pktgen: add needed include file
[linux/fpc-iii.git] / net / core / sock.c
blob85e8de1bc7fd8897434af2f3da5b17ea80d38f89
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
15 * Fixes:
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
36 * TCP layer surgery.
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
64 * (compatibility fix)
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
83 * To Fix:
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
99 #include <linux/in.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
121 #include <asm/uaccess.h>
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
135 #include <linux/filter.h>
137 #include <trace/events/sock.h>
139 #ifdef CONFIG_INET
140 #include <net/tcp.h>
141 #endif
143 #include <net/busy_poll.h>
145 static DEFINE_MUTEX(proto_list_mutex);
146 static LIST_HEAD(proto_list);
148 #ifdef CONFIG_MEMCG_KMEM
149 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
151 struct proto *proto;
152 int ret = 0;
154 mutex_lock(&proto_list_mutex);
155 list_for_each_entry(proto, &proto_list, node) {
156 if (proto->init_cgroup) {
157 ret = proto->init_cgroup(memcg, ss);
158 if (ret)
159 goto out;
163 mutex_unlock(&proto_list_mutex);
164 return ret;
165 out:
166 list_for_each_entry_continue_reverse(proto, &proto_list, node)
167 if (proto->destroy_cgroup)
168 proto->destroy_cgroup(memcg);
169 mutex_unlock(&proto_list_mutex);
170 return ret;
173 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
175 struct proto *proto;
177 mutex_lock(&proto_list_mutex);
178 list_for_each_entry_reverse(proto, &proto_list, node)
179 if (proto->destroy_cgroup)
180 proto->destroy_cgroup(memcg);
181 mutex_unlock(&proto_list_mutex);
183 #endif
186 * Each address family might have different locking rules, so we have
187 * one slock key per address family:
189 static struct lock_class_key af_family_keys[AF_MAX];
190 static struct lock_class_key af_family_slock_keys[AF_MAX];
192 #if defined(CONFIG_MEMCG_KMEM)
193 struct static_key memcg_socket_limit_enabled;
194 EXPORT_SYMBOL(memcg_socket_limit_enabled);
195 #endif
198 * Make lock validator output more readable. (we pre-construct these
199 * strings build-time, so that runtime initialization of socket
200 * locks is fast):
202 static const char *const af_family_key_strings[AF_MAX+1] = {
203 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
204 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
205 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
206 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
207 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
208 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
209 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
210 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
211 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
212 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
213 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
214 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
215 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
216 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
218 static const char *const af_family_slock_key_strings[AF_MAX+1] = {
219 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
220 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
221 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
222 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
223 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
224 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
225 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
226 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
227 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
228 "slock-27" , "slock-28" , "slock-AF_CAN" ,
229 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
230 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
231 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
232 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
234 static const char *const af_family_clock_key_strings[AF_MAX+1] = {
235 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
236 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
237 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
238 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
239 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
240 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
241 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
242 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
243 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
244 "clock-27" , "clock-28" , "clock-AF_CAN" ,
245 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
246 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
247 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
248 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
252 * sk_callback_lock locking rules are per-address-family,
253 * so split the lock classes by using a per-AF key:
255 static struct lock_class_key af_callback_keys[AF_MAX];
257 /* Take into consideration the size of the struct sk_buff overhead in the
258 * determination of these values, since that is non-constant across
259 * platforms. This makes socket queueing behavior and performance
260 * not depend upon such differences.
262 #define _SK_MEM_PACKETS 256
263 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
264 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
265 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
267 /* Run time adjustable parameters. */
268 __u32 sysctl_wmem_max __read_mostly = SK_WMEM_MAX;
269 EXPORT_SYMBOL(sysctl_wmem_max);
270 __u32 sysctl_rmem_max __read_mostly = SK_RMEM_MAX;
271 EXPORT_SYMBOL(sysctl_rmem_max);
272 __u32 sysctl_wmem_default __read_mostly = SK_WMEM_MAX;
273 __u32 sysctl_rmem_default __read_mostly = SK_RMEM_MAX;
275 /* Maximal space eaten by iovec or ancillary data plus some space */
276 int sysctl_optmem_max __read_mostly = sizeof(unsigned long)*(2*UIO_MAXIOV+512);
277 EXPORT_SYMBOL(sysctl_optmem_max);
279 struct static_key memalloc_socks = STATIC_KEY_INIT_FALSE;
280 EXPORT_SYMBOL_GPL(memalloc_socks);
283 * sk_set_memalloc - sets %SOCK_MEMALLOC
284 * @sk: socket to set it on
286 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
287 * It's the responsibility of the admin to adjust min_free_kbytes
288 * to meet the requirements
290 void sk_set_memalloc(struct sock *sk)
292 sock_set_flag(sk, SOCK_MEMALLOC);
293 sk->sk_allocation |= __GFP_MEMALLOC;
294 static_key_slow_inc(&memalloc_socks);
296 EXPORT_SYMBOL_GPL(sk_set_memalloc);
298 void sk_clear_memalloc(struct sock *sk)
300 sock_reset_flag(sk, SOCK_MEMALLOC);
301 sk->sk_allocation &= ~__GFP_MEMALLOC;
302 static_key_slow_dec(&memalloc_socks);
305 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
306 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
307 * it has rmem allocations there is a risk that the user of the
308 * socket cannot make forward progress due to exceeding the rmem
309 * limits. By rights, sk_clear_memalloc() should only be called
310 * on sockets being torn down but warn and reset the accounting if
311 * that assumption breaks.
313 if (WARN_ON(sk->sk_forward_alloc))
314 sk_mem_reclaim(sk);
316 EXPORT_SYMBOL_GPL(sk_clear_memalloc);
318 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
320 int ret;
321 unsigned long pflags = current->flags;
323 /* these should have been dropped before queueing */
324 BUG_ON(!sock_flag(sk, SOCK_MEMALLOC));
326 current->flags |= PF_MEMALLOC;
327 ret = sk->sk_backlog_rcv(sk, skb);
328 tsk_restore_flags(current, pflags, PF_MEMALLOC);
330 return ret;
332 EXPORT_SYMBOL(__sk_backlog_rcv);
334 static int sock_set_timeout(long *timeo_p, char __user *optval, int optlen)
336 struct timeval tv;
338 if (optlen < sizeof(tv))
339 return -EINVAL;
340 if (copy_from_user(&tv, optval, sizeof(tv)))
341 return -EFAULT;
342 if (tv.tv_usec < 0 || tv.tv_usec >= USEC_PER_SEC)
343 return -EDOM;
345 if (tv.tv_sec < 0) {
346 static int warned __read_mostly;
348 *timeo_p = 0;
349 if (warned < 10 && net_ratelimit()) {
350 warned++;
351 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
352 __func__, current->comm, task_pid_nr(current));
354 return 0;
356 *timeo_p = MAX_SCHEDULE_TIMEOUT;
357 if (tv.tv_sec == 0 && tv.tv_usec == 0)
358 return 0;
359 if (tv.tv_sec < (MAX_SCHEDULE_TIMEOUT/HZ - 1))
360 *timeo_p = tv.tv_sec*HZ + (tv.tv_usec+(1000000/HZ-1))/(1000000/HZ);
361 return 0;
364 static void sock_warn_obsolete_bsdism(const char *name)
366 static int warned;
367 static char warncomm[TASK_COMM_LEN];
368 if (strcmp(warncomm, current->comm) && warned < 5) {
369 strcpy(warncomm, current->comm);
370 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
371 warncomm, name);
372 warned++;
376 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
378 static void sock_disable_timestamp(struct sock *sk, unsigned long flags)
380 if (sk->sk_flags & flags) {
381 sk->sk_flags &= ~flags;
382 if (!(sk->sk_flags & SK_FLAGS_TIMESTAMP))
383 net_disable_timestamp();
388 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
390 int err;
391 int skb_len;
392 unsigned long flags;
393 struct sk_buff_head *list = &sk->sk_receive_queue;
395 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf) {
396 atomic_inc(&sk->sk_drops);
397 trace_sock_rcvqueue_full(sk, skb);
398 return -ENOMEM;
401 err = sk_filter(sk, skb);
402 if (err)
403 return err;
405 if (!sk_rmem_schedule(sk, skb, skb->truesize)) {
406 atomic_inc(&sk->sk_drops);
407 return -ENOBUFS;
410 skb->dev = NULL;
411 skb_set_owner_r(skb, sk);
413 /* Cache the SKB length before we tack it onto the receive
414 * queue. Once it is added it no longer belongs to us and
415 * may be freed by other threads of control pulling packets
416 * from the queue.
418 skb_len = skb->len;
420 /* we escape from rcu protected region, make sure we dont leak
421 * a norefcounted dst
423 skb_dst_force(skb);
425 spin_lock_irqsave(&list->lock, flags);
426 skb->dropcount = atomic_read(&sk->sk_drops);
427 __skb_queue_tail(list, skb);
428 spin_unlock_irqrestore(&list->lock, flags);
430 if (!sock_flag(sk, SOCK_DEAD))
431 sk->sk_data_ready(sk, skb_len);
432 return 0;
434 EXPORT_SYMBOL(sock_queue_rcv_skb);
436 int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested)
438 int rc = NET_RX_SUCCESS;
440 if (sk_filter(sk, skb))
441 goto discard_and_relse;
443 skb->dev = NULL;
445 if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf)) {
446 atomic_inc(&sk->sk_drops);
447 goto discard_and_relse;
449 if (nested)
450 bh_lock_sock_nested(sk);
451 else
452 bh_lock_sock(sk);
453 if (!sock_owned_by_user(sk)) {
455 * trylock + unlock semantics:
457 mutex_acquire(&sk->sk_lock.dep_map, 0, 1, _RET_IP_);
459 rc = sk_backlog_rcv(sk, skb);
461 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
462 } else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
463 bh_unlock_sock(sk);
464 atomic_inc(&sk->sk_drops);
465 goto discard_and_relse;
468 bh_unlock_sock(sk);
469 out:
470 sock_put(sk);
471 return rc;
472 discard_and_relse:
473 kfree_skb(skb);
474 goto out;
476 EXPORT_SYMBOL(sk_receive_skb);
478 void sk_reset_txq(struct sock *sk)
480 sk_tx_queue_clear(sk);
482 EXPORT_SYMBOL(sk_reset_txq);
484 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie)
486 struct dst_entry *dst = __sk_dst_get(sk);
488 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
489 sk_tx_queue_clear(sk);
490 RCU_INIT_POINTER(sk->sk_dst_cache, NULL);
491 dst_release(dst);
492 return NULL;
495 return dst;
497 EXPORT_SYMBOL(__sk_dst_check);
499 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie)
501 struct dst_entry *dst = sk_dst_get(sk);
503 if (dst && dst->obsolete && dst->ops->check(dst, cookie) == NULL) {
504 sk_dst_reset(sk);
505 dst_release(dst);
506 return NULL;
509 return dst;
511 EXPORT_SYMBOL(sk_dst_check);
513 static int sock_setbindtodevice(struct sock *sk, char __user *optval,
514 int optlen)
516 int ret = -ENOPROTOOPT;
517 #ifdef CONFIG_NETDEVICES
518 struct net *net = sock_net(sk);
519 char devname[IFNAMSIZ];
520 int index;
522 /* Sorry... */
523 ret = -EPERM;
524 if (!ns_capable(net->user_ns, CAP_NET_RAW))
525 goto out;
527 ret = -EINVAL;
528 if (optlen < 0)
529 goto out;
531 /* Bind this socket to a particular device like "eth0",
532 * as specified in the passed interface name. If the
533 * name is "" or the option length is zero the socket
534 * is not bound.
