2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/pagemap.h>
59 #define ZSPAGE_MAGIC 0x58
62 * This must be power of 2 and greater than of equal to sizeof(link_free).
63 * These two conditions ensure that any 'struct link_free' itself doesn't
64 * span more than 1 page which avoids complex case of mapping 2 pages simply
65 * to restore link_free pointer values.
70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
73 #define ZS_MAX_ZSPAGE_ORDER 2
74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79 * Object location (<PFN>, <obj_idx>) is encoded as
80 * as single (unsigned long) handle value.
82 * Note that object index <obj_idx> starts from 0.
84 * This is made more complicated by various memory models and PAE.
87 #ifndef MAX_POSSIBLE_PHYSMEM_BITS
88 #ifdef MAX_PHYSMEM_BITS
89 #define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95 #define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
99 #define _PFN_BITS (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
102 * Memory for allocating for handle keeps object position by
103 * encoding <page, obj_idx> and the encoded value has a room
104 * in least bit(ie, look at obj_to_location).
105 * We use the bit to synchronize between object access by
106 * user and migration.
108 #define HANDLE_PIN_BIT 0
111 * Head in allocated object should have OBJ_ALLOCATED_TAG
112 * to identify the object was allocated or not.
113 * It's okay to add the status bit in the least bit because
114 * header keeps handle which is 4byte-aligned address so we
115 * have room for two bit at least.
117 #define OBJ_ALLOCATED_TAG 1
118 #define OBJ_TAG_BITS 1
119 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
120 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
122 #define FULLNESS_BITS 2
124 #define ISOLATED_BITS 3
125 #define MAGIC_VAL_BITS 8
127 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
128 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
129 #define ZS_MIN_ALLOC_SIZE \
130 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
131 /* each chunk includes extra space to keep handle */
132 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
135 * On systems with 4K page size, this gives 255 size classes! There is a
137 * - Large number of size classes is potentially wasteful as free page are
138 * spread across these classes
139 * - Small number of size classes causes large internal fragmentation
140 * - Probably its better to use specific size classes (empirically
141 * determined). NOTE: all those class sizes must be set as multiple of
142 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
144 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
147 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
148 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
149 ZS_SIZE_CLASS_DELTA) + 1)
151 enum fullness_group
{
169 struct zs_size_stat
{
170 unsigned long objs
[NR_ZS_STAT_TYPE
];
173 #ifdef CONFIG_ZSMALLOC_STAT
174 static struct dentry
*zs_stat_root
;
177 #ifdef CONFIG_COMPACTION
178 static struct vfsmount
*zsmalloc_mnt
;
182 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
184 * n = number of allocated objects
185 * N = total number of objects zspage can store
186 * f = fullness_threshold_frac
188 * Similarly, we assign zspage to:
189 * ZS_ALMOST_FULL when n > N / f
190 * ZS_EMPTY when n == 0
191 * ZS_FULL when n == N
193 * (see: fix_fullness_group())
195 static const int fullness_threshold_frac
= 4;
196 static size_t huge_class_size
;
200 struct list_head fullness_list
[NR_ZS_FULLNESS
];
202 * Size of objects stored in this class. Must be multiple
207 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
208 int pages_per_zspage
;
211 struct zs_size_stat stats
;
214 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
215 static void SetPageHugeObject(struct page
*page
)
217 SetPageOwnerPriv1(page
);
220 static void ClearPageHugeObject(struct page
*page
)
222 ClearPageOwnerPriv1(page
);
225 static int PageHugeObject(struct page
*page
)
227 return PageOwnerPriv1(page
);
231 * Placed within free objects to form a singly linked list.
232 * For every zspage, zspage->freeobj gives head of this list.
234 * This must be power of 2 and less than or equal to ZS_ALIGN
240 * It's valid for non-allocated object
244 * Handle of allocated object.
246 unsigned long handle
;
253 struct size_class
*size_class
[ZS_SIZE_CLASSES
];
254 struct kmem_cache
*handle_cachep
;
255 struct kmem_cache
*zspage_cachep
;
257 atomic_long_t pages_allocated
;
259 struct zs_pool_stats stats
;
261 /* Compact classes */
262 struct shrinker shrinker
;
264 #ifdef CONFIG_ZSMALLOC_STAT
265 struct dentry
*stat_dentry
;
267 #ifdef CONFIG_COMPACTION
269 struct work_struct free_work
;
275 unsigned int fullness
:FULLNESS_BITS
;
276 unsigned int class:CLASS_BITS
+ 1;
277 unsigned int isolated
:ISOLATED_BITS
;
278 unsigned int magic
:MAGIC_VAL_BITS
;
281 unsigned int freeobj
;
282 struct page
*first_page
;
283 struct list_head list
; /* fullness list */
284 #ifdef CONFIG_COMPACTION
289 struct mapping_area
{
290 #ifdef CONFIG_PGTABLE_MAPPING
291 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
293 char *vm_buf
; /* copy buffer for objects that span pages */
295 char *vm_addr
; /* address of kmap_atomic()'ed pages */
296 enum zs_mapmode vm_mm
; /* mapping mode */
299 #ifdef CONFIG_COMPACTION
300 static int zs_register_migration(struct zs_pool
*pool
);
301 static void zs_unregister_migration(struct zs_pool
*pool
);
302 static void migrate_lock_init(struct zspage
*zspage
);
303 static void migrate_read_lock(struct zspage
*zspage
);
304 static void migrate_read_unlock(struct zspage
*zspage
);
305 static void kick_deferred_free(struct zs_pool
*pool
);
306 static void init_deferred_free(struct zs_pool
*pool
);
307 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
);
309 static int zsmalloc_mount(void) { return 0; }
310 static void zsmalloc_unmount(void) {}
311 static int zs_register_migration(struct zs_pool
*pool
) { return 0; }
312 static void zs_unregister_migration(struct zs_pool
*pool
) {}
313 static void migrate_lock_init(struct zspage
*zspage
) {}
314 static void migrate_read_lock(struct zspage
*zspage
) {}
315 static void migrate_read_unlock(struct zspage
*zspage
) {}
316 static void kick_deferred_free(struct zs_pool
*pool
) {}
317 static void init_deferred_free(struct zs_pool
*pool
) {}
318 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
) {}
321 static int create_cache(struct zs_pool
*pool
)
323 pool
->handle_cachep
= kmem_cache_create("zs_handle", ZS_HANDLE_SIZE
,
325 if (!pool
->handle_cachep
)
328 pool
->zspage_cachep
= kmem_cache_create("zspage", sizeof(struct zspage
),
330 if (!pool
->zspage_cachep
) {
331 kmem_cache_destroy(pool
->handle_cachep
);
332 pool
->handle_cachep
= NULL
;
339 static void destroy_cache(struct zs_pool
*pool
)
341 kmem_cache_destroy(pool
->handle_cachep
);
342 kmem_cache_destroy(pool
->zspage_cachep
);
345 static unsigned long cache_alloc_handle(struct zs_pool
*pool
, gfp_t gfp
)
347 return (unsigned long)kmem_cache_alloc(pool
->handle_cachep
,
348 gfp
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
351 static void cache_free_handle(struct zs_pool
*pool
, unsigned long handle
)
353 kmem_cache_free(pool
->handle_cachep
, (void *)handle
);
356 static struct zspage
*cache_alloc_zspage(struct zs_pool
*pool
, gfp_t flags
)
358 return kmem_cache_alloc(pool
->zspage_cachep
,
359 flags
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
362 static void cache_free_zspage(struct zs_pool
*pool
, struct zspage
*zspage
)
364 kmem_cache_free(pool
->zspage_cachep
, zspage
);
367 static void record_obj(unsigned long handle
, unsigned long obj
)
370 * lsb of @obj represents handle lock while other bits
371 * represent object value the handle is pointing so
372 * updating shouldn't do store tearing.
