2 BlueZ - Bluetooth protocol stack for Linux
4 Copyright (C) 2014 Intel Corporation
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License version 2 as
8 published by the Free Software Foundation;
10 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
11 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
13 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
14 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
15 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
16 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
17 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
20 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
21 SOFTWARE IS DISCLAIMED.
24 #include <asm/unaligned.h>
26 #include <net/bluetooth/bluetooth.h>
27 #include <net/bluetooth/hci_core.h>
28 #include <net/bluetooth/mgmt.h>
31 #include "hci_request.h"
33 #define HCI_REQ_DONE 0
34 #define HCI_REQ_PEND 1
35 #define HCI_REQ_CANCELED 2
37 void hci_req_init(struct hci_request
*req
, struct hci_dev
*hdev
)
39 skb_queue_head_init(&req
->cmd_q
);
44 static int req_run(struct hci_request
*req
, hci_req_complete_t complete
,
45 hci_req_complete_skb_t complete_skb
)
47 struct hci_dev
*hdev
= req
->hdev
;
51 BT_DBG("length %u", skb_queue_len(&req
->cmd_q
));
53 /* If an error occurred during request building, remove all HCI
54 * commands queued on the HCI request queue.
57 skb_queue_purge(&req
->cmd_q
);
61 /* Do not allow empty requests */
62 if (skb_queue_empty(&req
->cmd_q
))
65 skb
= skb_peek_tail(&req
->cmd_q
);
67 bt_cb(skb
)->hci
.req_complete
= complete
;
68 } else if (complete_skb
) {
69 bt_cb(skb
)->hci
.req_complete_skb
= complete_skb
;
70 bt_cb(skb
)->hci
.req_flags
|= HCI_REQ_SKB
;
73 spin_lock_irqsave(&hdev
->cmd_q
.lock
, flags
);
74 skb_queue_splice_tail(&req
->cmd_q
, &hdev
->cmd_q
);
75 spin_unlock_irqrestore(&hdev
->cmd_q
.lock
, flags
);
77 queue_work(hdev
->workqueue
, &hdev
->cmd_work
);
82 int hci_req_run(struct hci_request
*req
, hci_req_complete_t complete
)
84 return req_run(req
, complete
, NULL
);
87 int hci_req_run_skb(struct hci_request
*req
, hci_req_complete_skb_t complete
)
89 return req_run(req
, NULL
, complete
);
92 static void hci_req_sync_complete(struct hci_dev
*hdev
, u8 result
, u16 opcode
,
95 BT_DBG("%s result 0x%2.2x", hdev
->name
, result
);
97 if (hdev
->req_status
== HCI_REQ_PEND
) {
98 hdev
->req_result
= result
;
99 hdev
->req_status
= HCI_REQ_DONE
;
101 hdev
->req_skb
= skb_get(skb
);
102 wake_up_interruptible(&hdev
->req_wait_q
);
106 void hci_req_sync_cancel(struct hci_dev
*hdev
, int err
)
108 BT_DBG("%s err 0x%2.2x", hdev
->name
, err
);
110 if (hdev
->req_status
== HCI_REQ_PEND
) {
111 hdev
->req_result
= err
;
112 hdev
->req_status
= HCI_REQ_CANCELED
;
113 wake_up_interruptible(&hdev
->req_wait_q
);
117 struct sk_buff
*__hci_cmd_sync_ev(struct hci_dev
*hdev
, u16 opcode
, u32 plen
,
118 const void *param
, u8 event
, u32 timeout
)
120 DECLARE_WAITQUEUE(wait
, current
);
121 struct hci_request req
;
125 BT_DBG("%s", hdev
->name
);
127 hci_req_init(&req
, hdev
);
129 hci_req_add_ev(&req
, opcode
, plen
, param
, event
);
131 hdev
->req_status
= HCI_REQ_PEND
;
133 add_wait_queue(&hdev
->req_wait_q
, &wait
);
134 set_current_state(TASK_INTERRUPTIBLE
);
136 err
= hci_req_run_skb(&req
, hci_req_sync_complete
);
138 remove_wait_queue(&hdev
->req_wait_q
, &wait
);
139 set_current_state(TASK_RUNNING
);
143 schedule_timeout(timeout
);
145 remove_wait_queue(&hdev
->req_wait_q
, &wait
);
147 if (signal_pending(current
))
148 return ERR_PTR(-EINTR
);
150 switch (hdev
->req_status
) {
152 err
= -bt_to_errno(hdev
->req_result
);
155 case HCI_REQ_CANCELED
:
156 err
= -hdev
->req_result
;
164 hdev
->req_status
= hdev
->req_result
= 0;
166 hdev
->req_skb
= NULL
;
168 BT_DBG("%s end: err %d", hdev
->name
, err
);
176 return ERR_PTR(-ENODATA
);
180 EXPORT_SYMBOL(__hci_cmd_sync_ev
);
182 struct sk_buff
*__hci_cmd_sync(struct hci_dev
*hdev
, u16 opcode
, u32 plen
,
183 const void *param
, u32 timeout
)
185 return __hci_cmd_sync_ev(hdev
, opcode
, plen
, param
, 0, timeout
);
187 EXPORT_SYMBOL(__hci_cmd_sync
);
189 /* Execute request and wait for completion. */
190 int __hci_req_sync(struct hci_dev
*hdev
, int (*func
)(struct hci_request
*req
,
192 unsigned long opt
, u32 timeout
, u8
*hci_status
)
194 struct hci_request req
;
195 DECLARE_WAITQUEUE(wait
, current
);
198 BT_DBG("%s start", hdev
->name
);
200 hci_req_init(&req
, hdev
);
202 hdev
->req_status
= HCI_REQ_PEND
;
204 err
= func(&req
, opt
);
207 *hci_status
= HCI_ERROR_UNSPECIFIED
;
211 add_wait_queue(&hdev
->req_wait_q
, &wait
);
212 set_current_state(TASK_INTERRUPTIBLE
);
214 err
= hci_req_run_skb(&req
, hci_req_sync_complete
);
216 hdev
->req_status
= 0;
218 remove_wait_queue(&hdev
->req_wait_q
, &wait
);
219 set_current_state(TASK_RUNNING
);
221 /* ENODATA means the HCI request command queue is empty.
222 * This can happen when a request with conditionals doesn't
223 * trigger any commands to be sent. This is normal behavior
224 * and should not trigger an error return.
226 if (err
== -ENODATA
) {
233 *hci_status
= HCI_ERROR_UNSPECIFIED
;
238 schedule_timeout(timeout
);
240 remove_wait_queue(&hdev
->req_wait_q
, &wait
);
242 if (signal_pending(current
))
245 switch (hdev
->req_status
) {
247 err
= -bt_to_errno(hdev
->req_result
);
249 *hci_status
= hdev
->req_result
;
252 case HCI_REQ_CANCELED
:
253 err
= -hdev
->req_result
;
255 *hci_status
= HCI_ERROR_UNSPECIFIED
;
261 *hci_status
= HCI_ERROR_UNSPECIFIED
;
265 hdev
->req_status
= hdev
->req_result
= 0;
267 BT_DBG("%s end: err %d", hdev
->name
, err
);
272 int hci_req_sync(struct hci_dev
*hdev
, int (*req
)(struct hci_request
*req
,
274 unsigned long opt
, u32 timeout
, u8
*hci_status
)
278 if (!test_bit(HCI_UP
, &hdev
->flags
))
281 /* Serialize all requests */
282 hci_req_sync_lock(hdev
);
283 ret
= __hci_req_sync(hdev
, req
, opt
, timeout
, hci_status
);
284 hci_req_sync_unlock(hdev
);
289 struct sk_buff
*hci_prepare_cmd(struct hci_dev
*hdev
, u16 opcode
, u32 plen
,
292 int len
= HCI_COMMAND_HDR_SIZE
+ plen
;
293 struct hci_command_hdr
*hdr
;
296 skb
= bt_skb_alloc(len
, GFP_ATOMIC
);
300 hdr
= (struct hci_command_hdr
*) skb_put(skb
, HCI_COMMAND_HDR_SIZE
);
301 hdr
->opcode
= cpu_to_le16(opcode
);
305 memcpy(skb_put(skb
, plen
), param
, plen
);
307 BT_DBG("skb len %d", skb
->len
);
309 hci_skb_pkt_type(skb
) = HCI_COMMAND_PKT
;
310 hci_skb_opcode(skb
) = opcode
;
315 /* Queue a command to an asynchronous HCI request */
316 void hci_req_add_ev(struct hci_request
*req
, u16 opcode
, u32 plen
,
317 const void *param
, u8 event
)
319 struct hci_dev
*hdev
= req
->hdev
;
322 BT_DBG("%s opcode 0x%4.4x plen %d", hdev
->name
, opcode
, plen
);
324 /* If an error occurred during request building, there is no point in
325 * queueing the HCI command. We can simply return.
