ext4: fix oops on corrupted filesystem
[linux/fpc-iii.git] / fs / btrfs / send.c
blob8d358c547c59fd8d010d27cf1180a04d51be5fe5
1 /*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
20 #include <linux/fs.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
30 #include "send.h"
31 #include "backref.h"
32 #include "hash.h"
33 #include "locking.h"
34 #include "disk-io.h"
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
39 static int g_verbose = 0;
41 #define verbose_printk(...) if (g_verbose) printk(__VA_ARGS__)
44 * A fs_path is a helper to dynamically build path names with unknown size.
45 * It reallocates the internal buffer on demand.
46 * It allows fast adding of path elements on the right side (normal path) and
47 * fast adding to the left side (reversed path). A reversed path can also be
48 * unreversed if needed.
50 struct fs_path {
51 union {
52 struct {
53 char *start;
54 char *end;
56 char *buf;
57 unsigned short buf_len:15;
58 unsigned short reversed:1;
59 char inline_buf[];
62 * Average path length does not exceed 200 bytes, we'll have
63 * better packing in the slab and higher chance to satisfy
64 * a allocation later during send.
66 char pad[256];
69 #define FS_PATH_INLINE_SIZE \
70 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
73 /* reused for each extent */
74 struct clone_root {
75 struct btrfs_root *root;
76 u64 ino;
77 u64 offset;
79 u64 found_refs;
82 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
83 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
85 struct send_ctx {
86 struct file *send_filp;
87 loff_t send_off;
88 char *send_buf;
89 u32 send_size;
90 u32 send_max_size;
91 u64 total_send_size;
92 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
93 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
95 struct btrfs_root *send_root;
96 struct btrfs_root *parent_root;
97 struct clone_root *clone_roots;
98 int clone_roots_cnt;
100 /* current state of the compare_tree call */
101 struct btrfs_path *left_path;
102 struct btrfs_path *right_path;
103 struct btrfs_key *cmp_key;
106 * infos of the currently processed inode. In case of deleted inodes,
107 * these are the values from the deleted inode.
109 u64 cur_ino;
110 u64 cur_inode_gen;
111 int cur_inode_new;
112 int cur_inode_new_gen;
113 int cur_inode_deleted;
114 u64 cur_inode_size;
115 u64 cur_inode_mode;
116 u64 cur_inode_rdev;
117 u64 cur_inode_last_extent;
119 u64 send_progress;
121 struct list_head new_refs;
122 struct list_head deleted_refs;
124 struct radix_tree_root name_cache;
125 struct list_head name_cache_list;
126 int name_cache_size;
128 struct file_ra_state ra;
130 char *read_buf;
133 * We process inodes by their increasing order, so if before an
134 * incremental send we reverse the parent/child relationship of
135 * directories such that a directory with a lower inode number was
136 * the parent of a directory with a higher inode number, and the one
137 * becoming the new parent got renamed too, we can't rename/move the
138 * directory with lower inode number when we finish processing it - we
139 * must process the directory with higher inode number first, then
140 * rename/move it and then rename/move the directory with lower inode
141 * number. Example follows.
143 * Tree state when the first send was performed:
146 * |-- a (ino 257)
147 * |-- b (ino 258)
150 * |-- c (ino 259)
151 * | |-- d (ino 260)
153 * |-- c2 (ino 261)
155 * Tree state when the second (incremental) send is performed:
158 * |-- a (ino 257)
159 * |-- b (ino 258)
160 * |-- c2 (ino 261)
161 * |-- d2 (ino 260)
162 * |-- cc (ino 259)
164 * The sequence of steps that lead to the second state was:
166 * mv /a/b/c/d /a/b/c2/d2
167 * mv /a/b/c /a/b/c2/d2/cc
169 * "c" has lower inode number, but we can't move it (2nd mv operation)
170 * before we move "d", which has higher inode number.
172 * So we just memorize which move/rename operations must be performed
173 * later when their respective parent is processed and moved/renamed.
176 /* Indexed by parent directory inode number. */
177 struct rb_root pending_dir_moves;
180 * Reverse index, indexed by the inode number of a directory that
181 * is waiting for the move/rename of its immediate parent before its
182 * own move/rename can be performed.
184 struct rb_root waiting_dir_moves;
187 * A directory that is going to be rm'ed might have a child directory
188 * which is in the pending directory moves index above. In this case,
189 * the directory can only be removed after the move/rename of its child
190 * is performed. Example:
192 * Parent snapshot:
194 * . (ino 256)
195 * |-- a/ (ino 257)
196 * |-- b/ (ino 258)
197 * |-- c/ (ino 259)
198 * | |-- x/ (ino 260)
200 * |-- y/ (ino 261)
202 * Send snapshot:
204 * . (ino 256)
205 * |-- a/ (ino 257)
206 * |-- b/ (ino 258)
207 * |-- YY/ (ino 261)
208 * |-- x/ (ino 260)
210 * Sequence of steps that lead to the send snapshot:
211 * rm -f /a/b/c/foo.txt
212 * mv /a/b/y /a/b/YY
213 * mv /a/b/c/x /a/b/YY
214 * rmdir /a/b/c
216 * When the child is processed, its move/rename is delayed until its
217 * parent is processed (as explained above), but all other operations
218 * like update utimes, chown, chgrp, etc, are performed and the paths
219 * that it uses for those operations must use the orphanized name of
220 * its parent (the directory we're going to rm later), so we need to
221 * memorize that name.
223 * Indexed by the inode number of the directory to be deleted.
225 struct rb_root orphan_dirs;
228 struct pending_dir_move {
229 struct rb_node node;
230 struct list_head list;
231 u64 parent_ino;
232 u64 ino;
233 u64 gen;
234 bool is_orphan;
235 struct list_head update_refs;
238 struct waiting_dir_move {
239 struct rb_node node;
240 u64 ino;
242 * There might be some directory that could not be removed because it
243 * was waiting for this directory inode to be moved first. Therefore
244 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
246 u64 rmdir_ino;
247 bool orphanized;
250 struct orphan_dir_info {
251 struct rb_node node;
252 u64 ino;
253 u64 gen;
256 struct name_cache_entry {
257 struct list_head list;
259 * radix_tree has only 32bit entries but we need to handle 64bit inums.
260 * We use the lower 32bit of the 64bit inum to store it in the tree. If
261 * more then one inum would fall into the same entry, we use radix_list
262 * to store the additional entries. radix_list is also used to store
263 * entries where two entries have the same inum but different
264 * generations.
266 struct list_head radix_list;
267 u64 ino;
268 u64 gen;
269 u64 parent_ino;
270 u64 parent_gen;
271 int ret;
272 int need_later_update;
273 int name_len;
274 char name[];
277 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
279 static struct waiting_dir_move *
280 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
282 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
284 static int need_send_hole(struct send_ctx *sctx)
286 return (sctx->parent_root && !sctx->cur_inode_new &&
287 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
288 S_ISREG(sctx->cur_inode_mode));
291 static void fs_path_reset(struct fs_path *p)
293 if (p->reversed) {
294 p->start = p->buf + p->buf_len - 1;
295 p->end = p->start;
296 *p->start = 0;
297 } else {
298 p->start = p->buf;
299 p->end = p->start;
300 *p->start = 0;
304 static struct fs_path *fs_path_alloc(void)
306 struct fs_path *p;
308 p = kmalloc(sizeof(*p), GFP_KERNEL);
309 if (!p)
310 return NULL;
311 p->reversed = 0;
312 p->buf = p->inline_buf;
313 p->buf_len = FS_PATH_INLINE_SIZE;
314 fs_path_reset(p);
315 return p;
318 static struct fs_path *fs_path_alloc_reversed(void)
320 struct fs_path *p;
322 p = fs_path_alloc();
323 if (!p)
324 return NULL;
325 p->reversed = 1;
326 fs_path_reset(p);
327 return p;
330 static void fs_path_free(struct fs_path *p)
332 if (!p)
333 return;
334 if (p->buf != p->inline_buf)
335 kfree(p->buf);
336 kfree(p);
339 static int fs_path_len(struct fs_path *p)
341 return p->end - p->start;
344 static int fs_path_ensure_buf(struct fs_path *p, int len)
346 char *tmp_buf;
347 int path_len;
348 int old_buf_len;
350 len++;
352 if (p->buf_len >= len)
353 return 0;
355 if (len > PATH_MAX) {
356 WARN_ON(1);
357 return -ENOMEM;
360 path_len = p->end - p->start;
361 old_buf_len = p->buf_len;
364 * First time the inline_buf does not suffice
366 if (p->buf == p->inline_buf) {
367 tmp_buf = kmalloc(len, GFP_KERNEL);
368 if (tmp_buf)
369 memcpy(tmp_buf, p->buf, old_buf_len);
370 } else {
371 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
373 if (!tmp_buf)
374 return -ENOMEM;
375 p->buf = tmp_buf;
377 * The real size of the buffer is bigger, this will let the fast path
378 * happen most of the time
380 p->buf_len = ksize(p->buf);
382 if (p->reversed) {
383 tmp_buf = p->buf + old_buf_len - path_len - 1;
384 p->end = p->buf + p->buf_len - 1;
385 p->start = p->end - path_len;
386 memmove(p->start, tmp_buf, path_len + 1);
387 } else {
388 p->start = p->buf;
389 p->end = p->start + path_len;
391 return 0;
394 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
395 char **prepared)
397 int ret;
398 int new_len;
400 new_len = p->end - p->start + name_len;
401 if (p->start != p->end)
402 new_len++;
403 ret = fs_path_ensure_buf(p, new_len);
404 if (ret < 0)
405 goto out;
407 if (p->reversed) {
408 if (p->start != p->end)
409 *--p->start = '/';
410 p->start -= name_len;
411 *prepared = p->start;
412 } else {
413 if (p->start != p->end)
414 *p->end++ = '/';
415 *prepared = p->end;
416 p->end += name_len;
417 *p->end = 0;
420 out:
421 return ret;
424 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
426 int ret;
427 char *prepared;
429 ret = fs_path_prepare_for_add(p, name_len, &prepared);
430 if (ret < 0)
431 goto out;
432 memcpy(prepared, name, name_len);
434 out:
435 return ret;
438 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
440 int ret;
441 char *prepared;
443 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
444 if (ret < 0)
445 goto out;
446 memcpy(prepared, p2->start, p2->end - p2->start);
448 out:
449 return ret;
452 static int fs_path_add_from_extent_buffer(struct fs_path *p,
453 struct extent_buffer *eb,
454 unsigned long off, int len)
456 int ret;
457 char *prepared;
459 ret = fs_path_prepare_for_add(p, len, &prepared);
460 if (ret < 0)
461 goto out;
463 read_extent_buffer(eb, prepared, off, len);
465 out:
466 return ret;
469 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
471 int ret;
473 p->reversed = from->reversed;
474 fs_path_reset(p);
476 ret = fs_path_add_path(p, from);
478 return ret;
482 static void fs_path_unreverse(struct fs_path *p)
484 char *tmp;
485 int len;
487 if (!p->reversed)
488 return;
490 tmp = p->start;
491 len = p->end - p->start;
492 p->start = p->buf;
493 p->end = p->start + len;
494 memmove(p->start, tmp, len + 1);
495 p->reversed = 0;
498 static struct btrfs_path *alloc_path_for_send(void)
500 struct btrfs_path *path;
502 path = btrfs_alloc_path();
503 if (!path)
504 return NULL;
505 path->search_commit_root = 1;
506 path->skip_locking = 1;
507 path->need_commit_sem = 1;
508 return path;
511 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
513 int ret;
514 mm_segment_t old_fs;
515 u32 pos = 0;
517 old_fs = get_fs();
518 set_fs(KERNEL_DS);
520 while (pos < len) {
521 ret = vfs_write(filp, (__force const char __user *)buf + pos,
522 len - pos, off);
523 /* TODO handle that correctly */
524 /*if (ret == -ERESTARTSYS) {
525 continue;
527 if (ret < 0)
528 goto out;
529 if (ret == 0) {
530 ret = -EIO;
531 goto out;
533 pos += ret;
536 ret = 0;
538 out:
539 set_fs(old_fs);
540 return ret;
543 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
545 struct btrfs_tlv_header *hdr;
546 int total_len = sizeof(*hdr) + len;
547 int left = sctx->send_max_size - sctx->send_size;
549 if (unlikely(left < total_len))
550 return -EOVERFLOW;
552 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
553 hdr->tlv_type = cpu_to_le16(attr);
554 hdr->tlv_len = cpu_to_le16(len);
555 memcpy(hdr + 1, data, len);
556 sctx->send_size += total_len;
558 return 0;
561 #define TLV_PUT_DEFINE_INT(bits) \
562 static int tlv_put_u##bits(struct send_ctx *sctx, \
563 u##bits attr, u##bits value) \
565 __le##bits __tmp = cpu_to_le##bits(value); \
566 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
569 TLV_PUT_DEFINE_INT(64)
571 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
572 const char *str, int len)
574 if (len == -1)
575 len = strlen(str);
576 return tlv_put(sctx, attr, str, len);
579 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
580 const u8 *uuid)
582 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
585 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
586 struct extent_buffer *eb,
587 struct btrfs_timespec *ts)
589 struct btrfs_timespec bts;
590 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
591 return tlv_put(sctx, attr, &bts, sizeof(bts));
595 #define TLV_PUT(sctx, attrtype, attrlen, data) \
596 do { \
597 ret = tlv_put(sctx, attrtype, attrlen, data); \
598 if (ret < 0) \
599 goto tlv_put_failure; \
600 } while (0)
602 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
603 do { \
604 ret = tlv_put_u##bits(sctx, attrtype, value); \
605 if (ret < 0) \
606 goto tlv_put_failure; \
607 } while (0)
609 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
610 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
611 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
612 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
613 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
614 do { \
615 ret = tlv_put_string(sctx, attrtype, str, len); \
616 if (ret < 0) \
617 goto tlv_put_failure; \
618 } while (0)
619 #define TLV_PUT_PATH(sctx, attrtype, p) \
620 do { \
621 ret = tlv_put_string(sctx, attrtype, p->start, \
622 p->end - p->start); \
623 if (ret < 0) \
624 goto tlv_put_failure; \
625 } while(0)
626 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
627 do { \
628 ret = tlv_put_uuid(sctx, attrtype, uuid); \
629 if (ret < 0) \
630 goto tlv_put_failure; \
631 } while (0)
632 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
633 do { \
634 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
635 if (ret < 0) \
636 goto tlv_put_failure; \
637 } while (0)
639 static int send_header(struct send_ctx *sctx)
641 struct btrfs_stream_header hdr;
643 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
644 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
646 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
647 &sctx->send_off);
651 * For each command/item we want to send to userspace, we call this function.
653 static int begin_cmd(struct send_ctx *sctx, int cmd)
655 struct btrfs_cmd_header *hdr;
657 if (WARN_ON(!sctx->send_buf))
658 return -EINVAL;
660 BUG_ON(sctx->send_size);
662 sctx->send_size += sizeof(*hdr);
663 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
664 hdr->cmd = cpu_to_le16(cmd);
666 return 0;
669 static int send_cmd(struct send_ctx *sctx)
671 int ret;
672 struct btrfs_cmd_header *hdr;
673 u32 crc;
675 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
676 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
677 hdr->crc = 0;
679 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
680 hdr->crc = cpu_to_le32(crc);
682 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
683 &sctx->send_off);
685 sctx->total_send_size += sctx->send_size;
686 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
687 sctx->send_size = 0;
689 return ret;
693 * Sends a move instruction to user space
695 static int send_rename(struct send_ctx *sctx,
696 struct fs_path *from, struct fs_path *to)
698 int ret;
700 verbose_printk("btrfs: send_rename %s -> %s\n", from->start, to->start);
702 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
703 if (ret < 0)
704 goto out;
706 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
707 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
709 ret = send_cmd(sctx);
711 tlv_put_failure:
712 out:
713 return ret;
717 * Sends a link instruction to user space
719 static int send_link(struct send_ctx *sctx,
720 struct fs_path *path, struct fs_path *lnk)
722 int ret;
724 verbose_printk("btrfs: send_link %s -> %s\n", path->start, lnk->start);
726 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
727 if (ret < 0)
728 goto out;
730 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
731 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
733 ret = send_cmd(sctx);
735 tlv_put_failure:
736 out:
737 return ret;
741 * Sends an unlink instruction to user space
743 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
745 int ret;
747 verbose_printk("btrfs: send_unlink %s\n", path->start);
749 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
750 if (ret < 0)
751 goto out;
753 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
755 ret = send_cmd(sctx);
757 tlv_put_failure:
758 out:
759 return ret;
763 * Sends a rmdir instruction to user space
765 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
767 int ret;
769 verbose_printk("btrfs: send_rmdir %s\n", path->start);
771 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
772 if (ret < 0)
773 goto out;
775 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
777 ret = send_cmd(sctx);
779 tlv_put_failure:
780 out:
781 return ret;
785 * Helper function to retrieve some fields from an inode item.
787 static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
788 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
789 u64 *gid, u64 *rdev)
791 int ret;
792 struct btrfs_inode_item *ii;
793 struct btrfs_key key;
795 key.objectid = ino;
796 key.type = BTRFS_INODE_ITEM_KEY;
797 key.offset = 0;
798 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
799 if (ret) {
800 if (ret > 0)
801 ret = -ENOENT;
802 return ret;
805 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
806 struct btrfs_inode_item);
807 if (size)
808 *size = btrfs_inode_size(path->nodes[0], ii);
809 if (gen)
810 *gen = btrfs_inode_generation(path->nodes[0], ii);
811 if (mode)
812 *mode = btrfs_inode_mode(path->nodes[0], ii);
813 if (uid)
814 *uid = btrfs_inode_uid(path->nodes[0], ii);
815 if (gid)
816 *gid = btrfs_inode_gid(path->nodes[0], ii);
817 if (rdev)
818 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
820 return ret;
823 static int get_inode_info(struct btrfs_root *root,
824 u64 ino, u64 *size, u64 *gen,
825 u64 *mode, u64 *uid, u64 *gid,
826 u64 *rdev)
828 struct btrfs_path *path;
829 int ret;
831 path = alloc_path_for_send();
832 if (!path)
833 return -ENOMEM;
834 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
835 rdev);
836 btrfs_free_path(path);
837 return ret;
840 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
841 struct fs_path *p,
842 void *ctx);
845 * Helper function to iterate the entries in ONE btrfs_inode_ref or
846 * btrfs_inode_extref.
847 * The iterate callback may return a non zero value to stop iteration. This can
848 * be a negative value for error codes or 1 to simply stop it.
850 * path must point to the INODE_REF or INODE_EXTREF when called.