374 WRITE_ONCE(*(unsigned long *)handle
, obj
);
381 static void *zs_zpool_create(const char *name
, gfp_t gfp
,
382 const struct zpool_ops
*zpool_ops
,
386 * Ignore global gfp flags: zs_malloc() may be invoked from
387 * different contexts and its caller must provide a valid
390 return zs_create_pool(name
);
393 static void zs_zpool_destroy(void *pool
)
395 zs_destroy_pool(pool
);
398 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
399 unsigned long *handle
)
401 *handle
= zs_malloc(pool
, size
, gfp
);
402 return *handle
? 0 : -1;
404 static void zs_zpool_free(void *pool
, unsigned long handle
)
406 zs_free(pool
, handle
);
409 static void *zs_zpool_map(void *pool
, unsigned long handle
,
410 enum zpool_mapmode mm
)
412 enum zs_mapmode zs_mm
;
421 case ZPOOL_MM_RW
: /* fallthru */
427 return zs_map_object(pool
, handle
, zs_mm
);
429 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
431 zs_unmap_object(pool
, handle
);
434 static u64
zs_zpool_total_size(void *pool
)
436 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
439 static struct zpool_driver zs_zpool_driver
= {
441 .owner
= THIS_MODULE
,
442 .create
= zs_zpool_create
,
443 .destroy
= zs_zpool_destroy
,
444 .malloc
= zs_zpool_malloc
,
445 .free
= zs_zpool_free
,
447 .unmap
= zs_zpool_unmap
,
448 .total_size
= zs_zpool_total_size
,
451 MODULE_ALIAS("zpool-zsmalloc");
452 #endif /* CONFIG_ZPOOL */
454 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
455 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
457 static bool is_zspage_isolated(struct zspage
*zspage
)
459 return zspage
->isolated
;
462 static __maybe_unused
int is_first_page(struct page
*page
)
464 return PagePrivate(page
);
467 /* Protected by class->lock */
468 static inline int get_zspage_inuse(struct zspage
*zspage
)
470 return zspage
->inuse
;
473 static inline void set_zspage_inuse(struct zspage
*zspage
, int val
)
478 static inline void mod_zspage_inuse(struct zspage
*zspage
, int val
)
480 zspage
->inuse
+= val
;
483 static inline struct page
*get_first_page(struct zspage
*zspage
)
485 struct page
*first_page
= zspage
->first_page
;
487 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
491 static inline int get_first_obj_offset(struct page
*page
)
496 static inline void set_first_obj_offset(struct page
*page
, int offset
)
498 page
->units
= offset
;
501 static inline unsigned int get_freeobj(struct zspage
*zspage
)
503 return zspage
->freeobj
;
506 static inline void set_freeobj(struct zspage
*zspage
, unsigned int obj
)
508 zspage
->freeobj
= obj
;
511 static void get_zspage_mapping(struct zspage
*zspage
,
512 unsigned int *class_idx
,
513 enum fullness_group
*fullness
)
515 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
517 *fullness
= zspage
->fullness
;
518 *class_idx
= zspage
->class;
521 static void set_zspage_mapping(struct zspage
*zspage
,
522 unsigned int class_idx
,
523 enum fullness_group fullness
)
525 zspage
->class = class_idx
;
526 zspage
->fullness
= fullness
;
530 * zsmalloc divides the pool into various size classes where each
531 * class maintains a list of zspages where each zspage is divided
532 * into equal sized chunks. Each allocation falls into one of these
533 * classes depending on its size. This function returns index of the
534 * size class which has chunk size big enough to hold the give size.
536 static int get_size_class_index(int size
)
540 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
541 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
542 ZS_SIZE_CLASS_DELTA
);
544 return min_t(int, ZS_SIZE_CLASSES
- 1, idx
);
547 /* type can be of enum type zs_stat_type or fullness_group */
548 static inline void zs_stat_inc(struct size_class
*class,
549 int type
, unsigned long cnt
)
551 class->stats
.objs
[type
] += cnt
;
554 /* type can be of enum type zs_stat_type or fullness_group */
555 static inline void zs_stat_dec(struct size_class
*class,
556 int type
, unsigned long cnt
)
558 class->stats
.objs
[type
] -= cnt
;
561 /* type can be of enum type zs_stat_type or fullness_group */
562 static inline unsigned long zs_stat_get(struct size_class
*class,
565 return class->stats
.objs
[type
];
568 #ifdef CONFIG_ZSMALLOC_STAT
570 static void __init
zs_stat_init(void)
572 if (!debugfs_initialized()) {
573 pr_warn("debugfs not available, stat dir not created\n");
577 zs_stat_root
= debugfs_create_dir("zsmalloc", NULL
);
579 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
582 static void __exit
zs_stat_exit(void)
584 debugfs_remove_recursive(zs_stat_root
);
587 static unsigned long zs_can_compact(struct size_class
*class);
589 static int zs_stats_size_show(struct seq_file
*s
, void *v
)
592 struct zs_pool
*pool
= s
->private;
593 struct size_class
*class;
595 unsigned long class_almost_full
, class_almost_empty
;
596 unsigned long obj_allocated
, obj_used
, pages_used
, freeable
;
597 unsigned long total_class_almost_full
= 0, total_class_almost_empty
= 0;
598 unsigned long total_objs
= 0, total_used_objs
= 0, total_pages
= 0;
599 unsigned long total_freeable
= 0;
601 seq_printf(s
, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
602 "class", "size", "almost_full", "almost_empty",
603 "obj_allocated", "obj_used", "pages_used",
604 "pages_per_zspage", "freeable");
606 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
607 class = pool
->size_class
[i
];
609 if (class->index
!= i
)
612 spin_lock(&class->lock
);
613 class_almost_full
= zs_stat_get(class, CLASS_ALMOST_FULL
);
614 class_almost_empty
= zs_stat_get(class, CLASS_ALMOST_EMPTY
);
615 obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
616 obj_used
= zs_stat_get(class, OBJ_USED
);
617 freeable
= zs_can_compact(class);
618 spin_unlock(&class->lock
);
620 objs_per_zspage
= class->objs_per_zspage
;
621 pages_used
= obj_allocated
/ objs_per_zspage
*
622 class->pages_per_zspage
;
624 seq_printf(s
, " %5u %5u %11lu %12lu %13lu"
625 " %10lu %10lu %16d %8lu\n",
626 i
, class->size
, class_almost_full
, class_almost_empty
,
627 obj_allocated
, obj_used
, pages_used
,
628 class->pages_per_zspage
, freeable
);
630 total_class_almost_full
+= class_almost_full
;
631 total_class_almost_empty
+= class_almost_empty
;
632 total_objs
+= obj_allocated
;
633 total_used_objs
+= obj_used
;
634 total_pages
+= pages_used
;
635 total_freeable
+= freeable
;
639 seq_printf(s
, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
640 "Total", "", total_class_almost_full
,
641 total_class_almost_empty
, total_objs
,
642 total_used_objs
, total_pages
, "", total_freeable
);
646 DEFINE_SHOW_ATTRIBUTE(zs_stats_size
);
648 static void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
650 struct dentry
*entry
;
653 pr_warn("no root stat dir, not creating <%s> stat dir\n", name
);
657 entry
= debugfs_create_dir(name
, zs_stat_root
);
659 pr_warn("debugfs dir <%s> creation failed\n", name
);
662 pool
->stat_dentry
= entry
;
664 entry
= debugfs_create_file("classes", S_IFREG
| S_IRUGO
,
665 pool
->stat_dentry
, pool
, &zs_stats_size_fops
);
667 pr_warn("%s: debugfs file entry <%s> creation failed\n",
669 debugfs_remove_recursive(pool
->stat_dentry
);
670 pool
->stat_dentry
= NULL
;
674 static void zs_pool_stat_destroy(struct zs_pool
*pool
)
676 debugfs_remove_recursive(pool
->stat_dentry
);
679 #else /* CONFIG_ZSMALLOC_STAT */
680 static void __init
zs_stat_init(void)
684 static void __exit
zs_stat_exit(void)
688 static inline void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
692 static inline void zs_pool_stat_destroy(struct zs_pool
*pool
)
699 * For each size class, zspages are divided into different groups
700 * depending on how "full" they are. This was done so that we could
701 * easily find empty or nearly empty zspages when we try to shrink
702 * the pool (not yet implemented). This function returns fullness
703 * status of the given page.
