irqchip/stm32: Add suspend/resume support for hierarchy domain
[linux/fpc-iii.git] / mm / zsmalloc.c
blob61cb05dc950caf394dbf375b5b7084a193cbaddb
1 /*
2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/pagemap.h>
57 #include <linux/fs.h>
59 #define ZSPAGE_MAGIC 0x58
62 * This must be power of 2 and greater than of equal to sizeof(link_free).
63 * These two conditions ensure that any 'struct link_free' itself doesn't
64 * span more than 1 page which avoids complex case of mapping 2 pages simply
65 * to restore link_free pointer values.
67 #define ZS_ALIGN 8
70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
73 #define ZS_MAX_ZSPAGE_ORDER 2
74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79 * Object location (<PFN>, <obj_idx>) is encoded as
80 * as single (unsigned long) handle value.
82 * Note that object index <obj_idx> starts from 0.
84 * This is made more complicated by various memory models and PAE.
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
90 #else
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 * be PAGE_SHIFT
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
96 #endif
97 #endif
99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102 * Memory for allocating for handle keeps object position by
103 * encoding <page, obj_idx> and the encoded value has a room
104 * in least bit(ie, look at obj_to_location).
105 * We use the bit to synchronize between object access by
106 * user and migration.
108 #define HANDLE_PIN_BIT 0
111 * Head in allocated object should have OBJ_ALLOCATED_TAG
112 * to identify the object was allocated or not.
113 * It's okay to add the status bit in the least bit because
114 * header keeps handle which is 4byte-aligned address so we
115 * have room for two bit at least.
117 #define OBJ_ALLOCATED_TAG 1
118 #define OBJ_TAG_BITS 1
119 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
120 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
122 #define FULLNESS_BITS 2
123 #define CLASS_BITS 8
124 #define ISOLATED_BITS 3
125 #define MAGIC_VAL_BITS 8
127 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
135 * On systems with 4K page size, this gives 255 size classes! There is a
136 * trader-off here:
137 * - Large number of size classes is potentially wasteful as free page are
138 * spread across these classes
139 * - Small number of size classes causes large internal fragmentation
140 * - Probably its better to use specific size classes (empirically
141 * determined). NOTE: all those class sizes must be set as multiple of
142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
145 * (reason above)
147 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 ZS_SIZE_CLASS_DELTA) + 1)
151 enum fullness_group {
152 ZS_EMPTY,
153 ZS_ALMOST_EMPTY,
154 ZS_ALMOST_FULL,
155 ZS_FULL,
156 NR_ZS_FULLNESS,
159 enum zs_stat_type {
160 CLASS_EMPTY,
161 CLASS_ALMOST_EMPTY,
162 CLASS_ALMOST_FULL,
163 CLASS_FULL,
164 OBJ_ALLOCATED,
165 OBJ_USED,
166 NR_ZS_STAT_TYPE,
169 struct zs_size_stat {
170 unsigned long objs[NR_ZS_STAT_TYPE];
173 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry *zs_stat_root;
175 #endif
177 #ifdef CONFIG_COMPACTION
178 static struct vfsmount *zsmalloc_mnt;
179 #endif
182 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
183 * n <= N / f, where
184 * n = number of allocated objects
185 * N = total number of objects zspage can store
186 * f = fullness_threshold_frac
188 * Similarly, we assign zspage to:
189 * ZS_ALMOST_FULL when n > N / f
190 * ZS_EMPTY when n == 0
191 * ZS_FULL when n == N
193 * (see: fix_fullness_group())
195 static const int fullness_threshold_frac = 4;
196 static size_t huge_class_size;
198 struct size_class {
199 spinlock_t lock;
200 struct list_head fullness_list[NR_ZS_FULLNESS];
202 * Size of objects stored in this class. Must be multiple
203 * of ZS_ALIGN.
205 int size;
206 int objs_per_zspage;
207 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
208 int pages_per_zspage;
210 unsigned int index;
211 struct zs_size_stat stats;
214 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
215 static void SetPageHugeObject(struct page *page)
217 SetPageOwnerPriv1(page);
220 static void ClearPageHugeObject(struct page *page)
222 ClearPageOwnerPriv1(page);
225 static int PageHugeObject(struct page *page)
227 return PageOwnerPriv1(page);
231 * Placed within free objects to form a singly linked list.
232 * For every zspage, zspage->freeobj gives head of this list.
234 * This must be power of 2 and less than or equal to ZS_ALIGN
236 struct link_free {
237 union {
239 * Free object index;
240 * It's valid for non-allocated object
242 unsigned long next;
244 * Handle of allocated object.
246 unsigned long handle;
250 struct zs_pool {
251 const char *name;
253 struct size_class *size_class[ZS_SIZE_CLASSES];
254 struct kmem_cache *handle_cachep;
255 struct kmem_cache *zspage_cachep;
257 atomic_long_t pages_allocated;
259 struct zs_pool_stats stats;
261 /* Compact classes */
262 struct shrinker shrinker;
264 #ifdef CONFIG_ZSMALLOC_STAT
265 struct dentry *stat_dentry;
266 #endif
267 #ifdef CONFIG_COMPACTION
268 struct inode *inode;
269 struct work_struct free_work;
270 #endif
273 struct zspage {
274 struct {
275 unsigned int fullness:FULLNESS_BITS;
276 unsigned int class:CLASS_BITS + 1;
277 unsigned int isolated:ISOLATED_BITS;
278 unsigned int magic:MAGIC_VAL_BITS;
280 unsigned int inuse;
281 unsigned int freeobj;
282 struct page *first_page;
283 struct list_head list; /* fullness list */
284 #ifdef CONFIG_COMPACTION
285 rwlock_t lock;
286 #endif
289 struct mapping_area {
290 #ifdef CONFIG_PGTABLE_MAPPING
291 struct vm_struct *vm; /* vm area for mapping object that span pages */
292 #else
293 char *vm_buf; /* copy buffer for objects that span pages */
294 #endif
295 char *vm_addr; /* address of kmap_atomic()'ed pages */
296 enum zs_mapmode vm_mm; /* mapping mode */
299 #ifdef CONFIG_COMPACTION
300 static int zs_register_migration(struct zs_pool *pool);
301 static void zs_unregister_migration(struct zs_pool *pool);
302 static void migrate_lock_init(struct zspage *zspage);
303 static void migrate_read_lock(struct zspage *zspage);
304 static void migrate_read_unlock(struct zspage *zspage);
305 static void kick_deferred_free(struct zs_pool *pool);
306 static void init_deferred_free(struct zs_pool *pool);
307 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
308 #else
309 static int zsmalloc_mount(void) { return 0; }
310 static void zsmalloc_unmount(void) {}
311 static int zs_register_migration(struct zs_pool *pool) { return 0; }
312 static void zs_unregister_migration(struct zs_pool *pool) {}
313 static void migrate_lock_init(struct zspage *zspage) {}
314 static void migrate_read_lock(struct zspage *zspage) {}
315 static void migrate_read_unlock(struct zspage *zspage) {}
316 static void kick_deferred_free(struct zs_pool *pool) {}
317 static void init_deferred_free(struct zs_pool *pool) {}
318 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
319 #endif
321 static int create_cache(struct zs_pool *pool)
323 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
324 0, 0, NULL);
325 if (!pool->handle_cachep)
326 return 1;
328 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
329 0, 0, NULL);
330 if (!pool->zspage_cachep) {
331 kmem_cache_destroy(pool->handle_cachep);
332 pool->handle_cachep = NULL;
333 return 1;
336 return 0;
339 static void destroy_cache(struct zs_pool *pool)
341 kmem_cache_destroy(pool->handle_cachep);
342 kmem_cache_destroy(pool->zspage_cachep);
345 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
347 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
348 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
351 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
353 kmem_cache_free(pool->handle_cachep, (void *)handle);
356 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
358 return kmem_cache_alloc(pool->zspage_cachep,
359 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
362 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
364 kmem_cache_free(pool->zspage_cachep, zspage);
367 static void record_obj(unsigned long handle, unsigned long obj)
370 * lsb of @obj represents handle lock while other bits
371 * represent object value the handle is pointing so
372 * updating shouldn't do store tearing.
