4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
53 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
55 EXPORT_SYMBOL(jiffies_64
);
58 * per-CPU timer vector definitions:
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
66 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
69 struct list_head vec
[TVN_SIZE
];
73 struct list_head vec
[TVR_SIZE
];
78 struct timer_list
*running_timer
;
79 unsigned long timer_jiffies
;
80 unsigned long next_timer
;
86 } ____cacheline_aligned
;
88 struct tvec_base boot_tvec_bases
;
89 EXPORT_SYMBOL(boot_tvec_bases
);
90 static DEFINE_PER_CPU(struct tvec_base
*, tvec_bases
) = &boot_tvec_bases
;
92 /* Functions below help us manage 'deferrable' flag */
93 static inline unsigned int tbase_get_deferrable(struct tvec_base
*base
)
95 return ((unsigned int)(unsigned long)base
& TBASE_DEFERRABLE_FLAG
);
98 static inline struct tvec_base
*tbase_get_base(struct tvec_base
*base
)
100 return ((struct tvec_base
*)((unsigned long)base
& ~TBASE_DEFERRABLE_FLAG
));
103 static inline void timer_set_deferrable(struct timer_list
*timer
)
105 timer
->base
= TBASE_MAKE_DEFERRED(timer
->base
);
109 timer_set_base(struct timer_list
*timer
, struct tvec_base
*new_base
)
111 timer
->base
= (struct tvec_base
*)((unsigned long)(new_base
) |
112 tbase_get_deferrable(timer
->base
));
115 static unsigned long round_jiffies_common(unsigned long j
, int cpu
,
119 unsigned long original
= j
;
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
138 * But never round down if @force_up is set.
140 if (rem
< HZ
/4 && !force_up
) /* round down */
145 /* now that we have rounded, subtract the extra skew again */
148 if (j
<= jiffies
) /* rounding ate our timeout entirely; */
154 * __round_jiffies - function to round jiffies to a full second
155 * @j: the time in (absolute) jiffies that should be rounded
156 * @cpu: the processor number on which the timeout will happen
158 * __round_jiffies() rounds an absolute time in the future (in jiffies)
159 * up or down to (approximately) full seconds. This is useful for timers
160 * for which the exact time they fire does not matter too much, as long as
161 * they fire approximately every X seconds.
163 * By rounding these timers to whole seconds, all such timers will fire
164 * at the same time, rather than at various times spread out. The goal
165 * of this is to have the CPU wake up less, which saves power.
167 * The exact rounding is skewed for each processor to avoid all
168 * processors firing at the exact same time, which could lead
169 * to lock contention or spurious cache line bouncing.
171 * The return value is the rounded version of the @j parameter.
173 unsigned long __round_jiffies(unsigned long j
, int cpu
)
175 return round_jiffies_common(j
, cpu
, false);
177 EXPORT_SYMBOL_GPL(__round_jiffies
);
180 * __round_jiffies_relative - function to round jiffies to a full second
181 * @j: the time in (relative) jiffies that should be rounded
182 * @cpu: the processor number on which the timeout will happen
184 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
185 * up or down to (approximately) full seconds. This is useful for timers
186 * for which the exact time they fire does not matter too much, as long as
187 * they fire approximately every X seconds.
189 * By rounding these timers to whole seconds, all such timers will fire
190 * at the same time, rather than at various times spread out. The goal
191 * of this is to have the CPU wake up less, which saves power.
193 * The exact rounding is skewed for each processor to avoid all
194 * processors firing at the exact same time, which could lead
195 * to lock contention or spurious cache line bouncing.
197 * The return value is the rounded version of the @j parameter.
199 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
201 unsigned long j0
= jiffies
;
203 /* Use j0 because jiffies might change while we run */
204 return round_jiffies_common(j
+ j0
, cpu
, false) - j0
;
206 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
209 * round_jiffies - function to round jiffies to a full second
210 * @j: the time in (absolute) jiffies that should be rounded
212 * round_jiffies() rounds an absolute time in the future (in jiffies)
213 * up or down to (approximately) full seconds. This is useful for timers
214 * for which the exact time they fire does not matter too much, as long as
215 * they fire approximately every X seconds.
217 * By rounding these timers to whole seconds, all such timers will fire
218 * at the same time, rather than at various times spread out. The goal
219 * of this is to have the CPU wake up less, which saves power.
221 * The return value is the rounded version of the @j parameter.
223 unsigned long round_jiffies(unsigned long j
)
225 return round_jiffies_common(j
, raw_smp_processor_id(), false);
227 EXPORT_SYMBOL_GPL(round_jiffies
);
230 * round_jiffies_relative - function to round jiffies to a full second
231 * @j: the time in (relative) jiffies that should be rounded
233 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
234 * up or down to (approximately) full seconds. This is useful for timers
235 * for which the exact time they fire does not matter too much, as long as
236 * they fire approximately every X seconds.
238 * By rounding these timers to whole seconds, all such timers will fire
239 * at the same time, rather than at various times spread out. The goal
240 * of this is to have the CPU wake up less, which saves power.
242 * The return value is the rounded version of the @j parameter.