705 static enum fullness_group
get_fullness_group(struct size_class
*class,
706 struct zspage
*zspage
)
708 int inuse
, objs_per_zspage
;
709 enum fullness_group fg
;
711 inuse
= get_zspage_inuse(zspage
);
712 objs_per_zspage
= class->objs_per_zspage
;
716 else if (inuse
== objs_per_zspage
)
718 else if (inuse
<= 3 * objs_per_zspage
/ fullness_threshold_frac
)
719 fg
= ZS_ALMOST_EMPTY
;
727 * Each size class maintains various freelists and zspages are assigned
728 * to one of these freelists based on the number of live objects they
729 * have. This functions inserts the given zspage into the freelist
730 * identified by <class, fullness_group>.
732 static void insert_zspage(struct size_class
*class,
733 struct zspage
*zspage
,
734 enum fullness_group fullness
)
738 zs_stat_inc(class, fullness
, 1);
739 head
= list_first_entry_or_null(&class->fullness_list
[fullness
],
740 struct zspage
, list
);
742 * We want to see more ZS_FULL pages and less almost empty/full.
743 * Put pages with higher ->inuse first.
746 if (get_zspage_inuse(zspage
) < get_zspage_inuse(head
)) {
747 list_add(&zspage
->list
, &head
->list
);
751 list_add(&zspage
->list
, &class->fullness_list
[fullness
]);
755 * This function removes the given zspage from the freelist identified
756 * by <class, fullness_group>.
758 static void remove_zspage(struct size_class
*class,
759 struct zspage
*zspage
,
760 enum fullness_group fullness
)
762 VM_BUG_ON(list_empty(&class->fullness_list
[fullness
]));
763 VM_BUG_ON(is_zspage_isolated(zspage
));
765 list_del_init(&zspage
->list
);
766 zs_stat_dec(class, fullness
, 1);
770 * Each size class maintains zspages in different fullness groups depending
771 * on the number of live objects they contain. When allocating or freeing
772 * objects, the fullness status of the page can change, say, from ALMOST_FULL
773 * to ALMOST_EMPTY when freeing an object. This function checks if such
774 * a status change has occurred for the given page and accordingly moves the
775 * page from the freelist of the old fullness group to that of the new
778 static enum fullness_group
fix_fullness_group(struct size_class
*class,
779 struct zspage
*zspage
)
782 enum fullness_group currfg
, newfg
;
784 get_zspage_mapping(zspage
, &class_idx
, &currfg
);
785 newfg
= get_fullness_group(class, zspage
);
789 if (!is_zspage_isolated(zspage
)) {
790 remove_zspage(class, zspage
, currfg
);
791 insert_zspage(class, zspage
, newfg
);
794 set_zspage_mapping(zspage
, class_idx
, newfg
);
801 * We have to decide on how many pages to link together
802 * to form a zspage for each size class. This is important
803 * to reduce wastage due to unusable space left at end of
804 * each zspage which is given as:
805 * wastage = Zp % class_size
806 * usage = Zp - wastage
807 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
809 * For example, for size class of 3/8 * PAGE_SIZE, we should
810 * link together 3 PAGE_SIZE sized pages to form a zspage
811 * since then we can perfectly fit in 8 such objects.
813 static int get_pages_per_zspage(int class_size
)
815 int i
, max_usedpc
= 0;
816 /* zspage order which gives maximum used size per KB */
817 int max_usedpc_order
= 1;
819 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
823 zspage_size
= i
* PAGE_SIZE
;
824 waste
= zspage_size
% class_size
;
825 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
827 if (usedpc
> max_usedpc
) {
829 max_usedpc_order
= i
;
833 return max_usedpc_order
;
836 static struct zspage
*get_zspage(struct page
*page
)
838 struct zspage
*zspage
= (struct zspage
*)page
->private;
840 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
844 static struct page
*get_next_page(struct page
*page
)
846 if (unlikely(PageHugeObject(page
)))
849 return page
->freelist
;
853 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
854 * @obj: the encoded object value
855 * @page: page object resides in zspage
856 * @obj_idx: object index
858 static void obj_to_location(unsigned long obj
, struct page
**page
,
859 unsigned int *obj_idx
)
861 obj
>>= OBJ_TAG_BITS
;
862 *page
= pfn_to_page(obj
>> OBJ_INDEX_BITS
);
863 *obj_idx
= (obj
& OBJ_INDEX_MASK
);
867 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
868 * @page: page object resides in zspage
869 * @obj_idx: object index
871 static unsigned long location_to_obj(struct page
*page
, unsigned int obj_idx
)
875 obj
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
876 obj
|= obj_idx
& OBJ_INDEX_MASK
;
877 obj
<<= OBJ_TAG_BITS
;
882 static unsigned long handle_to_obj(unsigned long handle
)
884 return *(unsigned long *)handle
;
887 static unsigned long obj_to_head(struct page
*page
, void *obj
)
889 if (unlikely(PageHugeObject(page
))) {
890 VM_BUG_ON_PAGE(!is_first_page(page
), page
);
893 return *(unsigned long *)obj
;
896 static inline int testpin_tag(unsigned long handle
)
898 return bit_spin_is_locked(HANDLE_PIN_BIT
, (unsigned long *)handle
);
901 static inline int trypin_tag(unsigned long handle
)
903 return bit_spin_trylock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
906 static void pin_tag(unsigned long handle
)
908 bit_spin_lock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
911 static void unpin_tag(unsigned long handle
)
913 bit_spin_unlock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
916 static void reset_page(struct page
*page
)
918 __ClearPageMovable(page
);
919 ClearPagePrivate(page
);
920 set_page_private(page
, 0);
921 page_mapcount_reset(page
);
922 ClearPageHugeObject(page
);
923 page
->freelist
= NULL
;
927 * To prevent zspage destroy during migration, zspage freeing should
928 * hold locks of all pages in the zspage.
930 void lock_zspage(struct zspage
*zspage
)
932 struct page
*page
= get_first_page(zspage
);
936 } while ((page
= get_next_page(page
)) != NULL
);
939 int trylock_zspage(struct zspage
*zspage
)
941 struct page
*cursor
, *fail
;
943 for (cursor
= get_first_page(zspage
); cursor
!= NULL
; cursor
=
944 get_next_page(cursor
)) {
945 if (!trylock_page(cursor
)) {
953 for (cursor
= get_first_page(zspage
); cursor
!= fail
; cursor
=
954 get_next_page(cursor
))
960 static void __free_zspage(struct zs_pool
*pool
, struct size_class
*class,
961 struct zspage
*zspage
)
963 struct page
*page
, *next
;
964 enum fullness_group fg
;
965 unsigned int class_idx
;
967 get_zspage_mapping(zspage
, &class_idx
, &fg
);
969 assert_spin_locked(&class->lock
);
971 VM_BUG_ON(get_zspage_inuse(zspage
));
972 VM_BUG_ON(fg
!= ZS_EMPTY
);
974 next
= page
= get_first_page(zspage
);
976 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
977 next
= get_next_page(page
);
980 dec_zone_page_state(page
, NR_ZSPAGES
);
983 } while (page
!= NULL
);
985 cache_free_zspage(pool
, zspage
);
987 zs_stat_dec(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
988 atomic_long_sub(class->pages_per_zspage
,
989 &pool
->pages_allocated
);
992 static void free_zspage(struct zs_pool
*pool
, struct size_class
*class,
993 struct zspage
*zspage
)
995 VM_BUG_ON(get_zspage_inuse(zspage
));
996 VM_BUG_ON(list_empty(&zspage
->list
));
998 if (!trylock_zspage(zspage
)) {
999 kick_deferred_free(pool
);
1003 remove_zspage(class, zspage
, ZS_EMPTY
);
1004 __free_zspage(pool
, class, zspage
);
1007 /* Initialize a newly allocated zspage */
1008 static void init_zspage(struct size_class
*class, struct zspage
*zspage
)
1010 unsigned int freeobj
= 1;
1011 unsigned long off
= 0;
1012 struct page
*page
= get_first_page(zspage
);
1015 struct page
*next_page
;
1016 struct link_free
*link
;
1019 set_first_obj_offset(page
, off
);
1021 vaddr
= kmap_atomic(page
);
1022 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
1024 while ((off
+= class->size
) < PAGE_SIZE
) {
1025 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1026 link
+= class->size
/ sizeof(*link
);
1030 * We now come to the last (full or partial) object on this
1031 * page, which must point to the first object on the next
1034 next_page
= get_next_page(page
);
1036 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1039 * Reset OBJ_TAG_BITS bit to last link to tell
1040 * whether it's allocated object or not.