536 if (optlen > IFNAMSIZ - 1)
537 optlen = IFNAMSIZ - 1;
538 memset(devname, 0, sizeof(devname));
540 ret = -EFAULT;
541 if (copy_from_user(devname, optval, optlen))
542 goto out;
544 index = 0;
545 if (devname[0] != '\0') {
546 struct net_device *dev;
548 rcu_read_lock();
549 dev = dev_get_by_name_rcu(net, devname);
550 if (dev)
551 index = dev->ifindex;
552 rcu_read_unlock();
553 ret = -ENODEV;
554 if (!dev)
555 goto out;
558 lock_sock(sk);
559 sk->sk_bound_dev_if = index;
560 sk_dst_reset(sk);
561 release_sock(sk);
563 ret = 0;
565 out:
566 #endif
568 return ret;
571 static int sock_getbindtodevice(struct sock *sk, char __user *optval,
572 int __user *optlen, int len)
574 int ret = -ENOPROTOOPT;
575 #ifdef CONFIG_NETDEVICES
576 struct net *net = sock_net(sk);
577 char devname[IFNAMSIZ];
579 if (sk->sk_bound_dev_if == 0) {
580 len = 0;
581 goto zero;
584 ret = -EINVAL;
585 if (len < IFNAMSIZ)
586 goto out;
588 ret = netdev_get_name(net, devname, sk->sk_bound_dev_if);
589 if (ret)
590 goto out;
592 len = strlen(devname) + 1;
594 ret = -EFAULT;
595 if (copy_to_user(optval, devname, len))
596 goto out;
598 zero:
599 ret = -EFAULT;
600 if (put_user(len, optlen))
601 goto out;
603 ret = 0;
605 out:
606 #endif
608 return ret;
611 static inline void sock_valbool_flag(struct sock *sk, int bit, int valbool)
613 if (valbool)
614 sock_set_flag(sk, bit);
615 else
616 sock_reset_flag(sk, bit);
620 * This is meant for all protocols to use and covers goings on
621 * at the socket level. Everything here is generic.
624 int sock_setsockopt(struct socket *sock, int level, int optname,
625 char __user *optval, unsigned int optlen)
627 struct sock *sk = sock->sk;
628 int val;
629 int valbool;
630 struct linger ling;
631 int ret = 0;
634 * Options without arguments
637 if (optname == SO_BINDTODEVICE)
638 return sock_setbindtodevice(sk, optval, optlen);
640 if (optlen < sizeof(int))
641 return -EINVAL;
643 if (get_user(val, (int __user *)optval))
644 return -EFAULT;
646 valbool = val ? 1 : 0;
648 lock_sock(sk);
650 switch (optname) {
651 case SO_DEBUG:
652 if (val && !capable(CAP_NET_ADMIN))
653 ret = -EACCES;
654 else
655 sock_valbool_flag(sk, SOCK_DBG, valbool);
656 break;
657 case SO_REUSEADDR:
658 sk->sk_reuse = (valbool ? SK_CAN_REUSE : SK_NO_REUSE);
659 break;
660 case SO_REUSEPORT:
661 sk->sk_reuseport = valbool;
662 break;
663 case SO_TYPE:
664 case SO_PROTOCOL:
665 case SO_DOMAIN:
666 case SO_ERROR:
667 ret = -ENOPROTOOPT;
668 break;
669 case SO_DONTROUTE:
670 sock_valbool_flag(sk, SOCK_LOCALROUTE, valbool);
671 break;
672 case SO_BROADCAST:
673 sock_valbool_flag(sk, SOCK_BROADCAST, valbool);
674 break;
675 case SO_SNDBUF:
676 /* Don't error on this BSD doesn't and if you think
677 * about it this is right. Otherwise apps have to
678 * play 'guess the biggest size' games. RCVBUF/SNDBUF
679 * are treated in BSD as hints
681 val = min_t(u32, val, sysctl_wmem_max);
682 set_sndbuf:
683 sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
684 sk->sk_sndbuf = max_t(u32, val * 2, SOCK_MIN_SNDBUF);
685 /* Wake up sending tasks if we upped the value. */
686 sk->sk_write_space(sk);
687 break;
689 case SO_SNDBUFFORCE:
690 if (!capable(CAP_NET_ADMIN)) {
691 ret = -EPERM;
692 break;
694 goto set_sndbuf;
696 case SO_RCVBUF:
697 /* Don't error on this BSD doesn't and if you think
698 * about it this is right. Otherwise apps have to
699 * play 'guess the biggest size' games. RCVBUF/SNDBUF
700 * are treated in BSD as hints
702 val = min_t(u32, val, sysctl_rmem_max);
703 set_rcvbuf:
704 sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
706 * We double it on the way in to account for
707 * "struct sk_buff" etc. overhead. Applications
708 * assume that the SO_RCVBUF setting they make will
709 * allow that much actual data to be received on that
710 * socket.
712 * Applications are unaware that "struct sk_buff" and
713 * other overheads allocate from the receive buffer
714 * during socket buffer allocation.
716 * And after considering the possible alternatives,
717 * returning the value we actually used in getsockopt
718 * is the most desirable behavior.
720 sk->sk_rcvbuf = max_t(u32, val * 2, SOCK_MIN_RCVBUF);
721 break;
723 case SO_RCVBUFFORCE:
724 if (!capable(CAP_NET_ADMIN)) {
725 ret = -EPERM;
726 break;
728 goto set_rcvbuf;
730 case SO_KEEPALIVE:
731 #ifdef CONFIG_INET
732 if (sk->sk_protocol == IPPROTO_TCP &&
733 sk->sk_type == SOCK_STREAM)
734 tcp_set_keepalive(sk, valbool);
735 #endif
736 sock_valbool_flag(sk, SOCK_KEEPOPEN, valbool);
737 break;
739 case SO_OOBINLINE:
740 sock_valbool_flag(sk, SOCK_URGINLINE, valbool);
741 break;
743 case SO_NO_CHECK:
744 sk->sk_no_check = valbool;
745 break;
747 case SO_PRIORITY:
748 if ((val >= 0 && val <= 6) ||
749 ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
750 sk->sk_priority = val;
751 else
752 ret = -EPERM;
753 break;
755 case SO_LINGER:
756 if (optlen < sizeof(ling)) {
757 ret = -EINVAL; /* 1003.1g */
758 break;
760 if (copy_from_user(&ling, optval, sizeof(ling))) {
761 ret = -EFAULT;
762 break;
764 if (!ling.l_onoff)
765 sock_reset_flag(sk, SOCK_LINGER);
766 else {
767 #if (BITS_PER_LONG == 32)
768 if ((unsigned int)ling.l_linger >= MAX_SCHEDULE_TIMEOUT/HZ)
769 sk->sk_lingertime = MAX_SCHEDULE_TIMEOUT;
770 else
771 #endif
772 sk->sk_lingertime = (unsigned int)ling.l_linger * HZ;
773 sock_set_flag(sk, SOCK_LINGER);
775 break;
777 case SO_BSDCOMPAT:
778 sock_warn_obsolete_bsdism("setsockopt");
779 break;
781 case SO_PASSCRED:
782 if (valbool)
783 set_bit(SOCK_PASSCRED, &sock->flags);
784 else
785 clear_bit(SOCK_PASSCRED, &sock->flags);
786 break;
788 case SO_TIMESTAMP:
789 case SO_TIMESTAMPNS:
790 if (valbool) {
791 if (optname == SO_TIMESTAMP)
792 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
793 else
794 sock_set_flag(sk, SOCK_RCVTSTAMPNS);
795 sock_set_flag(sk, SOCK_RCVTSTAMP);
796 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
797 } else {
798 sock_reset_flag(sk, SOCK_RCVTSTAMP);
799 sock_reset_flag(sk, SOCK_RCVTSTAMPNS);
801 break;
803 case SO_TIMESTAMPING:
804 if (val & ~SOF_TIMESTAMPING_MASK) {
805 ret = -EINVAL;
806 break;
808 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE,
809 val & SOF_TIMESTAMPING_TX_HARDWARE);
810 sock_valbool_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE,
811 val & SOF_TIMESTAMPING_TX_SOFTWARE);
812 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE,
813 val & SOF_TIMESTAMPING_RX_HARDWARE);
814 if (val & SOF_TIMESTAMPING_RX_SOFTWARE)
815 sock_enable_timestamp(sk,
816 SOCK_TIMESTAMPING_RX_SOFTWARE);
817 else
818 sock_disable_timestamp(sk,
819 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE));
820 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SOFTWARE,
821 val & SOF_TIMESTAMPING_SOFTWARE);
822 sock_valbool_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE,
823 val & SOF_TIMESTAMPING_SYS_HARDWARE);
824 sock_valbool_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE,
825 val & SOF_TIMESTAMPING_RAW_HARDWARE);
826 break;
828 case SO_RCVLOWAT:
829 if (val < 0)
830 val = INT_MAX;
831 sk->sk_rcvlowat = val ? : 1;
832 break;
834 case SO_RCVTIMEO:
835 ret = sock_set_timeout(&sk->sk_rcvtimeo, optval, optlen);
836 break;
838 case SO_SNDTIMEO:
839 ret = sock_set_timeout(&sk->sk_sndtimeo, optval, optlen);
840 break;
842 case SO_ATTACH_FILTER:
843 ret = -EINVAL;
844 if (optlen == sizeof(struct sock_fprog)) {
845 struct sock_fprog fprog;
847 ret = -EFAULT;
848 if (copy_from_user(&fprog, optval, sizeof(fprog)))
849 break;
851 ret = sk_attach_filter(&fprog, sk);
853 break;
855 case SO_DETACH_FILTER:
856 ret = sk_detach_filter(sk);
857 break;
859 case SO_LOCK_FILTER:
860 if (sock_flag(sk, SOCK_FILTER_LOCKED) && !valbool)
861 ret = -EPERM;
862 else
863 sock_valbool_flag(sk, SOCK_FILTER_LOCKED, valbool);
864 break;
866 case SO_PASSSEC:
867 if (valbool)
868 set_bit(SOCK_PASSSEC, &sock->flags);
869 else
870 clear_bit(SOCK_PASSSEC, &sock->flags);
871 break;
872 case SO_MARK:
873 if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
874 ret = -EPERM;
875 else
876 sk->sk_mark = val;
877 break;
879 /* We implement the SO_SNDLOWAT etc to
880 not be settable (1003.1g 5.3) */
881 case SO_RXQ_OVFL:
882 sock_valbool_flag(sk, SOCK_RXQ_OVFL, valbool);
883 break;
885 case SO_WIFI_STATUS:
886 sock_valbool_flag(sk, SOCK_WIFI_STATUS, valbool);
887 break;
889 case SO_PEEK_OFF:
890 if (sock->ops->set_peek_off)
891 sock->ops->set_peek_off(sk, val);
892 else
893 ret = -EOPNOTSUPP;
894 break;
896 case SO_NOFCS:
897 sock_valbool_flag(sk, SOCK_NOFCS, valbool);
898 break;
900 case SO_SELECT_ERR_QUEUE:
901 sock_valbool_flag(sk, SOCK_SELECT_ERR_QUEUE, valbool);
902 break;
904 #ifdef CONFIG_NET_LL_RX_POLL
905 case SO_BUSY_POLL:
906 /* allow unprivileged users to decrease the value */
907 if ((val > sk->sk_ll_usec) && !capable(CAP_NET_ADMIN))
908 ret = -EPERM;
909 else {
910 if (val < 0)
911 ret = -EINVAL;
912 else
913 sk->sk_ll_usec = val;
915 break;
916 #endif
917 default:
918 ret = -ENOPROTOOPT;
919 break;
921 release_sock(sk);
922 return ret;
924 EXPORT_SYMBOL(sock_setsockopt);
927 void cred_to_ucred(struct pid *pid, const struct cred *cred,
928 struct ucred *ucred)
930 ucred->pid = pid_vnr(pid);
931 ucred->uid = ucred->gid = -1;
932 if (cred) {
933 struct user_namespace *current_ns = current_user_ns();
935 ucred->uid = from_kuid_munged(current_ns, cred->euid);
936 ucred->gid = from_kgid_munged(current_ns, cred->egid);
939 EXPORT_SYMBOL_GPL(cred_to_ucred);
941 int sock_getsockopt(struct socket *sock, int level, int optname,
942 char __user *optval, int __user *optlen)
944 struct sock *sk = sock->sk;
946 union {
947 int val;
948 struct linger ling;
949 struct timeval tm;
950 } v;
952 int lv = sizeof(int);
953 int len;
955 if (get_user(len, optlen))
956 return -EFAULT;
957 if (len < 0)
958 return -EINVAL;
960 memset(&v, 0, sizeof(v));
962 switch (optname) {
963 case SO_DEBUG:
964 v.val = sock_flag(sk, SOCK_DBG);
965 break;
967 case SO_DONTROUTE:
968 v.val = sock_flag(sk, SOCK_LOCALROUTE);
969 break;
971 case SO_BROADCAST:
972 v.val = sock_flag(sk, SOCK_BROADCAST);
973 break;
975 case SO_SNDBUF:
976 v.val = sk->sk_sndbuf;
977 break;
979 case SO_RCVBUF:
980 v.val = sk->sk_rcvbuf;
981 break;
983 case SO_REUSEADDR:
984 v.val = sk->sk_reuse;
985 break;
987 case SO_REUSEPORT:
988 v.val = sk->sk_reuseport;
989 break;
991 case SO_KEEPALIVE:
992 v.val = sock_flag(sk, SOCK_KEEPOPEN);
993 break;
995 case SO_TYPE:
996 v.val = sk->sk_type;
997 break;
999 case SO_PROTOCOL:
1000 v.val = sk->sk_protocol;
1001 break;
1003 case SO_DOMAIN:
1004 v.val = sk->sk_family;
1005 break;
1007 case SO_ERROR:
1008 v.val = -sock_error(sk);
1009 if (v.val == 0)
1010 v.val = xchg(&sk->sk_err_soft, 0);
1011 break;
1013 case SO_OOBINLINE:
1014 v.val = sock_flag(sk, SOCK_URGINLINE);
1015 break;
1017 case SO_NO_CHECK:
1018 v.val = sk->sk_no_check;
1019 break;
1021 case SO_PRIORITY:
1022 v.val = sk->sk_priority;
1023 break;
1025 case SO_LINGER:
1026 lv = sizeof(v.ling);
1027 v.ling.l_onoff = sock_flag(sk, SOCK_LINGER);
1028 v.ling.l_linger = sk->sk_lingertime / HZ;
1029 break;
1031 case SO_BSDCOMPAT:
1032 sock_warn_obsolete_bsdism("getsockopt");
1033 break;
1035 case SO_TIMESTAMP:
1036 v.val = sock_flag(sk, SOCK_RCVTSTAMP) &&
1037 !sock_flag(sk, SOCK_RCVTSTAMPNS);
1038 break;
1040 case SO_TIMESTAMPNS:
1041 v.val = sock_flag(sk, SOCK_RCVTSTAMPNS);
1042 break;
1044 case SO_TIMESTAMPING:
1045 v.val = 0;
1046 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_HARDWARE))
1047 v.val |= SOF_TIMESTAMPING_TX_HARDWARE;
1048 if (sock_flag(sk, SOCK_TIMESTAMPING_TX_SOFTWARE))
1049 v.val |= SOF_TIMESTAMPING_TX_SOFTWARE;
1050 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_HARDWARE))
1051 v.val |= SOF_TIMESTAMPING_RX_HARDWARE;
1052 if (sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE))
1053 v.val |= SOF_TIMESTAMPING_RX_SOFTWARE;
1054 if (sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE))
1055 v.val |= SOF_TIMESTAMPING_SOFTWARE;
1056 if (sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE))
1057 v.val |= SOF_TIMESTAMPING_SYS_HARDWARE;
1058 if (sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE))
1059 v.val |= SOF_TIMESTAMPING_RAW_HARDWARE;
1060 break;
1062 case SO_RCVTIMEO:
1063 lv = sizeof(struct timeval);
1064 if (sk->sk_rcvtimeo == MAX_SCHEDULE_TIMEOUT) {
1065 v.tm.tv_sec = 0;
1066 v.tm.tv_usec = 0;
1067 } else {
1068 v.tm.tv_sec = sk->sk_rcvtimeo / HZ;
1069 v.tm.tv_usec = ((sk->sk_rcvtimeo % HZ) * 1000000) / HZ;
1071 break;
1073 case SO_SNDTIMEO:
1074 lv = sizeof(struct timeval);
1075 if (sk->sk_sndtimeo == MAX_SCHEDULE_TIMEOUT) {
1076 v.tm.tv_sec = 0;
1077 v.tm.tv_usec = 0;
1078 } else {
1079 v.tm.tv_sec = sk->sk_sndtimeo / HZ;
1080 v.tm.tv_usec = ((sk->sk_sndtimeo % HZ) * 1000000) / HZ;
1082 break;
1084 case SO_RCVLOWAT:
1085 v.val = sk->sk_rcvlowat;
1086 break;
1088 case SO_SNDLOWAT:
1089 v.val = 1;
1090 break;
1092 case SO_PASSCRED:
1093 v.val = !!test_bit(SOCK_PASSCRED, &sock->flags);
1094 break;
1096 case SO_PEERCRED:
1098 struct ucred peercred;
1099 if (len > sizeof(peercred))
1100 len = sizeof(peercred);
1101 cred_to_ucred(sk->sk_peer_pid, sk->sk_peer_cred, &peercred);
1102 if (copy_to_user(optval, &peercred, len))
1103 return -EFAULT;
1104 goto lenout;
1107 case SO_PEERNAME:
1109 char address[128];
1111 if (sock->ops->getname(sock, (struct sockaddr *)address, &lv, 2))
1112 return -ENOTCONN;
1113 if (lv < len)
1114 return -EINVAL;
1115 if (copy_to_user(optval, address, len))
1116 return -EFAULT;
1117 goto lenout;
1120 /* Dubious BSD thing... Probably nobody even uses it, but
1121 * the UNIX standard wants it for whatever reason... -DaveM
1123 case SO_ACCEPTCONN:
1124 v.val = sk->sk_state == TCP_LISTEN;
1125 break;
1127 case SO_PASSSEC:
1128 v.val = !!test_bit(SOCK_PASSSEC, &sock->flags);
1129 break;
1131 case SO_PEERSEC:
1132 return security_socket_getpeersec_stream(sock, optval, optlen, len);
1134 case SO_MARK:
1135 v.val = sk->sk_mark;
1136 break;
1138 case SO_RXQ_OVFL:
1139 v.val = sock_flag(sk, SOCK_RXQ_OVFL);
1140 break;
1142 case SO_WIFI_STATUS:
1143 v.val = sock_flag(sk, SOCK_WIFI_STATUS);
1144 break;
1146 case SO_PEEK_OFF:
1147 if (!sock->ops->set_peek_off)
1148 return -EOPNOTSUPP;
1150 v.val = sk->sk_peek_off;
1151 break;
1152 case SO_NOFCS:
1153 v.val = sock_flag(sk, SOCK_NOFCS);
1154 break;
1156 case SO_BINDTODEVICE:
1157 return sock_getbindtodevice(sk, optval, optlen, len);
1159 case SO_GET_FILTER:
1160 len = sk_get_filter(sk, (struct sock_filter __user *)optval, len);
1161 if (len < 0)
1162 return len;
1164 goto lenout;
1166 case SO_LOCK_FILTER:
1167 v.val = sock_flag(sk, SOCK_FILTER_LOCKED);
1168 break;
1170 case SO_SELECT_ERR_QUEUE:
1171 v.val = sock_flag(sk, SOCK_SELECT_ERR_QUEUE);
1172 break;
1174 #ifdef CONFIG_NET_LL_RX_POLL
1175 case SO_BUSY_POLL:
1176 v.val = sk->sk_ll_usec;
1177 break;
1178 #endif
1180 default:
1181 return -ENOPROTOOPT;
1184 if (len > lv)
1185 len = lv;
1186 if (copy_to_user(optval, &v, len))
1187 return -EFAULT;
1188 lenout:
1189 if (put_user(len, optlen))
1190 return -EFAULT;
1191 return 0;
1195 * Initialize an sk_lock.
1197 * (We also register the sk_lock with the lock validator.)