374 WRITE_ONCE(*(unsigned long *)handle, obj);
377 /* zpool driver */
379 #ifdef CONFIG_ZPOOL
381 static void *zs_zpool_create(const char *name, gfp_t gfp,
382 const struct zpool_ops *zpool_ops,
383 struct zpool *zpool)
386 * Ignore global gfp flags: zs_malloc() may be invoked from
387 * different contexts and its caller must provide a valid
388 * gfp mask.
390 return zs_create_pool(name);
393 static void zs_zpool_destroy(void *pool)
395 zs_destroy_pool(pool);
398 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
399 unsigned long *handle)
401 *handle = zs_malloc(pool, size, gfp);
402 return *handle ? 0 : -1;
404 static void zs_zpool_free(void *pool, unsigned long handle)
406 zs_free(pool, handle);
409 static void *zs_zpool_map(void *pool, unsigned long handle,
410 enum zpool_mapmode mm)
412 enum zs_mapmode zs_mm;
414 switch (mm) {
415 case ZPOOL_MM_RO:
416 zs_mm = ZS_MM_RO;
417 break;
418 case ZPOOL_MM_WO:
419 zs_mm = ZS_MM_WO;
420 break;
421 case ZPOOL_MM_RW: /* fallthru */
422 default:
423 zs_mm = ZS_MM_RW;
424 break;
427 return zs_map_object(pool, handle, zs_mm);
429 static void zs_zpool_unmap(void *pool, unsigned long handle)
431 zs_unmap_object(pool, handle);
434 static u64 zs_zpool_total_size(void *pool)
436 return zs_get_total_pages(pool) << PAGE_SHIFT;
439 static struct zpool_driver zs_zpool_driver = {
440 .type = "zsmalloc",
441 .owner = THIS_MODULE,
442 .create = zs_zpool_create,
443 .destroy = zs_zpool_destroy,
444 .malloc = zs_zpool_malloc,
445 .free = zs_zpool_free,
446 .map = zs_zpool_map,
447 .unmap = zs_zpool_unmap,
448 .total_size = zs_zpool_total_size,
451 MODULE_ALIAS("zpool-zsmalloc");
452 #endif /* CONFIG_ZPOOL */
454 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
455 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
457 static bool is_zspage_isolated(struct zspage *zspage)
459 return zspage->isolated;
462 static __maybe_unused int is_first_page(struct page *page)
464 return PagePrivate(page);
467 /* Protected by class->lock */
468 static inline int get_zspage_inuse(struct zspage *zspage)
470 return zspage->inuse;
473 static inline void set_zspage_inuse(struct zspage *zspage, int val)
475 zspage->inuse = val;
478 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
480 zspage->inuse += val;
483 static inline struct page *get_first_page(struct zspage *zspage)
485 struct page *first_page = zspage->first_page;
487 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
488 return first_page;
491 static inline int get_first_obj_offset(struct page *page)
493 return page->units;
496 static inline void set_first_obj_offset(struct page *page, int offset)
498 page->units = offset;
501 static inline unsigned int get_freeobj(struct zspage *zspage)
503 return zspage->freeobj;
506 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
508 zspage->freeobj = obj;
511 static void get_zspage_mapping(struct zspage *zspage,
512 unsigned int *class_idx,
513 enum fullness_group *fullness)
515 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
517 *fullness = zspage->fullness;
518 *class_idx = zspage->class;
521 static void set_zspage_mapping(struct zspage *zspage,
522 unsigned int class_idx,
523 enum fullness_group fullness)
525 zspage->class = class_idx;
526 zspage->fullness = fullness;
530 * zsmalloc divides the pool into various size classes where each
531 * class maintains a list of zspages where each zspage is divided
532 * into equal sized chunks. Each allocation falls into one of these
533 * classes depending on its size. This function returns index of the
534 * size class which has chunk size big enough to hold the give size.
536 static int get_size_class_index(int size)
538 int idx = 0;
540 if (likely(size > ZS_MIN_ALLOC_SIZE))
541 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
542 ZS_SIZE_CLASS_DELTA);
544 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
547 /* type can be of enum type zs_stat_type or fullness_group */
548 static inline void zs_stat_inc(struct size_class *class,
549 int type, unsigned long cnt)
551 class->stats.objs[type] += cnt;
554 /* type can be of enum type zs_stat_type or fullness_group */
555 static inline void zs_stat_dec(struct size_class *class,
556 int type, unsigned long cnt)
558 class->stats.objs[type] -= cnt;
561 /* type can be of enum type zs_stat_type or fullness_group */
562 static inline unsigned long zs_stat_get(struct size_class *class,
563 int type)
565 return class->stats.objs[type];
568 #ifdef CONFIG_ZSMALLOC_STAT
570 static void __init zs_stat_init(void)
572 if (!debugfs_initialized()) {
573 pr_warn("debugfs not available, stat dir not created\n");
574 return;
577 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
578 if (!zs_stat_root)
579 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
582 static void __exit zs_stat_exit(void)
584 debugfs_remove_recursive(zs_stat_root);
587 static unsigned long zs_can_compact(struct size_class *class);
589 static int zs_stats_size_show(struct seq_file *s, void *v)
591 int i;
592 struct zs_pool *pool = s->private;
593 struct size_class *class;
594 int objs_per_zspage;
595 unsigned long class_almost_full, class_almost_empty;
596 unsigned long obj_allocated, obj_used, pages_used, freeable;
597 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
598 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
599 unsigned long total_freeable = 0;
601 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
602 "class", "size", "almost_full", "almost_empty",
603 "obj_allocated", "obj_used", "pages_used",
604 "pages_per_zspage", "freeable");
606 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
607 class = pool->size_class[i];
609 if (class->index != i)
610 continue;
612 spin_lock(&class->lock);
613 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
614 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
615 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
616 obj_used = zs_stat_get(class, OBJ_USED);
617 freeable = zs_can_compact(class);
618 spin_unlock(&class->lock);
620 objs_per_zspage = class->objs_per_zspage;
621 pages_used = obj_allocated / objs_per_zspage *
622 class->pages_per_zspage;
624 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
625 " %10lu %10lu %16d %8lu\n",
626 i, class->size, class_almost_full, class_almost_empty,
627 obj_allocated, obj_used, pages_used,
628 class->pages_per_zspage, freeable);
630 total_class_almost_full += class_almost_full;
631 total_class_almost_empty += class_almost_empty;
632 total_objs += obj_allocated;
633 total_used_objs += obj_used;
634 total_pages += pages_used;
635 total_freeable += freeable;
638 seq_puts(s, "\n");
639 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
640 "Total", "", total_class_almost_full,
641 total_class_almost_empty, total_objs,
642 total_used_objs, total_pages, "", total_freeable);
644 return 0;
646 DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
648 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
650 struct dentry *entry;
652 if (!zs_stat_root) {
653 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
654 return;
657 entry = debugfs_create_dir(name, zs_stat_root);
658 if (!entry) {
659 pr_warn("debugfs dir <%s> creation failed\n", name);
660 return;
662 pool->stat_dentry = entry;
664 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
665 pool->stat_dentry, pool, &zs_stats_size_fops);
666 if (!entry) {
667 pr_warn("%s: debugfs file entry <%s> creation failed\n",
668 name, "classes");
669 debugfs_remove_recursive(pool->stat_dentry);
670 pool->stat_dentry = NULL;
674 static void zs_pool_stat_destroy(struct zs_pool *pool)
676 debugfs_remove_recursive(pool->stat_dentry);
679 #else /* CONFIG_ZSMALLOC_STAT */
680 static void __init zs_stat_init(void)
684 static void __exit zs_stat_exit(void)
688 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
692 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
695 #endif
699 * For each size class, zspages are divided into different groups
700 * depending on how "full" they are. This was done so that we could
701 * easily find empty or nearly empty zspages when we try to shrink
702 * the pool (not yet implemented). This function returns fullness
703 * status of the given page.
