2 * Copyright (c) 2013, Kenneth MacKay
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
8 * * Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * * Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
15 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
16 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
17 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
18 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
19 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
20 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
24 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 #include <linux/random.h>
36 /* Number of u64's needed */
37 #define NUM_ECC_DIGITS (ECC_BYTES / 8)
40 u64 x
[NUM_ECC_DIGITS
];
41 u64 y
[NUM_ECC_DIGITS
];
49 #define CURVE_P_32 { 0xFFFFFFFFFFFFFFFFull, 0x00000000FFFFFFFFull, \
50 0x0000000000000000ull, 0xFFFFFFFF00000001ull }
52 #define CURVE_G_32 { \
53 { 0xF4A13945D898C296ull, 0x77037D812DEB33A0ull, \
54 0xF8BCE6E563A440F2ull, 0x6B17D1F2E12C4247ull }, \
55 { 0xCBB6406837BF51F5ull, 0x2BCE33576B315ECEull, \
56 0x8EE7EB4A7C0F9E16ull, 0x4FE342E2FE1A7F9Bull } \
59 #define CURVE_N_32 { 0xF3B9CAC2FC632551ull, 0xBCE6FAADA7179E84ull, \
60 0xFFFFFFFFFFFFFFFFull, 0xFFFFFFFF00000000ull }
62 static u64 curve_p
[NUM_ECC_DIGITS
] = CURVE_P_32
;
63 static struct ecc_point curve_g
= CURVE_G_32
;
64 static u64 curve_n
[NUM_ECC_DIGITS
] = CURVE_N_32
;
66 static void vli_clear(u64
*vli
)
70 for (i
= 0; i
< NUM_ECC_DIGITS
; i
++)
74 /* Returns true if vli == 0, false otherwise. */
75 static bool vli_is_zero(const u64
*vli
)
79 for (i
= 0; i
< NUM_ECC_DIGITS
; i
++) {
87 /* Returns nonzero if bit bit of vli is set. */
88 static u64
vli_test_bit(const u64
*vli
, unsigned int bit
)
90 return (vli
[bit
/ 64] & ((u64
) 1 << (bit
% 64)));
93 /* Counts the number of 64-bit "digits" in vli. */
94 static unsigned int vli_num_digits(const u64
*vli
)
98 /* Search from the end until we find a non-zero digit.
99 * We do it in reverse because we expect that most digits will
102 for (i
= NUM_ECC_DIGITS
- 1; i
>= 0 && vli
[i
] == 0; i
--);
107 /* Counts the number of bits required for vli. */
108 static unsigned int vli_num_bits(const u64
*vli
)
110 unsigned int i
, num_digits
;
113 num_digits
= vli_num_digits(vli
);
117 digit
= vli
[num_digits
- 1];
118 for (i
= 0; digit
; i
++)
121 return ((num_digits
- 1) * 64 + i
);
124 /* Sets dest = src. */
125 static void vli_set(u64
*dest
, const u64
*src
)
129 for (i
= 0; i
< NUM_ECC_DIGITS
; i
++)
133 /* Returns sign of left - right. */
134 static int vli_cmp(const u64
*left
, const u64
*right
)
138 for (i
= NUM_ECC_DIGITS
- 1; i
>= 0; i
--) {
139 if (left
[i
] > right
[i
])
141 else if (left
[i
] < right
[i
])
148 /* Computes result = in << c, returning carry. Can modify in place
149 * (if result == in). 0 < shift < 64.