1199 static inline void sock_lock_init(struct sock *sk)
1201 sock_lock_init_class_and_name(sk,
1202 af_family_slock_key_strings[sk->sk_family],
1203 af_family_slock_keys + sk->sk_family,
1204 af_family_key_strings[sk->sk_family],
1205 af_family_keys + sk->sk_family);
1209 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1210 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1211 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1213 static void sock_copy(struct sock *nsk, const struct sock *osk)
1215 #ifdef CONFIG_SECURITY_NETWORK
1216 void *sptr = nsk->sk_security;
1217 #endif
1218 memcpy(nsk, osk, offsetof(struct sock, sk_dontcopy_begin));
1220 memcpy(&nsk->sk_dontcopy_end, &osk->sk_dontcopy_end,
1221 osk->sk_prot->obj_size - offsetof(struct sock, sk_dontcopy_end));
1223 #ifdef CONFIG_SECURITY_NETWORK
1224 nsk->sk_security = sptr;
1225 security_sk_clone(osk, nsk);
1226 #endif
1229 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size)
1231 unsigned long nulls1, nulls2;
1233 nulls1 = offsetof(struct sock, __sk_common.skc_node.next);
1234 nulls2 = offsetof(struct sock, __sk_common.skc_portaddr_node.next);
1235 if (nulls1 > nulls2)
1236 swap(nulls1, nulls2);
1238 if (nulls1 != 0)
1239 memset((char *)sk, 0, nulls1);
1240 memset((char *)sk + nulls1 + sizeof(void *), 0,
1241 nulls2 - nulls1 - sizeof(void *));
1242 memset((char *)sk + nulls2 + sizeof(void *), 0,
1243 size - nulls2 - sizeof(void *));
1245 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls);
1247 static struct sock *sk_prot_alloc(struct proto *prot, gfp_t priority,
1248 int family)
1250 struct sock *sk;
1251 struct kmem_cache *slab;
1253 slab = prot->slab;
1254 if (slab != NULL) {
1255 sk = kmem_cache_alloc(slab, priority & ~__GFP_ZERO);
1256 if (!sk)
1257 return sk;
1258 if (priority & __GFP_ZERO) {
1259 if (prot->clear_sk)
1260 prot->clear_sk(sk, prot->obj_size);
1261 else
1262 sk_prot_clear_nulls(sk, prot->obj_size);
1264 } else
1265 sk = kmalloc(prot->obj_size, priority);
1267 if (sk != NULL) {
1268 kmemcheck_annotate_bitfield(sk, flags);
1270 if (security_sk_alloc(sk, family, priority))
1271 goto out_free;
1273 if (!try_module_get(prot->owner))
1274 goto out_free_sec;
1275 sk_tx_queue_clear(sk);
1278 return sk;
1280 out_free_sec:
1281 security_sk_free(sk);
1282 out_free:
1283 if (slab != NULL)
1284 kmem_cache_free(slab, sk);
1285 else
1286 kfree(sk);
1287 return NULL;
1290 static void sk_prot_free(struct proto *prot, struct sock *sk)
1292 struct kmem_cache *slab;
1293 struct module *owner;
1295 owner = prot->owner;
1296 slab = prot->slab;
1298 security_sk_free(sk);
1299 if (slab != NULL)
1300 kmem_cache_free(slab, sk);
1301 else
1302 kfree(sk);
1303 module_put(owner);
1306 #if IS_ENABLED(CONFIG_NET_CLS_CGROUP)
1307 void sock_update_classid(struct sock *sk)
1309 u32 classid;
1311 classid = task_cls_classid(current);
1312 if (classid != sk->sk_classid)
1313 sk->sk_classid = classid;
1315 EXPORT_SYMBOL(sock_update_classid);
1316 #endif
1318 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1319 void sock_update_netprioidx(struct sock *sk)
1321 if (in_interrupt())
1322 return;
1324 sk->sk_cgrp_prioidx = task_netprioidx(current);
1326 EXPORT_SYMBOL_GPL(sock_update_netprioidx);
1327 #endif
1330 * sk_alloc - All socket objects are allocated here
1331 * @net: the applicable net namespace
1332 * @family: protocol family
1333 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1334 * @prot: struct proto associated with this new sock instance
1336 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1337 struct proto *prot)
1339 struct sock *sk;
1341 sk = sk_prot_alloc(prot, priority | __GFP_ZERO, family);
1342 if (sk) {
1343 sk->sk_family = family;
1345 * See comment in struct sock definition to understand
1346 * why we need sk_prot_creator -acme
1348 sk->sk_prot = sk->sk_prot_creator = prot;
1349 sock_lock_init(sk);
1350 sock_net_set(sk, get_net(net));
1351 atomic_set(&sk->sk_wmem_alloc, 1);
1353 sock_update_classid(sk);
1354 sock_update_netprioidx(sk);
1357 return sk;
1359 EXPORT_SYMBOL(sk_alloc);
1361 static void __sk_free(struct sock *sk)
1363 struct sk_filter *filter;
1365 if (sk->sk_destruct)
1366 sk->sk_destruct(sk);
1368 filter = rcu_dereference_check(sk->sk_filter,
1369 atomic_read(&sk->sk_wmem_alloc) == 0);
1370 if (filter) {
1371 sk_filter_uncharge(sk, filter);
1372 RCU_INIT_POINTER(sk->sk_filter, NULL);
1375 sock_disable_timestamp(sk, SK_FLAGS_TIMESTAMP);
1377 if (atomic_read(&sk->sk_omem_alloc))
1378 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1379 __func__, atomic_read(&sk->sk_omem_alloc));
1381 if (sk->sk_peer_cred)
1382 put_cred(sk->sk_peer_cred);
1383 put_pid(sk->sk_peer_pid);
1384 put_net(sock_net(sk));
1385 sk_prot_free(sk->sk_prot_creator, sk);
1388 void sk_free(struct sock *sk)
1391 * We subtract one from sk_wmem_alloc and can know if
1392 * some packets are still in some tx queue.
1393 * If not null, sock_wfree() will call __sk_free(sk) later
1395 if (atomic_dec_and_test(&sk->sk_wmem_alloc))
1396 __sk_free(sk);
1398 EXPORT_SYMBOL(sk_free);
1401 * Last sock_put should drop reference to sk->sk_net. It has already
1402 * been dropped in sk_change_net. Taking reference to stopping namespace
1403 * is not an option.
1404 * Take reference to a socket to remove it from hash _alive_ and after that
1405 * destroy it in the context of init_net.
1407 void sk_release_kernel(struct sock *sk)
1409 if (sk == NULL || sk->sk_socket == NULL)
1410 return;
1412 sock_hold(sk);
1413 sock_release(sk->sk_socket);
1414 release_net(sock_net(sk));
1415 sock_net_set(sk, get_net(&init_net));
1416 sock_put(sk);
1418 EXPORT_SYMBOL(sk_release_kernel);
1420 static void sk_update_clone(const struct sock *sk, struct sock *newsk)
1422 if (mem_cgroup_sockets_enabled && sk->sk_cgrp)
1423 sock_update_memcg(newsk);
1427 * sk_clone_lock - clone a socket, and lock its clone
1428 * @sk: the socket to clone
1429 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1431 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1433 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority)
1435 struct sock *newsk;
1437 newsk = sk_prot_alloc(sk->sk_prot, priority, sk->sk_family);
1438 if (newsk != NULL) {
1439 struct sk_filter *filter;
1441 sock_copy(newsk, sk);
1443 /* SANITY */
1444 get_net(sock_net(newsk));
1445 sk_node_init(&newsk->sk_node);
1446 sock_lock_init(newsk);
1447 bh_lock_sock(newsk);
1448 newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL;
1449 newsk->sk_backlog.len = 0;
1451 atomic_set(&newsk->sk_rmem_alloc, 0);
1453 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1455 atomic_set(&newsk->sk_wmem_alloc, 1);
1456 atomic_set(&newsk->sk_omem_alloc, 0);
1457 skb_queue_head_init(&newsk->sk_receive_queue);
1458 skb_queue_head_init(&newsk->sk_write_queue);
1459 #ifdef CONFIG_NET_DMA
1460 skb_queue_head_init(&newsk->sk_async_wait_queue);
1461 #endif
1463 spin_lock_init(&newsk->sk_dst_lock);
1464 rwlock_init(&newsk->sk_callback_lock);
1465 lockdep_set_class_and_name(&newsk->sk_callback_lock,
1466 af_callback_keys + newsk->sk_family,
1467 af_family_clock_key_strings[newsk->sk_family]);
1469 newsk->sk_dst_cache = NULL;
1470 newsk->sk_wmem_queued = 0;
1471 newsk->sk_forward_alloc = 0;
1472 newsk->sk_send_head = NULL;
1473 newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK;
1475 sock_reset_flag(newsk, SOCK_DONE);
1476 skb_queue_head_init(&newsk->sk_error_queue);
1478 filter = rcu_dereference_protected(newsk->sk_filter, 1);
1479 if (filter != NULL)
1480 sk_filter_charge(newsk, filter);
1482 if (unlikely(xfrm_sk_clone_policy(newsk))) {
1483 /* It is still raw copy of parent, so invalidate
1484 * destructor and make plain sk_free() */
1485 newsk->sk_destruct = NULL;
1486 bh_unlock_sock(newsk);
1487 sk_free(newsk);
1488 newsk = NULL;
1489 goto out;
1492 newsk->sk_err = 0;
1493 newsk->sk_priority = 0;
1495 * Before updating sk_refcnt, we must commit prior changes to memory
1496 * (Documentation/RCU/rculist_nulls.txt for details)
1498 smp_wmb();
1499 atomic_set(&newsk->sk_refcnt, 2);
1502 * Increment the counter in the same struct proto as the master
1503 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1504 * is the same as sk->sk_prot->socks, as this field was copied
1505 * with memcpy).
1507 * This _changes_ the previous behaviour, where
1508 * tcp_create_openreq_child always was incrementing the
1509 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1510 * to be taken into account in all callers. -acme
1512 sk_refcnt_debug_inc(newsk);
1513 sk_set_socket(newsk, NULL);
1514 newsk->sk_wq = NULL;
1516 sk_update_clone(sk, newsk);
1518 if (newsk->sk_prot->sockets_allocated)
1519 sk_sockets_allocated_inc(newsk);
1521 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
1522 net_enable_timestamp();
1524 out:
1525 return newsk;
1527 EXPORT_SYMBOL_GPL(sk_clone_lock);
1529 void sk_setup_caps(struct sock *sk, struct dst_entry *dst)
1531 __sk_dst_set(sk, dst);
1532 sk->sk_route_caps = dst->dev->features;
1533 if (sk->sk_route_caps & NETIF_F_GSO)
1534 sk->sk_route_caps |= NETIF_F_GSO_SOFTWARE;
1535 sk->sk_route_caps &= ~sk->sk_route_nocaps;
1536 if (sk_can_gso(sk)) {
1537 if (dst->header_len) {
1538 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
1539 } else {
1540 sk->sk_route_caps |= NETIF_F_SG | NETIF_F_HW_CSUM;
1541 sk->sk_gso_max_size = dst->dev->gso_max_size;
1542 sk->sk_gso_max_segs = dst->dev->gso_max_segs;
1546 EXPORT_SYMBOL_GPL(sk_setup_caps);
1549 * Simple resource managers for sockets.