1042 link
->next
= -1UL << OBJ_TAG_BITS
;
1044 kunmap_atomic(vaddr
);
1049 set_freeobj(zspage
, 0);
1052 static void create_page_chain(struct size_class
*class, struct zspage
*zspage
,
1053 struct page
*pages
[])
1057 struct page
*prev_page
= NULL
;
1058 int nr_pages
= class->pages_per_zspage
;
1061 * Allocate individual pages and link them together as:
1062 * 1. all pages are linked together using page->freelist
1063 * 2. each sub-page point to zspage using page->private
1065 * we set PG_private to identify the first page (i.e. no other sub-page
1066 * has this flag set).
1068 for (i
= 0; i
< nr_pages
; i
++) {
1070 set_page_private(page
, (unsigned long)zspage
);
1071 page
->freelist
= NULL
;
1073 zspage
->first_page
= page
;
1074 SetPagePrivate(page
);
1075 if (unlikely(class->objs_per_zspage
== 1 &&
1076 class->pages_per_zspage
== 1))
1077 SetPageHugeObject(page
);
1079 prev_page
->freelist
= page
;
1086 * Allocate a zspage for the given size class
1088 static struct zspage
*alloc_zspage(struct zs_pool
*pool
,
1089 struct size_class
*class,
1093 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
];
1094 struct zspage
*zspage
= cache_alloc_zspage(pool
, gfp
);
1099 memset(zspage
, 0, sizeof(struct zspage
));
1100 zspage
->magic
= ZSPAGE_MAGIC
;
1101 migrate_lock_init(zspage
);
1103 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
1106 page
= alloc_page(gfp
);
1109 dec_zone_page_state(pages
[i
], NR_ZSPAGES
);
1110 __free_page(pages
[i
]);
1112 cache_free_zspage(pool
, zspage
);
1116 inc_zone_page_state(page
, NR_ZSPAGES
);
1120 create_page_chain(class, zspage
, pages
);
1121 init_zspage(class, zspage
);
1126 static struct zspage
*find_get_zspage(struct size_class
*class)
1129 struct zspage
*zspage
;
1131 for (i
= ZS_ALMOST_FULL
; i
>= ZS_EMPTY
; i
--) {
1132 zspage
= list_first_entry_or_null(&class->fullness_list
[i
],
1133 struct zspage
, list
);
1141 #ifdef CONFIG_PGTABLE_MAPPING
1142 static inline int __zs_cpu_up(struct mapping_area
*area
)
1145 * Make sure we don't leak memory if a cpu UP notification
1146 * and zs_init() race and both call zs_cpu_up() on the same cpu
1150 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
1156 static inline void __zs_cpu_down(struct mapping_area
*area
)
1159 free_vm_area(area
->vm
);
1163 static inline void *__zs_map_object(struct mapping_area
*area
,
1164 struct page
*pages
[2], int off
, int size
)
1166 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
1167 area
->vm_addr
= area
->vm
->addr
;
1168 return area
->vm_addr
+ off
;
1171 static inline void __zs_unmap_object(struct mapping_area
*area
,
1172 struct page
*pages
[2], int off
, int size
)
1174 unsigned long addr
= (unsigned long)area
->vm_addr
;
1176 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
1179 #else /* CONFIG_PGTABLE_MAPPING */
1181 static inline int __zs_cpu_up(struct mapping_area
*area
)
1184 * Make sure we don't leak memory if a cpu UP notification
1185 * and zs_init() race and both call zs_cpu_up() on the same cpu
1189 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
1195 static inline void __zs_cpu_down(struct mapping_area
*area
)
1197 kfree(area
->vm_buf
);
1198 area
->vm_buf
= NULL
;
1201 static void *__zs_map_object(struct mapping_area
*area
,
1202 struct page
*pages
[2], int off
, int size
)
1206 char *buf
= area
->vm_buf
;
1208 /* disable page faults to match kmap_atomic() return conditions */
1209 pagefault_disable();
1211 /* no read fastpath */
1212 if (area
->vm_mm
== ZS_MM_WO
)
1215 sizes
[0] = PAGE_SIZE
- off
;
1216 sizes
[1] = size
- sizes
[0];
1218 /* copy object to per-cpu buffer */
1219 addr
= kmap_atomic(pages
[0]);
1220 memcpy(buf
, addr
+ off
, sizes
[0]);
1221 kunmap_atomic(addr
);
1222 addr
= kmap_atomic(pages
[1]);
1223 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
1224 kunmap_atomic(addr
);
1226 return area
->vm_buf
;
1229 static void __zs_unmap_object(struct mapping_area
*area
,
1230 struct page
*pages
[2], int off
, int size
)
1236 /* no write fastpath */
1237 if (area
->vm_mm
== ZS_MM_RO
)
1241 buf
= buf
+ ZS_HANDLE_SIZE
;
1242 size
-= ZS_HANDLE_SIZE
;
1243 off
+= ZS_HANDLE_SIZE
;
1245 sizes
[0] = PAGE_SIZE
- off
;
1246 sizes
[1] = size
- sizes
[0];
1248 /* copy per-cpu buffer to object */
1249 addr
= kmap_atomic(pages
[0]);
1250 memcpy(addr
+ off
, buf
, sizes
[0]);
1251 kunmap_atomic(addr
);
1252 addr
= kmap_atomic(pages
[1]);
1253 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
1254 kunmap_atomic(addr
);
1257 /* enable page faults to match kunmap_atomic() return conditions */
1261 #endif /* CONFIG_PGTABLE_MAPPING */
1263 static int zs_cpu_prepare(unsigned int cpu
)
1265 struct mapping_area
*area
;
1267 area
= &per_cpu(zs_map_area
, cpu
);
1268 return __zs_cpu_up(area
);
1271 static int zs_cpu_dead(unsigned int cpu
)
1273 struct mapping_area
*area
;
1275 area
= &per_cpu(zs_map_area
, cpu
);
1276 __zs_cpu_down(area
);
1280 static bool can_merge(struct size_class
*prev
, int pages_per_zspage
,
1281 int objs_per_zspage
)
1283 if (prev
->pages_per_zspage
== pages_per_zspage
&&
1284 prev
->objs_per_zspage
== objs_per_zspage
)
1290 static bool zspage_full(struct size_class
*class, struct zspage
*zspage
)
1292 return get_zspage_inuse(zspage
) == class->objs_per_zspage
;
1295 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1297 return atomic_long_read(&pool
->pages_allocated
);
1299 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1302 * zs_map_object - get address of allocated object from handle.
1303 * @pool: pool from which the object was allocated
1304 * @handle: handle returned from zs_malloc
1305 * @mm: maping mode to use
1307 * Before using an object allocated from zs_malloc, it must be mapped using
1308 * this function. When done with the object, it must be unmapped using
1311 * Only one object can be mapped per cpu at a time. There is no protection
1312 * against nested mappings.
1314 * This function returns with preemption and page faults disabled.
1316 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1319 struct zspage
*zspage
;
1321 unsigned long obj
, off
;
1322 unsigned int obj_idx
;
1324 unsigned int class_idx
;
1325 enum fullness_group fg
;
1326 struct size_class
*class;
1327 struct mapping_area
*area
;
1328 struct page
*pages
[2];
1332 * Because we use per-cpu mapping areas shared among the
1333 * pools/users, we can't allow mapping in interrupt context
1334 * because it can corrupt another users mappings.