244 unsigned long round_jiffies_relative(unsigned long j
)
246 return __round_jiffies_relative(j
, raw_smp_processor_id());
248 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
251 * __round_jiffies_up - function to round jiffies up to a full second
252 * @j: the time in (absolute) jiffies that should be rounded
253 * @cpu: the processor number on which the timeout will happen
255 * This is the same as __round_jiffies() except that it will never
256 * round down. This is useful for timeouts for which the exact time
257 * of firing does not matter too much, as long as they don't fire too
260 unsigned long __round_jiffies_up(unsigned long j
, int cpu
)
262 return round_jiffies_common(j
, cpu
, true);
264 EXPORT_SYMBOL_GPL(__round_jiffies_up
);
267 * __round_jiffies_up_relative - function to round jiffies up to a full second
268 * @j: the time in (relative) jiffies that should be rounded
269 * @cpu: the processor number on which the timeout will happen
271 * This is the same as __round_jiffies_relative() except that it will never
272 * round down. This is useful for timeouts for which the exact time
273 * of firing does not matter too much, as long as they don't fire too
276 unsigned long __round_jiffies_up_relative(unsigned long j
, int cpu
)
278 unsigned long j0
= jiffies
;
280 /* Use j0 because jiffies might change while we run */
281 return round_jiffies_common(j
+ j0
, cpu
, true) - j0
;
283 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative
);
286 * round_jiffies_up - function to round jiffies up to a full second
287 * @j: the time in (absolute) jiffies that should be rounded
289 * This is the same as round_jiffies() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
294 unsigned long round_jiffies_up(unsigned long j
)
296 return round_jiffies_common(j
, raw_smp_processor_id(), true);
298 EXPORT_SYMBOL_GPL(round_jiffies_up
);
301 * round_jiffies_up_relative - function to round jiffies up to a full second
302 * @j: the time in (relative) jiffies that should be rounded
304 * This is the same as round_jiffies_relative() except that it will never
305 * round down. This is useful for timeouts for which the exact time
306 * of firing does not matter too much, as long as they don't fire too
309 unsigned long round_jiffies_up_relative(unsigned long j
)
311 return __round_jiffies_up_relative(j
, raw_smp_processor_id());
313 EXPORT_SYMBOL_GPL(round_jiffies_up_relative
);
316 * set_timer_slack - set the allowed slack for a timer
317 * @timer: the timer to be modified
318 * @slack_hz: the amount of time (in jiffies) allowed for rounding
320 * Set the amount of time, in jiffies, that a certain timer has
321 * in terms of slack. By setting this value, the timer subsystem
322 * will schedule the actual timer somewhere between
323 * the time mod_timer() asks for, and that time plus the slack.
325 * By setting the slack to -1, a percentage of the delay is used
328 void set_timer_slack(struct timer_list
*timer
, int slack_hz
)
330 timer
->slack
= slack_hz
;
332 EXPORT_SYMBOL_GPL(set_timer_slack
);
334 static void internal_add_timer(struct tvec_base
*base
, struct timer_list
*timer
)
336 unsigned long expires
= timer
->expires
;
337 unsigned long idx
= expires
- base
->timer_jiffies
;
338 struct list_head
*vec
;
340 if (idx
< TVR_SIZE
) {
341 int i
= expires
& TVR_MASK
;
342 vec
= base
->tv1
.vec
+ i
;
343 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
344 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
345 vec
= base
->tv2
.vec
+ i
;
346 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
347 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
348 vec
= base
->tv3
.vec
+ i
;
349 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
350 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
351 vec
= base
->tv4
.vec
+ i
;
352 } else if ((signed long) idx
< 0) {
354 * Can happen if you add a timer with expires == jiffies,
355 * or you set a timer to go off in the past
357 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
360 /* If the timeout is larger than MAX_TVAL (on 64-bit
361 * architectures or with CONFIG_BASE_SMALL=1) then we
362 * use the maximum timeout.
364 if (idx
> MAX_TVAL
) {
366 expires
= idx
+ base
->timer_jiffies
;
368 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
369 vec
= base
->tv5
.vec
+ i
;
374 list_add_tail(&timer
->entry
, vec
);
377 #ifdef CONFIG_TIMER_STATS
378 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
380 if (timer
->start_site
)
383 timer
->start_site
= addr
;
384 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
385 timer
->start_pid
= current
->pid
;
388 static void timer_stats_account_timer(struct timer_list
*timer
)
390 unsigned int flag
= 0;
392 if (likely(!timer
->start_site
))
394 if (unlikely(tbase_get_deferrable(timer
->base
)))
395 flag
|= TIMER_STATS_FLAG_DEFERRABLE
;
397 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
398 timer
->function
, timer
->start_comm
, flag
);
402 static void timer_stats_account_timer(struct timer_list
*timer
) {}
405 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
407 static struct debug_obj_descr timer_debug_descr
;
409 static void *timer_debug_hint(void *addr
)
411 return ((struct timer_list
*) addr
)->function
;
415 * fixup_init is called when:
416 * - an active object is initialized
418 static int timer_fixup_init(void *addr
, enum debug_obj_state state
)
420 struct timer_list
*timer
= addr
;
423 case ODEBUG_STATE_ACTIVE
:
424 del_timer_sync(timer
);
425 debug_object_init(timer
, &timer_debug_descr
);
433 * fixup_activate is called when:
434 * - an active object is activated
435 * - an unknown object is activated (might be a statically initialized object)
437 static int timer_fixup_activate(void *addr
, enum debug_obj_state state
)
439 struct timer_list
*timer
= addr
;
443 case ODEBUG_STATE_NOTAVAILABLE
:
445 * This is not really a fixup. The timer was
446 * statically initialized. We just make sure that it
447 * is tracked in the object tracker.