705 static enum fullness_group get_fullness_group(struct size_class *class,
706 struct zspage *zspage)
708 int inuse, objs_per_zspage;
709 enum fullness_group fg;
711 inuse = get_zspage_inuse(zspage);
712 objs_per_zspage = class->objs_per_zspage;
714 if (inuse == 0)
715 fg = ZS_EMPTY;
716 else if (inuse == objs_per_zspage)
717 fg = ZS_FULL;
718 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
719 fg = ZS_ALMOST_EMPTY;
720 else
721 fg = ZS_ALMOST_FULL;
723 return fg;
727 * Each size class maintains various freelists and zspages are assigned
728 * to one of these freelists based on the number of live objects they
729 * have. This functions inserts the given zspage into the freelist
730 * identified by <class, fullness_group>.
732 static void insert_zspage(struct size_class *class,
733 struct zspage *zspage,
734 enum fullness_group fullness)
736 struct zspage *head;
738 zs_stat_inc(class, fullness, 1);
739 head = list_first_entry_or_null(&class->fullness_list[fullness],
740 struct zspage, list);
742 * We want to see more ZS_FULL pages and less almost empty/full.
743 * Put pages with higher ->inuse first.
745 if (head) {
746 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
747 list_add(&zspage->list, &head->list);
748 return;
751 list_add(&zspage->list, &class->fullness_list[fullness]);
755 * This function removes the given zspage from the freelist identified
756 * by <class, fullness_group>.
758 static void remove_zspage(struct size_class *class,
759 struct zspage *zspage,
760 enum fullness_group fullness)
762 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
763 VM_BUG_ON(is_zspage_isolated(zspage));
765 list_del_init(&zspage->list);
766 zs_stat_dec(class, fullness, 1);
770 * Each size class maintains zspages in different fullness groups depending
771 * on the number of live objects they contain. When allocating or freeing
772 * objects, the fullness status of the page can change, say, from ALMOST_FULL
773 * to ALMOST_EMPTY when freeing an object. This function checks if such
774 * a status change has occurred for the given page and accordingly moves the
775 * page from the freelist of the old fullness group to that of the new
776 * fullness group.
778 static enum fullness_group fix_fullness_group(struct size_class *class,
779 struct zspage *zspage)
781 int class_idx;
782 enum fullness_group currfg, newfg;
784 get_zspage_mapping(zspage, &class_idx, &currfg);
785 newfg = get_fullness_group(class, zspage);
786 if (newfg == currfg)
787 goto out;
789 if (!is_zspage_isolated(zspage)) {
790 remove_zspage(class, zspage, currfg);
791 insert_zspage(class, zspage, newfg);
794 set_zspage_mapping(zspage, class_idx, newfg);
796 out:
797 return newfg;
801 * We have to decide on how many pages to link together
802 * to form a zspage for each size class. This is important
803 * to reduce wastage due to unusable space left at end of
804 * each zspage which is given as:
805 * wastage = Zp % class_size
806 * usage = Zp - wastage
807 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
809 * For example, for size class of 3/8 * PAGE_SIZE, we should
810 * link together 3 PAGE_SIZE sized pages to form a zspage
811 * since then we can perfectly fit in 8 such objects.
813 static int get_pages_per_zspage(int class_size)
815 int i, max_usedpc = 0;
816 /* zspage order which gives maximum used size per KB */
817 int max_usedpc_order = 1;
819 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
820 int zspage_size;
821 int waste, usedpc;
823 zspage_size = i * PAGE_SIZE;
824 waste = zspage_size % class_size;
825 usedpc = (zspage_size - waste) * 100 / zspage_size;
827 if (usedpc > max_usedpc) {
828 max_usedpc = usedpc;
829 max_usedpc_order = i;
833 return max_usedpc_order;
836 static struct zspage *get_zspage(struct page *page)
838 struct zspage *zspage = (struct zspage *)page->private;
840 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
841 return zspage;
844 static struct page *get_next_page(struct page *page)
846 if (unlikely(PageHugeObject(page)))
847 return NULL;
849 return page->freelist;
853 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
854 * @obj: the encoded object value
855 * @page: page object resides in zspage
856 * @obj_idx: object index
858 static void obj_to_location(unsigned long obj, struct page **page,
859 unsigned int *obj_idx)
861 obj >>= OBJ_TAG_BITS;
862 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
863 *obj_idx = (obj & OBJ_INDEX_MASK);
867 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
868 * @page: page object resides in zspage
869 * @obj_idx: object index
871 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
873 unsigned long obj;
875 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
876 obj |= obj_idx & OBJ_INDEX_MASK;
877 obj <<= OBJ_TAG_BITS;
879 return obj;
882 static unsigned long handle_to_obj(unsigned long handle)
884 return *(unsigned long *)handle;
887 static unsigned long obj_to_head(struct page *page, void *obj)
889 if (unlikely(PageHugeObject(page))) {
890 VM_BUG_ON_PAGE(!is_first_page(page), page);
891 return page->index;
892 } else
893 return *(unsigned long *)obj;
896 static inline int testpin_tag(unsigned long handle)
898 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
901 static inline int trypin_tag(unsigned long handle)
903 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
906 static void pin_tag(unsigned long handle)
908 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
911 static void unpin_tag(unsigned long handle)
913 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
916 static void reset_page(struct page *page)
918 __ClearPageMovable(page);
919 ClearPagePrivate(page);
920 set_page_private(page, 0);
921 page_mapcount_reset(page);
922 ClearPageHugeObject(page);
923 page->freelist = NULL;
927 * To prevent zspage destroy during migration, zspage freeing should
928 * hold locks of all pages in the zspage.
930 void lock_zspage(struct zspage *zspage)
932 struct page *page = get_first_page(zspage);
934 do {
935 lock_page(page);
936 } while ((page = get_next_page(page)) != NULL);
939 int trylock_zspage(struct zspage *zspage)
941 struct page *cursor, *fail;
943 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
944 get_next_page(cursor)) {
945 if (!trylock_page(cursor)) {
946 fail = cursor;
947 goto unlock;
951 return 1;
952 unlock:
953 for (cursor = get_first_page(zspage); cursor != fail; cursor =
954 get_next_page(cursor))
955 unlock_page(cursor);
957 return 0;
960 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
961 struct zspage *zspage)
963 struct page *page, *next;
964 enum fullness_group fg;
965 unsigned int class_idx;
967 get_zspage_mapping(zspage, &class_idx, &fg);
969 assert_spin_locked(&class->lock);
971 VM_BUG_ON(get_zspage_inuse(zspage));
972 VM_BUG_ON(fg != ZS_EMPTY);
974 next = page = get_first_page(zspage);
975 do {
976 VM_BUG_ON_PAGE(!PageLocked(page), page);
977 next = get_next_page(page);
978 reset_page(page);
979 unlock_page(page);
980 dec_zone_page_state(page, NR_ZSPAGES);
981 put_page(page);
982 page = next;
983 } while (page != NULL);
985 cache_free_zspage(pool, zspage);
987 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
988 atomic_long_sub(class->pages_per_zspage,
989 &pool->pages_allocated);
992 static void free_zspage(struct zs_pool *pool, struct size_class *class,
993 struct zspage *zspage)
995 VM_BUG_ON(get_zspage_inuse(zspage));
996 VM_BUG_ON(list_empty(&zspage->list));
998 if (!trylock_zspage(zspage)) {
999 kick_deferred_free(pool);
1000 return;
1003 remove_zspage(class, zspage, ZS_EMPTY);
1004 __free_zspage(pool, class, zspage);
1007 /* Initialize a newly allocated zspage */
1008 static void init_zspage(struct size_class *class, struct zspage *zspage)
1010 unsigned int freeobj = 1;
1011 unsigned long off = 0;
1012 struct page *page = get_first_page(zspage);
1014 while (page) {
1015 struct page *next_page;
1016 struct link_free *link;
1017 void *vaddr;
1019 set_first_obj_offset(page, off);
1021 vaddr = kmap_atomic(page);
1022 link = (struct link_free *)vaddr + off / sizeof(*link);
1024 while ((off += class->size) < PAGE_SIZE) {
1025 link->next = freeobj++ << OBJ_TAG_BITS;
1026 link += class->size / sizeof(*link);
1030 * We now come to the last (full or partial) object on this
1031 * page, which must point to the first object on the next
1032 * page (if present)
1034 next_page = get_next_page(page);
1035 if (next_page) {
1036 link->next = freeobj++ << OBJ_TAG_BITS;
1037 } else {
1039 * Reset OBJ_TAG_BITS bit to last link to tell
1040 * whether it's allocated object or not.
