI_OLD_MEMMAP
))
208 gfp_mask
= GFP_KERNEL
| __GFP_NOTRACK
| __GFP_ZERO
;
209 efi_pgd
= (pgd_t
*)__get_free_page(gfp_mask
);
213 pgd
= efi_pgd
+ pgd_index(EFI_VA_END
);
214 p4d
= p4d_alloc(&init_mm
, pgd
, EFI_VA_END
);
216 free_page((unsigned long)efi_pgd
);
220 pud
= pud_alloc(&init_mm
, p4d
, EFI_VA_END
);
222 if (CONFIG_PGTABLE_LEVELS
> 4)
223 free_page((unsigned long) pgd_page_vaddr(*pgd
));
224 free_page((unsigned long)efi_pgd
);
232 * Add low kernel mappings for passing arguments to EFI functions.
234 void efi_sync_low_kernel_mappings(void)
236 unsigned num_entries
;
237 pgd_t
*pgd_k
, *pgd_efi
;
238 p4d_t
*p4d_k
, *p4d_efi
;
239 pud_t
*pud_k
, *pud_efi
;
241 if (efi_enabled(EFI_OLD_MEMMAP
))
245 * We can share all PGD entries apart from the one entry that
246 * covers the EFI runtime mapping space.
248 * Make sure the EFI runtime region mappings are guaranteed to
249 * only span a single PGD entry and that the entry also maps
250 * other important kernel regions.
252 BUILD_BUG_ON(pgd_index(EFI_VA_END
) != pgd_index(MODULES_END
));
253 BUILD_BUG_ON((EFI_VA_START
& PGDIR_MASK
) !=
254 (EFI_VA_END
& PGDIR_MASK
));
256 pgd_efi
= efi_pgd
+ pgd_index(PAGE_OFFSET
);
257 pgd_k
= pgd_offset_k(PAGE_OFFSET
);
259 num_entries
= pgd_index(EFI_VA_END
) - pgd_index(PAGE_OFFSET
);
260 memcpy(pgd_efi
, pgd_k
, sizeof(pgd_t
) * num_entries
);
263 * As with PGDs, we share all P4D entries apart from the one entry
264 * that covers the EFI runtime mapping space.
266 BUILD_BUG_ON(p4d_index(EFI_VA_END
) != p4d_index(MODULES_END
));
267 BUILD_BUG_ON((EFI_VA_START
& P4D_MASK
) != (EFI_VA_END
& P4D_MASK
));
269 pgd_efi
= efi_pgd
+ pgd_index(EFI_VA_END
);
270 pgd_k
= pgd_offset_k(EFI_VA_END
);
271 p4d_efi
= p4d_offset(pgd_efi
, 0);
272 p4d_k
= p4d_offset(pgd_k
, 0);
274 num_entries
= p4d_index(EFI_VA_END
);
275 memcpy(p4d_efi
, p4d_k
, sizeof(p4d_t
) * num_entries
);
278 * We share all the PUD entries apart from those that map the
279 * EFI regions. Copy around them.
281 BUILD_BUG_ON((EFI_VA_START
& ~PUD_MASK
) != 0);
282 BUILD_BUG_ON((EFI_VA_END
& ~PUD_MASK
) != 0);
284 p4d_efi
= p4d_offset(pgd_efi
, EFI_VA_END
);
285 p4d_k
= p4d_offset(pgd_k
, EFI_VA_END
);
286 pud_efi
= pud_offset(p4d_efi
, 0);
287 pud_k
= pud_offset(p4d_k
, 0);
289 num_entries
= pud_index(EFI_VA_END
);
290 memcpy(pud_efi
, pud_k
, sizeof(pud_t
) * num_entries
);
292 pud_efi
= pud_offset(p4d_efi
, EFI_VA_START
);
293 pud_k
= pud_offset(p4d_k
, EFI_VA_START
);
295 num_entries
= PTRS_PER_PUD
- pud_index(EFI_VA_START
);
296 memcpy(pud_efi
, pud_k
, sizeof(pud_t
) * num_entries
);
300 * Wrapper for slow_virt_to_phys() that handles NULL addresses.
302 static inline phys_addr_t
303 virt_to_phys_or_null_size(void *va
, unsigned long size
)
310 if (virt_addr_valid(va
))
311 return virt_to_phys(va
);
314 * A fully aligned variable on the stack is guaranteed not to
315 * cross a page bounary. Try to catch strings on the stack by
316 * checking that 'size' is a power of two.
