4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/export.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/personality.h>
37 #include <linux/ptrace.h>
38 #include <linux/fs_struct.h>
39 #include <linux/file.h>
40 #include <linux/mount.h>
41 #include <linux/gfp.h>
42 #include <linux/syscore_ops.h>
43 #include <linux/version.h>
44 #include <linux/ctype.h>
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/binfmts.h>
52 #include <linux/kmsg_dump.h>
53 /* Move somewhere else to avoid recompiling? */
54 #include <generated/utsrelease.h>
56 #include <asm/uaccess.h>
58 #include <asm/unistd.h>
60 #ifndef SET_UNALIGN_CTL
61 # define SET_UNALIGN_CTL(a,b) (-EINVAL)
63 #ifndef GET_UNALIGN_CTL
64 # define GET_UNALIGN_CTL(a,b) (-EINVAL)
67 # define SET_FPEMU_CTL(a,b) (-EINVAL)
70 # define GET_FPEMU_CTL(a,b) (-EINVAL)
73 # define SET_FPEXC_CTL(a,b) (-EINVAL)
76 # define GET_FPEXC_CTL(a,b) (-EINVAL)
79 # define GET_ENDIAN(a,b) (-EINVAL)
82 # define SET_ENDIAN(a,b) (-EINVAL)
85 # define GET_TSC_CTL(a) (-EINVAL)
88 # define SET_TSC_CTL(a) (-EINVAL)
92 * this is where the system-wide overflow UID and GID are defined, for
93 * architectures that now have 32-bit UID/GID but didn't in the past
96 int overflowuid
= DEFAULT_OVERFLOWUID
;
97 int overflowgid
= DEFAULT_OVERFLOWGID
;
99 EXPORT_SYMBOL(overflowuid
);
100 EXPORT_SYMBOL(overflowgid
);
103 * the same as above, but for filesystems which can only store a 16-bit
104 * UID and GID. as such, this is needed on all architectures
107 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
108 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
110 EXPORT_SYMBOL(fs_overflowuid
);
111 EXPORT_SYMBOL(fs_overflowgid
);
114 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
119 EXPORT_SYMBOL(cad_pid
);
122 * If set, this is used for preparing the system to power off.
125 void (*pm_power_off_prepare
)(void);
128 * Returns true if current's euid is same as p's uid or euid,
129 * or has CAP_SYS_NICE to p's user_ns.
131 * Called with rcu_read_lock, creds are safe
133 static bool set_one_prio_perm(struct task_struct
*p
)
135 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
137 if (uid_eq(pcred
->uid
, cred
->euid
) ||
138 uid_eq(pcred
->euid
, cred
->euid
))
140 if (ns_capable(pcred
->user_ns
, CAP_SYS_NICE
))
146 * set the priority of a task
147 * - the caller must hold the RCU read lock
149 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
153 if (!set_one_prio_perm(p
)) {
157 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
161 no_nice
= security_task_setnice(p
, niceval
);
168 set_user_nice(p
, niceval
);
173 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
175 struct task_struct
*g
, *p
;
176 struct user_struct
*user
;
177 const struct cred
*cred
= current_cred();
182 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
185 /* normalize: avoid signed division (rounding problems) */
193 read_lock(&tasklist_lock
);
197 p
= find_task_by_vpid(who
);
201 error
= set_one_prio(p
, niceval
, error
);
205 pgrp
= find_vpid(who
);
207 pgrp
= task_pgrp(current
);
208 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
209 error
= set_one_prio(p
, niceval
, error
);
210 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
213 uid
= make_kuid(cred
->user_ns
, who
);
217 else if (!uid_eq(uid
, cred
->uid
) &&
218 !(user
= find_user(uid
)))
219 goto out_unlock
; /* No processes for this user */
221 do_each_thread(g
, p
) {
222 if (uid_eq(task_uid(p
), uid
))
223 error
= set_one_prio(p
, niceval
, error
);
224 } while_each_thread(g
, p
);
225 if (!uid_eq(uid
, cred
->uid
))
226 free_uid(user
); /* For find_user() */
230 read_unlock(&tasklist_lock
);
237 * Ugh. To avoid negative return values, "getpriority()" will
238 * not return the normal nice-value, but a negated value that
239 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
240 * to stay compatible.