1042 link->next = -1UL << OBJ_TAG_BITS;
1044 kunmap_atomic(vaddr);
1045 page = next_page;
1046 off %= PAGE_SIZE;
1049 set_freeobj(zspage, 0);
1052 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1053 struct page *pages[])
1055 int i;
1056 struct page *page;
1057 struct page *prev_page = NULL;
1058 int nr_pages = class->pages_per_zspage;
1061 * Allocate individual pages and link them together as:
1062 * 1. all pages are linked together using page->freelist
1063 * 2. each sub-page point to zspage using page->private
1065 * we set PG_private to identify the first page (i.e. no other sub-page
1066 * has this flag set).
1068 for (i = 0; i < nr_pages; i++) {
1069 page = pages[i];
1070 set_page_private(page, (unsigned long)zspage);
1071 page->freelist = NULL;
1072 if (i == 0) {
1073 zspage->first_page = page;
1074 SetPagePrivate(page);
1075 if (unlikely(class->objs_per_zspage == 1 &&
1076 class->pages_per_zspage == 1))
1077 SetPageHugeObject(page);
1078 } else {
1079 prev_page->freelist = page;
1081 prev_page = page;
1086 * Allocate a zspage for the given size class
1088 static struct zspage *alloc_zspage(struct zs_pool *pool,
1089 struct size_class *class,
1090 gfp_t gfp)
1092 int i;
1093 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1094 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1096 if (!zspage)
1097 return NULL;
1099 memset(zspage, 0, sizeof(struct zspage));
1100 zspage->magic = ZSPAGE_MAGIC;
1101 migrate_lock_init(zspage);
1103 for (i = 0; i < class->pages_per_zspage; i++) {
1104 struct page *page;
1106 page = alloc_page(gfp);
1107 if (!page) {
1108 while (--i >= 0) {
1109 dec_zone_page_state(pages[i], NR_ZSPAGES);
1110 __free_page(pages[i]);
1112 cache_free_zspage(pool, zspage);
1113 return NULL;
1116 inc_zone_page_state(page, NR_ZSPAGES);
1117 pages[i] = page;
1120 create_page_chain(class, zspage, pages);
1121 init_zspage(class, zspage);
1123 return zspage;
1126 static struct zspage *find_get_zspage(struct size_class *class)
1128 int i;
1129 struct zspage *zspage;
1131 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1132 zspage = list_first_entry_or_null(&class->fullness_list[i],
1133 struct zspage, list);
1134 if (zspage)
1135 break;
1138 return zspage;
1141 #ifdef CONFIG_PGTABLE_MAPPING
1142 static inline int __zs_cpu_up(struct mapping_area *area)
1145 * Make sure we don't leak memory if a cpu UP notification
1146 * and zs_init() race and both call zs_cpu_up() on the same cpu
1148 if (area->vm)
1149 return 0;
1150 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1151 if (!area->vm)
1152 return -ENOMEM;
1153 return 0;
1156 static inline void __zs_cpu_down(struct mapping_area *area)
1158 if (area->vm)
1159 free_vm_area(area->vm);
1160 area->vm = NULL;
1163 static inline void *__zs_map_object(struct mapping_area *area,
1164 struct page *pages[2], int off, int size)
1166 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1167 area->vm_addr = area->vm->addr;
1168 return area->vm_addr + off;
1171 static inline void __zs_unmap_object(struct mapping_area *area,
1172 struct page *pages[2], int off, int size)
1174 unsigned long addr = (unsigned long)area->vm_addr;
1176 unmap_kernel_range(addr, PAGE_SIZE * 2);
1179 #else /* CONFIG_PGTABLE_MAPPING */
1181 static inline int __zs_cpu_up(struct mapping_area *area)
1184 * Make sure we don't leak memory if a cpu UP notification
1185 * and zs_init() race and both call zs_cpu_up() on the same cpu
1187 if (area->vm_buf)
1188 return 0;
1189 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1190 if (!area->vm_buf)
1191 return -ENOMEM;
1192 return 0;
1195 static inline void __zs_cpu_down(struct mapping_area *area)
1197 kfree(area->vm_buf);
1198 area->vm_buf = NULL;
1201 static void *__zs_map_object(struct mapping_area *area,
1202 struct page *pages[2], int off, int size)
1204 int sizes[2];
1205 void *addr;
1206 char *buf = area->vm_buf;
1208 /* disable page faults to match kmap_atomic() return conditions */
1209 pagefault_disable();
1211 /* no read fastpath */
1212 if (area->vm_mm == ZS_MM_WO)
1213 goto out;
1215 sizes[0] = PAGE_SIZE - off;
1216 sizes[1] = size - sizes[0];
1218 /* copy object to per-cpu buffer */
1219 addr = kmap_atomic(pages[0]);
1220 memcpy(buf, addr + off, sizes[0]);
1221 kunmap_atomic(addr);
1222 addr = kmap_atomic(pages[1]);
1223 memcpy(buf + sizes[0], addr, sizes[1]);
1224 kunmap_atomic(addr);
1225 out:
1226 return area->vm_buf;
1229 static void __zs_unmap_object(struct mapping_area *area,
1230 struct page *pages[2], int off, int size)
1232 int sizes[2];
1233 void *addr;
1234 char *buf;
1236 /* no write fastpath */
1237 if (area->vm_mm == ZS_MM_RO)
1238 goto out;
1240 buf = area->vm_buf;
1241 buf = buf + ZS_HANDLE_SIZE;
1242 size -= ZS_HANDLE_SIZE;
1243 off += ZS_HANDLE_SIZE;
1245 sizes[0] = PAGE_SIZE - off;
1246 sizes[1] = size - sizes[0];
1248 /* copy per-cpu buffer to object */
1249 addr = kmap_atomic(pages[0]);
1250 memcpy(addr + off, buf, sizes[0]);
1251 kunmap_atomic(addr);
1252 addr = kmap_atomic(pages[1]);
1253 memcpy(addr, buf + sizes[0], sizes[1]);
1254 kunmap_atomic(addr);
1256 out:
1257 /* enable page faults to match kunmap_atomic() return conditions */
1258 pagefault_enable();
1261 #endif /* CONFIG_PGTABLE_MAPPING */
1263 static int zs_cpu_prepare(unsigned int cpu)
1265 struct mapping_area *area;
1267 area = &per_cpu(zs_map_area, cpu);
1268 return __zs_cpu_up(area);
1271 static int zs_cpu_dead(unsigned int cpu)
1273 struct mapping_area *area;
1275 area = &per_cpu(zs_map_area, cpu);
1276 __zs_cpu_down(area);
1277 return 0;
1280 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1281 int objs_per_zspage)
1283 if (prev->pages_per_zspage == pages_per_zspage &&
1284 prev->objs_per_zspage == objs_per_zspage)
1285 return true;
1287 return false;
1290 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1292 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1295 unsigned long zs_get_total_pages(struct zs_pool *pool)
1297 return atomic_long_read(&pool->pages_allocated);
1299 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1302 * zs_map_object - get address of allocated object from handle.
1303 * @pool: pool from which the object was allocated
1304 * @handle: handle returned from zs_malloc
1305 * @mm: maping mode to use
1307 * Before using an object allocated from zs_malloc, it must be mapped using
1308 * this function. When done with the object, it must be unmapped using
1309 * zs_unmap_object.
1311 * Only one object can be mapped per cpu at a time. There is no protection
1312 * against nested mappings.
1314 * This function returns with preemption and page faults disabled.
1316 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1317 enum zs_mapmode mm)
1319 struct zspage *zspage;
1320 struct page *page;
1321 unsigned long obj, off;
1322 unsigned int obj_idx;
1324 unsigned int class_idx;
1325 enum fullness_group fg;
1326 struct size_class *class;
1327 struct mapping_area *area;
1328 struct page *pages[2];
1329 void *ret;
1332 * Because we use per-cpu mapping areas shared among the
1333 * pools/users, we can't allow mapping in interrupt context
1334 * because it can corrupt another users mappings.