852 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
853 struct btrfs_key *found_key, int resolve,
854 iterate_inode_ref_t iterate, void *ctx)
856 struct extent_buffer *eb = path->nodes[0];
857 struct btrfs_item *item;
858 struct btrfs_inode_ref *iref;
859 struct btrfs_inode_extref *extref;
860 struct btrfs_path *tmp_path;
861 struct fs_path *p;
862 u32 cur = 0;
863 u32 total;
864 int slot = path->slots[0];
865 u32 name_len;
866 char *start;
867 int ret = 0;
868 int num = 0;
869 int index;
870 u64 dir;
871 unsigned long name_off;
872 unsigned long elem_size;
873 unsigned long ptr;
875 p = fs_path_alloc_reversed();
876 if (!p)
877 return -ENOMEM;
879 tmp_path = alloc_path_for_send();
880 if (!tmp_path) {
881 fs_path_free(p);
882 return -ENOMEM;
886 if (found_key->type == BTRFS_INODE_REF_KEY) {
887 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
888 struct btrfs_inode_ref);
889 item = btrfs_item_nr(slot);
890 total = btrfs_item_size(eb, item);
891 elem_size = sizeof(*iref);
892 } else {
893 ptr = btrfs_item_ptr_offset(eb, slot);
894 total = btrfs_item_size_nr(eb, slot);
895 elem_size = sizeof(*extref);
898 while (cur < total) {
899 fs_path_reset(p);
901 if (found_key->type == BTRFS_INODE_REF_KEY) {
902 iref = (struct btrfs_inode_ref *)(ptr + cur);
903 name_len = btrfs_inode_ref_name_len(eb, iref);
904 name_off = (unsigned long)(iref + 1);
905 index = btrfs_inode_ref_index(eb, iref);
906 dir = found_key->offset;
907 } else {
908 extref = (struct btrfs_inode_extref *)(ptr + cur);
909 name_len = btrfs_inode_extref_name_len(eb, extref);
910 name_off = (unsigned long)&extref->name;
911 index = btrfs_inode_extref_index(eb, extref);
912 dir = btrfs_inode_extref_parent(eb, extref);
915 if (resolve) {
916 start = btrfs_ref_to_path(root, tmp_path, name_len,
917 name_off, eb, dir,
918 p->buf, p->buf_len);
919 if (IS_ERR(start)) {
920 ret = PTR_ERR(start);
921 goto out;
923 if (start < p->buf) {
924 /* overflow , try again with larger buffer */
925 ret = fs_path_ensure_buf(p,
926 p->buf_len + p->buf - start);
927 if (ret < 0)
928 goto out;
929 start = btrfs_ref_to_path(root, tmp_path,
930 name_len, name_off,
931 eb, dir,
932 p->buf, p->buf_len);
933 if (IS_ERR(start)) {
934 ret = PTR_ERR(start);
935 goto out;
937 BUG_ON(start < p->buf);
939 p->start = start;
940 } else {
941 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
942 name_len);
943 if (ret < 0)
944 goto out;
947 cur += elem_size + name_len;
948 ret = iterate(num, dir, index, p, ctx);
949 if (ret)
950 goto out;
951 num++;
954 out:
955 btrfs_free_path(tmp_path);
956 fs_path_free(p);
957 return ret;
960 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
961 const char *name, int name_len,
962 const char *data, int data_len,
963 u8 type, void *ctx);
966 * Helper function to iterate the entries in ONE btrfs_dir_item.
967 * The iterate callback may return a non zero value to stop iteration. This can
968 * be a negative value for error codes or 1 to simply stop it.
970 * path must point to the dir item when called.
972 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
973 struct btrfs_key *found_key,
974 iterate_dir_item_t iterate, void *ctx)
976 int ret = 0;
977 struct extent_buffer *eb;
978 struct btrfs_item *item;
979 struct btrfs_dir_item *di;
980 struct btrfs_key di_key;
981 char *buf = NULL;
982 int buf_len;
983 u32 name_len;
984 u32 data_len;
985 u32 cur;
986 u32 len;
987 u32 total;
988 int slot;
989 int num;
990 u8 type;
993 * Start with a small buffer (1 page). If later we end up needing more
994 * space, which can happen for xattrs on a fs with a leaf size greater
995 * then the page size, attempt to increase the buffer. Typically xattr
996 * values are small.
998 buf_len = PATH_MAX;
999 buf = kmalloc(buf_len, GFP_KERNEL);
1000 if (!buf) {
1001 ret = -ENOMEM;
1002 goto out;
1005 eb = path->nodes[0];
1006 slot = path->slots[0];
1007 item = btrfs_item_nr(slot);
1008 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1009 cur = 0;
1010 len = 0;
1011 total = btrfs_item_size(eb, item);
1013 num = 0;
1014 while (cur < total) {
1015 name_len = btrfs_dir_name_len(eb, di);
1016 data_len = btrfs_dir_data_len(eb, di);
1017 type = btrfs_dir_type(eb, di);
1018 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1020 if (type == BTRFS_FT_XATTR) {
1021 if (name_len > XATTR_NAME_MAX) {
1022 ret = -ENAMETOOLONG;
1023 goto out;
1025 if (name_len + data_len > BTRFS_MAX_XATTR_SIZE(root)) {
1026 ret = -E2BIG;
1027 goto out;
1029 } else {
1031 * Path too long
1033 if (name_len + data_len > PATH_MAX) {
1034 ret = -ENAMETOOLONG;
1035 goto out;
1039 if (name_len + data_len > buf_len) {
1040 buf_len = name_len + data_len;
1041 if (is_vmalloc_addr(buf)) {
1042 vfree(buf);
1043 buf = NULL;
1044 } else {
1045 char *tmp = krealloc(buf, buf_len,
1046 GFP_KERNEL | __GFP_NOWARN);
1048 if (!tmp)
1049 kfree(buf);
1050 buf = tmp;
1052 if (!buf) {
1053 buf = vmalloc(buf_len);
1054 if (!buf) {
1055 ret = -ENOMEM;
1056 goto out;
1061 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1062 name_len + data_len);
1064 len = sizeof(*di) + name_len + data_len;
1065 di = (struct btrfs_dir_item *)((char *)di + len);
1066 cur += len;
1068 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1069 data_len, type, ctx);
1070 if (ret < 0)
1071 goto out;
1072 if (ret) {
1073 ret = 0;
1074 goto out;
1077 num++;
1080 out:
1081 kvfree(buf);
1082 return ret;
1085 static int __copy_first_ref(int num, u64 dir, int index,
1086 struct fs_path *p, void *ctx)
1088 int ret;
1089 struct fs_path *pt = ctx;
1091 ret = fs_path_copy(pt, p);
1092 if (ret < 0)
1093 return ret;
1095 /* we want the first only */
1096 return 1;
1100 * Retrieve the first path of an inode. If an inode has more then one
1101 * ref/hardlink, this is ignored.
1103 static int get_inode_path(struct btrfs_root *root,
1104 u64 ino, struct fs_path *path)
1106 int ret;
1107 struct btrfs_key key, found_key;
1108 struct btrfs_path *p;
1110 p = alloc_path_for_send();
1111 if (!p)
1112 return -ENOMEM;
1114 fs_path_reset(path);
1116 key.objectid = ino;
1117 key.type = BTRFS_INODE_REF_KEY;
1118 key.offset = 0;
1120 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1121 if (ret < 0)
1122 goto out;
1123 if (ret) {
1124 ret = 1;
1125 goto out;
1127 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1128 if (found_key.objectid != ino ||
1129 (found_key.type != BTRFS_INODE_REF_KEY &&
1130 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1131 ret = -ENOENT;
1132 goto out;
1135 ret = iterate_inode_ref(root, p, &found_key, 1,
1136 __copy_first_ref, path);
1137 if (ret < 0)
1138 goto out;
1139 ret = 0;
1141 out:
1142 btrfs_free_path(p);
1143 return ret;
1146 struct backref_ctx {
1147 struct send_ctx *sctx;
1149 struct btrfs_path *path;
1150 /* number of total found references */
1151 u64 found;
1154 * used for clones found in send_root. clones found behind cur_objectid
1155 * and cur_offset are not considered as allowed clones.
1157 u64 cur_objectid;
1158 u64 cur_offset;
1160 /* may be truncated in case it's the last extent in a file */
1161 u64 extent_len;
1163 /* data offset in the file extent item */
1164 u64 data_offset;
1166 /* Just to check for bugs in backref resolving */
1167 int found_itself;
1170 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1172 u64 root = (u64)(uintptr_t)key;
1173 struct clone_root *cr = (struct clone_root *)elt;
1175 if (root < cr->root->objectid)
1176 return -1;
1177 if (root > cr->root->objectid)
1178 return 1;
1179 return 0;
1182 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1184 struct clone_root *cr1 = (struct clone_root *)e1;
1185 struct clone_root *cr2 = (struct clone_root *)e2;
1187 if (cr1->root->objectid < cr2->root->objectid)
1188 return -1;
1189 if (cr1->root->objectid > cr2->root->objectid)
1190 return 1;
1191 return 0;
1195 * Called for every backref that is found for the current extent.
1196 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1198 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1200 struct backref_ctx *bctx = ctx_;
1201 struct clone_root *found;
1202 int ret;
1203 u64 i_size;
1205 /* First check if the root is in the list of accepted clone sources */
1206 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1207 bctx->sctx->clone_roots_cnt,
1208 sizeof(struct clone_root),
1209 __clone_root_cmp_bsearch);
1210 if (!found)
1211 return 0;
1213 if (found->root == bctx->sctx->send_root &&
1214 ino == bctx->cur_objectid &&
1215 offset == bctx->cur_offset) {
1216 bctx->found_itself = 1;
1220 * There are inodes that have extents that lie behind its i_size. Don't
1221 * accept clones from these extents.
1223 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1224 NULL, NULL, NULL);
1225 btrfs_release_path(bctx->path);
1226 if (ret < 0)
1227 return ret;
1229 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1230 return 0;
1233 * Make sure we don't consider clones from send_root that are
1234 * behind the current inode/offset.
1236 if (found->root == bctx->sctx->send_root) {
1238 * TODO for the moment we don't accept clones from the inode
1239 * that is currently send. We may change this when
1240 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1241 * file.
1243 if (ino >= bctx->cur_objectid)
1244 return 0;
1245 #if 0
1246 if (ino > bctx->cur_objectid)
1247 return 0;
1248 if (offset + bctx->extent_len > bctx->cur_offset)
1249 return 0;
1250 #endif
1253 bctx->found++;
1254 found->found_refs++;
1255 if (ino < found->ino) {
1256 found->ino = ino;
1257 found->offset = offset;
1258 } else if (found->ino == ino) {
1260 * same extent found more then once in the same file.
1262 if (found->offset > offset + bctx->extent_len)
1263 found->offset = offset;
1266 return 0;
1270 * Given an inode, offset and extent item, it finds a good clone for a clone
1271 * instruction. Returns -ENOENT when none could be found. The function makes
1272 * sure that the returned clone is usable at the point where sending is at the
1273 * moment. This means, that no clones are accepted which lie behind the current
1274 * inode+offset.
1276 * path must point to the extent item when called.
1278 static int find_extent_clone(struct send_ctx *sctx,
1279 struct btrfs_path *path,
1280 u64 ino, u64 data_offset,
1281 u64 ino_size,
1282 struct clone_root **found)
1284 int ret;
1285 int extent_type;
1286 u64 logical;
1287 u64 disk_byte;
1288 u64 num_bytes;
1289 u64 extent_item_pos;
1290 u64 flags = 0;
1291 struct btrfs_file_extent_item *fi;
1292 struct extent_buffer *eb = path->nodes[0];
1293 struct backref_ctx *backref_ctx = NULL;
1294 struct clone_root *cur_clone_root;
1295 struct btrfs_key found_key;
1296 struct btrfs_path *tmp_path;
1297 int compressed;
1298 u32 i;
1300 tmp_path = alloc_path_for_send();
1301 if (!tmp_path)
1302 return -ENOMEM;
1304 /* We only use this path under the commit sem */
1305 tmp_path->need_commit_sem = 0;
1307 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1308 if (!backref_ctx) {
1309 ret = -ENOMEM;
1310 goto out;
1313 backref_ctx->path = tmp_path;
1315 if (data_offset >= ino_size) {
1317 * There may be extents that lie behind the file's size.
1318 * I at least had this in combination with snapshotting while
1319 * writing large files.
1321 ret = 0;
1322 goto out;
1325 fi = btrfs_item_ptr(eb, path->slots[0],
1326 struct btrfs_file_extent_item);
1327 extent_type = btrfs_file_extent_type(eb, fi);
1328 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1329 ret = -ENOENT;
1330 goto out;
1332 compressed = btrfs_file_extent_compression(eb, fi);
1334 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1335 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1336 if (disk_byte == 0) {
1337 ret = -ENOENT;
1338 goto out;
1340 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1342 down_read(&sctx->send_root->fs_info->commit_root_sem);
1343 ret = extent_from_logical(sctx->send_root->fs_info, disk_byte, tmp_path,
1344 &found_key, &flags);
1345 up_read(&sctx->send_root->fs_info->commit_root_sem);
1346 btrfs_release_path(tmp_path);
1348 if (ret < 0)
1349 goto out;
1350 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1351 ret = -EIO;
1352 goto out;
1356 * Setup the clone roots.
1358 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1359 cur_clone_root = sctx->clone_roots + i;
1360 cur_clone_root->ino = (u64)-1;
1361 cur_clone_root->offset = 0;
1362 cur_clone_root->found_refs = 0;
1365 backref_ctx->sctx = sctx;
1366 backref_ctx->found = 0;
1367 backref_ctx->cur_objectid = ino;
1368 backref_ctx->cur_offset = data_offset;
1369 backref_ctx->found_itself = 0;
1370 backref_ctx->extent_len = num_bytes;
1372 * For non-compressed extents iterate_extent_inodes() gives us extent
1373 * offsets that already take into account the data offset, but not for
1374 * compressed extents, since the offset is logical and not relative to
1375 * the physical extent locations. We must take this into account to
1376 * avoid sending clone offsets that go beyond the source file's size,
1377 * which would result in the clone ioctl failing with -EINVAL on the
1378 * receiving end.
1380 if (compressed == BTRFS_COMPRESS_NONE)
1381 backref_ctx->data_offset = 0;
1382 else
1383 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1386 * The last extent of a file may be too large due to page alignment.
1387 * We need to adjust extent_len in this case so that the checks in
1388 * __iterate_backrefs work.
1390 if (data_offset + num_bytes >= ino_size)
1391 backref_ctx->extent_len = ino_size - data_offset;
1394 * Now collect all backrefs.
1396 if (compressed == BTRFS_COMPRESS_NONE)
1397 extent_item_pos = logical - found_key.objectid;
1398 else
1399 extent_item_pos = 0;
1400 ret = iterate_extent_inodes(sctx->send_root->fs_info,
1401 found_key.objectid, extent_item_pos, 1,
1402 __iterate_backrefs, backref_ctx);
1404 if (ret < 0)
1405 goto out;
1407 if (!backref_ctx->found_itself) {
1408 /* found a bug in backref code? */
1409 ret = -EIO;
1410 btrfs_err(sctx->send_root->fs_info, "did not find backref in "
1411 "send_root. inode=%llu, offset=%llu, "
1412 "disk_byte=%llu found extent=%llu",
1413 ino, data_offset, disk_byte, found_key.objectid);
1414 goto out;
1417 verbose_printk(KERN_DEBUG "btrfs: find_extent_clone: data_offset=%llu, "
1418 "ino=%llu, "
1419 "num_bytes=%llu, logical=%llu\n",
1420 data_offset, ino, num_bytes, logical);
1422 if (!backref_ctx->found)
1423 verbose_printk("btrfs: no clones found\n");
1425 cur_clone_root = NULL;
1426 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1427 if (sctx->clone_roots[i].found_refs) {
1428 if (!cur_clone_root)
1429 cur_clone_root = sctx->clone_roots + i;
1430 else if (sctx->clone_roots[i].root == sctx->send_root)
1431 /* prefer clones from send_root over others */
1432 cur_clone_root = sctx->clone_roots + i;
1437 if (cur_clone_root) {
1438 *found = cur_clone_root;
1439 ret = 0;
1440 } else {
1441 ret = -ENOENT;
1444 out:
1445 btrfs_free_path(tmp_path);
1446 kfree(backref_ctx);
1447 return ret;
1450 static int read_symlink(struct btrfs_root *root,
1451 u64 ino,
1452 struct fs_path *dest)
1454 int ret;
1455 struct btrfs_path *path;
1456 struct btrfs_key key;
1457 struct btrfs_file_extent_item *ei;
1458 u8 type;
1459 u8 compression;
1460 unsigned long off;
1461 int len;
1463 path = alloc_path_for_send();
1464 if (!path)
1465 return -ENOMEM;
1467 key.objectid = ino;
1468 key.type = BTRFS_EXTENT_DATA_KEY;
1469 key.offset = 0;
1470 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1471 if (ret < 0)
1472 goto out;
1473 if (ret) {
1475 * An empty symlink inode. Can happen in rare error paths when
1476 * creating a symlink (transaction committed before the inode
1477 * eviction handler removed the symlink inode items and a crash
1478 * happened in between or the subvol was snapshoted in between).
1479 * Print an informative message to dmesg/syslog so that the user
1480 * can delete the symlink.
1482 btrfs_err(root->fs_info,
1483 "Found empty symlink inode %llu at root %llu",
1484 ino, root->root_key.objectid);
1485 ret = -EIO;
1486 goto out;
1489 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1490 struct btrfs_file_extent_item);
1491 type = btrfs_file_extent_type(path->nodes[0], ei);
1492 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1493 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1494 BUG_ON(compression);
1496 off = btrfs_file_extent_inline_start(ei);
1497 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1499 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1501 out:
1502 btrfs_free_path(path);
1503 return ret;
1507 * Helper function to generate a file name that is unique in the root of
1508 * send_root and parent_root. This is used to generate names for orphan inodes.
1510 static int gen_unique_name(struct send_ctx *sctx,
1511 u64 ino, u64 gen,
1512 struct fs_path *dest)
1514 int ret = 0;
1515 struct btrfs_path *path;
1516 struct btrfs_dir_item *di;
1517 char tmp[64];
1518 int len;
1519 u64 idx = 0;
1521 path = alloc_path_for_send();
1522 if (!path)
1523 return -ENOMEM;
1525 while (1) {
1526 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1527 ino, gen, idx);
1528 ASSERT(len < sizeof(tmp));
1530 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1531 path, BTRFS_FIRST_FREE_OBJECTID,
1532 tmp, strlen(tmp), 0);
1533 btrfs_release_path(path);
1534 if (IS_ERR(di)) {
1535 ret = PTR_ERR(di);
1536 goto out;
1538 if (di) {
1539 /* not unique, try again */
1540 idx++;
1541 continue;
1544 if (!sctx->parent_root) {
1545 /* unique */
1546 ret = 0;
1547 break;
1550 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1551 path, BTRFS_FIRST_FREE_OBJECTID,
1552 tmp, strlen(tmp), 0);
1553 btrfs_release_path(path);
1554 if (IS_ERR(di)) {
1555 ret = PTR_ERR(di);
1556 goto out;
1558 if (di) {
1559 /* not unique, try again */
1560 idx++;
1561 continue;
1563 /* unique */
1564 break;
1567 ret = fs_path_add(dest, tmp, strlen(tmp));
1569 out:
1570 btrfs_free_path(path);
1571 return ret;
1574 enum inode_state {
1575 inode_state_no_change,
1576 inode_state_will_create,
1577 inode_state_did_create,
1578 inode_state_will_delete,
1579 inode_state_did_delete,
1582 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1584 int ret;
1585 int left_ret;
1586 int right_ret;
1587 u64 left_gen;
1588 u64 right_gen;
1590 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1591 NULL, NULL);
1592 if (ret < 0 && ret != -ENOENT)
1593 goto out;
1594 left_ret = ret;
1596 if (!sctx->parent_root) {
1597 right_ret = -ENOENT;
1598 } else {
1599 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1600 NULL, NULL, NULL, NULL);
1601 if (ret < 0 && ret != -ENOENT)
1602 goto out;
1603 right_ret = ret;
1606 if (!left_ret && !right_ret) {
1607 if (left_gen == gen && right_gen == gen) {
1608 ret = inode_state_no_change;
1609 } else if (left_gen == gen) {
1610 if (ino < sctx->send_progress)
1611 ret = inode_state_did_create;
1612 else
1613 ret = inode_state_will_create;
1614 } else if (right_gen == gen) {
1615 if (ino < sctx->send_progress)
1616 ret = inode_state_did_delete;
1617 else
1618 ret = inode_state_will_delete;
1619 } else {
1620 ret = -ENOENT;
1622 } else if (!left_ret) {
1623 if (left_gen == gen) {
1624 if (ino < sctx->send_progress)
1625 ret = inode_state_did_create;
1626 else
1627 ret = inode_state_will_create;
1628 } else {
1629 ret = -ENOENT;
1631 } else if (!right_ret) {
1632 if (right_gen == gen) {
1633 if (ino < sctx->send_progress)
1634 ret = inode_state_did_delete;
1635 else
1636 ret = inode_state_will_delete;
1637 } else {
1638 ret = -ENOENT;
1640 } else {
1641 ret = -ENOENT;
1644 out:
1645 return ret;
1648 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1650 int ret;
1652 ret = get_cur_inode_state(sctx, ino, gen);
1653 if (ret < 0)
1654 goto out;
1656 if (ret == inode_state_no_change ||
1657 ret == inode_state_did_create ||
1658 ret == inode_state_will_delete)
1659 ret = 1;
1660 else
1661 ret = 0;
1663 out:
1664 return ret;
1668 * Helper function to lookup a dir item in a dir.