318 bad_size
= size
> PAGE_SIZE
|| !is_power_of_2(size
);
320 WARN_ON(!IS_ALIGNED((unsigned long)va
, size
) || bad_size
);
322 return slow_virt_to_phys(va
);
325 #define virt_to_phys_or_null(addr) \
326 virt_to_phys_or_null_size((addr), sizeof(*(addr)))
328 int __init
efi_setup_page_tables(unsigned long pa_memmap
, unsigned num_pages
)
330 unsigned long pfn
, text
;
335 if (efi_enabled(EFI_OLD_MEMMAP
))
338 efi_scratch
.efi_pgt
= (pgd_t
*)__pa(efi_pgd
);
342 * It can happen that the physical address of new_memmap lands in memory
343 * which is not mapped in the EFI page table. Therefore we need to go
344 * and ident-map those pages containing the map before calling
345 * phys_efi_set_virtual_address_map().
347 pfn
= pa_memmap
>> PAGE_SHIFT
;
348 if (kernel_map_pages_in_pgd(pgd
, pfn
, pa_memmap
, num_pages
, _PAGE_NX
| _PAGE_RW
)) {
349 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap
);
353 efi_scratch
.use_pgd
= true;
356 * Certain firmware versions are way too sentimential and still believe
357 * they are exclusive and unquestionable owners of the first physical page,
358 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
359 * (but then write-access it later during SetVirtualAddressMap()).
361 * Create a 1:1 mapping for this page, to avoid triple faults during early
362 * boot with such firmware. We are free to hand this page to the BIOS,
363 * as trim_bios_range() will reserve the first page and isolate it away
364 * from memory allocators anyway.
366 if (kernel_map_pages_in_pgd(pgd
, 0x0, 0x0, 1, _PAGE_RW
)) {
367 pr_err("Failed to create 1:1 mapping for the first page!\n");
372 * When making calls to the firmware everything needs to be 1:1
373 * mapped and addressable with 32-bit pointers. Map the kernel
374 * text and allocate a new stack because we can't rely on the
375 * stack pointer being < 4GB.
377 if (!IS_ENABLED(CONFIG_EFI_MIXED
) || efi_is_native())
380 page
= alloc_page(GFP_KERNEL
|__GFP_DMA32
);
382 panic("Unable to allocate EFI runtime stack < 4GB\n");
384 efi_scratch
.phys_stack
= virt_to_phys(page_address(page
));
385 efi_scratch
.phys_stack
+= PAGE_SIZE
; /* stack grows down */
387 npages
= (_etext
- _text
) >> PAGE_SHIFT
;
389 pfn
= text
>> PAGE_SHIFT
;
391 if (kernel_map_pages_in_pgd(pgd
, pfn
, text
, npages
, _PAGE_RW
)) {
392 pr_err("Failed to map kernel text 1:1\n");
399 static void __init
__map_region(efi_memory_desc_t
*md
, u64 va
)
401 unsigned long flags
= _PAGE_RW
;
403 pgd_t
*pgd
= efi_pgd
;
405 if (!(md
->attribute
& EFI_MEMORY_WB
))
408 pfn
= md
->phys_addr
>> PAGE_SHIFT
;
409 if (kernel_map_pages_in_pgd(pgd
, pfn
, va
, md
->num_pages
, flags
))
410 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
414 void __init
efi_map_region(efi_memory_desc_t
*md
)
416 unsigned long size
= md
->num_pages
<< PAGE_SHIFT
;
417 u64 pa
= md
->phys_addr
;
419 if (efi_enabled(EFI_OLD_MEMMAP
))
420 return old_map_region(md
);
423 * Make sure the 1:1 mappings are present as a catch-all for b0rked
424 * firmware which doesn't update all internal pointers after switching
425 * to virtual mode and would otherwise crap on us.
427 __map_region(md
, md
->phys_addr
);
430 * Enforce the 1:1 mapping as the default virtual address when
431 * booting in EFI mixed mode, because even though we may be
432 * running a 64-bit kernel, the firmware may only be 32-bit.