1336 BUG_ON(in_interrupt());
1338 /* From now on, migration cannot move the object */
1339 pin_tag(handle);
1341 obj = handle_to_obj(handle);
1342 obj_to_location(obj, &page, &obj_idx);
1343 zspage = get_zspage(page);
1345 /* migration cannot move any subpage in this zspage */
1346 migrate_read_lock(zspage);
1348 get_zspage_mapping(zspage, &class_idx, &fg);
1349 class = pool->size_class[class_idx];
1350 off = (class->size * obj_idx) & ~PAGE_MASK;
1352 area = &get_cpu_var(zs_map_area);
1353 area->vm_mm = mm;
1354 if (off + class->size <= PAGE_SIZE) {
1355 /* this object is contained entirely within a page */
1356 area->vm_addr = kmap_atomic(page);
1357 ret = area->vm_addr + off;
1358 goto out;
1361 /* this object spans two pages */
1362 pages[0] = page;
1363 pages[1] = get_next_page(page);
1364 BUG_ON(!pages[1]);
1366 ret = __zs_map_object(area, pages, off, class->size);
1367 out:
1368 if (likely(!PageHugeObject(page)))
1369 ret += ZS_HANDLE_SIZE;
1371 return ret;
1373 EXPORT_SYMBOL_GPL(zs_map_object);
1375 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1377 struct zspage *zspage;
1378 struct page *page;
1379 unsigned long obj, off;
1380 unsigned int obj_idx;
1382 unsigned int class_idx;
1383 enum fullness_group fg;
1384 struct size_class *class;
1385 struct mapping_area *area;
1387 obj = handle_to_obj(handle);
1388 obj_to_location(obj, &page, &obj_idx);
1389 zspage = get_zspage(page);
1390 get_zspage_mapping(zspage, &class_idx, &fg);
1391 class = pool->size_class[class_idx];
1392 off = (class->size * obj_idx) & ~PAGE_MASK;
1394 area = this_cpu_ptr(&zs_map_area);
1395 if (off + class->size <= PAGE_SIZE)
1396 kunmap_atomic(area->vm_addr);
1397 else {
1398 struct page *pages[2];
1400 pages[0] = page;
1401 pages[1] = get_next_page(page);
1402 BUG_ON(!pages[1]);
1404 __zs_unmap_object(area, pages, off, class->size);
1406 put_cpu_var(zs_map_area);
1408 migrate_read_unlock(zspage);
1409 unpin_tag(handle);
1411 EXPORT_SYMBOL_GPL(zs_unmap_object);
1414 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1415 * zsmalloc &size_class.
1416 * @pool: zsmalloc pool to use
1418 * The function returns the size of the first huge class - any object of equal
1419 * or bigger size will be stored in zspage consisting of a single physical
1420 * page.
1422 * Context: Any context.
1424 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1426 size_t zs_huge_class_size(struct zs_pool *pool)
1428 return huge_class_size;
1430 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1432 static unsigned long obj_malloc(struct size_class *class,
1433 struct zspage *zspage, unsigned long handle)
1435 int i, nr_page, offset;
1436 unsigned long obj;
1437 struct link_free *link;
1439 struct page *m_page;
1440 unsigned long m_offset;
1441 void *vaddr;
1443 handle |= OBJ_ALLOCATED_TAG;
1444 obj = get_freeobj(zspage);
1446 offset = obj * class->size;
1447 nr_page = offset >> PAGE_SHIFT;
1448 m_offset = offset & ~PAGE_MASK;
1449 m_page = get_first_page(zspage);
1451 for (i = 0; i < nr_page; i++)
1452 m_page = get_next_page(m_page);
1454 vaddr = kmap_atomic(m_page);
1455 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1456 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1457 if (likely(!PageHugeObject(m_page)))
1458 /* record handle in the header of allocated chunk */
1459 link->handle = handle;
1460 else
1461 /* record handle to page->index */
1462 zspage->first_page->index = handle;
1464 kunmap_atomic(vaddr);
1465 mod_zspage_inuse(zspage, 1);
1466 zs_stat_inc(class, OBJ_USED, 1);
1468 obj = location_to_obj(m_page, obj);
1470 return obj;
1475 * zs_malloc - Allocate block of given size from pool.
1476 * @pool: pool to allocate from
1477 * @size: size of block to allocate
1478 * @gfp: gfp flags when allocating object
1480 * On success, handle to the allocated object is returned,
1481 * otherwise 0.
1482 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1484 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1486 unsigned long handle, obj;
1487 struct size_class *class;
1488 enum fullness_group newfg;
1489 struct zspage *zspage;
1491 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1492 return 0;
1494 handle = cache_alloc_handle(pool, gfp);
1495 if (!handle)
1496 return 0;
1498 /* extra space in chunk to keep the handle */
1499 size += ZS_HANDLE_SIZE;
1500 class = pool->size_class[get_size_class_index(size)];
1502 spin_lock(&class->lock);
1503 zspage = find_get_zspage(class);
1504 if (likely(zspage)) {
1505 obj = obj_malloc(class, zspage, handle);
1506 /* Now move the zspage to another fullness group, if required */
1507 fix_fullness_group(class, zspage);
1508 record_obj(handle, obj);
1509 spin_unlock(&class->lock);
1511 return handle;
1514 spin_unlock(&class->lock);
1516 zspage = alloc_zspage(pool, class, gfp);
1517 if (!zspage) {
1518 cache_free_handle(pool, handle);
1519 return 0;
1522 spin_lock(&class->lock);
1523 obj = obj_malloc(class, zspage, handle);
1524 newfg = get_fullness_group(class, zspage);
1525 insert_zspage(class, zspage, newfg);
1526 set_zspage_mapping(zspage, class->index, newfg);
1527 record_obj(handle, obj);
1528 atomic_long_add(class->pages_per_zspage,
1529 &pool->pages_allocated);
1530 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1532 /* We completely set up zspage so mark them as movable */
1533 SetZsPageMovable(pool, zspage);
1534 spin_unlock(&class->lock);
1536 return handle;
1538 EXPORT_SYMBOL_GPL(zs_malloc);
1540 static void obj_free(struct size_class *class, unsigned long obj)
1542 struct link_free *link;
1543 struct zspage *zspage;
1544 struct page *f_page;
1545 unsigned long f_offset;
1546 unsigned int f_objidx;
1547 void *vaddr;
1549 obj &= ~OBJ_ALLOCATED_TAG;
1550 obj_to_location(obj, &f_page, &f_objidx);
1551 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1552 zspage = get_zspage(f_page);
1554 vaddr = kmap_atomic(f_page);
1556 /* Insert this object in containing zspage's freelist */
1557 link = (struct link_free *)(vaddr + f_offset);
1558 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1559 kunmap_atomic(vaddr);
1560 set_freeobj(zspage, f_objidx);
1561 mod_zspage_inuse(zspage, -1);
1562 zs_stat_dec(class, OBJ_USED, 1);
1565 void zs_free(struct zs_pool *pool, unsigned long handle)
1567 struct zspage *zspage;
1568 struct page *f_page;
1569 unsigned long obj;
1570 unsigned int f_objidx;
1571 int class_idx;
1572 struct size_class *class;
1573 enum fullness_group fullness;
1574 bool isolated;
1576 if (unlikely(!handle))
1577 return;
1579 pin_tag(handle);
1580 obj = handle_to_obj(handle);
1581 obj_to_location(obj, &f_page, &f_objidx);
1582 zspage = get_zspage(f_page);
1584 migrate_read_lock(zspage);
1586 get_zspage_mapping(zspage, &class_idx, &fullness);
1587 class = pool->size_class[class_idx];
1589 spin_lock(&class->lock);
1590 obj_free(class, obj);
1591 fullness = fix_fullness_group(class, zspage);
1592 if (fullness != ZS_EMPTY) {
1593 migrate_read_unlock(zspage);
1594 goto out;
1597 isolated = is_zspage_isolated(zspage);
1598 migrate_read_unlock(zspage);
1599 /* If zspage is isolated, zs_page_putback will free the zspage */
1600 if (likely(!isolated))
1601 free_zspage(pool, class, zspage);
1602 out:
1604 spin_unlock(&class->lock);
1605 unpin_tag(handle);
1606 cache_free_handle(pool, handle);
1608 EXPORT_SYMBOL_GPL(zs_free);
1610 static void zs_object_copy(struct size_class *class, unsigned long dst,
1611 unsigned long src)
1613 struct page *s_page, *d_page;
1614 unsigned int s_objidx, d_objidx;
1615 unsigned long s_off, d_off;
1616 void *s_addr, *d_addr;
1617 int s_size, d_size, size;
1618 int written = 0;
1620 s_size = d_size = class->size;
1622 obj_to_location(src, &s_page, &s_objidx);
1623 obj_to_location(dst, &d_page, &d_objidx);
1625 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1626 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1628 if (s_off + class->size > PAGE_SIZE)
1629 s_size = PAGE_SIZE - s_off;
1631 if (d_off + class->size > PAGE_SIZE)
1632 d_size = PAGE_SIZE - d_off;
1634 s_addr = kmap_atomic(s_page);
1635 d_addr = kmap_atomic(d_page);
1637 while (1) {
1638 size = min(s_size, d_size);
1639 memcpy(d_addr + d_off, s_addr + s_off, size);
1640 written += size;
1642 if (written == class->size)
1643 break;
1645 s_off += size;
1646 s_size -= size;
1647 d_off += size;
1648 d_size -= size;
1650 if (s_off >= PAGE_SIZE) {
1651 kunmap_atomic(d_addr);
1652 kunmap_atomic(s_addr);
1653 s_page = get_next_page(s_page);
1654 s_addr = kmap_atomic(s_page);
1655 d_addr = kmap_atomic(d_page);
1656 s_size = class->size - written;
1657 s_off = 0;
1660 if (d_off >= PAGE_SIZE) {
1661 kunmap_atomic(d_addr);
1662 d_page = get_next_page(d_page);
1663 d_addr = kmap_atomic(d_page);
1664 d_size = class->size - written;
1665 d_off = 0;
1669 kunmap_atomic(d_addr);
1670 kunmap_atomic(s_addr);
1674 * Find alloced object in zspage from index object and
1675 * return handle.