242 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
244 struct task_struct
*g
, *p
;
245 struct user_struct
*user
;
246 const struct cred
*cred
= current_cred();
247 long niceval
, retval
= -ESRCH
;
251 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
255 read_lock(&tasklist_lock
);
259 p
= find_task_by_vpid(who
);
263 niceval
= 20 - task_nice(p
);
264 if (niceval
> retval
)
270 pgrp
= find_vpid(who
);
272 pgrp
= task_pgrp(current
);
273 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
274 niceval
= 20 - task_nice(p
);
275 if (niceval
> retval
)
277 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
280 uid
= make_kuid(cred
->user_ns
, who
);
284 else if (!uid_eq(uid
, cred
->uid
) &&
285 !(user
= find_user(uid
)))
286 goto out_unlock
; /* No processes for this user */
288 do_each_thread(g
, p
) {
289 if (uid_eq(task_uid(p
), uid
)) {
290 niceval
= 20 - task_nice(p
);
291 if (niceval
> retval
)
294 } while_each_thread(g
, p
);
295 if (!uid_eq(uid
, cred
->uid
))
296 free_uid(user
); /* for find_user() */
300 read_unlock(&tasklist_lock
);
307 * emergency_restart - reboot the system
309 * Without shutting down any hardware or taking any locks
310 * reboot the system. This is called when we know we are in
311 * trouble so this is our best effort to reboot. This is
312 * safe to call in interrupt context.
314 void emergency_restart(void)
316 kmsg_dump(KMSG_DUMP_EMERG
);
317 machine_emergency_restart();
319 EXPORT_SYMBOL_GPL(emergency_restart
);
321 void kernel_restart_prepare(char *cmd
)
323 blocking_notifier_call_chain(&reboot_notifier_list
, SYS_RESTART
, cmd
);
324 system_state
= SYSTEM_RESTART
;
325 usermodehelper_disable();
331 * register_reboot_notifier - Register function to be called at reboot time
332 * @nb: Info about notifier function to be called
334 * Registers a function with the list of functions
335 * to be called at reboot time.
337 * Currently always returns zero, as blocking_notifier_chain_register()
338 * always returns zero.
340 int register_reboot_notifier(struct notifier_block
*nb
)
342 return blocking_notifier_chain_register(&reboot_notifier_list
, nb
);
344 EXPORT_SYMBOL(register_reboot_notifier
);
347 * unregister_reboot_notifier - Unregister previously registered reboot notifier
348 * @nb: Hook to be unregistered
350 * Unregisters a previously registered reboot
353 * Returns zero on success, or %-ENOENT on failure.
355 int unregister_reboot_notifier(struct notifier_block
*nb
)
357 return blocking_notifier_chain_unregister(&reboot_notifier_list
, nb
);
359 EXPORT_SYMBOL(unregister_reboot_notifier
);
362 * kernel_restart - reboot the system
363 * @cmd: pointer to buffer containing command to execute for restart
366 * Shutdown everything and perform a clean reboot.
367 * This is not safe to call in interrupt context.
369 void kernel_restart(char *cmd
)
371 kernel_restart_prepare(cmd
);
372 disable_nonboot_cpus();
374 printk(KERN_EMERG
"Restarting system.\n");
376 printk(KERN_EMERG
"Restarting system with command '%s'.\n", cmd
);
377 kmsg_dump(KMSG_DUMP_RESTART
);
378 machine_restart(cmd
);
380 EXPORT_SYMBOL_GPL(kernel_restart
);
382 static void kernel_shutdown_prepare(enum system_states state
)
384 blocking_notifier_call_chain(&reboot_notifier_list
,
385 (state
== SYSTEM_HALT
)?SYS_HALT
:SYS_POWER_OFF
, NULL
);
386 system_state
= state
;
387 usermodehelper_disable();
391 * kernel_halt - halt the system
393 * Shutdown everything and perform a clean system halt.
