netback: correct netbk_tx_err to handle wrap around.
[linux/fpc-iii.git] / kernel / cgroup.c
blob1749dcd976b983e22f4312690ccec5160ee52bf4
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #include <linux/cgroup.h>
30 #include <linux/ctype.h>
31 #include <linux/errno.h>
32 #include <linux/fs.h>
33 #include <linux/kernel.h>
34 #include <linux/list.h>
35 #include <linux/mm.h>
36 #include <linux/mutex.h>
37 #include <linux/mount.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/rcupdate.h>
41 #include <linux/sched.h>
42 #include <linux/backing-dev.h>
43 #include <linux/seq_file.h>
44 #include <linux/slab.h>
45 #include <linux/magic.h>
46 #include <linux/spinlock.h>
47 #include <linux/string.h>
48 #include <linux/sort.h>
49 #include <linux/kmod.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/cgroupstats.h>
53 #include <linux/hash.h>
54 #include <linux/namei.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/eventfd.h>
59 #include <linux/poll.h>
60 #include <linux/flex_array.h> /* used in cgroup_attach_proc */
62 #include <asm/atomic.h>
64 static DEFINE_MUTEX(cgroup_mutex);
67 * Generate an array of cgroup subsystem pointers. At boot time, this is
68 * populated up to CGROUP_BUILTIN_SUBSYS_COUNT, and modular subsystems are
69 * registered after that. The mutable section of this array is protected by
70 * cgroup_mutex.
72 #define SUBSYS(_x) &_x ## _subsys,
73 static struct cgroup_subsys *subsys[CGROUP_SUBSYS_COUNT] = {
74 #include <linux/cgroup_subsys.h>
77 #define MAX_CGROUP_ROOT_NAMELEN 64
80 * A cgroupfs_root represents the root of a cgroup hierarchy,
81 * and may be associated with a superblock to form an active
82 * hierarchy
84 struct cgroupfs_root {
85 struct super_block *sb;
88 * The bitmask of subsystems intended to be attached to this
89 * hierarchy
91 unsigned long subsys_bits;
93 /* Unique id for this hierarchy. */
94 int hierarchy_id;
96 /* The bitmask of subsystems currently attached to this hierarchy */
97 unsigned long actual_subsys_bits;
99 /* A list running through the attached subsystems */
100 struct list_head subsys_list;
102 /* The root cgroup for this hierarchy */
103 struct cgroup top_cgroup;
105 /* Tracks how many cgroups are currently defined in hierarchy.*/
106 int number_of_cgroups;
108 /* A list running through the active hierarchies */
109 struct list_head root_list;
111 /* Hierarchy-specific flags */
112 unsigned long flags;
114 /* The path to use for release notifications. */
115 char release_agent_path[PATH_MAX];
117 /* The name for this hierarchy - may be empty */
118 char name[MAX_CGROUP_ROOT_NAMELEN];
122 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
123 * subsystems that are otherwise unattached - it never has more than a
124 * single cgroup, and all tasks are part of that cgroup.
126 static struct cgroupfs_root rootnode;
129 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
130 * cgroup_subsys->use_id != 0.
132 #define CSS_ID_MAX (65535)
133 struct css_id {
135 * The css to which this ID points. This pointer is set to valid value
136 * after cgroup is populated. If cgroup is removed, this will be NULL.
137 * This pointer is expected to be RCU-safe because destroy()
138 * is called after synchronize_rcu(). But for safe use, css_is_removed()
139 * css_tryget() should be used for avoiding race.
141 struct cgroup_subsys_state __rcu *css;
143 * ID of this css.
145 unsigned short id;
147 * Depth in hierarchy which this ID belongs to.
149 unsigned short depth;
151 * ID is freed by RCU. (and lookup routine is RCU safe.)
153 struct rcu_head rcu_head;
155 * Hierarchy of CSS ID belongs to.
157 unsigned short stack[0]; /* Array of Length (depth+1) */
161 * cgroup_event represents events which userspace want to receive.
163 struct cgroup_event {
165 * Cgroup which the event belongs to.
167 struct cgroup *cgrp;
169 * Control file which the event associated.
171 struct cftype *cft;
173 * eventfd to signal userspace about the event.
175 struct eventfd_ctx *eventfd;
177 * Each of these stored in a list by the cgroup.
179 struct list_head list;
181 * All fields below needed to unregister event when
182 * userspace closes eventfd.
184 poll_table pt;
185 wait_queue_head_t *wqh;
186 wait_queue_t wait;
187 struct work_struct remove;
190 /* The list of hierarchy roots */
192 static LIST_HEAD(roots);
193 static int root_count;
195 static DEFINE_IDA(hierarchy_ida);
196 static int next_hierarchy_id;
197 static DEFINE_SPINLOCK(hierarchy_id_lock);
199 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
200 #define dummytop (&rootnode.top_cgroup)
202 /* This flag indicates whether tasks in the fork and exit paths should
203 * check for fork/exit handlers to call. This avoids us having to do
204 * extra work in the fork/exit path if none of the subsystems need to
205 * be called.
207 static int need_forkexit_callback __read_mostly;
209 #ifdef CONFIG_PROVE_LOCKING
210 int cgroup_lock_is_held(void)
212 return lockdep_is_held(&cgroup_mutex);
214 #else /* #ifdef CONFIG_PROVE_LOCKING */
215 int cgroup_lock_is_held(void)
217 return mutex_is_locked(&cgroup_mutex);
219 #endif /* #else #ifdef CONFIG_PROVE_LOCKING */
221 EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
223 /* convenient tests for these bits */
224 inline int cgroup_is_removed(const struct cgroup *cgrp)
226 return test_bit(CGRP_REMOVED, &cgrp->flags);
229 /* bits in struct cgroupfs_root flags field */
230 enum {
231 ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
234 static int cgroup_is_releasable(const struct cgroup *cgrp)
236 const int bits =
237 (1 << CGRP_RELEASABLE) |
238 (1 << CGRP_NOTIFY_ON_RELEASE);
239 return (cgrp->flags & bits) == bits;
242 static int notify_on_release(const struct cgroup *cgrp)
244 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
247 static int clone_children(const struct cgroup *cgrp)
249 return test_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
253 * for_each_subsys() allows you to iterate on each subsystem attached to
254 * an active hierarchy
256 #define for_each_subsys(_root, _ss) \
257 list_for_each_entry(_ss, &_root->subsys_list, sibling)
259 /* for_each_active_root() allows you to iterate across the active hierarchies */
260 #define for_each_active_root(_root) \
261 list_for_each_entry(_root, &roots, root_list)
263 /* the list of cgroups eligible for automatic release. Protected by
264 * release_list_lock */
265 static LIST_HEAD(release_list);
266 static DEFINE_SPINLOCK(release_list_lock);
267 static void cgroup_release_agent(struct work_struct *work);
268 static DECLARE_WORK(release_agent_work, cgroup_release_agent);
269 static void check_for_release(struct cgroup *cgrp);
271 /* Link structure for associating css_set objects with cgroups */
272 struct cg_cgroup_link {
274 * List running through cg_cgroup_links associated with a
275 * cgroup, anchored on cgroup->css_sets
277 struct list_head cgrp_link_list;
278 struct cgroup *cgrp;
280 * List running through cg_cgroup_links pointing at a
281 * single css_set object, anchored on css_set->cg_links
283 struct list_head cg_link_list;
284 struct css_set *cg;
287 /* The default css_set - used by init and its children prior to any
288 * hierarchies being mounted. It contains a pointer to the root state
289 * for each subsystem. Also used to anchor the list of css_sets. Not
290 * reference-counted, to improve performance when child cgroups
291 * haven't been created.
294 static struct css_set init_css_set;
295 static struct cg_cgroup_link init_css_set_link;
297 static int cgroup_init_idr(struct cgroup_subsys *ss,
298 struct cgroup_subsys_state *css);
300 /* css_set_lock protects the list of css_set objects, and the
301 * chain of tasks off each css_set. Nests outside task->alloc_lock
302 * due to cgroup_iter_start() */
303 static DEFINE_RWLOCK(css_set_lock);
304 static int css_set_count;
307 * hash table for cgroup groups. This improves the performance to find
308 * an existing css_set. This hash doesn't (currently) take into
309 * account cgroups in empty hierarchies.
311 #define CSS_SET_HASH_BITS 7
312 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
313 static struct hlist_head css_set_table[CSS_SET_TABLE_SIZE];
315 static struct hlist_head *css_set_hash(struct cgroup_subsys_state *css[])
317 int i;
318 int index;
319 unsigned long tmp = 0UL;
321 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++)
322 tmp += (unsigned long)css[i];
323 tmp = (tmp >> 16) ^ tmp;
325 index = hash_long(tmp, CSS_SET_HASH_BITS);
327 return &css_set_table[index];
330 /* We don't maintain the lists running through each css_set to its
331 * task until after the first call to cgroup_iter_start(). This
332 * reduces the fork()/exit() overhead for people who have cgroups
333 * compiled into their kernel but not actually in use */
334 static int use_task_css_set_links __read_mostly;
336 static void __put_css_set(struct css_set *cg, int taskexit)
338 struct cg_cgroup_link *link;
339 struct cg_cgroup_link *saved_link;
341 * Ensure that the refcount doesn't hit zero while any readers
342 * can see it. Similar to atomic_dec_and_lock(), but for an
343 * rwlock
345 if (atomic_add_unless(&cg->refcount, -1, 1))
346 return;
347 write_lock(&css_set_lock);
348 if (!atomic_dec_and_test(&cg->refcount)) {
349 write_unlock(&css_set_lock);
350 return;
353 /* This css_set is dead. unlink it and release cgroup refcounts */
354 hlist_del(&cg->hlist);
355 css_set_count--;
357 list_for_each_entry_safe(link, saved_link, &cg->cg_links,
358 cg_link_list) {
359 struct cgroup *cgrp = link->cgrp;
360 list_del(&link->cg_link_list);
361 list_del(&link->cgrp_link_list);
362 if (atomic_dec_and_test(&cgrp->count) &&
363 notify_on_release(cgrp)) {
364 if (taskexit)
365 set_bit(CGRP_RELEASABLE, &cgrp->flags);
366 check_for_release(cgrp);
369 kfree(link);
372 write_unlock(&css_set_lock);
373 kfree_rcu(cg, rcu_head);
377 * refcounted get/put for css_set objects
379 static inline void get_css_set(struct css_set *cg)
381 atomic_inc(&cg->refcount);
384 static inline void put_css_set(struct css_set *cg)
386 __put_css_set(cg, 0);
389 static inline void put_css_set_taskexit(struct css_set *cg)
391 __put_css_set(cg, 1);
395 * compare_css_sets - helper function for find_existing_css_set().
396 * @cg: candidate css_set being tested
397 * @old_cg: existing css_set for a task
398 * @new_cgrp: cgroup that's being entered by the task
399 * @template: desired set of css pointers in css_set (pre-calculated)
401 * Returns true if "cg" matches "old_cg" except for the hierarchy
402 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
404 static bool compare_css_sets(struct css_set *cg,
405 struct css_set *old_cg,
406 struct cgroup *new_cgrp,
407 struct cgroup_subsys_state *template[])
409 struct list_head *l1, *l2;
411 if (memcmp(template, cg->subsys, sizeof(cg->subsys))) {
412 /* Not all subsystems matched */
413 return false;
417 * Compare cgroup pointers in order to distinguish between
418 * different cgroups in heirarchies with no subsystems. We
419 * could get by with just this check alone (and skip the
420 * memcmp above) but on most setups the memcmp check will
421 * avoid the need for this more expensive check on almost all
422 * candidates.
425 l1 = &cg->cg_links;
426 l2 = &old_cg->cg_links;
427 while (1) {
428 struct cg_cgroup_link *cgl1, *cgl2;
429 struct cgroup *cg1, *cg2;
431 l1 = l1->next;
432 l2 = l2->next;
433 /* See if we reached the end - both lists are equal length. */
434 if (l1 == &cg->cg_links) {
435 BUG_ON(l2 != &old_cg->cg_links);
436 break;
437 } else {
438 BUG_ON(l2 == &old_cg->cg_links);
440 /* Locate the cgroups associated with these links. */
441 cgl1 = list_entry(l1, struct cg_cgroup_link, cg_link_list);
442 cgl2 = list_entry(l2, struct cg_cgroup_link, cg_link_list);
443 cg1 = cgl1->cgrp;
444 cg2 = cgl2->cgrp;
445 /* Hierarchies should be linked in the same order. */
446 BUG_ON(cg1->root != cg2->root);
449 * If this hierarchy is the hierarchy of the cgroup
450 * that's changing, then we need to check that this
451 * css_set points to the new cgroup; if it's any other
452 * hierarchy, then this css_set should point to the
453 * same cgroup as the old css_set.
455 if (cg1->root == new_cgrp->root) {
456 if (cg1 != new_cgrp)
457 return false;
458 } else {
459 if (cg1 != cg2)
460 return false;
463 return true;
467 * find_existing_css_set() is a helper for
468 * find_css_set(), and checks to see whether an existing
469 * css_set is suitable.
471 * oldcg: the cgroup group that we're using before the cgroup
472 * transition
474 * cgrp: the cgroup that we're moving into
476 * template: location in which to build the desired set of subsystem
477 * state objects for the new cgroup group
479 static struct css_set *find_existing_css_set(
480 struct css_set *oldcg,
481 struct cgroup *cgrp,
482 struct cgroup_subsys_state *template[])
484 int i;
485 struct cgroupfs_root *root = cgrp->root;
486 struct hlist_head *hhead;
487 struct hlist_node *node;
488 struct css_set *cg;
491 * Build the set of subsystem state objects that we want to see in the
492 * new css_set. while subsystems can change globally, the entries here
493 * won't change, so no need for locking.
495 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
496 if (root->subsys_bits & (1UL << i)) {
497 /* Subsystem is in this hierarchy. So we want
498 * the subsystem state from the new
499 * cgroup */
500 template[i] = cgrp->subsys[i];
501 } else {
502 /* Subsystem is not in this hierarchy, so we
503 * don't want to change the subsystem state */
504 template[i] = oldcg->subsys[i];
508 hhead = css_set_hash(template);
509 hlist_for_each_entry(cg, node, hhead, hlist) {
510 if (!compare_css_sets(cg, oldcg, cgrp, template))
511 continue;
513 /* This css_set matches what we need */
514 return cg;
517 /* No existing cgroup group matched */
518 return NULL;
521 static void free_cg_links(struct list_head *tmp)
523 struct cg_cgroup_link *link;
524 struct cg_cgroup_link *saved_link;
526 list_for_each_entry_safe(link, saved_link, tmp, cgrp_link_list) {
527 list_del(&link->cgrp_link_list);
528 kfree(link);
533 * allocate_cg_links() allocates "count" cg_cgroup_link structures
534 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
535 * success or a negative error
537 static int allocate_cg_links(int count, struct list_head *tmp)
539 struct cg_cgroup_link *link;
540 int i;
541 INIT_LIST_HEAD(tmp);
542 for (i = 0; i < count; i++) {
543 link = kmalloc(sizeof(*link), GFP_KERNEL);
544 if (!link) {
545 free_cg_links(tmp);
546 return -ENOMEM;
548 list_add(&link->cgrp_link_list, tmp);
550 return 0;
554 * link_css_set - a helper function to link a css_set to a cgroup
555 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
556 * @cg: the css_set to be linked
557 * @cgrp: the destination cgroup
559 static void link_css_set(struct list_head *tmp_cg_links,
560 struct css_set *cg, struct cgroup *cgrp)
562 struct cg_cgroup_link *link;
564 BUG_ON(list_empty(tmp_cg_links));
565 link = list_first_entry(tmp_cg_links, struct cg_cgroup_link,
566 cgrp_link_list);
567 link->cg = cg;
568 link->cgrp = cgrp;
569 atomic_inc(&cgrp->count);
570 list_move(&link->cgrp_link_list, &cgrp->css_sets);
572 * Always add links to the tail of the list so that the list
573 * is sorted by order of hierarchy creation
575 list_add_tail(&link->cg_link_list, &cg->cg_links);
579 * find_css_set() takes an existing cgroup group and a
580 * cgroup object, and returns a css_set object that's
581 * equivalent to the old group, but with the given cgroup
582 * substituted into the appropriate hierarchy. Must be called with
583 * cgroup_mutex held
585 static struct css_set *find_css_set(
586 struct css_set *oldcg, struct cgroup *cgrp)
588 struct css_set *res;
589 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
591 struct list_head tmp_cg_links;
593 struct hlist_head *hhead;
594 struct cg_cgroup_link *link;
596 /* First see if we already have a cgroup group that matches
597 * the desired set */
598 read_lock(&css_set_lock);
599 res = find_existing_css_set(oldcg, cgrp, template);
600 if (res)
601 get_css_set(res);
602 read_unlock(&css_set_lock);
604 if (res)
605 return res;
607 res = kmalloc(sizeof(*res), GFP_KERNEL);
608 if (!res)
609 return NULL;
611 /* Allocate all the cg_cgroup_link objects that we'll need */
612 if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
613 kfree(res);
614 return NULL;
617 atomic_set(&res->refcount, 1);
618 INIT_LIST_HEAD(&res->cg_links);
619 INIT_LIST_HEAD(&res->tasks);
620 INIT_HLIST_NODE(&res->hlist);
622 /* Copy the set of subsystem state objects generated in
623 * find_existing_css_set() */
624 memcpy(res->subsys, template, sizeof(res->subsys));
626 write_lock(&css_set_lock);
627 /* Add reference counts and links from the new css_set. */
628 list_for_each_entry(link, &oldcg->cg_links, cg_link_list) {
629 struct cgroup *c = link->cgrp;
630 if (c->root == cgrp->root)
631 c = cgrp;
632 link_css_set(&tmp_cg_links, res, c);
635 BUG_ON(!list_empty(&tmp_cg_links));
637 css_set_count++;
639 /* Add this cgroup group to the hash table */
640 hhead = css_set_hash(res->subsys);
641 hlist_add_head(&res->hlist, hhead);
643 write_unlock(&css_set_lock);
645 return res;
649 * Return the cgroup for "task" from the given hierarchy. Must be
650 * called with cgroup_mutex held.
652 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
653 struct cgroupfs_root *root)
655 struct css_set *css;
656 struct cgroup *res = NULL;
658 BUG_ON(!mutex_is_locked(&cgroup_mutex));
659 read_lock(&css_set_lock);
661 * No need to lock the task - since we hold cgroup_mutex the
662 * task can't change groups, so the only thing that can happen
663 * is that it exits and its css is set back to init_css_set.
665 css = task->cgroups;
666 if (css == &init_css_set) {
667 res = &root->top_cgroup;
668 } else {
669 struct cg_cgroup_link *link;
670 list_for_each_entry(link, &css->cg_links, cg_link_list) {
671 struct cgroup *c = link->cgrp;
672 if (c->root == root) {
673 res = c;
674 break;
678 read_unlock(&css_set_lock);
679 BUG_ON(!res);
680 return res;
684 * There is one global cgroup mutex. We also require taking
685 * task_lock() when dereferencing a task's cgroup subsys pointers.
686 * See "The task_lock() exception", at the end of this comment.
688 * A task must hold cgroup_mutex to modify cgroups.
690 * Any task can increment and decrement the count field without lock.
691 * So in general, code holding cgroup_mutex can't rely on the count
692 * field not changing. However, if the count goes to zero, then only
693 * cgroup_attach_task() can increment it again. Because a count of zero
694 * means that no tasks are currently attached, therefore there is no
695 * way a task attached to that cgroup can fork (the other way to
696 * increment the count). So code holding cgroup_mutex can safely
697 * assume that if the count is zero, it will stay zero. Similarly, if
698 * a task holds cgroup_mutex on a cgroup with zero count, it
699 * knows that the cgroup won't be removed, as cgroup_rmdir()
700 * needs that mutex.
702 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
703 * (usually) take cgroup_mutex. These are the two most performance
704 * critical pieces of code here. The exception occurs on cgroup_exit(),
705 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
706 * is taken, and if the cgroup count is zero, a usermode call made
707 * to the release agent with the name of the cgroup (path relative to
708 * the root of cgroup file system) as the argument.
