1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * linux/arch/arm/mach-at91/at91rm9200_time.c
5 * Copyright (C) 2003 SAN People
6 * Copyright (C) 2003 ATMEL
9 #include <linux/kernel.h>
10 #include <linux/interrupt.h>
11 #include <linux/irq.h>
12 #include <linux/clk.h>
13 #include <linux/clockchips.h>
14 #include <linux/export.h>
15 #include <linux/mfd/syscon.h>
16 #include <linux/mfd/syscon/atmel-st.h>
17 #include <linux/of_irq.h>
18 #include <linux/regmap.h>
20 static unsigned long last_crtr
;
22 static struct clock_event_device clkevt
;
23 static struct regmap
*regmap_st
;
24 static int timer_latch
;
27 * The ST_CRTR is updated asynchronously to the master clock ... but
28 * the updates as seen by the CPU don't seem to be strictly monotonic.
29 * Waiting until we read the same value twice avoids glitching.
31 static inline unsigned long read_CRTR(void)
35 regmap_read(regmap_st
, AT91_ST_CRTR
, &x1
);
37 regmap_read(regmap_st
, AT91_ST_CRTR
, &x2
);
46 * IRQ handler for the timer.
48 static irqreturn_t
at91rm9200_timer_interrupt(int irq
, void *dev_id
)
52 regmap_read(regmap_st
, AT91_ST_SR
, &sr
);
56 * irqs should be disabled here, but as the irq is shared they are only
57 * guaranteed to be off if the timer irq is registered first.
59 WARN_ON_ONCE(!irqs_disabled());
61 /* simulate "oneshot" timer with alarm */
62 if (sr
& AT91_ST_ALMS
) {
63 clkevt
.event_handler(&clkevt
);
67 /* periodic mode should handle delayed ticks */
68 if (sr
& AT91_ST_PITS
) {
69 u32 crtr
= read_CRTR();
71 while (((crtr
- last_crtr
) & AT91_ST_CRTV
) >= timer_latch
) {
72 last_crtr
+= timer_latch
;
73 clkevt
.event_handler(&clkevt
);
78 /* this irq is shared ... */
82 static u64
read_clk32k(struct clocksource
*cs
)
87 static struct clocksource clk32k
= {
88 .name
= "32k_counter",
91 .mask
= CLOCKSOURCE_MASK(20),
92 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
95 static void clkdev32k_disable_and_flush_irq(void)
99 /* Disable and flush pending timer interrupts */
100 regmap_write(regmap_st
, AT91_ST_IDR
, AT91_ST_PITS
| AT91_ST_ALMS
);
101 regmap_read(regmap_st
, AT91_ST_SR
, &val
);
102 last_crtr
= read_CRTR();
105 static int clkevt32k_shutdown(struct clock_event_device
*evt
)
107 clkdev32k_disable_and_flush_irq();
109 regmap_write(regmap_st
, AT91_ST_IER
, irqmask
);
113 static int clkevt32k_set_oneshot(struct clock_event_device
*dev
)
115 clkdev32k_disable_and_flush_irq();
118 * ALM for oneshot irqs, set by next_event()
119 * before 32 seconds have passed.
121 irqmask
= AT91_ST_ALMS
;
122 regmap_write(regmap_st
, AT91_ST_RTAR
, last_crtr
);
123 regmap_write(regmap_st
, AT91_ST_IER
, irqmask
);
127 static int clkevt32k_set_periodic(struct clock_event_device
*dev
)
129 clkdev32k_disable_and_flush_irq();
131 /* PIT for periodic irqs; fixed rate of 1/HZ */
132 irqmask
= AT91_ST_PITS
;
133 regmap_write(regmap_st
, AT91_ST_PIMR
, timer_latch
);
134 regmap_write(regmap_st
, AT91_ST_IER
, irqmask
);
139 clkevt32k_next_event(unsigned long delta
, struct clock_event_device
*dev
)
147 /* The alarm IRQ uses absolute time (now+delta), not the relative
148 * time (delta) in our calling convention. Like all clockevents
149 * using such "match" hardware, we have a race to defend against.
151 * Our defense here is to have set up the clockevent device so the
152 * delta is at least two. That way we never end up writing RTAR
153 * with the value then held in CRTR ... which would mean the match
154 * wouldn't trigger until 32 seconds later, after CRTR wraps.
158 /* Cancel any pending alarm; flush any pending IRQ */
159 regmap_write(regmap_st
, AT91_ST_RTAR
, alm
);
160 regmap_read(regmap_st
, AT91_ST_SR
, &val
);
162 /* Schedule alarm by writing RTAR. */
164 regmap_write(regmap_st
, AT91_ST_RTAR
, alm
);
169 static struct clock_event_device clkevt
= {
171 .features
= CLOCK_EVT_FEAT_PERIODIC
|
172 CLOCK_EVT_FEAT_ONESHOT
,
174 .set_next_event
= clkevt32k_next_event
,
175 .set_state_shutdown
= clkevt32k_shutdown
,
176 .set_state_periodic
= clkevt32k_set_periodic
,
177 .set_state_oneshot
= clkevt32k_set_oneshot
,
178 .tick_resume
= clkevt32k_shutdown
,
182 * ST (system timer) module supports both clockevents and clocksource.
184 static int __init
atmel_st_timer_init(struct device_node
*node
)
187 unsigned int sclk_rate
, val
;
190 regmap_st
= syscon_node_to_regmap(node
);
191 if (IS_ERR(regmap_st
)) {
192 pr_err("Unable to get regmap\n");
193 return PTR_ERR(regmap_st
);
196 /* Disable all timer interrupts, and clear any pending ones */
197 regmap_write(regmap_st
, AT91_ST_IDR
,
198 AT91_ST_PITS
| AT91_ST_WDOVF
| AT91_ST_RTTINC
| AT91_ST_ALMS
);
199 regmap_read(regmap_st
, AT91_ST_SR
, &val
);
201 /* Get the interrupts property */
202 irq
= irq_of_parse_and_map(node
, 0);
204 pr_err("Unable to get IRQ from DT\n");
208 /* Make IRQs happen for the system timer */
209 ret
= request_irq(irq
, at91rm9200_timer_interrupt
,
210 IRQF_SHARED
| IRQF_TIMER
| IRQF_IRQPOLL
,
211 "at91_tick", regmap_st
);
213 pr_err("Unable to setup IRQ\n");
217 sclk
= of_clk_get(node
, 0);
219 pr_err("Unable to get slow clock\n");
220 return PTR_ERR(sclk
);
223 ret
= clk_prepare_enable(sclk
);
225 pr_err("Could not enable slow clock\n");
229 sclk_rate
= clk_get_rate(sclk
);
231 pr_err("Invalid slow clock rate\n");
234 timer_latch
= (sclk_rate
+ HZ
/ 2) / HZ
;
236 /* The 32KiHz "Slow Clock" (tick every 30517.58 nanoseconds) is used
237 * directly for the clocksource and all clockevents, after adjusting
238 * its prescaler from the 1 Hz default.
240 regmap_write(regmap_st
, AT91_ST_RTMR
, 1);
242 /* Setup timer clockevent, with minimum of two ticks (important!!) */
243 clkevt
.cpumask
= cpumask_of(0);
244 clockevents_config_and_register(&clkevt
, sclk_rate
,
247 /* register clocksource */
248 return clocksource_register_hz(&clk32k
, sclk_rate
);
250 TIMER_OF_DECLARE(atmel_st_timer
, "atmel,at91rm9200-st",
251 atmel_st_timer_init
);