330 skb
= hci_prepare_cmd(hdev
, opcode
, plen
, param
);
332 BT_ERR("%s no memory for command (opcode 0x%4.4x)",
338 if (skb_queue_empty(&req
->cmd_q
))
339 bt_cb(skb
)->hci
.req_flags
|= HCI_REQ_START
;
341 bt_cb(skb
)->hci
.req_event
= event
;
343 skb_queue_tail(&req
->cmd_q
, skb
);
346 void hci_req_add(struct hci_request
*req
, u16 opcode
, u32 plen
,
349 hci_req_add_ev(req
, opcode
, plen
, param
, 0);
352 void __hci_req_write_fast_connectable(struct hci_request
*req
, bool enable
)
354 struct hci_dev
*hdev
= req
->hdev
;
355 struct hci_cp_write_page_scan_activity acp
;
358 if (!hci_dev_test_flag(hdev
, HCI_BREDR_ENABLED
))
361 if (hdev
->hci_ver
< BLUETOOTH_VER_1_2
)
365 type
= PAGE_SCAN_TYPE_INTERLACED
;
367 /* 160 msec page scan interval */
368 acp
.interval
= cpu_to_le16(0x0100);
370 type
= PAGE_SCAN_TYPE_STANDARD
; /* default */
372 /* default 1.28 sec page scan */
373 acp
.interval
= cpu_to_le16(0x0800);
376 acp
.window
= cpu_to_le16(0x0012);
378 if (__cpu_to_le16(hdev
->page_scan_interval
) != acp
.interval
||
379 __cpu_to_le16(hdev
->page_scan_window
) != acp
.window
)
380 hci_req_add(req
, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY
,
383 if (hdev
->page_scan_type
!= type
)
384 hci_req_add(req
, HCI_OP_WRITE_PAGE_SCAN_TYPE
, 1, &type
);
387 /* This function controls the background scanning based on hdev->pend_le_conns
388 * list. If there are pending LE connection we start the background scanning,
389 * otherwise we stop it.
391 * This function requires the caller holds hdev->lock.
393 static void __hci_update_background_scan(struct hci_request
*req
)
395 struct hci_dev
*hdev
= req
->hdev
;
397 if (!test_bit(HCI_UP
, &hdev
->flags
) ||
398 test_bit(HCI_INIT
, &hdev
->flags
) ||
399 hci_dev_test_flag(hdev
, HCI_SETUP
) ||
400 hci_dev_test_flag(hdev
, HCI_CONFIG
) ||
401 hci_dev_test_flag(hdev
, HCI_AUTO_OFF
) ||
402 hci_dev_test_flag(hdev
, HCI_UNREGISTER
))
405 /* No point in doing scanning if LE support hasn't been enabled */
406 if (!hci_dev_test_flag(hdev
, HCI_LE_ENABLED
))
409 /* If discovery is active don't interfere with it */
410 if (hdev
->discovery
.state
!= DISCOVERY_STOPPED
)
413 /* Reset RSSI and UUID filters when starting background scanning
414 * since these filters are meant for service discovery only.
416 * The Start Discovery and Start Service Discovery operations
417 * ensure to set proper values for RSSI threshold and UUID
418 * filter list. So it is safe to just reset them here.
420 hci_discovery_filter_clear(hdev
);
422 if (list_empty(&hdev
->pend_le_conns
) &&
423 list_empty(&hdev
->pend_le_reports
)) {
424 /* If there is no pending LE connections or devices
425 * to be scanned for, we should stop the background
429 /* If controller is not scanning we are done. */
430 if (!hci_dev_test_flag(hdev
, HCI_LE_SCAN
))
433 hci_req_add_le_scan_disable(req
);
435 BT_DBG("%s stopping background scanning", hdev
->name
);
437 /* If there is at least one pending LE connection, we should
438 * keep the background scan running.
441 /* If controller is connecting, we should not start scanning
442 * since some controllers are not able to scan and connect at
445 if (hci_lookup_le_connect(hdev
))
448 /* If controller is currently scanning, we stop it to ensure we
449 * don't miss any advertising (due to duplicates filter).
451 if (hci_dev_test_flag(hdev
, HCI_LE_SCAN
))
452 hci_req_add_le_scan_disable(req
);
454 hci_req_add_le_passive_scan(req
);
456 BT_DBG("%s starting background scanning", hdev
->name
);
460 void __hci_req_update_name(struct hci_request
*req
)
462 struct hci_dev
*hdev
= req
->hdev
;
463 struct hci_cp_write_local_name cp
;
465 memcpy(cp
.name
, hdev
->dev_name
, sizeof(cp
.name
));
467 hci_req_add(req
, HCI_OP_WRITE_LOCAL_NAME
, sizeof(cp
), &cp
);
470 #define PNP_INFO_SVCLASS_ID 0x1200
472 static u8
*create_uuid16_list(struct hci_dev
*hdev
, u8
*data
, ptrdiff_t len
)
474 u8
*ptr
= data
, *uuids_start
= NULL
;
475 struct bt_uuid
*uuid
;
480 list_for_each_entry(uuid
, &hdev
->uuids
, list
) {
483 if (uuid
->size
!= 16)
486 uuid16
= get_unaligned_le16(&uuid
->uuid
[12]);
490 if (uuid16
== PNP_INFO_SVCLASS_ID
)
496 uuids_start
[1] = EIR_UUID16_ALL
;
500 /* Stop if not enough space to put next UUID */
501 if ((ptr
- data
) + sizeof(u16
) > len
) {
502 uuids_start
[1] = EIR_UUID16_SOME
;
506 *ptr
++ = (uuid16
& 0x00ff);
507 *ptr
++ = (uuid16
& 0xff00) >> 8;
508 uuids_start
[0] += sizeof(uuid16
);
514 static u8
*create_uuid32_list(struct hci_dev
*hdev
, u8
*data
, ptrdiff_t len
)
516 u8
*ptr
= data
, *uuids_start
= NULL
;
517 struct bt_uuid
*uuid
;
522 list_for_each_entry(uuid
, &hdev
->uuids
, list
) {
523 if (uuid
->size
!= 32)
529 uuids_start
[1] = EIR_UUID32_ALL
;
533 /* Stop if not enough space to put next UUID */
534 if ((ptr
- data
) + sizeof(u32
) > len
) {
535 uuids_start
[1] = EIR_UUID32_SOME
;
539 memcpy(ptr
, &uuid
->uuid
[12], sizeof(u32
));
541 uuids_start
[0] += sizeof(u32
);
547 static u8
*create_uuid128_list(struct hci_dev
*hdev
, u8
*data
, ptrdiff_t len
)
549 u8
*ptr
= data
, *uuids_start
= NULL
;
550 struct bt_uuid
*uuid
;
555 list_for_each_entry(uuid
, &hdev
->uuids
, list
) {
556 if (uuid
->size
!= 128)
562 uuids_start
[1] = EIR_UUID128_ALL
;
566 /* Stop if not enough space to put next UUID */
567 if ((ptr
- data
) + 16 > len
) {
568 uuids_start
[1] = EIR_UUID128_SOME
;
572 memcpy(ptr
, uuid
->uuid
, 16);
574 uuids_start
[0] += 16;
580 static void create_eir(struct hci_dev
*hdev
, u8
*data
)
585 name_len
= strlen(hdev
->dev_name
);
591 ptr
[1] = EIR_NAME_SHORT
;
593 ptr
[1] = EIR_NAME_COMPLETE
;
595 /* EIR Data length */
596 ptr
[0] = name_len
+ 1;
598 memcpy(ptr
+ 2, hdev
->dev_name
, name_len
);
600 ptr
+= (name_len
+ 2);
603 if (hdev
->inq_tx_power
!= HCI_TX_POWER_INVALID
) {
605 ptr
[1] = EIR_TX_POWER
;
606 ptr
[2] = (u8
) hdev
->inq_tx_power
;
611 if (hdev
->devid_source
> 0) {
613 ptr
[1] = EIR_DEVICE_ID
;
615 put_unaligned_le16(hdev
->devid_source
, ptr
+ 2);
616 put_unaligned_le16(hdev
->devid_vendor
, ptr
+ 4);
617 put_unaligned_le16(hdev
->devid_product
, ptr
+ 6);
618 put_unaligned_le16(hdev
->devid_version
, ptr
+ 8);
623 ptr
= create_uuid16_list(hdev
, ptr
, HCI_MAX_EIR_LENGTH
- (ptr
- data
));
624 ptr
= create_uuid32_list(hdev
, ptr
, HCI_MAX_EIR_LENGTH
- (ptr
- data
));
625 ptr
= create_uuid128_list(hdev
, ptr
, HCI_MAX_EIR_LENGTH
- (ptr
- data
));
628 void __hci_req_update_eir(struct hci_request
*req
)
630 struct hci_dev
*hdev
= req
->hdev
;
631 struct hci_cp_write_eir cp
;
633 if (!hdev_is_powered(hdev
))
636 if (!lmp_ext_inq_capable(hdev
))
639 if (!hci_dev_test_flag(hdev
, HCI_SSP_ENABLED
))
642 if (hci_dev_test_flag(hdev
, HCI_SERVICE_CACHE
))
645 memset(&cp
, 0, sizeof(cp
));
647 create_eir(hdev
, cp
.data
);
649 if (memcmp(cp
.data
, hdev
->eir
, sizeof(cp
.data
)) == 0)
652 memcpy(hdev
->eir
, cp
.data
, sizeof(cp
.data
));
654 hci_req_add(req
, HCI_OP_WRITE_EIR
, sizeof(cp
), &cp
);
657 void hci_req_add_le_scan_disable(struct hci_request
*req
)
659 struct hci_cp_le_set_scan_enable cp
;
661 memset(&cp
, 0, sizeof(cp
));
662 cp
.enable
= LE_SCAN_DISABLE
;
663 hci_req_add(req
, HCI_OP_LE_SET_SCAN_ENABLE
, sizeof(cp
), &cp
);
666 static void add_to_white_list(struct hci_request
*req
,
667 struct hci_conn_params
*params
)
669 struct hci_cp_le_add_to_white_list cp
;
671 cp
.bdaddr_type
= params
->addr_type
;
672 bacpy(&cp
.bdaddr
, ¶ms
->addr
);
674 hci_req_add(req
, HCI_OP_LE_ADD_TO_WHITE_LIST
, sizeof(cp
), &cp
);
677 static u8
update_white_list(struct hci_request
*req
)
679 struct hci_dev
*hdev
= req
->hdev
;
680 struct hci_conn_params
*params
;
681 struct bdaddr_list
*b
;
682 uint8_t white_list_entries
= 0;
684 /* Go through the current white list programmed into the
685 * controller one by one and check if that address is still
686 * in the list of pending connections or list of devices to
687 * report. If not present in either list, then queue the
688 * command to remove it from the controller.