710 * A cgroup can only be deleted if both its 'count' of using tasks
711 * is zero, and its list of 'children' cgroups is empty. Since all
712 * tasks in the system use _some_ cgroup, and since there is always at
713 * least one task in the system (init, pid == 1), therefore, top_cgroup
714 * always has either children cgroups and/or using tasks. So we don't
715 * need a special hack to ensure that top_cgroup cannot be deleted.
717 * The task_lock() exception
719 * The need for this exception arises from the action of
720 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
721 * another. It does so using cgroup_mutex, however there are
722 * several performance critical places that need to reference
723 * task->cgroup without the expense of grabbing a system global
724 * mutex. Therefore except as noted below, when dereferencing or, as
725 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
726 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
727 * the task_struct routinely used for such matters.
729 * P.S. One more locking exception. RCU is used to guard the
730 * update of a tasks cgroup pointer by cgroup_attach_task()
734 * cgroup_lock - lock out any changes to cgroup structures
737 void cgroup_lock(void)
739 mutex_lock(&cgroup_mutex);
741 EXPORT_SYMBOL_GPL(cgroup_lock);
744 * cgroup_unlock - release lock on cgroup changes
746 * Undo the lock taken in a previous cgroup_lock() call.
748 void cgroup_unlock(void)
750 mutex_unlock(&cgroup_mutex);
752 EXPORT_SYMBOL_GPL(cgroup_unlock);
755 * A couple of forward declarations required, due to cyclic reference loop:
756 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
757 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
758 * -> cgroup_mkdir.
761 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
762 static struct dentry *cgroup_lookup(struct inode *, struct dentry *, struct nameidata *);
763 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
764 static int cgroup_populate_dir(struct cgroup *cgrp);
765 static const struct inode_operations cgroup_dir_inode_operations;
766 static const struct file_operations proc_cgroupstats_operations;
768 static struct backing_dev_info cgroup_backing_dev_info = {
769 .name = "cgroup",
770 .capabilities = BDI_CAP_NO_ACCT_AND_WRITEBACK,
773 static int alloc_css_id(struct cgroup_subsys *ss,
774 struct cgroup *parent, struct cgroup *child);
776 static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
778 struct inode *inode = new_inode(sb);
780 if (inode) {
781 inode->i_ino = get_next_ino();
782 inode->i_mode = mode;
783 inode->i_uid = current_fsuid();
784 inode->i_gid = current_fsgid();
785 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
786 inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
788 return inode;
792 * Call subsys's pre_destroy handler.
793 * This is called before css refcnt check.
795 static int cgroup_call_pre_destroy(struct cgroup *cgrp)
797 struct cgroup_subsys *ss;
798 int ret = 0;
800 for_each_subsys(cgrp->root, ss)
801 if (ss->pre_destroy) {
802 ret = ss->pre_destroy(ss, cgrp);
803 if (ret)
804 break;
807 return ret;
810 static void cgroup_diput(struct dentry *dentry, struct inode *inode)
812 /* is dentry a directory ? if so, kfree() associated cgroup */
813 if (S_ISDIR(inode->i_mode)) {
814 struct cgroup *cgrp = dentry->d_fsdata;
815 struct cgroup_subsys *ss;
816 BUG_ON(!(cgroup_is_removed(cgrp)));
817 /* It's possible for external users to be holding css
818 * reference counts on a cgroup; css_put() needs to
819 * be able to access the cgroup after decrementing
820 * the reference count in order to know if it needs to
821 * queue the cgroup to be handled by the release
822 * agent */
823 synchronize_rcu();
825 mutex_lock(&cgroup_mutex);
827 * Release the subsystem state objects.
829 for_each_subsys(cgrp->root, ss)
830 ss->destroy(ss, cgrp);
832 cgrp->root->number_of_cgroups--;
833 mutex_unlock(&cgroup_mutex);
836 * Drop the active superblock reference that we took when we
837 * created the cgroup
839 deactivate_super(cgrp->root->sb);
842 * if we're getting rid of the cgroup, refcount should ensure
843 * that there are no pidlists left.
845 BUG_ON(!list_empty(&cgrp->pidlists));
847 kfree_rcu(cgrp, rcu_head);
849 iput(inode);
852 static int cgroup_delete(const struct dentry *d)
854 return 1;
857 static void remove_dir(struct dentry *d)
859 struct dentry *parent = dget(d->d_parent);
861 d_delete(d);
862 simple_rmdir(parent->d_inode, d);
863 dput(parent);
866 static void cgroup_clear_directory(struct dentry *dentry)
868 struct list_head *node;
870 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
871 spin_lock(&dentry->d_lock);
872 node = dentry->d_subdirs.next;
873 while (node != &dentry->d_subdirs) {
874 struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
876 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
877 list_del_init(node);
878 if (d->d_inode) {
879 /* This should never be called on a cgroup
880 * directory with child cgroups */
881 BUG_ON(d->d_inode->i_mode & S_IFDIR);
882 dget_dlock(d);
883 spin_unlock(&d->d_lock);
884 spin_unlock(&dentry->d_lock);
885 d_delete(d);
886 simple_unlink(dentry->d_inode, d);
887 dput(d);
888 spin_lock(&dentry->d_lock);
889 } else
890 spin_unlock(&d->d_lock);
891 node = dentry->d_subdirs.next;
893 spin_unlock(&dentry->d_lock);
897 * NOTE : the dentry must have been dget()'ed
899 static void cgroup_d_remove_dir(struct dentry *dentry)
901 struct dentry *parent;
903 cgroup_clear_directory(dentry);
905 parent = dentry->d_parent;
906 spin_lock(&parent->d_lock);
907 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
908 list_del_init(&dentry->d_u.d_child);
909 spin_unlock(&dentry->d_lock);
910 spin_unlock(&parent->d_lock);
911 remove_dir(dentry);
915 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
916 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
917 * reference to css->refcnt. In general, this refcnt is expected to goes down
918 * to zero, soon.
920 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
922 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq);
924 static void cgroup_wakeup_rmdir_waiter(struct cgroup *cgrp)
926 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags)))
927 wake_up_all(&cgroup_rmdir_waitq);
930 void cgroup_exclude_rmdir(struct cgroup_subsys_state *css)
932 css_get(css);
935 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state *css)
937 cgroup_wakeup_rmdir_waiter(css->cgroup);
938 css_put(css);
942 * Call with cgroup_mutex held. Drops reference counts on modules, including
943 * any duplicate ones that parse_cgroupfs_options took. If this function
944 * returns an error, no reference counts are touched.
946 static int rebind_subsystems(struct cgroupfs_root *root,
947 unsigned long final_bits)
949 unsigned long added_bits, removed_bits;
950 struct cgroup *cgrp = &root->top_cgroup;
951 int i;
953 BUG_ON(!mutex_is_locked(&cgroup_mutex));
955 removed_bits = root->actual_subsys_bits & ~final_bits;
956 added_bits = final_bits & ~root->actual_subsys_bits;
957 /* Check that any added subsystems are currently free */
958 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
959 unsigned long bit = 1UL << i;
960 struct cgroup_subsys *ss = subsys[i];
961 if (!(bit & added_bits))
962 continue;
964 * Nobody should tell us to do a subsys that doesn't exist:
965 * parse_cgroupfs_options should catch that case and refcounts
966 * ensure that subsystems won't disappear once selected.
968 BUG_ON(ss == NULL);
969 if (ss->root != &rootnode) {
970 /* Subsystem isn't free */
971 return -EBUSY;
975 /* Currently we don't handle adding/removing subsystems when
976 * any child cgroups exist. This is theoretically supportable
977 * but involves complex error handling, so it's being left until
978 * later */
979 if (root->number_of_cgroups > 1)
980 return -EBUSY;
982 /* Process each subsystem */
983 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
984 struct cgroup_subsys *ss = subsys[i];
985 unsigned long bit = 1UL << i;
986 if (bit & added_bits) {
987 /* We're binding this subsystem to this hierarchy */
988 BUG_ON(ss == NULL);
989 BUG_ON(cgrp->subsys[i]);
990 BUG_ON(!dummytop->subsys[i]);
991 BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
992 mutex_lock(&ss->hierarchy_mutex);
993 cgrp->subsys[i] = dummytop->subsys[i];
994 cgrp->subsys[i]->cgroup = cgrp;
995 list_move(&ss->sibling, &root->subsys_list);
996 ss->root = root;
997 if (ss->bind)
998 ss->bind(ss, cgrp);
999 mutex_unlock(&ss->hierarchy_mutex);
1000 /* refcount was already taken, and we're keeping it */
1001 } else if (bit & removed_bits) {
1002 /* We're removing this subsystem */
1003 BUG_ON(ss == NULL);
1004 BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
1005 BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
1006 mutex_lock(&ss->hierarchy_mutex);
1007 if (ss->bind)
1008 ss->bind(ss, dummytop);
1009 dummytop->subsys[i]->cgroup = dummytop;
1010 cgrp->subsys[i] = NULL;
1011 subsys[i]->root = &rootnode;
1012 list_move(&ss->sibling, &rootnode.subsys_list);
1013 mutex_unlock(&ss->hierarchy_mutex);
1014 /* subsystem is now free - drop reference on module */
1015 module_put(ss->module);
1016 } else if (bit & final_bits) {
1017 /* Subsystem state should already exist */
1018 BUG_ON(ss == NULL);
1019 BUG_ON(!cgrp->subsys[i]);
1021 * a refcount was taken, but we already had one, so
1022 * drop the extra reference.
1024 module_put(ss->module);
1025 #ifdef CONFIG_MODULE_UNLOAD
1026 BUG_ON(ss->module && !module_refcount(ss->module));
1027 #endif
1028 } else {
1029 /* Subsystem state shouldn't exist */
1030 BUG_ON(cgrp->subsys[i]);
1033 root->subsys_bits = root->actual_subsys_bits = final_bits;
1034 synchronize_rcu();
1036 return 0;
1039 static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
1041 struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
1042 struct cgroup_subsys *ss;
1044 mutex_lock(&cgroup_mutex);
1045 for_each_subsys(root, ss)
1046 seq_printf(seq, ",%s", ss->name);
1047 if (test_bit(ROOT_NOPREFIX, &root->flags))
1048 seq_puts(seq, ",noprefix");
1049 if (strlen(root->release_agent_path))
1050 seq_printf(seq, ",release_agent=%s", root->release_agent_path);
1051 if (clone_children(&root->top_cgroup))
1052 seq_puts(seq, ",clone_children");
1053 if (strlen(root->name))
1054 seq_printf(seq, ",name=%s", root->name);
1055 mutex_unlock(&cgroup_mutex);
1056 return 0;
1059 struct cgroup_sb_opts {
1060 unsigned long subsys_bits;
1061 unsigned long flags;
1062 char *release_agent;
1063 bool clone_children;
1064 char *name;
1065 /* User explicitly requested empty subsystem */
1066 bool none;
1068 struct cgroupfs_root *new_root;
1073 * Convert a hierarchy specifier into a bitmask of subsystems and flags. Call
1074 * with cgroup_mutex held to protect the subsys[] array. This function takes
1075 * refcounts on subsystems to be used, unless it returns error, in which case
1076 * no refcounts are taken.
1078 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1080 char *token, *o = data;
1081 bool all_ss = false, one_ss = false;
1082 unsigned long mask = (unsigned long)-1;
1083 int i;
1084 bool module_pin_failed = false;
1086 BUG_ON(!mutex_is_locked(&cgroup_mutex));
1088 #ifdef CONFIG_CPUSETS
1089 mask = ~(1UL << cpuset_subsys_id);
1090 #endif
1092 memset(opts, 0, sizeof(*opts));
1094 while ((token = strsep(&o, ",")) != NULL) {
1095 if (!*token)
1096 return -EINVAL;
1097 if (!strcmp(token, "none")) {
1098 /* Explicitly have no subsystems */
1099 opts->none = true;
1100 continue;
1102 if (!strcmp(token, "all")) {
1103 /* Mutually exclusive option 'all' + subsystem name */
1104 if (one_ss)
1105 return -EINVAL;
1106 all_ss = true;
1107 continue;
1109 if (!strcmp(token, "noprefix")) {
1110 set_bit(ROOT_NOPREFIX, &opts->flags);
1111 continue;
1113 if (!strcmp(token, "clone_children")) {
1114 opts->clone_children = true;
1115 continue;
1117 if (!strncmp(token, "release_agent=", 14)) {
1118 /* Specifying two release agents is forbidden */
1119 if (opts->release_agent)
1120 return -EINVAL;
1121 opts->release_agent =
1122 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1123 if (!opts->release_agent)
1124 return -ENOMEM;
1125 continue;
1127 if (!strncmp(token, "name=", 5)) {
1128 const char *name = token + 5;
1129 /* Can't specify an empty name */
1130 if (!strlen(name))
1131 return -EINVAL;
1132 /* Must match [\w.-]+ */
1133 for (i = 0; i < strlen(name); i++) {
1134 char c = name[i];
1135 if (isalnum(c))
1136 continue;
1137 if ((c == '.') || (c == '-') || (c == '_'))
1138 continue;
1139 return -EINVAL;
1141 /* Specifying two names is forbidden */
1142 if (opts->name)
1143 return -EINVAL;
1144 opts->name = kstrndup(name,
1145 MAX_CGROUP_ROOT_NAMELEN - 1,
1146 GFP_KERNEL);
1147 if (!opts->name)
1148 return -ENOMEM;
1150 continue;
1153 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1154 struct cgroup_subsys *ss = subsys[i];
1155 if (ss == NULL)
1156 continue;
1157 if (strcmp(token, ss->name))
1158 continue;
1159 if (ss->disabled)
1160 continue;
1162 /* Mutually exclusive option 'all' + subsystem name */
1163 if (all_ss)
1164 return -EINVAL;
1165 set_bit(i, &opts->subsys_bits);
1166 one_ss = true;
1168 break;
1170 if (i == CGROUP_SUBSYS_COUNT)
1171 return -ENOENT;
1175 * If the 'all' option was specified select all the subsystems,
1176 * otherwise if 'none', 'name=' and a subsystem name options
1177 * were not specified, let's default to 'all'
1179 if (all_ss || (!one_ss && !opts->none && !opts->name)) {
1180 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
1181 struct cgroup_subsys *ss = subsys[i];
1182 if (ss == NULL)
1183 continue;
1184 if (ss->disabled)
1185 continue;
1186 set_bit(i, &opts->subsys_bits);
1190 /* Consistency checks */
1193 * Option noprefix was introduced just for backward compatibility
1194 * with the old cpuset, so we allow noprefix only if mounting just
1195 * the cpuset subsystem.
1197 if (test_bit(ROOT_NOPREFIX, &opts->flags) &&
1198 (opts->subsys_bits & mask))
1199 return -EINVAL;
1202 /* Can't specify "none" and some subsystems */
1203 if (opts->subsys_bits && opts->none)
1204 return -EINVAL;
1207 * We either have to specify by name or by subsystems. (So all
1208 * empty hierarchies must have a name).
1210 if (!opts->subsys_bits && !opts->name)
1211 return -EINVAL;
1214 * Grab references on all the modules we'll need, so the subsystems
1215 * don't dance around before rebind_subsystems attaches them. This may
1216 * take duplicate reference counts on a subsystem that's already used,
1217 * but rebind_subsystems handles this case.
1219 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1220 unsigned long bit = 1UL << i;
1222 if (!(bit & opts->subsys_bits))
1223 continue;
1224 if (!try_module_get(subsys[i]->module)) {
1225 module_pin_failed = true;
1226 break;
1229 if (module_pin_failed) {
1231 * oops, one of the modules was going away. this means that we
1232 * raced with a module_delete call, and to the user this is
1233 * essentially a "subsystem doesn't exist" case.
1235 for (i--; i >= CGROUP_BUILTIN_SUBSYS_COUNT; i--) {
1236 /* drop refcounts only on the ones we took */
1237 unsigned long bit = 1UL << i;
1239 if (!(bit & opts->subsys_bits))
1240 continue;
1241 module_put(subsys[i]->module);
1243 return -ENOENT;
1246 return 0;
1249 static void drop_parsed_module_refcounts(unsigned long subsys_bits)
1251 int i;
1252 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
1253 unsigned long bit = 1UL << i;
1255 if (!(bit & subsys_bits))
1256 continue;
1257 module_put(subsys[i]->module);
1261 static int cgroup_remount(struct super_block *sb, int *flags, char *data)
1263 int ret = 0;
1264 struct cgroupfs_root *root = sb->s_fs_info;
1265 struct cgroup *cgrp = &root->top_cgroup;
1266 struct cgroup_sb_opts opts;
1268 mutex_lock(&cgrp->dentry->d_inode->i_mutex);
1269 mutex_lock(&cgroup_mutex);
1271 /* See what subsystems are wanted */
1272 ret = parse_cgroupfs_options(data, &opts);
1273 if (ret)
1274 goto out_unlock;
1276 /* Don't allow flags or name to change at remount */
1277 if (opts.flags != root->flags ||
1278 (opts.name && strcmp(opts.name, root->name))) {
1279 ret = -EINVAL;
1280 drop_parsed_module_refcounts(opts.subsys_bits);
1281 goto out_unlock;
1284 ret = rebind_subsystems(root, opts.subsys_bits);
1285 if (ret) {
1286 drop_parsed_module_refcounts(opts.subsys_bits);
1287 goto out_unlock;
1290 /* (re)populate subsystem files */
1291 cgroup_populate_dir(cgrp);
1293 if (opts.release_agent)
1294 strcpy(root->release_agent_path, opts.release_agent);
1295 out_unlock:
1296 kfree(opts.release_agent);
1297 kfree(opts.name);
1298 mutex_unlock(&cgroup_mutex);
1299 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
1300 return ret;
1303 static const struct super_operations cgroup_ops = {
1304 .statfs = simple_statfs,
1305 .drop_inode = generic_delete_inode,
1306 .show_options = cgroup_show_options,
1307 .remount_fs = cgroup_remount,
1310 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1312 INIT_LIST_HEAD(&cgrp->sibling);
1313 INIT_LIST_HEAD(&cgrp->children);
1314 INIT_LIST_HEAD(&cgrp->css_sets);
1315 INIT_LIST_HEAD(&cgrp->release_list);
1316 INIT_LIST_HEAD(&cgrp->pidlists);
1317 mutex_init(&cgrp->pidlist_mutex);
1318 INIT_LIST_HEAD(&cgrp->event_list);
1319 spin_lock_init(&cgrp->event_list_lock);
1322 static void init_cgroup_root(struct cgroupfs_root *root)
1324 struct cgroup *cgrp = &root->top_cgroup;
1325 INIT_LIST_HEAD(&root->subsys_list);
1326 INIT_LIST_HEAD(&root->root_list);
1327 root->number_of_cgroups = 1;
1328 cgrp->root = root;
1329 cgrp->top_cgroup = cgrp;
1330 init_cgroup_housekeeping(cgrp);
1333 static bool init_root_id(struct cgroupfs_root *root)
1335 int ret = 0;
1337 do {
1338 if (!ida_pre_get(&hierarchy_ida, GFP_KERNEL))
1339 return false;
1340 spin_lock(&hierarchy_id_lock);
1341 /* Try to allocate the next unused ID */
1342 ret = ida_get_new_above(&hierarchy_ida, next_hierarchy_id,
1343 &root->hierarchy_id);
1344 if (ret == -ENOSPC)
1345 /* Try again starting from 0 */
1346 ret = ida_get_new(&hierarchy_ida, &root->hierarchy_id);
1347 if (!ret) {
1348 next_hierarchy_id = root->hierarchy_id + 1;
1349 } else if (ret != -EAGAIN) {
1350 /* Can only get here if the 31-bit IDR is full ... */
1351 BUG_ON(ret);
1353 spin_unlock(&hierarchy_id_lock);
1354 } while (ret);
1355 return true;
1358 static int cgroup_test_super(struct super_block *sb, void *data)
1360 struct cgroup_sb_opts *opts = data;
1361 struct cgroupfs_root *root = sb->s_fs_info;
1363 /* If we asked for a name then it must match */
1364 if (opts->name && strcmp(opts->name, root->name))
1365 return 0;
1368 * If we asked for subsystems (or explicitly for no
1369 * subsystems) then they must match
1371 if ((opts->subsys_bits || opts->none)
1372 && (opts->subsys_bits != root->subsys_bits))
1373 return 0;
1375 return 1;
1378 static struct cgroupfs_root *cgroup_root_from_opts(struct cgroup_sb_opts *opts)
1380 struct cgroupfs_root *root;
1382 if (!opts->subsys_bits && !opts->none)
1383 return NULL;
1385 root = kzalloc(sizeof(*root), GFP_KERNEL);
1386 if (!root)
1387 return ERR_PTR(-ENOMEM);
1389 if (!init_root_id(root)) {
1390 kfree(root);
1391 return ERR_PTR(-ENOMEM);
1393 init_cgroup_root(root);
1395 root->subsys_bits = opts->subsys_bits;
1396 root->flags = opts->flags;
1397 if (opts->release_agent)
1398 strcpy(root->release_agent_path, opts->release_agent);
1399 if (opts->name)
1400 strcpy(root->name, opts->name);
1401 if (opts->clone_children)
1402 set_bit(CGRP_CLONE_CHILDREN, &root->top_cgroup.flags);
1403 return root;
1406 static void cgroup_drop_root(struct cgroupfs_root *root)
1408 if (!root)
1409 return;
1411 BUG_ON(!root->hierarchy_id);
1412 spin_lock(&hierarchy_id_lock);
1413 ida_remove(&hierarchy_ida, root->hierarchy_id);
1414 spin_unlock(&hierarchy_id_lock);
1415 kfree(root);
1418 static int cgroup_set_super(struct super_block *sb, void *data)
1420 int ret;
1421 struct cgroup_sb_opts *opts = data;
1423 /* If we don't have a new root, we can't set up a new sb */
1424 if (!opts->new_root)
1425 return -EINVAL;
1427 BUG_ON(!opts->subsys_bits && !opts->none);
1429 ret = set_anon_super(sb, NULL);
1430 if (ret)
1431 return ret;
1433 sb->s_fs_info = opts->new_root;
1434 opts->new_root->sb = sb;
1436 sb->s_blocksize = PAGE_CACHE_SIZE;
1437 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
1438 sb->s_magic = CGROUP_SUPER_MAGIC;
1439 sb->s_op = &cgroup_ops;
1441 return 0;
1444 static int cgroup_get_rootdir(struct super_block *sb)
1446 static const struct dentry_operations cgroup_dops = {
1447 .d_iput = cgroup_diput,
1448 .d_delete = cgroup_delete,
1451 struct inode *inode =
1452 cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
1453 struct dentry *dentry;
1455 if (!inode)
1456 return -ENOMEM;
1458 inode->i_fop = &simple_dir_operations;
1459 inode->i_op = &cgroup_dir_inode_operations;
1460 /* directories start off with i_nlink == 2 (for "." entry) */
1461 inc_nlink(inode);
1462 dentry = d_alloc_root(inode);
1463 if (!dentry) {
1464 iput(inode);
1465 return -ENOMEM;
1467 sb->s_root = dentry;
1468 /* for everything else we want ->d_op set */
1469 sb->s_d_op = &cgroup_dops;
1470 return 0;
1473 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1474 int flags, const char *unused_dev_name,
1475 void *data)
1477 struct cgroup_sb_opts opts;
1478 struct cgroupfs_root *root;
1479 int ret = 0;
1480 struct super_block *sb;
1481 struct cgroupfs_root *new_root;
1483 /* First find the desired set of subsystems */
1484 mutex_lock(&cgroup_mutex);
1485 ret = parse_cgroupfs_options(data, &opts);
1486 mutex_unlock(&cgroup_mutex);
1487 if (ret)
1488 goto out_err;
1491 * Allocate a new cgroup root. We may not need it if we're
1492 * reusing an existing hierarchy.