151 static u64
vli_lshift(u64
*result
, const u64
*in
,
157 for (i
= 0; i
< NUM_ECC_DIGITS
; i
++) {
160 result
[i
] = (temp
<< shift
) | carry
;
161 carry
= temp
>> (64 - shift
);
167 /* Computes vli = vli >> 1. */
168 static void vli_rshift1(u64
*vli
)
173 vli
+= NUM_ECC_DIGITS
;
175 while (vli
-- > end
) {
177 *vli
= (temp
>> 1) | carry
;
182 /* Computes result = left + right, returning carry. Can modify in place. */
183 static u64
vli_add(u64
*result
, const u64
*left
,
189 for (i
= 0; i
< NUM_ECC_DIGITS
; i
++) {
192 sum
= left
[i
] + right
[i
] + carry
;
194 carry
= (sum
< left
[i
]);
202 /* Computes result = left - right, returning borrow. Can modify in place. */
203 static u64
vli_sub(u64
*result
, const u64
*left
, const u64
*right
)
208 for (i
= 0; i
< NUM_ECC_DIGITS
; i
++) {
211 diff
= left
[i
] - right
[i
] - borrow
;
213 borrow
= (diff
> left
[i
]);
221 static uint128_t
mul_64_64(u64 left
, u64 right
)
223 u64 a0
= left
& 0xffffffffull
;
225 u64 b0
= right
& 0xffffffffull
;
226 u64 b1
= right
>> 32;
238 m3
+= 0x100000000ull
;
240 result
.m_low
= (m0
& 0xffffffffull
) | (m2
<< 32);
241 result
.m_high
= m3
+ (m2
>> 32);
246 static uint128_t
add_128_128(uint128_t a
, uint128_t b
)
250 result
.m_low
= a
.m_low
+ b
.m_low
;
251 result
.m_high
= a
.m_high
+ b
.m_high
+ (result
.m_low
< a
.m_low
);
256 static void vli_mult(u64
*result
, const u64
*left
, const u64
*right
)
258 uint128_t r01
= { 0, 0 };
262 /* Compute each digit of result in sequence, maintaining the
265 for (k
= 0; k
< NUM_ECC_DIGITS
* 2 - 1; k
++) {
268 if (k
< NUM_ECC_DIGITS
)
271 min
= (k
+ 1) - NUM_ECC_DIGITS
;
273 for (i
= min
; i
<= k
&& i
< NUM_ECC_DIGITS
; i
++) {
276 product
= mul_64_64(left
[i
], right
[k
- i
]);
278 r01
= add_128_128(r01
, product
);
279 r2
+= (r01
.m_high
< product
.m_high
);
282 result
[k
] = r01
.m_low
;
283 r01
.m_low
= r01
.m_high
;
288 result
[NUM_ECC_DIGITS
* 2 - 1] = r01
.m_low
;
291 static void vli_square(u64
*result
, const u64
*left
)
293 uint128_t r01
= { 0, 0 };
297 for (k
= 0; k
< NUM_ECC_DIGITS
* 2 - 1; k
++) {
300 if (k
< NUM_ECC_DIGITS
)
303 min
= (k
+ 1) - NUM_ECC_DIGITS
;
305 for (i
= min
; i
<= k
&& i
<= k
- i
; i
++) {
308 product
= mul_64_64(left
[i
], left
[k
- i
]);
311 r2
+= product
.m_high
>> 63;
312 product
.m_high
= (product
.m_high
<< 1) |
313 (product
.m_low
>> 63);
317 r01
= add_128_128(r01
, product
);
318 r2
+= (r01
.m_high
< product
.m_high
);
321 result
[k
] = r01
.m_low
;
322 r01
.m_low
= r01
.m_high
;
327 result
[NUM_ECC_DIGITS
* 2 - 1] = r01
.m_low
;
330 /* Computes result = (left + right) % mod.
331 * Assumes that left < mod and right < mod, result != mod.
333 static void vli_mod_add(u64
*result
, const u64
*left
, const u64
*right
,
338 carry
= vli_add(result
, left
, right
);
340 /* result > mod (result = mod + remainder), so subtract mod to
343 if (carry
|| vli_cmp(result
, mod
) >= 0)
344 vli_sub(result
, result
, mod
);
347 /* Computes result = (left - right) % mod.
348 * Assumes that left < mod and right < mod, result != mod.
350 static void vli_mod_sub(u64
*result
, const u64
*left
, const u64
*right
,
353 u64 borrow
= vli_sub(result
, left
, right
);
355 /* In this case, p_result == -diff == (max int) - diff.
356 * Since -x % d == d - x, we can get the correct result from
357 * result + mod (with overflow).