395 void kernel_halt(void)
397 kernel_shutdown_prepare(SYSTEM_HALT
);
399 printk(KERN_EMERG
"System halted.\n");
400 kmsg_dump(KMSG_DUMP_HALT
);
404 EXPORT_SYMBOL_GPL(kernel_halt
);
407 * kernel_power_off - power_off the system
409 * Shutdown everything and perform a clean system power_off.
411 void kernel_power_off(void)
413 kernel_shutdown_prepare(SYSTEM_POWER_OFF
);
414 if (pm_power_off_prepare
)
415 pm_power_off_prepare();
416 disable_nonboot_cpus();
418 printk(KERN_EMERG
"Power down.\n");
419 kmsg_dump(KMSG_DUMP_POWEROFF
);
422 EXPORT_SYMBOL_GPL(kernel_power_off
);
424 static DEFINE_MUTEX(reboot_mutex
);
427 * Reboot system call: for obvious reasons only root may call it,
428 * and even root needs to set up some magic numbers in the registers
429 * so that some mistake won't make this reboot the whole machine.
430 * You can also set the meaning of the ctrl-alt-del-key here.
432 * reboot doesn't sync: do that yourself before calling this.
434 SYSCALL_DEFINE4(reboot
, int, magic1
, int, magic2
, unsigned int, cmd
,
437 struct pid_namespace
*pid_ns
= task_active_pid_ns(current
);
441 /* We only trust the superuser with rebooting the system. */
442 if (!ns_capable(pid_ns
->user_ns
, CAP_SYS_BOOT
))
445 /* For safety, we require "magic" arguments. */
446 if (magic1
!= LINUX_REBOOT_MAGIC1
||
447 (magic2
!= LINUX_REBOOT_MAGIC2
&&
448 magic2
!= LINUX_REBOOT_MAGIC2A
&&
449 magic2
!= LINUX_REBOOT_MAGIC2B
&&
450 magic2
!= LINUX_REBOOT_MAGIC2C
))
454 * If pid namespaces are enabled and the current task is in a child
455 * pid_namespace, the command is handled by reboot_pid_ns() which will
458 ret
= reboot_pid_ns(pid_ns
, cmd
);
462 /* Instead of trying to make the power_off code look like
463 * halt when pm_power_off is not set do it the easy way.
465 if ((cmd
== LINUX_REBOOT_CMD_POWER_OFF
) && !pm_power_off
)
466 cmd
= LINUX_REBOOT_CMD_HALT
;
468 mutex_lock(&reboot_mutex
);
470 case LINUX_REBOOT_CMD_RESTART
:
471 kernel_restart(NULL
);
474 case LINUX_REBOOT_CMD_CAD_ON
:
478 case LINUX_REBOOT_CMD_CAD_OFF
:
482 case LINUX_REBOOT_CMD_HALT
:
485 panic("cannot halt");
487 case LINUX_REBOOT_CMD_POWER_OFF
:
492 case LINUX_REBOOT_CMD_RESTART2
:
493 if (strncpy_from_user(&buffer
[0], arg
, sizeof(buffer
) - 1) < 0) {
497 buffer
[sizeof(buffer
) - 1] = '\0';
499 kernel_restart(buffer
);
503 case LINUX_REBOOT_CMD_KEXEC
:
504 ret
= kernel_kexec();
508 #ifdef CONFIG_HIBERNATION
509 case LINUX_REBOOT_CMD_SW_SUSPEND
:
518 mutex_unlock(&reboot_mutex
);
522 static void deferred_cad(struct work_struct
*dummy
)
524 kernel_restart(NULL
);
528 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
529 * As it's called within an interrupt, it may NOT sync: the only choice
530 * is whether to reboot at once, or just ignore the ctrl-alt-del.