1494 new_root = cgroup_root_from_opts(&opts);
1495 if (IS_ERR(new_root)) {
1496 ret = PTR_ERR(new_root);
1497 goto drop_modules;
1499 opts.new_root = new_root;
1501 /* Locate an existing or new sb for this hierarchy */
1502 sb = sget(fs_type, cgroup_test_super, cgroup_set_super, &opts);
1503 if (IS_ERR(sb)) {
1504 ret = PTR_ERR(sb);
1505 cgroup_drop_root(opts.new_root);
1506 goto drop_modules;
1509 root = sb->s_fs_info;
1510 BUG_ON(!root);
1511 if (root == opts.new_root) {
1512 /* We used the new root structure, so this is a new hierarchy */
1513 struct list_head tmp_cg_links;
1514 struct cgroup *root_cgrp = &root->top_cgroup;
1515 struct inode *inode;
1516 struct cgroupfs_root *existing_root;
1517 int i;
1519 BUG_ON(sb->s_root != NULL);
1521 ret = cgroup_get_rootdir(sb);
1522 if (ret)
1523 goto drop_new_super;
1524 inode = sb->s_root->d_inode;
1526 mutex_lock(&inode->i_mutex);
1527 mutex_lock(&cgroup_mutex);
1529 if (strlen(root->name)) {
1530 /* Check for name clashes with existing mounts */
1531 for_each_active_root(existing_root) {
1532 if (!strcmp(existing_root->name, root->name)) {
1533 ret = -EBUSY;
1534 mutex_unlock(&cgroup_mutex);
1535 mutex_unlock(&inode->i_mutex);
1536 goto drop_new_super;
1542 * We're accessing css_set_count without locking
1543 * css_set_lock here, but that's OK - it can only be
1544 * increased by someone holding cgroup_lock, and
1545 * that's us. The worst that can happen is that we
1546 * have some link structures left over
1548 ret = allocate_cg_links(css_set_count, &tmp_cg_links);
1549 if (ret) {
1550 mutex_unlock(&cgroup_mutex);
1551 mutex_unlock(&inode->i_mutex);
1552 goto drop_new_super;
1555 ret = rebind_subsystems(root, root->subsys_bits);
1556 if (ret == -EBUSY) {
1557 mutex_unlock(&cgroup_mutex);
1558 mutex_unlock(&inode->i_mutex);
1559 free_cg_links(&tmp_cg_links);
1560 goto drop_new_super;
1563 * There must be no failure case after here, since rebinding
1564 * takes care of subsystems' refcounts, which are explicitly
1565 * dropped in the failure exit path.
1568 /* EBUSY should be the only error here */
1569 BUG_ON(ret);
1571 list_add(&root->root_list, &roots);
1572 root_count++;
1574 sb->s_root->d_fsdata = root_cgrp;
1575 root->top_cgroup.dentry = sb->s_root;
1577 /* Link the top cgroup in this hierarchy into all
1578 * the css_set objects */
1579 write_lock(&css_set_lock);
1580 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
1581 struct hlist_head *hhead = &css_set_table[i];
1582 struct hlist_node *node;
1583 struct css_set *cg;
1585 hlist_for_each_entry(cg, node, hhead, hlist)
1586 link_css_set(&tmp_cg_links, cg, root_cgrp);
1588 write_unlock(&css_set_lock);
1590 free_cg_links(&tmp_cg_links);
1592 BUG_ON(!list_empty(&root_cgrp->sibling));
1593 BUG_ON(!list_empty(&root_cgrp->children));
1594 BUG_ON(root->number_of_cgroups != 1);
1596 cgroup_populate_dir(root_cgrp);
1597 mutex_unlock(&cgroup_mutex);
1598 mutex_unlock(&inode->i_mutex);
1599 } else {
1601 * We re-used an existing hierarchy - the new root (if
1602 * any) is not needed
1604 cgroup_drop_root(opts.new_root);
1605 /* no subsys rebinding, so refcounts don't change */
1606 drop_parsed_module_refcounts(opts.subsys_bits);
1609 kfree(opts.release_agent);
1610 kfree(opts.name);
1611 return dget(sb->s_root);
1613 drop_new_super:
1614 deactivate_locked_super(sb);
1615 drop_modules:
1616 drop_parsed_module_refcounts(opts.subsys_bits);
1617 out_err:
1618 kfree(opts.release_agent);
1619 kfree(opts.name);
1620 return ERR_PTR(ret);
1623 static void cgroup_kill_sb(struct super_block *sb) {
1624 struct cgroupfs_root *root = sb->s_fs_info;
1625 struct cgroup *cgrp = &root->top_cgroup;
1626 int ret;
1627 struct cg_cgroup_link *link;
1628 struct cg_cgroup_link *saved_link;
1630 BUG_ON(!root);
1632 BUG_ON(root->number_of_cgroups != 1);
1633 BUG_ON(!list_empty(&cgrp->children));
1634 BUG_ON(!list_empty(&cgrp->sibling));
1636 mutex_lock(&cgroup_mutex);
1638 /* Rebind all subsystems back to the default hierarchy */
1639 ret = rebind_subsystems(root, 0);
1640 /* Shouldn't be able to fail ... */
1641 BUG_ON(ret);
1644 * Release all the links from css_sets to this hierarchy's
1645 * root cgroup
1647 write_lock(&css_set_lock);
1649 list_for_each_entry_safe(link, saved_link, &cgrp->css_sets,
1650 cgrp_link_list) {
1651 list_del(&link->cg_link_list);
1652 list_del(&link->cgrp_link_list);
1653 kfree(link);
1655 write_unlock(&css_set_lock);
1657 if (!list_empty(&root->root_list)) {
1658 list_del(&root->root_list);
1659 root_count--;
1662 mutex_unlock(&cgroup_mutex);
1664 kill_litter_super(sb);
1665 cgroup_drop_root(root);
1668 static struct file_system_type cgroup_fs_type = {
1669 .name = "cgroup",
1670 .mount = cgroup_mount,
1671 .kill_sb = cgroup_kill_sb,
1674 static struct kobject *cgroup_kobj;
1676 static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1678 return dentry->d_fsdata;
1681 static inline struct cftype *__d_cft(struct dentry *dentry)
1683 return dentry->d_fsdata;
1687 * cgroup_path - generate the path of a cgroup
1688 * @cgrp: the cgroup in question
1689 * @buf: the buffer to write the path into
1690 * @buflen: the length of the buffer
1692 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1693 * reference. Writes path of cgroup into buf. Returns 0 on success,
1694 * -errno on error.
1696 int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1698 char *start;
1699 struct dentry *dentry = rcu_dereference_check(cgrp->dentry,
1700 rcu_read_lock_held() ||
1701 cgroup_lock_is_held());
1703 if (!dentry || cgrp == dummytop) {
1705 * Inactive subsystems have no dentry for their root
1706 * cgroup
1708 strcpy(buf, "/");
1709 return 0;
1712 start = buf + buflen;
1714 *--start = '\0';
1715 for (;;) {
1716 int len = dentry->d_name.len;
1718 if ((start -= len) < buf)
1719 return -ENAMETOOLONG;
1720 memcpy(start, dentry->d_name.name, len);
1721 cgrp = cgrp->parent;
1722 if (!cgrp)
1723 break;
1725 dentry = rcu_dereference_check(cgrp->dentry,
1726 rcu_read_lock_held() ||
1727 cgroup_lock_is_held());
1728 if (!cgrp->parent)
1729 continue;
1730 if (--start < buf)
1731 return -ENAMETOOLONG;
1732 *start = '/';
1734 memmove(buf, start, buf + buflen - start);
1735 return 0;
1737 EXPORT_SYMBOL_GPL(cgroup_path);
1740 * cgroup_task_migrate - move a task from one cgroup to another.
1742 * 'guarantee' is set if the caller promises that a new css_set for the task
1743 * will already exist. If not set, this function might sleep, and can fail with
1744 * -ENOMEM. Otherwise, it can only fail with -ESRCH.
1746 static int cgroup_task_migrate(struct cgroup *cgrp, struct cgroup *oldcgrp,
1747 struct task_struct *tsk, bool guarantee)
1749 struct css_set *oldcg;
1750 struct css_set *newcg;
1753 * get old css_set. we need to take task_lock and refcount it, because
1754 * an exiting task can change its css_set to init_css_set and drop its
1755 * old one without taking cgroup_mutex.
1757 task_lock(tsk);
1758 oldcg = tsk->cgroups;
1759 get_css_set(oldcg);
1760 task_unlock(tsk);
1762 /* locate or allocate a new css_set for this task. */
1763 if (guarantee) {
1764 /* we know the css_set we want already exists. */
1765 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1766 read_lock(&css_set_lock);
1767 newcg = find_existing_css_set(oldcg, cgrp, template);
1768 BUG_ON(!newcg);
1769 get_css_set(newcg);
1770 read_unlock(&css_set_lock);
1771 } else {
1772 might_sleep();
1773 /* find_css_set will give us newcg already referenced. */
1774 newcg = find_css_set(oldcg, cgrp);
1775 if (!newcg) {
1776 put_css_set(oldcg);
1777 return -ENOMEM;
1780 put_css_set(oldcg);
1782 /* if PF_EXITING is set, the tsk->cgroups pointer is no longer safe. */
1783 task_lock(tsk);
1784 if (tsk->flags & PF_EXITING) {
1785 task_unlock(tsk);
1786 put_css_set(newcg);
1787 return -ESRCH;
1789 rcu_assign_pointer(tsk->cgroups, newcg);
1790 task_unlock(tsk);
1792 /* Update the css_set linked lists if we're using them */
1793 write_lock(&css_set_lock);
1794 if (!list_empty(&tsk->cg_list))
1795 list_move(&tsk->cg_list, &newcg->tasks);
1796 write_unlock(&css_set_lock);
1799 * We just gained a reference on oldcg by taking it from the task. As
1800 * trading it for newcg is protected by cgroup_mutex, we're safe to drop
1801 * it here; it will be freed under RCU.
1803 set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1804 put_css_set(oldcg);
1805 return 0;
1809 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1810 * @cgrp: the cgroup the task is attaching to
1811 * @tsk: the task to be attached
1813 * Call holding cgroup_mutex. May take task_lock of
1814 * the task 'tsk' during call.
1816 int cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1818 int retval;
1819 struct cgroup_subsys *ss, *failed_ss = NULL;
1820 struct cgroup *oldcgrp;
1821 struct cgroupfs_root *root = cgrp->root;
1823 /* Nothing to do if the task is already in that cgroup */
1824 oldcgrp = task_cgroup_from_root(tsk, root);
1825 if (cgrp == oldcgrp)
1826 return 0;
1828 for_each_subsys(root, ss) {
1829 if (ss->can_attach) {
1830 retval = ss->can_attach(ss, cgrp, tsk);
1831 if (retval) {
1833 * Remember on which subsystem the can_attach()
1834 * failed, so that we only call cancel_attach()
1835 * against the subsystems whose can_attach()
1836 * succeeded. (See below)
1838 failed_ss = ss;
1839 goto out;
1842 if (ss->can_attach_task) {
1843 retval = ss->can_attach_task(cgrp, tsk);
1844 if (retval) {
1845 failed_ss = ss;
1846 goto out;
1851 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, false);
1852 if (retval)
1853 goto out;
1855 for_each_subsys(root, ss) {
1856 if (ss->pre_attach)
1857 ss->pre_attach(cgrp);
1858 if (ss->attach_task)
1859 ss->attach_task(cgrp, tsk);
1860 if (ss->attach)
1861 ss->attach(ss, cgrp, oldcgrp, tsk);
1864 synchronize_rcu();
1867 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1868 * is no longer empty.
1870 cgroup_wakeup_rmdir_waiter(cgrp);
1871 out:
1872 if (retval) {
1873 for_each_subsys(root, ss) {
1874 if (ss == failed_ss)
1876 * This subsystem was the one that failed the
1877 * can_attach() check earlier, so we don't need
1878 * to call cancel_attach() against it or any
1879 * remaining subsystems.
1881 break;
1882 if (ss->cancel_attach)
1883 ss->cancel_attach(ss, cgrp, tsk);
1886 return retval;
1890 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
1891 * @from: attach to all cgroups of a given task
1892 * @tsk: the task to be attached
1894 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
1896 struct cgroupfs_root *root;
1897 int retval = 0;
1899 cgroup_lock();
1900 for_each_active_root(root) {
1901 struct cgroup *from_cg = task_cgroup_from_root(from, root);
1903 retval = cgroup_attach_task(from_cg, tsk);
1904 if (retval)
1905 break;
1907 cgroup_unlock();
1909 return retval;
1911 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
1914 * cgroup_attach_proc works in two stages, the first of which prefetches all
1915 * new css_sets needed (to make sure we have enough memory before committing
1916 * to the move) and stores them in a list of entries of the following type.
1917 * TODO: possible optimization: use css_set->rcu_head for chaining instead
1919 struct cg_list_entry {
1920 struct css_set *cg;
1921 struct list_head links;
1924 static bool css_set_check_fetched(struct cgroup *cgrp,
1925 struct task_struct *tsk, struct css_set *cg,
1926 struct list_head *newcg_list)
1928 struct css_set *newcg;
1929 struct cg_list_entry *cg_entry;
1930 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
1932 read_lock(&css_set_lock);
1933 newcg = find_existing_css_set(cg, cgrp, template);
1934 if (newcg)
1935 get_css_set(newcg);
1936 read_unlock(&css_set_lock);
1938 /* doesn't exist at all? */
1939 if (!newcg)
1940 return false;
1941 /* see if it's already in the list */
1942 list_for_each_entry(cg_entry, newcg_list, links) {
1943 if (cg_entry->cg == newcg) {
1944 put_css_set(newcg);
1945 return true;
1949 /* not found */
1950 put_css_set(newcg);
1951 return false;
1955 * Find the new css_set and store it in the list in preparation for moving the
1956 * given task to the given cgroup. Returns 0 or -ENOMEM.
1958 static int css_set_prefetch(struct cgroup *cgrp, struct css_set *cg,
1959 struct list_head *newcg_list)
1961 struct css_set *newcg;
1962 struct cg_list_entry *cg_entry;
1964 /* ensure a new css_set will exist for this thread */
1965 newcg = find_css_set(cg, cgrp);
1966 if (!newcg)
1967 return -ENOMEM;
1968 /* add it to the list */
1969 cg_entry = kmalloc(sizeof(struct cg_list_entry), GFP_KERNEL);
1970 if (!cg_entry) {
1971 put_css_set(newcg);
1972 return -ENOMEM;
1974 cg_entry->cg = newcg;
1975 list_add(&cg_entry->links, newcg_list);
1976 return 0;
1980 * cgroup_attach_proc - attach all threads in a threadgroup to a cgroup
1981 * @cgrp: the cgroup to attach to
1982 * @leader: the threadgroup leader task_struct of the group to be attached
1984 * Call holding cgroup_mutex and the threadgroup_fork_lock of the leader. Will
1985 * take task_lock of each thread in leader's threadgroup individually in turn.
1987 int cgroup_attach_proc(struct cgroup *cgrp, struct task_struct *leader)
1989 int retval, i, group_size;
1990 struct cgroup_subsys *ss, *failed_ss = NULL;
1991 bool cancel_failed_ss = false;
1992 /* guaranteed to be initialized later, but the compiler needs this */
1993 struct cgroup *oldcgrp = NULL;
1994 struct css_set *oldcg;
1995 struct cgroupfs_root *root = cgrp->root;
1996 /* threadgroup list cursor and array */
1997 struct task_struct *tsk;
1998 struct flex_array *group;
2000 * we need to make sure we have css_sets for all the tasks we're
2001 * going to move -before- we actually start moving them, so that in
2002 * case we get an ENOMEM we can bail out before making any changes.
2004 struct list_head newcg_list;
2005 struct cg_list_entry *cg_entry, *temp_nobe;
2008 * step 0: in order to do expensive, possibly blocking operations for
2009 * every thread, we cannot iterate the thread group list, since it needs
2010 * rcu or tasklist locked. instead, build an array of all threads in the
2011 * group - threadgroup_fork_lock prevents new threads from appearing,
2012 * and if threads exit, this will just be an over-estimate.