360 vli_add(result
, result
, mod
);
363 /* Computes result = product % curve_p
364 from http://www.nsa.gov/ia/_files/nist-routines.pdf */
365 static void vli_mmod_fast(u64
*result
, const u64
*product
)
367 u64 tmp
[NUM_ECC_DIGITS
];
371 vli_set(result
, product
);
375 tmp
[1] = product
[5] & 0xffffffff00000000ull
;
378 carry
= vli_lshift(tmp
, tmp
, 1);
379 carry
+= vli_add(result
, result
, tmp
);
382 tmp
[1] = product
[6] << 32;
383 tmp
[2] = (product
[6] >> 32) | (product
[7] << 32);
384 tmp
[3] = product
[7] >> 32;
385 carry
+= vli_lshift(tmp
, tmp
, 1);
386 carry
+= vli_add(result
, result
, tmp
);
390 tmp
[1] = product
[5] & 0xffffffff;
393 carry
+= vli_add(result
, result
, tmp
);
396 tmp
[0] = (product
[4] >> 32) | (product
[5] << 32);
397 tmp
[1] = (product
[5] >> 32) | (product
[6] & 0xffffffff00000000ull
);
399 tmp
[3] = (product
[6] >> 32) | (product
[4] << 32);
400 carry
+= vli_add(result
, result
, tmp
);
403 tmp
[0] = (product
[5] >> 32) | (product
[6] << 32);
404 tmp
[1] = (product
[6] >> 32);
406 tmp
[3] = (product
[4] & 0xffffffff) | (product
[5] << 32);
407 carry
-= vli_sub(result
, result
, tmp
);
413 tmp
[3] = (product
[4] >> 32) | (product
[5] & 0xffffffff00000000ull
);
414 carry
-= vli_sub(result
, result
, tmp
);
417 tmp
[0] = (product
[6] >> 32) | (product
[7] << 32);
418 tmp
[1] = (product
[7] >> 32) | (product
[4] << 32);
419 tmp
[2] = (product
[4] >> 32) | (product
[5] << 32);
420 tmp
[3] = (product
[6] << 32);
421 carry
-= vli_sub(result
, result
, tmp
);
425 tmp
[1] = product
[4] & 0xffffffff00000000ull
;
427 tmp
[3] = product
[6] & 0xffffffff00000000ull
;
428 carry
-= vli_sub(result
, result
, tmp
);
432 carry
+= vli_add(result
, result
, curve_p
);
435 while (carry
|| vli_cmp(curve_p
, result
) != 1)
436 carry
-= vli_sub(result
, result
, curve_p
);
440 /* Computes result = (left * right) % curve_p. */
441 static void vli_mod_mult_fast(u64
*result
, const u64
*left
, const u64
*right
)
443 u64 product
[2 * NUM_ECC_DIGITS
];
445 vli_mult(product
, left
, right
);
446 vli_mmod_fast(result
, product
);
449 /* Computes result = left^2 % curve_p. */
450 static void vli_mod_square_fast(u64
*result
, const u64
*left
)
452 u64 product
[2 * NUM_ECC_DIGITS
];
454 vli_square(product
, left
);
455 vli_mmod_fast(result
, product
);
458 #define EVEN(vli) (!(vli[0] & 1))
459 /* Computes result = (1 / p_input) % mod. All VLIs are the same size.
460 * See "From Euclid's GCD to Montgomery Multiplication to the Great Divide"
461 * https://labs.oracle.com/techrep/2001/smli_tr-2001-95.pdf
463 static void vli_mod_inv(u64
*result
, const u64
*input
, const u64
*mod
)
465 u64 a
[NUM_ECC_DIGITS
], b
[NUM_ECC_DIGITS
];
466 u64 u
[NUM_ECC_DIGITS
], v
[NUM_ECC_DIGITS
];
470 if (vli_is_zero(input
)) {
481 while ((cmp_result
= vli_cmp(a
, b
)) != 0) {
488 carry
= vli_add(u
, u
, mod
);
492 u
[NUM_ECC_DIGITS
- 1] |= 0x8000000000000000ull
;
493 } else if (EVEN(b
)) {