690 list_for_each_entry(b
, &hdev
->le_white_list
, list
) {
691 /* If the device is neither in pend_le_conns nor
692 * pend_le_reports then remove it from the whitelist.
694 if (!hci_pend_le_action_lookup(&hdev
->pend_le_conns
,
695 &b
->bdaddr
, b
->bdaddr_type
) &&
696 !hci_pend_le_action_lookup(&hdev
->pend_le_reports
,
697 &b
->bdaddr
, b
->bdaddr_type
)) {
698 struct hci_cp_le_del_from_white_list cp
;
700 cp
.bdaddr_type
= b
->bdaddr_type
;
701 bacpy(&cp
.bdaddr
, &b
->bdaddr
);
703 hci_req_add(req
, HCI_OP_LE_DEL_FROM_WHITE_LIST
,
708 if (hci_find_irk_by_addr(hdev
, &b
->bdaddr
, b
->bdaddr_type
)) {
709 /* White list can not be used with RPAs */
713 white_list_entries
++;
716 /* Since all no longer valid white list entries have been
717 * removed, walk through the list of pending connections
718 * and ensure that any new device gets programmed into
721 * If the list of the devices is larger than the list of
722 * available white list entries in the controller, then
723 * just abort and return filer policy value to not use the
726 list_for_each_entry(params
, &hdev
->pend_le_conns
, action
) {
727 if (hci_bdaddr_list_lookup(&hdev
->le_white_list
,
728 ¶ms
->addr
, params
->addr_type
))
731 if (white_list_entries
>= hdev
->le_white_list_size
) {
732 /* Select filter policy to accept all advertising */
736 if (hci_find_irk_by_addr(hdev
, ¶ms
->addr
,
737 params
->addr_type
)) {
738 /* White list can not be used with RPAs */
742 white_list_entries
++;
743 add_to_white_list(req
, params
);
746 /* After adding all new pending connections, walk through
747 * the list of pending reports and also add these to the
748 * white list if there is still space.
750 list_for_each_entry(params
, &hdev
->pend_le_reports
, action
) {
751 if (hci_bdaddr_list_lookup(&hdev
->le_white_list
,
752 ¶ms
->addr
, params
->addr_type
))
755 if (white_list_entries
>= hdev
->le_white_list_size
) {
756 /* Select filter policy to accept all advertising */
760 if (hci_find_irk_by_addr(hdev
, ¶ms
->addr
,
761 params
->addr_type
)) {
762 /* White list can not be used with RPAs */
766 white_list_entries
++;
767 add_to_white_list(req
, params
);
770 /* Select filter policy to use white list */
774 static bool scan_use_rpa(struct hci_dev
*hdev
)
776 return hci_dev_test_flag(hdev
, HCI_PRIVACY
);
779 void hci_req_add_le_passive_scan(struct hci_request
*req
)
781 struct hci_cp_le_set_scan_param param_cp
;
782 struct hci_cp_le_set_scan_enable enable_cp
;
783 struct hci_dev
*hdev
= req
->hdev
;
787 /* Set require_privacy to false since no SCAN_REQ are send
788 * during passive scanning. Not using an non-resolvable address
789 * here is important so that peer devices using direct
790 * advertising with our address will be correctly reported
793 if (hci_update_random_address(req
, false, scan_use_rpa(hdev
),
797 /* Adding or removing entries from the white list must
798 * happen before enabling scanning. The controller does
799 * not allow white list modification while scanning.
801 filter_policy
= update_white_list(req
);
803 /* When the controller is using random resolvable addresses and
804 * with that having LE privacy enabled, then controllers with
805 * Extended Scanner Filter Policies support can now enable support
806 * for handling directed advertising.
808 * So instead of using filter polices 0x00 (no whitelist)
809 * and 0x01 (whitelist enabled) use the new filter policies
810 * 0x02 (no whitelist) and 0x03 (whitelist enabled).
812 if (hci_dev_test_flag(hdev
, HCI_PRIVACY
) &&
813 (hdev
->le_features
[0] & HCI_LE_EXT_SCAN_POLICY
))
814 filter_policy
|= 0x02;
816 memset(¶m_cp
, 0, sizeof(param_cp
));
817 param_cp
.type
= LE_SCAN_PASSIVE
;
818 param_cp
.interval
= cpu_to_le16(hdev
->le_scan_interval
);
819 param_cp
.window
= cpu_to_le16(hdev
->le_scan_window
);
820 param_cp
.own_address_type
= own_addr_type
;
821 param_cp
.filter_policy
= filter_policy
;
822 hci_req_add(req
, HCI_OP_LE_SET_SCAN_PARAM
, sizeof(param_cp
),
825 memset(&enable_cp
, 0, sizeof(enable_cp
));
826 enable_cp
.enable
= LE_SCAN_ENABLE
;
827 enable_cp
.filter_dup
= LE_SCAN_FILTER_DUP_ENABLE
;
828 hci_req_add(req
, HCI_OP_LE_SET_SCAN_ENABLE
, sizeof(enable_cp
),
832 static u8
get_cur_adv_instance_scan_rsp_len(struct hci_dev
*hdev
)
834 u8 instance
= hdev
->cur_adv_instance
;
835 struct adv_info
*adv_instance
;
837 /* Ignore instance 0 */
838 if (instance
== 0x00)
841 adv_instance
= hci_find_adv_instance(hdev
, instance
);
845 /* TODO: Take into account the "appearance" and "local-name" flags here.
846 * These are currently being ignored as they are not supported.
848 return adv_instance
->scan_rsp_len
;
851 void __hci_req_disable_advertising(struct hci_request
*req
)
855 hci_req_add(req
, HCI_OP_LE_SET_ADV_ENABLE
, sizeof(enable
), &enable
);
858 static u32
get_adv_instance_flags(struct hci_dev
*hdev
, u8 instance
)
861 struct adv_info
*adv_instance
;
863 if (instance
== 0x00) {
864 /* Instance 0 always manages the "Tx Power" and "Flags"
867 flags
= MGMT_ADV_FLAG_TX_POWER
| MGMT_ADV_FLAG_MANAGED_FLAGS
;
869 /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting
870 * corresponds to the "connectable" instance flag.
872 if (hci_dev_test_flag(hdev
, HCI_ADVERTISING_CONNECTABLE
))
873 flags
|= MGMT_ADV_FLAG_CONNECTABLE
;
875 if (hci_dev_test_flag(hdev
, HCI_LIMITED_DISCOVERABLE
))
876 flags
|= MGMT_ADV_FLAG_LIMITED_DISCOV
;
877 else if (hci_dev_test_flag(hdev
, HCI_DISCOVERABLE
))
878 flags
|= MGMT_ADV_FLAG_DISCOV
;
883 adv_instance
= hci_find_adv_instance(hdev
, instance
);
885 /* Return 0 when we got an invalid instance identifier. */
889 return adv_instance
->flags
;
892 static bool adv_use_rpa(struct hci_dev
*hdev
, uint32_t flags
)
894 /* If privacy is not enabled don't use RPA */
895 if (!hci_dev_test_flag(hdev
, HCI_PRIVACY
))
898 /* If basic privacy mode is enabled use RPA */
899 if (!hci_dev_test_flag(hdev
, HCI_LIMITED_PRIVACY
))
902 /* If limited privacy mode is enabled don't use RPA if we're
903 * both discoverable and bondable.
905 if ((flags
& MGMT_ADV_FLAG_DISCOV
) &&
906 hci_dev_test_flag(hdev
, HCI_BONDABLE
))
909 /* We're neither bondable nor discoverable in the limited
910 * privacy mode, therefore use RPA.
915 void __hci_req_enable_advertising(struct hci_request
*req
)
917 struct hci_dev
*hdev
= req
->hdev
;
918 struct hci_cp_le_set_adv_param cp
;
919 u8 own_addr_type
, enable
= 0x01;
923 if (hci_conn_num(hdev
, LE_LINK
) > 0)
926 if (hci_dev_test_flag(hdev
, HCI_LE_ADV
))
927 __hci_req_disable_advertising(req
);
929 /* Clear the HCI_LE_ADV bit temporarily so that the
930 * hci_update_random_address knows that it's safe to go ahead
931 * and write a new random address. The flag will be set back on
932 * as soon as the SET_ADV_ENABLE HCI command completes.