449 if (timer
->entry
.next
== NULL
&&
450 timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
451 debug_object_init(timer
, &timer_debug_descr
);
452 debug_object_activate(timer
, &timer_debug_descr
);
459 case ODEBUG_STATE_ACTIVE
:
468 * fixup_free is called when:
469 * - an active object is freed
471 static int timer_fixup_free(void *addr
, enum debug_obj_state state
)
473 struct timer_list
*timer
= addr
;
476 case ODEBUG_STATE_ACTIVE
:
477 del_timer_sync(timer
);
478 debug_object_free(timer
, &timer_debug_descr
);
485 static struct debug_obj_descr timer_debug_descr
= {
486 .name
= "timer_list",
487 .debug_hint
= timer_debug_hint
,
488 .fixup_init
= timer_fixup_init
,
489 .fixup_activate
= timer_fixup_activate
,
490 .fixup_free
= timer_fixup_free
,
493 static inline void debug_timer_init(struct timer_list
*timer
)
495 debug_object_init(timer
, &timer_debug_descr
);
498 static inline void debug_timer_activate(struct timer_list
*timer
)
500 debug_object_activate(timer
, &timer_debug_descr
);
503 static inline void debug_timer_deactivate(struct timer_list
*timer
)
505 debug_object_deactivate(timer
, &timer_debug_descr
);
508 static inline void debug_timer_free(struct timer_list
*timer
)
510 debug_object_free(timer
, &timer_debug_descr
);
513 static void __init_timer(struct timer_list
*timer
,
515 struct lock_class_key
*key
);
517 void init_timer_on_stack_key(struct timer_list
*timer
,
519 struct lock_class_key
*key
)
521 debug_object_init_on_stack(timer
, &timer_debug_descr
);
522 __init_timer(timer
, name
, key
);
524 EXPORT_SYMBOL_GPL(init_timer_on_stack_key
);
526 void destroy_timer_on_stack(struct timer_list
*timer
)
528 debug_object_free(timer
, &timer_debug_descr
);
530 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
533 static inline void debug_timer_init(struct timer_list
*timer
) { }
534 static inline void debug_timer_activate(struct timer_list
*timer
) { }
535 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
538 static inline void debug_init(struct timer_list
*timer
)
540 debug_timer_init(timer
);
541 trace_timer_init(timer
);
545 debug_activate(struct timer_list
*timer
, unsigned long expires
)
547 debug_timer_activate(timer
);
548 trace_timer_start(timer
, expires
);
551 static inline void debug_deactivate(struct timer_list
*timer
)
553 debug_timer_deactivate(timer
);
554 trace_timer_cancel(timer
);
557 static void __init_timer(struct timer_list
*timer
,
559 struct lock_class_key
*key
)
561 timer
->entry
.next
= NULL
;
562 timer
->base
= __raw_get_cpu_var(tvec_bases
);
564 #ifdef CONFIG_TIMER_STATS
565 timer
->start_site
= NULL
;
566 timer
->start_pid
= -1;
567 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
569 lockdep_init_map(&timer
->lockdep_map
, name
, key
, 0);
572 void setup_deferrable_timer_on_stack_key(struct timer_list
*timer
,
574 struct lock_class_key
*key
,
575 void (*function
)(unsigned long),
578 timer
->function
= function
;
580 init_timer_on_stack_key(timer
, name
, key
);
581 timer_set_deferrable(timer
);
583 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key
);
586 * init_timer_key - initialize a timer
587 * @timer: the timer to be initialized
588 * @name: name of the timer
589 * @key: lockdep class key of the fake lock used for tracking timer
590 * sync lock dependencies
592 * init_timer_key() must be done to a timer prior calling *any* of the
593 * other timer functions.
595 void init_timer_key(struct timer_list
*timer
,
597 struct lock_class_key
*key
)
600 __init_timer(timer
, name
, key
);
602 EXPORT_SYMBOL(init_timer_key
);
604 void init_timer_deferrable_key(struct timer_list
*timer
,
606 struct lock_class_key
*key
)
608 init_timer_key(timer
, name
, key
);
609 timer_set_deferrable(timer
);
611 EXPORT_SYMBOL(init_timer_deferrable_key
);
613 static inline void detach_timer(struct timer_list
*timer
,
616 struct list_head
*entry
= &timer
->entry
;
618 debug_deactivate(timer
);
620 __list_del(entry
->prev
, entry
->next
);
623 entry
->prev
= LIST_POISON2
;
627 * We are using hashed locking: holding per_cpu(tvec_bases).lock
628 * means that all timers which are tied to this base via timer->base are
629 * locked, and the base itself is locked too.
631 * So __run_timers/migrate_timers can safely modify all timers which could
632 * be found on ->tvX lists.
634 * When the timer's base is locked, and the timer removed from list, it is
635 * possible to set timer->base = NULL and drop the lock: the timer remains
638 static struct tvec_base
*lock_timer_base(struct timer_list
*timer
,
639 unsigned long *flags
)
640 __acquires(timer
->base
->lock
)
642 struct tvec_base
*base
;
645 struct tvec_base
*prelock_base
= timer
->base
;
646 base
= tbase_get_base(prelock_base
);
647 if (likely(base
!= NULL
)) {
648 spin_lock_irqsave(&base
->lock
, *flags
);
649 if (likely(prelock_base
== timer
->base
))
651 /* The timer has migrated to another CPU */
652 spin_unlock_irqrestore(&base
->lock
, *flags
);
659 __mod_timer(struct timer_list
*timer
, unsigned long expires
,
660 bool pending_only
, int pinned
)
662 struct tvec_base
*base
, *new_base
;
666 timer_stats_timer_set_start_info(timer
);
667 BUG_ON(!timer
->function
);
669 base
= lock_timer_base(timer
, &flags
);
671 if (timer_pending(timer
)) {
672 detach_timer(timer
, 0);
673 if (timer
->expires
== base
->next_timer
&&
674 !tbase_get_deferrable(timer
->base
))
675 base
->next_timer
= base
->timer_jiffies
;
682 debug_activate(timer
, expires
);
684 cpu
= smp_processor_id();
686 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
687 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(cpu
))
688 cpu
= get_nohz_timer_target();
690 new_base
= per_cpu(tvec_bases
, cpu
);
692 if (base
!= new_base
) {
694 * We are trying to schedule the timer on the local CPU.
695 * However we can't change timer's base while it is running,
696 * otherwise del_timer_sync() can't detect that the timer's
697 * handler yet has not finished. This also guarantees that
698 * the timer is serialized wrt itself.