2014 group_size = get_nr_threads(leader);
2015 /* flex_array supports very large thread-groups better than kmalloc. */
2016 group = flex_array_alloc(sizeof(struct task_struct *), group_size,
2017 GFP_KERNEL);
2018 if (!group)
2019 return -ENOMEM;
2020 /* pre-allocate to guarantee space while iterating in rcu read-side. */
2021 retval = flex_array_prealloc(group, 0, group_size - 1, GFP_KERNEL);
2022 if (retval)
2023 goto out_free_group_list;
2025 /* prevent changes to the threadgroup list while we take a snapshot. */
2026 rcu_read_lock();
2027 if (!thread_group_leader(leader)) {
2029 * a race with de_thread from another thread's exec() may strip
2030 * us of our leadership, making while_each_thread unsafe to use
2031 * on this task. if this happens, there is no choice but to
2032 * throw this task away and try again (from cgroup_procs_write);
2033 * this is "double-double-toil-and-trouble-check locking".
2035 rcu_read_unlock();
2036 retval = -EAGAIN;
2037 goto out_free_group_list;
2039 /* take a reference on each task in the group to go in the array. */
2040 tsk = leader;
2041 i = 0;
2042 do {
2043 /* as per above, nr_threads may decrease, but not increase. */
2044 BUG_ON(i >= group_size);
2045 get_task_struct(tsk);
2047 * saying GFP_ATOMIC has no effect here because we did prealloc
2048 * earlier, but it's good form to communicate our expectations.
2050 retval = flex_array_put_ptr(group, i, tsk, GFP_ATOMIC);
2051 BUG_ON(retval != 0);
2052 i++;
2053 } while_each_thread(leader, tsk);
2054 /* remember the number of threads in the array for later. */
2055 group_size = i;
2056 rcu_read_unlock();
2059 * step 1: check that we can legitimately attach to the cgroup.
2061 for_each_subsys(root, ss) {
2062 if (ss->can_attach) {
2063 retval = ss->can_attach(ss, cgrp, leader);
2064 if (retval) {
2065 failed_ss = ss;
2066 goto out_cancel_attach;
2069 /* a callback to be run on every thread in the threadgroup. */
2070 if (ss->can_attach_task) {
2071 /* run on each task in the threadgroup. */
2072 for (i = 0; i < group_size; i++) {
2073 tsk = flex_array_get_ptr(group, i);
2074 retval = ss->can_attach_task(cgrp, tsk);
2075 if (retval) {
2076 failed_ss = ss;
2077 cancel_failed_ss = true;
2078 goto out_cancel_attach;
2085 * step 2: make sure css_sets exist for all threads to be migrated.
2086 * we use find_css_set, which allocates a new one if necessary.
2088 INIT_LIST_HEAD(&newcg_list);
2089 for (i = 0; i < group_size; i++) {
2090 tsk = flex_array_get_ptr(group, i);
2091 /* nothing to do if this task is already in the cgroup */
2092 oldcgrp = task_cgroup_from_root(tsk, root);
2093 if (cgrp == oldcgrp)
2094 continue;
2095 /* get old css_set pointer */
2096 task_lock(tsk);
2097 oldcg = tsk->cgroups;
2098 get_css_set(oldcg);
2099 task_unlock(tsk);
2100 /* see if the new one for us is already in the list? */
2101 if (css_set_check_fetched(cgrp, tsk, oldcg, &newcg_list)) {
2102 /* was already there, nothing to do. */
2103 put_css_set(oldcg);
2104 } else {
2105 /* we don't already have it. get new one. */
2106 retval = css_set_prefetch(cgrp, oldcg, &newcg_list);
2107 put_css_set(oldcg);
2108 if (retval)
2109 goto out_list_teardown;
2114 * step 3: now that we're guaranteed success wrt the css_sets, proceed
2115 * to move all tasks to the new cgroup, calling ss->attach_task for each
2116 * one along the way. there are no failure cases after here, so this is
2117 * the commit point.
2119 for_each_subsys(root, ss) {
2120 if (ss->pre_attach)
2121 ss->pre_attach(cgrp);
2123 for (i = 0; i < group_size; i++) {
2124 tsk = flex_array_get_ptr(group, i);
2125 /* leave current thread as it is if it's already there */
2126 oldcgrp = task_cgroup_from_root(tsk, root);
2127 if (cgrp == oldcgrp)
2128 continue;
2129 /* attach each task to each subsystem */
2130 for_each_subsys(root, ss) {
2131 if (ss->attach_task)
2132 ss->attach_task(cgrp, tsk);
2134 /* if the thread is PF_EXITING, it can just get skipped. */
2135 retval = cgroup_task_migrate(cgrp, oldcgrp, tsk, true);
2136 BUG_ON(retval != 0 && retval != -ESRCH);
2138 /* nothing is sensitive to fork() after this point. */
2141 * step 4: do expensive, non-thread-specific subsystem callbacks.
2142 * TODO: if ever a subsystem needs to know the oldcgrp for each task
2143 * being moved, this call will need to be reworked to communicate that.
2145 for_each_subsys(root, ss) {
2146 if (ss->attach)
2147 ss->attach(ss, cgrp, oldcgrp, leader);
2151 * step 5: success! and cleanup
2153 synchronize_rcu();
2154 cgroup_wakeup_rmdir_waiter(cgrp);
2155 retval = 0;
2156 out_list_teardown:
2157 /* clean up the list of prefetched css_sets. */
2158 list_for_each_entry_safe(cg_entry, temp_nobe, &newcg_list, links) {
2159 list_del(&cg_entry->links);
2160 put_css_set(cg_entry->cg);
2161 kfree(cg_entry);
2163 out_cancel_attach:
2164 /* same deal as in cgroup_attach_task */
2165 if (retval) {
2166 for_each_subsys(root, ss) {
2167 if (ss == failed_ss) {
2168 if (cancel_failed_ss && ss->cancel_attach)
2169 ss->cancel_attach(ss, cgrp, leader);
2170 break;
2172 if (ss->cancel_attach)
2173 ss->cancel_attach(ss, cgrp, leader);
2176 /* clean up the array of referenced threads in the group. */
2177 for (i = 0; i < group_size; i++) {
2178 tsk = flex_array_get_ptr(group, i);
2179 put_task_struct(tsk);
2181 out_free_group_list:
2182 flex_array_free(group);
2183 return retval;
2187 * Find the task_struct of the task to attach by vpid and pass it along to the
2188 * function to attach either it or all tasks in its threadgroup. Will take
2189 * cgroup_mutex; may take task_lock of task.
2191 static int attach_task_by_pid(struct cgroup *cgrp, u64 pid, bool threadgroup)
2193 struct task_struct *tsk;
2194 const struct cred *cred = current_cred(), *tcred;
2195 int ret;
2197 if (!cgroup_lock_live_group(cgrp))
2198 return -ENODEV;
2200 if (pid) {
2201 rcu_read_lock();
2202 tsk = find_task_by_vpid(pid);
2203 if (!tsk) {
2204 rcu_read_unlock();
2205 cgroup_unlock();
2206 return -ESRCH;
2208 if (threadgroup) {
2210 * RCU protects this access, since tsk was found in the
2211 * tid map. a race with de_thread may cause group_leader
2212 * to stop being the leader, but cgroup_attach_proc will
2213 * detect it later.
2215 tsk = tsk->group_leader;
2216 } else if (tsk->flags & PF_EXITING) {
2217 /* optimization for the single-task-only case */
2218 rcu_read_unlock();
2219 cgroup_unlock();
2220 return -ESRCH;
2224 * even if we're attaching all tasks in the thread group, we
2225 * only need to check permissions on one of them.
2227 tcred = __task_cred(tsk);
2228 if (cred->euid &&
2229 cred->euid != tcred->uid &&
2230 cred->euid != tcred->suid) {
2231 rcu_read_unlock();
2232 cgroup_unlock();
2233 return -EACCES;
2235 get_task_struct(tsk);
2236 rcu_read_unlock();
2237 } else {
2238 if (threadgroup)
2239 tsk = current->group_leader;
2240 else
2241 tsk = current;
2242 get_task_struct(tsk);
2245 if (threadgroup) {
2246 threadgroup_fork_write_lock(tsk);
2247 ret = cgroup_attach_proc(cgrp, tsk);
2248 threadgroup_fork_write_unlock(tsk);
2249 } else {
2250 ret = cgroup_attach_task(cgrp, tsk);
2252 put_task_struct(tsk);
2253 cgroup_unlock();
2254 return ret;
2257 static int cgroup_tasks_write(struct cgroup *cgrp, struct cftype *cft, u64 pid)
2259 return attach_task_by_pid(cgrp, pid, false);
2262 static int cgroup_procs_write(struct cgroup *cgrp, struct cftype *cft, u64 tgid)
2264 int ret;
2265 do {
2267 * attach_proc fails with -EAGAIN if threadgroup leadership
2268 * changes in the middle of the operation, in which case we need
2269 * to find the task_struct for the new leader and start over.
2271 ret = attach_task_by_pid(cgrp, tgid, true);
2272 } while (ret == -EAGAIN);
2273 return ret;
2277 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
2278 * @cgrp: the cgroup to be checked for liveness
2280 * On success, returns true; the lock should be later released with
2281 * cgroup_unlock(). On failure returns false with no lock held.
2283 bool cgroup_lock_live_group(struct cgroup *cgrp)
2285 mutex_lock(&cgroup_mutex);
2286 if (cgroup_is_removed(cgrp)) {
2287 mutex_unlock(&cgroup_mutex);
2288 return false;
2290 return true;
2292 EXPORT_SYMBOL_GPL(cgroup_lock_live_group);
2294 static int cgroup_release_agent_write(struct cgroup *cgrp, struct cftype *cft,
2295 const char *buffer)
2297 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2298 if (strlen(buffer) >= PATH_MAX)
2299 return -EINVAL;
2300 if (!cgroup_lock_live_group(cgrp))
2301 return -ENODEV;
2302 strcpy(cgrp->root->release_agent_path, buffer);
2303 cgroup_unlock();
2304 return 0;
2307 static int cgroup_release_agent_show(struct cgroup *cgrp, struct cftype *cft,
2308 struct seq_file *seq)
2310 if (!cgroup_lock_live_group(cgrp))
2311 return -ENODEV;
2312 seq_puts(seq, cgrp->root->release_agent_path);
2313 seq_putc(seq, '\n');
2314 cgroup_unlock();
2315 return 0;
2318 /* A buffer size big enough for numbers or short strings */
2319 #define CGROUP_LOCAL_BUFFER_SIZE 64
2321 static ssize_t cgroup_write_X64(struct cgroup *cgrp, struct cftype *cft,
2322 struct file *file,
2323 const char __user *userbuf,
2324 size_t nbytes, loff_t *unused_ppos)
2326 char buffer[CGROUP_LOCAL_BUFFER_SIZE];
2327 int retval = 0;
2328 char *end;
2330 if (!nbytes)
2331 return -EINVAL;
2332 if (nbytes >= sizeof(buffer))
2333 return -E2BIG;
2334 if (copy_from_user(buffer, userbuf, nbytes))
2335 return -EFAULT;
2337 buffer[nbytes] = 0; /* nul-terminate */
2338 if (cft->write_u64) {
2339 u64 val = simple_strtoull(strstrip(buffer), &end, 0);
2340 if (*end)
2341 return -EINVAL;
2342 retval = cft->write_u64(cgrp, cft, val);
2343 } else {
2344 s64 val = simple_strtoll(strstrip(buffer), &end, 0);
2345 if (*end)
2346 return -EINVAL;
2347 retval = cft->write_s64(cgrp, cft, val);
2349 if (!retval)
2350 retval = nbytes;
2351 return retval;
2354 static ssize_t cgroup_write_string(struct cgroup *cgrp, struct cftype *cft,
2355 struct file *file,
2356 const char __user *userbuf,
2357 size_t nbytes, loff_t *unused_ppos)
2359 char local_buffer[CGROUP_LOCAL_BUFFER_SIZE];
2360 int retval = 0;
2361 size_t max_bytes = cft->max_write_len;
2362 char *buffer = local_buffer;
2364 if (!max_bytes)
2365 max_bytes = sizeof(local_buffer) - 1;
2366 if (nbytes >= max_bytes)
2367 return -E2BIG;
2368 /* Allocate a dynamic buffer if we need one */
2369 if (nbytes >= sizeof(local_buffer)) {
2370 buffer = kmalloc(nbytes + 1, GFP_KERNEL);
2371 if (buffer == NULL)
2372 return -ENOMEM;
2374 if (nbytes && copy_from_user(buffer, userbuf, nbytes)) {
2375 retval = -EFAULT;
2376 goto out;
2379 buffer[nbytes] = 0; /* nul-terminate */
2380 retval = cft->write_string(cgrp, cft, strstrip(buffer));
2381 if (!retval)
2382 retval = nbytes;
2383 out:
2384 if (buffer != local_buffer)
2385 kfree(buffer);
2386 return retval;
2389 static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
2390 size_t nbytes, loff_t *ppos)
2392 struct cftype *cft = __d_cft(file->f_dentry);
2393 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2395 if (cgroup_is_removed(cgrp))
2396 return -ENODEV;
2397 if (cft->write)
2398 return cft->write(cgrp, cft, file, buf, nbytes, ppos);
2399 if (cft->write_u64 || cft->write_s64)
2400 return cgroup_write_X64(cgrp, cft, file, buf, nbytes, ppos);
2401 if (cft->write_string)
2402 return cgroup_write_string(cgrp, cft, file, buf, nbytes, ppos);
2403 if (cft->trigger) {
2404 int ret = cft->trigger(cgrp, (unsigned int)cft->private);
2405 return ret ? ret : nbytes;
2407 return -EINVAL;
2410 static ssize_t cgroup_read_u64(struct cgroup *cgrp, struct cftype *cft,
2411 struct file *file,
2412 char __user *buf, size_t nbytes,
2413 loff_t *ppos)
2415 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2416 u64 val = cft->read_u64(cgrp, cft);
2417 int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
2419 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2422 static ssize_t cgroup_read_s64(struct cgroup *cgrp, struct cftype *cft,
2423 struct file *file,
2424 char __user *buf, size_t nbytes,
2425 loff_t *ppos)
2427 char tmp[CGROUP_LOCAL_BUFFER_SIZE];
2428 s64 val = cft->read_s64(cgrp, cft);
2429 int len = sprintf(tmp, "%lld\n", (long long) val);
2431 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
2434 static ssize_t cgroup_file_read(struct file *file, char __user *buf,
2435 size_t nbytes, loff_t *ppos)
2437 struct cftype *cft = __d_cft(file->f_dentry);
2438 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
2440 if (cgroup_is_removed(cgrp))
2441 return -ENODEV;
2443 if (cft->read)
2444 return cft->read(cgrp, cft, file, buf, nbytes, ppos);
2445 if (cft->read_u64)
2446 return cgroup_read_u64(cgrp, cft, file, buf, nbytes, ppos);
2447 if (cft->read_s64)
2448 return cgroup_read_s64(cgrp, cft, file, buf, nbytes, ppos);
2449 return -EINVAL;
2453 * seqfile ops/methods for returning structured data. Currently just
2454 * supports string->u64 maps, but can be extended in future.
2457 struct cgroup_seqfile_state {
2458 struct cftype *cft;
2459 struct cgroup *cgroup;
2462 static int cgroup_map_add(struct cgroup_map_cb *cb, const char *key, u64 value)
2464 struct seq_file *sf = cb->state;
2465 return seq_printf(sf, "%s %llu\n", key, (unsigned long long)value);
2468 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
2470 struct cgroup_seqfile_state *state = m->private;
2471 struct cftype *cft = state->cft;
2472 if (cft->read_map) {
2473 struct cgroup_map_cb cb = {
2474 .fill = cgroup_map_add,
2475 .state = m,
2477 return cft->read_map(state->cgroup, cft, &cb);
2479 return cft->read_seq_string(state->cgroup, cft, m);
2482 static int cgroup_seqfile_release(struct inode *inode, struct file *file)
2484 struct seq_file *seq = file->private_data;
2485 kfree(seq->private);
2486 return single_release(inode, file);
2489 static const struct file_operations cgroup_seqfile_operations = {
2490 .read = seq_read,
2491 .write = cgroup_file_write,
2492 .llseek = seq_lseek,
2493 .release = cgroup_seqfile_release,
2496 static int cgroup_file_open(struct inode *inode, struct file *file)
2498 int err;
2499 struct cftype *cft;
2501 err = generic_file_open(inode, file);
2502 if (err)
2503 return err;
2504 cft = __d_cft(file->f_dentry);
2506 if (cft->read_map || cft->read_seq_string) {
2507 struct cgroup_seqfile_state *state =
2508 kzalloc(sizeof(*state), GFP_USER);
2509 if (!state)
2510 return -ENOMEM;
2511 state->cft = cft;
2512 state->cgroup = __d_cgrp(file->f_dentry->d_parent);
2513 file->f_op = &cgroup_seqfile_operations;
2514 err = single_open(file, cgroup_seqfile_show, state);
2515 if (err < 0)
2516 kfree(state);
2517 } else if (cft->open)
2518 err = cft->open(inode, file);
2519 else
2520 err = 0;
2522 return err;
2525 static int cgroup_file_release(struct inode *inode, struct file *file)
2527 struct cftype *cft = __d_cft(file->f_dentry);
2528 if (cft->release)
2529 return cft->release(inode, file);
2530 return 0;
2534 * cgroup_rename - Only allow simple rename of directories in place.
2536 static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
2537 struct inode *new_dir, struct dentry *new_dentry)
2539 if (!S_ISDIR(old_dentry->d_inode->i_mode))
2540 return -ENOTDIR;
2541 if (new_dentry->d_inode)
2542 return -EEXIST;
2543 if (old_dir != new_dir)
2544 return -EIO;
2545 return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
2548 static const struct file_operations cgroup_file_operations = {
2549 .read = cgroup_file_read,
2550 .write = cgroup_file_write,
2551 .llseek = generic_file_llseek,
2552 .open = cgroup_file_open,
2553 .release = cgroup_file_release,
2556 static const struct inode_operations cgroup_dir_inode_operations = {
2557 .lookup = cgroup_lookup,
2558 .mkdir = cgroup_mkdir,
2559 .rmdir = cgroup_rmdir,
2560 .rename = cgroup_rename,
2563 static struct dentry *cgroup_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
2565 if (dentry->d_name.len > NAME_MAX)
2566 return ERR_PTR(-ENAMETOOLONG);
2567 d_add(dentry, NULL);
2568 return NULL;
2572 * Check if a file is a control file
2574 static inline struct cftype *__file_cft(struct file *file)
2576 if (file->f_dentry->d_inode->i_fop != &cgroup_file_operations)
2577 return ERR_PTR(-EINVAL);
2578 return __d_cft(file->f_dentry);
2581 static int cgroup_create_file(struct dentry *dentry, mode_t mode,
2582 struct super_block *sb)
2584 struct inode *inode;
2586 if (!dentry)
2587 return -ENOENT;
2588 if (dentry->d_inode)
2589 return -EEXIST;
2591 inode = cgroup_new_inode(mode, sb);
2592 if (!inode)
2593 return -ENOMEM;
2595 if (S_ISDIR(mode)) {
2596 inode->i_op = &cgroup_dir_inode_operations;
2597 inode->i_fop = &simple_dir_operations;
2599 /* start off with i_nlink == 2 (for "." entry) */
2600 inc_nlink(inode);
2602 /* start with the directory inode held, so that we can
2603 * populate it without racing with another mkdir */
2604 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2605 } else if (S_ISREG(mode)) {
2606 inode->i_size = 0;
2607 inode->i_fop = &cgroup_file_operations;
2609 d_instantiate(dentry, inode);
2610 dget(dentry); /* Extra count - pin the dentry in core */
2611 return 0;
2615 * cgroup_create_dir - create a directory for an object.
2616 * @cgrp: the cgroup we create the directory for. It must have a valid
2617 * ->parent field. And we are going to fill its ->dentry field.
2618 * @dentry: dentry of the new cgroup
2619 * @mode: mode to set on new directory.