1670 static int lookup_dir_item_inode(struct btrfs_root *root,
1671 u64 dir, const char *name, int name_len,
1672 u64 *found_inode,
1673 u8 *found_type)
1675 int ret = 0;
1676 struct btrfs_dir_item *di;
1677 struct btrfs_key key;
1678 struct btrfs_path *path;
1680 path = alloc_path_for_send();
1681 if (!path)
1682 return -ENOMEM;
1684 di = btrfs_lookup_dir_item(NULL, root, path,
1685 dir, name, name_len, 0);
1686 if (!di) {
1687 ret = -ENOENT;
1688 goto out;
1690 if (IS_ERR(di)) {
1691 ret = PTR_ERR(di);
1692 goto out;
1694 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1695 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1696 ret = -ENOENT;
1697 goto out;
1699 *found_inode = key.objectid;
1700 *found_type = btrfs_dir_type(path->nodes[0], di);
1702 out:
1703 btrfs_free_path(path);
1704 return ret;
1708 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1709 * generation of the parent dir and the name of the dir entry.
1711 static int get_first_ref(struct btrfs_root *root, u64 ino,
1712 u64 *dir, u64 *dir_gen, struct fs_path *name)
1714 int ret;
1715 struct btrfs_key key;
1716 struct btrfs_key found_key;
1717 struct btrfs_path *path;
1718 int len;
1719 u64 parent_dir;
1721 path = alloc_path_for_send();
1722 if (!path)
1723 return -ENOMEM;
1725 key.objectid = ino;
1726 key.type = BTRFS_INODE_REF_KEY;
1727 key.offset = 0;
1729 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1730 if (ret < 0)
1731 goto out;
1732 if (!ret)
1733 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1734 path->slots[0]);
1735 if (ret || found_key.objectid != ino ||
1736 (found_key.type != BTRFS_INODE_REF_KEY &&
1737 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1738 ret = -ENOENT;
1739 goto out;
1742 if (found_key.type == BTRFS_INODE_REF_KEY) {
1743 struct btrfs_inode_ref *iref;
1744 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1745 struct btrfs_inode_ref);
1746 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1747 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1748 (unsigned long)(iref + 1),
1749 len);
1750 parent_dir = found_key.offset;
1751 } else {
1752 struct btrfs_inode_extref *extref;
1753 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1754 struct btrfs_inode_extref);
1755 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1756 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1757 (unsigned long)&extref->name, len);
1758 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1760 if (ret < 0)
1761 goto out;
1762 btrfs_release_path(path);
1764 if (dir_gen) {
1765 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1766 NULL, NULL, NULL);
1767 if (ret < 0)
1768 goto out;
1771 *dir = parent_dir;
1773 out:
1774 btrfs_free_path(path);
1775 return ret;
1778 static int is_first_ref(struct btrfs_root *root,
1779 u64 ino, u64 dir,
1780 const char *name, int name_len)
1782 int ret;
1783 struct fs_path *tmp_name;
1784 u64 tmp_dir;
1786 tmp_name = fs_path_alloc();
1787 if (!tmp_name)
1788 return -ENOMEM;
1790 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1791 if (ret < 0)
1792 goto out;
1794 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1795 ret = 0;
1796 goto out;
1799 ret = !memcmp(tmp_name->start, name, name_len);
1801 out:
1802 fs_path_free(tmp_name);
1803 return ret;
1807 * Used by process_recorded_refs to determine if a new ref would overwrite an
1808 * already existing ref. In case it detects an overwrite, it returns the
1809 * inode/gen in who_ino/who_gen.
1810 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1811 * to make sure later references to the overwritten inode are possible.
1812 * Orphanizing is however only required for the first ref of an inode.
1813 * process_recorded_refs does an additional is_first_ref check to see if
1814 * orphanizing is really required.
1816 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1817 const char *name, int name_len,
1818 u64 *who_ino, u64 *who_gen)
1820 int ret = 0;
1821 u64 gen;
1822 u64 other_inode = 0;
1823 u8 other_type = 0;
1825 if (!sctx->parent_root)
1826 goto out;
1828 ret = is_inode_existent(sctx, dir, dir_gen);
1829 if (ret <= 0)
1830 goto out;
1833 * If we have a parent root we need to verify that the parent dir was
1834 * not delted and then re-created, if it was then we have no overwrite
1835 * and we can just unlink this entry.
1837 if (sctx->parent_root) {
1838 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1839 NULL, NULL, NULL);
1840 if (ret < 0 && ret != -ENOENT)
1841 goto out;
1842 if (ret) {
1843 ret = 0;
1844 goto out;
1846 if (gen != dir_gen)
1847 goto out;
1850 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1851 &other_inode, &other_type);
1852 if (ret < 0 && ret != -ENOENT)
1853 goto out;
1854 if (ret) {
1855 ret = 0;
1856 goto out;
1860 * Check if the overwritten ref was already processed. If yes, the ref
1861 * was already unlinked/moved, so we can safely assume that we will not
1862 * overwrite anything at this point in time.
1864 if (other_inode > sctx->send_progress) {
1865 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1866 who_gen, NULL, NULL, NULL, NULL);
1867 if (ret < 0)
1868 goto out;
1870 ret = 1;
1871 *who_ino = other_inode;
1872 } else {
1873 ret = 0;
1876 out:
1877 return ret;
1881 * Checks if the ref was overwritten by an already processed inode. This is
1882 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1883 * thus the orphan name needs be used.
1884 * process_recorded_refs also uses it to avoid unlinking of refs that were
1885 * overwritten.
1887 static int did_overwrite_ref(struct send_ctx *sctx,
1888 u64 dir, u64 dir_gen,
1889 u64 ino, u64 ino_gen,
1890 const char *name, int name_len)
1892 int ret = 0;
1893 u64 gen;
1894 u64 ow_inode;
1895 u8 other_type;
1897 if (!sctx->parent_root)
1898 goto out;
1900 ret = is_inode_existent(sctx, dir, dir_gen);
1901 if (ret <= 0)
1902 goto out;
1904 /* check if the ref was overwritten by another ref */
1905 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1906 &ow_inode, &other_type);
1907 if (ret < 0 && ret != -ENOENT)
1908 goto out;
1909 if (ret) {
1910 /* was never and will never be overwritten */
1911 ret = 0;
1912 goto out;
1915 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1916 NULL, NULL);
1917 if (ret < 0)
1918 goto out;
1920 if (ow_inode == ino && gen == ino_gen) {
1921 ret = 0;
1922 goto out;
1926 * We know that it is or will be overwritten. Check this now.
1927 * The current inode being processed might have been the one that caused
1928 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1929 * the current inode being processed.
1931 if ((ow_inode < sctx->send_progress) ||
1932 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1933 gen == sctx->cur_inode_gen))
1934 ret = 1;
1935 else
1936 ret = 0;
1938 out:
1939 return ret;
1943 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1944 * that got overwritten. This is used by process_recorded_refs to determine
1945 * if it has to use the path as returned by get_cur_path or the orphan name.
1947 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1949 int ret = 0;
1950 struct fs_path *name = NULL;
1951 u64 dir;
1952 u64 dir_gen;
1954 if (!sctx->parent_root)
1955 goto out;
1957 name = fs_path_alloc();
1958 if (!name)
1959 return -ENOMEM;
1961 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1962 if (ret < 0)
1963 goto out;
1965 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1966 name->start, fs_path_len(name));
1968 out:
1969 fs_path_free(name);
1970 return ret;
1974 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
1975 * so we need to do some special handling in case we have clashes. This function
1976 * takes care of this with the help of name_cache_entry::radix_list.
1977 * In case of error, nce is kfreed.
1979 static int name_cache_insert(struct send_ctx *sctx,
1980 struct name_cache_entry *nce)
1982 int ret = 0;
1983 struct list_head *nce_head;
1985 nce_head = radix_tree_lookup(&sctx->name_cache,
1986 (unsigned long)nce->ino);
1987 if (!nce_head) {
1988 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
1989 if (!nce_head) {
1990 kfree(nce);
1991 return -ENOMEM;
1993 INIT_LIST_HEAD(nce_head);
1995 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
1996 if (ret < 0) {
1997 kfree(nce_head);
1998 kfree(nce);
1999 return ret;
2002 list_add_tail(&nce->radix_list, nce_head);
2003 list_add_tail(&nce->list, &sctx->name_cache_list);
2004 sctx->name_cache_size++;
2006 return ret;
2009 static void name_cache_delete(struct send_ctx *sctx,
2010 struct name_cache_entry *nce)
2012 struct list_head *nce_head;
2014 nce_head = radix_tree_lookup(&sctx->name_cache,
2015 (unsigned long)nce->ino);
2016 if (!nce_head) {
2017 btrfs_err(sctx->send_root->fs_info,
2018 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2019 nce->ino, sctx->name_cache_size);
2022 list_del(&nce->radix_list);
2023 list_del(&nce->list);
2024 sctx->name_cache_size--;
2027 * We may not get to the final release of nce_head if the lookup fails
2029 if (nce_head && list_empty(nce_head)) {
2030 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2031 kfree(nce_head);
2035 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2036 u64 ino, u64 gen)
2038 struct list_head *nce_head;
2039 struct name_cache_entry *cur;
2041 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2042 if (!nce_head)
2043 return NULL;
2045 list_for_each_entry(cur, nce_head, radix_list) {
2046 if (cur->ino == ino && cur->gen == gen)
2047 return cur;
2049 return NULL;
2053 * Removes the entry from the list and adds it back to the end. This marks the
2054 * entry as recently used so that name_cache_clean_unused does not remove it.
2056 static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2058 list_del(&nce->list);
2059 list_add_tail(&nce->list, &sctx->name_cache_list);
2063 * Remove some entries from the beginning of name_cache_list.
2065 static void name_cache_clean_unused(struct send_ctx *sctx)
2067 struct name_cache_entry *nce;
2069 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2070 return;
2072 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2073 nce = list_entry(sctx->name_cache_list.next,
2074 struct name_cache_entry, list);
2075 name_cache_delete(sctx, nce);
2076 kfree(nce);
2080 static void name_cache_free(struct send_ctx *sctx)
2082 struct name_cache_entry *nce;
2084 while (!list_empty(&sctx->name_cache_list)) {
2085 nce = list_entry(sctx->name_cache_list.next,
2086 struct name_cache_entry, list);
2087 name_cache_delete(sctx, nce);
2088 kfree(nce);
2093 * Used by get_cur_path for each ref up to the root.
2094 * Returns 0 if it succeeded.
2095 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2096 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2097 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2098 * Returns <0 in case of error.
2100 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2101 u64 ino, u64 gen,
2102 u64 *parent_ino,
2103 u64 *parent_gen,
2104 struct fs_path *dest)
2106 int ret;
2107 int nce_ret;
2108 struct name_cache_entry *nce = NULL;
2111 * First check if we already did a call to this function with the same
2112 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2113 * return the cached result.
2115 nce = name_cache_search(sctx, ino, gen);
2116 if (nce) {
2117 if (ino < sctx->send_progress && nce->need_later_update) {
2118 name_cache_delete(sctx, nce);
2119 kfree(nce);
2120 nce = NULL;
2121 } else {
2122 name_cache_used(sctx, nce);
2123 *parent_ino = nce->parent_ino;
2124 *parent_gen = nce->parent_gen;
2125 ret = fs_path_add(dest, nce->name, nce->name_len);
2126 if (ret < 0)
2127 goto out;
2128 ret = nce->ret;
2129 goto out;
2134 * If the inode is not existent yet, add the orphan name and return 1.
2135 * This should only happen for the parent dir that we determine in
2136 * __record_new_ref
2138 ret = is_inode_existent(sctx, ino, gen);
2139 if (ret < 0)
2140 goto out;
2142 if (!ret) {
2143 ret = gen_unique_name(sctx, ino, gen, dest);
2144 if (ret < 0)
2145 goto out;
2146 ret = 1;
2147 goto out_cache;
2151 * Depending on whether the inode was already processed or not, use
2152 * send_root or parent_root for ref lookup.
2154 if (ino < sctx->send_progress)
2155 ret = get_first_ref(sctx->send_root, ino,
2156 parent_ino, parent_gen, dest);
2157 else
2158 ret = get_first_ref(sctx->parent_root, ino,
2159 parent_ino, parent_gen, dest);
2160 if (ret < 0)
2161 goto out;
2164 * Check if the ref was overwritten by an inode's ref that was processed
2165 * earlier. If yes, treat as orphan and return 1.
2167 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2168 dest->start, dest->end - dest->start);
2169 if (ret < 0)
2170 goto out;
2171 if (ret) {
2172 fs_path_reset(dest);
2173 ret = gen_unique_name(sctx, ino, gen, dest);
2174 if (ret < 0)
2175 goto out;
2176 ret = 1;
2179 out_cache:
2181 * Store the result of the lookup in the name cache.
2183 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2184 if (!nce) {
2185 ret = -ENOMEM;
2186 goto out;
2189 nce->ino = ino;
2190 nce->gen = gen;
2191 nce->parent_ino = *parent_ino;
2192 nce->parent_gen = *parent_gen;
2193 nce->name_len = fs_path_len(dest);
2194 nce->ret = ret;
2195 strcpy(nce->name, dest->start);
2197 if (ino < sctx->send_progress)
2198 nce->need_later_update = 0;
2199 else
2200 nce->need_later_update = 1;
2202 nce_ret = name_cache_insert(sctx, nce);
2203 if (nce_ret < 0)
2204 ret = nce_ret;
2205 name_cache_clean_unused(sctx);
2207 out:
2208 return ret;
2212 * Magic happens here. This function returns the first ref to an inode as it
2213 * would look like while receiving the stream at this point in time.
2214 * We walk the path up to the root. For every inode in between, we check if it
2215 * was already processed/sent. If yes, we continue with the parent as found
2216 * in send_root. If not, we continue with the parent as found in parent_root.
2217 * If we encounter an inode that was deleted at this point in time, we use the
2218 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2219 * that were not created yet and overwritten inodes/refs.
2221 * When do we have have orphan inodes:
2222 * 1. When an inode is freshly created and thus no valid refs are available yet
2223 * 2. When a directory lost all it's refs (deleted) but still has dir items
2224 * inside which were not processed yet (pending for move/delete). If anyone
2225 * tried to get the path to the dir items, it would get a path inside that
2226 * orphan directory.
2227 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2228 * of an unprocessed inode. If in that case the first ref would be
2229 * overwritten, the overwritten inode gets "orphanized". Later when we
2230 * process this overwritten inode, it is restored at a new place by moving
2231 * the orphan inode.
2233 * sctx->send_progress tells this function at which point in time receiving
2234 * would be.
2236 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2237 struct fs_path *dest)
2239 int ret = 0;
2240 struct fs_path *name = NULL;
2241 u64 parent_inode = 0;
2242 u64 parent_gen = 0;
2243 int stop = 0;
2245 name = fs_path_alloc();
2246 if (!name) {
2247 ret = -ENOMEM;
2248 goto out;
2251 dest->reversed = 1;
2252 fs_path_reset(dest);
2254 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2255 struct waiting_dir_move *wdm;
2257 fs_path_reset(name);
2259 if (is_waiting_for_rm(sctx, ino)) {
2260 ret = gen_unique_name(sctx, ino, gen, name);
2261 if (ret < 0)
2262 goto out;
2263 ret = fs_path_add_path(dest, name);
2264 break;
2267 wdm = get_waiting_dir_move(sctx, ino);
2268 if (wdm && wdm->orphanized) {
2269 ret = gen_unique_name(sctx, ino, gen, name);
2270 stop = 1;
2271 } else if (wdm) {
2272 ret = get_first_ref(sctx->parent_root, ino,
2273 &parent_inode, &parent_gen, name);
2274 } else {
2275 ret = __get_cur_name_and_parent(sctx, ino, gen,
2276 &parent_inode,
2277 &parent_gen, name);
2278 if (ret)
2279 stop = 1;
2282 if (ret < 0)
2283 goto out;
2285 ret = fs_path_add_path(dest, name);
2286 if (ret < 0)
2287 goto out;
2289 ino = parent_inode;
2290 gen = parent_gen;
2293 out:
2294 fs_path_free(name);
2295 if (!ret)
2296 fs_path_unreverse(dest);
2297 return ret;
2301 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2303 static int send_subvol_begin(struct send_ctx *sctx)
2305 int ret;
2306 struct btrfs_root *send_root = sctx->send_root;
2307 struct btrfs_root *parent_root = sctx->parent_root;
2308 struct btrfs_path *path;
2309 struct btrfs_key key;
2310 struct btrfs_root_ref *ref;
2311 struct extent_buffer *leaf;
2312 char *name = NULL;
2313 int namelen;
2315 path = btrfs_alloc_path();
2316 if (!path)
2317 return -ENOMEM;
2319 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2320 if (!name) {
2321 btrfs_free_path(path);
2322 return -ENOMEM;
2325 key.objectid = send_root->objectid;
2326 key.type = BTRFS_ROOT_BACKREF_KEY;
2327 key.offset = 0;
2329 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2330 &key, path, 1, 0);
2331 if (ret < 0)
2332 goto out;
2333 if (ret) {
2334 ret = -ENOENT;
2335 goto out;
2338 leaf = path->nodes[0];
2339 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2340 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2341 key.objectid != send_root->objectid) {
2342 ret = -ENOENT;
2343 goto out;
2345 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2346 namelen = btrfs_root_ref_name_len(leaf, ref);
2347 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2348 btrfs_release_path(path);
2350 if (parent_root) {
2351 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2352 if (ret < 0)
2353 goto out;
2354 } else {
2355 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2356 if (ret < 0)
2357 goto out;
2360 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2362 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2363 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2364 sctx->send_root->root_item.received_uuid);
2365 else
2366 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2367 sctx->send_root->root_item.uuid);
2369 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2370 le64_to_cpu(sctx->send_root->root_item.ctransid));
2371 if (parent_root) {
2372 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2373 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2374 parent_root->root_item.received_uuid);
2375 else
2376 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2377 parent_root->root_item.uuid);
2378 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2379 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2382 ret = send_cmd(sctx);
2384 tlv_put_failure:
2385 out:
2386 btrfs_free_path(path);
2387 kfree(name);
2388 return ret;
2391 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2393 int ret = 0;
2394 struct fs_path *p;
2396 verbose_printk("btrfs: send_truncate %llu size=%llu\n", ino, size);
2398 p = fs_path_alloc();
2399 if (!p)
2400 return -ENOMEM;
2402 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2403 if (ret < 0)
2404 goto out;
2406 ret = get_cur_path(sctx, ino, gen, p);
2407 if (ret < 0)
2408 goto out;
2409 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2410 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2412 ret = send_cmd(sctx);
2414 tlv_put_failure:
2415 out:
2416 fs_path_free(p);
2417 return ret;
2420 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2422 int ret = 0;
2423 struct fs_path *p;
2425 verbose_printk("btrfs: send_chmod %llu mode=%llu\n", ino, mode);
2427 p = fs_path_alloc();
2428 if (!p)
2429 return -ENOMEM;
2431 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2432 if (ret < 0)
2433 goto out;
2435 ret = get_cur_path(sctx, ino, gen, p);
2436 if (ret < 0)
2437 goto out;
2438 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2439 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2441 ret = send_cmd(sctx);
2443 tlv_put_failure:
2444 out:
2445 fs_path_free(p);
2446 return ret;
2449 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2451 int ret = 0;
2452 struct fs_path *p;
2454 verbose_printk("btrfs: send_chown %llu uid=%llu, gid=%llu\n", ino, uid, gid);
2456 p = fs_path_alloc();
2457 if (!p)
2458 return -ENOMEM;
2460 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2461 if (ret < 0)
2462 goto out;
2464 ret = get_cur_path(sctx, ino, gen, p);
2465 if (ret < 0)
2466 goto out;
2467 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2468 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2469 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2471 ret = send_cmd(sctx);
2473 tlv_put_failure:
2474 out:
2475 fs_path_free(p);
2476 return ret;
2479 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2481 int ret = 0;
2482 struct fs_path *p = NULL;
2483 struct btrfs_inode_item *ii;
2484 struct btrfs_path *path = NULL;
2485 struct extent_buffer *eb;
2486 struct btrfs_key key;
2487 int slot;
2489 verbose_printk("btrfs: send_utimes %llu\n", ino);
2491 p = fs_path_alloc();
2492 if (!p)
2493 return -ENOMEM;
2495 path = alloc_path_for_send();
2496 if (!path) {
2497 ret = -ENOMEM;
2498 goto out;
2501 key.objectid = ino;
2502 key.type = BTRFS_INODE_ITEM_KEY;
2503 key.offset = 0;
2504 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2505 if (ret < 0)
2506 goto out;
2508 eb = path->nodes[0];
2509 slot = path->slots[0];
2510 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2512 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2513 if (ret < 0)
2514 goto out;
2516 ret = get_cur_path(sctx, ino, gen, p);
2517 if (ret < 0)
2518 goto out;
2519 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2520 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2521 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2522 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2523 /* TODO Add otime support when the otime patches get into upstream */
2525 ret = send_cmd(sctx);
2527 tlv_put_failure:
2528 out:
2529 fs_path_free(p);
2530 btrfs_free_path(path);
2531 return ret;
2535 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2536 * a valid path yet because we did not process the refs yet. So, the inode
2537 * is created as orphan.