934 hci_dev_clear_flag(hdev
, HCI_LE_ADV
);
936 flags
= get_adv_instance_flags(hdev
, hdev
->cur_adv_instance
);
938 /* If the "connectable" instance flag was not set, then choose between
939 * ADV_IND and ADV_NONCONN_IND based on the global connectable setting.
941 connectable
= (flags
& MGMT_ADV_FLAG_CONNECTABLE
) ||
942 mgmt_get_connectable(hdev
);
944 /* Set require_privacy to true only when non-connectable
945 * advertising is used. In that case it is fine to use a
946 * non-resolvable private address.
948 if (hci_update_random_address(req
, !connectable
,
949 adv_use_rpa(hdev
, flags
),
953 memset(&cp
, 0, sizeof(cp
));
954 cp
.min_interval
= cpu_to_le16(hdev
->le_adv_min_interval
);
955 cp
.max_interval
= cpu_to_le16(hdev
->le_adv_max_interval
);
958 cp
.type
= LE_ADV_IND
;
959 else if (get_cur_adv_instance_scan_rsp_len(hdev
))
960 cp
.type
= LE_ADV_SCAN_IND
;
962 cp
.type
= LE_ADV_NONCONN_IND
;
964 cp
.own_address_type
= own_addr_type
;
965 cp
.channel_map
= hdev
->le_adv_channel_map
;
967 hci_req_add(req
, HCI_OP_LE_SET_ADV_PARAM
, sizeof(cp
), &cp
);
969 hci_req_add(req
, HCI_OP_LE_SET_ADV_ENABLE
, sizeof(enable
), &enable
);
972 static u8
create_default_scan_rsp_data(struct hci_dev
*hdev
, u8
*ptr
)
977 name_len
= strlen(hdev
->dev_name
);
979 size_t max_len
= HCI_MAX_AD_LENGTH
- ad_len
- 2;
981 if (name_len
> max_len
) {
983 ptr
[1] = EIR_NAME_SHORT
;
985 ptr
[1] = EIR_NAME_COMPLETE
;
987 ptr
[0] = name_len
+ 1;
989 memcpy(ptr
+ 2, hdev
->dev_name
, name_len
);
991 ad_len
+= (name_len
+ 2);
992 ptr
+= (name_len
+ 2);
998 static u8
create_instance_scan_rsp_data(struct hci_dev
*hdev
, u8 instance
,
1001 struct adv_info
*adv_instance
;
1003 adv_instance
= hci_find_adv_instance(hdev
, instance
);
1007 /* TODO: Set the appropriate entries based on advertising instance flags
1008 * here once flags other than 0 are supported.
1010 memcpy(ptr
, adv_instance
->scan_rsp_data
,
1011 adv_instance
->scan_rsp_len
);
1013 return adv_instance
->scan_rsp_len
;
1016 void __hci_req_update_scan_rsp_data(struct hci_request
*req
, u8 instance
)
1018 struct hci_dev
*hdev
= req
->hdev
;
1019 struct hci_cp_le_set_scan_rsp_data cp
;
1022 if (!hci_dev_test_flag(hdev
, HCI_LE_ENABLED
))
1025 memset(&cp
, 0, sizeof(cp
));
1028 len
= create_instance_scan_rsp_data(hdev
, instance
, cp
.data
);
1030 len
= create_default_scan_rsp_data(hdev
, cp
.data
);
1032 if (hdev
->scan_rsp_data_len
== len
&&
1033 !memcmp(cp
.data
, hdev
->scan_rsp_data
, len
))
1036 memcpy(hdev
->scan_rsp_data
, cp
.data
, sizeof(cp
.data
));
1037 hdev
->scan_rsp_data_len
= len
;
1041 hci_req_add(req
, HCI_OP_LE_SET_SCAN_RSP_DATA
, sizeof(cp
), &cp
);
1044 static u8
create_instance_adv_data(struct hci_dev
*hdev
, u8 instance
, u8
*ptr
)
1046 struct adv_info
*adv_instance
= NULL
;
1047 u8 ad_len
= 0, flags
= 0;
1050 /* Return 0 when the current instance identifier is invalid. */
1052 adv_instance
= hci_find_adv_instance(hdev
, instance
);
1057 instance_flags
= get_adv_instance_flags(hdev
, instance
);
1059 /* The Add Advertising command allows userspace to set both the general
1060 * and limited discoverable flags.
1062 if (instance_flags
& MGMT_ADV_FLAG_DISCOV
)
1063 flags
|= LE_AD_GENERAL
;
1065 if (instance_flags
& MGMT_ADV_FLAG_LIMITED_DISCOV
)
1066 flags
|= LE_AD_LIMITED
;
1068 if (flags
|| (instance_flags
& MGMT_ADV_FLAG_MANAGED_FLAGS
)) {
1069 /* If a discovery flag wasn't provided, simply use the global
1073 flags
|= mgmt_get_adv_discov_flags(hdev
);
1075 if (!hci_dev_test_flag(hdev
, HCI_BREDR_ENABLED
))
1076 flags
|= LE_AD_NO_BREDR
;
1078 /* If flags would still be empty, then there is no need to
1079 * include the "Flags" AD field".
1092 memcpy(ptr
, adv_instance
->adv_data
,
1093 adv_instance
->adv_data_len
);
1094 ad_len
+= adv_instance
->adv_data_len
;
1095 ptr
+= adv_instance
->adv_data_len
;
1098 /* Provide Tx Power only if we can provide a valid value for it */
1099 if (hdev
->adv_tx_power
!= HCI_TX_POWER_INVALID
&&
1100 (instance_flags
& MGMT_ADV_FLAG_TX_POWER
)) {
1102 ptr
[1] = EIR_TX_POWER
;
1103 ptr
[2] = (u8
)hdev
->adv_tx_power
;
1112 void __hci_req_update_adv_data(struct hci_request
*req
, u8 instance
)
1114 struct hci_dev
*hdev
= req
->hdev
;
1115 struct hci_cp_le_set_adv_data cp
;
1118 if (!hci_dev_test_flag(hdev
, HCI_LE_ENABLED
))
1121 memset(&cp
, 0, sizeof(cp
));
1123 len
= create_instance_adv_data(hdev
, instance
, cp
.data
);
1125 /* There's nothing to do if the data hasn't changed */
1126 if (hdev
->adv_data_len
== len
&&
1127 memcmp(cp
.data
, hdev
->adv_data
, len
) == 0)
1130 memcpy(hdev
->adv_data
, cp
.data
, sizeof(cp
.data
));
1131 hdev
->adv_data_len
= len
;
1135 hci_req_add(req
, HCI_OP_LE_SET_ADV_DATA
, sizeof(cp
), &cp
);
1138 int hci_req_update_adv_data(struct hci_dev
*hdev
, u8 instance
)
1140 struct hci_request req
;
1142 hci_req_init(&req
, hdev
);
1143 __hci_req_update_adv_data(&req
, instance
);
1145 return hci_req_run(&req
, NULL
);
1148 static void adv_enable_complete(struct hci_dev
*hdev
, u8 status
, u16 opcode
)
1150 BT_DBG("%s status %u", hdev
->name
, status
);
1153 void hci_req_reenable_advertising(struct hci_dev
*hdev
)
1155 struct hci_request req
;
1157 if (!hci_dev_test_flag(hdev
, HCI_ADVERTISING
) &&
1158 list_empty(&hdev
->adv_instances
))
1161 hci_req_init(&req
, hdev
);
1163 if (hdev
->cur_adv_instance
) {
1164 __hci_req_schedule_adv_instance(&req
, hdev
->cur_adv_instance
,
1167 __hci_req_update_adv_data(&req
, 0x00);
1168 __hci_req_update_scan_rsp_data(&req
, 0x00);
1169 __hci_req_enable_advertising(&req
);
1172 hci_req_run(&req
, adv_enable_complete
);
1175 static void adv_timeout_expire(struct work_struct
*work
)
1177 struct hci_dev
*hdev
= container_of(work
, struct hci_dev
,
1178 adv_instance_expire
.work
);
1180 struct hci_request req
;
1183 BT_DBG("%s", hdev
->name
);
1187 hdev
->adv_instance_timeout
= 0;
1189 instance
= hdev
->cur_adv_instance
;
1190 if (instance
== 0x00)
1193 hci_req_init(&req
, hdev
);
1195 hci_req_clear_adv_instance(hdev
, &req
, instance
, false);
1197 if (list_empty(&hdev
->adv_instances
))
1198 __hci_req_disable_advertising(&req
);
1200 hci_req_run(&req
, NULL
);
1203 hci_dev_unlock(hdev
);
1206 int __hci_req_schedule_adv_instance(struct hci_request
*req
, u8 instance
,
1209 struct hci_dev
*hdev
= req
->hdev
;
1210 struct adv_info
*adv_instance
= NULL
;
1213 if (hci_dev_test_flag(hdev
, HCI_ADVERTISING
) ||
1214 list_empty(&hdev
->adv_instances
))
1217 if (hdev
->adv_instance_timeout
)
1220 adv_instance
= hci_find_adv_instance(hdev
, instance
);
1224 /* A zero timeout means unlimited advertising. As long as there is
1225 * only one instance, duration should be ignored. We still set a timeout
1226 * in case further instances are being added later on.
1228 * If the remaining lifetime of the instance is more than the duration
1229 * then the timeout corresponds to the duration, otherwise it will be
1230 * reduced to the remaining instance lifetime.