1677 static unsigned long find_alloced_obj(struct size_class *class,
1678 struct page *page, int *obj_idx)
1680 unsigned long head;
1681 int offset = 0;
1682 int index = *obj_idx;
1683 unsigned long handle = 0;
1684 void *addr = kmap_atomic(page);
1686 offset = get_first_obj_offset(page);
1687 offset += class->size * index;
1689 while (offset < PAGE_SIZE) {
1690 head = obj_to_head(page, addr + offset);
1691 if (head & OBJ_ALLOCATED_TAG) {
1692 handle = head & ~OBJ_ALLOCATED_TAG;
1693 if (trypin_tag(handle))
1694 break;
1695 handle = 0;
1698 offset += class->size;
1699 index++;
1702 kunmap_atomic(addr);
1704 *obj_idx = index;
1706 return handle;
1709 struct zs_compact_control {
1710 /* Source spage for migration which could be a subpage of zspage */
1711 struct page *s_page;
1712 /* Destination page for migration which should be a first page
1713 * of zspage. */
1714 struct page *d_page;
1715 /* Starting object index within @s_page which used for live object
1716 * in the subpage. */
1717 int obj_idx;
1720 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1721 struct zs_compact_control *cc)
1723 unsigned long used_obj, free_obj;
1724 unsigned long handle;
1725 struct page *s_page = cc->s_page;
1726 struct page *d_page = cc->d_page;
1727 int obj_idx = cc->obj_idx;
1728 int ret = 0;
1730 while (1) {
1731 handle = find_alloced_obj(class, s_page, &obj_idx);
1732 if (!handle) {
1733 s_page = get_next_page(s_page);
1734 if (!s_page)
1735 break;
1736 obj_idx = 0;
1737 continue;
1740 /* Stop if there is no more space */
1741 if (zspage_full(class, get_zspage(d_page))) {
1742 unpin_tag(handle);
1743 ret = -ENOMEM;
1744 break;
1747 used_obj = handle_to_obj(handle);
1748 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1749 zs_object_copy(class, free_obj, used_obj);
1750 obj_idx++;
1752 * record_obj updates handle's value to free_obj and it will
1753 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1754 * breaks synchronization using pin_tag(e,g, zs_free) so
1755 * let's keep the lock bit.
1757 free_obj |= BIT(HANDLE_PIN_BIT);
1758 record_obj(handle, free_obj);
1759 unpin_tag(handle);
1760 obj_free(class, used_obj);
1763 /* Remember last position in this iteration */
1764 cc->s_page = s_page;
1765 cc->obj_idx = obj_idx;
1767 return ret;
1770 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1772 int i;
1773 struct zspage *zspage;
1774 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1776 if (!source) {
1777 fg[0] = ZS_ALMOST_FULL;
1778 fg[1] = ZS_ALMOST_EMPTY;
1781 for (i = 0; i < 2; i++) {
1782 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1783 struct zspage, list);
1784 if (zspage) {
1785 VM_BUG_ON(is_zspage_isolated(zspage));
1786 remove_zspage(class, zspage, fg[i]);
1787 return zspage;
1791 return zspage;
1795 * putback_zspage - add @zspage into right class's fullness list
1796 * @class: destination class
1797 * @zspage: target page
1799 * Return @zspage's fullness_group
1801 static enum fullness_group putback_zspage(struct size_class *class,
1802 struct zspage *zspage)
1804 enum fullness_group fullness;
1806 VM_BUG_ON(is_zspage_isolated(zspage));
1808 fullness = get_fullness_group(class, zspage);
1809 insert_zspage(class, zspage, fullness);
1810 set_zspage_mapping(zspage, class->index, fullness);
1812 return fullness;
1815 #ifdef CONFIG_COMPACTION
1816 static struct dentry *zs_mount(struct file_system_type *fs_type,
1817 int flags, const char *dev_name, void *data)
1819 static const struct dentry_operations ops = {
1820 .d_dname = simple_dname,
1823 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1826 static struct file_system_type zsmalloc_fs = {
1827 .name = "zsmalloc",
1828 .mount = zs_mount,
1829 .kill_sb = kill_anon_super,
1832 static int zsmalloc_mount(void)
1834 int ret = 0;
1836 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1837 if (IS_ERR(zsmalloc_mnt))
1838 ret = PTR_ERR(zsmalloc_mnt);
1840 return ret;
1843 static void zsmalloc_unmount(void)
1845 kern_unmount(zsmalloc_mnt);
1848 static void migrate_lock_init(struct zspage *zspage)
1850 rwlock_init(&zspage->lock);
1853 static void migrate_read_lock(struct zspage *zspage)
1855 read_lock(&zspage->lock);
1858 static void migrate_read_unlock(struct zspage *zspage)
1860 read_unlock(&zspage->lock);
1863 static void migrate_write_lock(struct zspage *zspage)
1865 write_lock(&zspage->lock);
1868 static void migrate_write_unlock(struct zspage *zspage)
1870 write_unlock(&zspage->lock);
1873 /* Number of isolated subpage for *page migration* in this zspage */
1874 static void inc_zspage_isolation(struct zspage *zspage)
1876 zspage->isolated++;
1879 static void dec_zspage_isolation(struct zspage *zspage)
1881 zspage->isolated--;
1884 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1885 struct page *newpage, struct page *oldpage)
1887 struct page *page;
1888 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1889 int idx = 0;
1891 page = get_first_page(zspage);
1892 do {
1893 if (page == oldpage)
1894 pages[idx] = newpage;
1895 else
1896 pages[idx] = page;
1897 idx++;
1898 } while ((page = get_next_page(page)) != NULL);
1900 create_page_chain(class, zspage, pages);
1901 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1902 if (unlikely(PageHugeObject(oldpage)))
1903 newpage->index = oldpage->index;
1904 __SetPageMovable(newpage, page_mapping(oldpage));
1907 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1909 struct zs_pool *pool;
1910 struct size_class *class;
1911 int class_idx;
1912 enum fullness_group fullness;
1913 struct zspage *zspage;
1914 struct address_space *mapping;
1917 * Page is locked so zspage couldn't be destroyed. For detail, look at
1918 * lock_zspage in free_zspage.
1920 VM_BUG_ON_PAGE(!PageMovable(page), page);
1921 VM_BUG_ON_PAGE(PageIsolated(page), page);
1923 zspage = get_zspage(page);
1926 * Without class lock, fullness could be stale while class_idx is okay
1927 * because class_idx is constant unless page is freed so we should get
1928 * fullness again under class lock.