1336 BUG_ON(in_interrupt());
1338 /* From now on, migration cannot move the object */
1341 obj
= handle_to_obj(handle
);
1342 obj_to_location(obj
, &page
, &obj_idx
);
1343 zspage
= get_zspage(page
);
1345 /* migration cannot move any subpage in this zspage */
1346 migrate_read_lock(zspage
);
1348 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1349 class = pool
->size_class
[class_idx
];
1350 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1352 area
= &get_cpu_var(zs_map_area
);
1354 if (off
+ class->size
<= PAGE_SIZE
) {
1355 /* this object is contained entirely within a page */
1356 area
->vm_addr
= kmap_atomic(page
);
1357 ret
= area
->vm_addr
+ off
;
1361 /* this object spans two pages */
1363 pages
[1] = get_next_page(page
);
1366 ret
= __zs_map_object(area
, pages
, off
, class->size
);
1368 if (likely(!PageHugeObject(page
)))
1369 ret
+= ZS_HANDLE_SIZE
;
1373 EXPORT_SYMBOL_GPL(zs_map_object
);
1375 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1377 struct zspage
*zspage
;
1379 unsigned long obj
, off
;
1380 unsigned int obj_idx
;
1382 unsigned int class_idx
;
1383 enum fullness_group fg
;
1384 struct size_class
*class;
1385 struct mapping_area
*area
;
1387 obj
= handle_to_obj(handle
);
1388 obj_to_location(obj
, &page
, &obj_idx
);
1389 zspage
= get_zspage(page
);
1390 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1391 class = pool
->size_class
[class_idx
];
1392 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1394 area
= this_cpu_ptr(&zs_map_area
);
1395 if (off
+ class->size
<= PAGE_SIZE
)
1396 kunmap_atomic(area
->vm_addr
);
1398 struct page
*pages
[2];
1401 pages
[1] = get_next_page(page
);
1404 __zs_unmap_object(area
, pages
, off
, class->size
);
1406 put_cpu_var(zs_map_area
);
1408 migrate_read_unlock(zspage
);
1411 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1414 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1415 * zsmalloc &size_class.
1416 * @pool: zsmalloc pool to use
1418 * The function returns the size of the first huge class - any object of equal
1419 * or bigger size will be stored in zspage consisting of a single physical
1422 * Context: Any context.
1424 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1426 size_t zs_huge_class_size(struct zs_pool
*pool
)
1428 return huge_class_size
;
1430 EXPORT_SYMBOL_GPL(zs_huge_class_size
);
1432 static unsigned long obj_malloc(struct size_class
*class,
1433 struct zspage
*zspage
, unsigned long handle
)
1435 int i
, nr_page
, offset
;
1437 struct link_free
*link
;
1439 struct page
*m_page
;
1440 unsigned long m_offset
;
1443 handle
|= OBJ_ALLOCATED_TAG
;
1444 obj
= get_freeobj(zspage
);
1446 offset
= obj
* class->size
;
1447 nr_page
= offset
>> PAGE_SHIFT
;
1448 m_offset
= offset
& ~PAGE_MASK
;
1449 m_page
= get_first_page(zspage
);
1451 for (i
= 0; i
< nr_page
; i
++)
1452 m_page
= get_next_page(m_page
);
1454 vaddr
= kmap_atomic(m_page
);
1455 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1456 set_freeobj(zspage
, link
->next
>> OBJ_TAG_BITS
);
1457 if (likely(!PageHugeObject(m_page
)))
1458 /* record handle in the header of allocated chunk */
1459 link
->handle
= handle
;
1461 /* record handle to page->index */
1462 zspage
->first_page
->index
= handle
;
1464 kunmap_atomic(vaddr
);
1465 mod_zspage_inuse(zspage
, 1);
1466 zs_stat_inc(class, OBJ_USED
, 1);
1468 obj
= location_to_obj(m_page
, obj
);
1475 * zs_malloc - Allocate block of given size from pool.
1476 * @pool: pool to allocate from
1477 * @size: size of block to allocate
1478 * @gfp: gfp flags when allocating object
1480 * On success, handle to the allocated object is returned,
1482 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1484 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
, gfp_t gfp
)
1486 unsigned long handle
, obj
;
1487 struct size_class
*class;
1488 enum fullness_group newfg
;
1489 struct zspage
*zspage
;
1491 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1494 handle
= cache_alloc_handle(pool
, gfp
);
1498 /* extra space in chunk to keep the handle */
1499 size
+= ZS_HANDLE_SIZE
;
1500 class = pool
->size_class
[get_size_class_index(size
)];
1502 spin_lock(&class->lock
);
1503 zspage
= find_get_zspage(class);
1504 if (likely(zspage
)) {
1505 obj
= obj_malloc(class, zspage
, handle
);
1506 /* Now move the zspage to another fullness group, if required */
1507 fix_fullness_group(class, zspage
);
1508 record_obj(handle
, obj
);
1509 spin_unlock(&class->lock
);
1514 spin_unlock(&class->lock
);
1516 zspage
= alloc_zspage(pool
, class, gfp
);
1518 cache_free_handle(pool
, handle
);
1522 spin_lock(&class->lock
);
1523 obj
= obj_malloc(class, zspage
, handle
);
1524 newfg
= get_fullness_group(class, zspage
);
1525 insert_zspage(class, zspage
, newfg
);
1526 set_zspage_mapping(zspage
, class->index
, newfg
);
1527 record_obj(handle
, obj
);
1528 atomic_long_add(class->pages_per_zspage
,
1529 &pool
->pages_allocated
);
1530 zs_stat_inc(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1532 /* We completely set up zspage so mark them as movable */
1533 SetZsPageMovable(pool
, zspage
);
1534 spin_unlock(&class->lock
);
1538 EXPORT_SYMBOL_GPL(zs_malloc
);
1540 static void obj_free(struct size_class
*class, unsigned long obj
)
1542 struct link_free
*link
;
1543 struct zspage
*zspage
;
1544 struct page
*f_page
;
1545 unsigned long f_offset
;
1546 unsigned int f_objidx
;
1549 obj
&= ~OBJ_ALLOCATED_TAG
;
1550 obj_to_location(obj
, &f_page
, &f_objidx
);
1551 f_offset
= (class->size
* f_objidx
) & ~PAGE_MASK
;
1552 zspage
= get_zspage(f_page
);
1554 vaddr
= kmap_atomic(f_page
);
1556 /* Insert this object in containing zspage's freelist */
1557 link
= (struct link_free
*)(vaddr
+ f_offset
);
1558 link
->next
= get_freeobj(zspage
) << OBJ_TAG_BITS
;
1559 kunmap_atomic(vaddr
);
1560 set_freeobj(zspage
, f_objidx
);
1561 mod_zspage_inuse(zspage
, -1);
1562 zs_stat_dec(class, OBJ_USED
, 1);
1565 void zs_free(struct zs_pool
*pool
, unsigned long handle
)
1567 struct zspage
*zspage
;
1568 struct page
*f_page
;
1570 unsigned int f_objidx
;
1572 struct size_class
*class;
1573 enum fullness_group fullness
;
1576 if (unlikely(!handle
))
1580 obj
= handle_to_obj(handle
);
1581 obj_to_location(obj
, &f_page
, &f_objidx
);
1582 zspage
= get_zspage(f_page
);
1584 migrate_read_lock(zspage
);
1586 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1587 class = pool
->size_class
[class_idx
];
1589 spin_lock(&class->lock
);
1590 obj_free(class, obj
);
1591 fullness
= fix_fullness_group(class, zspage
);
1592 if (fullness
!= ZS_EMPTY
) {
1593 migrate_read_unlock(zspage
);
1597 isolated
= is_zspage_isolated(zspage
);
1598 migrate_read_unlock(zspage
);
1599 /* If zspage is isolated, zs_page_putback will free the zspage */