1554 * Write buffer destructor automatically called from kfree_skb.
1556 void sock_wfree(struct sk_buff *skb)
1558 struct sock *sk = skb->sk;
1559 unsigned int len = skb->truesize;
1561 if (!sock_flag(sk, SOCK_USE_WRITE_QUEUE)) {
1563 * Keep a reference on sk_wmem_alloc, this will be released
1564 * after sk_write_space() call
1566 atomic_sub(len - 1, &sk->sk_wmem_alloc);
1567 sk->sk_write_space(sk);
1568 len = 1;
1571 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1572 * could not do because of in-flight packets
1574 if (atomic_sub_and_test(len, &sk->sk_wmem_alloc))
1575 __sk_free(sk);
1577 EXPORT_SYMBOL(sock_wfree);
1580 * Read buffer destructor automatically called from kfree_skb.
1582 void sock_rfree(struct sk_buff *skb)
1584 struct sock *sk = skb->sk;
1585 unsigned int len = skb->truesize;
1587 atomic_sub(len, &sk->sk_rmem_alloc);
1588 sk_mem_uncharge(sk, len);
1590 EXPORT_SYMBOL(sock_rfree);
1592 void sock_edemux(struct sk_buff *skb)
1594 struct sock *sk = skb->sk;
1596 #ifdef CONFIG_INET
1597 if (sk->sk_state == TCP_TIME_WAIT)
1598 inet_twsk_put(inet_twsk(sk));
1599 else
1600 #endif
1601 sock_put(sk);
1603 EXPORT_SYMBOL(sock_edemux);
1605 kuid_t sock_i_uid(struct sock *sk)
1607 kuid_t uid;
1609 read_lock_bh(&sk->sk_callback_lock);
1610 uid = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_uid : GLOBAL_ROOT_UID;
1611 read_unlock_bh(&sk->sk_callback_lock);
1612 return uid;
1614 EXPORT_SYMBOL(sock_i_uid);
1616 unsigned long sock_i_ino(struct sock *sk)
1618 unsigned long ino;
1620 read_lock_bh(&sk->sk_callback_lock);
1621 ino = sk->sk_socket ? SOCK_INODE(sk->sk_socket)->i_ino : 0;
1622 read_unlock_bh(&sk->sk_callback_lock);
1623 return ino;
1625 EXPORT_SYMBOL(sock_i_ino);
1628 * Allocate a skb from the socket's send buffer.
1630 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1631 gfp_t priority)
1633 if (force || atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1634 struct sk_buff *skb = alloc_skb(size, priority);
1635 if (skb) {
1636 skb_set_owner_w(skb, sk);
1637 return skb;
1640 return NULL;
1642 EXPORT_SYMBOL(sock_wmalloc);
1645 * Allocate a skb from the socket's receive buffer.
1647 struct sk_buff *sock_rmalloc(struct sock *sk, unsigned long size, int force,
1648 gfp_t priority)
1650 if (force || atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf) {
1651 struct sk_buff *skb = alloc_skb(size, priority);
1652 if (skb) {
1653 skb_set_owner_r(skb, sk);
1654 return skb;
1657 return NULL;
1661 * Allocate a memory block from the socket's option memory buffer.
1663 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority)
1665 if ((unsigned int)size <= sysctl_optmem_max &&
1666 atomic_read(&sk->sk_omem_alloc) + size < sysctl_optmem_max) {
1667 void *mem;
1668 /* First do the add, to avoid the race if kmalloc
1669 * might sleep.
1671 atomic_add(size, &sk->sk_omem_alloc);
1672 mem = kmalloc(size, priority);
1673 if (mem)
1674 return mem;
1675 atomic_sub(size, &sk->sk_omem_alloc);
1677 return NULL;
1679 EXPORT_SYMBOL(sock_kmalloc);
1682 * Free an option memory block.
1684 void sock_kfree_s(struct sock *sk, void *mem, int size)
1686 kfree(mem);
1687 atomic_sub(size, &sk->sk_omem_alloc);
1689 EXPORT_SYMBOL(sock_kfree_s);
1691 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1692 I think, these locks should be removed for datagram sockets.
1694 static long sock_wait_for_wmem(struct sock *sk, long timeo)
1696 DEFINE_WAIT(wait);
1698 clear_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1699 for (;;) {
1700 if (!timeo)
1701 break;
1702 if (signal_pending(current))
1703 break;
1704 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1705 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1706 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf)
1707 break;
1708 if (sk->sk_shutdown & SEND_SHUTDOWN)
1709 break;
1710 if (sk->sk_err)
1711 break;
1712 timeo = schedule_timeout(timeo);
1714 finish_wait(sk_sleep(sk), &wait);
1715 return timeo;
1720 * Generic send/receive buffer handlers
1723 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1724 unsigned long data_len, int noblock,
1725 int *errcode)
1727 struct sk_buff *skb;
1728 gfp_t gfp_mask;
1729 long timeo;
1730 int err;
1731 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
1733 err = -EMSGSIZE;
1734 if (npages > MAX_SKB_FRAGS)
1735 goto failure;
1737 gfp_mask = sk->sk_allocation;
1738 if (gfp_mask & __GFP_WAIT)
1739 gfp_mask |= __GFP_REPEAT;
1741 timeo = sock_sndtimeo(sk, noblock);
1742 while (1) {
1743 err = sock_error(sk);
1744 if (err != 0)
1745 goto failure;
1747 err = -EPIPE;
1748 if (sk->sk_shutdown & SEND_SHUTDOWN)
1749 goto failure;
1751 if (atomic_read(&sk->sk_wmem_alloc) < sk->sk_sndbuf) {
1752 skb = alloc_skb(header_len, gfp_mask);
1753 if (skb) {
1754 int i;
1756 /* No pages, we're done... */
1757 if (!data_len)
1758 break;
1760 skb->truesize += data_len;
1761 skb_shinfo(skb)->nr_frags = npages;
1762 for (i = 0; i < npages; i++) {
1763 struct page *page;
1765 page = alloc_pages(sk->sk_allocation, 0);
1766 if (!page) {
1767 err = -ENOBUFS;
1768 skb_shinfo(skb)->nr_frags = i;
1769 kfree_skb(skb);
1770 goto failure;
1773 __skb_fill_page_desc(skb, i,
1774 page, 0,
1775 (data_len >= PAGE_SIZE ?
1776 PAGE_SIZE :
1777 data_len));
1778 data_len -= PAGE_SIZE;
1781 /* Full success... */
1782 break;
1784 err = -ENOBUFS;
1785 goto failure;
1787 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
1788 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1789 err = -EAGAIN;
1790 if (!timeo)
1791 goto failure;
1792 if (signal_pending(current))
1793 goto interrupted;
1794 timeo = sock_wait_for_wmem(sk, timeo);
1797 skb_set_owner_w(skb, sk);
1798 return skb;
1800 interrupted:
1801 err = sock_intr_errno(timeo);
1802 failure:
1803 *errcode = err;
1804 return NULL;
1806 EXPORT_SYMBOL(sock_alloc_send_pskb);
1808 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1809 int noblock, int *errcode)
1811 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode);
1813 EXPORT_SYMBOL(sock_alloc_send_skb);
1815 /* On 32bit arches, an skb frag is limited to 2^15 */
1816 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1818 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
1820 int order;
1822 if (pfrag->page) {
1823 if (atomic_read(&pfrag->page->_count) == 1) {
1824 pfrag->offset = 0;
1825 return true;
1827 if (pfrag->offset < pfrag->size)
1828 return true;
1829 put_page(pfrag->page);
1832 /* We restrict high order allocations to users that can afford to wait */
1833 order = (sk->sk_allocation & __GFP_WAIT) ? SKB_FRAG_PAGE_ORDER : 0;
1835 do {
1836 gfp_t gfp = sk->sk_allocation;
1838 if (order)
1839 gfp |= __GFP_COMP | __GFP_NOWARN;
1840 pfrag->page = alloc_pages(gfp, order);
1841 if (likely(pfrag->page)) {
1842 pfrag->offset = 0;
1843 pfrag->size = PAGE_SIZE << order;
1844 return true;
1846 } while (--order >= 0);
1848 sk_enter_memory_pressure(sk);
1849 sk_stream_moderate_sndbuf(sk);
1850 return false;
1852 EXPORT_SYMBOL(sk_page_frag_refill);
1854 static void __lock_sock(struct sock *sk)
1855 __releases(&sk->sk_lock.slock)
1856 __acquires(&sk->sk_lock.slock)
1858 DEFINE_WAIT(wait);
1860 for (;;) {
1861 prepare_to_wait_exclusive(&sk->sk_lock.wq, &wait,
1862 TASK_UNINTERRUPTIBLE);
1863 spin_unlock_bh(&sk->sk_lock.slock);
1864 schedule();
1865 spin_lock_bh(&sk->sk_lock.slock);
1866 if (!sock_owned_by_user(sk))
1867 break;
1869 finish_wait(&sk->sk_lock.wq, &wait);
1872 static void __release_sock(struct sock *sk)
1873 __releases(&sk->sk_lock.slock)
1874 __acquires(&sk->sk_lock.slock)
1876 struct sk_buff *skb = sk->sk_backlog.head;
1878 do {
1879 sk->sk_backlog.head = sk->sk_backlog.tail = NULL;
1880 bh_unlock_sock(sk);
1882 do {
1883 struct sk_buff *next = skb->next;
1885 prefetch(next);
1886 WARN_ON_ONCE(skb_dst_is_noref(skb));
1887 skb->next = NULL;
1888 sk_backlog_rcv(sk, skb);
1891 * We are in process context here with softirqs
1892 * disabled, use cond_resched_softirq() to preempt.
1893 * This is safe to do because we've taken the backlog
1894 * queue private:
1896 cond_resched_softirq();
1898 skb = next;
1899 } while (skb != NULL);
1901 bh_lock_sock(sk);
1902 } while ((skb = sk->sk_backlog.head) != NULL);
1905 * Doing the zeroing here guarantee we can not loop forever
1906 * while a wild producer attempts to flood us.
1908 sk->sk_backlog.len = 0;
1912 * sk_wait_data - wait for data to arrive at sk_receive_queue
1913 * @sk: sock to wait on
1914 * @timeo: for how long
1916 * Now socket state including sk->sk_err is changed only under lock,
1917 * hence we may omit checks after joining wait queue.
1918 * We check receive queue before schedule() only as optimization;
1919 * it is very likely that release_sock() added new data.