2621 static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
2622 mode_t mode)
2624 struct dentry *parent;
2625 int error = 0;
2627 parent = cgrp->parent->dentry;
2628 error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
2629 if (!error) {
2630 dentry->d_fsdata = cgrp;
2631 inc_nlink(parent->d_inode);
2632 rcu_assign_pointer(cgrp->dentry, dentry);
2635 return error;
2639 * cgroup_file_mode - deduce file mode of a control file
2640 * @cft: the control file in question
2642 * returns cft->mode if ->mode is not 0
2643 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
2644 * returns S_IRUGO if it has only a read handler
2645 * returns S_IWUSR if it has only a write hander
2647 static mode_t cgroup_file_mode(const struct cftype *cft)
2649 mode_t mode = 0;
2651 if (cft->mode)
2652 return cft->mode;
2654 if (cft->read || cft->read_u64 || cft->read_s64 ||
2655 cft->read_map || cft->read_seq_string)
2656 mode |= S_IRUGO;
2658 if (cft->write || cft->write_u64 || cft->write_s64 ||
2659 cft->write_string || cft->trigger)
2660 mode |= S_IWUSR;
2662 return mode;
2665 int cgroup_add_file(struct cgroup *cgrp,
2666 struct cgroup_subsys *subsys,
2667 const struct cftype *cft)
2669 struct dentry *dir = cgrp->dentry;
2670 struct dentry *dentry;
2671 int error;
2672 mode_t mode;
2674 char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
2675 if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
2676 strcpy(name, subsys->name);
2677 strcat(name, ".");
2679 strcat(name, cft->name);
2680 BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
2681 dentry = lookup_one_len(name, dir, strlen(name));
2682 if (!IS_ERR(dentry)) {
2683 mode = cgroup_file_mode(cft);
2684 error = cgroup_create_file(dentry, mode | S_IFREG,
2685 cgrp->root->sb);
2686 if (!error)
2687 dentry->d_fsdata = (void *)cft;
2688 dput(dentry);
2689 } else
2690 error = PTR_ERR(dentry);
2691 return error;
2693 EXPORT_SYMBOL_GPL(cgroup_add_file);
2695 int cgroup_add_files(struct cgroup *cgrp,
2696 struct cgroup_subsys *subsys,
2697 const struct cftype cft[],
2698 int count)
2700 int i, err;
2701 for (i = 0; i < count; i++) {
2702 err = cgroup_add_file(cgrp, subsys, &cft[i]);
2703 if (err)
2704 return err;
2706 return 0;
2708 EXPORT_SYMBOL_GPL(cgroup_add_files);
2711 * cgroup_task_count - count the number of tasks in a cgroup.
2712 * @cgrp: the cgroup in question
2714 * Return the number of tasks in the cgroup.
2716 int cgroup_task_count(const struct cgroup *cgrp)
2718 int count = 0;
2719 struct cg_cgroup_link *link;
2721 read_lock(&css_set_lock);
2722 list_for_each_entry(link, &cgrp->css_sets, cgrp_link_list) {
2723 count += atomic_read(&link->cg->refcount);
2725 read_unlock(&css_set_lock);
2726 return count;
2730 * Advance a list_head iterator. The iterator should be positioned at
2731 * the start of a css_set
2733 static void cgroup_advance_iter(struct cgroup *cgrp,
2734 struct cgroup_iter *it)
2736 struct list_head *l = it->cg_link;
2737 struct cg_cgroup_link *link;
2738 struct css_set *cg;
2740 /* Advance to the next non-empty css_set */
2741 do {
2742 l = l->next;
2743 if (l == &cgrp->css_sets) {
2744 it->cg_link = NULL;
2745 return;
2747 link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
2748 cg = link->cg;
2749 } while (list_empty(&cg->tasks));
2750 it->cg_link = l;
2751 it->task = cg->tasks.next;
2755 * To reduce the fork() overhead for systems that are not actually
2756 * using their cgroups capability, we don't maintain the lists running
2757 * through each css_set to its tasks until we see the list actually
2758 * used - in other words after the first call to cgroup_iter_start().
2760 * The tasklist_lock is not held here, as do_each_thread() and
2761 * while_each_thread() are protected by RCU.
2763 static void cgroup_enable_task_cg_lists(void)
2765 struct task_struct *p, *g;
2766 write_lock(&css_set_lock);
2767 use_task_css_set_links = 1;
2768 do_each_thread(g, p) {
2769 task_lock(p);
2771 * We should check if the process is exiting, otherwise
2772 * it will race with cgroup_exit() in that the list
2773 * entry won't be deleted though the process has exited.
2775 if (!(p->flags & PF_EXITING) && list_empty(&p->cg_list))
2776 list_add(&p->cg_list, &p->cgroups->tasks);
2777 task_unlock(p);
2778 } while_each_thread(g, p);
2779 write_unlock(&css_set_lock);
2782 void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
2785 * The first time anyone tries to iterate across a cgroup,
2786 * we need to enable the list linking each css_set to its
2787 * tasks, and fix up all existing tasks.
2789 if (!use_task_css_set_links)
2790 cgroup_enable_task_cg_lists();
2792 read_lock(&css_set_lock);
2793 it->cg_link = &cgrp->css_sets;
2794 cgroup_advance_iter(cgrp, it);
2797 struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
2798 struct cgroup_iter *it)
2800 struct task_struct *res;
2801 struct list_head *l = it->task;
2802 struct cg_cgroup_link *link;
2804 /* If the iterator cg is NULL, we have no tasks */
2805 if (!it->cg_link)
2806 return NULL;
2807 res = list_entry(l, struct task_struct, cg_list);
2808 /* Advance iterator to find next entry */
2809 l = l->next;
2810 link = list_entry(it->cg_link, struct cg_cgroup_link, cgrp_link_list);
2811 if (l == &link->cg->tasks) {
2812 /* We reached the end of this task list - move on to
2813 * the next cg_cgroup_link */
2814 cgroup_advance_iter(cgrp, it);
2815 } else {
2816 it->task = l;
2818 return res;
2821 void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
2823 read_unlock(&css_set_lock);
2826 static inline int started_after_time(struct task_struct *t1,
2827 struct timespec *time,
2828 struct task_struct *t2)
2830 int start_diff = timespec_compare(&t1->start_time, time);
2831 if (start_diff > 0) {
2832 return 1;
2833 } else if (start_diff < 0) {
2834 return 0;
2835 } else {
2837 * Arbitrarily, if two processes started at the same
2838 * time, we'll say that the lower pointer value
2839 * started first. Note that t2 may have exited by now
2840 * so this may not be a valid pointer any longer, but
2841 * that's fine - it still serves to distinguish
2842 * between two tasks started (effectively) simultaneously.
2844 return t1 > t2;
2849 * This function is a callback from heap_insert() and is used to order
2850 * the heap.
2851 * In this case we order the heap in descending task start time.
2853 static inline int started_after(void *p1, void *p2)
2855 struct task_struct *t1 = p1;
2856 struct task_struct *t2 = p2;
2857 return started_after_time(t1, &t2->start_time, t2);
2861 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2862 * @scan: struct cgroup_scanner containing arguments for the scan
2864 * Arguments include pointers to callback functions test_task() and
2865 * process_task().
2866 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2867 * and if it returns true, call process_task() for it also.
2868 * The test_task pointer may be NULL, meaning always true (select all tasks).
2869 * Effectively duplicates cgroup_iter_{start,next,end}()
2870 * but does not lock css_set_lock for the call to process_task().
2871 * The struct cgroup_scanner may be embedded in any structure of the caller's
2872 * creation.
2873 * It is guaranteed that process_task() will act on every task that
2874 * is a member of the cgroup for the duration of this call. This
2875 * function may or may not call process_task() for tasks that exit
2876 * or move to a different cgroup during the call, or are forked or
2877 * move into the cgroup during the call.
2879 * Note that test_task() may be called with locks held, and may in some
2880 * situations be called multiple times for the same task, so it should
2881 * be cheap.
2882 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2883 * pre-allocated and will be used for heap operations (and its "gt" member will
2884 * be overwritten), else a temporary heap will be used (allocation of which
2885 * may cause this function to fail).
2887 int cgroup_scan_tasks(struct cgroup_scanner *scan)
2889 int retval, i;
2890 struct cgroup_iter it;
2891 struct task_struct *p, *dropped;
2892 /* Never dereference latest_task, since it's not refcounted */
2893 struct task_struct *latest_task = NULL;
2894 struct ptr_heap tmp_heap;
2895 struct ptr_heap *heap;
2896 struct timespec latest_time = { 0, 0 };
2898 if (scan->heap) {
2899 /* The caller supplied our heap and pre-allocated its memory */
2900 heap = scan->heap;
2901 heap->gt = &started_after;
2902 } else {
2903 /* We need to allocate our own heap memory */
2904 heap = &tmp_heap;
2905 retval = heap_init(heap, PAGE_SIZE, GFP_KERNEL, &started_after);
2906 if (retval)
2907 /* cannot allocate the heap */
2908 return retval;
2911 again:
2913 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2914 * to determine which are of interest, and using the scanner's
2915 * "process_task" callback to process any of them that need an update.
2916 * Since we don't want to hold any locks during the task updates,
2917 * gather tasks to be processed in a heap structure.
2918 * The heap is sorted by descending task start time.
2919 * If the statically-sized heap fills up, we overflow tasks that
2920 * started later, and in future iterations only consider tasks that
2921 * started after the latest task in the previous pass. This
2922 * guarantees forward progress and that we don't miss any tasks.
2924 heap->size = 0;
2925 cgroup_iter_start(scan->cg, &it);
2926 while ((p = cgroup_iter_next(scan->cg, &it))) {
2928 * Only affect tasks that qualify per the caller's callback,
2929 * if he provided one
2931 if (scan->test_task && !scan->test_task(p, scan))
2932 continue;
2934 * Only process tasks that started after the last task
2935 * we processed
2937 if (!started_after_time(p, &latest_time, latest_task))
2938 continue;
2939 dropped = heap_insert(heap, p);
2940 if (dropped == NULL) {
2942 * The new task was inserted; the heap wasn't
2943 * previously full
2945 get_task_struct(p);
2946 } else if (dropped != p) {
2948 * The new task was inserted, and pushed out a
2949 * different task
2951 get_task_struct(p);
2952 put_task_struct(dropped);
2955 * Else the new task was newer than anything already in
2956 * the heap and wasn't inserted
2959 cgroup_iter_end(scan->cg, &it);
2961 if (heap->size) {
2962 for (i = 0; i < heap->size; i++) {
2963 struct task_struct *q = heap->ptrs[i];
2964 if (i == 0) {
2965 latest_time = q->start_time;
2966 latest_task = q;
2968 /* Process the task per the caller's callback */
2969 scan->process_task(q, scan);
2970 put_task_struct(q);
2973 * If we had to process any tasks at all, scan again
2974 * in case some of them were in the middle of forking
2975 * children that didn't get processed.
2976 * Not the most efficient way to do it, but it avoids
2977 * having to take callback_mutex in the fork path
2979 goto again;
2981 if (heap == &tmp_heap)
2982 heap_free(&tmp_heap);
2983 return 0;
2987 * Stuff for reading the 'tasks'/'procs' files.
2989 * Reading this file can return large amounts of data if a cgroup has
2990 * *lots* of attached tasks. So it may need several calls to read(),
2991 * but we cannot guarantee that the information we produce is correct
2992 * unless we produce it entirely atomically.
2997 * The following two functions "fix" the issue where there are more pids
2998 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
2999 * TODO: replace with a kernel-wide solution to this problem
3001 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
3002 static void *pidlist_allocate(int count)
3004 if (PIDLIST_TOO_LARGE(count))
3005 return vmalloc(count * sizeof(pid_t));
3006 else
3007 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
3009 static void pidlist_free(void *p)
3011 if (is_vmalloc_addr(p))
3012 vfree(p);
3013 else
3014 kfree(p);
3016 static void *pidlist_resize(void *p, int newcount)
3018 void *newlist;
3019 /* note: if new alloc fails, old p will still be valid either way */
3020 if (is_vmalloc_addr(p)) {
3021 newlist = vmalloc(newcount * sizeof(pid_t));
3022 if (!newlist)
3023 return NULL;
3024 memcpy(newlist, p, newcount * sizeof(pid_t));
3025 vfree(p);
3026 } else {
3027 newlist = krealloc(p, newcount * sizeof(pid_t), GFP_KERNEL);
3029 return newlist;
3033 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
3034 * If the new stripped list is sufficiently smaller and there's enough memory
3035 * to allocate a new buffer, will let go of the unneeded memory. Returns the
3036 * number of unique elements.
3038 /* is the size difference enough that we should re-allocate the array? */
3039 #define PIDLIST_REALLOC_DIFFERENCE(old, new) ((old) - PAGE_SIZE >= (new))
3040 static int pidlist_uniq(pid_t **p, int length)
3042 int src, dest = 1;
3043 pid_t *list = *p;
3044 pid_t *newlist;
3047 * we presume the 0th element is unique, so i starts at 1. trivial
3048 * edge cases first; no work needs to be done for either
3050 if (length == 0 || length == 1)
3051 return length;
3052 /* src and dest walk down the list; dest counts unique elements */
3053 for (src = 1; src < length; src++) {
3054 /* find next unique element */
3055 while (list[src] == list[src-1]) {
3056 src++;
3057 if (src == length)
3058 goto after;
3060 /* dest always points to where the next unique element goes */
3061 list[dest] = list[src];
3062 dest++;
3064 after:
3066 * if the length difference is large enough, we want to allocate a
3067 * smaller buffer to save memory. if this fails due to out of memory,
3068 * we'll just stay with what we've got.
3070 if (PIDLIST_REALLOC_DIFFERENCE(length, dest)) {
3071 newlist = pidlist_resize(list, dest);
3072 if (newlist)
3073 *p = newlist;
3075 return dest;
3078 static int cmppid(const void *a, const void *b)
3080 return *(pid_t *)a - *(pid_t *)b;
3084 * find the appropriate pidlist for our purpose (given procs vs tasks)
3085 * returns with the lock on that pidlist already held, and takes care
3086 * of the use count, or returns NULL with no locks held if we're out of
3087 * memory.
3089 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
3090 enum cgroup_filetype type)
3092 struct cgroup_pidlist *l;
3093 /* don't need task_nsproxy() if we're looking at ourself */
3094 struct pid_namespace *ns = current->nsproxy->pid_ns;
3097 * We can't drop the pidlist_mutex before taking the l->mutex in case
3098 * the last ref-holder is trying to remove l from the list at the same
3099 * time. Holding the pidlist_mutex precludes somebody taking whichever
3100 * list we find out from under us - compare release_pid_array().
3102 mutex_lock(&cgrp->pidlist_mutex);
3103 list_for_each_entry(l, &cgrp->pidlists, links) {
3104 if (l->key.type == type && l->key.ns == ns) {
3105 /* make sure l doesn't vanish out from under us */
3106 down_write(&l->mutex);
3107 mutex_unlock(&cgrp->pidlist_mutex);
3108 return l;
3111 /* entry not found; create a new one */
3112 l = kmalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
3113 if (!l) {
3114 mutex_unlock(&cgrp->pidlist_mutex);
3115 return l;
3117 init_rwsem(&l->mutex);
3118 down_write(&l->mutex);
3119 l->key.type = type;
3120 l->key.ns = get_pid_ns(ns);
3121 l->use_count = 0; /* don't increment here */
3122 l->list = NULL;
3123 l->owner = cgrp;
3124 list_add(&l->links, &cgrp->pidlists);
3125 mutex_unlock(&cgrp->pidlist_mutex);
3126 return l;
3130 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
3132 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
3133 struct cgroup_pidlist **lp)
3135 pid_t *array;
3136 int length;
3137 int pid, n = 0; /* used for populating the array */
3138 struct cgroup_iter it;
3139 struct task_struct *tsk;
3140 struct cgroup_pidlist *l;
3143 * If cgroup gets more users after we read count, we won't have
3144 * enough space - tough. This race is indistinguishable to the
3145 * caller from the case that the additional cgroup users didn't
3146 * show up until sometime later on.
3148 length = cgroup_task_count(cgrp);
3149 array = pidlist_allocate(length);
3150 if (!array)
3151 return -ENOMEM;
3152 /* now, populate the array */
3153 cgroup_iter_start(cgrp, &it);
3154 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3155 if (unlikely(n == length))
3156 break;
3157 /* get tgid or pid for procs or tasks file respectively */
3158 if (type == CGROUP_FILE_PROCS)
3159 pid = task_tgid_vnr(tsk);
3160 else
3161 pid = task_pid_vnr(tsk);
3162 if (pid > 0) /* make sure to only use valid results */
3163 array[n++] = pid;
3165 cgroup_iter_end(cgrp, &it);
3166 length = n;
3167 /* now sort & (if procs) strip out duplicates */
3168 sort(array, length, sizeof(pid_t), cmppid, NULL);
3169 if (type == CGROUP_FILE_PROCS)
3170 length = pidlist_uniq(&array, length);
3171 l = cgroup_pidlist_find(cgrp, type);
3172 if (!l) {
3173 pidlist_free(array);
3174 return -ENOMEM;
3176 /* store array, freeing old if necessary - lock already held */
3177 pidlist_free(l->list);
3178 l->list = array;
3179 l->length = length;
3180 l->use_count++;
3181 up_write(&l->mutex);
3182 *lp = l;
3183 return 0;
3187 * cgroupstats_build - build and fill cgroupstats
3188 * @stats: cgroupstats to fill information into
3189 * @dentry: A dentry entry belonging to the cgroup for which stats have
3190 * been requested.
3192 * Build and fill cgroupstats so that taskstats can export it to user
3193 * space.
3195 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
3197 int ret = -EINVAL;
3198 struct cgroup *cgrp;
3199 struct cgroup_iter it;
3200 struct task_struct *tsk;
3203 * Validate dentry by checking the superblock operations,
3204 * and make sure it's a directory.
3206 if (dentry->d_sb->s_op != &cgroup_ops ||
3207 !S_ISDIR(dentry->d_inode->i_mode))
3208 goto err;
3210 ret = 0;
3211 cgrp = dentry->d_fsdata;
3213 cgroup_iter_start(cgrp, &it);
3214 while ((tsk = cgroup_iter_next(cgrp, &it))) {
3215 switch (tsk->state) {
3216 case TASK_RUNNING:
3217 stats->nr_running++;
3218 break;
3219 case TASK_INTERRUPTIBLE:
3220 stats->nr_sleeping++;
3221 break;
3222 case TASK_UNINTERRUPTIBLE:
3223 stats->nr_uninterruptible++;
3224 break;
3225 case TASK_STOPPED:
3226 stats->nr_stopped++;
3227 break;
3228 default:
3229 if (delayacct_is_task_waiting_on_io(tsk))
3230 stats->nr_io_wait++;
3231 break;
3234 cgroup_iter_end(cgrp, &it);
3236 err:
3237 return ret;
3242 * seq_file methods for the tasks/procs files. The seq_file position is the
3243 * next pid to display; the seq_file iterator is a pointer to the pid
3244 * in the cgroup->l->list array.