1600 if (likely(!isolated
))
1601 free_zspage(pool
, class, zspage
);
1604 spin_unlock(&class->lock
);
1606 cache_free_handle(pool
, handle
);
1608 EXPORT_SYMBOL_GPL(zs_free
);
1610 static void zs_object_copy(struct size_class
*class, unsigned long dst
,
1613 struct page
*s_page
, *d_page
;
1614 unsigned int s_objidx
, d_objidx
;
1615 unsigned long s_off
, d_off
;
1616 void *s_addr
, *d_addr
;
1617 int s_size
, d_size
, size
;
1620 s_size
= d_size
= class->size
;
1622 obj_to_location(src
, &s_page
, &s_objidx
);
1623 obj_to_location(dst
, &d_page
, &d_objidx
);
1625 s_off
= (class->size
* s_objidx
) & ~PAGE_MASK
;
1626 d_off
= (class->size
* d_objidx
) & ~PAGE_MASK
;
1628 if (s_off
+ class->size
> PAGE_SIZE
)
1629 s_size
= PAGE_SIZE
- s_off
;
1631 if (d_off
+ class->size
> PAGE_SIZE
)
1632 d_size
= PAGE_SIZE
- d_off
;
1634 s_addr
= kmap_atomic(s_page
);
1635 d_addr
= kmap_atomic(d_page
);
1638 size
= min(s_size
, d_size
);
1639 memcpy(d_addr
+ d_off
, s_addr
+ s_off
, size
);
1642 if (written
== class->size
)
1650 if (s_off
>= PAGE_SIZE
) {
1651 kunmap_atomic(d_addr
);
1652 kunmap_atomic(s_addr
);
1653 s_page
= get_next_page(s_page
);
1654 s_addr
= kmap_atomic(s_page
);
1655 d_addr
= kmap_atomic(d_page
);
1656 s_size
= class->size
- written
;
1660 if (d_off
>= PAGE_SIZE
) {
1661 kunmap_atomic(d_addr
);
1662 d_page
= get_next_page(d_page
);
1663 d_addr
= kmap_atomic(d_page
);
1664 d_size
= class->size
- written
;
1669 kunmap_atomic(d_addr
);
1670 kunmap_atomic(s_addr
);
1674 * Find alloced object in zspage from index object and
1677 static unsigned long find_alloced_obj(struct size_class
*class,
1678 struct page
*page
, int *obj_idx
)
1682 int index
= *obj_idx
;
1683 unsigned long handle
= 0;
1684 void *addr
= kmap_atomic(page
);
1686 offset
= get_first_obj_offset(page
);
1687 offset
+= class->size
* index
;
1689 while (offset
< PAGE_SIZE
) {
1690 head
= obj_to_head(page
, addr
+ offset
);
1691 if (head
& OBJ_ALLOCATED_TAG
) {
1692 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1693 if (trypin_tag(handle
))
1698 offset
+= class->size
;
1702 kunmap_atomic(addr
);
1709 struct zs_compact_control
{
1710 /* Source spage for migration which could be a subpage of zspage */
1711 struct page
*s_page
;
1712 /* Destination page for migration which should be a first page
1714 struct page
*d_page
;
1715 /* Starting object index within @s_page which used for live object
1716 * in the subpage. */
1720 static int migrate_zspage(struct zs_pool
*pool
, struct size_class
*class,
1721 struct zs_compact_control
*cc
)
1723 unsigned long used_obj
, free_obj
;
1724 unsigned long handle
;
1725 struct page
*s_page
= cc
->s_page
;
1726 struct page
*d_page
= cc
->d_page
;
1727 int obj_idx
= cc
->obj_idx
;
1731 handle
= find_alloced_obj(class, s_page
, &obj_idx
);
1733 s_page
= get_next_page(s_page
);
1740 /* Stop if there is no more space */
1741 if (zspage_full(class, get_zspage(d_page
))) {
1747 used_obj
= handle_to_obj(handle
);
1748 free_obj
= obj_malloc(class, get_zspage(d_page
), handle
);
1749 zs_object_copy(class, free_obj
, used_obj
);
1752 * record_obj updates handle's value to free_obj and it will
1753 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1754 * breaks synchronization using pin_tag(e,g, zs_free) so
1755 * let's keep the lock bit.
1757 free_obj
|= BIT(HANDLE_PIN_BIT
);
1758 record_obj(handle
, free_obj
);
1760 obj_free(class, used_obj
);
1763 /* Remember last position in this iteration */
1764 cc
->s_page
= s_page
;
1765 cc
->obj_idx
= obj_idx
;
1770 static struct zspage
*isolate_zspage(struct size_class
*class, bool source
)
1773 struct zspage
*zspage
;
1774 enum fullness_group fg
[2] = {ZS_ALMOST_EMPTY
, ZS_ALMOST_FULL
};
1777 fg
[0] = ZS_ALMOST_FULL
;
1778 fg
[1] = ZS_ALMOST_EMPTY
;
1781 for (i
= 0; i
< 2; i
++) {
1782 zspage
= list_first_entry_or_null(&class->fullness_list
[fg
[i
]],
1783 struct zspage
, list
);
1785 VM_BUG_ON(is_zspage_isolated(zspage
));
1786 remove_zspage(class, zspage
, fg
[i
]);
1795 * putback_zspage - add @zspage into right class's fullness list
1796 * @class: destination class
1797 * @zspage: target page
1799 * Return @zspage's fullness_group
1801 static enum fullness_group
putback_zspage(struct size_class
*class,
1802 struct zspage
*zspage
)
1804 enum fullness_group fullness
;
1806 VM_BUG_ON(is_zspage_isolated(zspage
));
1808 fullness
= get_fullness_group(class, zspage
);
1809 insert_zspage(class, zspage
, fullness
);
1810 set_zspage_mapping(zspage
, class->index
, fullness
);
1815 #ifdef CONFIG_COMPACTION
1816 static struct dentry
*zs_mount(struct file_system_type
*fs_type
,
1817 int flags
, const char *dev_name
, void *data
)
1819 static const struct dentry_operations ops
= {
1820 .d_dname
= simple_dname
,
1823 return mount_pseudo(fs_type
, "zsmalloc:", NULL
, &ops
, ZSMALLOC_MAGIC
);
1826 static struct file_system_type zsmalloc_fs
= {
1829 .kill_sb
= kill_anon_super
,
1832 static int zsmalloc_mount(void)
1836 zsmalloc_mnt
= kern_mount(&zsmalloc_fs
);
1837 if (IS_ERR(zsmalloc_mnt
))
1838 ret
= PTR_ERR(zsmalloc_mnt
);
1843 static void zsmalloc_unmount(void)
1845 kern_unmount(zsmalloc_mnt
);
1848 static void migrate_lock_init(struct zspage
*zspage
)
1850 rwlock_init(&zspage
->lock
);
1853 static void migrate_read_lock(struct zspage
*zspage
)
1855 read_lock(&zspage
->lock
);
1858 static void migrate_read_unlock(struct zspage
*zspage
)
1860 read_unlock(&zspage
->lock
);
1863 static void migrate_write_lock(struct zspage
*zspage
)
1865 write_lock(&zspage
->lock
);
1868 static void migrate_write_unlock(struct zspage
*zspage
)
1870 write_unlock(&zspage
->lock
);
1873 /* Number of isolated subpage for *page migration* in this zspage */
1874 static void inc_zspage_isolation(struct zspage
*zspage
)
1879 static void dec_zspage_isolation(struct zspage
*zspage
)
1884 static void replace_sub_page(struct size_class
*class, struct zspage
*zspage
,
1885 struct page
*newpage
, struct page
*oldpage
)
1888 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
] = {NULL
, };
1891 page
= get_first_page(zspage
);
1893 if (page
== oldpage
)
1894 pages
[idx
] = newpage
;
1898 } while ((page
= get_next_page(page
)) != NULL
);
1900 create_page_chain(class, zspage
, pages
);
1901 set_first_obj_offset(newpage
, get_first_obj_offset(oldpage
));
1902 if (unlikely(PageHugeObject(oldpage
)))
1903 newpage
->index
= oldpage
->index
;
1904 __SetPageMovable(newpage
, page_mapping(oldpage
));
1907 bool zs_page_isolate(struct page
*page
, isolate_mode_t mode
)
1909 struct zs_pool
*pool
;
1910 struct size_class
*class;
1912 enum fullness_group fullness
;
1913 struct zspage
*zspage
;
1914 struct address_space
*mapping
;
1917 * Page is locked so zspage couldn't be destroyed. For detail, look at
1918 * lock_zspage in free_zspage.