1921 int sk_wait_data(struct sock *sk, long *timeo)
1923 int rc;
1924 DEFINE_WAIT(wait);
1926 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1927 set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1928 rc = sk_wait_event(sk, timeo, !skb_queue_empty(&sk->sk_receive_queue));
1929 clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags);
1930 finish_wait(sk_sleep(sk), &wait);
1931 return rc;
1933 EXPORT_SYMBOL(sk_wait_data);
1936 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1937 * @sk: socket
1938 * @size: memory size to allocate
1939 * @kind: allocation type
1941 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1942 * rmem allocation. This function assumes that protocols which have
1943 * memory_pressure use sk_wmem_queued as write buffer accounting.
1945 int __sk_mem_schedule(struct sock *sk, int size, int kind)
1947 struct proto *prot = sk->sk_prot;
1948 int amt = sk_mem_pages(size);
1949 long allocated;
1950 int parent_status = UNDER_LIMIT;
1952 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
1954 allocated = sk_memory_allocated_add(sk, amt, &parent_status);
1956 /* Under limit. */
1957 if (parent_status == UNDER_LIMIT &&
1958 allocated <= sk_prot_mem_limits(sk, 0)) {
1959 sk_leave_memory_pressure(sk);
1960 return 1;
1963 /* Under pressure. (we or our parents) */
1964 if ((parent_status > SOFT_LIMIT) ||
1965 allocated > sk_prot_mem_limits(sk, 1))
1966 sk_enter_memory_pressure(sk);
1968 /* Over hard limit (we or our parents) */
1969 if ((parent_status == OVER_LIMIT) ||
1970 (allocated > sk_prot_mem_limits(sk, 2)))
1971 goto suppress_allocation;
1973 /* guarantee minimum buffer size under pressure */
1974 if (kind == SK_MEM_RECV) {
1975 if (atomic_read(&sk->sk_rmem_alloc) < prot->sysctl_rmem[0])
1976 return 1;
1978 } else { /* SK_MEM_SEND */
1979 if (sk->sk_type == SOCK_STREAM) {
1980 if (sk->sk_wmem_queued < prot->sysctl_wmem[0])
1981 return 1;
1982 } else if (atomic_read(&sk->sk_wmem_alloc) <
1983 prot->sysctl_wmem[0])
1984 return 1;
1987 if (sk_has_memory_pressure(sk)) {
1988 int alloc;
1990 if (!sk_under_memory_pressure(sk))
1991 return 1;
1992 alloc = sk_sockets_allocated_read_positive(sk);
1993 if (sk_prot_mem_limits(sk, 2) > alloc *
1994 sk_mem_pages(sk->sk_wmem_queued +
1995 atomic_read(&sk->sk_rmem_alloc) +
1996 sk->sk_forward_alloc))
1997 return 1;
2000 suppress_allocation:
2002 if (kind == SK_MEM_SEND && sk->sk_type == SOCK_STREAM) {
2003 sk_stream_moderate_sndbuf(sk);
2005 /* Fail only if socket is _under_ its sndbuf.
2006 * In this case we cannot block, so that we have to fail.
2008 if (sk->sk_wmem_queued + size >= sk->sk_sndbuf)
2009 return 1;
2012 trace_sock_exceed_buf_limit(sk, prot, allocated);
2014 /* Alas. Undo changes. */
2015 sk->sk_forward_alloc -= amt * SK_MEM_QUANTUM;
2017 sk_memory_allocated_sub(sk, amt);
2019 return 0;
2021 EXPORT_SYMBOL(__sk_mem_schedule);
2024 * __sk_reclaim - reclaim memory_allocated
2025 * @sk: socket
2027 void __sk_mem_reclaim(struct sock *sk)
2029 sk_memory_allocated_sub(sk,
2030 sk->sk_forward_alloc >> SK_MEM_QUANTUM_SHIFT);
2031 sk->sk_forward_alloc &= SK_MEM_QUANTUM - 1;
2033 if (sk_under_memory_pressure(sk) &&
2034 (sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)))
2035 sk_leave_memory_pressure(sk);
2037 EXPORT_SYMBOL(__sk_mem_reclaim);
2041 * Set of default routines for initialising struct proto_ops when
2042 * the protocol does not support a particular function. In certain
2043 * cases where it makes no sense for a protocol to have a "do nothing"
2044 * function, some default processing is provided.
2047 int sock_no_bind(struct socket *sock, struct sockaddr *saddr, int len)
2049 return -EOPNOTSUPP;
2051 EXPORT_SYMBOL(sock_no_bind);
2053 int sock_no_connect(struct socket *sock, struct sockaddr *saddr,
2054 int len, int flags)
2056 return -EOPNOTSUPP;
2058 EXPORT_SYMBOL(sock_no_connect);
2060 int sock_no_socketpair(struct socket *sock1, struct socket *sock2)
2062 return -EOPNOTSUPP;
2064 EXPORT_SYMBOL(sock_no_socketpair);
2066 int sock_no_accept(struct socket *sock, struct socket *newsock, int flags)
2068 return -EOPNOTSUPP;
2070 EXPORT_SYMBOL(sock_no_accept);
2072 int sock_no_getname(struct socket *sock, struct sockaddr *saddr,
2073 int *len, int peer)
2075 return -EOPNOTSUPP;
2077 EXPORT_SYMBOL(sock_no_getname);
2079 unsigned int sock_no_poll(struct file *file, struct socket *sock, poll_table *pt)
2081 return 0;
2083 EXPORT_SYMBOL(sock_no_poll);
2085 int sock_no_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
2087 return -EOPNOTSUPP;
2089 EXPORT_SYMBOL(sock_no_ioctl);
2091 int sock_no_listen(struct socket *sock, int backlog)
2093 return -EOPNOTSUPP;
2095 EXPORT_SYMBOL(sock_no_listen);
2097 int sock_no_shutdown(struct socket *sock, int how)
2099 return -EOPNOTSUPP;
2101 EXPORT_SYMBOL(sock_no_shutdown);
2103 int sock_no_setsockopt(struct socket *sock, int level, int optname,
2104 char __user *optval, unsigned int optlen)
2106 return -EOPNOTSUPP;
2108 EXPORT_SYMBOL(sock_no_setsockopt);
2110 int sock_no_getsockopt(struct socket *sock, int level, int optname,
2111 char __user *optval, int __user *optlen)
2113 return -EOPNOTSUPP;
2115 EXPORT_SYMBOL(sock_no_getsockopt);
2117 int sock_no_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2118 size_t len)
2120 return -EOPNOTSUPP;
2122 EXPORT_SYMBOL(sock_no_sendmsg);
2124 int sock_no_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *m,
2125 size_t len, int flags)
2127 return -EOPNOTSUPP;
2129 EXPORT_SYMBOL(sock_no_recvmsg);
2131 int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma)
2133 /* Mirror missing mmap method error code */
2134 return -ENODEV;
2136 EXPORT_SYMBOL(sock_no_mmap);
2138 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags)
2140 ssize_t res;
2141 struct msghdr msg = {.msg_flags = flags};
2142 struct kvec iov;
2143 char *kaddr = kmap(page);
2144 iov.iov_base = kaddr + offset;
2145 iov.iov_len = size;
2146 res = kernel_sendmsg(sock, &msg, &iov, 1, size);
2147 kunmap(page);
2148 return res;
2150 EXPORT_SYMBOL(sock_no_sendpage);
2153 * Default Socket Callbacks
2156 static void sock_def_wakeup(struct sock *sk)
2158 struct socket_wq *wq;
2160 rcu_read_lock();
2161 wq = rcu_dereference(sk->sk_wq);
2162 if (wq_has_sleeper(wq))
2163 wake_up_interruptible_all(&wq->wait);
2164 rcu_read_unlock();
2167 static void sock_def_error_report(struct sock *sk)
2169 struct socket_wq *wq;
2171 rcu_read_lock();
2172 wq = rcu_dereference(sk->sk_wq);
2173 if (wq_has_sleeper(wq))
2174 wake_up_interruptible_poll(&wq->wait, POLLERR);
2175 sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR);
2176 rcu_read_unlock();
2179 static void sock_def_readable(struct sock *sk, int len)
2181 struct socket_wq *wq;
2183 rcu_read_lock();
2184 wq = rcu_dereference(sk->sk_wq);
2185 if (wq_has_sleeper(wq))
2186 wake_up_interruptible_sync_poll(&wq->wait, POLLIN | POLLPRI |
2187 POLLRDNORM | POLLRDBAND);
2188 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
2189 rcu_read_unlock();
2192 static void sock_def_write_space(struct sock *sk)
2194 struct socket_wq *wq;
2196 rcu_read_lock();
2198 /* Do not wake up a writer until he can make "significant"
2199 * progress. --DaveM
2201 if ((atomic_read(&sk->sk_wmem_alloc) << 1) <= sk->sk_sndbuf) {
2202 wq = rcu_dereference(sk->sk_wq);
2203 if (wq_has_sleeper(wq))
2204 wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
2205 POLLWRNORM | POLLWRBAND);
2207 /* Should agree with poll, otherwise some programs break */
2208 if (sock_writeable(sk))
2209 sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
2212 rcu_read_unlock();
2215 static void sock_def_destruct(struct sock *sk)
2217 kfree(sk->sk_protinfo);
2220 void sk_send_sigurg(struct sock *sk)
2222 if (sk->sk_socket && sk->sk_socket->file)
2223 if (send_sigurg(&sk->sk_socket->file->f_owner))
2224 sk_wake_async(sk, SOCK_WAKE_URG, POLL_PRI);
2226 EXPORT_SYMBOL(sk_send_sigurg);
2228 void sk_reset_timer(struct sock *sk, struct timer_list* timer,
2229 unsigned long expires)
2231 if (!mod_timer(timer, expires))
2232 sock_hold(sk);
2234 EXPORT_SYMBOL(sk_reset_timer);
2236 void sk_stop_timer(struct sock *sk, struct timer_list* timer)
2238 if (del_timer(timer))
2239 __sock_put(sk);
2241 EXPORT_SYMBOL(sk_stop_timer);
2243 void sock_init_data(struct socket *sock, struct sock *sk)
2245 skb_queue_head_init(&sk->sk_receive_queue);
2246 skb_queue_head_init(&sk->sk_write_queue);
2247 skb_queue_head_init(&sk->sk_error_queue);
2248 #ifdef CONFIG_NET_DMA
2249 skb_queue_head_init(&sk->sk_async_wait_queue);
2250 #endif
2252 sk->sk_send_head = NULL;
2254 init_timer(&sk->sk_timer);
2256 sk->sk_allocation = GFP_KERNEL;
2257 sk->sk_rcvbuf = sysctl_rmem_default;
2258 sk->sk_sndbuf = sysctl_wmem_default;