1232 if (adv_instance
->timeout
== 0 ||
1233 adv_instance
->duration
<= adv_instance
->remaining_time
)
1234 timeout
= adv_instance
->duration
;
1236 timeout
= adv_instance
->remaining_time
;
1238 /* The remaining time is being reduced unless the instance is being
1239 * advertised without time limit.
1241 if (adv_instance
->timeout
)
1242 adv_instance
->remaining_time
=
1243 adv_instance
->remaining_time
- timeout
;
1245 hdev
->adv_instance_timeout
= timeout
;
1246 queue_delayed_work(hdev
->req_workqueue
,
1247 &hdev
->adv_instance_expire
,
1248 msecs_to_jiffies(timeout
* 1000));
1250 /* If we're just re-scheduling the same instance again then do not
1251 * execute any HCI commands. This happens when a single instance is
1254 if (!force
&& hdev
->cur_adv_instance
== instance
&&
1255 hci_dev_test_flag(hdev
, HCI_LE_ADV
))
1258 hdev
->cur_adv_instance
= instance
;
1259 __hci_req_update_adv_data(req
, instance
);
1260 __hci_req_update_scan_rsp_data(req
, instance
);
1261 __hci_req_enable_advertising(req
);
1266 static void cancel_adv_timeout(struct hci_dev
*hdev
)
1268 if (hdev
->adv_instance_timeout
) {
1269 hdev
->adv_instance_timeout
= 0;
1270 cancel_delayed_work(&hdev
->adv_instance_expire
);
1274 /* For a single instance:
1275 * - force == true: The instance will be removed even when its remaining
1276 * lifetime is not zero.
1277 * - force == false: the instance will be deactivated but kept stored unless
1278 * the remaining lifetime is zero.
1280 * For instance == 0x00:
1281 * - force == true: All instances will be removed regardless of their timeout
1283 * - force == false: Only instances that have a timeout will be removed.
1285 void hci_req_clear_adv_instance(struct hci_dev
*hdev
, struct hci_request
*req
,
1286 u8 instance
, bool force
)
1288 struct adv_info
*adv_instance
, *n
, *next_instance
= NULL
;
1292 /* Cancel any timeout concerning the removed instance(s). */
1293 if (!instance
|| hdev
->cur_adv_instance
== instance
)
1294 cancel_adv_timeout(hdev
);
1296 /* Get the next instance to advertise BEFORE we remove
1297 * the current one. This can be the same instance again
1298 * if there is only one instance.
1300 if (instance
&& hdev
->cur_adv_instance
== instance
)
1301 next_instance
= hci_get_next_instance(hdev
, instance
);
1303 if (instance
== 0x00) {
1304 list_for_each_entry_safe(adv_instance
, n
, &hdev
->adv_instances
,
1306 if (!(force
|| adv_instance
->timeout
))
1309 rem_inst
= adv_instance
->instance
;
1310 err
= hci_remove_adv_instance(hdev
, rem_inst
);
1312 mgmt_advertising_removed(NULL
, hdev
, rem_inst
);
1315 adv_instance
= hci_find_adv_instance(hdev
, instance
);
1317 if (force
|| (adv_instance
&& adv_instance
->timeout
&&
1318 !adv_instance
->remaining_time
)) {
1319 /* Don't advertise a removed instance. */
1320 if (next_instance
&&
1321 next_instance
->instance
== instance
)
1322 next_instance
= NULL
;
1324 err
= hci_remove_adv_instance(hdev
, instance
);
1326 mgmt_advertising_removed(NULL
, hdev
, instance
);
1330 if (!req
|| !hdev_is_powered(hdev
) ||
1331 hci_dev_test_flag(hdev
, HCI_ADVERTISING
))
1335 __hci_req_schedule_adv_instance(req
, next_instance
->instance
,
1339 static void set_random_addr(struct hci_request
*req
, bdaddr_t
*rpa
)
1341 struct hci_dev
*hdev
= req
->hdev
;
1343 /* If we're advertising or initiating an LE connection we can't
1344 * go ahead and change the random address at this time. This is
1345 * because the eventual initiator address used for the
1346 * subsequently created connection will be undefined (some
1347 * controllers use the new address and others the one we had
1348 * when the operation started).
1350 * In this kind of scenario skip the update and let the random
1351 * address be updated at the next cycle.
1353 if (hci_dev_test_flag(hdev
, HCI_LE_ADV
) ||
1354 hci_lookup_le_connect(hdev
)) {
1355 BT_DBG("Deferring random address update");
1356 hci_dev_set_flag(hdev
, HCI_RPA_EXPIRED
);
1360 hci_req_add(req
, HCI_OP_LE_SET_RANDOM_ADDR
, 6, rpa
);
1363 int hci_update_random_address(struct hci_request
*req
, bool require_privacy
,
1364 bool use_rpa
, u8
*own_addr_type
)
1366 struct hci_dev
*hdev
= req
->hdev
;
1369 /* If privacy is enabled use a resolvable private address. If
1370 * current RPA has expired or there is something else than
1371 * the current RPA in use, then generate a new one.
1376 *own_addr_type
= ADDR_LE_DEV_RANDOM
;
1378 if (!hci_dev_test_and_clear_flag(hdev
, HCI_RPA_EXPIRED
) &&
1379 !bacmp(&hdev
->random_addr
, &hdev
->rpa
))
1382 err
= smp_generate_rpa(hdev
, hdev
->irk
, &hdev
->rpa
);
1384 BT_ERR("%s failed to generate new RPA", hdev
->name
);
1388 set_random_addr(req
, &hdev
->rpa
);
1390 to
= msecs_to_jiffies(hdev
->rpa_timeout
* 1000);
1391 queue_delayed_work(hdev
->workqueue
, &hdev
->rpa_expired
, to
);
1396 /* In case of required privacy without resolvable private address,
1397 * use an non-resolvable private address. This is useful for active
1398 * scanning and non-connectable advertising.
1400 if (require_privacy
) {
1404 /* The non-resolvable private address is generated
1405 * from random six bytes with the two most significant
1408 get_random_bytes(&nrpa
, 6);
1411 /* The non-resolvable private address shall not be
1412 * equal to the public address.
1414 if (bacmp(&hdev
->bdaddr
, &nrpa
))
1418 *own_addr_type
= ADDR_LE_DEV_RANDOM
;
1419 set_random_addr(req
, &nrpa
);
1423 /* If forcing static address is in use or there is no public
1424 * address use the static address as random address (but skip
1425 * the HCI command if the current random address is already the
1428 * In case BR/EDR has been disabled on a dual-mode controller
1429 * and a static address has been configured, then use that
1430 * address instead of the public BR/EDR address.
1432 if (hci_dev_test_flag(hdev
, HCI_FORCE_STATIC_ADDR
) ||
1433 !bacmp(&hdev
->bdaddr
, BDADDR_ANY
) ||
1434 (!hci_dev_test_flag(hdev
, HCI_BREDR_ENABLED
) &&
1435 bacmp(&hdev
->static_addr
, BDADDR_ANY
))) {
1436 *own_addr_type
= ADDR_LE_DEV_RANDOM
;
1437 if (bacmp(&hdev
->static_addr
, &hdev
->random_addr
))
1438 hci_req_add(req
, HCI_OP_LE_SET_RANDOM_ADDR
, 6,
1439 &hdev
->static_addr
);
1443 /* Neither privacy nor static address is being used so use a
1446 *own_addr_type
= ADDR_LE_DEV_PUBLIC
;
1451 static bool disconnected_whitelist_entries(struct hci_dev
*hdev
)
1453 struct bdaddr_list
*b
;
1455 list_for_each_entry(b
, &hdev
->whitelist
, list
) {
1456 struct hci_conn
*conn
;
1458 conn
= hci_conn_hash_lookup_ba(hdev
, ACL_LINK
, &b
->bdaddr
);
1462 if (conn
->state
!= BT_CONNECTED
&& conn
->state
!= BT_CONFIG
)
1469 void __hci_req_update_scan(struct hci_request
*req
)
1471 struct hci_dev
*hdev
= req
->hdev
;
1474 if (!hci_dev_test_flag(hdev
, HCI_BREDR_ENABLED
))
1477 if (!hdev_is_powered(hdev
))
1480 if (mgmt_powering_down(hdev
))
1483 if (hci_dev_test_flag(hdev
, HCI_CONNECTABLE
) ||
1484 disconnected_whitelist_entries(hdev
))
1487 scan
= SCAN_DISABLED
;
1489 if (hci_dev_test_flag(hdev
, HCI_DISCOVERABLE
))
1490 scan
|= SCAN_INQUIRY
;
1492 if (test_bit(HCI_PSCAN
, &hdev
->flags
) == !!(scan
& SCAN_PAGE
) &&
1493 test_bit(HCI_ISCAN
, &hdev
->flags
) == !!(scan
& SCAN_INQUIRY
))
1496 hci_req_add(req
, HCI_OP_WRITE_SCAN_ENABLE
, 1, &scan
);
1499 static int update_scan(struct hci_request
*req
, unsigned long opt
)
1501 hci_dev_lock(req
->hdev
);
1502 __hci_req_update_scan(req
);
1503 hci_dev_unlock(req
->hdev
);
1507 static void scan_update_work(struct work_struct
*work
)
1509 struct hci_dev
*hdev
= container_of(work
, struct hci_dev
, scan_update
);
1511 hci_req_sync(hdev
, update_scan
, 0, HCI_CMD_TIMEOUT
, NULL
);
1514 static int connectable_update(struct hci_request
*req
, unsigned long opt
)
1516 struct hci_dev
*hdev
= req
->hdev
;
1520 __hci_req_update_scan(req
);
1522 /* If BR/EDR is not enabled and we disable advertising as a
1523 * by-product of disabling connectable, we need to update the
1524 * advertising flags.