434 if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED
)) {
435 md
->virt_addr
= md
->phys_addr
;
441 /* Is PA 2M-aligned? */
442 if (!(pa
& (PMD_SIZE
- 1))) {
445 u64 pa_offset
= pa
& (PMD_SIZE
- 1);
446 u64 prev_va
= efi_va
;
448 /* get us the same offset within this 2M page */
449 efi_va
= (efi_va
& PMD_MASK
) + pa_offset
;
451 if (efi_va
> prev_va
)
455 if (efi_va
< EFI_VA_END
) {
456 pr_warn(FW_WARN
"VA address range overflow!\n");
461 __map_region(md
, efi_va
);
462 md
->virt_addr
= efi_va
;
466 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
467 * md->virt_addr is the original virtual address which had been mapped in kexec
470 void __init
efi_map_region_fixed(efi_memory_desc_t
*md
)
472 __map_region(md
, md
->phys_addr
);
473 __map_region(md
, md
->virt_addr
);
476 void __iomem
*__init
efi_ioremap(unsigned long phys_addr
, unsigned long size
,
477 u32 type
, u64 attribute
)
479 unsigned long last_map_pfn
;
481 if (type
== EFI_MEMORY_MAPPED_IO
)
482 return ioremap(phys_addr
, size
);
484 last_map_pfn
= init_memory_mapping(phys_addr
, phys_addr
+ size
);
485 if ((last_map_pfn
<< PAGE_SHIFT
) < phys_addr
+ size
) {
486 unsigned long top
= last_map_pfn
<< PAGE_SHIFT
;
487 efi_ioremap(top
, size
- (top
- phys_addr
), type
, attribute
);
490 if (!(attribute
& EFI_MEMORY_WB
))
491 efi_memory_uc((u64
)(unsigned long)__va(phys_addr
), size
);
493 return (void __iomem
*)__va(phys_addr
);
496 void __init
parse_efi_setup(u64 phys_addr
, u32 data_len
)
498 efi_setup
= phys_addr
+ sizeof(struct setup_data
);
501 static int __init
efi_update_mappings(efi_memory_desc_t
*md
, unsigned long pf
)
504 pgd_t
*pgd
= efi_pgd
;
507 /* Update the 1:1 mapping */
508 pfn
= md
->phys_addr
>> PAGE_SHIFT
;
509 err1
= kernel_map_pages_in_pgd(pgd
, pfn
, md
->phys_addr
, md
->num_pages
, pf
);
511 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
512 md
->phys_addr
, md
->virt_addr
);
515 err2
= kernel_map_pages_in_pgd(pgd
, pfn
, md
->virt_addr
, md
->num_pages
, pf
);
517 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
518 md
->phys_addr
, md
->virt_addr
);
524 static int __init
efi_update_mem_attr(struct mm_struct
*mm
, efi_memory_desc_t
*md
)
526 unsigned long pf
= 0;
528 if (md
->attribute
& EFI_MEMORY_XP
)
531 if (!(md
->attribute
& EFI_MEMORY_RO
))
534 return efi_update_mappings(md
, pf
);
537 void __init
efi_runtime_update_mappings(void)
539 efi_memory_desc_t
*md
;
541 if (efi_enabled(EFI_OLD_MEMMAP
)) {
542 if (__supported_pte_mask
& _PAGE_NX
)
543 runtime_code_page_mkexec();
548 * Use the EFI Memory Attribute Table for mapping permissions if it
549 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
551 if (efi_enabled(EFI_MEM_ATTR
)) {
552 efi_memattr_apply_permissions(NULL
, efi_update_mem_attr
);
557 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
558 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
559 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
560 * published by the firmware. Even if we find a buggy implementation of
561 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
562 * EFI_PROPERTIES_TABLE, because of the same reason.
565 if (!efi_enabled(EFI_NX_PE_DATA
))
568 for_each_efi_memory_desc(md
) {
569 unsigned long pf
= 0;
571 if (!(md
->attribute
& EFI_MEMORY_RUNTIME
))
574 if (!(md
->attribute
& EFI_MEMORY_WB
))
577 if ((md
->attribute
& EFI_MEMORY_XP
) ||
578 (md
->type
== EFI_RUNTIME_SERVICES_DATA
))
581 if (!(md
->attribute
& EFI_MEMORY_RO
) &&
582 (md
->type
!= EFI_RUNTIME_SERVICES_CODE
))
585 efi_update_mappings(md
, pf
);
589 void __init
efi_dump_pagetable(void)
591 #ifdef CONFIG_EFI_PGT_DUMP
592 if (efi_enabled(EFI_OLD_MEMMAP
))
593 ptdump_walk_pgd_level(NULL
, swapper_pg_dir
);
595 ptdump_walk_pgd_level(NULL
, efi_pgd
);
599 #ifdef CONFIG_EFI_MIXED
600 extern efi_status_t
efi64_thunk(u32
, ...);
602 #define runtime_service32(func) \
604 u32 table = (u32)(unsigned long)efi.systab; \
607 rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \
608 ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
613 * Switch to the EFI page tables early so that we can access the 1:1
614 * runtime services mappings which are not mapped in any other page
615 * tables. This function must be called before runtime_service32().