700 if (likely(base
->running_timer
!= timer
)) {
701 /* See the comment in lock_timer_base() */
702 timer_set_base(timer
, NULL
);
703 spin_unlock(&base
->lock
);
705 spin_lock(&base
->lock
);
706 timer_set_base(timer
, base
);
710 timer
->expires
= expires
;
711 if (time_before(timer
->expires
, base
->next_timer
) &&
712 !tbase_get_deferrable(timer
->base
))
713 base
->next_timer
= timer
->expires
;
714 internal_add_timer(base
, timer
);
717 spin_unlock_irqrestore(&base
->lock
, flags
);
723 * mod_timer_pending - modify a pending timer's timeout
724 * @timer: the pending timer to be modified
725 * @expires: new timeout in jiffies
727 * mod_timer_pending() is the same for pending timers as mod_timer(),
728 * but will not re-activate and modify already deleted timers.
730 * It is useful for unserialized use of timers.
732 int mod_timer_pending(struct timer_list
*timer
, unsigned long expires
)
734 return __mod_timer(timer
, expires
, true, TIMER_NOT_PINNED
);
736 EXPORT_SYMBOL(mod_timer_pending
);
739 * Decide where to put the timer while taking the slack into account
742 * 1) calculate the maximum (absolute) time
743 * 2) calculate the highest bit where the expires and new max are different
744 * 3) use this bit to make a mask
745 * 4) use the bitmask to round down the maximum time, so that all last
749 unsigned long apply_slack(struct timer_list
*timer
, unsigned long expires
)
751 unsigned long expires_limit
, mask
;
754 if (timer
->slack
>= 0) {
755 expires_limit
= expires
+ timer
->slack
;
757 long delta
= expires
- jiffies
;
762 expires_limit
= expires
+ delta
/ 256;
764 mask
= expires
^ expires_limit
;
768 bit
= find_last_bit(&mask
, BITS_PER_LONG
);
770 mask
= (1 << bit
) - 1;
772 expires_limit
= expires_limit
& ~(mask
);
774 return expires_limit
;
778 * mod_timer - modify a timer's timeout
779 * @timer: the timer to be modified
780 * @expires: new timeout in jiffies
782 * mod_timer() is a more efficient way to update the expire field of an
783 * active timer (if the timer is inactive it will be activated)
785 * mod_timer(timer, expires) is equivalent to:
787 * del_timer(timer); timer->expires = expires; add_timer(timer);
789 * Note that if there are multiple unserialized concurrent users of the
790 * same timer, then mod_timer() is the only safe way to modify the timeout,
791 * since add_timer() cannot modify an already running timer.
793 * The function returns whether it has modified a pending timer or not.
794 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
795 * active timer returns 1.)
797 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
799 expires
= apply_slack(timer
, expires
);
802 * This is a common optimization triggered by the
803 * networking code - if the timer is re-modified
804 * to be the same thing then just return:
806 if (timer_pending(timer
) && timer
->expires
== expires
)
809 return __mod_timer(timer
, expires
, false, TIMER_NOT_PINNED
);
811 EXPORT_SYMBOL(mod_timer
);
814 * mod_timer_pinned - modify a timer's timeout
815 * @timer: the timer to be modified
816 * @expires: new timeout in jiffies
818 * mod_timer_pinned() is a way to update the expire field of an
819 * active timer (if the timer is inactive it will be activated)
820 * and not allow the timer to be migrated to a different CPU.
822 * mod_timer_pinned(timer, expires) is equivalent to:
824 * del_timer(timer); timer->expires = expires; add_timer(timer);
826 int mod_timer_pinned(struct timer_list
*timer
, unsigned long expires
)
828 if (timer
->expires
== expires
&& timer_pending(timer
))
831 return __mod_timer(timer
, expires
, false, TIMER_PINNED
);
833 EXPORT_SYMBOL(mod_timer_pinned
);
836 * add_timer - start a timer
837 * @timer: the timer to be added
839 * The kernel will do a ->function(->data) callback from the
840 * timer interrupt at the ->expires point in the future. The
841 * current time is 'jiffies'.
843 * The timer's ->expires, ->function (and if the handler uses it, ->data)
844 * fields must be set prior calling this function.
846 * Timers with an ->expires field in the past will be executed in the next
849 void add_timer(struct timer_list
*timer
)
851 BUG_ON(timer_pending(timer
));
852 mod_timer(timer
, timer
->expires
);
854 EXPORT_SYMBOL(add_timer
);
857 * add_timer_on - start a timer on a particular CPU
858 * @timer: the timer to be added
859 * @cpu: the CPU to start it on
861 * This is not very scalable on SMP. Double adds are not possible.
863 void add_timer_on(struct timer_list
*timer
, int cpu
)
865 struct tvec_base
*base
= per_cpu(tvec_bases
, cpu
);
868 timer_stats_timer_set_start_info(timer
);
869 BUG_ON(timer_pending(timer
) || !timer
->function
);
870 spin_lock_irqsave(&base
->lock
, flags
);
871 timer_set_base(timer
, base
);
872 debug_activate(timer
, timer
->expires
);
873 if (time_before(timer
->expires
, base
->next_timer
) &&
874 !tbase_get_deferrable(timer
->base
))
875 base
->next_timer
= timer
->expires
;
876 internal_add_timer(base
, timer
);
878 * Check whether the other CPU is idle and needs to be
879 * triggered to reevaluate the timer wheel when nohz is
880 * active. We are protected against the other CPU fiddling
881 * with the timer by holding the timer base lock. This also
882 * makes sure that a CPU on the way to idle can not evaluate
885 wake_up_idle_cpu(cpu
);
886 spin_unlock_irqrestore(&base
->lock
, flags
);
888 EXPORT_SYMBOL_GPL(add_timer_on
);
891 * del_timer - deactive a timer.
892 * @timer: the timer to be deactivated
894 * del_timer() deactivates a timer - this works on both active and inactive
897 * The function returns whether it has deactivated a pending timer or not.
898 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
899 * active timer returns 1.)