3247 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
3250 * Initially we receive a position value that corresponds to
3251 * one more than the last pid shown (or 0 on the first call or
3252 * after a seek to the start). Use a binary-search to find the
3253 * next pid to display, if any
3255 struct cgroup_pidlist *l = s->private;
3256 int index = 0, pid = *pos;
3257 int *iter;
3259 down_read(&l->mutex);
3260 if (pid) {
3261 int end = l->length;
3263 while (index < end) {
3264 int mid = (index + end) / 2;
3265 if (l->list[mid] == pid) {
3266 index = mid;
3267 break;
3268 } else if (l->list[mid] <= pid)
3269 index = mid + 1;
3270 else
3271 end = mid;
3274 /* If we're off the end of the array, we're done */
3275 if (index >= l->length)
3276 return NULL;
3277 /* Update the abstract position to be the actual pid that we found */
3278 iter = l->list + index;
3279 *pos = *iter;
3280 return iter;
3283 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
3285 struct cgroup_pidlist *l = s->private;
3286 up_read(&l->mutex);
3289 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
3291 struct cgroup_pidlist *l = s->private;
3292 pid_t *p = v;
3293 pid_t *end = l->list + l->length;
3295 * Advance to the next pid in the array. If this goes off the
3296 * end, we're done
3298 p++;
3299 if (p >= end) {
3300 return NULL;
3301 } else {
3302 *pos = *p;
3303 return p;
3307 static int cgroup_pidlist_show(struct seq_file *s, void *v)
3309 return seq_printf(s, "%d\n", *(int *)v);
3313 * seq_operations functions for iterating on pidlists through seq_file -
3314 * independent of whether it's tasks or procs
3316 static const struct seq_operations cgroup_pidlist_seq_operations = {
3317 .start = cgroup_pidlist_start,
3318 .stop = cgroup_pidlist_stop,
3319 .next = cgroup_pidlist_next,
3320 .show = cgroup_pidlist_show,
3323 static void cgroup_release_pid_array(struct cgroup_pidlist *l)
3326 * the case where we're the last user of this particular pidlist will
3327 * have us remove it from the cgroup's list, which entails taking the
3328 * mutex. since in pidlist_find the pidlist->lock depends on cgroup->
3329 * pidlist_mutex, we have to take pidlist_mutex first.
3331 mutex_lock(&l->owner->pidlist_mutex);
3332 down_write(&l->mutex);
3333 BUG_ON(!l->use_count);
3334 if (!--l->use_count) {
3335 /* we're the last user if refcount is 0; remove and free */
3336 list_del(&l->links);
3337 mutex_unlock(&l->owner->pidlist_mutex);
3338 pidlist_free(l->list);
3339 put_pid_ns(l->key.ns);
3340 up_write(&l->mutex);
3341 kfree(l);
3342 return;
3344 mutex_unlock(&l->owner->pidlist_mutex);
3345 up_write(&l->mutex);
3348 static int cgroup_pidlist_release(struct inode *inode, struct file *file)
3350 struct cgroup_pidlist *l;
3351 if (!(file->f_mode & FMODE_READ))
3352 return 0;
3354 * the seq_file will only be initialized if the file was opened for
3355 * reading; hence we check if it's not null only in that case.
3357 l = ((struct seq_file *)file->private_data)->private;
3358 cgroup_release_pid_array(l);
3359 return seq_release(inode, file);
3362 static const struct file_operations cgroup_pidlist_operations = {
3363 .read = seq_read,
3364 .llseek = seq_lseek,
3365 .write = cgroup_file_write,
3366 .release = cgroup_pidlist_release,
3370 * The following functions handle opens on a file that displays a pidlist
3371 * (tasks or procs). Prepare an array of the process/thread IDs of whoever's
3372 * in the cgroup.
3374 /* helper function for the two below it */
3375 static int cgroup_pidlist_open(struct file *file, enum cgroup_filetype type)
3377 struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
3378 struct cgroup_pidlist *l;
3379 int retval;
3381 /* Nothing to do for write-only files */
3382 if (!(file->f_mode & FMODE_READ))
3383 return 0;
3385 /* have the array populated */
3386 retval = pidlist_array_load(cgrp, type, &l);
3387 if (retval)
3388 return retval;
3389 /* configure file information */
3390 file->f_op = &cgroup_pidlist_operations;
3392 retval = seq_open(file, &cgroup_pidlist_seq_operations);
3393 if (retval) {
3394 cgroup_release_pid_array(l);
3395 return retval;
3397 ((struct seq_file *)file->private_data)->private = l;
3398 return 0;
3400 static int cgroup_tasks_open(struct inode *unused, struct file *file)
3402 return cgroup_pidlist_open(file, CGROUP_FILE_TASKS);
3404 static int cgroup_procs_open(struct inode *unused, struct file *file)
3406 return cgroup_pidlist_open(file, CGROUP_FILE_PROCS);
3409 static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
3410 struct cftype *cft)
3412 return notify_on_release(cgrp);
3415 static int cgroup_write_notify_on_release(struct cgroup *cgrp,
3416 struct cftype *cft,
3417 u64 val)
3419 clear_bit(CGRP_RELEASABLE, &cgrp->flags);
3420 if (val)
3421 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3422 else
3423 clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3424 return 0;
3428 * Unregister event and free resources.
3430 * Gets called from workqueue.
3432 static void cgroup_event_remove(struct work_struct *work)
3434 struct cgroup_event *event = container_of(work, struct cgroup_event,
3435 remove);
3436 struct cgroup *cgrp = event->cgrp;
3438 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3440 eventfd_ctx_put(event->eventfd);
3441 kfree(event);
3442 dput(cgrp->dentry);
3446 * Gets called on POLLHUP on eventfd when user closes it.
3448 * Called with wqh->lock held and interrupts disabled.
3450 static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
3451 int sync, void *key)
3453 struct cgroup_event *event = container_of(wait,
3454 struct cgroup_event, wait);
3455 struct cgroup *cgrp = event->cgrp;
3456 unsigned long flags = (unsigned long)key;
3458 if (flags & POLLHUP) {
3459 __remove_wait_queue(event->wqh, &event->wait);
3460 spin_lock(&cgrp->event_list_lock);
3461 list_del(&event->list);
3462 spin_unlock(&cgrp->event_list_lock);
3464 * We are in atomic context, but cgroup_event_remove() may
3465 * sleep, so we have to call it in workqueue.
3467 schedule_work(&event->remove);
3470 return 0;
3473 static void cgroup_event_ptable_queue_proc(struct file *file,
3474 wait_queue_head_t *wqh, poll_table *pt)
3476 struct cgroup_event *event = container_of(pt,
3477 struct cgroup_event, pt);
3479 event->wqh = wqh;
3480 add_wait_queue(wqh, &event->wait);
3484 * Parse input and register new cgroup event handler.
3486 * Input must be in format '<event_fd> <control_fd> <args>'.
3487 * Interpretation of args is defined by control file implementation.
3489 static int cgroup_write_event_control(struct cgroup *cgrp, struct cftype *cft,
3490 const char *buffer)
3492 struct cgroup_event *event = NULL;
3493 unsigned int efd, cfd;
3494 struct file *efile = NULL;
3495 struct file *cfile = NULL;
3496 char *endp;
3497 int ret;
3499 efd = simple_strtoul(buffer, &endp, 10);
3500 if (*endp != ' ')
3501 return -EINVAL;
3502 buffer = endp + 1;
3504 cfd = simple_strtoul(buffer, &endp, 10);
3505 if ((*endp != ' ') && (*endp != '\0'))
3506 return -EINVAL;
3507 buffer = endp + 1;
3509 event = kzalloc(sizeof(*event), GFP_KERNEL);
3510 if (!event)
3511 return -ENOMEM;
3512 event->cgrp = cgrp;
3513 INIT_LIST_HEAD(&event->list);
3514 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
3515 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
3516 INIT_WORK(&event->remove, cgroup_event_remove);
3518 efile = eventfd_fget(efd);
3519 if (IS_ERR(efile)) {
3520 ret = PTR_ERR(efile);
3521 goto fail;
3524 event->eventfd = eventfd_ctx_fileget(efile);
3525 if (IS_ERR(event->eventfd)) {
3526 ret = PTR_ERR(event->eventfd);
3527 goto fail;
3530 cfile = fget(cfd);
3531 if (!cfile) {
3532 ret = -EBADF;
3533 goto fail;
3536 /* the process need read permission on control file */
3537 ret = file_permission(cfile, MAY_READ);
3538 if (ret < 0)
3539 goto fail;
3541 event->cft = __file_cft(cfile);
3542 if (IS_ERR(event->cft)) {
3543 ret = PTR_ERR(event->cft);
3544 goto fail;
3547 if (!event->cft->register_event || !event->cft->unregister_event) {
3548 ret = -EINVAL;
3549 goto fail;
3552 ret = event->cft->register_event(cgrp, event->cft,
3553 event->eventfd, buffer);
3554 if (ret)
3555 goto fail;
3557 if (efile->f_op->poll(efile, &event->pt) & POLLHUP) {
3558 event->cft->unregister_event(cgrp, event->cft, event->eventfd);
3559 ret = 0;
3560 goto fail;
3564 * Events should be removed after rmdir of cgroup directory, but before
3565 * destroying subsystem state objects. Let's take reference to cgroup
3566 * directory dentry to do that.
3568 dget(cgrp->dentry);
3570 spin_lock(&cgrp->event_list_lock);
3571 list_add(&event->list, &cgrp->event_list);
3572 spin_unlock(&cgrp->event_list_lock);
3574 fput(cfile);
3575 fput(efile);
3577 return 0;
3579 fail:
3580 if (cfile)
3581 fput(cfile);
3583 if (event && event->eventfd && !IS_ERR(event->eventfd))
3584 eventfd_ctx_put(event->eventfd);
3586 if (!IS_ERR_OR_NULL(efile))
3587 fput(efile);
3589 kfree(event);
3591 return ret;
3594 static u64 cgroup_clone_children_read(struct cgroup *cgrp,
3595 struct cftype *cft)
3597 return clone_children(cgrp);
3600 static int cgroup_clone_children_write(struct cgroup *cgrp,
3601 struct cftype *cft,
3602 u64 val)
3604 if (val)
3605 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3606 else
3607 clear_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3608 return 0;
3612 * for the common functions, 'private' gives the type of file
3614 /* for hysterical raisins, we can't put this on the older files */
3615 #define CGROUP_FILE_GENERIC_PREFIX "cgroup."
3616 static struct cftype files[] = {
3618 .name = "tasks",
3619 .open = cgroup_tasks_open,
3620 .write_u64 = cgroup_tasks_write,
3621 .release = cgroup_pidlist_release,
3622 .mode = S_IRUGO | S_IWUSR,
3625 .name = CGROUP_FILE_GENERIC_PREFIX "procs",
3626 .open = cgroup_procs_open,
3627 .write_u64 = cgroup_procs_write,
3628 .release = cgroup_pidlist_release,
3629 .mode = S_IRUGO | S_IWUSR,
3632 .name = "notify_on_release",
3633 .read_u64 = cgroup_read_notify_on_release,
3634 .write_u64 = cgroup_write_notify_on_release,
3637 .name = CGROUP_FILE_GENERIC_PREFIX "event_control",
3638 .write_string = cgroup_write_event_control,
3639 .mode = S_IWUGO,
3642 .name = "cgroup.clone_children",
3643 .read_u64 = cgroup_clone_children_read,
3644 .write_u64 = cgroup_clone_children_write,
3648 static struct cftype cft_release_agent = {
3649 .name = "release_agent",
3650 .read_seq_string = cgroup_release_agent_show,
3651 .write_string = cgroup_release_agent_write,
3652 .max_write_len = PATH_MAX,
3655 static int cgroup_populate_dir(struct cgroup *cgrp)
3657 int err;
3658 struct cgroup_subsys *ss;
3660 /* First clear out any existing files */
3661 cgroup_clear_directory(cgrp->dentry);
3663 err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
3664 if (err < 0)
3665 return err;
3667 if (cgrp == cgrp->top_cgroup) {
3668 if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
3669 return err;
3672 for_each_subsys(cgrp->root, ss) {
3673 if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
3674 return err;
3676 /* This cgroup is ready now */
3677 for_each_subsys(cgrp->root, ss) {
3678 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3680 * Update id->css pointer and make this css visible from
3681 * CSS ID functions. This pointer will be dereferened
3682 * from RCU-read-side without locks.
3684 if (css->id)
3685 rcu_assign_pointer(css->id->css, css);
3688 return 0;
3691 static void init_cgroup_css(struct cgroup_subsys_state *css,
3692 struct cgroup_subsys *ss,
3693 struct cgroup *cgrp)
3695 css->cgroup = cgrp;
3696 atomic_set(&css->refcnt, 1);
3697 css->flags = 0;
3698 css->id = NULL;
3699 if (cgrp == dummytop)
3700 set_bit(CSS_ROOT, &css->flags);
3701 BUG_ON(cgrp->subsys[ss->subsys_id]);
3702 cgrp->subsys[ss->subsys_id] = css;
3705 static void cgroup_lock_hierarchy(struct cgroupfs_root *root)
3707 /* We need to take each hierarchy_mutex in a consistent order */
3708 int i;
3711 * No worry about a race with rebind_subsystems that might mess up the
3712 * locking order, since both parties are under cgroup_mutex.
3714 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3715 struct cgroup_subsys *ss = subsys[i];
3716 if (ss == NULL)
3717 continue;
3718 if (ss->root == root)
3719 mutex_lock(&ss->hierarchy_mutex);
3723 static void cgroup_unlock_hierarchy(struct cgroupfs_root *root)
3725 int i;
3727 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3728 struct cgroup_subsys *ss = subsys[i];
3729 if (ss == NULL)
3730 continue;
3731 if (ss->root == root)
3732 mutex_unlock(&ss->hierarchy_mutex);
3737 * cgroup_create - create a cgroup
3738 * @parent: cgroup that will be parent of the new cgroup
3739 * @dentry: dentry of the new cgroup
3740 * @mode: mode to set on new inode
3742 * Must be called with the mutex on the parent inode held
3744 static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
3745 mode_t mode)
3747 struct cgroup *cgrp;
3748 struct cgroupfs_root *root = parent->root;
3749 int err = 0;
3750 struct cgroup_subsys *ss;
3751 struct super_block *sb = root->sb;
3753 cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
3754 if (!cgrp)
3755 return -ENOMEM;
3757 /* Grab a reference on the superblock so the hierarchy doesn't
3758 * get deleted on unmount if there are child cgroups. This
3759 * can be done outside cgroup_mutex, since the sb can't
3760 * disappear while someone has an open control file on the
3761 * fs */
3762 atomic_inc(&sb->s_active);
3764 mutex_lock(&cgroup_mutex);
3766 init_cgroup_housekeeping(cgrp);
3768 cgrp->parent = parent;
3769 cgrp->root = parent->root;
3770 cgrp->top_cgroup = parent->top_cgroup;
3772 if (notify_on_release(parent))
3773 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
3775 if (clone_children(parent))
3776 set_bit(CGRP_CLONE_CHILDREN, &cgrp->flags);
3778 for_each_subsys(root, ss) {
3779 struct cgroup_subsys_state *css = ss->create(ss, cgrp);
3781 if (IS_ERR(css)) {
3782 err = PTR_ERR(css);
3783 goto err_destroy;
3785 init_cgroup_css(css, ss, cgrp);
3786 if (ss->use_id) {
3787 err = alloc_css_id(ss, parent, cgrp);
3788 if (err)
3789 goto err_destroy;
3791 /* At error, ->destroy() callback has to free assigned ID. */
3792 if (clone_children(parent) && ss->post_clone)
3793 ss->post_clone(ss, cgrp);
3796 cgroup_lock_hierarchy(root);
3797 list_add(&cgrp->sibling, &cgrp->parent->children);
3798 cgroup_unlock_hierarchy(root);
3799 root->number_of_cgroups++;
3801 err = cgroup_create_dir(cgrp, dentry, mode);
3802 if (err < 0)
3803 goto err_remove;
3805 /* The cgroup directory was pre-locked for us */
3806 BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
3808 err = cgroup_populate_dir(cgrp);
3809 /* If err < 0, we have a half-filled directory - oh well ;) */
3811 mutex_unlock(&cgroup_mutex);
3812 mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
3814 return 0;
3816 err_remove:
3818 cgroup_lock_hierarchy(root);
3819 list_del(&cgrp->sibling);
3820 cgroup_unlock_hierarchy(root);
3821 root->number_of_cgroups--;
3823 err_destroy:
3825 for_each_subsys(root, ss) {
3826 if (cgrp->subsys[ss->subsys_id])
3827 ss->destroy(ss, cgrp);
3830 mutex_unlock(&cgroup_mutex);
3832 /* Release the reference count that we took on the superblock */
3833 deactivate_super(sb);
3835 kfree(cgrp);
3836 return err;
3839 static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
3841 struct cgroup *c_parent = dentry->d_parent->d_fsdata;
3843 /* the vfs holds inode->i_mutex already */
3844 return cgroup_create(c_parent, dentry, mode | S_IFDIR);
3847 static int cgroup_has_css_refs(struct cgroup *cgrp)
3849 /* Check the reference count on each subsystem. Since we
3850 * already established that there are no tasks in the
3851 * cgroup, if the css refcount is also 1, then there should
3852 * be no outstanding references, so the subsystem is safe to
3853 * destroy. We scan across all subsystems rather than using
3854 * the per-hierarchy linked list of mounted subsystems since
3855 * we can be called via check_for_release() with no
3856 * synchronization other than RCU, and the subsystem linked
3857 * list isn't RCU-safe */
3858 int i;
3860 * We won't need to lock the subsys array, because the subsystems
3861 * we're concerned about aren't going anywhere since our cgroup root
3862 * has a reference on them.
3864 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
3865 struct cgroup_subsys *ss = subsys[i];
3866 struct cgroup_subsys_state *css;
3867 /* Skip subsystems not present or not in this hierarchy */
3868 if (ss == NULL || ss->root != cgrp->root)
3869 continue;
3870 css = cgrp->subsys[ss->subsys_id];
3871 /* When called from check_for_release() it's possible
3872 * that by this point the cgroup has been removed
3873 * and the css deleted. But a false-positive doesn't
3874 * matter, since it can only happen if the cgroup
3875 * has been deleted and hence no longer needs the
3876 * release agent to be called anyway. */
3877 if (css && (atomic_read(&css->refcnt) > 1))
3878 return 1;
3880 return 0;
3884 * Atomically mark all (or else none) of the cgroup's CSS objects as
3885 * CSS_REMOVED. Return true on success, or false if the cgroup has
3886 * busy subsystems. Call with cgroup_mutex held
3889 static int cgroup_clear_css_refs(struct cgroup *cgrp)
3891 struct cgroup_subsys *ss;
3892 unsigned long flags;
3893 bool failed = false;
3894 local_irq_save(flags);
3895 for_each_subsys(cgrp->root, ss) {
3896 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3897 int refcnt;
3898 while (1) {
3899 /* We can only remove a CSS with a refcnt==1 */
3900 refcnt = atomic_read(&css->refcnt);
3901 if (refcnt > 1) {
3902 failed = true;
3903 goto done;
3905 BUG_ON(!refcnt);
3907 * Drop the refcnt to 0 while we check other
3908 * subsystems. This will cause any racing
3909 * css_tryget() to spin until we set the
3910 * CSS_REMOVED bits or abort
3912 if (atomic_cmpxchg(&css->refcnt, refcnt, 0) == refcnt)
3913 break;
3914 cpu_relax();
3917 done:
3918 for_each_subsys(cgrp->root, ss) {
3919 struct cgroup_subsys_state *css = cgrp->subsys[ss->subsys_id];
3920 if (failed) {
3922 * Restore old refcnt if we previously managed
3923 * to clear it from 1 to 0
3925 if (!atomic_read(&css->refcnt))
3926 atomic_set(&css->refcnt, 1);
3927 } else {
3928 /* Commit the fact that the CSS is removed */
3929 set_bit(CSS_REMOVED, &css->flags);
3932 local_irq_restore(flags);
3933 return !failed;
3936 static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
3938 struct cgroup *cgrp = dentry->d_fsdata;
3939 struct dentry *d;
3940 struct cgroup *parent;
3941 DEFINE_WAIT(wait);
3942 struct cgroup_event *event, *tmp;
3943 int ret;
3945 /* the vfs holds both inode->i_mutex already */
3946 again:
3947 mutex_lock(&cgroup_mutex);
3948 if (atomic_read(&cgrp->count) != 0) {
3949 mutex_unlock(&cgroup_mutex);
3950 return -EBUSY;
3952 if (!list_empty(&cgrp->children)) {
3953 mutex_unlock(&cgroup_mutex);
3954 return -EBUSY;
3956 mutex_unlock(&cgroup_mutex);
3959 * In general, subsystem has no css->refcnt after pre_destroy(). But
3960 * in racy cases, subsystem may have to get css->refcnt after
3961 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
3962 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
3963 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
3964 * and subsystem's reference count handling. Please see css_get/put
3965 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
3967 set_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3970 * Call pre_destroy handlers of subsys. Notify subsystems
3971 * that rmdir() request comes.