497 carry
= vli_add(v
, v
, mod
);
501 v
[NUM_ECC_DIGITS
- 1] |= 0x8000000000000000ull
;
502 } else if (cmp_result
> 0) {
506 if (vli_cmp(u
, v
) < 0)
511 carry
= vli_add(u
, u
, mod
);
515 u
[NUM_ECC_DIGITS
- 1] |= 0x8000000000000000ull
;
520 if (vli_cmp(v
, u
) < 0)
525 carry
= vli_add(v
, v
, mod
);
529 v
[NUM_ECC_DIGITS
- 1] |= 0x8000000000000000ull
;
536 /* ------ Point operations ------ */
538 /* Returns true if p_point is the point at infinity, false otherwise. */
539 static bool ecc_point_is_zero(const struct ecc_point
*point
)
541 return (vli_is_zero(point
->x
) && vli_is_zero(point
->y
));
544 /* Point multiplication algorithm using Montgomery's ladder with co-Z
545 * coordinates. From http://eprint.iacr.org/2011/338.pdf
548 /* Double in place */
549 static void ecc_point_double_jacobian(u64
*x1
, u64
*y1
, u64
*z1
)
551 /* t1 = x, t2 = y, t3 = z */
552 u64 t4
[NUM_ECC_DIGITS
];
553 u64 t5
[NUM_ECC_DIGITS
];
558 vli_mod_square_fast(t4
, y1
); /* t4 = y1^2 */
559 vli_mod_mult_fast(t5
, x1
, t4
); /* t5 = x1*y1^2 = A */
560 vli_mod_square_fast(t4
, t4
); /* t4 = y1^4 */
561 vli_mod_mult_fast(y1
, y1
, z1
); /* t2 = y1*z1 = z3 */
562 vli_mod_square_fast(z1
, z1
); /* t3 = z1^2 */
564 vli_mod_add(x1
, x1
, z1
, curve_p
); /* t1 = x1 + z1^2 */
565 vli_mod_add(z1
, z1
, z1
, curve_p
); /* t3 = 2*z1^2 */
566 vli_mod_sub(z1
, x1
, z1
, curve_p
); /* t3 = x1 - z1^2 */
567 vli_mod_mult_fast(x1
, x1
, z1
); /* t1 = x1^2 - z1^4 */
569 vli_mod_add(z1
, x1
, x1
, curve_p
); /* t3 = 2*(x1^2 - z1^4) */
570 vli_mod_add(x1
, x1
, z1
, curve_p
); /* t1 = 3*(x1^2 - z1^4) */
571 if (vli_test_bit(x1
, 0)) {
572 u64 carry
= vli_add(x1
, x1
, curve_p
);
574 x1
[NUM_ECC_DIGITS
- 1] |= carry
<< 63;
578 /* t1 = 3/2*(x1^2 - z1^4) = B */
580 vli_mod_square_fast(z1
, x1
); /* t3 = B^2 */
581 vli_mod_sub(z1
, z1
, t5
, curve_p
); /* t3 = B^2 - A */
582 vli_mod_sub(z1
, z1
, t5
, curve_p
); /* t3 = B^2 - 2A = x3 */
583 vli_mod_sub(t5
, t5
, z1
, curve_p
); /* t5 = A - x3 */
584 vli_mod_mult_fast(x1
, x1
, t5
); /* t1 = B * (A - x3) */
585 vli_mod_sub(t4
, x1
, t4
, curve_p
); /* t4 = B * (A - x3) - y1^4 = y3 */
592 /* Modify (x1, y1) => (x1 * z^2, y1 * z^3) */
593 static void apply_z(u64
*x1
, u64
*y1
, u64
*z
)
595 u64 t1
[NUM_ECC_DIGITS
];
597 vli_mod_square_fast(t1
, z
); /* z^2 */
598 vli_mod_mult_fast(x1
, x1
, t1
); /* x1 * z^2 */
599 vli_mod_mult_fast(t1
, t1
, z
); /* z^3 */
600 vli_mod_mult_fast(y1
, y1
, t1
); /* y1 * z^3 */
603 /* P = (x1, y1) => 2P, (x2, y2) => P' */
604 static void xycz_initial_double(u64
*x1
, u64
*y1
, u64
*x2
, u64
*y2
,
607 u64 z
[NUM_ECC_DIGITS
];
616 vli_set(z
, p_initial_z
);
620 ecc_point_double_jacobian(x1
, y1
, z
);
625 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
626 * Output P' = (x1', y1', Z3), P + Q = (x3, y3, Z3)
627 * or P => P', Q => P + Q
629 static void xycz_add(u64
*x1
, u64
*y1
, u64
*x2
, u64
*y2
)
631 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