1930 get_zspage_mapping(zspage, &class_idx, &fullness);
1931 mapping = page_mapping(page);
1932 pool = mapping->private_data;
1933 class = pool->size_class[class_idx];
1935 spin_lock(&class->lock);
1936 if (get_zspage_inuse(zspage) == 0) {
1937 spin_unlock(&class->lock);
1938 return false;
1941 /* zspage is isolated for object migration */
1942 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1943 spin_unlock(&class->lock);
1944 return false;
1948 * If this is first time isolation for the zspage, isolate zspage from
1949 * size_class to prevent further object allocation from the zspage.
1951 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1952 get_zspage_mapping(zspage, &class_idx, &fullness);
1953 remove_zspage(class, zspage, fullness);
1956 inc_zspage_isolation(zspage);
1957 spin_unlock(&class->lock);
1959 return true;
1962 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1963 struct page *page, enum migrate_mode mode)
1965 struct zs_pool *pool;
1966 struct size_class *class;
1967 int class_idx;
1968 enum fullness_group fullness;
1969 struct zspage *zspage;
1970 struct page *dummy;
1971 void *s_addr, *d_addr, *addr;
1972 int offset, pos;
1973 unsigned long handle, head;
1974 unsigned long old_obj, new_obj;
1975 unsigned int obj_idx;
1976 int ret = -EAGAIN;
1979 * We cannot support the _NO_COPY case here, because copy needs to
1980 * happen under the zs lock, which does not work with
1981 * MIGRATE_SYNC_NO_COPY workflow.
1983 if (mode == MIGRATE_SYNC_NO_COPY)
1984 return -EINVAL;
1986 VM_BUG_ON_PAGE(!PageMovable(page), page);
1987 VM_BUG_ON_PAGE(!PageIsolated(page), page);
1989 zspage = get_zspage(page);
1991 /* Concurrent compactor cannot migrate any subpage in zspage */
1992 migrate_write_lock(zspage);
1993 get_zspage_mapping(zspage, &class_idx, &fullness);
1994 pool = mapping->private_data;
1995 class = pool->size_class[class_idx];
1996 offset = get_first_obj_offset(page);
1998 spin_lock(&class->lock);
1999 if (!get_zspage_inuse(zspage)) {
2001 * Set "offset" to end of the page so that every loops
2002 * skips unnecessary object scanning.
2004 offset = PAGE_SIZE;
2007 pos = offset;
2008 s_addr = kmap_atomic(page);
2009 while (pos < PAGE_SIZE) {
2010 head = obj_to_head(page, s_addr + pos);
2011 if (head & OBJ_ALLOCATED_TAG) {
2012 handle = head & ~OBJ_ALLOCATED_TAG;
2013 if (!trypin_tag(handle))
2014 goto unpin_objects;
2016 pos += class->size;
2020 * Here, any user cannot access all objects in the zspage so let's move.
2022 d_addr = kmap_atomic(newpage);
2023 memcpy(d_addr, s_addr, PAGE_SIZE);
2024 kunmap_atomic(d_addr);
2026 for (addr = s_addr + offset; addr < s_addr + pos;
2027 addr += class->size) {
2028 head = obj_to_head(page, addr);
2029 if (head & OBJ_ALLOCATED_TAG) {
2030 handle = head & ~OBJ_ALLOCATED_TAG;
2031 if (!testpin_tag(handle))
2032 BUG();
2034 old_obj = handle_to_obj(handle);
2035 obj_to_location(old_obj, &dummy, &obj_idx);
2036 new_obj = (unsigned long)location_to_obj(newpage,
2037 obj_idx);
2038 new_obj |= BIT(HANDLE_PIN_BIT);
2039 record_obj(handle, new_obj);
2043 replace_sub_page(class, zspage, newpage, page);
2044 get_page(newpage);
2046 dec_zspage_isolation(zspage);
2049 * Page migration is done so let's putback isolated zspage to
2050 * the list if @page is final isolated subpage in the zspage.
2052 if (!is_zspage_isolated(zspage))
2053 putback_zspage(class, zspage);
2055 reset_page(page);
2056 put_page(page);
2057 page = newpage;
2059 ret = MIGRATEPAGE_SUCCESS;
2060 unpin_objects:
2061 for (addr = s_addr + offset; addr < s_addr + pos;
2062 addr += class->size) {
2063 head = obj_to_head(page, addr);
2064 if (head & OBJ_ALLOCATED_TAG) {
2065 handle = head & ~OBJ_ALLOCATED_TAG;
2066 if (!testpin_tag(handle))
2067 BUG();
2068 unpin_tag(handle);
2071 kunmap_atomic(s_addr);
2072 spin_unlock(&class->lock);
2073 migrate_write_unlock(zspage);
2075 return ret;
2078 void zs_page_putback(struct page *page)
2080 struct zs_pool *pool;
2081 struct size_class *class;
2082 int class_idx;
2083 enum fullness_group fg;
2084 struct address_space *mapping;
2085 struct zspage *zspage;
2087 VM_BUG_ON_PAGE(!PageMovable(page), page);
2088 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2090 zspage = get_zspage(page);
2091 get_zspage_mapping(zspage, &class_idx, &fg);
2092 mapping = page_mapping(page);
2093 pool = mapping->private_data;
2094 class = pool->size_class[class_idx];
2096 spin_lock(&class->lock);
2097 dec_zspage_isolation(zspage);
2098 if (!is_zspage_isolated(zspage)) {
2099 fg = putback_zspage(class, zspage);
2101 * Due to page_lock, we cannot free zspage immediately
2102 * so let's defer.
2104 if (fg == ZS_EMPTY)
2105 schedule_work(&pool->free_work);
2107 spin_unlock(&class->lock);
2110 const struct address_space_operations zsmalloc_aops = {
2111 .isolate_page = zs_page_isolate,
2112 .migratepage = zs_page_migrate,
2113 .putback_page = zs_page_putback,
2116 static int zs_register_migration(struct zs_pool *pool)
2118 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2119 if (IS_ERR(pool->inode)) {
2120 pool->inode = NULL;
2121 return 1;
2124 pool->inode->i_mapping->private_data = pool;
2125 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2126 return 0;
2129 static void zs_unregister_migration(struct zs_pool *pool)
2131 flush_work(&pool->free_work);
2132 iput(pool->inode);
2136 * Caller should hold page_lock of all pages in the zspage
2137 * In here, we cannot use zspage meta data.
2139 static void async_free_zspage(struct work_struct *work)
2141 int i;
2142 struct size_class *class;
2143 unsigned int class_idx;
2144 enum fullness_group fullness;
2145 struct zspage *zspage, *tmp;
2146 LIST_HEAD(free_pages);
2147 struct zs_pool *pool = container_of(work, struct zs_pool,
2148 free_work);
2150 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2151 class = pool->size_class[i];
2152 if (class->index != i)
2153 continue;
2155 spin_lock(&class->lock);
2156 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2157 spin_unlock(&class->lock);
2161 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2162 list_del(&zspage->list);
2163 lock_zspage(zspage);
2165 get_zspage_mapping(zspage, &class_idx, &fullness);
2166 VM_BUG_ON(fullness != ZS_EMPTY);
2167 class = pool->size_class[class_idx];
2168 spin_lock(&class->lock);
2169 __free_zspage(pool, pool->size_class[class_idx], zspage);
2170 spin_unlock(&class->lock);
2174 static void kick_deferred_free(struct zs_pool *pool)
2176 schedule_work(&pool->free_work);
2179 static void init_deferred_free(struct zs_pool *pool)
2181 INIT_WORK(&pool->free_work, async_free_zspage);
2184 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2186 struct page *page = get_first_page(zspage);
2188 do {
2189 WARN_ON(!trylock_page(page));
2190 __SetPageMovable(page, pool->inode->i_mapping);
2191 unlock_page(page);
2192 } while ((page = get_next_page(page)) != NULL);
2194 #endif
2198 * Based on the number of unused allocated objects calculate
2199 * and return the number of pages that we can free.