2539 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2541 int ret = 0;
2542 struct fs_path *p;
2543 int cmd;
2544 u64 gen;
2545 u64 mode;
2546 u64 rdev;
2548 verbose_printk("btrfs: send_create_inode %llu\n", ino);
2550 p = fs_path_alloc();
2551 if (!p)
2552 return -ENOMEM;
2554 if (ino != sctx->cur_ino) {
2555 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2556 NULL, NULL, &rdev);
2557 if (ret < 0)
2558 goto out;
2559 } else {
2560 gen = sctx->cur_inode_gen;
2561 mode = sctx->cur_inode_mode;
2562 rdev = sctx->cur_inode_rdev;
2565 if (S_ISREG(mode)) {
2566 cmd = BTRFS_SEND_C_MKFILE;
2567 } else if (S_ISDIR(mode)) {
2568 cmd = BTRFS_SEND_C_MKDIR;
2569 } else if (S_ISLNK(mode)) {
2570 cmd = BTRFS_SEND_C_SYMLINK;
2571 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2572 cmd = BTRFS_SEND_C_MKNOD;
2573 } else if (S_ISFIFO(mode)) {
2574 cmd = BTRFS_SEND_C_MKFIFO;
2575 } else if (S_ISSOCK(mode)) {
2576 cmd = BTRFS_SEND_C_MKSOCK;
2577 } else {
2578 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2579 (int)(mode & S_IFMT));
2580 ret = -ENOTSUPP;
2581 goto out;
2584 ret = begin_cmd(sctx, cmd);
2585 if (ret < 0)
2586 goto out;
2588 ret = gen_unique_name(sctx, ino, gen, p);
2589 if (ret < 0)
2590 goto out;
2592 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2593 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2595 if (S_ISLNK(mode)) {
2596 fs_path_reset(p);
2597 ret = read_symlink(sctx->send_root, ino, p);
2598 if (ret < 0)
2599 goto out;
2600 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2601 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2602 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2603 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2604 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2607 ret = send_cmd(sctx);
2608 if (ret < 0)
2609 goto out;
2612 tlv_put_failure:
2613 out:
2614 fs_path_free(p);
2615 return ret;
2619 * We need some special handling for inodes that get processed before the parent
2620 * directory got created. See process_recorded_refs for details.
2621 * This function does the check if we already created the dir out of order.
2623 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2625 int ret = 0;
2626 struct btrfs_path *path = NULL;
2627 struct btrfs_key key;
2628 struct btrfs_key found_key;
2629 struct btrfs_key di_key;
2630 struct extent_buffer *eb;
2631 struct btrfs_dir_item *di;
2632 int slot;
2634 path = alloc_path_for_send();
2635 if (!path) {
2636 ret = -ENOMEM;
2637 goto out;
2640 key.objectid = dir;
2641 key.type = BTRFS_DIR_INDEX_KEY;
2642 key.offset = 0;
2643 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2644 if (ret < 0)
2645 goto out;
2647 while (1) {
2648 eb = path->nodes[0];
2649 slot = path->slots[0];
2650 if (slot >= btrfs_header_nritems(eb)) {
2651 ret = btrfs_next_leaf(sctx->send_root, path);
2652 if (ret < 0) {
2653 goto out;
2654 } else if (ret > 0) {
2655 ret = 0;
2656 break;
2658 continue;
2661 btrfs_item_key_to_cpu(eb, &found_key, slot);
2662 if (found_key.objectid != key.objectid ||
2663 found_key.type != key.type) {
2664 ret = 0;
2665 goto out;
2668 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2669 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2671 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2672 di_key.objectid < sctx->send_progress) {
2673 ret = 1;
2674 goto out;
2677 path->slots[0]++;
2680 out:
2681 btrfs_free_path(path);
2682 return ret;
2686 * Only creates the inode if it is:
2687 * 1. Not a directory
2688 * 2. Or a directory which was not created already due to out of order
2689 * directories. See did_create_dir and process_recorded_refs for details.
2691 static int send_create_inode_if_needed(struct send_ctx *sctx)
2693 int ret;
2695 if (S_ISDIR(sctx->cur_inode_mode)) {
2696 ret = did_create_dir(sctx, sctx->cur_ino);
2697 if (ret < 0)
2698 goto out;
2699 if (ret) {
2700 ret = 0;
2701 goto out;
2705 ret = send_create_inode(sctx, sctx->cur_ino);
2706 if (ret < 0)
2707 goto out;
2709 out:
2710 return ret;
2713 struct recorded_ref {
2714 struct list_head list;
2715 char *dir_path;
2716 char *name;
2717 struct fs_path *full_path;
2718 u64 dir;
2719 u64 dir_gen;
2720 int dir_path_len;
2721 int name_len;
2725 * We need to process new refs before deleted refs, but compare_tree gives us
2726 * everything mixed. So we first record all refs and later process them.
2727 * This function is a helper to record one ref.
2729 static int __record_ref(struct list_head *head, u64 dir,
2730 u64 dir_gen, struct fs_path *path)
2732 struct recorded_ref *ref;
2734 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2735 if (!ref)
2736 return -ENOMEM;
2738 ref->dir = dir;
2739 ref->dir_gen = dir_gen;
2740 ref->full_path = path;
2742 ref->name = (char *)kbasename(ref->full_path->start);
2743 ref->name_len = ref->full_path->end - ref->name;
2744 ref->dir_path = ref->full_path->start;
2745 if (ref->name == ref->full_path->start)
2746 ref->dir_path_len = 0;
2747 else
2748 ref->dir_path_len = ref->full_path->end -
2749 ref->full_path->start - 1 - ref->name_len;
2751 list_add_tail(&ref->list, head);
2752 return 0;
2755 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2757 struct recorded_ref *new;
2759 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2760 if (!new)
2761 return -ENOMEM;
2763 new->dir = ref->dir;
2764 new->dir_gen = ref->dir_gen;
2765 new->full_path = NULL;
2766 INIT_LIST_HEAD(&new->list);
2767 list_add_tail(&new->list, list);
2768 return 0;
2771 static void __free_recorded_refs(struct list_head *head)
2773 struct recorded_ref *cur;
2775 while (!list_empty(head)) {
2776 cur = list_entry(head->next, struct recorded_ref, list);
2777 fs_path_free(cur->full_path);
2778 list_del(&cur->list);
2779 kfree(cur);
2783 static void free_recorded_refs(struct send_ctx *sctx)
2785 __free_recorded_refs(&sctx->new_refs);
2786 __free_recorded_refs(&sctx->deleted_refs);
2790 * Renames/moves a file/dir to its orphan name. Used when the first
2791 * ref of an unprocessed inode gets overwritten and for all non empty
2792 * directories.
2794 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2795 struct fs_path *path)
2797 int ret;
2798 struct fs_path *orphan;
2800 orphan = fs_path_alloc();
2801 if (!orphan)
2802 return -ENOMEM;
2804 ret = gen_unique_name(sctx, ino, gen, orphan);
2805 if (ret < 0)
2806 goto out;
2808 ret = send_rename(sctx, path, orphan);
2810 out:
2811 fs_path_free(orphan);
2812 return ret;
2815 static struct orphan_dir_info *
2816 add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2818 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2819 struct rb_node *parent = NULL;
2820 struct orphan_dir_info *entry, *odi;
2822 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2823 if (!odi)
2824 return ERR_PTR(-ENOMEM);
2825 odi->ino = dir_ino;
2826 odi->gen = 0;
2828 while (*p) {
2829 parent = *p;
2830 entry = rb_entry(parent, struct orphan_dir_info, node);
2831 if (dir_ino < entry->ino) {
2832 p = &(*p)->rb_left;
2833 } else if (dir_ino > entry->ino) {
2834 p = &(*p)->rb_right;
2835 } else {
2836 kfree(odi);
2837 return entry;
2841 rb_link_node(&odi->node, parent, p);
2842 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2843 return odi;
2846 static struct orphan_dir_info *
2847 get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2849 struct rb_node *n = sctx->orphan_dirs.rb_node;
2850 struct orphan_dir_info *entry;
2852 while (n) {
2853 entry = rb_entry(n, struct orphan_dir_info, node);
2854 if (dir_ino < entry->ino)
2855 n = n->rb_left;
2856 else if (dir_ino > entry->ino)
2857 n = n->rb_right;
2858 else
2859 return entry;
2861 return NULL;
2864 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2866 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2868 return odi != NULL;
2871 static void free_orphan_dir_info(struct send_ctx *sctx,
2872 struct orphan_dir_info *odi)
2874 if (!odi)
2875 return;
2876 rb_erase(&odi->node, &sctx->orphan_dirs);
2877 kfree(odi);
2881 * Returns 1 if a directory can be removed at this point in time.
2882 * We check this by iterating all dir items and checking if the inode behind
2883 * the dir item was already processed.
2885 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2886 u64 send_progress)
2888 int ret = 0;
2889 struct btrfs_root *root = sctx->parent_root;
2890 struct btrfs_path *path;
2891 struct btrfs_key key;
2892 struct btrfs_key found_key;
2893 struct btrfs_key loc;
2894 struct btrfs_dir_item *di;
2897 * Don't try to rmdir the top/root subvolume dir.
2899 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2900 return 0;
2902 path = alloc_path_for_send();
2903 if (!path)
2904 return -ENOMEM;
2906 key.objectid = dir;
2907 key.type = BTRFS_DIR_INDEX_KEY;
2908 key.offset = 0;
2909 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2910 if (ret < 0)
2911 goto out;
2913 while (1) {
2914 struct waiting_dir_move *dm;
2916 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2917 ret = btrfs_next_leaf(root, path);
2918 if (ret < 0)
2919 goto out;
2920 else if (ret > 0)
2921 break;
2922 continue;
2924 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2925 path->slots[0]);
2926 if (found_key.objectid != key.objectid ||
2927 found_key.type != key.type)
2928 break;
2930 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2931 struct btrfs_dir_item);
2932 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2934 dm = get_waiting_dir_move(sctx, loc.objectid);
2935 if (dm) {
2936 struct orphan_dir_info *odi;
2938 odi = add_orphan_dir_info(sctx, dir);
2939 if (IS_ERR(odi)) {
2940 ret = PTR_ERR(odi);
2941 goto out;
2943 odi->gen = dir_gen;
2944 dm->rmdir_ino = dir;
2945 ret = 0;
2946 goto out;
2949 if (loc.objectid > send_progress) {
2950 ret = 0;
2951 goto out;
2954 path->slots[0]++;
2957 ret = 1;
2959 out:
2960 btrfs_free_path(path);
2961 return ret;
2964 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
2966 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
2968 return entry != NULL;
2971 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
2973 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
2974 struct rb_node *parent = NULL;
2975 struct waiting_dir_move *entry, *dm;
2977 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
2978 if (!dm)
2979 return -ENOMEM;
2980 dm->ino = ino;
2981 dm->rmdir_ino = 0;
2982 dm->orphanized = orphanized;
2984 while (*p) {
2985 parent = *p;
2986 entry = rb_entry(parent, struct waiting_dir_move, node);
2987 if (ino < entry->ino) {
2988 p = &(*p)->rb_left;
2989 } else if (ino > entry->ino) {
2990 p = &(*p)->rb_right;
2991 } else {
2992 kfree(dm);
2993 return -EEXIST;
2997 rb_link_node(&dm->node, parent, p);
2998 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
2999 return 0;
3002 static struct waiting_dir_move *
3003 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3005 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3006 struct waiting_dir_move *entry;
3008 while (n) {
3009 entry = rb_entry(n, struct waiting_dir_move, node);
3010 if (ino < entry->ino)
3011 n = n->rb_left;
3012 else if (ino > entry->ino)
3013 n = n->rb_right;
3014 else
3015 return entry;
3017 return NULL;
3020 static void free_waiting_dir_move(struct send_ctx *sctx,
3021 struct waiting_dir_move *dm)
3023 if (!dm)
3024 return;
3025 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3026 kfree(dm);
3029 static int add_pending_dir_move(struct send_ctx *sctx,
3030 u64 ino,
3031 u64 ino_gen,
3032 u64 parent_ino,
3033 struct list_head *new_refs,
3034 struct list_head *deleted_refs,
3035 const bool is_orphan)
3037 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3038 struct rb_node *parent = NULL;
3039 struct pending_dir_move *entry = NULL, *pm;
3040 struct recorded_ref *cur;
3041 int exists = 0;
3042 int ret;
3044 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3045 if (!pm)
3046 return -ENOMEM;
3047 pm->parent_ino = parent_ino;
3048 pm->ino = ino;
3049 pm->gen = ino_gen;
3050 pm->is_orphan = is_orphan;
3051 INIT_LIST_HEAD(&pm->list);
3052 INIT_LIST_HEAD(&pm->update_refs);
3053 RB_CLEAR_NODE(&pm->node);
3055 while (*p) {
3056 parent = *p;
3057 entry = rb_entry(parent, struct pending_dir_move, node);
3058 if (parent_ino < entry->parent_ino) {
3059 p = &(*p)->rb_left;
3060 } else if (parent_ino > entry->parent_ino) {
3061 p = &(*p)->rb_right;
3062 } else {
3063 exists = 1;
3064 break;
3068 list_for_each_entry(cur, deleted_refs, list) {
3069 ret = dup_ref(cur, &pm->update_refs);
3070 if (ret < 0)
3071 goto out;
3073 list_for_each_entry(cur, new_refs, list) {
3074 ret = dup_ref(cur, &pm->update_refs);
3075 if (ret < 0)
3076 goto out;
3079 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3080 if (ret)
3081 goto out;
3083 if (exists) {
3084 list_add_tail(&pm->list, &entry->list);
3085 } else {
3086 rb_link_node(&pm->node, parent, p);
3087 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3089 ret = 0;
3090 out:
3091 if (ret) {
3092 __free_recorded_refs(&pm->update_refs);
3093 kfree(pm);
3095 return ret;
3098 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3099 u64 parent_ino)
3101 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3102 struct pending_dir_move *entry;
3104 while (n) {
3105 entry = rb_entry(n, struct pending_dir_move, node);
3106 if (parent_ino < entry->parent_ino)
3107 n = n->rb_left;
3108 else if (parent_ino > entry->parent_ino)
3109 n = n->rb_right;
3110 else
3111 return entry;
3113 return NULL;
3116 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3118 struct fs_path *from_path = NULL;
3119 struct fs_path *to_path = NULL;
3120 struct fs_path *name = NULL;
3121 u64 orig_progress = sctx->send_progress;
3122 struct recorded_ref *cur;
3123 u64 parent_ino, parent_gen;
3124 struct waiting_dir_move *dm = NULL;
3125 u64 rmdir_ino = 0;
3126 int ret;
3128 name = fs_path_alloc();
3129 from_path = fs_path_alloc();
3130 if (!name || !from_path) {
3131 ret = -ENOMEM;
3132 goto out;
3135 dm = get_waiting_dir_move(sctx, pm->ino);
3136 ASSERT(dm);
3137 rmdir_ino = dm->rmdir_ino;
3138 free_waiting_dir_move(sctx, dm);
3140 if (pm->is_orphan) {
3141 ret = gen_unique_name(sctx, pm->ino,
3142 pm->gen, from_path);
3143 } else {
3144 ret = get_first_ref(sctx->parent_root, pm->ino,
3145 &parent_ino, &parent_gen, name);
3146 if (ret < 0)
3147 goto out;
3148 ret = get_cur_path(sctx, parent_ino, parent_gen,
3149 from_path);
3150 if (ret < 0)
3151 goto out;
3152 ret = fs_path_add_path(from_path, name);
3154 if (ret < 0)
3155 goto out;
3157 sctx->send_progress = sctx->cur_ino + 1;
3158 fs_path_reset(name);
3159 to_path = name;
3160 name = NULL;
3161 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3162 if (ret < 0)
3163 goto out;
3165 ret = send_rename(sctx, from_path, to_path);
3166 if (ret < 0)
3167 goto out;
3169 if (rmdir_ino) {
3170 struct orphan_dir_info *odi;
3172 odi = get_orphan_dir_info(sctx, rmdir_ino);
3173 if (!odi) {
3174 /* already deleted */
3175 goto finish;
3177 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino + 1);
3178 if (ret < 0)
3179 goto out;
3180 if (!ret)
3181 goto finish;
3183 name = fs_path_alloc();
3184 if (!name) {
3185 ret = -ENOMEM;
3186 goto out;
3188 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3189 if (ret < 0)
3190 goto out;
3191 ret = send_rmdir(sctx, name);
3192 if (ret < 0)
3193 goto out;
3194 free_orphan_dir_info(sctx, odi);
3197 finish:
3198 ret = send_utimes(sctx, pm->ino, pm->gen);
3199 if (ret < 0)
3200 goto out;
3203 * After rename/move, need to update the utimes of both new parent(s)
3204 * and old parent(s).
3206 list_for_each_entry(cur, &pm->update_refs, list) {
3207 if (cur->dir == rmdir_ino)
3208 continue;
3209 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3210 if (ret < 0)
3211 goto out;
3214 out:
3215 fs_path_free(name);
3216 fs_path_free(from_path);
3217 fs_path_free(to_path);
3218 sctx->send_progress = orig_progress;
3220 return ret;
3223 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3225 if (!list_empty(&m->list))
3226 list_del(&m->list);
3227 if (!RB_EMPTY_NODE(&m->node))
3228 rb_erase(&m->node, &sctx->pending_dir_moves);
3229 __free_recorded_refs(&m->update_refs);
3230 kfree(m);
3233 static void tail_append_pending_moves(struct pending_dir_move *moves,
3234 struct list_head *stack)
3236 if (list_empty(&moves->list)) {
3237 list_add_tail(&moves->list, stack);
3238 } else {
3239 LIST_HEAD(list);
3240 list_splice_init(&moves->list, &list);
3241 list_add_tail(&moves->list, stack);
3242 list_splice_tail(&list, stack);
3246 static int apply_children_dir_moves(struct send_ctx *sctx)
3248 struct pending_dir_move *pm;
3249 struct list_head stack;
3250 u64 parent_ino = sctx->cur_ino;
3251 int ret = 0;
3253 pm = get_pending_dir_moves(sctx, parent_ino);
3254 if (!pm)
3255 return 0;
3257 INIT_LIST_HEAD(&stack);
3258 tail_append_pending_moves(pm, &stack);
3260 while (!list_empty(&stack)) {
3261 pm = list_first_entry(&stack, struct pending_dir_move, list);
3262 parent_ino = pm->ino;
3263 ret = apply_dir_move(sctx, pm);
3264 free_pending_move(sctx, pm);
3265 if (ret)
3266 goto out;
3267 pm = get_pending_dir_moves(sctx, parent_ino);
3268 if (pm)
3269 tail_append_pending_moves(pm, &stack);
3271 return 0;
3273 out:
3274 while (!list_empty(&stack)) {
3275 pm = list_first_entry(&stack, struct pending_dir_move, list);
3276 free_pending_move(sctx, pm);
3278 return ret;
3282 * We might need to delay a directory rename even when no ancestor directory
3283 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3284 * renamed. This happens when we rename a directory to the old name (the name
3285 * in the parent root) of some other unrelated directory that got its rename
3286 * delayed due to some ancestor with higher number that got renamed.