901 int del_timer(struct timer_list
*timer
)
903 struct tvec_base
*base
;
907 timer_stats_timer_clear_start_info(timer
);
908 if (timer_pending(timer
)) {
909 base
= lock_timer_base(timer
, &flags
);
910 if (timer_pending(timer
)) {
911 detach_timer(timer
, 1);
912 if (timer
->expires
== base
->next_timer
&&
913 !tbase_get_deferrable(timer
->base
))
914 base
->next_timer
= base
->timer_jiffies
;
917 spin_unlock_irqrestore(&base
->lock
, flags
);
922 EXPORT_SYMBOL(del_timer
);
925 * try_to_del_timer_sync - Try to deactivate a timer
926 * @timer: timer do del
928 * This function tries to deactivate a timer. Upon successful (ret >= 0)
929 * exit the timer is not queued and the handler is not running on any CPU.
931 int try_to_del_timer_sync(struct timer_list
*timer
)
933 struct tvec_base
*base
;
937 base
= lock_timer_base(timer
, &flags
);
939 if (base
->running_timer
== timer
)
942 timer_stats_timer_clear_start_info(timer
);
944 if (timer_pending(timer
)) {
945 detach_timer(timer
, 1);
946 if (timer
->expires
== base
->next_timer
&&
947 !tbase_get_deferrable(timer
->base
))
948 base
->next_timer
= base
->timer_jiffies
;
952 spin_unlock_irqrestore(&base
->lock
, flags
);
956 EXPORT_SYMBOL(try_to_del_timer_sync
);
960 * del_timer_sync - deactivate a timer and wait for the handler to finish.
961 * @timer: the timer to be deactivated
963 * This function only differs from del_timer() on SMP: besides deactivating
964 * the timer it also makes sure the handler has finished executing on other
967 * Synchronization rules: Callers must prevent restarting of the timer,
968 * otherwise this function is meaningless. It must not be called from
969 * interrupt contexts. The caller must not hold locks which would prevent
970 * completion of the timer's handler. The timer's handler must not call
971 * add_timer_on(). Upon exit the timer is not queued and the handler is
972 * not running on any CPU.
974 * Note: You must not hold locks that are held in interrupt context
975 * while calling this function. Even if the lock has nothing to do
976 * with the timer in question. Here's why:
982 * base->running_timer = mytimer;
983 * spin_lock_irq(somelock);
985 * spin_lock(somelock);
986 * del_timer_sync(mytimer);
987 * while (base->running_timer == mytimer);
989 * Now del_timer_sync() will never return and never release somelock.
990 * The interrupt on the other CPU is waiting to grab somelock but
991 * it has interrupted the softirq that CPU0 is waiting to finish.
993 * The function returns whether it has deactivated a pending timer or not.
995 int del_timer_sync(struct timer_list
*timer
)
997 #ifdef CONFIG_LOCKDEP
1001 * If lockdep gives a backtrace here, please reference
1002 * the synchronization rules above.
1004 local_irq_save(flags
);
1005 lock_map_acquire(&timer
->lockdep_map
);
1006 lock_map_release(&timer
->lockdep_map
);
1007 local_irq_restore(flags
);
1010 * don't use it in hardirq context, because it
1011 * could lead to deadlock.
1015 int ret
= try_to_del_timer_sync(timer
);
1021 EXPORT_SYMBOL(del_timer_sync
);
1024 static int cascade(struct tvec_base
*base
, struct tvec
*tv
, int index
)
1026 /* cascade all the timers from tv up one level */
1027 struct timer_list
*timer
, *tmp
;
1028 struct list_head tv_list
;
1030 list_replace_init(tv
->vec
+ index
, &tv_list
);
1033 * We are removing _all_ timers from the list, so we
1034 * don't have to detach them individually.
1036 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
1037 BUG_ON(tbase_get_base(timer
->base
) != base
);
1038 internal_add_timer(base
, timer
);
1044 static void call_timer_fn(struct timer_list
*timer
, void (*fn
)(unsigned long),
1047 int preempt_count
= preempt_count();
1049 #ifdef CONFIG_LOCKDEP
1051 * It is permissible to free the timer from inside the
1052 * function that is called from it, this we need to take into
1053 * account for lockdep too. To avoid bogus "held lock freed"
1054 * warnings as well as problems when looking into
1055 * timer->lockdep_map, make a copy and use that here.
1057 struct lockdep_map lockdep_map
= timer
->lockdep_map
;
1060 * Couple the lock chain with the lock chain at
1061 * del_timer_sync() by acquiring the lock_map around the fn()
1062 * call here and in del_timer_sync().
1064 lock_map_acquire(&lockdep_map
);
1066 trace_timer_expire_entry(timer
);
1068 trace_timer_expire_exit(timer
);
1070 lock_map_release(&lockdep_map
);
1072 if (preempt_count
!= preempt_count()) {
1073 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1074 fn
, preempt_count
, preempt_count());
1076 * Restore the preempt count. That gives us a decent
1077 * chance to survive and extract information. If the
1078 * callback kept a lock held, bad luck, but not worse
1079 * than the BUG() we had.
1081 preempt_count() = preempt_count
;
1085 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1088 * __run_timers - run all expired timers (if any) on this CPU.
1089 * @base: the timer vector to be processed.