3973 ret = cgroup_call_pre_destroy(cgrp);
3974 if (ret) {
3975 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3976 return ret;
3979 mutex_lock(&cgroup_mutex);
3980 parent = cgrp->parent;
3981 if (atomic_read(&cgrp->count) || !list_empty(&cgrp->children)) {
3982 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3983 mutex_unlock(&cgroup_mutex);
3984 return -EBUSY;
3986 prepare_to_wait(&cgroup_rmdir_waitq, &wait, TASK_INTERRUPTIBLE);
3987 if (!cgroup_clear_css_refs(cgrp)) {
3988 mutex_unlock(&cgroup_mutex);
3990 * Because someone may call cgroup_wakeup_rmdir_waiter() before
3991 * prepare_to_wait(), we need to check this flag.
3993 if (test_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags))
3994 schedule();
3995 finish_wait(&cgroup_rmdir_waitq, &wait);
3996 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
3997 if (signal_pending(current))
3998 return -EINTR;
3999 goto again;
4001 /* NO css_tryget() can success after here. */
4002 finish_wait(&cgroup_rmdir_waitq, &wait);
4003 clear_bit(CGRP_WAIT_ON_RMDIR, &cgrp->flags);
4005 spin_lock(&release_list_lock);
4006 set_bit(CGRP_REMOVED, &cgrp->flags);
4007 if (!list_empty(&cgrp->release_list))
4008 list_del_init(&cgrp->release_list);
4009 spin_unlock(&release_list_lock);
4011 cgroup_lock_hierarchy(cgrp->root);
4012 /* delete this cgroup from parent->children */
4013 list_del_init(&cgrp->sibling);
4014 cgroup_unlock_hierarchy(cgrp->root);
4016 d = dget(cgrp->dentry);
4018 cgroup_d_remove_dir(d);
4019 dput(d);
4021 set_bit(CGRP_RELEASABLE, &parent->flags);
4022 check_for_release(parent);
4025 * Unregister events and notify userspace.
4026 * Notify userspace about cgroup removing only after rmdir of cgroup
4027 * directory to avoid race between userspace and kernelspace
4029 spin_lock(&cgrp->event_list_lock);
4030 list_for_each_entry_safe(event, tmp, &cgrp->event_list, list) {
4031 list_del(&event->list);
4032 remove_wait_queue(event->wqh, &event->wait);
4033 eventfd_signal(event->eventfd, 1);
4034 schedule_work(&event->remove);
4036 spin_unlock(&cgrp->event_list_lock);
4038 mutex_unlock(&cgroup_mutex);
4039 return 0;
4042 static void __init cgroup_init_subsys(struct cgroup_subsys *ss)
4044 struct cgroup_subsys_state *css;
4046 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
4048 /* Create the top cgroup state for this subsystem */
4049 list_add(&ss->sibling, &rootnode.subsys_list);
4050 ss->root = &rootnode;
4051 css = ss->create(ss, dummytop);
4052 /* We don't handle early failures gracefully */
4053 BUG_ON(IS_ERR(css));
4054 init_cgroup_css(css, ss, dummytop);
4056 /* Update the init_css_set to contain a subsys
4057 * pointer to this state - since the subsystem is
4058 * newly registered, all tasks and hence the
4059 * init_css_set is in the subsystem's top cgroup. */
4060 init_css_set.subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
4062 need_forkexit_callback |= ss->fork || ss->exit;
4064 /* At system boot, before all subsystems have been
4065 * registered, no tasks have been forked, so we don't
4066 * need to invoke fork callbacks here. */
4067 BUG_ON(!list_empty(&init_task.tasks));
4069 mutex_init(&ss->hierarchy_mutex);
4070 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4071 ss->active = 1;
4073 /* this function shouldn't be used with modular subsystems, since they
4074 * need to register a subsys_id, among other things */
4075 BUG_ON(ss->module);
4079 * cgroup_load_subsys: load and register a modular subsystem at runtime
4080 * @ss: the subsystem to load
4082 * This function should be called in a modular subsystem's initcall. If the
4083 * subsystem is built as a module, it will be assigned a new subsys_id and set
4084 * up for use. If the subsystem is built-in anyway, work is delegated to the
4085 * simpler cgroup_init_subsys.
4087 int __init_or_module cgroup_load_subsys(struct cgroup_subsys *ss)
4089 int i;
4090 struct cgroup_subsys_state *css;
4092 /* check name and function validity */
4093 if (ss->name == NULL || strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN ||
4094 ss->create == NULL || ss->destroy == NULL)
4095 return -EINVAL;
4098 * we don't support callbacks in modular subsystems. this check is
4099 * before the ss->module check for consistency; a subsystem that could
4100 * be a module should still have no callbacks even if the user isn't
4101 * compiling it as one.
4103 if (ss->fork || ss->exit)
4104 return -EINVAL;
4107 * an optionally modular subsystem is built-in: we want to do nothing,
4108 * since cgroup_init_subsys will have already taken care of it.
4110 if (ss->module == NULL) {
4111 /* a few sanity checks */
4112 BUG_ON(ss->subsys_id >= CGROUP_BUILTIN_SUBSYS_COUNT);
4113 BUG_ON(subsys[ss->subsys_id] != ss);
4114 return 0;
4118 * need to register a subsys id before anything else - for example,
4119 * init_cgroup_css needs it.
4121 mutex_lock(&cgroup_mutex);
4122 /* find the first empty slot in the array */
4123 for (i = CGROUP_BUILTIN_SUBSYS_COUNT; i < CGROUP_SUBSYS_COUNT; i++) {
4124 if (subsys[i] == NULL)
4125 break;
4127 if (i == CGROUP_SUBSYS_COUNT) {
4128 /* maximum number of subsystems already registered! */
4129 mutex_unlock(&cgroup_mutex);
4130 return -EBUSY;
4132 /* assign ourselves the subsys_id */
4133 ss->subsys_id = i;
4134 subsys[i] = ss;
4137 * no ss->create seems to need anything important in the ss struct, so
4138 * this can happen first (i.e. before the rootnode attachment).
4140 css = ss->create(ss, dummytop);
4141 if (IS_ERR(css)) {
4142 /* failure case - need to deassign the subsys[] slot. */
4143 subsys[i] = NULL;
4144 mutex_unlock(&cgroup_mutex);
4145 return PTR_ERR(css);
4148 list_add(&ss->sibling, &rootnode.subsys_list);
4149 ss->root = &rootnode;
4151 /* our new subsystem will be attached to the dummy hierarchy. */
4152 init_cgroup_css(css, ss, dummytop);
4153 /* init_idr must be after init_cgroup_css because it sets css->id. */
4154 if (ss->use_id) {
4155 int ret = cgroup_init_idr(ss, css);
4156 if (ret) {
4157 dummytop->subsys[ss->subsys_id] = NULL;
4158 ss->destroy(ss, dummytop);
4159 subsys[i] = NULL;
4160 mutex_unlock(&cgroup_mutex);
4161 return ret;
4166 * Now we need to entangle the css into the existing css_sets. unlike
4167 * in cgroup_init_subsys, there are now multiple css_sets, so each one
4168 * will need a new pointer to it; done by iterating the css_set_table.
4169 * furthermore, modifying the existing css_sets will corrupt the hash
4170 * table state, so each changed css_set will need its hash recomputed.
4171 * this is all done under the css_set_lock.
4173 write_lock(&css_set_lock);
4174 for (i = 0; i < CSS_SET_TABLE_SIZE; i++) {
4175 struct css_set *cg;
4176 struct hlist_node *node, *tmp;
4177 struct hlist_head *bucket = &css_set_table[i], *new_bucket;
4179 hlist_for_each_entry_safe(cg, node, tmp, bucket, hlist) {
4180 /* skip entries that we already rehashed */
4181 if (cg->subsys[ss->subsys_id])
4182 continue;
4183 /* remove existing entry */
4184 hlist_del(&cg->hlist);
4185 /* set new value */
4186 cg->subsys[ss->subsys_id] = css;
4187 /* recompute hash and restore entry */
4188 new_bucket = css_set_hash(cg->subsys);
4189 hlist_add_head(&cg->hlist, new_bucket);
4192 write_unlock(&css_set_lock);
4194 mutex_init(&ss->hierarchy_mutex);
4195 lockdep_set_class(&ss->hierarchy_mutex, &ss->subsys_key);
4196 ss->active = 1;
4198 /* success! */
4199 mutex_unlock(&cgroup_mutex);
4200 return 0;
4202 EXPORT_SYMBOL_GPL(cgroup_load_subsys);
4205 * cgroup_unload_subsys: unload a modular subsystem
4206 * @ss: the subsystem to unload
4208 * This function should be called in a modular subsystem's exitcall. When this
4209 * function is invoked, the refcount on the subsystem's module will be 0, so
4210 * the subsystem will not be attached to any hierarchy.
4212 void cgroup_unload_subsys(struct cgroup_subsys *ss)
4214 struct cg_cgroup_link *link;
4215 struct hlist_head *hhead;
4217 BUG_ON(ss->module == NULL);
4220 * we shouldn't be called if the subsystem is in use, and the use of
4221 * try_module_get in parse_cgroupfs_options should ensure that it
4222 * doesn't start being used while we're killing it off.
4224 BUG_ON(ss->root != &rootnode);
4226 mutex_lock(&cgroup_mutex);
4227 /* deassign the subsys_id */
4228 BUG_ON(ss->subsys_id < CGROUP_BUILTIN_SUBSYS_COUNT);
4229 subsys[ss->subsys_id] = NULL;
4231 /* remove subsystem from rootnode's list of subsystems */
4232 list_del_init(&ss->sibling);
4235 * disentangle the css from all css_sets attached to the dummytop. as
4236 * in loading, we need to pay our respects to the hashtable gods.
4238 write_lock(&css_set_lock);
4239 list_for_each_entry(link, &dummytop->css_sets, cgrp_link_list) {
4240 struct css_set *cg = link->cg;
4242 hlist_del(&cg->hlist);
4243 BUG_ON(!cg->subsys[ss->subsys_id]);
4244 cg->subsys[ss->subsys_id] = NULL;
4245 hhead = css_set_hash(cg->subsys);
4246 hlist_add_head(&cg->hlist, hhead);
4248 write_unlock(&css_set_lock);
4251 * remove subsystem's css from the dummytop and free it - need to free
4252 * before marking as null because ss->destroy needs the cgrp->subsys
4253 * pointer to find their state. note that this also takes care of
4254 * freeing the css_id.
4256 ss->destroy(ss, dummytop);
4257 dummytop->subsys[ss->subsys_id] = NULL;
4259 mutex_unlock(&cgroup_mutex);
4261 EXPORT_SYMBOL_GPL(cgroup_unload_subsys);
4264 * cgroup_init_early - cgroup initialization at system boot
4266 * Initialize cgroups at system boot, and initialize any
4267 * subsystems that request early init.
4269 int __init cgroup_init_early(void)
4271 int i;
4272 atomic_set(&init_css_set.refcount, 1);
4273 INIT_LIST_HEAD(&init_css_set.cg_links);
4274 INIT_LIST_HEAD(&init_css_set.tasks);
4275 INIT_HLIST_NODE(&init_css_set.hlist);
4276 css_set_count = 1;
4277 init_cgroup_root(&rootnode);
4278 root_count = 1;
4279 init_task.cgroups = &init_css_set;
4281 init_css_set_link.cg = &init_css_set;
4282 init_css_set_link.cgrp = dummytop;
4283 list_add(&init_css_set_link.cgrp_link_list,
4284 &rootnode.top_cgroup.css_sets);
4285 list_add(&init_css_set_link.cg_link_list,
4286 &init_css_set.cg_links);
4288 for (i = 0; i < CSS_SET_TABLE_SIZE; i++)
4289 INIT_HLIST_HEAD(&css_set_table[i]);
4291 /* at bootup time, we don't worry about modular subsystems */
4292 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4293 struct cgroup_subsys *ss = subsys[i];
4295 BUG_ON(!ss->name);
4296 BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
4297 BUG_ON(!ss->create);
4298 BUG_ON(!ss->destroy);
4299 if (ss->subsys_id != i) {
4300 printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
4301 ss->name, ss->subsys_id);
4302 BUG();
4305 if (ss->early_init)
4306 cgroup_init_subsys(ss);
4308 return 0;
4312 * cgroup_init - cgroup initialization
4314 * Register cgroup filesystem and /proc file, and initialize
4315 * any subsystems that didn't request early init.
4317 int __init cgroup_init(void)
4319 int err;
4320 int i;
4321 struct hlist_head *hhead;
4323 err = bdi_init(&cgroup_backing_dev_info);
4324 if (err)
4325 return err;
4327 /* at bootup time, we don't worry about modular subsystems */
4328 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4329 struct cgroup_subsys *ss = subsys[i];
4330 if (!ss->early_init)
4331 cgroup_init_subsys(ss);
4332 if (ss->use_id)
4333 cgroup_init_idr(ss, init_css_set.subsys[ss->subsys_id]);
4336 /* Add init_css_set to the hash table */
4337 hhead = css_set_hash(init_css_set.subsys);
4338 hlist_add_head(&init_css_set.hlist, hhead);
4339 BUG_ON(!init_root_id(&rootnode));
4341 cgroup_kobj = kobject_create_and_add("cgroup", fs_kobj);
4342 if (!cgroup_kobj) {
4343 err = -ENOMEM;
4344 goto out;
4347 err = register_filesystem(&cgroup_fs_type);
4348 if (err < 0) {
4349 kobject_put(cgroup_kobj);
4350 goto out;
4353 proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations);
4355 out:
4356 if (err)
4357 bdi_destroy(&cgroup_backing_dev_info);
4359 return err;
4363 * proc_cgroup_show()
4364 * - Print task's cgroup paths into seq_file, one line for each hierarchy
4365 * - Used for /proc/<pid>/cgroup.
4366 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
4367 * doesn't really matter if tsk->cgroup changes after we read it,
4368 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
4369 * anyway. No need to check that tsk->cgroup != NULL, thanks to
4370 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
4371 * cgroup to top_cgroup.
4374 /* TODO: Use a proper seq_file iterator */
4375 static int proc_cgroup_show(struct seq_file *m, void *v)
4377 struct pid *pid;
4378 struct task_struct *tsk;
4379 char *buf;
4380 int retval;
4381 struct cgroupfs_root *root;
4383 retval = -ENOMEM;
4384 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4385 if (!buf)
4386 goto out;
4388 retval = -ESRCH;
4389 pid = m->private;
4390 tsk = get_pid_task(pid, PIDTYPE_PID);
4391 if (!tsk)
4392 goto out_free;
4394 retval = 0;
4396 mutex_lock(&cgroup_mutex);
4398 for_each_active_root(root) {
4399 struct cgroup_subsys *ss;
4400 struct cgroup *cgrp;
4401 int count = 0;
4403 seq_printf(m, "%d:", root->hierarchy_id);
4404 for_each_subsys(root, ss)
4405 seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
4406 if (strlen(root->name))
4407 seq_printf(m, "%sname=%s", count ? "," : "",
4408 root->name);
4409 seq_putc(m, ':');
4410 cgrp = task_cgroup_from_root(tsk, root);
4411 retval = cgroup_path(cgrp, buf, PAGE_SIZE);
4412 if (retval < 0)
4413 goto out_unlock;
4414 seq_puts(m, buf);
4415 seq_putc(m, '\n');
4418 out_unlock:
4419 mutex_unlock(&cgroup_mutex);
4420 put_task_struct(tsk);
4421 out_free:
4422 kfree(buf);
4423 out:
4424 return retval;
4427 static int cgroup_open(struct inode *inode, struct file *file)
4429 struct pid *pid = PROC_I(inode)->pid;
4430 return single_open(file, proc_cgroup_show, pid);
4433 const struct file_operations proc_cgroup_operations = {
4434 .open = cgroup_open,
4435 .read = seq_read,
4436 .llseek = seq_lseek,
4437 .release = single_release,
4440 /* Display information about each subsystem and each hierarchy */
4441 static int proc_cgroupstats_show(struct seq_file *m, void *v)
4443 int i;
4445 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
4447 * ideally we don't want subsystems moving around while we do this.
4448 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
4449 * subsys/hierarchy state.
4451 mutex_lock(&cgroup_mutex);
4452 for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
4453 struct cgroup_subsys *ss = subsys[i];
4454 if (ss == NULL)
4455 continue;
4456 seq_printf(m, "%s\t%d\t%d\t%d\n",
4457 ss->name, ss->root->hierarchy_id,
4458 ss->root->number_of_cgroups, !ss->disabled);
4460 mutex_unlock(&cgroup_mutex);
4461 return 0;
4464 static int cgroupstats_open(struct inode *inode, struct file *file)
4466 return single_open(file, proc_cgroupstats_show, NULL);
4469 static const struct file_operations proc_cgroupstats_operations = {
4470 .open = cgroupstats_open,
4471 .read = seq_read,
4472 .llseek = seq_lseek,
4473 .release = single_release,
4477 * cgroup_fork - attach newly forked task to its parents cgroup.
4478 * @child: pointer to task_struct of forking parent process.
4480 * Description: A task inherits its parent's cgroup at fork().
4482 * A pointer to the shared css_set was automatically copied in
4483 * fork.c by dup_task_struct(). However, we ignore that copy, since
4484 * it was not made under the protection of RCU or cgroup_mutex, so
4485 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
4486 * have already changed current->cgroups, allowing the previously
4487 * referenced cgroup group to be removed and freed.
4489 * At the point that cgroup_fork() is called, 'current' is the parent
4490 * task, and the passed argument 'child' points to the child task.
4492 void cgroup_fork(struct task_struct *child)
4494 task_lock(current);
4495 child->cgroups = current->cgroups;
4496 get_css_set(child->cgroups);
4497 task_unlock(current);
4498 INIT_LIST_HEAD(&child->cg_list);
4502 * cgroup_fork_callbacks - run fork callbacks
4503 * @child: the new task
4505 * Called on a new task very soon before adding it to the
4506 * tasklist. No need to take any locks since no-one can
4507 * be operating on this task.
4509 void cgroup_fork_callbacks(struct task_struct *child)
4511 if (need_forkexit_callback) {
4512 int i;
4514 * forkexit callbacks are only supported for builtin
4515 * subsystems, and the builtin section of the subsys array is
4516 * immutable, so we don't need to lock the subsys array here.
4518 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4519 struct cgroup_subsys *ss = subsys[i];
4520 if (ss->fork)
4521 ss->fork(ss, child);
4527 * cgroup_post_fork - called on a new task after adding it to the task list
4528 * @child: the task in question
4530 * Adds the task to the list running through its css_set if necessary.
4531 * Has to be after the task is visible on the task list in case we race
4532 * with the first call to cgroup_iter_start() - to guarantee that the
4533 * new task ends up on its list.
4535 void cgroup_post_fork(struct task_struct *child)
4537 if (use_task_css_set_links) {
4538 write_lock(&css_set_lock);
4539 task_lock(child);
4540 if (list_empty(&child->cg_list))
4541 list_add(&child->cg_list, &child->cgroups->tasks);
4542 task_unlock(child);
4543 write_unlock(&css_set_lock);
4547 * cgroup_exit - detach cgroup from exiting task
4548 * @tsk: pointer to task_struct of exiting process
4549 * @run_callback: run exit callbacks?
4551 * Description: Detach cgroup from @tsk and release it.
4553 * Note that cgroups marked notify_on_release force every task in
4554 * them to take the global cgroup_mutex mutex when exiting.
4555 * This could impact scaling on very large systems. Be reluctant to
4556 * use notify_on_release cgroups where very high task exit scaling
4557 * is required on large systems.
4559 * the_top_cgroup_hack:
4561 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
4563 * We call cgroup_exit() while the task is still competent to
4564 * handle notify_on_release(), then leave the task attached to the
4565 * root cgroup in each hierarchy for the remainder of its exit.