3288 * Example:
3290 * Parent snapshot:
3291 * . (ino 256)
3292 * |---- a/ (ino 257)
3293 * | |---- file (ino 260)
3295 * |---- b/ (ino 258)
3296 * |---- c/ (ino 259)
3298 * Send snapshot:
3299 * . (ino 256)
3300 * |---- a/ (ino 258)
3301 * |---- x/ (ino 259)
3302 * |---- y/ (ino 257)
3303 * |----- file (ino 260)
3305 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3306 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3307 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3308 * must issue is:
3310 * 1 - rename 259 from 'c' to 'x'
3311 * 2 - rename 257 from 'a' to 'x/y'
3312 * 3 - rename 258 from 'b' to 'a'
3314 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3315 * be done right away and < 0 on error.
3317 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3318 struct recorded_ref *parent_ref,
3319 const bool is_orphan)
3321 struct btrfs_path *path;
3322 struct btrfs_key key;
3323 struct btrfs_key di_key;
3324 struct btrfs_dir_item *di;
3325 u64 left_gen;
3326 u64 right_gen;
3327 int ret = 0;
3329 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3330 return 0;
3332 path = alloc_path_for_send();
3333 if (!path)
3334 return -ENOMEM;
3336 key.objectid = parent_ref->dir;
3337 key.type = BTRFS_DIR_ITEM_KEY;
3338 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3340 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3341 if (ret < 0) {
3342 goto out;
3343 } else if (ret > 0) {
3344 ret = 0;
3345 goto out;
3348 di = btrfs_match_dir_item_name(sctx->parent_root, path,
3349 parent_ref->name, parent_ref->name_len);
3350 if (!di) {
3351 ret = 0;
3352 goto out;
3355 * di_key.objectid has the number of the inode that has a dentry in the
3356 * parent directory with the same name that sctx->cur_ino is being
3357 * renamed to. We need to check if that inode is in the send root as
3358 * well and if it is currently marked as an inode with a pending rename,
3359 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3360 * that it happens after that other inode is renamed.
3362 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3363 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3364 ret = 0;
3365 goto out;
3368 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3369 &left_gen, NULL, NULL, NULL, NULL);
3370 if (ret < 0)
3371 goto out;
3372 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3373 &right_gen, NULL, NULL, NULL, NULL);
3374 if (ret < 0) {
3375 if (ret == -ENOENT)
3376 ret = 0;
3377 goto out;
3380 /* Different inode, no need to delay the rename of sctx->cur_ino */
3381 if (right_gen != left_gen) {
3382 ret = 0;
3383 goto out;
3386 if (is_waiting_for_move(sctx, di_key.objectid)) {
3387 ret = add_pending_dir_move(sctx,
3388 sctx->cur_ino,
3389 sctx->cur_inode_gen,
3390 di_key.objectid,
3391 &sctx->new_refs,
3392 &sctx->deleted_refs,
3393 is_orphan);
3394 if (!ret)
3395 ret = 1;
3397 out:
3398 btrfs_free_path(path);
3399 return ret;
3403 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3404 * Return 1 if true, 0 if false and < 0 on error.
3406 static int is_ancestor(struct btrfs_root *root,
3407 const u64 ino1,
3408 const u64 ino1_gen,
3409 const u64 ino2,
3410 struct fs_path *fs_path)
3412 u64 ino = ino2;
3414 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3415 int ret;
3416 u64 parent;
3417 u64 parent_gen;
3419 fs_path_reset(fs_path);
3420 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3421 if (ret < 0) {
3422 if (ret == -ENOENT && ino == ino2)
3423 ret = 0;
3424 return ret;
3426 if (parent == ino1)
3427 return parent_gen == ino1_gen ? 1 : 0;
3428 ino = parent;
3430 return 0;
3433 static int wait_for_parent_move(struct send_ctx *sctx,
3434 struct recorded_ref *parent_ref,
3435 const bool is_orphan)
3437 int ret = 0;
3438 u64 ino = parent_ref->dir;
3439 u64 parent_ino_before, parent_ino_after;
3440 struct fs_path *path_before = NULL;
3441 struct fs_path *path_after = NULL;
3442 int len1, len2;
3444 path_after = fs_path_alloc();
3445 path_before = fs_path_alloc();
3446 if (!path_after || !path_before) {
3447 ret = -ENOMEM;
3448 goto out;
3452 * Our current directory inode may not yet be renamed/moved because some
3453 * ancestor (immediate or not) has to be renamed/moved first. So find if
3454 * such ancestor exists and make sure our own rename/move happens after
3455 * that ancestor is processed to avoid path build infinite loops (done
3456 * at get_cur_path()).
3458 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3459 if (is_waiting_for_move(sctx, ino)) {
3461 * If the current inode is an ancestor of ino in the
3462 * parent root, we need to delay the rename of the
3463 * current inode, otherwise don't delayed the rename
3464 * because we can end up with a circular dependency
3465 * of renames, resulting in some directories never
3466 * getting the respective rename operations issued in
3467 * the send stream or getting into infinite path build
3468 * loops.
3470 ret = is_ancestor(sctx->parent_root,
3471 sctx->cur_ino, sctx->cur_inode_gen,
3472 ino, path_before);
3473 break;
3476 fs_path_reset(path_before);
3477 fs_path_reset(path_after);
3479 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3480 NULL, path_after);
3481 if (ret < 0)
3482 goto out;
3483 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3484 NULL, path_before);
3485 if (ret < 0 && ret != -ENOENT) {
3486 goto out;
3487 } else if (ret == -ENOENT) {
3488 ret = 0;
3489 break;
3492 len1 = fs_path_len(path_before);
3493 len2 = fs_path_len(path_after);
3494 if (ino > sctx->cur_ino &&
3495 (parent_ino_before != parent_ino_after || len1 != len2 ||
3496 memcmp(path_before->start, path_after->start, len1))) {
3497 ret = 1;
3498 break;
3500 ino = parent_ino_after;
3503 out:
3504 fs_path_free(path_before);
3505 fs_path_free(path_after);
3507 if (ret == 1) {
3508 ret = add_pending_dir_move(sctx,
3509 sctx->cur_ino,
3510 sctx->cur_inode_gen,
3511 ino,
3512 &sctx->new_refs,
3513 &sctx->deleted_refs,
3514 is_orphan);
3515 if (!ret)
3516 ret = 1;
3519 return ret;
3523 * This does all the move/link/unlink/rmdir magic.
3525 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3527 int ret = 0;
3528 struct recorded_ref *cur;
3529 struct recorded_ref *cur2;
3530 struct list_head check_dirs;
3531 struct fs_path *valid_path = NULL;
3532 u64 ow_inode = 0;
3533 u64 ow_gen;
3534 int did_overwrite = 0;
3535 int is_orphan = 0;
3536 u64 last_dir_ino_rm = 0;
3537 bool can_rename = true;
3539 verbose_printk("btrfs: process_recorded_refs %llu\n", sctx->cur_ino);
3542 * This should never happen as the root dir always has the same ref
3543 * which is always '..'
3545 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3546 INIT_LIST_HEAD(&check_dirs);
3548 valid_path = fs_path_alloc();
3549 if (!valid_path) {
3550 ret = -ENOMEM;
3551 goto out;
3555 * First, check if the first ref of the current inode was overwritten
3556 * before. If yes, we know that the current inode was already orphanized
3557 * and thus use the orphan name. If not, we can use get_cur_path to
3558 * get the path of the first ref as it would like while receiving at
3559 * this point in time.
3560 * New inodes are always orphan at the beginning, so force to use the
3561 * orphan name in this case.
3562 * The first ref is stored in valid_path and will be updated if it
3563 * gets moved around.
3565 if (!sctx->cur_inode_new) {
3566 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3567 sctx->cur_inode_gen);
3568 if (ret < 0)
3569 goto out;
3570 if (ret)
3571 did_overwrite = 1;
3573 if (sctx->cur_inode_new || did_overwrite) {
3574 ret = gen_unique_name(sctx, sctx->cur_ino,
3575 sctx->cur_inode_gen, valid_path);
3576 if (ret < 0)
3577 goto out;
3578 is_orphan = 1;
3579 } else {
3580 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3581 valid_path);
3582 if (ret < 0)
3583 goto out;
3586 list_for_each_entry(cur, &sctx->new_refs, list) {
3588 * We may have refs where the parent directory does not exist
3589 * yet. This happens if the parent directories inum is higher
3590 * the the current inum. To handle this case, we create the
3591 * parent directory out of order. But we need to check if this
3592 * did already happen before due to other refs in the same dir.
3594 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3595 if (ret < 0)
3596 goto out;
3597 if (ret == inode_state_will_create) {
3598 ret = 0;
3600 * First check if any of the current inodes refs did
3601 * already create the dir.
3603 list_for_each_entry(cur2, &sctx->new_refs, list) {
3604 if (cur == cur2)
3605 break;
3606 if (cur2->dir == cur->dir) {
3607 ret = 1;
3608 break;
3613 * If that did not happen, check if a previous inode
3614 * did already create the dir.
3616 if (!ret)
3617 ret = did_create_dir(sctx, cur->dir);
3618 if (ret < 0)
3619 goto out;
3620 if (!ret) {
3621 ret = send_create_inode(sctx, cur->dir);
3622 if (ret < 0)
3623 goto out;
3628 * Check if this new ref would overwrite the first ref of
3629 * another unprocessed inode. If yes, orphanize the
3630 * overwritten inode. If we find an overwritten ref that is
3631 * not the first ref, simply unlink it.
3633 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3634 cur->name, cur->name_len,
3635 &ow_inode, &ow_gen);
3636 if (ret < 0)
3637 goto out;
3638 if (ret) {
3639 ret = is_first_ref(sctx->parent_root,
3640 ow_inode, cur->dir, cur->name,
3641 cur->name_len);
3642 if (ret < 0)
3643 goto out;
3644 if (ret) {
3645 struct name_cache_entry *nce;
3647 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3648 cur->full_path);
3649 if (ret < 0)
3650 goto out;
3652 * Make sure we clear our orphanized inode's
3653 * name from the name cache. This is because the
3654 * inode ow_inode might be an ancestor of some
3655 * other inode that will be orphanized as well
3656 * later and has an inode number greater than
3657 * sctx->send_progress. We need to prevent
3658 * future name lookups from using the old name
3659 * and get instead the orphan name.
3661 nce = name_cache_search(sctx, ow_inode, ow_gen);
3662 if (nce) {
3663 name_cache_delete(sctx, nce);
3664 kfree(nce);
3666 } else {
3667 ret = send_unlink(sctx, cur->full_path);
3668 if (ret < 0)
3669 goto out;
3673 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3674 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3675 if (ret < 0)
3676 goto out;
3677 if (ret == 1) {
3678 can_rename = false;
3679 *pending_move = 1;
3683 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3684 can_rename) {
3685 ret = wait_for_parent_move(sctx, cur, is_orphan);
3686 if (ret < 0)
3687 goto out;
3688 if (ret == 1) {
3689 can_rename = false;
3690 *pending_move = 1;
3695 * link/move the ref to the new place. If we have an orphan
3696 * inode, move it and update valid_path. If not, link or move
3697 * it depending on the inode mode.
3699 if (is_orphan && can_rename) {
3700 ret = send_rename(sctx, valid_path, cur->full_path);
3701 if (ret < 0)
3702 goto out;
3703 is_orphan = 0;
3704 ret = fs_path_copy(valid_path, cur->full_path);
3705 if (ret < 0)
3706 goto out;
3707 } else if (can_rename) {
3708 if (S_ISDIR(sctx->cur_inode_mode)) {
3710 * Dirs can't be linked, so move it. For moved
3711 * dirs, we always have one new and one deleted
3712 * ref. The deleted ref is ignored later.
3714 ret = send_rename(sctx, valid_path,
3715 cur->full_path);
3716 if (!ret)
3717 ret = fs_path_copy(valid_path,
3718 cur->full_path);
3719 if (ret < 0)
3720 goto out;
3721 } else {
3722 ret = send_link(sctx, cur->full_path,
3723 valid_path);
3724 if (ret < 0)
3725 goto out;
3728 ret = dup_ref(cur, &check_dirs);
3729 if (ret < 0)
3730 goto out;
3733 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3735 * Check if we can already rmdir the directory. If not,
3736 * orphanize it. For every dir item inside that gets deleted
3737 * later, we do this check again and rmdir it then if possible.
3738 * See the use of check_dirs for more details.
3740 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3741 sctx->cur_ino);
3742 if (ret < 0)
3743 goto out;
3744 if (ret) {
3745 ret = send_rmdir(sctx, valid_path);
3746 if (ret < 0)
3747 goto out;
3748 } else if (!is_orphan) {
3749 ret = orphanize_inode(sctx, sctx->cur_ino,
3750 sctx->cur_inode_gen, valid_path);
3751 if (ret < 0)
3752 goto out;
3753 is_orphan = 1;
3756 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3757 ret = dup_ref(cur, &check_dirs);
3758 if (ret < 0)
3759 goto out;
3761 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3762 !list_empty(&sctx->deleted_refs)) {
3764 * We have a moved dir. Add the old parent to check_dirs
3766 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3767 list);
3768 ret = dup_ref(cur, &check_dirs);
3769 if (ret < 0)
3770 goto out;
3771 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3773 * We have a non dir inode. Go through all deleted refs and
3774 * unlink them if they were not already overwritten by other
3775 * inodes.
3777 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3778 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3779 sctx->cur_ino, sctx->cur_inode_gen,
3780 cur->name, cur->name_len);
3781 if (ret < 0)
3782 goto out;
3783 if (!ret) {
3784 ret = send_unlink(sctx, cur->full_path);
3785 if (ret < 0)
3786 goto out;
3788 ret = dup_ref(cur, &check_dirs);
3789 if (ret < 0)
3790 goto out;
3793 * If the inode is still orphan, unlink the orphan. This may
3794 * happen when a previous inode did overwrite the first ref
3795 * of this inode and no new refs were added for the current
3796 * inode. Unlinking does not mean that the inode is deleted in
3797 * all cases. There may still be links to this inode in other
3798 * places.
3800 if (is_orphan) {
3801 ret = send_unlink(sctx, valid_path);
3802 if (ret < 0)
3803 goto out;
3808 * We did collect all parent dirs where cur_inode was once located. We
3809 * now go through all these dirs and check if they are pending for
3810 * deletion and if it's finally possible to perform the rmdir now.
3811 * We also update the inode stats of the parent dirs here.
3813 list_for_each_entry(cur, &check_dirs, list) {
3815 * In case we had refs into dirs that were not processed yet,
3816 * we don't need to do the utime and rmdir logic for these dirs.
3817 * The dir will be processed later.
3819 if (cur->dir > sctx->cur_ino)
3820 continue;
3822 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3823 if (ret < 0)
3824 goto out;
3826 if (ret == inode_state_did_create ||
3827 ret == inode_state_no_change) {
3828 /* TODO delayed utimes */
3829 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3830 if (ret < 0)
3831 goto out;
3832 } else if (ret == inode_state_did_delete &&
3833 cur->dir != last_dir_ino_rm) {
3834 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3835 sctx->cur_ino);
3836 if (ret < 0)
3837 goto out;
3838 if (ret) {
3839 ret = get_cur_path(sctx, cur->dir,
3840 cur->dir_gen, valid_path);
3841 if (ret < 0)
3842 goto out;
3843 ret = send_rmdir(sctx, valid_path);
3844 if (ret < 0)
3845 goto out;
3846 last_dir_ino_rm = cur->dir;
3851 ret = 0;
3853 out:
3854 __free_recorded_refs(&check_dirs);
3855 free_recorded_refs(sctx);
3856 fs_path_free(valid_path);
3857 return ret;
3860 static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
3861 struct fs_path *name, void *ctx, struct list_head *refs)
3863 int ret = 0;
3864 struct send_ctx *sctx = ctx;
3865 struct fs_path *p;
3866 u64 gen;
3868 p = fs_path_alloc();
3869 if (!p)
3870 return -ENOMEM;
3872 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
3873 NULL, NULL);
3874 if (ret < 0)
3875 goto out;
3877 ret = get_cur_path(sctx, dir, gen, p);
3878 if (ret < 0)
3879 goto out;
3880 ret = fs_path_add_path(p, name);
3881 if (ret < 0)
3882 goto out;
3884 ret = __record_ref(refs, dir, gen, p);
3886 out:
3887 if (ret)
3888 fs_path_free(p);
3889 return ret;
3892 static int __record_new_ref(int num, u64 dir, int index,
3893 struct fs_path *name,
3894 void *ctx)
3896 struct send_ctx *sctx = ctx;
3897 return record_ref(sctx->send_root, num, dir, index, name,
3898 ctx, &sctx->new_refs);
3902 static int __record_deleted_ref(int num, u64 dir, int index,
3903 struct fs_path *name,
3904 void *ctx)
3906 struct send_ctx *sctx = ctx;
3907 return record_ref(sctx->parent_root, num, dir, index, name,
3908 ctx, &sctx->deleted_refs);
3911 static int record_new_ref(struct send_ctx *sctx)
3913 int ret;
3915 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
3916 sctx->cmp_key, 0, __record_new_ref, sctx);
3917 if (ret < 0)
3918 goto out;
3919 ret = 0;
3921 out:
3922 return ret;
3925 static int record_deleted_ref(struct send_ctx *sctx)
3927 int ret;
3929 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
3930 sctx->cmp_key, 0, __record_deleted_ref, sctx);
3931 if (ret < 0)
3932 goto out;
3933 ret = 0;
3935 out:
3936 return ret;
3939 struct find_ref_ctx {
3940 u64 dir;
3941 u64 dir_gen;
3942 struct btrfs_root *root;
3943 struct fs_path *name;
3944 int found_idx;
3947 static int __find_iref(int num, u64 dir, int index,
3948 struct fs_path *name,
3949 void *ctx_)
3951 struct find_ref_ctx *ctx = ctx_;
3952 u64 dir_gen;
3953 int ret;
3955 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
3956 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
3958 * To avoid doing extra lookups we'll only do this if everything
3959 * else matches.