632 u64 t5
[NUM_ECC_DIGITS
];
634 vli_mod_sub(t5
, x2
, x1
, curve_p
); /* t5 = x2 - x1 */
635 vli_mod_square_fast(t5
, t5
); /* t5 = (x2 - x1)^2 = A */
636 vli_mod_mult_fast(x1
, x1
, t5
); /* t1 = x1*A = B */
637 vli_mod_mult_fast(x2
, x2
, t5
); /* t3 = x2*A = C */
638 vli_mod_sub(y2
, y2
, y1
, curve_p
); /* t4 = y2 - y1 */
639 vli_mod_square_fast(t5
, y2
); /* t5 = (y2 - y1)^2 = D */
641 vli_mod_sub(t5
, t5
, x1
, curve_p
); /* t5 = D - B */
642 vli_mod_sub(t5
, t5
, x2
, curve_p
); /* t5 = D - B - C = x3 */
643 vli_mod_sub(x2
, x2
, x1
, curve_p
); /* t3 = C - B */
644 vli_mod_mult_fast(y1
, y1
, x2
); /* t2 = y1*(C - B) */
645 vli_mod_sub(x2
, x1
, t5
, curve_p
); /* t3 = B - x3 */
646 vli_mod_mult_fast(y2
, y2
, x2
); /* t4 = (y2 - y1)*(B - x3) */
647 vli_mod_sub(y2
, y2
, y1
, curve_p
); /* t4 = y3 */
652 /* Input P = (x1, y1, Z), Q = (x2, y2, Z)
653 * Output P + Q = (x3, y3, Z3), P - Q = (x3', y3', Z3)
654 * or P => P - Q, Q => P + Q
656 static void xycz_add_c(u64
*x1
, u64
*y1
, u64
*x2
, u64
*y2
)
658 /* t1 = X1, t2 = Y1, t3 = X2, t4 = Y2 */
659 u64 t5
[NUM_ECC_DIGITS
];
660 u64 t6
[NUM_ECC_DIGITS
];
661 u64 t7
[NUM_ECC_DIGITS
];
663 vli_mod_sub(t5
, x2
, x1
, curve_p
); /* t5 = x2 - x1 */
664 vli_mod_square_fast(t5
, t5
); /* t5 = (x2 - x1)^2 = A */
665 vli_mod_mult_fast(x1
, x1
, t5
); /* t1 = x1*A = B */
666 vli_mod_mult_fast(x2
, x2
, t5
); /* t3 = x2*A = C */
667 vli_mod_add(t5
, y2
, y1
, curve_p
); /* t4 = y2 + y1 */
668 vli_mod_sub(y2
, y2
, y1
, curve_p
); /* t4 = y2 - y1 */
670 vli_mod_sub(t6
, x2
, x1
, curve_p
); /* t6 = C - B */
671 vli_mod_mult_fast(y1
, y1
, t6
); /* t2 = y1 * (C - B) */
672 vli_mod_add(t6
, x1
, x2
, curve_p
); /* t6 = B + C */
673 vli_mod_square_fast(x2
, y2
); /* t3 = (y2 - y1)^2 */
674 vli_mod_sub(x2
, x2
, t6
, curve_p
); /* t3 = x3 */
676 vli_mod_sub(t7
, x1
, x2
, curve_p
); /* t7 = B - x3 */
677 vli_mod_mult_fast(y2
, y2
, t7
); /* t4 = (y2 - y1)*(B - x3) */
678 vli_mod_sub(y2
, y2
, y1
, curve_p
); /* t4 = y3 */
680 vli_mod_square_fast(t7
, t5
); /* t7 = (y2 + y1)^2 = F */
681 vli_mod_sub(t7
, t7
, t6
, curve_p
); /* t7 = x3' */
682 vli_mod_sub(t6
, t7
, x1
, curve_p
); /* t6 = x3' - B */
683 vli_mod_mult_fast(t6
, t6
, t5
); /* t6 = (y2 + y1)*(x3' - B) */
684 vli_mod_sub(y1
, t6
, y1
, curve_p
); /* t2 = y3' */
689 static void ecc_point_mult(struct ecc_point
*result
,
690 const struct ecc_point
*point
, u64
*scalar
,
691 u64
*initial_z
, int num_bits
)
694 u64 rx
[2][NUM_ECC_DIGITS
];
695 u64 ry
[2][NUM_ECC_DIGITS
];
696 u64 z
[NUM_ECC_DIGITS
];
699 vli_set(rx
[1], point
->x
);
700 vli_set(ry
[1], point
->y
);
702 xycz_initial_double(rx
[1], ry
[1], rx
[0], ry
[0], initial_z
);
704 for (i
= num_bits
- 2; i
> 0; i
--) {
705 nb
= !vli_test_bit(scalar
, i
);
706 xycz_add_c(rx
[1 - nb
], ry
[1 - nb
], rx
[nb
], ry
[nb
]);
707 xycz_add(rx
[nb
], ry
[nb
], rx
[1 - nb
], ry
[1 - nb
]);
710 nb