532 void ctrl_alt_del(void)
534 static DECLARE_WORK(cad_work
, deferred_cad
);
537 schedule_work(&cad_work
);
539 kill_cad_pid(SIGINT
, 1);
543 * Unprivileged users may change the real gid to the effective gid
544 * or vice versa. (BSD-style)
546 * If you set the real gid at all, or set the effective gid to a value not
547 * equal to the real gid, then the saved gid is set to the new effective gid.
549 * This makes it possible for a setgid program to completely drop its
550 * privileges, which is often a useful assertion to make when you are doing
551 * a security audit over a program.
553 * The general idea is that a program which uses just setregid() will be
554 * 100% compatible with BSD. A program which uses just setgid() will be
555 * 100% compatible with POSIX with saved IDs.
557 * SMP: There are not races, the GIDs are checked only by filesystem
558 * operations (as far as semantic preservation is concerned).
560 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
562 struct user_namespace
*ns
= current_user_ns();
563 const struct cred
*old
;
568 krgid
= make_kgid(ns
, rgid
);
569 kegid
= make_kgid(ns
, egid
);
571 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
573 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
576 new = prepare_creds();
579 old
= current_cred();
582 if (rgid
!= (gid_t
) -1) {
583 if (gid_eq(old
->gid
, krgid
) ||
584 gid_eq(old
->egid
, krgid
) ||
585 nsown_capable(CAP_SETGID
))
590 if (egid
!= (gid_t
) -1) {
591 if (gid_eq(old
->gid
, kegid
) ||
592 gid_eq(old
->egid
, kegid
) ||
593 gid_eq(old
->sgid
, kegid
) ||
594 nsown_capable(CAP_SETGID
))
600 if (rgid
!= (gid_t
) -1 ||
601 (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
)))
602 new->sgid
= new->egid
;
603 new->fsgid
= new->egid
;
605 return commit_creds(new);
613 * setgid() is implemented like SysV w/ SAVED_IDS
615 * SMP: Same implicit races as above.
617 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
619 struct user_namespace
*ns
= current_user_ns();
620 const struct cred
*old
;
625 kgid
= make_kgid(ns
, gid
);
626 if (!gid_valid(kgid
))
629 new = prepare_creds();
632 old
= current_cred();
635 if (nsown_capable(CAP_SETGID
))
636 new->gid
= new->egid
= new->sgid
= new->fsgid
= kgid
;
637 else if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->sgid
))
638 new->egid
= new->fsgid
= kgid
;
642 return commit_creds(new);
650 * change the user struct in a credentials set to match the new UID
652 static int set_user(struct cred
*new)
654 struct user_struct
*new_user
;
656 new_user
= alloc_uid(new->uid
);
661 * We don't fail in case of NPROC limit excess here because too many
662 * poorly written programs don't check set*uid() return code, assuming
663 * it never fails if called by root. We may still enforce NPROC limit
664 * for programs doing set*uid()+execve() by harmlessly deferring the
665 * failure to the execve() stage.
667 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
668 new_user
!= INIT_USER
)
669 current
->flags
|= PF_NPROC_EXCEEDED
;
671 current
->flags
&= ~PF_NPROC_EXCEEDED
;
674 new->user
= new_user
;
679 * Unprivileged users may change the real uid to the effective uid
680 * or vice versa. (BSD-style)
682 * If you set the real uid at all, or set the effective uid to a value not
683 * equal to the real uid, then the saved uid is set to the new effective uid.
685 * This makes it possible for a setuid program to completely drop its
686 * privileges, which is often a useful assertion to make when you are doing
687 * a security audit over a program.
689 * The general idea is that a program which uses just setreuid() will be
690 * 100% compatible with BSD. A program which uses just setuid() will be
691 * 100% compatible with POSIX with saved IDs.