1920 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1921 VM_BUG_ON_PAGE(PageIsolated(page
), page
);
1923 zspage
= get_zspage(page
);
1926 * Without class lock, fullness could be stale while class_idx is okay
1927 * because class_idx is constant unless page is freed so we should get
1928 * fullness again under class lock.
1930 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1931 mapping
= page_mapping(page
);
1932 pool
= mapping
->private_data
;
1933 class = pool
->size_class
[class_idx
];
1935 spin_lock(&class->lock
);
1936 if (get_zspage_inuse(zspage
) == 0) {
1937 spin_unlock(&class->lock
);
1941 /* zspage is isolated for object migration */
1942 if (list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1943 spin_unlock(&class->lock
);
1948 * If this is first time isolation for the zspage, isolate zspage from
1949 * size_class to prevent further object allocation from the zspage.
1951 if (!list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1952 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1953 remove_zspage(class, zspage
, fullness
);
1956 inc_zspage_isolation(zspage
);
1957 spin_unlock(&class->lock
);
1962 int zs_page_migrate(struct address_space
*mapping
, struct page
*newpage
,
1963 struct page
*page
, enum migrate_mode mode
)
1965 struct zs_pool
*pool
;
1966 struct size_class
*class;
1968 enum fullness_group fullness
;
1969 struct zspage
*zspage
;
1971 void *s_addr
, *d_addr
, *addr
;
1973 unsigned long handle
, head
;
1974 unsigned long old_obj
, new_obj
;
1975 unsigned int obj_idx
;
1979 * We cannot support the _NO_COPY case here, because copy needs to
1980 * happen under the zs lock, which does not work with
1981 * MIGRATE_SYNC_NO_COPY workflow.
1983 if (mode
== MIGRATE_SYNC_NO_COPY
)
1986 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1987 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
1989 zspage
= get_zspage(page
);
1991 /* Concurrent compactor cannot migrate any subpage in zspage */
1992 migrate_write_lock(zspage
);
1993 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1994 pool
= mapping
->private_data
;
1995 class = pool
->size_class
[class_idx
];
1996 offset
= get_first_obj_offset(page
);
1998 spin_lock(&class->lock
);
1999 if (!get_zspage_inuse(zspage
)) {
2001 * Set "offset" to end of the page so that every loops
2002 * skips unnecessary object scanning.
2008 s_addr
= kmap_atomic(page
);
2009 while (pos
< PAGE_SIZE
) {
2010 head
= obj_to_head(page
, s_addr
+ pos
);
2011 if (head
& OBJ_ALLOCATED_TAG
) {
2012 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2013 if (!trypin_tag(handle
))
2020 * Here, any user cannot access all objects in the zspage so let's move.
2022 d_addr
= kmap_atomic(newpage
);
2023 memcpy(d_addr
, s_addr
, PAGE_SIZE
);
2024 kunmap_atomic(d_addr
);
2026 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2027 addr
+= class->size
) {
2028 head
= obj_to_head(page
, addr
);
2029 if (head
& OBJ_ALLOCATED_TAG
) {
2030 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2031 if (!testpin_tag(handle
))
2034 old_obj
= handle_to_obj(handle
);
2035 obj_to_location(old_obj
, &dummy
, &obj_idx
);
2036 new_obj
= (unsigned long)location_to_obj(newpage
,
2038 new_obj
|= BIT(HANDLE_PIN_BIT
);
2039 record_obj(handle
, new_obj
);
2043 replace_sub_page(class, zspage
, newpage
, page
);
2046 dec_zspage_isolation(zspage
);
2049 * Page migration is done so let's putback isolated zspage to
2050 * the list if @page is final isolated subpage in the zspage.
2052 if (!is_zspage_isolated(zspage
))
2053 putback_zspage(class, zspage
);
2059 ret
= MIGRATEPAGE_SUCCESS
;
2061 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2062 addr
+= class->size
) {
2063 head
= obj_to_head(page
, addr
);
2064 if (head
& OBJ_ALLOCATED_TAG
) {
2065 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2066 if (!testpin_tag(handle
))
2071 kunmap_atomic(s_addr
);
2072 spin_unlock(&class->lock
);
2073 migrate_write_unlock(zspage
);
2078 void zs_page_putback(struct page
*page
)
2080 struct zs_pool
*pool
;
2081 struct size_class
*class;
2083 enum fullness_group fg
;
2084 struct address_space
*mapping
;
2085 struct zspage
*zspage
;
2087 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
2088 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
2090 zspage
= get_zspage(page
);
2091 get_zspage_mapping(zspage
, &class_idx
, &fg
);
2092 mapping
= page_mapping(page
);
2093 pool
= mapping
->private_data
;
2094 class = pool
->size_class
[class_idx
];
2096 spin_lock(&class->lock
);
2097 dec_zspage_isolation(zspage
);
2098 if (!is_zspage_isolated(zspage
)) {
2099 fg
= putback_zspage(class, zspage
);
2101 * Due to page_lock, we cannot free zspage immediately
2105 schedule_work(&pool
->free_work
);
2107 spin_unlock(&class->lock
);
2110 const struct address_space_operations zsmalloc_aops
= {
2111 .isolate_page
= zs_page_isolate
,
2112 .migratepage
= zs_page_migrate
,
2113 .putback_page
= zs_page_putback
,
2116 static int zs_register_migration(struct zs_pool
*pool
)
2118 pool
->inode
= alloc_anon_inode(zsmalloc_mnt
->mnt_sb
);
2119 if (IS_ERR(pool
->inode
)) {
2124 pool
->inode
->i_mapping
->private_data
= pool
;
2125 pool
->inode
->i_mapping
->a_ops
= &zsmalloc_aops
;
2129 static void zs_unregister_migration(struct zs_pool
*pool
)
2131 flush_work(&pool
->free_work
);
2136 * Caller should hold page_lock of all pages in the zspage
2137 * In here, we cannot use zspage meta data.
2139 static void async_free_zspage(struct work_struct
*work
)
2142 struct size_class
*class;
2143 unsigned int class_idx
;
2144 enum fullness_group fullness
;
2145 struct zspage
*zspage
, *tmp
;
2146 LIST_HEAD(free_pages
);
2147 struct zs_pool
*pool
= container_of(work
, struct zs_pool
,
2150 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2151 class = pool
->size_class
[i
];
2152 if (class->index
!= i
)
2155 spin_lock(&class->lock
);
2156 list_splice_init(&class->fullness_list
[ZS_EMPTY
], &free_pages
);
2157 spin_unlock(&class->lock
);
2161 list_for_each_entry_safe(zspage
, tmp
, &free_pages
, list
) {
2162 list_del(&zspage
->list
);
2163 lock_zspage(zspage
);
2165 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2166 VM_BUG_ON(fullness
!= ZS_EMPTY
);
2167 class = pool
->size_class
[class_idx
];
2168 spin_lock(&class->lock
);
2169 __free_zspage(pool
, pool
->size_class
[class_idx
], zspage
);
2170 spin_unlock(&class->lock
);
2174 static void kick_deferred_free(struct zs_pool
*pool
)
2176 schedule_work(&pool
->free_work
);
2179 static void init_deferred_free(struct zs_pool
*pool
)
2181 INIT_WORK(&pool
->free_work
, async_free_zspage
);
2184 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
)
2186 struct page
*page
= get_first_page(zspage
);
2189 WARN_ON(!trylock_page(page
));
2190 __SetPageMovable(page
, pool
->inode
->i_mapping
);
2192 } while ((page
= get_next_page(page
)) != NULL
);
2198 * Based on the number of unused allocated objects calculate
2199 * and return the number of pages that we can free.