3961 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
3962 NULL, NULL, NULL);
3963 if (ret)
3964 return ret;
3965 if (dir_gen != ctx->dir_gen)
3966 return 0;
3967 ctx->found_idx = num;
3968 return 1;
3970 return 0;
3973 static int find_iref(struct btrfs_root *root,
3974 struct btrfs_path *path,
3975 struct btrfs_key *key,
3976 u64 dir, u64 dir_gen, struct fs_path *name)
3978 int ret;
3979 struct find_ref_ctx ctx;
3981 ctx.dir = dir;
3982 ctx.name = name;
3983 ctx.dir_gen = dir_gen;
3984 ctx.found_idx = -1;
3985 ctx.root = root;
3987 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
3988 if (ret < 0)
3989 return ret;
3991 if (ctx.found_idx == -1)
3992 return -ENOENT;
3994 return ctx.found_idx;
3997 static int __record_changed_new_ref(int num, u64 dir, int index,
3998 struct fs_path *name,
3999 void *ctx)
4001 u64 dir_gen;
4002 int ret;
4003 struct send_ctx *sctx = ctx;
4005 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4006 NULL, NULL, NULL);
4007 if (ret)
4008 return ret;
4010 ret = find_iref(sctx->parent_root, sctx->right_path,
4011 sctx->cmp_key, dir, dir_gen, name);
4012 if (ret == -ENOENT)
4013 ret = __record_new_ref(num, dir, index, name, sctx);
4014 else if (ret > 0)
4015 ret = 0;
4017 return ret;
4020 static int __record_changed_deleted_ref(int num, u64 dir, int index,
4021 struct fs_path *name,
4022 void *ctx)
4024 u64 dir_gen;
4025 int ret;
4026 struct send_ctx *sctx = ctx;
4028 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4029 NULL, NULL, NULL);
4030 if (ret)
4031 return ret;
4033 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4034 dir, dir_gen, name);
4035 if (ret == -ENOENT)
4036 ret = __record_deleted_ref(num, dir, index, name, sctx);
4037 else if (ret > 0)
4038 ret = 0;
4040 return ret;
4043 static int record_changed_ref(struct send_ctx *sctx)
4045 int ret = 0;
4047 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4048 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4049 if (ret < 0)
4050 goto out;
4051 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4052 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4053 if (ret < 0)
4054 goto out;
4055 ret = 0;
4057 out:
4058 return ret;
4062 * Record and process all refs at once. Needed when an inode changes the
4063 * generation number, which means that it was deleted and recreated.
4065 static int process_all_refs(struct send_ctx *sctx,
4066 enum btrfs_compare_tree_result cmd)
4068 int ret;
4069 struct btrfs_root *root;
4070 struct btrfs_path *path;
4071 struct btrfs_key key;
4072 struct btrfs_key found_key;
4073 struct extent_buffer *eb;
4074 int slot;
4075 iterate_inode_ref_t cb;
4076 int pending_move = 0;
4078 path = alloc_path_for_send();
4079 if (!path)
4080 return -ENOMEM;
4082 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4083 root = sctx->send_root;
4084 cb = __record_new_ref;
4085 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4086 root = sctx->parent_root;
4087 cb = __record_deleted_ref;
4088 } else {
4089 btrfs_err(sctx->send_root->fs_info,
4090 "Wrong command %d in process_all_refs", cmd);
4091 ret = -EINVAL;
4092 goto out;
4095 key.objectid = sctx->cmp_key->objectid;
4096 key.type = BTRFS_INODE_REF_KEY;
4097 key.offset = 0;
4098 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4099 if (ret < 0)
4100 goto out;
4102 while (1) {
4103 eb = path->nodes[0];
4104 slot = path->slots[0];
4105 if (slot >= btrfs_header_nritems(eb)) {
4106 ret = btrfs_next_leaf(root, path);
4107 if (ret < 0)
4108 goto out;
4109 else if (ret > 0)
4110 break;
4111 continue;
4114 btrfs_item_key_to_cpu(eb, &found_key, slot);
4116 if (found_key.objectid != key.objectid ||
4117 (found_key.type != BTRFS_INODE_REF_KEY &&
4118 found_key.type != BTRFS_INODE_EXTREF_KEY))
4119 break;
4121 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4122 if (ret < 0)
4123 goto out;
4125 path->slots[0]++;
4127 btrfs_release_path(path);
4129 ret = process_recorded_refs(sctx, &pending_move);
4130 /* Only applicable to an incremental send. */
4131 ASSERT(pending_move == 0);
4133 out:
4134 btrfs_free_path(path);
4135 return ret;
4138 static int send_set_xattr(struct send_ctx *sctx,
4139 struct fs_path *path,
4140 const char *name, int name_len,
4141 const char *data, int data_len)
4143 int ret = 0;
4145 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4146 if (ret < 0)
4147 goto out;
4149 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4150 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4151 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4153 ret = send_cmd(sctx);
4155 tlv_put_failure:
4156 out:
4157 return ret;
4160 static int send_remove_xattr(struct send_ctx *sctx,
4161 struct fs_path *path,
4162 const char *name, int name_len)
4164 int ret = 0;
4166 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4167 if (ret < 0)
4168 goto out;
4170 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4171 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4173 ret = send_cmd(sctx);
4175 tlv_put_failure:
4176 out:
4177 return ret;
4180 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4181 const char *name, int name_len,
4182 const char *data, int data_len,
4183 u8 type, void *ctx)
4185 int ret;
4186 struct send_ctx *sctx = ctx;
4187 struct fs_path *p;
4188 posix_acl_xattr_header dummy_acl;
4190 p = fs_path_alloc();
4191 if (!p)
4192 return -ENOMEM;
4195 * This hack is needed because empty acl's are stored as zero byte
4196 * data in xattrs. Problem with that is, that receiving these zero byte
4197 * acl's will fail later. To fix this, we send a dummy acl list that
4198 * only contains the version number and no entries.
4200 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4201 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4202 if (data_len == 0) {
4203 dummy_acl.a_version =
4204 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4205 data = (char *)&dummy_acl;
4206 data_len = sizeof(dummy_acl);
4210 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4211 if (ret < 0)
4212 goto out;
4214 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4216 out:
4217 fs_path_free(p);
4218 return ret;
4221 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4222 const char *name, int name_len,
4223 const char *data, int data_len,
4224 u8 type, void *ctx)
4226 int ret;
4227 struct send_ctx *sctx = ctx;
4228 struct fs_path *p;
4230 p = fs_path_alloc();
4231 if (!p)
4232 return -ENOMEM;
4234 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4235 if (ret < 0)
4236 goto out;
4238 ret = send_remove_xattr(sctx, p, name, name_len);
4240 out:
4241 fs_path_free(p);
4242 return ret;
4245 static int process_new_xattr(struct send_ctx *sctx)
4247 int ret = 0;
4249 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4250 sctx->cmp_key, __process_new_xattr, sctx);
4252 return ret;
4255 static int process_deleted_xattr(struct send_ctx *sctx)
4257 int ret;
4259 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4260 sctx->cmp_key, __process_deleted_xattr, sctx);
4262 return ret;
4265 struct find_xattr_ctx {
4266 const char *name;
4267 int name_len;
4268 int found_idx;
4269 char *found_data;
4270 int found_data_len;
4273 static int __find_xattr(int num, struct btrfs_key *di_key,
4274 const char *name, int name_len,
4275 const char *data, int data_len,
4276 u8 type, void *vctx)
4278 struct find_xattr_ctx *ctx = vctx;
4280 if (name_len == ctx->name_len &&
4281 strncmp(name, ctx->name, name_len) == 0) {
4282 ctx->found_idx = num;
4283 ctx->found_data_len = data_len;
4284 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4285 if (!ctx->found_data)
4286 return -ENOMEM;
4287 return 1;
4289 return 0;
4292 static int find_xattr(struct btrfs_root *root,
4293 struct btrfs_path *path,
4294 struct btrfs_key *key,
4295 const char *name, int name_len,
4296 char **data, int *data_len)
4298 int ret;
4299 struct find_xattr_ctx ctx;
4301 ctx.name = name;
4302 ctx.name_len = name_len;
4303 ctx.found_idx = -1;
4304 ctx.found_data = NULL;
4305 ctx.found_data_len = 0;
4307 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4308 if (ret < 0)
4309 return ret;
4311 if (ctx.found_idx == -1)
4312 return -ENOENT;
4313 if (data) {
4314 *data = ctx.found_data;
4315 *data_len = ctx.found_data_len;
4316 } else {
4317 kfree(ctx.found_data);
4319 return ctx.found_idx;
4323 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4324 const char *name, int name_len,
4325 const char *data, int data_len,
4326 u8 type, void *ctx)
4328 int ret;
4329 struct send_ctx *sctx = ctx;
4330 char *found_data = NULL;
4331 int found_data_len = 0;
4333 ret = find_xattr(sctx->parent_root, sctx->right_path,
4334 sctx->cmp_key, name, name_len, &found_data,
4335 &found_data_len);
4336 if (ret == -ENOENT) {
4337 ret = __process_new_xattr(num, di_key, name, name_len, data,
4338 data_len, type, ctx);
4339 } else if (ret >= 0) {
4340 if (data_len != found_data_len ||
4341 memcmp(data, found_data, data_len)) {
4342 ret = __process_new_xattr(num, di_key, name, name_len,
4343 data, data_len, type, ctx);
4344 } else {
4345 ret = 0;
4349 kfree(found_data);
4350 return ret;
4353 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4354 const char *name, int name_len,
4355 const char *data, int data_len,
4356 u8 type, void *ctx)
4358 int ret;
4359 struct send_ctx *sctx = ctx;
4361 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4362 name, name_len, NULL, NULL);
4363 if (ret == -ENOENT)
4364 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4365 data_len, type, ctx);
4366 else if (ret >= 0)
4367 ret = 0;
4369 return ret;
4372 static int process_changed_xattr(struct send_ctx *sctx)
4374 int ret = 0;
4376 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4377 sctx->cmp_key, __process_changed_new_xattr, sctx);
4378 if (ret < 0)
4379 goto out;
4380 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4381 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4383 out:
4384 return ret;
4387 static int process_all_new_xattrs(struct send_ctx *sctx)
4389 int ret;
4390 struct btrfs_root *root;
4391 struct btrfs_path *path;
4392 struct btrfs_key key;
4393 struct btrfs_key found_key;
4394 struct extent_buffer *eb;
4395 int slot;
4397 path = alloc_path_for_send();
4398 if (!path)
4399 return -ENOMEM;
4401 root = sctx->send_root;
4403 key.objectid = sctx->cmp_key->objectid;
4404 key.type = BTRFS_XATTR_ITEM_KEY;
4405 key.offset = 0;
4406 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4407 if (ret < 0)
4408 goto out;
4410 while (1) {
4411 eb = path->nodes[0];
4412 slot = path->slots[0];
4413 if (slot >= btrfs_header_nritems(eb)) {
4414 ret = btrfs_next_leaf(root, path);
4415 if (ret < 0) {
4416 goto out;
4417 } else if (ret > 0) {
4418 ret = 0;
4419 break;
4421 continue;
4424 btrfs_item_key_to_cpu(eb, &found_key, slot);
4425 if (found_key.objectid != key.objectid ||
4426 found_key.type != key.type) {
4427 ret = 0;
4428 goto out;
4431 ret = iterate_dir_item(root, path, &found_key,
4432 __process_new_xattr, sctx);
4433 if (ret < 0)
4434 goto out;
4436 path->slots[0]++;
4439 out:
4440 btrfs_free_path(path);
4441 return ret;
4444 static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4446 struct btrfs_root *root = sctx->send_root;
4447 struct btrfs_fs_info *fs_info = root->fs_info;
4448 struct inode *inode;
4449 struct page *page;
4450 char *addr;
4451 struct btrfs_key key;
4452 pgoff_t index = offset >> PAGE_SHIFT;
4453 pgoff_t last_index;
4454 unsigned pg_offset = offset & ~PAGE_MASK;
4455 ssize_t ret = 0;
4457 key.objectid = sctx->cur_ino;
4458 key.type = BTRFS_INODE_ITEM_KEY;
4459 key.offset = 0;
4461 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4462 if (IS_ERR(inode))
4463 return PTR_ERR(inode);
4465 if (offset + len > i_size_read(inode)) {
4466 if (offset > i_size_read(inode))
4467 len = 0;
4468 else
4469 len = offset - i_size_read(inode);
4471 if (len == 0)
4472 goto out;
4474 last_index = (offset + len - 1) >> PAGE_SHIFT;
4476 /* initial readahead */
4477 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4478 file_ra_state_init(&sctx->ra, inode->i_mapping);
4479 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4480 last_index - index + 1);
4482 while (index <= last_index) {
4483 unsigned cur_len = min_t(unsigned, len,
4484 PAGE_SIZE - pg_offset);
4485 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
4486 if (!page) {
4487 ret = -ENOMEM;
4488 break;
4491 if (!PageUptodate(page)) {
4492 btrfs_readpage(NULL, page);
4493 lock_page(page);
4494 if (!PageUptodate(page)) {
4495 unlock_page(page);
4496 put_page(page);
4497 ret = -EIO;
4498 break;
4502 addr = kmap(page);
4503 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4504 kunmap(page);
4505 unlock_page(page);
4506 put_page(page);
4507 index++;
4508 pg_offset = 0;
4509 len -= cur_len;
4510 ret += cur_len;
4512 out:
4513 iput(inode);
4514 return ret;
4518 * Read some bytes from the current inode/file and send a write command to
4519 * user space.
4521 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4523 int ret = 0;
4524 struct fs_path *p;
4525 ssize_t num_read = 0;
4527 p = fs_path_alloc();
4528 if (!p)
4529 return -ENOMEM;
4531 verbose_printk("btrfs: send_write offset=%llu, len=%d\n", offset, len);
4533 num_read = fill_read_buf(sctx, offset, len);
4534 if (num_read <= 0) {
4535 if (num_read < 0)
4536 ret = num_read;
4537 goto out;
4540 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4541 if (ret < 0)
4542 goto out;
4544 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4545 if (ret < 0)
4546 goto out;
4548 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4549 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4550 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4552 ret = send_cmd(sctx);
4554 tlv_put_failure:
4555 out:
4556 fs_path_free(p);
4557 if (ret < 0)
4558 return ret;
4559 return num_read;
4563 * Send a clone command to user space.
4565 static int send_clone(struct send_ctx *sctx,
4566 u64 offset, u32 len,
4567 struct clone_root *clone_root)
4569 int ret = 0;
4570 struct fs_path *p;
4571 u64 gen;
4573 verbose_printk("btrfs: send_clone offset=%llu, len=%d, clone_root=%llu, "
4574 "clone_inode=%llu, clone_offset=%llu\n", offset, len,
4575 clone_root->root->objectid, clone_root->ino,
4576 clone_root->offset);
4578 p = fs_path_alloc();
4579 if (!p)
4580 return -ENOMEM;
4582 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4583 if (ret < 0)
4584 goto out;
4586 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4587 if (ret < 0)
4588 goto out;
4590 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4591 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4592 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4594 if (clone_root->root == sctx->send_root) {
4595 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4596 &gen, NULL, NULL, NULL, NULL);
4597 if (ret < 0)
4598 goto out;
4599 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4600 } else {
4601 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4603 if (ret < 0)
4604 goto out;
4607 * If the parent we're using has a received_uuid set then use that as
4608 * our clone source as that is what we will look for when doing a
4609 * receive.
4611 * This covers the case that we create a snapshot off of a received
4612 * subvolume and then use that as the parent and try to receive on a
4613 * different host.
4615 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4616 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4617 clone_root->root->root_item.received_uuid);
4618 else
4619 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4620 clone_root->root->root_item.uuid);
4621 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4622 le64_to_cpu(clone_root->root->root_item.ctransid));
4623 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4624 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4625 clone_root->offset);
4627 ret = send_cmd(sctx);
4629 tlv_put_failure:
4630 out:
4631 fs_path_free(p);
4632 return ret;
4636 * Send an update extent command to user space.
4638 static int send_update_extent(struct send_ctx *sctx,
4639 u64 offset, u32 len)
4641 int ret = 0;
4642 struct fs_path *p;
4644 p = fs_path_alloc();
4645 if (!p)
4646 return -ENOMEM;
4648 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4649 if (ret < 0)
4650 goto out;
4652 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4653 if (ret < 0)
4654 goto out;
4656 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4657 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4658 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4660 ret = send_cmd(sctx);
4662 tlv_put_failure:
4663 out:
4664 fs_path_free(p);
4665 return ret;
4668 static int send_hole(struct send_ctx *sctx, u64 end)
4670 struct fs_path *p = NULL;
4671 u64 offset = sctx->cur_inode_last_extent;
4672 u64 len;
4673 int ret = 0;
4675 p = fs_path_alloc();
4676 if (!p)
4677 return -ENOMEM;
4678 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4679 if (ret < 0)
4680 goto tlv_put_failure;
4681 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4682 while (offset < end) {
4683 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4685 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4686 if (ret < 0)
4687 break;
4688 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4689 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4690 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4691 ret = send_cmd(sctx);
4692 if (ret < 0)
4693 break;
4694 offset += len;
4696 tlv_put_failure:
4697 fs_path_free(p);
4698 return ret;
4701 static int send_extent_data(struct send_ctx *sctx,
4702 const u64 offset,
4703 const u64 len)
4705 u64 sent = 0;
4707 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4708 return send_update_extent(sctx, offset, len);
4710 while (sent < len) {
4711 u64 size = len - sent;
4712 int ret;
4714 if (size > BTRFS_SEND_READ_SIZE)
4715 size = BTRFS_SEND_READ_SIZE;
4716 ret = send_write(sctx, offset + sent, size);
4717 if (ret < 0)
4718 return ret;
4719 if (!ret)
4720 break;
4721 sent += ret;
4723 return 0;
4726 static int clone_range(struct send_ctx *sctx,
4727 struct clone_root *clone_root,
4728 const u64 disk_byte,
4729 u64 data_offset,
4730 u64 offset,
4731 u64 len)
4733 struct btrfs_path *path;
4734 struct btrfs_key key;
4735 int ret;
4737 path = alloc_path_for_send();
4738 if (!path)
4739 return -ENOMEM;
4742 * We can't send a clone operation for the entire range if we find
4743 * extent items in the respective range in the source file that
4744 * refer to different extents or if we find holes.
4745 * So check for that and do a mix of clone and regular write/copy
4746 * operations if needed.
4748 * Example:
4750 * mkfs.btrfs -f /dev/sda
4751 * mount /dev/sda /mnt
4752 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4753 * cp --reflink=always /mnt/foo /mnt/bar
4754 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4755 * btrfs subvolume snapshot -r /mnt /mnt/snap
4757 * If when we send the snapshot and we are processing file bar (which
4758 * has a higher inode number than foo) we blindly send a clone operation
4759 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4760 * a file bar that matches the content of file foo - iow, doesn't match
4761 * the content from bar in the original filesystem.
4763 key.objectid = clone_root->ino;
4764 key.type = BTRFS_EXTENT_DATA_KEY;
4765 key.offset = clone_root->offset;
4766 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4767 if (ret < 0)
4768 goto out;
4769 if (ret > 0 && path->slots[0] > 0) {
4770 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4771 if (key.objectid == clone_root->ino &&
4772 key.type == BTRFS_EXTENT_DATA_KEY)
4773 path->slots[0]--;
4776 while (true) {
4777 struct extent_buffer *leaf = path->nodes[0];
4778 int slot = path->slots[0];
4779 struct btrfs_file_extent_item *ei;
4780 u8 type;
4781 u64 ext_len;
4782 u64 clone_len;
4784 if (slot >= btrfs_header_nritems(leaf)) {
4785 ret = btrfs_next_leaf(clone_root->root, path);
4786 if (ret < 0)
4787 goto out;
4788 else if (ret > 0)
4789 break;
4790 continue;
4793 btrfs_item_key_to_cpu(leaf, &key, slot);
4796 * We might have an implicit trailing hole (NO_HOLES feature
4797 * enabled). We deal with it after leaving this loop.