617 * Also, disable interrupts because the IDT points to 64-bit handlers,
618 * which aren't going to function correctly when we switch to 32-bit.
620 #define efi_thunk(f, ...) \
623 unsigned long __flags; \
626 local_irq_save(__flags); \
627 arch_efi_call_virt_setup(); \
629 __func = runtime_service32(f); \
630 __s = efi64_thunk(__func, __VA_ARGS__); \
632 arch_efi_call_virt_teardown(); \
633 local_irq_restore(__flags); \
638 efi_status_t
efi_thunk_set_virtual_address_map(
639 void *phys_set_virtual_address_map
,
640 unsigned long memory_map_size
,
641 unsigned long descriptor_size
,
642 u32 descriptor_version
,
643 efi_memory_desc_t
*virtual_map
)
649 efi_sync_low_kernel_mappings();
650 local_irq_save(flags
);
652 efi_scratch
.prev_cr3
= __read_cr3();
653 write_cr3((unsigned long)efi_scratch
.efi_pgt
);
656 func
= (u32
)(unsigned long)phys_set_virtual_address_map
;
657 status
= efi64_thunk(func
, memory_map_size
, descriptor_size
,
658 descriptor_version
, virtual_map
);
660 write_cr3(efi_scratch
.prev_cr3
);
662 local_irq_restore(flags
);
667 static efi_status_t
efi_thunk_get_time(efi_time_t
*tm
, efi_time_cap_t
*tc
)
670 u32 phys_tm
, phys_tc
;
672 spin_lock(&rtc_lock
);
674 phys_tm
= virt_to_phys_or_null(tm
);
675 phys_tc
= virt_to_phys_or_null(tc
);
677 status
= efi_thunk(get_time
, phys_tm
, phys_tc
);
679 spin_unlock(&rtc_lock
);
684 static efi_status_t
efi_thunk_set_time(efi_time_t
*tm
)
689 spin_lock(&rtc_lock
);
691 phys_tm
= virt_to_phys_or_null(tm
);
693 status
= efi_thunk(set_time
, phys_tm
);
695 spin_unlock(&rtc_lock
);
701 efi_thunk_get_wakeup_time(efi_bool_t
*enabled
, efi_bool_t
*pending
,
705 u32 phys_enabled
, phys_pending
, phys_tm
;
707 spin_lock(&rtc_lock
);
709 phys_enabled
= virt_to_phys_or_null(enabled
);
710 phys_pending
= virt_to_phys_or_null(pending
);
711 phys_tm
= virt_to_phys_or_null(tm
);
713 status
= efi_thunk(get_wakeup_time
, phys_enabled
,
714 phys_pending
, phys_tm
);
716 spin_unlock(&rtc_lock
);
722 efi_thunk_set_wakeup_time(efi_bool_t enabled
, efi_time_t
*tm
)
727 spin_lock(&rtc_lock
);
729 phys_tm
= virt_to_phys_or_null(tm
);
731 status
= efi_thunk(set_wakeup_time
, enabled
, phys_tm
);
733 spin_unlock(&rtc_lock
);
738 static unsigned long efi_name_size(efi_char16_t
*name
)
740 return ucs2_strsize(name
, EFI_VAR_NAME_LEN
) + 1;
744 efi_thunk_get_variable(efi_char16_t
*name
, efi_guid_t
*vendor
,
745 u32
*attr
, unsigned long *data_size
, void *data
)
748 u32 phys_name
, phys_vendor
, phys_attr
;
749 u32 phys_data_size
, phys_data
;
751 phys_data_size
= virt_to_phys_or_null(data_size
);
752 phys_vendor
= virt_to_phys_or_null(vendor
);
753 phys_name
= virt_to_phys_or_null_size(name
, efi_name_size(name
));
754 phys_attr
= virt_to_phys_or_null(attr
);
755 phys_data
= virt_to_phys_or_null_size(data
, *data_size
);
757 status
= efi_thunk(get_variable
, phys_name
, phys_vendor
,
758 phys_attr
, phys_data_size
, phys_data
);
764 efi_thunk_set_variable(efi_char16_t
*name
, efi_guid_t
*vendor
,
765 u32 attr