2201 static unsigned long zs_can_compact(struct size_class
*class)
2203 unsigned long obj_wasted
;
2204 unsigned long obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
2205 unsigned long obj_used
= zs_stat_get(class, OBJ_USED
);
2207 if (obj_allocated
<= obj_used
)
2210 obj_wasted
= obj_allocated
- obj_used
;
2211 obj_wasted
/= class->objs_per_zspage
;
2213 return obj_wasted
* class->pages_per_zspage
;
2216 static void __zs_compact(struct zs_pool
*pool
, struct size_class
*class)
2218 struct zs_compact_control cc
;
2219 struct zspage
*src_zspage
;
2220 struct zspage
*dst_zspage
= NULL
;
2222 spin_lock(&class->lock
);
2223 while ((src_zspage
= isolate_zspage(class, true))) {
2225 if (!zs_can_compact(class))
2229 cc
.s_page
= get_first_page(src_zspage
);
2231 while ((dst_zspage
= isolate_zspage(class, false))) {
2232 cc
.d_page
= get_first_page(dst_zspage
);
2234 * If there is no more space in dst_page, resched
2235 * and see if anyone had allocated another zspage.
2237 if (!migrate_zspage(pool
, class, &cc
))
2240 putback_zspage(class, dst_zspage
);
2243 /* Stop if we couldn't find slot */
2244 if (dst_zspage
== NULL
)
2247 putback_zspage(class, dst_zspage
);
2248 if (putback_zspage(class, src_zspage
) == ZS_EMPTY
) {
2249 free_zspage(pool
, class, src_zspage
);
2250 pool
->stats
.pages_compacted
+= class->pages_per_zspage
;
2252 spin_unlock(&class->lock
);
2254 spin_lock(&class->lock
);
2258 putback_zspage(class, src_zspage
);
2260 spin_unlock(&class->lock
);
2263 unsigned long zs_compact(struct zs_pool
*pool
)
2266 struct size_class
*class;
2268 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2269 class = pool
->size_class
[i
];
2272 if (class->index
!= i
)
2274 __zs_compact(pool
, class);
2277 return pool
->stats
.pages_compacted
;
2279 EXPORT_SYMBOL_GPL(zs_compact
);
2281 void zs_pool_stats(struct zs_pool
*pool
, struct zs_pool_stats
*stats
)
2283 memcpy(stats
, &pool
->stats
, sizeof(struct zs_pool_stats
));
2285 EXPORT_SYMBOL_GPL(zs_pool_stats
);
2287 static unsigned long zs_shrinker_scan(struct shrinker
*shrinker
,
2288 struct shrink_control
*sc
)
2290 unsigned long pages_freed
;
2291 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2294 pages_freed
= pool
->stats
.pages_compacted
;
2296 * Compact classes and calculate compaction delta.
2297 * Can run concurrently with a manually triggered
2298 * (by user) compaction.
2300 pages_freed
= zs_compact(pool
) - pages_freed
;
2302 return pages_freed
? pages_freed
: SHRINK_STOP
;
2305 static unsigned long zs_shrinker_count(struct shrinker
*shrinker
,
2306 struct shrink_control
*sc
)
2309 struct size_class
*class;
2310 unsigned long pages_to_free
= 0;
2311 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2314 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2315 class = pool
->size_class
[i
];
2318 if (class->index
!= i
)
2321 pages_to_free
+= zs_can_compact(class);
2324 return pages_to_free
;
2327 static void zs_unregister_shrinker(struct zs_pool
*pool
)
2329 unregister_shrinker(&pool
->shrinker
);
2332 static int zs_register_shrinker(struct zs_pool
*pool
)
2334 pool
->shrinker
.scan_objects
= zs_shrinker_scan
;
2335 pool
->shrinker
.count_objects
= zs_shrinker_count
;
2336 pool
->shrinker
.batch
= 0;
2337 pool
->shrinker
.seeks
= DEFAULT_SEEKS
;
2339 return register_shrinker(&pool
->shrinker
);
2343 * zs_create_pool - Creates an allocation pool to work from.
2344 * @name: pool name to be created
2346 * This function must be called before anything when using
2347 * the zsmalloc allocator.
2349 * On success, a pointer to the newly created pool is returned,
2352 struct zs_pool
*zs_create_pool(const char *name
)
2355 struct zs_pool
*pool
;
2356 struct size_class
*prev_class
= NULL
;
2358 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2362 init_deferred_free(pool
);
2364 pool
->name
= kstrdup(name
, GFP_KERNEL
);
2368 if (create_cache(pool
))
2372 * Iterate reversely, because, size of size_class that we want to use
2373 * for merging should be larger or equal to current size.
2375 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2377 int pages_per_zspage
;
2378 int objs_per_zspage
;
2379 struct size_class
*class;
2382 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
2383 if (size
> ZS_MAX_ALLOC_SIZE
)
2384 size
= ZS_MAX_ALLOC_SIZE
;
2385 pages_per_zspage
= get_pages_per_zspage(size
);
2386 objs_per_zspage
= pages_per_zspage
* PAGE_SIZE
/ size
;
2389 * We iterate from biggest down to smallest classes,
2390 * so huge_class_size holds the size of the first huge
2391 * class. Any object bigger than or equal to that will
2392 * endup in the huge class.
2394 if (pages_per_zspage
!= 1 && objs_per_zspage
!= 1 &&
2396 huge_class_size
= size
;
2398 * The object uses ZS_HANDLE_SIZE bytes to store the
2399 * handle. We need to subtract it, because zs_malloc()
2400 * unconditionally adds handle size before it performs
2401 * size class search - so object may be smaller than
2402 * huge class size, yet it still can end up in the huge
2403 * class because it grows by ZS_HANDLE_SIZE extra bytes
2404 * right before class lookup.
2406 huge_class_size
-= (ZS_HANDLE_SIZE
- 1);
2410 * size_class is used for normal zsmalloc operation such
2411 * as alloc/free for that size. Although it is natural that we
2412 * have one size_class for each size, there is a chance that we
2413 * can get more memory utilization if we use one size_class for
2414 * many different sizes whose size_class have same
2415 * characteristics. So, we makes size_class point to
2416 * previous size_class if possible.
2419 if (can_merge(prev_class
, pages_per_zspage
, objs_per_zspage
)) {
2420 pool
->size_class
[i
] = prev_class
;
2425 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
2431 class->pages_per_zspage
= pages_per_zspage
;
2432 class->objs_per_zspage
= objs_per_zspage
;
2433 spin_lock_init(&class->lock
);
2434 pool
->size_class
[i
] = class;
2435 for (fullness
= ZS_EMPTY
; fullness
< NR_ZS_FULLNESS
;
2437 INIT_LIST_HEAD(&class->fullness_list
[fullness
]);
2442 /* debug only, don't abort if it fails */
2443 zs_pool_stat_create(pool
, name
);
2445 if (zs_register_migration(pool
))
2449 * Not critical since shrinker is only used to trigger internal
2450 * defragmentation of the pool which is pretty optional thing. If
2451 * registration fails we still can use the pool normally and user can
2452 * trigger compaction manually. Thus, ignore return code.
2454 zs_register_shrinker(pool
);
2459 zs_destroy_pool(pool
);
2462 EXPORT_SYMBOL_GPL(zs_create_pool
);
2464 void zs_destroy_pool(struct zs_pool
*pool
)
2468 zs_unregister_shrinker(pool
);
2469 zs_unregister_migration(pool
);
2470 zs_pool_stat_destroy(pool
);
2472 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2474 struct size_class
*class = pool
->size_class
[i
];
2479 if (class->index
!= i
)
2482 for (fg
= ZS_EMPTY
; fg
< NR_ZS_FULLNESS
; fg
++) {
2483 if (!list_empty(&class->fullness_list
[fg
])) {
2484 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2491 destroy_cache(pool
);
2495 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
2497 static int __init
zs_init(void)
2501 ret
= zsmalloc_mount();
2505 ret
= cpuhp_setup_state(CPUHP_MM_ZS_PREPARE
, "mm/zsmalloc:prepare",
2506 zs_cpu_prepare
, zs_cpu_dead
);
2511 zpool_register_driver(&zs_zpool_driver
);
2524 static void __exit
zs_exit(void)
2527 zpool_unregister_driver(&zs_zpool_driver
);
2530 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE
);
2535 module_init(zs_init
);
2536 module_exit(zs_exit
);
2538 MODULE_LICENSE("Dual BSD/GPL");
2539 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");