1091 * This function cascades all vectors and executes all expired timer
1094 static inline void __run_timers(struct tvec_base
*base
)
1096 struct timer_list
*timer
;
1098 spin_lock_irq(&base
->lock
);
1099 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
1100 struct list_head work_list
;
1101 struct list_head
*head
= &work_list
;
1102 int index
= base
->timer_jiffies
& TVR_MASK
;
1108 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
1109 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
1110 !cascade(base
, &base
->tv4
, INDEX(2)))
1111 cascade(base
, &base
->tv5
, INDEX(3));
1112 ++base
->timer_jiffies
;
1113 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
1114 while (!list_empty(head
)) {
1115 void (*fn
)(unsigned long);
1118 timer
= list_first_entry(head
, struct timer_list
,entry
);
1119 fn
= timer
->function
;
1122 timer_stats_account_timer(timer
);
1124 base
->running_timer
= timer
;
1125 detach_timer(timer
, 1);
1127 spin_unlock_irq(&base
->lock
);
1128 call_timer_fn(timer
, fn
, data
);
1129 spin_lock_irq(&base
->lock
);
1132 base
->running_timer
= NULL
;
1133 spin_unlock_irq(&base
->lock
);
1138 * Find out when the next timer event is due to happen. This
1139 * is used on S/390 to stop all activity when a CPU is idle.
1140 * This function needs to be called with interrupts disabled.
1142 static unsigned long __next_timer_interrupt(struct tvec_base
*base
)
1144 unsigned long timer_jiffies
= base
->timer_jiffies
;
1145 unsigned long expires
= timer_jiffies
+ NEXT_TIMER_MAX_DELTA
;
1146 int index
, slot
, array
, found
= 0;
1147 struct timer_list
*nte
;
1148 struct tvec
*varray
[4];
1150 /* Look for timer events in tv1. */
1151 index
= slot
= timer_jiffies
& TVR_MASK
;
1153 list_for_each_entry(nte
, base
->tv1
.vec
+ slot
, entry
) {
1154 if (tbase_get_deferrable(nte
->base
))
1158 expires
= nte
->expires
;
1159 /* Look at the cascade bucket(s)? */
1160 if (!index
|| slot
< index
)
1164 slot
= (slot
+ 1) & TVR_MASK
;
1165 } while (slot
!= index
);
1168 /* Calculate the next cascade event */
1170 timer_jiffies
+= TVR_SIZE
- index
;
1171 timer_jiffies
>>= TVR_BITS
;
1173 /* Check tv2-tv5. */
1174 varray
[0] = &base
->tv2
;
1175 varray
[1] = &base
->tv3
;
1176 varray
[2] = &base
->tv4
;
1177 varray
[3] = &base
->tv5
;
1179 for (array
= 0; array
< 4; array
++) {
1180 struct tvec
*varp
= varray
[array
];
1182 index
= slot
= timer_jiffies
& TVN_MASK
;
1184 list_for_each_entry(nte
, varp
->vec
+ slot
, entry
) {
1185 if (tbase_get_deferrable(nte
->base
))
1189 if (time_before(nte
->expires
, expires
))
1190 expires
= nte
->expires
;
1193 * Do we still search for the first timer or are
1194 * we looking up the cascade buckets ?
1197 /* Look at the cascade bucket(s)? */
1198 if (!index
|| slot
< index
)
1202 slot
= (slot
+ 1) & TVN_MASK
;
1203 } while (slot
!= index
);
1206 timer_jiffies
+= TVN_SIZE
- index
;
1207 timer_jiffies
>>= TVN_BITS
;
1213 * Check, if the next hrtimer event is before the next timer wheel
1216 static unsigned long cmp_next_hrtimer_event(unsigned long now
,
1217 unsigned long expires
)
1219 ktime_t hr_delta
= hrtimer_get_next_event();
1220 struct timespec tsdelta
;
1221 unsigned long delta
;
1223 if (hr_delta
.tv64
== KTIME_MAX
)
1227 * Expired timer available, let it expire in the next tick
1229 if (hr_delta
.tv64
<= 0)
1232 tsdelta
= ktime_to_timespec(hr_delta
);
1233 delta
= timespec_to_jiffies(&tsdelta
);
1236 * Limit the delta to the max value, which is checked in
1237 * tick_nohz_stop_sched_tick():
1239 if (delta
> NEXT_TIMER_MAX_DELTA
)
1240 delta
= NEXT_TIMER_MAX_DELTA
;
1243 * Take rounding errors in to account and make sure, that it
1244 * expires in the next tick. Otherwise we go into an endless
1245 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1251 if (time_before(now
, expires
))
1257 * get_next_timer_interrupt - return the jiffy of the next pending timer
1258 * @now: current time (in jiffies)
1260 unsigned long get_next_timer_interrupt(unsigned long now
)
1262 struct tvec_base
*base
= __this_cpu_read(tvec_bases
);
1263 unsigned long expires
;
1266 * Pretend that there is no timer pending if the cpu is offline.
1267 * Possible pending timers will be migrated later to an active cpu.
1269 if (cpu_is_offline(smp_processor_id()))
1270 return now
+ NEXT_TIMER_MAX_DELTA
;
1271 spin_lock(&base
->lock
);
1272 if (time_before_eq(base
->next_timer
, base
->timer_jiffies
))
1273 base
->next_timer
= __next_timer_interrupt(base
);
1274 expires
= base
->next_timer
;
1275 spin_unlock(&base
->lock
);
1277 if (time_before_eq(expires
, now
))
1280 return cmp_next_hrtimer_event(now
, expires
);
1285 * Called from the timer interrupt handler to charge one tick to the current
1286 * process. user_tick is 1 if the tick is user time, 0 for system.
1288 void update_process_times(int user_tick
)
1290 struct task_struct
*p
= current
;
1291 int cpu
= smp_processor_id();
1293 /* Note: this timer irq context must be accounted for as well. */
1294 account_process_tick(p
, user_tick
);
1296 rcu_check_callbacks(cpu
, user_tick
);
1298 #ifdef CONFIG_IRQ_WORK
1303 run_posix_cpu_timers(p
);
1307 * This function runs timers and the timer-tq in bottom half context.
1309 static void run_timer_softirq(struct softirq_action
*h
)
1311 struct tvec_base
*base
= __this_cpu_read(tvec_bases
);
1313 hrtimer_run_pending();
1315 if (time_after_eq(jiffies
, base
->timer_jiffies
))
1320 * Called by the local, per-CPU timer interrupt on SMP.