2259 sk->sk_state = TCP_CLOSE;
2260 sk_set_socket(sk, sock);
2262 sock_set_flag(sk, SOCK_ZAPPED);
2264 if (sock) {
2265 sk->sk_type = sock->type;
2266 sk->sk_wq = sock->wq;
2267 sock->sk = sk;
2268 } else
2269 sk->sk_wq = NULL;
2271 spin_lock_init(&sk->sk_dst_lock);
2272 rwlock_init(&sk->sk_callback_lock);
2273 lockdep_set_class_and_name(&sk->sk_callback_lock,
2274 af_callback_keys + sk->sk_family,
2275 af_family_clock_key_strings[sk->sk_family]);
2277 sk->sk_state_change = sock_def_wakeup;
2278 sk->sk_data_ready = sock_def_readable;
2279 sk->sk_write_space = sock_def_write_space;
2280 sk->sk_error_report = sock_def_error_report;
2281 sk->sk_destruct = sock_def_destruct;
2283 sk->sk_frag.page = NULL;
2284 sk->sk_frag.offset = 0;
2285 sk->sk_peek_off = -1;
2287 sk->sk_peer_pid = NULL;
2288 sk->sk_peer_cred = NULL;
2289 sk->sk_write_pending = 0;
2290 sk->sk_rcvlowat = 1;
2291 sk->sk_rcvtimeo = MAX_SCHEDULE_TIMEOUT;
2292 sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
2294 sk->sk_stamp = ktime_set(-1L, 0);
2296 #ifdef CONFIG_NET_LL_RX_POLL
2297 sk->sk_napi_id = 0;
2298 sk->sk_ll_usec = sysctl_net_busy_read;
2299 #endif
2302 * Before updating sk_refcnt, we must commit prior changes to memory
2303 * (Documentation/RCU/rculist_nulls.txt for details)
2305 smp_wmb();
2306 atomic_set(&sk->sk_refcnt, 1);
2307 atomic_set(&sk->sk_drops, 0);
2309 EXPORT_SYMBOL(sock_init_data);
2311 void lock_sock_nested(struct sock *sk, int subclass)
2313 might_sleep();
2314 spin_lock_bh(&sk->sk_lock.slock);
2315 if (sk->sk_lock.owned)
2316 __lock_sock(sk);
2317 sk->sk_lock.owned = 1;
2318 spin_unlock(&sk->sk_lock.slock);
2320 * The sk_lock has mutex_lock() semantics here:
2322 mutex_acquire(&sk->sk_lock.dep_map, subclass, 0, _RET_IP_);
2323 local_bh_enable();
2325 EXPORT_SYMBOL(lock_sock_nested);
2327 void release_sock(struct sock *sk)
2330 * The sk_lock has mutex_unlock() semantics:
2332 mutex_release(&sk->sk_lock.dep_map, 1, _RET_IP_);
2334 spin_lock_bh(&sk->sk_lock.slock);
2335 if (sk->sk_backlog.tail)
2336 __release_sock(sk);
2338 if (sk->sk_prot->release_cb)
2339 sk->sk_prot->release_cb(sk);
2341 sk->sk_lock.owned = 0;
2342 if (waitqueue_active(&sk->sk_lock.wq))
2343 wake_up(&sk->sk_lock.wq);
2344 spin_unlock_bh(&sk->sk_lock.slock);
2346 EXPORT_SYMBOL(release_sock);
2349 * lock_sock_fast - fast version of lock_sock
2350 * @sk: socket
2352 * This version should be used for very small section, where process wont block
2353 * return false if fast path is taken
2354 * sk_lock.slock locked, owned = 0, BH disabled
2355 * return true if slow path is taken
2356 * sk_lock.slock unlocked, owned = 1, BH enabled
2358 bool lock_sock_fast(struct sock *sk)
2360 might_sleep();
2361 spin_lock_bh(&sk->sk_lock.slock);
2363 if (!sk->sk_lock.owned)
2365 * Note : We must disable BH
2367 return false;
2369 __lock_sock(sk);
2370 sk->sk_lock.owned = 1;
2371 spin_unlock(&sk->sk_lock.slock);
2373 * The sk_lock has mutex_lock() semantics here:
2375 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
2376 local_bh_enable();
2377 return true;
2379 EXPORT_SYMBOL(lock_sock_fast);
2381 int sock_get_timestamp(struct sock *sk, struct timeval __user *userstamp)
2383 struct timeval tv;
2384 if (!sock_flag(sk, SOCK_TIMESTAMP))
2385 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2386 tv = ktime_to_timeval(sk->sk_stamp);
2387 if (tv.tv_sec == -1)
2388 return -ENOENT;
2389 if (tv.tv_sec == 0) {
2390 sk->sk_stamp = ktime_get_real();
2391 tv = ktime_to_timeval(sk->sk_stamp);
2393 return copy_to_user(userstamp, &tv, sizeof(tv)) ? -EFAULT : 0;
2395 EXPORT_SYMBOL(sock_get_timestamp);
2397 int sock_get_timestampns(struct sock *sk, struct timespec __user *userstamp)
2399 struct timespec ts;
2400 if (!sock_flag(sk, SOCK_TIMESTAMP))
2401 sock_enable_timestamp(sk, SOCK_TIMESTAMP);
2402 ts = ktime_to_timespec(sk->sk_stamp);
2403 if (ts.tv_sec == -1)
2404 return -ENOENT;
2405 if (ts.tv_sec == 0) {
2406 sk->sk_stamp = ktime_get_real();
2407 ts = ktime_to_timespec(sk->sk_stamp);
2409 return copy_to_user(userstamp, &ts, sizeof(ts)) ? -EFAULT : 0;
2411 EXPORT_SYMBOL(sock_get_timestampns);
2413 void sock_enable_timestamp(struct sock *sk, int flag)
2415 if (!sock_flag(sk, flag)) {
2416 unsigned long previous_flags = sk->sk_flags;
2418 sock_set_flag(sk, flag);
2420 * we just set one of the two flags which require net
2421 * time stamping, but time stamping might have been on
2422 * already because of the other one
2424 if (!(previous_flags & SK_FLAGS_TIMESTAMP))
2425 net_enable_timestamp();
2429 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len,
2430 int level, int type)
2432 struct sock_exterr_skb *serr;
2433 struct sk_buff *skb, *skb2;
2434 int copied, err;
2436 err = -EAGAIN;
2437 skb = skb_dequeue(&sk->sk_error_queue);
2438 if (skb == NULL)
2439 goto out;
2441 copied = skb->len;
2442 if (copied > len) {
2443 msg->msg_flags |= MSG_TRUNC;
2444 copied = len;
2446 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
2447 if (err)
2448 goto out_free_skb;
2450 sock_recv_timestamp(msg, sk, skb);
2452 serr = SKB_EXT_ERR(skb);
2453 put_cmsg(msg, level, type, sizeof(serr->ee), &serr->ee);
2455 msg->msg_flags |= MSG_ERRQUEUE;
2456 err = copied;
2458 /* Reset and regenerate socket error */
2459 spin_lock_bh(&sk->sk_error_queue.lock);
2460 sk->sk_err = 0;
2461 if ((skb2 = skb_peek(&sk->sk_error_queue)) != NULL) {
2462 sk->sk_err = SKB_EXT_ERR(skb2)->ee.ee_errno;
2463 spin_unlock_bh(&sk->sk_error_queue.lock);
2464 sk->sk_error_report(sk);
2465 } else
2466 spin_unlock_bh(&sk->sk_error_queue.lock);
2468 out_free_skb:
2469 kfree_skb(skb);
2470 out:
2471 return err;
2473 EXPORT_SYMBOL(sock_recv_errqueue);
2476 * Get a socket option on an socket.
2478 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2479 * asynchronous errors should be reported by getsockopt. We assume
2480 * this means if you specify SO_ERROR (otherwise whats the point of it).
2482 int sock_common_getsockopt(struct socket *sock, int level, int optname,
2483 char __user *optval, int __user *optlen)
2485 struct sock *sk = sock->sk;
2487 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2489 EXPORT_SYMBOL(sock_common_getsockopt);
2491 #ifdef CONFIG_COMPAT
2492 int compat_sock_common_getsockopt(struct socket *sock, int level, int optname,
2493 char __user *optval, int __user *optlen)
2495 struct sock *sk = sock->sk;
2497 if (sk->sk_prot->compat_getsockopt != NULL)
2498 return sk->sk_prot->compat_getsockopt(sk, level, optname,
2499 optval, optlen);
2500 return sk->sk_prot->getsockopt(sk, level, optname, optval, optlen);
2502 EXPORT_SYMBOL(compat_sock_common_getsockopt);
2503 #endif
2505 int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
2506 struct msghdr *msg, size_t size, int flags)
2508 struct sock *sk = sock->sk;
2509 int addr_len = 0;
2510 int err;
2512 err = sk->sk_prot->recvmsg(iocb, sk, msg, size, flags & MSG_DONTWAIT,
2513 flags & ~MSG_DONTWAIT, &addr_len);
2514 if (err >= 0)
2515 msg->msg_namelen = addr_len;
2516 return err;
2518 EXPORT_SYMBOL(sock_common_recvmsg);
2521 * Set socket options on an inet socket.
2523 int sock_common_setsockopt(struct socket *sock, int level, int optname,
2524 char __user *optval, unsigned int optlen)
2526 struct sock *sk = sock->sk;
2528 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2530 EXPORT_SYMBOL(sock_common_setsockopt);
2532 #ifdef CONFIG_COMPAT
2533 int compat_sock_common_setsockopt(struct socket *sock, int level, int optname,
2534 char __user *optval, unsigned int optlen)
2536 struct sock *sk = sock->sk;
2538 if (sk->sk_prot->compat_setsockopt != NULL)
2539 return sk->sk_prot->compat_setsockopt(sk, level, optname,
2540 optval, optlen);
2541 return sk->sk_prot->setsockopt(sk, level, optname, optval, optlen);
2543 EXPORT_SYMBOL(compat_sock_common_setsockopt);
2544 #endif
2546 void sk_common_release(struct sock *sk)
2548 if (sk->sk_prot->destroy)
2549 sk->sk_prot->destroy(sk);
2552 * Observation: when sock_common_release is called, processes have
2553 * no access to socket. But net still has.
2554 * Step one, detach it from networking:
2556 * A. Remove from hash tables.
2559 sk->sk_prot->unhash(sk);
2562 * In this point socket cannot receive new packets, but it is possible
2563 * that some packets are in flight because some CPU runs receiver and
2564 * did hash table lookup before we unhashed socket. They will achieve
2565 * receive queue and will be purged by socket destructor.
2567 * Also we still have packets pending on receive queue and probably,
2568 * our own packets waiting in device queues. sock_destroy will drain
2569 * receive queue, but transmitted packets will delay socket destruction
2570 * until the last reference will be released.