4799 if (key.objectid != clone_root->ino ||
4800 key.type != BTRFS_EXTENT_DATA_KEY)
4801 break;
4803 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4804 type = btrfs_file_extent_type(leaf, ei);
4805 if (type == BTRFS_FILE_EXTENT_INLINE) {
4806 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
4807 ext_len = PAGE_ALIGN(ext_len);
4808 } else {
4809 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4812 if (key.offset + ext_len <= clone_root->offset)
4813 goto next;
4815 if (key.offset > clone_root->offset) {
4816 /* Implicit hole, NO_HOLES feature enabled. */
4817 u64 hole_len = key.offset - clone_root->offset;
4819 if (hole_len > len)
4820 hole_len = len;
4821 ret = send_extent_data(sctx, offset, hole_len);
4822 if (ret < 0)
4823 goto out;
4825 len -= hole_len;
4826 if (len == 0)
4827 break;
4828 offset += hole_len;
4829 clone_root->offset += hole_len;
4830 data_offset += hole_len;
4833 if (key.offset >= clone_root->offset + len)
4834 break;
4836 clone_len = min_t(u64, ext_len, len);
4838 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4839 btrfs_file_extent_offset(leaf, ei) == data_offset)
4840 ret = send_clone(sctx, offset, clone_len, clone_root);
4841 else
4842 ret = send_extent_data(sctx, offset, clone_len);
4844 if (ret < 0)
4845 goto out;
4847 len -= clone_len;
4848 if (len == 0)
4849 break;
4850 offset += clone_len;
4851 clone_root->offset += clone_len;
4852 data_offset += clone_len;
4853 next:
4854 path->slots[0]++;
4857 if (len > 0)
4858 ret = send_extent_data(sctx, offset, len);
4859 else
4860 ret = 0;
4861 out:
4862 btrfs_free_path(path);
4863 return ret;
4866 static int send_write_or_clone(struct send_ctx *sctx,
4867 struct btrfs_path *path,
4868 struct btrfs_key *key,
4869 struct clone_root *clone_root)
4871 int ret = 0;
4872 struct btrfs_file_extent_item *ei;
4873 u64 offset = key->offset;
4874 u64 len;
4875 u8 type;
4876 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
4878 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4879 struct btrfs_file_extent_item);
4880 type = btrfs_file_extent_type(path->nodes[0], ei);
4881 if (type == BTRFS_FILE_EXTENT_INLINE) {
4882 len = btrfs_file_extent_inline_len(path->nodes[0],
4883 path->slots[0], ei);
4885 * it is possible the inline item won't cover the whole page,
4886 * but there may be items after this page. Make
4887 * sure to send the whole thing
4889 len = PAGE_ALIGN(len);
4890 } else {
4891 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
4894 if (offset + len > sctx->cur_inode_size)
4895 len = sctx->cur_inode_size - offset;
4896 if (len == 0) {
4897 ret = 0;
4898 goto out;
4901 if (clone_root && IS_ALIGNED(offset + len, bs)) {
4902 u64 disk_byte;
4903 u64 data_offset;
4905 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
4906 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
4907 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
4908 offset, len);
4909 } else {
4910 ret = send_extent_data(sctx, offset, len);
4912 out:
4913 return ret;
4916 static int is_extent_unchanged(struct send_ctx *sctx,
4917 struct btrfs_path *left_path,
4918 struct btrfs_key *ekey)
4920 int ret = 0;
4921 struct btrfs_key key;
4922 struct btrfs_path *path = NULL;
4923 struct extent_buffer *eb;
4924 int slot;
4925 struct btrfs_key found_key;
4926 struct btrfs_file_extent_item *ei;
4927 u64 left_disknr;
4928 u64 right_disknr;
4929 u64 left_offset;
4930 u64 right_offset;
4931 u64 left_offset_fixed;
4932 u64 left_len;
4933 u64 right_len;
4934 u64 left_gen;
4935 u64 right_gen;
4936 u8 left_type;
4937 u8 right_type;
4939 path = alloc_path_for_send();
4940 if (!path)
4941 return -ENOMEM;
4943 eb = left_path->nodes[0];
4944 slot = left_path->slots[0];
4945 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
4946 left_type = btrfs_file_extent_type(eb, ei);
4948 if (left_type != BTRFS_FILE_EXTENT_REG) {
4949 ret = 0;
4950 goto out;
4952 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
4953 left_len = btrfs_file_extent_num_bytes(eb, ei);
4954 left_offset = btrfs_file_extent_offset(eb, ei);
4955 left_gen = btrfs_file_extent_generation(eb, ei);
4958 * Following comments will refer to these graphics. L is the left
4959 * extents which we are checking at the moment. 1-8 are the right
4960 * extents that we iterate.
4962 * |-----L-----|
4963 * |-1-|-2a-|-3-|-4-|-5-|-6-|
4965 * |-----L-----|
4966 * |--1--|-2b-|...(same as above)
4968 * Alternative situation. Happens on files where extents got split.
4969 * |-----L-----|
4970 * |-----------7-----------|-6-|
4972 * Alternative situation. Happens on files which got larger.
4973 * |-----L-----|
4974 * |-8-|
4975 * Nothing follows after 8.
4978 key.objectid = ekey->objectid;
4979 key.type = BTRFS_EXTENT_DATA_KEY;
4980 key.offset = ekey->offset;
4981 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
4982 if (ret < 0)
4983 goto out;
4984 if (ret) {
4985 ret = 0;
4986 goto out;
4990 * Handle special case where the right side has no extents at all.
4992 eb = path->nodes[0];
4993 slot = path->slots[0];
4994 btrfs_item_key_to_cpu(eb, &found_key, slot);
4995 if (found_key.objectid != key.objectid ||
4996 found_key.type != key.type) {
4997 /* If we're a hole then just pretend nothing changed */
4998 ret = (left_disknr) ? 0 : 1;
4999 goto out;
5003 * We're now on 2a, 2b or 7.
5005 key = found_key;
5006 while (key.offset < ekey->offset + left_len) {
5007 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5008 right_type = btrfs_file_extent_type(eb, ei);
5009 if (right_type != BTRFS_FILE_EXTENT_REG) {
5010 ret = 0;
5011 goto out;
5014 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5015 right_len = btrfs_file_extent_num_bytes(eb, ei);
5016 right_offset = btrfs_file_extent_offset(eb, ei);
5017 right_gen = btrfs_file_extent_generation(eb, ei);
5020 * Are we at extent 8? If yes, we know the extent is changed.
5021 * This may only happen on the first iteration.
5023 if (found_key.offset + right_len <= ekey->offset) {
5024 /* If we're a hole just pretend nothing changed */
5025 ret = (left_disknr) ? 0 : 1;
5026 goto out;
5029 left_offset_fixed = left_offset;
5030 if (key.offset < ekey->offset) {
5031 /* Fix the right offset for 2a and 7. */
5032 right_offset += ekey->offset - key.offset;
5033 } else {
5034 /* Fix the left offset for all behind 2a and 2b */
5035 left_offset_fixed += key.offset - ekey->offset;
5039 * Check if we have the same extent.
5041 if (left_disknr != right_disknr ||
5042 left_offset_fixed != right_offset ||
5043 left_gen != right_gen) {
5044 ret = 0;
5045 goto out;
5049 * Go to the next extent.
5051 ret = btrfs_next_item(sctx->parent_root, path);
5052 if (ret < 0)
5053 goto out;
5054 if (!ret) {
5055 eb = path->nodes[0];
5056 slot = path->slots[0];
5057 btrfs_item_key_to_cpu(eb, &found_key, slot);
5059 if (ret || found_key.objectid != key.objectid ||
5060 found_key.type != key.type) {
5061 key.offset += right_len;
5062 break;
5064 if (found_key.offset != key.offset + right_len) {
5065 ret = 0;
5066 goto out;
5068 key = found_key;
5072 * We're now behind the left extent (treat as unchanged) or at the end
5073 * of the right side (treat as changed).
5075 if (key.offset >= ekey->offset + left_len)
5076 ret = 1;
5077 else
5078 ret = 0;
5081 out:
5082 btrfs_free_path(path);
5083 return ret;
5086 static int get_last_extent(struct send_ctx *sctx, u64 offset)
5088 struct btrfs_path *path;
5089 struct btrfs_root *root = sctx->send_root;
5090 struct btrfs_file_extent_item *fi;
5091 struct btrfs_key key;
5092 u64 extent_end;
5093 u8 type;
5094 int ret;
5096 path = alloc_path_for_send();
5097 if (!path)
5098 return -ENOMEM;
5100 sctx->cur_inode_last_extent = 0;
5102 key.objectid = sctx->cur_ino;
5103 key.type = BTRFS_EXTENT_DATA_KEY;
5104 key.offset = offset;
5105 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5106 if (ret < 0)
5107 goto out;
5108 ret = 0;
5109 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5110 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5111 goto out;
5113 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5114 struct btrfs_file_extent_item);
5115 type = btrfs_file_extent_type(path->nodes[0], fi);
5116 if (type == BTRFS_FILE_EXTENT_INLINE) {
5117 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5118 path->slots[0], fi);
5119 extent_end = ALIGN(key.offset + size,
5120 sctx->send_root->sectorsize);
5121 } else {
5122 extent_end = key.offset +
5123 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5125 sctx->cur_inode_last_extent = extent_end;
5126 out:
5127 btrfs_free_path(path);
5128 return ret;
5131 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5132 struct btrfs_key *key)
5134 struct btrfs_file_extent_item *fi;
5135 u64 extent_end;
5136 u8 type;
5137 int ret = 0;
5139 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5140 return 0;
5142 if (sctx->cur_inode_last_extent == (u64)-1) {
5143 ret = get_last_extent(sctx, key->offset - 1);
5144 if (ret)
5145 return ret;
5148 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5149 struct btrfs_file_extent_item);
5150 type = btrfs_file_extent_type(path->nodes[0], fi);
5151 if (type == BTRFS_FILE_EXTENT_INLINE) {
5152 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5153 path->slots[0], fi);
5154 extent_end = ALIGN(key->offset + size,
5155 sctx->send_root->sectorsize);
5156 } else {
5157 extent_end = key->offset +
5158 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5161 if (path->slots[0] == 0 &&
5162 sctx->cur_inode_last_extent < key->offset) {
5164 * We might have skipped entire leafs that contained only
5165 * file extent items for our current inode. These leafs have
5166 * a generation number smaller (older) than the one in the
5167 * current leaf and the leaf our last extent came from, and
5168 * are located between these 2 leafs.
5170 ret = get_last_extent(sctx, key->offset - 1);
5171 if (ret)
5172 return ret;
5175 if (sctx->cur_inode_last_extent < key->offset)
5176 ret = send_hole(sctx, key->offset);
5177 sctx->cur_inode_last_extent = extent_end;
5178 return ret;
5181 static int process_extent(struct send_ctx *sctx,
5182 struct btrfs_path *path,
5183 struct btrfs_key *key)
5185 struct clone_root *found_clone = NULL;
5186 int ret = 0;
5188 if (S_ISLNK(sctx->cur_inode_mode))
5189 return 0;
5191 if (sctx->parent_root && !sctx->cur_inode_new) {
5192 ret = is_extent_unchanged(sctx, path, key);
5193 if (ret < 0)
5194 goto out;
5195 if (ret) {
5196 ret = 0;
5197 goto out_hole;
5199 } else {
5200 struct btrfs_file_extent_item *ei;
5201 u8 type;
5203 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5204 struct btrfs_file_extent_item);
5205 type = btrfs_file_extent_type(path->nodes[0], ei);
5206 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5207 type == BTRFS_FILE_EXTENT_REG) {
5209 * The send spec does not have a prealloc command yet,
5210 * so just leave a hole for prealloc'ed extents until
5211 * we have enough commands queued up to justify rev'ing
5212 * the send spec.
5214 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5215 ret = 0;
5216 goto out;
5219 /* Have a hole, just skip it. */
5220 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5221 ret = 0;
5222 goto out;
5227 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5228 sctx->cur_inode_size, &found_clone);
5229 if (ret != -ENOENT && ret < 0)
5230 goto out;
5232 ret = send_write_or_clone(sctx, path, key, found_clone);
5233 if (ret)
5234 goto out;
5235 out_hole:
5236 ret = maybe_send_hole(sctx, path, key);
5237 out:
5238 return ret;
5241 static int process_all_extents(struct send_ctx *sctx)
5243 int ret;
5244 struct btrfs_root *root;
5245 struct btrfs_path *path;
5246 struct btrfs_key key;
5247 struct btrfs_key found_key;
5248 struct extent_buffer *eb;
5249 int slot;
5251 root = sctx->send_root;
5252 path = alloc_path_for_send();
5253 if (!path)
5254 return -ENOMEM;
5256 key.objectid = sctx->cmp_key->objectid;
5257 key.type = BTRFS_EXTENT_DATA_KEY;
5258 key.offset = 0;
5259 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5260 if (ret < 0)
5261 goto out;
5263 while (1) {
5264 eb = path->nodes[0];
5265 slot = path->slots[0];
5267 if (slot >= btrfs_header_nritems(eb)) {
5268 ret = btrfs_next_leaf(root, path);
5269 if (ret < 0) {
5270 goto out;
5271 } else if (ret > 0) {
5272 ret = 0;
5273 break;
5275 continue;
5278 btrfs_item_key_to_cpu(eb, &found_key, slot);
5280 if (found_key.objectid != key.objectid ||
5281 found_key.type != key.type) {
5282 ret = 0;
5283 goto out;
5286 ret = process_extent(sctx, path, &found_key);
5287 if (ret < 0)
5288 goto out;
5290 path->slots[0]++;
5293 out:
5294 btrfs_free_path(path);
5295 return ret;
5298 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5299 int *pending_move,
5300 int *refs_processed)
5302 int ret = 0;
5304 if (sctx->cur_ino == 0)
5305 goto out;
5306 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5307 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5308 goto out;
5309 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5310 goto out;
5312 ret = process_recorded_refs(sctx, pending_move);
5313 if (ret < 0)
5314 goto out;
5316 *refs_processed = 1;
5317 out:
5318 return ret;
5321 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5323 int ret = 0;
5324 u64 left_mode;
5325 u64 left_uid;
5326 u64 left_gid;
5327 u64 right_mode;
5328 u64 right_uid;
5329 u64 right_gid;
5330 int need_chmod = 0;
5331 int need_chown = 0;
5332 int pending_move = 0;
5333 int refs_processed = 0;
5335 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5336 &refs_processed);
5337 if (ret < 0)
5338 goto out;
5341 * We have processed the refs and thus need to advance send_progress.
5342 * Now, calls to get_cur_xxx will take the updated refs of the current
5343 * inode into account.
5345 * On the other hand, if our current inode is a directory and couldn't
5346 * be moved/renamed because its parent was renamed/moved too and it has
5347 * a higher inode number, we can only move/rename our current inode
5348 * after we moved/renamed its parent. Therefore in this case operate on
5349 * the old path (pre move/rename) of our current inode, and the
5350 * move/rename will be performed later.
5352 if (refs_processed && !pending_move)
5353 sctx->send_progress = sctx->cur_ino + 1;
5355 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5356 goto out;
5357 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5358 goto out;
5360 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5361 &left_mode, &left_uid, &left_gid, NULL);
5362 if (ret < 0)
5363 goto out;
5365 if (!sctx->parent_root || sctx->cur_inode_new) {
5366 need_chown = 1;
5367 if (!S_ISLNK(sctx->cur_inode_mode))
5368 need_chmod = 1;
5369 } else {
5370 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5371 NULL, NULL, &right_mode, &right_uid,
5372 &right_gid, NULL);
5373 if (ret < 0)
5374 goto out;
5376 if (left_uid != right_uid || left_gid != right_gid)
5377 need_chown = 1;
5378 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5379 need_chmod = 1;
5382 if (S_ISREG(sctx->cur_inode_mode)) {
5383 if (need_send_hole(sctx)) {
5384 if (sctx->cur_inode_last_extent == (u64)-1 ||
5385 sctx->cur_inode_last_extent <
5386 sctx->cur_inode_size) {
5387 ret = get_last_extent(sctx, (u64)-1);
5388 if (ret)
5389 goto out;
5391 if (sctx->cur_inode_last_extent <
5392 sctx->cur_inode_size) {
5393 ret = send_hole(sctx, sctx->cur_inode_size);
5394 if (ret)
5395 goto out;
5398 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5399 sctx->cur_inode_size);
5400 if (ret < 0)
5401 goto out;
5404 if (need_chown) {
5405 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5406 left_uid, left_gid);
5407 if (ret < 0)
5408 goto out;
5410 if (need_chmod) {
5411 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5412 left_mode);
5413 if (ret < 0)
5414 goto out;
5418 * If other directory inodes depended on our current directory
5419 * inode's move/rename, now do their move/rename operations.
5421 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5422 ret = apply_children_dir_moves(sctx);
5423 if (ret)
5424 goto out;
5426 * Need to send that every time, no matter if it actually
5427 * changed between the two trees as we have done changes to
5428 * the inode before. If our inode is a directory and it's
5429 * waiting to be moved/renamed, we will send its utimes when
5430 * it's moved/renamed, therefore we don't need to do it here.
5432 sctx->send_progress = sctx->cur_ino + 1;
5433 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5434 if (ret < 0)
5435 goto out;
5438 out:
5439 return ret;
5442 static int changed_inode(struct send_ctx *sctx,
5443 enum btrfs_compare_tree_result result)
5445 int ret = 0;
5446 struct btrfs_key *key = sctx->cmp_key;
5447 struct btrfs_inode_item *left_ii = NULL;
5448 struct btrfs_inode_item *right_ii = NULL;
5449 u64 left_gen = 0;
5450 u64 right_gen = 0;
5452 sctx->cur_ino = key->objectid;
5453 sctx->cur_inode_new_gen = 0;
5454 sctx->cur_inode_last_extent = (u64)-1;
5457 * Set send_progress to current inode. This will tell all get_cur_xxx
5458 * functions that the current inode's refs are not updated yet. Later,
5459 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5461 sctx->send_progress = sctx->cur_ino;
5463 if (result == BTRFS_COMPARE_TREE_NEW ||
5464 result == BTRFS_COMPARE_TREE_CHANGED) {
5465 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5466 sctx->left_path->slots[0],
5467 struct btrfs_inode_item);
5468 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5469 left_ii);
5470 } else {
5471 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5472 sctx->right_path->slots[0],
5473 struct btrfs_inode_item);
5474 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5475 right_ii);
5477 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5478 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5479 sctx->right_path->slots[0],
5480 struct btrfs_inode_item);
5482 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5483 right_ii);
5486 * The cur_ino = root dir case is special here. We can't treat
5487 * the inode as deleted+reused because it would generate a
5488 * stream that tries to delete/mkdir the root dir.
5490 if (left_gen != right_gen &&
5491 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5492 sctx->cur_inode_new_gen = 1;
5495 if (result == BTRFS_COMPARE_TREE_NEW) {
5496 sctx->cur_inode_gen = left_gen;
5497 sctx->cur_inode_new = 1;
5498 sctx->cur_inode_deleted = 0;
5499 sctx->cur_inode_size = btrfs_inode_size(
5500 sctx->left_path->nodes[0], left_ii);
5501 sctx->cur_inode_mode = btrfs_inode_mode(
5502 sctx->left_path->nodes[0], left_ii);
5503 sctx->cur_inode_rdev = btrfs_inode_rdev(
5504 sctx->left_path->nodes[0], left_ii);
5505 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5506 ret = send_create_inode_if_needed(sctx);
5507 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5508 sctx->cur_inode_gen = right_gen;
5509 sctx->cur_inode_new = 0;
5510 sctx->cur_inode_deleted = 1;
5511 sctx->cur_inode_size = btrfs_inode_size(
5512 sctx->right_path->nodes[0], right_ii);
5513 sctx->cur_inode_mode = btrfs_inode_mode(
5514 sctx->right_path->nodes[0], right_ii);
5515 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5517 * We need to do some special handling in case the inode was
5518 * reported as changed with a changed generation number. This
5519 * means that the original inode was deleted and new inode
5520 * reused the same inum. So we have to treat the old inode as
5521 * deleted and the new one as new.
5523 if (sctx->cur_inode_new_gen) {
5525 * First, process the inode as if it was deleted.
5527 sctx->cur_inode_gen = right_gen;
5528 sctx->cur_inode_new = 0;
5529 sctx->cur_inode_deleted = 1;
5530 sctx->cur_inode_size = btrfs_inode_size(
5531 sctx->right_path->nodes[0], right_ii);
5532 sctx->cur_inode_mode = btrfs_inode_mode(
5533 sctx->right_path->nodes[0], right_ii);
5534 ret = process_all_refs(sctx,
5535 BTRFS_COMPARE_TREE_DELETED);
5536 if (ret < 0)
5537 goto out;
5540 * Now process the inode as if it was new.