1322 void run_local_timers(void)
1324 hrtimer_run_queues();
1325 raise_softirq(TIMER_SOFTIRQ
);
1328 #ifdef __ARCH_WANT_SYS_ALARM
1331 * For backwards compatibility? This can be done in libc so Alpha
1332 * and all newer ports shouldn't need it.
1334 SYSCALL_DEFINE1(alarm
, unsigned int, seconds
)
1336 return alarm_setitimer(seconds
);
1344 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1345 * should be moved into arch/i386 instead?
1349 * sys_getpid - return the thread group id of the current process
1351 * Note, despite the name, this returns the tgid not the pid. The tgid and
1352 * the pid are identical unless CLONE_THREAD was specified on clone() in
1353 * which case the tgid is the same in all threads of the same group.
1355 * This is SMP safe as current->tgid does not change.
1357 SYSCALL_DEFINE0(getpid
)
1359 return task_tgid_vnr(current
);
1363 * Accessing ->real_parent is not SMP-safe, it could
1364 * change from under us. However, we can use a stale
1365 * value of ->real_parent under rcu_read_lock(), see
1366 * release_task()->call_rcu(delayed_put_task_struct).
1368 SYSCALL_DEFINE0(getppid
)
1373 pid
= task_tgid_vnr(current
->real_parent
);
1379 SYSCALL_DEFINE0(getuid
)
1381 /* Only we change this so SMP safe */
1382 return current_uid();
1385 SYSCALL_DEFINE0(geteuid
)
1387 /* Only we change this so SMP safe */
1388 return current_euid();
1391 SYSCALL_DEFINE0(getgid
)
1393 /* Only we change this so SMP safe */
1394 return current_gid();
1397 SYSCALL_DEFINE0(getegid
)
1399 /* Only we change this so SMP safe */
1400 return current_egid();
1405 static void process_timeout(unsigned long __data
)
1407 wake_up_process((struct task_struct
*)__data
);
1411 * schedule_timeout - sleep until timeout
1412 * @timeout: timeout value in jiffies
1414 * Make the current task sleep until @timeout jiffies have
1415 * elapsed. The routine will return immediately unless
1416 * the current task state has been set (see set_current_state()).
1418 * You can set the task state as follows -
1420 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1421 * pass before the routine returns. The routine will return 0
1423 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1424 * delivered to the current task. In this case the remaining time
1425 * in jiffies will be returned, or 0 if the timer expired in time
1427 * The current task state is guaranteed to be TASK_RUNNING when this
1430 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1431 * the CPU away without a bound on the timeout. In this case the return
1432 * value will be %MAX_SCHEDULE_TIMEOUT.
1434 * In all cases the return value is guaranteed to be non-negative.
1436 signed long __sched
schedule_timeout(signed long timeout
)
1438 struct timer_list timer
;
1439 unsigned long expire
;
1443 case MAX_SCHEDULE_TIMEOUT
:
1445 * These two special cases are useful to be comfortable
1446 * in the caller. Nothing more. We could take
1447 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1448 * but I' d like to return a valid offset (>=0) to allow
1449 * the caller to do everything it want with the retval.
1455 * Another bit of PARANOID. Note that the retval will be
1456 * 0 since no piece of kernel is supposed to do a check
1457 * for a negative retval of schedule_timeout() (since it
1458 * should never happens anyway). You just have the printk()
1459 * that will tell you if something is gone wrong and where.
1462 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1463 "value %lx\n", timeout
);
1465 current
->state
= TASK_RUNNING
;
1470 expire
= timeout
+ jiffies
;
1472 setup_timer_on_stack(&timer
, process_timeout
, (unsigned long)current
);
1473 __mod_timer(&timer
, expire
, false, TIMER_NOT_PINNED
);
1475 del_singleshot_timer_sync(&timer
);
1477 /* Remove the timer from the object tracker */
1478 destroy_timer_on_stack(&timer
);
1480 timeout
= expire
- jiffies
;
1483 return timeout
< 0 ? 0 : timeout
;
1485 EXPORT_SYMBOL(schedule_timeout
);
1488 * We can use __set_current_state() here because schedule_timeout() calls
1489 * schedule() unconditionally.
1491 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1493 __set_current_state(TASK_INTERRUPTIBLE
);
1494 return schedule_timeout(timeout
);
1496 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1498 signed long __sched
schedule_timeout_killable(signed long timeout
)
1500 __set_current_state(TASK_KILLABLE
);
1501 return schedule_timeout(timeout
);
1503 EXPORT_SYMBOL(schedule_timeout_killable
);
1505 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1507 __set_current_state(TASK_UNINTERRUPTIBLE
);
1508 return schedule_timeout(timeout
);
1510 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1512 /* Thread ID - the internal kernel "pid" */
1513 SYSCALL_DEFINE0(gettid
)
1515 return task_pid_vnr(current
);
1519 * do_sysinfo - fill in sysinfo struct
1520 * @info: pointer to buffer to fill
1522 int do_sysinfo(struct sysinfo
*info
)
1524 unsigned long mem_total
, sav_total
;
1525 unsigned int mem_unit
, bitcount
;
1528 memset(info
, 0, sizeof(struct sysinfo
));
1531 monotonic_to_bootbased(&tp
);
1532 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1534 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
1536 info
->procs
= nr_threads
;
1542 * If the sum of all the available memory (i.e. ram + swap)
1543 * is less than can be stored in a 32 bit unsigned long then
1544 * we can be binary compatible with 2.2.x kernels. If not,
1545 * well, in that case 2.2.x was broken anyways...