2201 static unsigned long zs_can_compact(struct size_class *class)
2203 unsigned long obj_wasted;
2204 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2205 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2207 if (obj_allocated <= obj_used)
2208 return 0;
2210 obj_wasted = obj_allocated - obj_used;
2211 obj_wasted /= class->objs_per_zspage;
2213 return obj_wasted * class->pages_per_zspage;
2216 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2218 struct zs_compact_control cc;
2219 struct zspage *src_zspage;
2220 struct zspage *dst_zspage = NULL;
2222 spin_lock(&class->lock);
2223 while ((src_zspage = isolate_zspage(class, true))) {
2225 if (!zs_can_compact(class))
2226 break;
2228 cc.obj_idx = 0;
2229 cc.s_page = get_first_page(src_zspage);
2231 while ((dst_zspage = isolate_zspage(class, false))) {
2232 cc.d_page = get_first_page(dst_zspage);
2234 * If there is no more space in dst_page, resched
2235 * and see if anyone had allocated another zspage.
2237 if (!migrate_zspage(pool, class, &cc))
2238 break;
2240 putback_zspage(class, dst_zspage);
2243 /* Stop if we couldn't find slot */
2244 if (dst_zspage == NULL)
2245 break;
2247 putback_zspage(class, dst_zspage);
2248 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2249 free_zspage(pool, class, src_zspage);
2250 pool->stats.pages_compacted += class->pages_per_zspage;
2252 spin_unlock(&class->lock);
2253 cond_resched();
2254 spin_lock(&class->lock);
2257 if (src_zspage)
2258 putback_zspage(class, src_zspage);
2260 spin_unlock(&class->lock);
2263 unsigned long zs_compact(struct zs_pool *pool)
2265 int i;
2266 struct size_class *class;
2268 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2269 class = pool->size_class[i];
2270 if (!class)
2271 continue;
2272 if (class->index != i)
2273 continue;
2274 __zs_compact(pool, class);
2277 return pool->stats.pages_compacted;
2279 EXPORT_SYMBOL_GPL(zs_compact);
2281 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2283 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2285 EXPORT_SYMBOL_GPL(zs_pool_stats);
2287 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2288 struct shrink_control *sc)
2290 unsigned long pages_freed;
2291 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2292 shrinker);
2294 pages_freed = pool->stats.pages_compacted;
2296 * Compact classes and calculate compaction delta.
2297 * Can run concurrently with a manually triggered
2298 * (by user) compaction.
2300 pages_freed = zs_compact(pool) - pages_freed;
2302 return pages_freed ? pages_freed : SHRINK_STOP;
2305 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2306 struct shrink_control *sc)
2308 int i;
2309 struct size_class *class;
2310 unsigned long pages_to_free = 0;
2311 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2312 shrinker);
2314 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2315 class = pool->size_class[i];
2316 if (!class)
2317 continue;
2318 if (class->index != i)
2319 continue;
2321 pages_to_free += zs_can_compact(class);
2324 return pages_to_free;
2327 static void zs_unregister_shrinker(struct zs_pool *pool)
2329 unregister_shrinker(&pool->shrinker);
2332 static int zs_register_shrinker(struct zs_pool *pool)
2334 pool->shrinker.scan_objects = zs_shrinker_scan;
2335 pool->shrinker.count_objects = zs_shrinker_count;
2336 pool->shrinker.batch = 0;
2337 pool->shrinker.seeks = DEFAULT_SEEKS;
2339 return register_shrinker(&pool->shrinker);
2343 * zs_create_pool - Creates an allocation pool to work from.
2344 * @name: pool name to be created
2346 * This function must be called before anything when using
2347 * the zsmalloc allocator.
2349 * On success, a pointer to the newly created pool is returned,
2350 * otherwise NULL.
2352 struct zs_pool *zs_create_pool(const char *name)
2354 int i;
2355 struct zs_pool *pool;
2356 struct size_class *prev_class = NULL;
2358 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2359 if (!pool)
2360 return NULL;
2362 init_deferred_free(pool);
2364 pool->name = kstrdup(name, GFP_KERNEL);
2365 if (!pool->name)
2366 goto err;
2368 if (create_cache(pool))
2369 goto err;
2372 * Iterate reversely, because, size of size_class that we want to use
2373 * for merging should be larger or equal to current size.
2375 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2376 int size;
2377 int pages_per_zspage;
2378 int objs_per_zspage;
2379 struct size_class *class;
2380 int fullness = 0;
2382 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2383 if (size > ZS_MAX_ALLOC_SIZE)
2384 size = ZS_MAX_ALLOC_SIZE;
2385 pages_per_zspage = get_pages_per_zspage(size);
2386 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2389 * We iterate from biggest down to smallest classes,
2390 * so huge_class_size holds the size of the first huge
2391 * class. Any object bigger than or equal to that will
2392 * endup in the huge class.
2394 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2395 !huge_class_size) {
2396 huge_class_size = size;
2398 * The object uses ZS_HANDLE_SIZE bytes to store the
2399 * handle. We need to subtract it, because zs_malloc()
2400 * unconditionally adds handle size before it performs
2401 * size class search - so object may be smaller than
2402 * huge class size, yet it still can end up in the huge
2403 * class because it grows by ZS_HANDLE_SIZE extra bytes
2404 * right before class lookup.
2406 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2410 * size_class is used for normal zsmalloc operation such
2411 * as alloc/free for that size. Although it is natural that we
2412 * have one size_class for each size, there is a chance that we
2413 * can get more memory utilization if we use one size_class for
2414 * many different sizes whose size_class have same
2415 * characteristics. So, we makes size_class point to
2416 * previous size_class if possible.
2418 if (prev_class) {
2419 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2420 pool->size_class[i] = prev_class;
2421 continue;
2425 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2426 if (!class)
2427 goto err;
2429 class->size = size;
2430 class->index = i;
2431 class->pages_per_zspage = pages_per_zspage;
2432 class->objs_per_zspage = objs_per_zspage;
2433 spin_lock_init(&class->lock);
2434 pool->size_class[i] = class;
2435 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2436 fullness++)
2437 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2439 prev_class = class;
2442 /* debug only, don't abort if it fails */
2443 zs_pool_stat_create(pool, name);
2445 if (zs_register_migration(pool))
2446 goto err;
2449 * Not critical since shrinker is only used to trigger internal
2450 * defragmentation of the pool which is pretty optional thing. If
2451 * registration fails we still can use the pool normally and user can
2452 * trigger compaction manually. Thus, ignore return code.
2454 zs_register_shrinker(pool);
2456 return pool;
2458 err:
2459 zs_destroy_pool(pool);
2460 return NULL;
2462 EXPORT_SYMBOL_GPL(zs_create_pool);
2464 void zs_destroy_pool(struct zs_pool *pool)
2466 int i;
2468 zs_unregister_shrinker(pool);
2469 zs_unregister_migration(pool);
2470 zs_pool_stat_destroy(pool);
2472 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2473 int fg;
2474 struct size_class *class = pool->size_class[i];
2476 if (!class)
2477 continue;
2479 if (class->index != i)
2480 continue;
2482 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2483 if (!list_empty(&class->fullness_list[fg])) {
2484 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2485 class->size, fg);
2488 kfree(class);
2491 destroy_cache(pool);
2492 kfree(pool->name);
2493 kfree(pool);
2495 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2497 static int __init zs_init(void)
2499 int ret;
2501 ret = zsmalloc_mount();
2502 if (ret)
2503 goto out;
2505 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2506 zs_cpu_prepare, zs_cpu_dead);
2507 if (ret)
2508 goto hp_setup_fail;
2510 #ifdef CONFIG_ZPOOL
2511 zpool_register_driver(&zs_zpool_driver);
2512 #endif
2514 zs_stat_init();
2516 return 0;
2518 hp_setup_fail:
2519 zsmalloc_unmount();
2520 out:
2521 return ret;
2524 static void __exit zs_exit(void)
2526 #ifdef CONFIG_ZPOOL
2527 zpool_unregister_driver(&zs_zpool_driver);
2528 #endif
2529 zsmalloc_unmount();
2530 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2532 zs_stat_exit();
2535 module_init(zs_init);
2536 module_exit(zs_exit);
2538 MODULE_LICENSE("Dual BSD/GPL");
2539 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");