2573 sock_orphan(sk);
2575 xfrm_sk_free_policy(sk);
2577 sk_refcnt_debug_release(sk);
2579 if (sk->sk_frag.page) {
2580 put_page(sk->sk_frag.page);
2581 sk->sk_frag.page = NULL;
2584 sock_put(sk);
2586 EXPORT_SYMBOL(sk_common_release);
2588 #ifdef CONFIG_PROC_FS
2589 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2590 struct prot_inuse {
2591 int val[PROTO_INUSE_NR];
2594 static DECLARE_BITMAP(proto_inuse_idx, PROTO_INUSE_NR);
2596 #ifdef CONFIG_NET_NS
2597 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2599 __this_cpu_add(net->core.inuse->val[prot->inuse_idx], val);
2601 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2603 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2605 int cpu, idx = prot->inuse_idx;
2606 int res = 0;
2608 for_each_possible_cpu(cpu)
2609 res += per_cpu_ptr(net->core.inuse, cpu)->val[idx];
2611 return res >= 0 ? res : 0;
2613 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2615 static int __net_init sock_inuse_init_net(struct net *net)
2617 net->core.inuse = alloc_percpu(struct prot_inuse);
2618 return net->core.inuse ? 0 : -ENOMEM;
2621 static void __net_exit sock_inuse_exit_net(struct net *net)
2623 free_percpu(net->core.inuse);
2626 static struct pernet_operations net_inuse_ops = {
2627 .init = sock_inuse_init_net,
2628 .exit = sock_inuse_exit_net,
2631 static __init int net_inuse_init(void)
2633 if (register_pernet_subsys(&net_inuse_ops))
2634 panic("Cannot initialize net inuse counters");
2636 return 0;
2639 core_initcall(net_inuse_init);
2640 #else
2641 static DEFINE_PER_CPU(struct prot_inuse, prot_inuse);
2643 void sock_prot_inuse_add(struct net *net, struct proto *prot, int val)
2645 __this_cpu_add(prot_inuse.val[prot->inuse_idx], val);
2647 EXPORT_SYMBOL_GPL(sock_prot_inuse_add);
2649 int sock_prot_inuse_get(struct net *net, struct proto *prot)
2651 int cpu, idx = prot->inuse_idx;
2652 int res = 0;
2654 for_each_possible_cpu(cpu)
2655 res += per_cpu(prot_inuse, cpu).val[idx];
2657 return res >= 0 ? res : 0;
2659 EXPORT_SYMBOL_GPL(sock_prot_inuse_get);
2660 #endif
2662 static void assign_proto_idx(struct proto *prot)
2664 prot->inuse_idx = find_first_zero_bit(proto_inuse_idx, PROTO_INUSE_NR);
2666 if (unlikely(prot->inuse_idx == PROTO_INUSE_NR - 1)) {
2667 pr_err("PROTO_INUSE_NR exhausted\n");
2668 return;
2671 set_bit(prot->inuse_idx, proto_inuse_idx);
2674 static void release_proto_idx(struct proto *prot)
2676 if (prot->inuse_idx != PROTO_INUSE_NR - 1)
2677 clear_bit(prot->inuse_idx, proto_inuse_idx);
2679 #else
2680 static inline void assign_proto_idx(struct proto *prot)
2684 static inline void release_proto_idx(struct proto *prot)
2687 #endif
2689 int proto_register(struct proto *prot, int alloc_slab)
2691 if (alloc_slab) {
2692 prot->slab = kmem_cache_create(prot->name, prot->obj_size, 0,
2693 SLAB_HWCACHE_ALIGN | prot->slab_flags,
2694 NULL);
2696 if (prot->slab == NULL) {
2697 pr_crit("%s: Can't create sock SLAB cache!\n",
2698 prot->name);
2699 goto out;
2702 if (prot->rsk_prot != NULL) {
2703 prot->rsk_prot->slab_name = kasprintf(GFP_KERNEL, "request_sock_%s", prot->name);
2704 if (prot->rsk_prot->slab_name == NULL)
2705 goto out_free_sock_slab;
2707 prot->rsk_prot->slab = kmem_cache_create(prot->rsk_prot->slab_name,
2708 prot->rsk_prot->obj_size, 0,
2709 SLAB_HWCACHE_ALIGN, NULL);
2711 if (prot->rsk_prot->slab == NULL) {
2712 pr_crit("%s: Can't create request sock SLAB cache!\n",
2713 prot->name);
2714 goto out_free_request_sock_slab_name;
2718 if (prot->twsk_prot != NULL) {
2719 prot->twsk_prot->twsk_slab_name = kasprintf(GFP_KERNEL, "tw_sock_%s", prot->name);
2721 if (prot->twsk_prot->twsk_slab_name == NULL)
2722 goto out_free_request_sock_slab;
2724 prot->twsk_prot->twsk_slab =
2725 kmem_cache_create(prot->twsk_prot->twsk_slab_name,
2726 prot->twsk_prot->twsk_obj_size,
2728 SLAB_HWCACHE_ALIGN |
2729 prot->slab_flags,
2730 NULL);
2731 if (prot->twsk_prot->twsk_slab == NULL)
2732 goto out_free_timewait_sock_slab_name;
2736 mutex_lock(&proto_list_mutex);
2737 list_add(&prot->node, &proto_list);
2738 assign_proto_idx(prot);
2739 mutex_unlock(&proto_list_mutex);
2740 return 0;
2742 out_free_timewait_sock_slab_name:
2743 kfree(prot->twsk_prot->twsk_slab_name);
2744 out_free_request_sock_slab:
2745 if (prot->rsk_prot && prot->rsk_prot->slab) {
2746 kmem_cache_destroy(prot->rsk_prot->slab);
2747 prot->rsk_prot->slab = NULL;
2749 out_free_request_sock_slab_name:
2750 if (prot->rsk_prot)
2751 kfree(prot->rsk_prot->slab_name);
2752 out_free_sock_slab:
2753 kmem_cache_destroy(prot->slab);
2754 prot->slab = NULL;
2755 out:
2756 return -ENOBUFS;
2758 EXPORT_SYMBOL(proto_register);
2760 void proto_unregister(struct proto *prot)
2762 mutex_lock(&proto_list_mutex);
2763 release_proto_idx(prot);
2764 list_del(&prot->node);
2765 mutex_unlock(&proto_list_mutex);
2767 if (prot->slab != NULL) {
2768 kmem_cache_destroy(prot->slab);
2769 prot->slab = NULL;
2772 if (prot->rsk_prot != NULL && prot->rsk_prot->slab != NULL) {
2773 kmem_cache_destroy(prot->rsk_prot->slab);
2774 kfree(prot->rsk_prot->slab_name);
2775 prot->rsk_prot->slab = NULL;
2778 if (prot->twsk_prot != NULL && prot->twsk_prot->twsk_slab != NULL) {
2779 kmem_cache_destroy(prot->twsk_prot->twsk_slab);
2780 kfree(prot->twsk_prot->twsk_slab_name);
2781 prot->twsk_prot->twsk_slab = NULL;
2784 EXPORT_SYMBOL(proto_unregister);
2786 #ifdef CONFIG_PROC_FS
2787 static void *proto_seq_start(struct seq_file *seq, loff_t *pos)
2788 __acquires(proto_list_mutex)
2790 mutex_lock(&proto_list_mutex);
2791 return seq_list_start_head(&proto_list, *pos);
2794 static void *proto_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2796 return seq_list_next(v, &proto_list, pos);
2799 static void proto_seq_stop(struct seq_file *seq, void *v)
2800 __releases(proto_list_mutex)
2802 mutex_unlock(&proto_list_mutex);
2805 static char proto_method_implemented(const void *method)
2807 return method == NULL ? 'n' : 'y';
2809 static long sock_prot_memory_allocated(struct proto *proto)
2811 return proto->memory_allocated != NULL ? proto_memory_allocated(proto) : -1L;
2814 static char *sock_prot_memory_pressure(struct proto *proto)
2816 return proto->memory_pressure != NULL ?
2817 proto_memory_pressure(proto) ? "yes" : "no" : "NI";
2820 static void proto_seq_printf(struct seq_file *seq, struct proto *proto)
2823 seq_printf(seq, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2824 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2825 proto->name,
2826 proto->obj_size,
2827 sock_prot_inuse_get(seq_file_net(seq), proto),
2828 sock_prot_memory_allocated(proto),
2829 sock_prot_memory_pressure(proto),
2830 proto->max_header,
2831 proto->slab == NULL ? "no" : "yes",
2832 module_name(proto->owner),
2833 proto_method_implemented(proto->close),
2834 proto_method_implemented(proto->connect),
2835 proto_method_implemented(proto->disconnect),
2836 proto_method_implemented(proto->accept),
2837 proto_method_implemented(proto->ioctl),
2838 proto_method_implemented(proto->init),
2839 proto_method_implemented(proto->destroy),
2840 proto_method_implemented(proto->shutdown),
2841 proto_method_implemented(proto->setsockopt),
2842 proto_method_implemented(proto->getsockopt),
2843 proto_method_implemented(proto->sendmsg),
2844 proto_method_implemented(proto->recvmsg),
2845 proto_method_implemented(proto->sendpage),
2846 proto_method_implemented(proto->bind),
2847 proto_method_implemented(proto->backlog_rcv),
2848 proto_method_implemented(proto->hash),
2849 proto_method_implemented(proto->unhash),
2850 proto_method_implemented(proto->get_port),
2851 proto_method_implemented(proto->enter_memory_pressure));
2854 static int proto_seq_show(struct seq_file *seq, void *v)
2856 if (v == &proto_list)
2857 seq_printf(seq, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2858 "protocol",
2859 "size",
2860 "sockets",
2861 "memory",
2862 "press",
2863 "maxhdr",
2864 "slab",
2865 "module",
2866 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2867 else
2868 proto_seq_printf(seq, list_entry(v, struct proto, node));
2869 return 0;
2872 static const struct seq_operations proto_seq_ops = {
2873 .start = proto_seq_start,
2874 .next = proto_seq_next,
2875 .stop = proto_seq_stop,
2876 .show = proto_seq_show,
2879 static int proto_seq_open(struct inode *inode, struct file *file)
2881 return seq_open_net(inode, file, &proto_seq_ops,
2882 sizeof(struct seq_net_private));
2885 static const struct file_operations proto_seq_fops = {
2886 .owner = THIS_MODULE,
2887 .open = proto_seq_open,
2888 .read = seq_read,
2889 .llseek = seq_lseek,
2890 .release = seq_release_net,
2893 static __net_init int proto_init_net(struct net *net)
2895 if (!proc_create("protocols", S_IRUGO, net->proc_net, &proto_seq_fops))
2896 return -ENOMEM;
2898 return 0;
2901 static __net_exit void proto_exit_net(struct net *net)
2903 remove_proc_entry("protocols", net->proc_net);
2907 static __net_initdata struct pernet_operations proto_net_ops = {
2908 .init = proto_init_net,
2909 .exit = proto_exit_net,
2912 static int __init proto_init(void)
2914 return register_pernet_subsys(&proto_net_ops);
2917 subsys_initcall(proto_init);
2919 #endif /* PROC_FS */