5542 sctx->cur_inode_gen = left_gen;
5543 sctx->cur_inode_new = 1;
5544 sctx->cur_inode_deleted = 0;
5545 sctx->cur_inode_size = btrfs_inode_size(
5546 sctx->left_path->nodes[0], left_ii);
5547 sctx->cur_inode_mode = btrfs_inode_mode(
5548 sctx->left_path->nodes[0], left_ii);
5549 sctx->cur_inode_rdev = btrfs_inode_rdev(
5550 sctx->left_path->nodes[0], left_ii);
5551 ret = send_create_inode_if_needed(sctx);
5552 if (ret < 0)
5553 goto out;
5555 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5556 if (ret < 0)
5557 goto out;
5559 * Advance send_progress now as we did not get into
5560 * process_recorded_refs_if_needed in the new_gen case.
5562 sctx->send_progress = sctx->cur_ino + 1;
5565 * Now process all extents and xattrs of the inode as if
5566 * they were all new.
5568 ret = process_all_extents(sctx);
5569 if (ret < 0)
5570 goto out;
5571 ret = process_all_new_xattrs(sctx);
5572 if (ret < 0)
5573 goto out;
5574 } else {
5575 sctx->cur_inode_gen = left_gen;
5576 sctx->cur_inode_new = 0;
5577 sctx->cur_inode_new_gen = 0;
5578 sctx->cur_inode_deleted = 0;
5579 sctx->cur_inode_size = btrfs_inode_size(
5580 sctx->left_path->nodes[0], left_ii);
5581 sctx->cur_inode_mode = btrfs_inode_mode(
5582 sctx->left_path->nodes[0], left_ii);
5586 out:
5587 return ret;
5591 * We have to process new refs before deleted refs, but compare_trees gives us
5592 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5593 * first and later process them in process_recorded_refs.
5594 * For the cur_inode_new_gen case, we skip recording completely because
5595 * changed_inode did already initiate processing of refs. The reason for this is
5596 * that in this case, compare_tree actually compares the refs of 2 different
5597 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5598 * refs of the right tree as deleted and all refs of the left tree as new.
5600 static int changed_ref(struct send_ctx *sctx,
5601 enum btrfs_compare_tree_result result)
5603 int ret = 0;
5605 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5607 if (!sctx->cur_inode_new_gen &&
5608 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5609 if (result == BTRFS_COMPARE_TREE_NEW)
5610 ret = record_new_ref(sctx);
5611 else if (result == BTRFS_COMPARE_TREE_DELETED)
5612 ret = record_deleted_ref(sctx);
5613 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5614 ret = record_changed_ref(sctx);
5617 return ret;
5621 * Process new/deleted/changed xattrs. We skip processing in the
5622 * cur_inode_new_gen case because changed_inode did already initiate processing
5623 * of xattrs. The reason is the same as in changed_ref
5625 static int changed_xattr(struct send_ctx *sctx,
5626 enum btrfs_compare_tree_result result)
5628 int ret = 0;
5630 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5632 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5633 if (result == BTRFS_COMPARE_TREE_NEW)
5634 ret = process_new_xattr(sctx);
5635 else if (result == BTRFS_COMPARE_TREE_DELETED)
5636 ret = process_deleted_xattr(sctx);
5637 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5638 ret = process_changed_xattr(sctx);
5641 return ret;
5645 * Process new/deleted/changed extents. We skip processing in the
5646 * cur_inode_new_gen case because changed_inode did already initiate processing
5647 * of extents. The reason is the same as in changed_ref
5649 static int changed_extent(struct send_ctx *sctx,
5650 enum btrfs_compare_tree_result result)
5652 int ret = 0;
5654 BUG_ON(sctx->cur_ino != sctx->cmp_key->objectid);
5656 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5657 if (result != BTRFS_COMPARE_TREE_DELETED)
5658 ret = process_extent(sctx, sctx->left_path,
5659 sctx->cmp_key);
5662 return ret;
5665 static int dir_changed(struct send_ctx *sctx, u64 dir)
5667 u64 orig_gen, new_gen;
5668 int ret;
5670 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5671 NULL, NULL);
5672 if (ret)
5673 return ret;
5675 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5676 NULL, NULL, NULL);
5677 if (ret)
5678 return ret;
5680 return (orig_gen != new_gen) ? 1 : 0;
5683 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5684 struct btrfs_key *key)
5686 struct btrfs_inode_extref *extref;
5687 struct extent_buffer *leaf;
5688 u64 dirid = 0, last_dirid = 0;
5689 unsigned long ptr;
5690 u32 item_size;
5691 u32 cur_offset = 0;
5692 int ref_name_len;
5693 int ret = 0;
5695 /* Easy case, just check this one dirid */
5696 if (key->type == BTRFS_INODE_REF_KEY) {
5697 dirid = key->offset;
5699 ret = dir_changed(sctx, dirid);
5700 goto out;
5703 leaf = path->nodes[0];
5704 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5705 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5706 while (cur_offset < item_size) {
5707 extref = (struct btrfs_inode_extref *)(ptr +
5708 cur_offset);
5709 dirid = btrfs_inode_extref_parent(leaf, extref);
5710 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5711 cur_offset += ref_name_len + sizeof(*extref);
5712 if (dirid == last_dirid)
5713 continue;
5714 ret = dir_changed(sctx, dirid);
5715 if (ret)
5716 break;
5717 last_dirid = dirid;
5719 out:
5720 return ret;
5724 * Updates compare related fields in sctx and simply forwards to the actual
5725 * changed_xxx functions.
5727 static int changed_cb(struct btrfs_root *left_root,
5728 struct btrfs_root *right_root,
5729 struct btrfs_path *left_path,
5730 struct btrfs_path *right_path,
5731 struct btrfs_key *key,
5732 enum btrfs_compare_tree_result result,
5733 void *ctx)
5735 int ret = 0;
5736 struct send_ctx *sctx = ctx;
5738 if (result == BTRFS_COMPARE_TREE_SAME) {
5739 if (key->type == BTRFS_INODE_REF_KEY ||
5740 key->type == BTRFS_INODE_EXTREF_KEY) {
5741 ret = compare_refs(sctx, left_path, key);
5742 if (!ret)
5743 return 0;
5744 if (ret < 0)
5745 return ret;
5746 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5747 return maybe_send_hole(sctx, left_path, key);
5748 } else {
5749 return 0;
5751 result = BTRFS_COMPARE_TREE_CHANGED;
5752 ret = 0;
5755 sctx->left_path = left_path;
5756 sctx->right_path = right_path;
5757 sctx->cmp_key = key;
5759 ret = finish_inode_if_needed(sctx, 0);
5760 if (ret < 0)
5761 goto out;
5763 /* Ignore non-FS objects */
5764 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5765 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5766 goto out;
5768 if (key->type == BTRFS_INODE_ITEM_KEY)
5769 ret = changed_inode(sctx, result);
5770 else if (key->type == BTRFS_INODE_REF_KEY ||
5771 key->type == BTRFS_INODE_EXTREF_KEY)
5772 ret = changed_ref(sctx, result);
5773 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5774 ret = changed_xattr(sctx, result);
5775 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5776 ret = changed_extent(sctx, result);
5778 out:
5779 return ret;
5782 static int full_send_tree(struct send_ctx *sctx)
5784 int ret;
5785 struct btrfs_root *send_root = sctx->send_root;
5786 struct btrfs_key key;
5787 struct btrfs_key found_key;
5788 struct btrfs_path *path;
5789 struct extent_buffer *eb;
5790 int slot;
5792 path = alloc_path_for_send();
5793 if (!path)
5794 return -ENOMEM;
5796 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
5797 key.type = BTRFS_INODE_ITEM_KEY;
5798 key.offset = 0;
5800 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
5801 if (ret < 0)
5802 goto out;
5803 if (ret)
5804 goto out_finish;
5806 while (1) {
5807 eb = path->nodes[0];
5808 slot = path->slots[0];
5809 btrfs_item_key_to_cpu(eb, &found_key, slot);
5811 ret = changed_cb(send_root, NULL, path, NULL,
5812 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
5813 if (ret < 0)
5814 goto out;
5816 key.objectid = found_key.objectid;
5817 key.type = found_key.type;
5818 key.offset = found_key.offset + 1;
5820 ret = btrfs_next_item(send_root, path);
5821 if (ret < 0)
5822 goto out;
5823 if (ret) {
5824 ret = 0;
5825 break;
5829 out_finish:
5830 ret = finish_inode_if_needed(sctx, 1);
5832 out:
5833 btrfs_free_path(path);
5834 return ret;
5837 static int send_subvol(struct send_ctx *sctx)
5839 int ret;
5841 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
5842 ret = send_header(sctx);
5843 if (ret < 0)
5844 goto out;
5847 ret = send_subvol_begin(sctx);
5848 if (ret < 0)
5849 goto out;
5851 if (sctx->parent_root) {
5852 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
5853 changed_cb, sctx);
5854 if (ret < 0)
5855 goto out;
5856 ret = finish_inode_if_needed(sctx, 1);
5857 if (ret < 0)
5858 goto out;
5859 } else {
5860 ret = full_send_tree(sctx);
5861 if (ret < 0)
5862 goto out;
5865 out:
5866 free_recorded_refs(sctx);
5867 return ret;
5871 * If orphan cleanup did remove any orphans from a root, it means the tree
5872 * was modified and therefore the commit root is not the same as the current
5873 * root anymore. This is a problem, because send uses the commit root and
5874 * therefore can see inode items that don't exist in the current root anymore,
5875 * and for example make calls to btrfs_iget, which will do tree lookups based
5876 * on the current root and not on the commit root. Those lookups will fail,
5877 * returning a -ESTALE error, and making send fail with that error. So make
5878 * sure a send does not see any orphans we have just removed, and that it will
5879 * see the same inodes regardless of whether a transaction commit happened
5880 * before it started (meaning that the commit root will be the same as the
5881 * current root) or not.
5883 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
5885 int i;
5886 struct btrfs_trans_handle *trans = NULL;
5888 again:
5889 if (sctx->parent_root &&
5890 sctx->parent_root->node != sctx->parent_root->commit_root)
5891 goto commit_trans;
5893 for (i = 0; i < sctx->clone_roots_cnt; i++)
5894 if (sctx->clone_roots[i].root->node !=
5895 sctx->clone_roots[i].root->commit_root)
5896 goto commit_trans;
5898 if (trans)
5899 return btrfs_end_transaction(trans, sctx->send_root);
5901 return 0;
5903 commit_trans:
5904 /* Use any root, all fs roots will get their commit roots updated. */
5905 if (!trans) {
5906 trans = btrfs_join_transaction(sctx->send_root);
5907 if (IS_ERR(trans))
5908 return PTR_ERR(trans);
5909 goto again;
5912 return btrfs_commit_transaction(trans, sctx->send_root);
5915 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
5917 spin_lock(&root->root_item_lock);
5918 root->send_in_progress--;
5920 * Not much left to do, we don't know why it's unbalanced and
5921 * can't blindly reset it to 0.
5923 if (root->send_in_progress < 0)
5924 btrfs_err(root->fs_info,
5925 "send_in_progres unbalanced %d root %llu",
5926 root->send_in_progress, root->root_key.objectid);
5927 spin_unlock(&root->root_item_lock);
5930 long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
5932 int ret = 0;
5933 struct btrfs_root *send_root;
5934 struct btrfs_root *clone_root;
5935 struct btrfs_fs_info *fs_info;
5936 struct btrfs_ioctl_send_args *arg = NULL;
5937 struct btrfs_key key;
5938 struct send_ctx *sctx = NULL;
5939 u32 i;
5940 u64 *clone_sources_tmp = NULL;
5941 int clone_sources_to_rollback = 0;
5942 int sort_clone_roots = 0;
5943 int index;
5945 if (!capable(CAP_SYS_ADMIN))
5946 return -EPERM;
5948 send_root = BTRFS_I(file_inode(mnt_file))->root;
5949 fs_info = send_root->fs_info;
5952 * The subvolume must remain read-only during send, protect against
5953 * making it RW. This also protects against deletion.
5955 spin_lock(&send_root->root_item_lock);
5956 send_root->send_in_progress++;
5957 spin_unlock(&send_root->root_item_lock);
5960 * This is done when we lookup the root, it should already be complete
5961 * by the time we get here.
5963 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
5966 * Userspace tools do the checks and warn the user if it's
5967 * not RO.
5969 if (!btrfs_root_readonly(send_root)) {
5970 ret = -EPERM;
5971 goto out;
5974 arg = memdup_user(arg_, sizeof(*arg));
5975 if (IS_ERR(arg)) {
5976 ret = PTR_ERR(arg);
5977 arg = NULL;
5978 goto out;
5981 if (!access_ok(VERIFY_READ, arg->clone_sources,
5982 sizeof(*arg->clone_sources) *
5983 arg->clone_sources_count)) {
5984 ret = -EFAULT;
5985 goto out;
5988 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
5989 ret = -EINVAL;
5990 goto out;
5993 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
5994 if (!sctx) {
5995 ret = -ENOMEM;
5996 goto out;
5999 INIT_LIST_HEAD(&sctx->new_refs);
6000 INIT_LIST_HEAD(&sctx->deleted_refs);
6001 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6002 INIT_LIST_HEAD(&sctx->name_cache_list);
6004 sctx->flags = arg->flags;
6006 sctx->send_filp = fget(arg->send_fd);
6007 if (!sctx->send_filp) {
6008 ret = -EBADF;
6009 goto out;
6012 sctx->send_root = send_root;
6014 * Unlikely but possible, if the subvolume is marked for deletion but
6015 * is slow to remove the directory entry, send can still be started
6017 if (btrfs_root_dead(sctx->send_root)) {
6018 ret = -EPERM;
6019 goto out;
6022 sctx->clone_roots_cnt = arg->clone_sources_count;
6024 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6025 sctx->send_buf = vmalloc(sctx->send_max_size);
6026 if (!sctx->send_buf) {
6027 ret = -ENOMEM;
6028 goto out;
6031 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6032 if (!sctx->read_buf) {
6033 ret = -ENOMEM;
6034 goto out;
6037 sctx->pending_dir_moves = RB_ROOT;
6038 sctx->waiting_dir_moves = RB_ROOT;
6039 sctx->orphan_dirs = RB_ROOT;
6041 sctx->clone_roots = vzalloc(sizeof(struct clone_root) *
6042 (arg->clone_sources_count + 1));
6043 if (!sctx->clone_roots) {
6044 ret = -ENOMEM;
6045 goto out;
6048 if (arg->clone_sources_count) {
6049 clone_sources_tmp = vmalloc(arg->clone_sources_count *
6050 sizeof(*arg->clone_sources));
6051 if (!clone_sources_tmp) {
6052 ret = -ENOMEM;
6053 goto out;
6056 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6057 arg->clone_sources_count *
6058 sizeof(*arg->clone_sources));
6059 if (ret) {
6060 ret = -EFAULT;
6061 goto out;
6064 for (i = 0; i < arg->clone_sources_count; i++) {
6065 key.objectid = clone_sources_tmp[i];
6066 key.type = BTRFS_ROOT_ITEM_KEY;
6067 key.offset = (u64)-1;
6069 index = srcu_read_lock(&fs_info->subvol_srcu);
6071 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6072 if (IS_ERR(clone_root)) {
6073 srcu_read_unlock(&fs_info->subvol_srcu, index);
6074 ret = PTR_ERR(clone_root);
6075 goto out;
6077 spin_lock(&clone_root->root_item_lock);
6078 if (!btrfs_root_readonly(clone_root) ||
6079 btrfs_root_dead(clone_root)) {
6080 spin_unlock(&clone_root->root_item_lock);
6081 srcu_read_unlock(&fs_info->subvol_srcu, index);
6082 ret = -EPERM;
6083 goto out;
6085 clone_root->send_in_progress++;
6086 spin_unlock(&clone_root->root_item_lock);
6087 srcu_read_unlock(&fs_info->subvol_srcu, index);
6089 sctx->clone_roots[i].root = clone_root;
6090 clone_sources_to_rollback = i + 1;
6092 vfree(clone_sources_tmp);
6093 clone_sources_tmp = NULL;
6096 if (arg->parent_root) {
6097 key.objectid = arg->parent_root;
6098 key.type = BTRFS_ROOT_ITEM_KEY;
6099 key.offset = (u64)-1;
6101 index = srcu_read_lock(&fs_info->subvol_srcu);
6103 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6104 if (IS_ERR(sctx->parent_root)) {
6105 srcu_read_unlock(&fs_info->subvol_srcu, index);
6106 ret = PTR_ERR(sctx->parent_root);
6107 goto out;
6110 spin_lock(&sctx->parent_root->root_item_lock);
6111 sctx->parent_root->send_in_progress++;
6112 if (!btrfs_root_readonly(sctx->parent_root) ||
6113 btrfs_root_dead(sctx->parent_root)) {
6114 spin_unlock(&sctx->parent_root->root_item_lock);
6115 srcu_read_unlock(&fs_info->subvol_srcu, index);
6116 ret = -EPERM;
6117 goto out;
6119 spin_unlock(&sctx->parent_root->root_item_lock);
6121 srcu_read_unlock(&fs_info->subvol_srcu, index);
6125 * Clones from send_root are allowed, but only if the clone source
6126 * is behind the current send position. This is checked while searching
6127 * for possible clone sources.
6129 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6131 /* We do a bsearch later */
6132 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6133 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6134 NULL);
6135 sort_clone_roots = 1;
6137 ret = ensure_commit_roots_uptodate(sctx);
6138 if (ret)
6139 goto out;
6141 current->journal_info = BTRFS_SEND_TRANS_STUB;
6142 ret = send_subvol(sctx);
6143 current->journal_info = NULL;
6144 if (ret < 0)
6145 goto out;
6147 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6148 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6149 if (ret < 0)
6150 goto out;
6151 ret = send_cmd(sctx);
6152 if (ret < 0)
6153 goto out;
6156 out:
6157 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6158 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6159 struct rb_node *n;
6160 struct pending_dir_move *pm;
6162 n = rb_first(&sctx->pending_dir_moves);
6163 pm = rb_entry(n, struct pending_dir_move, node);
6164 while (!list_empty(&pm->list)) {
6165 struct pending_dir_move *pm2;
6167 pm2 = list_first_entry(&pm->list,
6168 struct pending_dir_move, list);
6169 free_pending_move(sctx, pm2);
6171 free_pending_move(sctx, pm);
6174 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6175 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6176 struct rb_node *n;
6177 struct waiting_dir_move *dm;
6179 n = rb_first(&sctx->waiting_dir_moves);
6180 dm = rb_entry(n, struct waiting_dir_move, node);
6181 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6182 kfree(dm);
6185 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6186 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6187 struct rb_node *n;
6188 struct orphan_dir_info *odi;
6190 n = rb_first(&sctx->orphan_dirs);
6191 odi = rb_entry(n, struct orphan_dir_info, node);
6192 free_orphan_dir_info(sctx, odi);
6195 if (sort_clone_roots) {
6196 for (i = 0; i < sctx->clone_roots_cnt; i++)
6197 btrfs_root_dec_send_in_progress(
6198 sctx->clone_roots[i].root);
6199 } else {
6200 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6201 btrfs_root_dec_send_in_progress(
6202 sctx->clone_roots[i].root);
6204 btrfs_root_dec_send_in_progress(send_root);
6206 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6207 btrfs_root_dec_send_in_progress(sctx->parent_root);
6209 kfree(arg);
6210 vfree(clone_sources_tmp);
6212 if (sctx) {
6213 if (sctx->send_filp)
6214 fput(sctx->send_filp);
6216 vfree(sctx->clone_roots);
6217 vfree(sctx->send_buf);
6218 vfree(sctx->read_buf);
6220 name_cache_free(sctx);
6222 kfree(sctx);
6225 return ret;