1526 if (!hci_dev_test_flag(hdev
, HCI_BREDR_ENABLED
))
1527 __hci_req_update_adv_data(req
, hdev
->cur_adv_instance
);
1529 /* Update the advertising parameters if necessary */
1530 if (hci_dev_test_flag(hdev
, HCI_ADVERTISING
) ||
1531 !list_empty(&hdev
->adv_instances
))
1532 __hci_req_enable_advertising(req
);
1534 __hci_update_background_scan(req
);
1536 hci_dev_unlock(hdev
);
1541 static void connectable_update_work(struct work_struct
*work
)
1543 struct hci_dev
*hdev
= container_of(work
, struct hci_dev
,
1544 connectable_update
);
1547 hci_req_sync(hdev
, connectable_update
, 0, HCI_CMD_TIMEOUT
, &status
);
1548 mgmt_set_connectable_complete(hdev
, status
);
1551 static u8
get_service_classes(struct hci_dev
*hdev
)
1553 struct bt_uuid
*uuid
;
1556 list_for_each_entry(uuid
, &hdev
->uuids
, list
)
1557 val
|= uuid
->svc_hint
;
1562 void __hci_req_update_class(struct hci_request
*req
)
1564 struct hci_dev
*hdev
= req
->hdev
;
1567 BT_DBG("%s", hdev
->name
);
1569 if (!hdev_is_powered(hdev
))
1572 if (!hci_dev_test_flag(hdev
, HCI_BREDR_ENABLED
))
1575 if (hci_dev_test_flag(hdev
, HCI_SERVICE_CACHE
))
1578 cod
[0] = hdev
->minor_class
;
1579 cod
[1] = hdev
->major_class
;
1580 cod
[2] = get_service_classes(hdev
);
1582 if (hci_dev_test_flag(hdev
, HCI_LIMITED_DISCOVERABLE
))
1585 if (memcmp(cod
, hdev
->dev_class
, 3) == 0)
1588 hci_req_add(req
, HCI_OP_WRITE_CLASS_OF_DEV
, sizeof(cod
), cod
);
1591 static void write_iac(struct hci_request
*req
)
1593 struct hci_dev
*hdev
= req
->hdev
;
1594 struct hci_cp_write_current_iac_lap cp
;
1596 if (!hci_dev_test_flag(hdev
, HCI_DISCOVERABLE
))
1599 if (hci_dev_test_flag(hdev
, HCI_LIMITED_DISCOVERABLE
)) {
1600 /* Limited discoverable mode */
1601 cp
.num_iac
= min_t(u8
, hdev
->num_iac
, 2);
1602 cp
.iac_lap
[0] = 0x00; /* LIAC */
1603 cp
.iac_lap
[1] = 0x8b;
1604 cp
.iac_lap
[2] = 0x9e;
1605 cp
.iac_lap
[3] = 0x33; /* GIAC */
1606 cp
.iac_lap
[4] = 0x8b;
1607 cp
.iac_lap
[5] = 0x9e;
1609 /* General discoverable mode */
1611 cp
.iac_lap
[0] = 0x33; /* GIAC */
1612 cp
.iac_lap
[1] = 0x8b;
1613 cp
.iac_lap
[2] = 0x9e;
1616 hci_req_add(req
, HCI_OP_WRITE_CURRENT_IAC_LAP
,
1617 (cp
.num_iac
* 3) + 1, &cp
);
1620 static int discoverable_update(struct hci_request
*req
, unsigned long opt
)
1622 struct hci_dev
*hdev
= req
->hdev
;
1626 if (hci_dev_test_flag(hdev
, HCI_BREDR_ENABLED
)) {
1628 __hci_req_update_scan(req
);
1629 __hci_req_update_class(req
);
1632 /* Advertising instances don't use the global discoverable setting, so
1633 * only update AD if advertising was enabled using Set Advertising.
1635 if (hci_dev_test_flag(hdev
, HCI_ADVERTISING
)) {
1636 __hci_req_update_adv_data(req
, 0x00);
1638 /* Discoverable mode affects the local advertising
1639 * address in limited privacy mode.
1641 if (hci_dev_test_flag(hdev
, HCI_LIMITED_PRIVACY
))
1642 __hci_req_enable_advertising(req
);
1645 hci_dev_unlock(hdev
);
1650 static void discoverable_update_work(struct work_struct
*work
)
1652 struct hci_dev
*hdev
= container_of(work
, struct hci_dev
,
1653 discoverable_update
);
1656 hci_req_sync(hdev
, discoverable_update
, 0, HCI_CMD_TIMEOUT
, &status
);
1657 mgmt_set_discoverable_complete(hdev
, status
);
1660 void __hci_abort_conn(struct hci_request
*req
, struct hci_conn
*conn
,
1663 switch (conn
->state
) {
1666 if (conn
->type
== AMP_LINK
) {
1667 struct hci_cp_disconn_phy_link cp
;
1669 cp
.phy_handle
= HCI_PHY_HANDLE(conn
->handle
);
1671 hci_req_add(req
, HCI_OP_DISCONN_PHY_LINK
, sizeof(cp
),
1674 struct hci_cp_disconnect dc
;
1676 dc
.handle
= cpu_to_le16(conn
->handle
);
1678 hci_req_add(req
, HCI_OP_DISCONNECT
, sizeof(dc
), &dc
);
1681 conn
->state
= BT_DISCONN
;
1685 if (conn
->type
== LE_LINK
) {
1686 if (test_bit(HCI_CONN_SCANNING
, &conn
->flags
))
1688 hci_req_add(req
, HCI_OP_LE_CREATE_CONN_CANCEL
,
1690 } else if (conn
->type
== ACL_LINK
) {
1691 if (req
->hdev
->hci_ver
< BLUETOOTH_VER_1_2
)
1693 hci_req_add(req
, HCI_OP_CREATE_CONN_CANCEL
,
1698 if (conn
->type
== ACL_LINK
) {
1699 struct hci_cp_reject_conn_req rej
;
1701 bacpy(&rej
.bdaddr
, &conn
->dst
);
1702 rej
.reason
= reason
;
1704 hci_req_add(req
, HCI_OP_REJECT_CONN_REQ
,
1706 } else if (conn
->type
== SCO_LINK
|| conn
->type
== ESCO_LINK
) {
1707 struct hci_cp_reject_sync_conn_req rej
;
1709 bacpy(&rej
.bdaddr
, &conn
->dst
);
1711 /* SCO rejection has its own limited set of
1712 * allowed error values (0x0D-0x0F) which isn't
1713 * compatible with most values passed to this
1714 * function. To be safe hard-code one of the
1715 * values that's suitable for SCO.
1717 rej
.reason
= HCI_ERROR_REMOTE_LOW_RESOURCES
;
1719 hci_req_add(req
, HCI_OP_REJECT_SYNC_CONN_REQ
,
1724 conn
->state
= BT_CLOSED
;
1729 static void abort_conn_complete(struct hci_dev
*hdev
, u8 status
, u16 opcode
)
1732 BT_DBG("Failed to abort connection: status 0x%2.2x", status
);
1735 int hci_abort_conn(struct hci_conn
*conn
, u8 reason
)
1737 struct hci_request req
;
1740 hci_req_init(&req
, conn
->hdev
);
1742 __hci_abort_conn(&req
, conn
, reason
);
1744 err
= hci_req_run(&req
, abort_conn_complete
);
1745 if (err
&& err
!= -ENODATA
) {
1746 BT_ERR("Failed to run HCI request: err %d", err
);
1753 static int update_bg_scan(struct hci_request
*req
, unsigned long opt
)
1755 hci_dev_lock(req
->hdev
);
1756 __hci_update_background_scan(req
);
1757 hci_dev_unlock(req
->hdev
);
1761 static void bg_scan_update(struct work_struct
*work
)
1763 struct hci_dev
*hdev
= container_of(work
, struct hci_dev
,
1765 struct hci_conn
*conn
;
1769 err
= hci_req_sync(hdev
, update_bg_scan
, 0, HCI_CMD_TIMEOUT
, &status
);
1775 conn
= hci_conn_hash_lookup_state(hdev
, LE_LINK
, BT_CONNECT
);
1777 hci_le_conn_failed(conn
, status
);
1779 hci_dev_unlock(hdev
);
1782 static int le_scan_disable(struct hci_request
*req
, unsigned long opt
)
1784 hci_req_add_le_scan_disable(req
);
1788 static int bredr_inquiry(struct hci_request
*req
, unsigned long opt
)
1791 const u8 giac
[3] = { 0x33, 0x8b, 0x9e };
1792 const u8 liac
[3] = { 0x00, 0x8b, 0x9e };
1793 struct hci_cp_inquiry cp
;
1795 BT_DBG("%s", req
->hdev
->name
);
1797 hci_dev_lock(req
->hdev
);
1798 hci_inquiry_cache_flush(req
->hdev
);
1799 hci_dev_unlock(req
->hdev
);
1801 memset(&cp
, 0, sizeof(cp
));
1803 if (req
->hdev
->discovery
.limited
)
1804 memcpy(&cp
.lap
, liac
, sizeof(cp
.lap
));
1806 memcpy(&cp
.lap
, giac
, sizeof(cp
.lap
));
1810 hci_req_add(req
, HCI_OP_INQUIRY
, sizeof(cp
), &cp
);
1815 static void le_scan_disable_work(struct work_struct
*work
)
1817 struct hci_dev
*hdev
= container_of(work
, struct hci_dev
,
1818 le_scan_disable
.work
);
1821 BT_DBG("%s", hdev
->name
);
1823 if (!hci_dev_test_flag(hdev
, HCI_LE_SCAN
))
1826 cancel_delayed_work(&hdev
->le_scan_restart
);
1828 hci_req_sync(hdev
, le_scan_disable
, 0, HCI_CMD_TIMEOUT
, &status
);
1830 BT_ERR("Failed to disable LE scan: status 0x%02x", status
);
1834 hdev
->discovery
.scan_start
= 0;
1836 /* If we were running LE only scan, change discovery state. If
1837 * we were running both LE and BR/EDR inquiry simultaneously,
1838 * and BR/EDR inquiry is already finished, stop discovery,
1839 * otherwise BR/EDR inquiry will stop discovery when finished.