= !vli_test_bit(scalar
, 0);
711 xycz_add_c(rx
[1 - nb
], ry
[1 - nb
], rx
[nb
], ry
[nb
]);
713 /* Find final 1/Z value. */
714 vli_mod_sub(z
, rx
[1], rx
[0], curve_p
); /* X1 - X0 */
715 vli_mod_mult_fast(z
, z
, ry
[1 - nb
]); /* Yb * (X1 - X0) */
716 vli_mod_mult_fast(z
, z
, point
->x
); /* xP * Yb * (X1 - X0) */
717 vli_mod_inv(z
, z
, curve_p
); /* 1 / (xP * Yb * (X1 - X0)) */
718 vli_mod_mult_fast(z
, z
, point
->y
); /* yP / (xP * Yb * (X1 - X0)) */
719 vli_mod_mult_fast(z
, z
, rx
[1 - nb
]); /* Xb * yP / (xP * Yb * (X1 - X0)) */
720 /* End 1/Z calculation */
722 xycz_add(rx
[nb
], ry
[nb
], rx
[1 - nb
], ry
[1 - nb
]);
724 apply_z(rx
[0], ry
[0], z
);
726 vli_set(result
->x
, rx
[0]);
727 vli_set(result
->y
, ry
[0]);
730 static void ecc_bytes2native(const u8 bytes
[ECC_BYTES
],
731 u64 native
[NUM_ECC_DIGITS
])
735 for (i
= 0; i
< NUM_ECC_DIGITS
; i
++) {
736 const u8
*digit
= bytes
+ 8 * (NUM_ECC_DIGITS
- 1 - i
);
738 native
[NUM_ECC_DIGITS
- 1 - i
] =
739 ((u64
) digit
[0] << 0) |
740 ((u64
) digit
[1] << 8) |
741 ((u64
) digit
[2] << 16) |
742 ((u64
) digit
[3] << 24) |
743 ((u64
) digit
[4] << 32) |
744 ((u64
) digit
[5] << 40) |
745 ((u64
) digit
[6] << 48) |
746 ((u64
) digit
[7] << 56);
750 static void ecc_native2bytes(const u64 native
[NUM_ECC_DIGITS
],
755 for (i
= 0; i
< NUM_ECC_DIGITS
; i
++) {
756 u8
*digit
= bytes
+ 8 * (NUM_ECC_DIGITS
- 1 - i
);
758 digit
[0] = native
[NUM_ECC_DIGITS
- 1 - i
] >> 0;
759 digit
[1] = native
[NUM_ECC_DIGITS
- 1 - i
] >> 8;
760 digit
[2] = native
[NUM_ECC_DIGITS
- 1 - i
] >> 16;
761 digit
[3] = native
[NUM_ECC_DIGITS
- 1 - i
] >> 24;
762 digit
[4] = native
[NUM_ECC_DIGITS
- 1 - i
] >> 32;
763 digit
[5] = native
[NUM_ECC_DIGITS
- 1 - i
] >> 40;
764 digit
[6] = native
[NUM_ECC_DIGITS
- 1 - i
] >> 48;
765 digit
[7] = native
[NUM_ECC_DIGITS
- 1 - i
] >> 56;
769 bool ecc_make_key(u8 public_key
[64], u8 private_key
[32])
772 u64 priv
[NUM_ECC_DIGITS
];
773 unsigned int tries
= 0;
776 if (tries
++ >= MAX_TRIES
)
779 get_random_bytes(priv
, ECC_BYTES
);
781 if (vli_is_zero(priv
))
784 /* Make sure the private key is in the range [1, n-1]. */
785 if (vli_cmp(curve_n
, priv
) != 1)
788 ecc_point_mult(&pk
, &curve_g
, priv
, NULL
, vli_num_bits(priv
));
789 } while (ecc_point_is_zero(&pk
));
791 ecc_native2bytes(priv
, private_key
);
792 ecc_native2bytes(pk
.x
, public_key
);
793 ecc_native2bytes(pk
.y
, &public_key
[32]);
798 bool ecdh_shared_secret(const u8 public_key
[64], const u8 private_key
[32],
801 u64 priv
[NUM_ECC_DIGITS
];
802 u64 rand
[NUM_ECC_DIGITS
];
803 struct ecc_point product
, pk
;
805 get_random_bytes(rand
, ECC_BYTES
);
807 ecc_bytes2native(public_key
, pk
.x
);
808 ecc_bytes2native(&public_key
[32], pk
.y
);
809 ecc_bytes2native(private_key
, priv
);
811 ecc_point_mult(&product
, &pk
, priv
, rand
, vli_num_bits(priv
));
813 ecc_native2bytes(product
.x
, secret
);
815 return !ecc_point_is_zero(&product
);