1547 * -Erik Andersen <andersee@debian.org>
1550 mem_total
= info
->totalram
+ info
->totalswap
;
1551 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
1554 mem_unit
= info
->mem_unit
;
1555 while (mem_unit
> 1) {
1558 sav_total
= mem_total
;
1560 if (mem_total
< sav_total
)
1565 * If mem_total did not overflow, multiply all memory values by
1566 * info->mem_unit and set it to 1. This leaves things compatible
1567 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1572 info
->totalram
<<= bitcount
;
1573 info
->freeram
<<= bitcount
;
1574 info
->sharedram
<<= bitcount
;
1575 info
->bufferram
<<= bitcount
;
1576 info
->totalswap
<<= bitcount
;
1577 info
->freeswap
<<= bitcount
;
1578 info
->totalhigh
<<= bitcount
;
1579 info
->freehigh
<<= bitcount
;
1585 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
1591 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1597 static int __cpuinit
init_timers_cpu(int cpu
)
1600 struct tvec_base
*base
;
1601 static char __cpuinitdata tvec_base_done
[NR_CPUS
];
1603 if (!tvec_base_done
[cpu
]) {
1604 static char boot_done
;
1608 * The APs use this path later in boot
1610 base
= kmalloc_node(sizeof(*base
),
1611 GFP_KERNEL
| __GFP_ZERO
,
1616 /* Make sure that tvec_base is 2 byte aligned */
1617 if (tbase_get_deferrable(base
)) {
1622 per_cpu(tvec_bases
, cpu
) = base
;
1625 * This is for the boot CPU - we use compile-time
1626 * static initialisation because per-cpu memory isn't
1627 * ready yet and because the memory allocators are not
1628 * initialised either.
1631 base
= &boot_tvec_bases
;
1633 tvec_base_done
[cpu
] = 1;
1635 base
= per_cpu(tvec_bases
, cpu
);
1638 spin_lock_init(&base
->lock
);
1640 for (j
= 0; j
< TVN_SIZE
; j
++) {
1641 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1642 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1643 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1644 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1646 for (j
= 0; j
< TVR_SIZE
; j
++)
1647 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1649 base
->timer_jiffies
= jiffies
;
1650 base
->next_timer
= base
->timer_jiffies
;
1654 #ifdef CONFIG_HOTPLUG_CPU
1655 static void migrate_timer_list(struct tvec_base
*new_base
, struct list_head
*head
)
1657 struct timer_list
*timer
;
1659 while (!list_empty(head
)) {
1660 timer
= list_first_entry(head
, struct timer_list
, entry
);
1661 detach_timer(timer
, 0);
1662 timer_set_base(timer
, new_base
);
1663 if (time_before(timer
->expires
, new_base
->next_timer
) &&
1664 !tbase_get_deferrable(timer
->base
))
1665 new_base
->next_timer
= timer
->expires
;
1666 internal_add_timer(new_base
, timer
);
1670 static void __cpuinit
migrate_timers(int cpu
)
1672 struct tvec_base
*old_base
;
1673 struct tvec_base
*new_base
;
1676 BUG_ON(cpu_online(cpu
));
1677 old_base
= per_cpu(tvec_bases
, cpu
);
1678 new_base
= get_cpu_var(tvec_bases
);
1680 * The caller is globally serialized and nobody else
1681 * takes two locks at once, deadlock is not possible.
1683 spin_lock_irq(&new_base
->lock
);
1684 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1686 BUG_ON(old_base
->running_timer
);
1688 for (i
= 0; i
< TVR_SIZE
; i
++)
1689 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1690 for (i
= 0; i
< TVN_SIZE
; i
++) {
1691 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1692 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1693 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1694 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1697 spin_unlock(&old_base
->lock
);
1698 spin_unlock_irq(&new_base
->lock
);
1699 put_cpu_var(tvec_bases
);
1701 #endif /* CONFIG_HOTPLUG_CPU */
1703 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1704 unsigned long action
, void *hcpu
)
1706 long cpu
= (long)hcpu
;
1710 case CPU_UP_PREPARE
:
1711 case CPU_UP_PREPARE_FROZEN
:
1712 err
= init_timers_cpu(cpu
);
1714 return notifier_from_errno(err
);
1716 #ifdef CONFIG_HOTPLUG_CPU
1718 case CPU_DEAD_FROZEN
:
1719 migrate_timers(cpu
);
1728 static struct notifier_block __cpuinitdata timers_nb
= {
1729 .notifier_call
= timer_cpu_notify
,
1733 void __init
init_timers(void)
1735 int err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1736 (void *)(long)smp_processor_id());
1740 BUG_ON(err
!= NOTIFY_OK
);
1741 register_cpu_notifier(&timers_nb
);
1742 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
1746 * msleep - sleep safely even with waitqueue interruptions
1747 * @msecs: Time in milliseconds to sleep for
1749 void msleep(unsigned int msecs
)
1751 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1754 timeout
= schedule_timeout_uninterruptible(timeout
);
1757 EXPORT_SYMBOL(msleep
);
1760 * msleep_interruptible - sleep waiting for signals
1761 * @msecs: Time in milliseconds to sleep for
1763 unsigned long msleep_interruptible(unsigned int msecs
)
1765 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1767 while (timeout
&& !signal_pending(current
))
1768 timeout
= schedule_timeout_interruptible(timeout
);
1769 return jiffies_to_msecs(timeout
);
1772 EXPORT_SYMBOL(msleep_interruptible
);
1774 static int __sched
do_usleep_range(unsigned long min
, unsigned long max
)
1777 unsigned long delta
;
1779 kmin
= ktime_set(0, min
* NSEC_PER_USEC
);
1780 delta
= (max
- min
) * NSEC_PER_USEC
;
1781 return schedule_hrtimeout_range(&kmin
, delta
, HRTIMER_MODE_REL
);
1785 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1786 * @min: Minimum time in usecs to sleep
1787 * @max: Maximum time in usecs to sleep
1789 void usleep_range(unsigned long min
, unsigned long max
)
1791 __set_current_state(TASK_UNINTERRUPTIBLE
);
1792 do_usleep_range(min
, max
);
1794 EXPORT_SYMBOL(usleep_range
);