1840 * If we will resolve remote device name, do not change
1844 if (hdev
->discovery
.type
== DISCOV_TYPE_LE
)
1845 goto discov_stopped
;
1847 if (hdev
->discovery
.type
!= DISCOV_TYPE_INTERLEAVED
)
1850 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY
, &hdev
->quirks
)) {
1851 if (!test_bit(HCI_INQUIRY
, &hdev
->flags
) &&
1852 hdev
->discovery
.state
!= DISCOVERY_RESOLVING
)
1853 goto discov_stopped
;
1858 hci_req_sync(hdev
, bredr_inquiry
, DISCOV_INTERLEAVED_INQUIRY_LEN
,
1859 HCI_CMD_TIMEOUT
, &status
);
1861 BT_ERR("Inquiry failed: status 0x%02x", status
);
1862 goto discov_stopped
;
1869 hci_discovery_set_state(hdev
, DISCOVERY_STOPPED
);
1870 hci_dev_unlock(hdev
);
1873 static int le_scan_restart(struct hci_request
*req
, unsigned long opt
)
1875 struct hci_dev
*hdev
= req
->hdev
;
1876 struct hci_cp_le_set_scan_enable cp
;
1878 /* If controller is not scanning we are done. */
1879 if (!hci_dev_test_flag(hdev
, HCI_LE_SCAN
))
1882 hci_req_add_le_scan_disable(req
);
1884 memset(&cp
, 0, sizeof(cp
));
1885 cp
.enable
= LE_SCAN_ENABLE
;
1886 cp
.filter_dup
= LE_SCAN_FILTER_DUP_ENABLE
;
1887 hci_req_add(req
, HCI_OP_LE_SET_SCAN_ENABLE
, sizeof(cp
), &cp
);
1892 static void le_scan_restart_work(struct work_struct
*work
)
1894 struct hci_dev
*hdev
= container_of(work
, struct hci_dev
,
1895 le_scan_restart
.work
);
1896 unsigned long timeout
, duration
, scan_start
, now
;
1899 BT_DBG("%s", hdev
->name
);
1901 hci_req_sync(hdev
, le_scan_restart
, 0, HCI_CMD_TIMEOUT
, &status
);
1903 BT_ERR("Failed to restart LE scan: status %d", status
);
1909 if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER
, &hdev
->quirks
) ||
1910 !hdev
->discovery
.scan_start
)
1913 /* When the scan was started, hdev->le_scan_disable has been queued
1914 * after duration from scan_start. During scan restart this job
1915 * has been canceled, and we need to queue it again after proper
1916 * timeout, to make sure that scan does not run indefinitely.
1918 duration
= hdev
->discovery
.scan_duration
;
1919 scan_start
= hdev
->discovery
.scan_start
;
1921 if (now
- scan_start
<= duration
) {
1924 if (now
>= scan_start
)
1925 elapsed
= now
- scan_start
;
1927 elapsed
= ULONG_MAX
- scan_start
+ now
;
1929 timeout
= duration
- elapsed
;
1934 queue_delayed_work(hdev
->req_workqueue
,
1935 &hdev
->le_scan_disable
, timeout
);
1938 hci_dev_unlock(hdev
);
1941 static void disable_advertising(struct hci_request
*req
)
1945 hci_req_add(req
, HCI_OP_LE_SET_ADV_ENABLE
, sizeof(enable
), &enable
);
1948 static int active_scan(struct hci_request
*req
, unsigned long opt
)
1950 uint16_t interval
= opt
;
1951 struct hci_dev
*hdev
= req
->hdev
;
1952 struct hci_cp_le_set_scan_param param_cp
;
1953 struct hci_cp_le_set_scan_enable enable_cp
;
1957 BT_DBG("%s", hdev
->name
);
1959 if (hci_dev_test_flag(hdev
, HCI_LE_ADV
)) {
1962 /* Don't let discovery abort an outgoing connection attempt
1963 * that's using directed advertising.
1965 if (hci_lookup_le_connect(hdev
)) {
1966 hci_dev_unlock(hdev
);
1970 cancel_adv_timeout(hdev
);
1971 hci_dev_unlock(hdev
);
1973 disable_advertising(req
);
1976 /* If controller is scanning, it means the background scanning is
1977 * running. Thus, we should temporarily stop it in order to set the
1978 * discovery scanning parameters.
1980 if (hci_dev_test_flag(hdev
, HCI_LE_SCAN
))
1981 hci_req_add_le_scan_disable(req
);
1983 /* All active scans will be done with either a resolvable private
1984 * address (when privacy feature has been enabled) or non-resolvable
1987 err
= hci_update_random_address(req
, true, scan_use_rpa(hdev
),
1990 own_addr_type
= ADDR_LE_DEV_PUBLIC
;
1992 memset(¶m_cp
, 0, sizeof(param_cp
));
1993 param_cp
.type
= LE_SCAN_ACTIVE
;
1994 param_cp
.interval
= cpu_to_le16(interval
);
1995 param_cp
.window
= cpu_to_le16(DISCOV_LE_SCAN_WIN
);
1996 param_cp
.own_address_type
= own_addr_type
;
1998 hci_req_add(req
, HCI_OP_LE_SET_SCAN_PARAM
, sizeof(param_cp
),
2001 memset(&enable_cp
, 0, sizeof(enable_cp
));
2002 enable_cp
.enable
= LE_SCAN_ENABLE
;
2003 enable_cp
.filter_dup
= LE_SCAN_FILTER_DUP_ENABLE
;
2005 hci_req_add(req
, HCI_OP_LE_SET_SCAN_ENABLE
, sizeof(enable_cp
),
2011 static int interleaved_discov(struct hci_request
*req
, unsigned long opt
)
2015 BT_DBG("%s", req
->hdev
->name
);
2017 err
= active_scan(req
, opt
);
2021 return bredr_inquiry(req
, DISCOV_BREDR_INQUIRY_LEN
);
2024 static void start_discovery(struct hci_dev
*hdev
, u8
*status
)
2026 unsigned long timeout
;
2028 BT_DBG("%s type %u", hdev
->name
, hdev
->discovery
.type
);
2030 switch (hdev
->discovery
.type
) {
2031 case DISCOV_TYPE_BREDR
:
2032 if (!hci_dev_test_flag(hdev
, HCI_INQUIRY
))
2033 hci_req_sync(hdev
, bredr_inquiry
,
2034 DISCOV_BREDR_INQUIRY_LEN
, HCI_CMD_TIMEOUT
,
2037 case DISCOV_TYPE_INTERLEAVED
:
2038 /* When running simultaneous discovery, the LE scanning time
2039 * should occupy the whole discovery time sine BR/EDR inquiry
2040 * and LE scanning are scheduled by the controller.
2042 * For interleaving discovery in comparison, BR/EDR inquiry
2043 * and LE scanning are done sequentially with separate
2046 if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY
,
2048 timeout
= msecs_to_jiffies(DISCOV_LE_TIMEOUT
);
2049 /* During simultaneous discovery, we double LE scan
2050 * interval. We must leave some time for the controller
2051 * to do BR/EDR inquiry.
2053 hci_req_sync(hdev
, interleaved_discov
,
2054 DISCOV_LE_SCAN_INT
* 2, HCI_CMD_TIMEOUT
,
2059 timeout
= msecs_to_jiffies(hdev
->discov_interleaved_timeout
);
2060 hci_req_sync(hdev
, active_scan
, DISCOV_LE_SCAN_INT
,
2061 HCI_CMD_TIMEOUT
, status
);
2063 case DISCOV_TYPE_LE
:
2064 timeout
= msecs_to_jiffies(DISCOV_LE_TIMEOUT
);
2065 hci_req_sync(hdev
, active_scan
, DISCOV_LE_SCAN_INT
,
2066 HCI_CMD_TIMEOUT
, status
);
2069 *status
= HCI_ERROR_UNSPECIFIED
;
2076 BT_DBG("%s timeout %u ms", hdev
->name
, jiffies_to_msecs(timeout
));
2078 /* When service discovery is used and the controller has a
2079 * strict duplicate filter, it is important to remember the
2080 * start and duration of the scan. This is required for
2081 * restarting scanning during the discovery phase.