4567 * To do this properly, we would increment the reference count on
4568 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
4569 * code we would add a second cgroup function call, to drop that
4570 * reference. This would just create an unnecessary hot spot on
4571 * the top_cgroup reference count, to no avail.
4573 * Normally, holding a reference to a cgroup without bumping its
4574 * count is unsafe. The cgroup could go away, or someone could
4575 * attach us to a different cgroup, decrementing the count on
4576 * the first cgroup that we never incremented. But in this case,
4577 * top_cgroup isn't going away, and either task has PF_EXITING set,
4578 * which wards off any cgroup_attach_task() attempts, or task is a failed
4579 * fork, never visible to cgroup_attach_task.
4581 void cgroup_exit(struct task_struct *tsk, int run_callbacks)
4583 struct css_set *cg;
4584 int i;
4587 * Unlink from the css_set task list if necessary.
4588 * Optimistically check cg_list before taking
4589 * css_set_lock
4591 if (!list_empty(&tsk->cg_list)) {
4592 write_lock(&css_set_lock);
4593 if (!list_empty(&tsk->cg_list))
4594 list_del_init(&tsk->cg_list);
4595 write_unlock(&css_set_lock);
4598 /* Reassign the task to the init_css_set. */
4599 task_lock(tsk);
4600 cg = tsk->cgroups;
4601 tsk->cgroups = &init_css_set;
4603 if (run_callbacks && need_forkexit_callback) {
4605 * modular subsystems can't use callbacks, so no need to lock
4606 * the subsys array
4608 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4609 struct cgroup_subsys *ss = subsys[i];
4610 if (ss->exit) {
4611 struct cgroup *old_cgrp =
4612 rcu_dereference_raw(cg->subsys[i])->cgroup;
4613 struct cgroup *cgrp = task_cgroup(tsk, i);
4614 ss->exit(ss, cgrp, old_cgrp, tsk);
4618 task_unlock(tsk);
4620 if (cg)
4621 put_css_set_taskexit(cg);
4625 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
4626 * @cgrp: the cgroup in question
4627 * @task: the task in question
4629 * See if @cgrp is a descendant of @task's cgroup in the appropriate
4630 * hierarchy.
4632 * If we are sending in dummytop, then presumably we are creating
4633 * the top cgroup in the subsystem.
4635 * Called only by the ns (nsproxy) cgroup.
4637 int cgroup_is_descendant(const struct cgroup *cgrp, struct task_struct *task)
4639 int ret;
4640 struct cgroup *target;
4642 if (cgrp == dummytop)
4643 return 1;
4645 target = task_cgroup_from_root(task, cgrp->root);
4646 while (cgrp != target && cgrp!= cgrp->top_cgroup)
4647 cgrp = cgrp->parent;
4648 ret = (cgrp == target);
4649 return ret;
4652 static void check_for_release(struct cgroup *cgrp)
4654 /* All of these checks rely on RCU to keep the cgroup
4655 * structure alive */
4656 if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
4657 && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
4658 /* Control Group is currently removeable. If it's not
4659 * already queued for a userspace notification, queue
4660 * it now */
4661 int need_schedule_work = 0;
4662 spin_lock(&release_list_lock);
4663 if (!cgroup_is_removed(cgrp) &&
4664 list_empty(&cgrp->release_list)) {
4665 list_add(&cgrp->release_list, &release_list);
4666 need_schedule_work = 1;
4668 spin_unlock(&release_list_lock);
4669 if (need_schedule_work)
4670 schedule_work(&release_agent_work);
4674 /* Caller must verify that the css is not for root cgroup */
4675 void __css_put(struct cgroup_subsys_state *css, int count)
4677 struct cgroup *cgrp = css->cgroup;
4678 int val;
4679 rcu_read_lock();
4680 val = atomic_sub_return(count, &css->refcnt);
4681 if (val == 1) {
4682 if (notify_on_release(cgrp)) {
4683 set_bit(CGRP_RELEASABLE, &cgrp->flags);
4684 check_for_release(cgrp);
4686 cgroup_wakeup_rmdir_waiter(cgrp);
4688 rcu_read_unlock();
4689 WARN_ON_ONCE(val < 1);
4691 EXPORT_SYMBOL_GPL(__css_put);
4694 * Notify userspace when a cgroup is released, by running the
4695 * configured release agent with the name of the cgroup (path
4696 * relative to the root of cgroup file system) as the argument.
4698 * Most likely, this user command will try to rmdir this cgroup.
4700 * This races with the possibility that some other task will be
4701 * attached to this cgroup before it is removed, or that some other
4702 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
4703 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
4704 * unused, and this cgroup will be reprieved from its death sentence,
4705 * to continue to serve a useful existence. Next time it's released,
4706 * we will get notified again, if it still has 'notify_on_release' set.
4708 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
4709 * means only wait until the task is successfully execve()'d. The
4710 * separate release agent task is forked by call_usermodehelper(),
4711 * then control in this thread returns here, without waiting for the
4712 * release agent task. We don't bother to wait because the caller of
4713 * this routine has no use for the exit status of the release agent
4714 * task, so no sense holding our caller up for that.
4716 static void cgroup_release_agent(struct work_struct *work)
4718 BUG_ON(work != &release_agent_work);
4719 mutex_lock(&cgroup_mutex);
4720 spin_lock(&release_list_lock);
4721 while (!list_empty(&release_list)) {
4722 char *argv[3], *envp[3];
4723 int i;
4724 char *pathbuf = NULL, *agentbuf = NULL;
4725 struct cgroup *cgrp = list_entry(release_list.next,
4726 struct cgroup,
4727 release_list);
4728 list_del_init(&cgrp->release_list);
4729 spin_unlock(&release_list_lock);
4730 pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
4731 if (!pathbuf)
4732 goto continue_free;
4733 if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0)
4734 goto continue_free;
4735 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
4736 if (!agentbuf)
4737 goto continue_free;
4739 i = 0;
4740 argv[i++] = agentbuf;
4741 argv[i++] = pathbuf;
4742 argv[i] = NULL;
4744 i = 0;
4745 /* minimal command environment */
4746 envp[i++] = "HOME=/";
4747 envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
4748 envp[i] = NULL;
4750 /* Drop the lock while we invoke the usermode helper,
4751 * since the exec could involve hitting disk and hence
4752 * be a slow process */
4753 mutex_unlock(&cgroup_mutex);
4754 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
4755 mutex_lock(&cgroup_mutex);
4756 continue_free:
4757 kfree(pathbuf);
4758 kfree(agentbuf);
4759 spin_lock(&release_list_lock);
4761 spin_unlock(&release_list_lock);
4762 mutex_unlock(&cgroup_mutex);
4765 static int __init cgroup_disable(char *str)
4767 int i;
4768 char *token;
4770 while ((token = strsep(&str, ",")) != NULL) {
4771 if (!*token)
4772 continue;
4774 * cgroup_disable, being at boot time, can't know about module
4775 * subsystems, so we don't worry about them.
4777 for (i = 0; i < CGROUP_BUILTIN_SUBSYS_COUNT; i++) {
4778 struct cgroup_subsys *ss = subsys[i];
4780 if (!strcmp(token, ss->name)) {
4781 ss->disabled = 1;
4782 printk(KERN_INFO "Disabling %s control group"
4783 " subsystem\n", ss->name);
4784 break;
4788 return 1;
4790 __setup("cgroup_disable=", cgroup_disable);
4793 * Functons for CSS ID.
4797 *To get ID other than 0, this should be called when !cgroup_is_removed().
4799 unsigned short css_id(struct cgroup_subsys_state *css)
4801 struct css_id *cssid;
4804 * This css_id() can return correct value when somone has refcnt
4805 * on this or this is under rcu_read_lock(). Once css->id is allocated,
4806 * it's unchanged until freed.
4808 cssid = rcu_dereference_check(css->id,
4809 rcu_read_lock_held() || atomic_read(&css->refcnt));
4811 if (cssid)
4812 return cssid->id;
4813 return 0;
4815 EXPORT_SYMBOL_GPL(css_id);
4817 unsigned short css_depth(struct cgroup_subsys_state *css)
4819 struct css_id *cssid;
4821 cssid = rcu_dereference_check(css->id,
4822 rcu_read_lock_held() || atomic_read(&css->refcnt));
4824 if (cssid)
4825 return cssid->depth;
4826 return 0;
4828 EXPORT_SYMBOL_GPL(css_depth);
4831 * css_is_ancestor - test "root" css is an ancestor of "child"
4832 * @child: the css to be tested.
4833 * @root: the css supporsed to be an ancestor of the child.
4835 * Returns true if "root" is an ancestor of "child" in its hierarchy. Because
4836 * this function reads css->id, this use rcu_dereference() and rcu_read_lock().
4837 * But, considering usual usage, the csses should be valid objects after test.
4838 * Assuming that the caller will do some action to the child if this returns
4839 * returns true, the caller must take "child";s reference count.
4840 * If "child" is valid object and this returns true, "root" is valid, too.
4843 bool css_is_ancestor(struct cgroup_subsys_state *child,
4844 const struct cgroup_subsys_state *root)
4846 struct css_id *child_id;
4847 struct css_id *root_id;
4848 bool ret = true;
4850 rcu_read_lock();
4851 child_id = rcu_dereference(child->id);
4852 root_id = rcu_dereference(root->id);
4853 if (!child_id
4854 || !root_id
4855 || (child_id->depth < root_id->depth)
4856 || (child_id->stack[root_id->depth] != root_id->id))
4857 ret = false;
4858 rcu_read_unlock();
4859 return ret;
4862 void free_css_id(struct cgroup_subsys *ss, struct cgroup_subsys_state *css)
4864 struct css_id *id = css->id;
4865 /* When this is called before css_id initialization, id can be NULL */
4866 if (!id)
4867 return;
4869 BUG_ON(!ss->use_id);
4871 rcu_assign_pointer(id->css, NULL);
4872 rcu_assign_pointer(css->id, NULL);
4873 spin_lock(&ss->id_lock);
4874 idr_remove(&ss->idr, id->id);
4875 spin_unlock(&ss->id_lock);
4876 kfree_rcu(id, rcu_head);
4878 EXPORT_SYMBOL_GPL(free_css_id);
4881 * This is called by init or create(). Then, calls to this function are
4882 * always serialized (By cgroup_mutex() at create()).
4885 static struct css_id *get_new_cssid(struct cgroup_subsys *ss, int depth)
4887 struct css_id *newid;
4888 int myid, error, size;
4890 BUG_ON(!ss->use_id);
4892 size = sizeof(*newid) + sizeof(unsigned short) * (depth + 1);
4893 newid = kzalloc(size, GFP_KERNEL);
4894 if (!newid)
4895 return ERR_PTR(-ENOMEM);
4896 /* get id */
4897 if (unlikely(!idr_pre_get(&ss->idr, GFP_KERNEL))) {
4898 error = -ENOMEM;
4899 goto err_out;
4901 spin_lock(&ss->id_lock);
4902 /* Don't use 0. allocates an ID of 1-65535 */
4903 error = idr_get_new_above(&ss->idr, newid, 1, &myid);
4904 spin_unlock(&ss->id_lock);
4906 /* Returns error when there are no free spaces for new ID.*/
4907 if (error) {
4908 error = -ENOSPC;
4909 goto err_out;
4911 if (myid > CSS_ID_MAX)
4912 goto remove_idr;
4914 newid->id = myid;
4915 newid->depth = depth;
4916 return newid;
4917 remove_idr:
4918 error = -ENOSPC;
4919 spin_lock(&ss->id_lock);
4920 idr_remove(&ss->idr, myid);
4921 spin_unlock(&ss->id_lock);
4922 err_out:
4923 kfree(newid);
4924 return ERR_PTR(error);
4928 static int __init_or_module cgroup_init_idr(struct cgroup_subsys *ss,
4929 struct cgroup_subsys_state *rootcss)
4931 struct css_id *newid;
4933 spin_lock_init(&ss->id_lock);
4934 idr_init(&ss->idr);
4936 newid = get_new_cssid(ss, 0);
4937 if (IS_ERR(newid))
4938 return PTR_ERR(newid);
4940 newid->stack[0] = newid->id;
4941 newid->css = rootcss;
4942 rootcss->id = newid;
4943 return 0;
4946 static int alloc_css_id(struct cgroup_subsys *ss, struct cgroup *parent,
4947 struct cgroup *child)
4949 int subsys_id, i, depth = 0;
4950 struct cgroup_subsys_state *parent_css, *child_css;
4951 struct css_id *child_id, *parent_id;
4953 subsys_id = ss->subsys_id;
4954 parent_css = parent->subsys[subsys_id];
4955 child_css = child->subsys[subsys_id];
4956 parent_id = parent_css->id;
4957 depth = parent_id->depth + 1;
4959 child_id = get_new_cssid(ss, depth);
4960 if (IS_ERR(child_id))
4961 return PTR_ERR(child_id);
4963 for (i = 0; i < depth; i++)
4964 child_id->stack[i] = parent_id->stack[i];
4965 child_id->stack[depth] = child_id->id;
4967 * child_id->css pointer will be set after this cgroup is available
4968 * see cgroup_populate_dir()
4970 rcu_assign_pointer(child_css->id, child_id);
4972 return 0;
4976 * css_lookup - lookup css by id
4977 * @ss: cgroup subsys to be looked into.
4978 * @id: the id
4980 * Returns pointer to cgroup_subsys_state if there is valid one with id.
4981 * NULL if not. Should be called under rcu_read_lock()
4983 struct cgroup_subsys_state *css_lookup(struct cgroup_subsys *ss, int id)
4985 struct css_id *cssid = NULL;
4987 BUG_ON(!ss->use_id);
4988 cssid = idr_find(&ss->idr, id);
4990 if (unlikely(!cssid))
4991 return NULL;
4993 return rcu_dereference(cssid->css);
4995 EXPORT_SYMBOL_GPL(css_lookup);
4998 * css_get_next - lookup next cgroup under specified hierarchy.
4999 * @ss: pointer to subsystem
5000 * @id: current position of iteration.
5001 * @root: pointer to css. search tree under this.
5002 * @foundid: position of found object.
5004 * Search next css under the specified hierarchy of rootid. Calling under
5005 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
5007 struct cgroup_subsys_state *
5008 css_get_next(struct cgroup_subsys *ss, int id,
5009 struct cgroup_subsys_state *root, int *foundid)
5011 struct cgroup_subsys_state *ret = NULL;
5012 struct css_id *tmp;
5013 int tmpid;
5014 int rootid = css_id(root);
5015 int depth = css_depth(root);
5017 if (!rootid)
5018 return NULL;
5020 BUG_ON(!ss->use_id);
5021 /* fill start point for scan */
5022 tmpid = id;
5023 while (1) {
5025 * scan next entry from bitmap(tree), tmpid is updated after
5026 * idr_get_next().
5028 spin_lock(&ss->id_lock);
5029 tmp = idr_get_next(&ss->idr, &tmpid);
5030 spin_unlock(&ss->id_lock);
5032 if (!tmp)
5033 break;
5034 if (tmp->depth >= depth && tmp->stack[depth] == rootid) {
5035 ret = rcu_dereference(tmp->css);
5036 if (ret) {
5037 *foundid = tmpid;
5038 break;
5041 /* continue to scan from next id */
5042 tmpid = tmpid + 1;
5044 return ret;
5048 * get corresponding css from file open on cgroupfs directory
5050 struct cgroup_subsys_state *cgroup_css_from_dir(struct file *f, int id)
5052 struct cgroup *cgrp;
5053 struct inode *inode;
5054 struct cgroup_subsys_state *css;
5056 inode = f->f_dentry->d_inode;
5057 /* check in cgroup filesystem dir */
5058 if (inode->i_op != &cgroup_dir_inode_operations)
5059 return ERR_PTR(-EBADF);
5061 if (id < 0 || id >= CGROUP_SUBSYS_COUNT)
5062 return ERR_PTR(-EINVAL);
5064 /* get cgroup */
5065 cgrp = __d_cgrp(f->f_dentry);
5066 css = cgrp->subsys[id];
5067 return css ? css : ERR_PTR(-ENOENT);
5070 #ifdef CONFIG_CGROUP_DEBUG
5071 static struct cgroup_subsys_state *debug_create(struct cgroup_subsys *ss,
5072 struct cgroup *cont)
5074 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5076 if (!css)
5077 return ERR_PTR(-ENOMEM);
5079 return css;
5082 static void debug_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
5084 kfree(cont->subsys[debug_subsys_id]);
5087 static u64 cgroup_refcount_read(struct cgroup *cont, struct cftype *cft)
5089 return atomic_read(&cont->count);
5092 static u64 debug_taskcount_read(struct cgroup *cont, struct cftype *cft)
5094 return cgroup_task_count(cont);
5097 static u64 current_css_set_read(struct cgroup *cont, struct cftype *cft)
5099 return (u64)(unsigned long)current->cgroups;
5102 static u64 current_css_set_refcount_read(struct cgroup *cont,
5103 struct cftype *cft)
5105 u64 count;
5107 rcu_read_lock();
5108 count = atomic_read(&current->cgroups->refcount);
5109 rcu_read_unlock();
5110 return count;
5113 static int current_css_set_cg_links_read(struct cgroup *cont,
5114 struct cftype *cft,
5115 struct seq_file *seq)
5117 struct cg_cgroup_link *link;
5118 struct css_set *cg;
5120 read_lock(&css_set_lock);
5121 rcu_read_lock();
5122 cg = rcu_dereference(current->cgroups);
5123 list_for_each_entry(link, &cg->cg_links, cg_link_list) {
5124 struct cgroup *c = link->cgrp;
5125 const char *name;
5127 if (c->dentry)
5128 name = c->dentry->d_name.name;
5129 else
5130 name = "?";
5131 seq_printf(seq, "Root %d group %s\n",
5132 c->root->hierarchy_id, name);
5134 rcu_read_unlock();
5135 read_unlock(&css_set_lock);
5136 return 0;
5139 #define MAX_TASKS_SHOWN_PER_CSS 25
5140 static int cgroup_css_links_read(struct cgroup *cont,
5141 struct cftype *cft,
5142 struct seq_file *seq)
5144 struct cg_cgroup_link *link;
5146 read_lock(&css_set_lock);
5147 list_for_each_entry(link, &cont->css_sets, cgrp_link_list) {
5148 struct css_set *cg = link->cg;
5149 struct task_struct *task;
5150 int count = 0;
5151 seq_printf(seq, "css_set %p\n", cg);
5152 list_for_each_entry(task, &cg->tasks, cg_list) {
5153 if (count++ > MAX_TASKS_SHOWN_PER_CSS) {
5154 seq_puts(seq, " ...\n");
5155 break;
5156 } else {
5157 seq_printf(seq, " task %d\n",
5158 task_pid_vnr(task));
5162 read_unlock(&css_set_lock);
5163 return 0;
5166 static u64 releasable_read(struct cgroup *cgrp, struct cftype *cft)
5168 return test_bit(CGRP_RELEASABLE, &cgrp->flags);
5171 static struct cftype debug_files[] = {
5173 .name = "cgroup_refcount",
5174 .read_u64 = cgroup_refcount_read,
5177 .name = "taskcount",
5178 .read_u64 = debug_taskcount_read,
5182 .name = "current_css_set",
5183 .read_u64 = current_css_set_read,
5187 .name = "current_css_set_refcount",
5188 .read_u64 = current_css_set_refcount_read,
5192 .name = "current_css_set_cg_links",
5193 .read_seq_string = current_css_set_cg_links_read,
5197 .name = "cgroup_css_links",
5198 .read_seq_string = cgroup_css_links_read,
5202 .name = "releasable",
5203 .read_u64 = releasable_read,
5207 static int debug_populate(struct cgroup_subsys *ss, struct cgroup *cont)
5209 return cgroup_add_files(cont, ss, debug_files,
5210 ARRAY_SIZE(debug_files));
5213 struct cgroup_subsys debug_subsys = {
5214 .name = "debug",
5215 .create = debug_create,
5216 .destroy = debug_destroy,
5217 .populate = debug_populate,
5218 .subsys_id = debug_subsys_id,
5220 #endif /* CONFIG_CGROUP_DEBUG */