, unsigned long data_size
, void *data
)
767 u32 phys_name
, phys_vendor
, phys_data
;
770 phys_name
= virt_to_phys_or_null_size(name
, efi_name_size(name
));
771 phys_vendor
= virt_to_phys_or_null(vendor
);
772 phys_data
= virt_to_phys_or_null_size(data
, data_size
);
774 /* If data_size is > sizeof(u32) we've got problems */
775 status
= efi_thunk(set_variable
, phys_name
, phys_vendor
,
776 attr
, data_size
, phys_data
);
782 efi_thunk_get_next_variable(unsigned long *name_size
,
787 u32 phys_name_size
, phys_name
, phys_vendor
;
789 phys_name_size
= virt_to_phys_or_null(name_size
);
790 phys_vendor
= virt_to_phys_or_null(vendor
);
791 phys_name
= virt_to_phys_or_null_size(name
, *name_size
);
793 status
= efi_thunk(get_next_variable
, phys_name_size
,
794 phys_name
, phys_vendor
);
800 efi_thunk_get_next_high_mono_count(u32
*count
)
805 phys_count
= virt_to_phys_or_null(count
);
806 status
= efi_thunk(get_next_high_mono_count
, phys_count
);
812 efi_thunk_reset_system(int reset_type
, efi_status_t status
,
813 unsigned long data_size
, efi_char16_t
*data
)
817 phys_data
= virt_to_phys_or_null_size(data
, data_size
);
819 efi_thunk(reset_system
, reset_type
, status
, data_size
, phys_data
);
823 efi_thunk_update_capsule(efi_capsule_header_t
**capsules
,
824 unsigned long count
, unsigned long sg_list
)
827 * To properly support this function we would need to repackage
828 * 'capsules' because the firmware doesn't understand 64-bit
831 return EFI_UNSUPPORTED
;
835 efi_thunk_query_variable_info(u32 attr
, u64
*storage_space
,
836 u64
*remaining_space
,
837 u64
*max_variable_size
)
840 u32 phys_storage
, phys_remaining
, phys_max
;
842 if (efi
.runtime_version
< EFI_2_00_SYSTEM_TABLE_REVISION
)
843 return EFI_UNSUPPORTED
;
845 phys_storage
= virt_to_phys_or_null(storage_space
);
846 phys_remaining
= virt_to_phys_or_null(remaining_space
);
847 phys_max
= virt_to_phys_or_null(max_variable_size
);
849 status
= efi_thunk(query_variable_info
, attr
, phys_storage
,
850 phys_remaining
, phys_max
);
856 efi_thunk_query_capsule_caps(efi_capsule_header_t
**capsules
,
857 unsigned long count
, u64
*max_size
,
861 * To properly support this function we would need to repackage
862 * 'capsules' because the firmware doesn't understand 64-bit
865 return EFI_UNSUPPORTED
;
868 void efi_thunk_runtime_setup(void)
870 efi
.get_time
= efi_thunk_get_time
;
871 efi
.set_time
= efi_thunk_set_time
;
872 efi
.get_wakeup_time
= efi_thunk_get_wakeup_time
;
873 efi
.set_wakeup_time
= efi_thunk_set_wakeup_time
;
874 efi
.get_variable
= efi_thunk_get_variable
;
875 efi
.get_next_variable
= efi_thunk_get_next_variable
;
876 efi
.set_variable
= efi_thunk_set_variable
;
877 efi
.get_next_high_mono_count
= efi_thunk_get_next_high_mono_count
;
878 efi
.reset_system
= efi_thunk_reset_system
;
879 efi
.query_variable_info
= efi_thunk_query_variable_info
;
880 efi
.update_capsule
= efi_thunk_update_capsule
;
881 efi
.query_capsule_caps
= efi_thunk_query_capsule_caps
;
883 #endif /* CONFIG_EFI_MIXED */