2083 if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER
, &hdev
->quirks
) &&
2084 hdev
->discovery
.result_filtering
) {
2085 hdev
->discovery
.scan_start
= jiffies
;
2086 hdev
->discovery
.scan_duration
= timeout
;
2089 queue_delayed_work(hdev
->req_workqueue
, &hdev
->le_scan_disable
,
2093 bool hci_req_stop_discovery(struct hci_request
*req
)
2095 struct hci_dev
*hdev
= req
->hdev
;
2096 struct discovery_state
*d
= &hdev
->discovery
;
2097 struct hci_cp_remote_name_req_cancel cp
;
2098 struct inquiry_entry
*e
;
2101 BT_DBG("%s state %u", hdev
->name
, hdev
->discovery
.state
);
2103 if (d
->state
== DISCOVERY_FINDING
|| d
->state
== DISCOVERY_STOPPING
) {
2104 if (test_bit(HCI_INQUIRY
, &hdev
->flags
))
2105 hci_req_add(req
, HCI_OP_INQUIRY_CANCEL
, 0, NULL
);
2107 if (hci_dev_test_flag(hdev
, HCI_LE_SCAN
)) {
2108 cancel_delayed_work(&hdev
->le_scan_disable
);
2109 hci_req_add_le_scan_disable(req
);
2114 /* Passive scanning */
2115 if (hci_dev_test_flag(hdev
, HCI_LE_SCAN
)) {
2116 hci_req_add_le_scan_disable(req
);
2121 /* No further actions needed for LE-only discovery */
2122 if (d
->type
== DISCOV_TYPE_LE
)
2125 if (d
->state
== DISCOVERY_RESOLVING
|| d
->state
== DISCOVERY_STOPPING
) {
2126 e
= hci_inquiry_cache_lookup_resolve(hdev
, BDADDR_ANY
,
2131 bacpy(&cp
.bdaddr
, &e
->data
.bdaddr
);
2132 hci_req_add(req
, HCI_OP_REMOTE_NAME_REQ_CANCEL
, sizeof(cp
),
2140 static int stop_discovery(struct hci_request
*req
, unsigned long opt
)
2142 hci_dev_lock(req
->hdev
);
2143 hci_req_stop_discovery(req
);
2144 hci_dev_unlock(req
->hdev
);
2149 static void discov_update(struct work_struct
*work
)
2151 struct hci_dev
*hdev
= container_of(work
, struct hci_dev
,
2155 switch (hdev
->discovery
.state
) {
2156 case DISCOVERY_STARTING
:
2157 start_discovery(hdev
, &status
);
2158 mgmt_start_discovery_complete(hdev
, status
);
2160 hci_discovery_set_state(hdev
, DISCOVERY_STOPPED
);
2162 hci_discovery_set_state(hdev
, DISCOVERY_FINDING
);
2164 case DISCOVERY_STOPPING
:
2165 hci_req_sync(hdev
, stop_discovery
, 0, HCI_CMD_TIMEOUT
, &status
);
2166 mgmt_stop_discovery_complete(hdev
, status
);
2168 hci_discovery_set_state(hdev
, DISCOVERY_STOPPED
);
2170 case DISCOVERY_STOPPED
:
2176 static void discov_off(struct work_struct
*work
)
2178 struct hci_dev
*hdev
= container_of(work
, struct hci_dev
,
2181 BT_DBG("%s", hdev
->name
);
2185 /* When discoverable timeout triggers, then just make sure
2186 * the limited discoverable flag is cleared. Even in the case
2187 * of a timeout triggered from general discoverable, it is
2188 * safe to unconditionally clear the flag.
2190 hci_dev_clear_flag(hdev
, HCI_LIMITED_DISCOVERABLE
);
2191 hci_dev_clear_flag(hdev
, HCI_DISCOVERABLE
);
2192 hdev
->discov_timeout
= 0;
2194 hci_dev_unlock(hdev
);
2196 hci_req_sync(hdev
, discoverable_update
, 0, HCI_CMD_TIMEOUT
, NULL
);
2197 mgmt_new_settings(hdev
);
2200 static int powered_update_hci(struct hci_request
*req
, unsigned long opt
)
2202 struct hci_dev
*hdev
= req
->hdev
;
2207 if (hci_dev_test_flag(hdev
, HCI_SSP_ENABLED
) &&
2208 !lmp_host_ssp_capable(hdev
)) {
2211 hci_req_add(req
, HCI_OP_WRITE_SSP_MODE
, sizeof(mode
), &mode
);
2213 if (bredr_sc_enabled(hdev
) && !lmp_host_sc_capable(hdev
)) {
2216 hci_req_add(req
, HCI_OP_WRITE_SC_SUPPORT
,
2217 sizeof(support
), &support
);
2221 if (hci_dev_test_flag(hdev
, HCI_LE_ENABLED
) &&
2222 lmp_bredr_capable(hdev
)) {
2223 struct hci_cp_write_le_host_supported cp
;
2228 /* Check first if we already have the right
2229 * host state (host features set)
2231 if (cp
.le
!= lmp_host_le_capable(hdev
) ||
2232 cp
.simul
!= lmp_host_le_br_capable(hdev
))
2233 hci_req_add(req
, HCI_OP_WRITE_LE_HOST_SUPPORTED
,
2237 if (hci_dev_test_flag(hdev
, HCI_LE_ENABLED
)) {
2238 /* Make sure the controller has a good default for
2239 * advertising data. This also applies to the case
2240 * where BR/EDR was toggled during the AUTO_OFF phase.
2242 if (hci_dev_test_flag(hdev
, HCI_ADVERTISING
) ||
2243 list_empty(&hdev
->adv_instances
)) {
2244 __hci_req_update_adv_data(req
, 0x00);
2245 __hci_req_update_scan_rsp_data(req
, 0x00);
2247 if (hci_dev_test_flag(hdev
, HCI_ADVERTISING
))
2248 __hci_req_enable_advertising(req
);
2249 } else if (!list_empty(&hdev
->adv_instances
)) {
2250 struct adv_info
*adv_instance
;
2252 adv_instance
= list_first_entry(&hdev
->adv_instances
,
2253 struct adv_info
, list
);
2254 __hci_req_schedule_adv_instance(req
,
2255 adv_instance
->instance
,
2260 link_sec
= hci_dev_test_flag(hdev
, HCI_LINK_SECURITY
);
2261 if (link_sec
!= test_bit(HCI_AUTH
, &hdev
->flags
))
2262 hci_req_add(req
, HCI_OP_WRITE_AUTH_ENABLE
,
2263 sizeof(link_sec
), &link_sec
);
2265 if (lmp_bredr_capable(hdev
)) {
2266 if (hci_dev_test_flag(hdev
, HCI_FAST_CONNECTABLE
))
2267 __hci_req_write_fast_connectable(req
, true);
2269 __hci_req_write_fast_connectable(req
, false);
2270 __hci_req_update_scan(req
);
2271 __hci_req_update_class(req
);
2272 __hci_req_update_name(req
);
2273 __hci_req_update_eir(req
);
2276 hci_dev_unlock(hdev
);
2280 int __hci_req_hci_power_on(struct hci_dev
*hdev
)
2282 /* Register the available SMP channels (BR/EDR and LE) only when
2283 * successfully powering on the controller. This late
2284 * registration is required so that LE SMP can clearly decide if
2285 * the public address or static address is used.
2289 return __hci_req_sync(hdev
, powered_update_hci
, 0, HCI_CMD_TIMEOUT
,
2293 void hci_request_setup(struct hci_dev
*hdev
)
2295 INIT_WORK(&hdev
->discov_update
, discov_update
);
2296 INIT_WORK(&hdev
->bg_scan_update
, bg_scan_update
);
2297 INIT_WORK(&hdev
->scan_update
, scan_update_work
);
2298 INIT_WORK(&hdev
->connectable_update
, connectable_update_work
);
2299 INIT_WORK(&hdev
->discoverable_update
, discoverable_update_work
);
2300 INIT_DELAYED_WORK(&hdev
->discov_off
, discov_off
);
2301 INIT_DELAYED_WORK(&hdev
->le_scan_disable
, le_scan_disable_work
);
2302 INIT_DELAYED_WORK(&hdev
->le_scan_restart
, le_scan_restart_work
);
2303 INIT_DELAYED_WORK(&hdev
->adv_instance_expire
, adv_timeout_expire
);
2306 void hci_request_cancel_all(struct hci_dev
*hdev
)
2308 hci_req_sync_cancel(hdev
, ENODEV
);
2310 cancel_work_sync(&hdev
->discov_update
);
2311 cancel_work_sync(&hdev
->bg_scan_update
);
2312 cancel_work_sync(&hdev
->scan_update
);
2313 cancel_work_sync(&hdev
->connectable_update
);
2314 cancel_work_sync(&hdev
->discoverable_update
);
2315 cancel_delayed_work_sync(&hdev
->discov_off
);
2316 cancel_delayed_work_sync(&hdev
->le_scan_disable
);
2317 cancel_delayed_work_sync(&hdev
->le_scan_restart
);
2319 if (hdev
->adv_instance_timeout
) {
2320 cancel_delayed_work_sync(&hdev
->adv_instance_expire
);
2321 hdev
->adv_instance_timeout
= 0;