693 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
695 struct user_namespace
*ns
= current_user_ns();
696 const struct cred
*old
;
701 kruid
= make_kuid(ns
, ruid
);
702 keuid
= make_kuid(ns
, euid
);
704 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
706 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
709 new = prepare_creds();
712 old
= current_cred();
715 if (ruid
!= (uid_t
) -1) {
717 if (!uid_eq(old
->uid
, kruid
) &&
718 !uid_eq(old
->euid
, kruid
) &&
719 !nsown_capable(CAP_SETUID
))
723 if (euid
!= (uid_t
) -1) {
725 if (!uid_eq(old
->uid
, keuid
) &&
726 !uid_eq(old
->euid
, keuid
) &&
727 !uid_eq(old
->suid
, keuid
) &&
728 !nsown_capable(CAP_SETUID
))
732 if (!uid_eq(new->uid
, old
->uid
)) {
733 retval
= set_user(new);
737 if (ruid
!= (uid_t
) -1 ||
738 (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
)))
739 new->suid
= new->euid
;
740 new->fsuid
= new->euid
;
742 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
746 return commit_creds(new);
754 * setuid() is implemented like SysV with SAVED_IDS
756 * Note that SAVED_ID's is deficient in that a setuid root program
757 * like sendmail, for example, cannot set its uid to be a normal
758 * user and then switch back, because if you're root, setuid() sets
759 * the saved uid too. If you don't like this, blame the bright people
760 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
761 * will allow a root program to temporarily drop privileges and be able to
762 * regain them by swapping the real and effective uid.
764 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
766 struct user_namespace
*ns
= current_user_ns();
767 const struct cred
*old
;
772 kuid
= make_kuid(ns
, uid
);
773 if (!uid_valid(kuid
))
776 new = prepare_creds();
779 old
= current_cred();
782 if (nsown_capable(CAP_SETUID
)) {
783 new->suid
= new->uid
= kuid
;
784 if (!uid_eq(kuid
, old
->uid
)) {
785 retval
= set_user(new);
789 } else if (!uid_eq(kuid
, old
->uid
) && !uid_eq(kuid
, new->suid
)) {
793 new->fsuid
= new->euid
= kuid
;
795 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
799 return commit_creds(new);
808 * This function implements a generic ability to update ruid, euid,
809 * and suid. This allows you to implement the 4.4 compatible seteuid().
811 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
813 struct user_namespace
*ns
= current_user_ns();
814 const struct cred
*old
;
817 kuid_t kruid
, keuid
, ksuid
;
819 kruid
= make_kuid(ns
, ruid
);
820 keuid
= make_kuid(ns
, euid
);
821 ksuid
= make_kuid(ns
, suid
);
823 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
826 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
829 if ((suid
!= (uid_t
) -1) && !uid_valid(ksuid
))
832 new = prepare_creds();
836 old
= current_cred();
839 if (!nsown_capable(CAP_SETUID
)) {
840 if (ruid
!= (uid_t
) -1 && !uid_eq(kruid
, old
->uid
) &&
841 !uid_eq(kruid
, old
->euid
) && !uid_eq(kruid
, old
->suid
))
843 if (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
) &&
844 !uid_eq(keuid
, old
->euid
) && !uid_eq(keuid
, old
->suid
))
846 if (suid
!= (uid_t
) -1 && !uid_eq(ksuid
, old
->uid
) &&
847 !uid_eq(ksuid
, old
->euid
) && !uid_eq(ksuid
, old
->suid
))
851 if (ruid
!= (uid_t
) -1) {
853 if (!uid_eq(kruid
, old
->uid
)) {
854 retval
= set_user(new);
859 if (euid
!= (uid_t
) -1)
861 if (suid
!= (uid_t
) -1)
863 new->fsuid
= new->euid
;
865 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
869 return commit_creds(new);
876 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruidp
, uid_t __user
*, euidp
, uid_t __user
*, suidp
)
878 const struct cred
*cred
= current_cred();
880 uid_t ruid
, euid
, suid
;
882 ruid
= from_kuid_munged(cred
->user_ns
, cred
->uid
);
883 euid
= from_kuid_munged(cred
->user_ns
, cred
->euid
);
884 suid
= from_kuid_munged(cred
->user_ns
, cred
->suid
);
886 if (!(retval
= put_user(ruid
, ruidp
)) &&
887 !(retval
= put_user(euid
, euidp
)))
888 retval
= put_user(suid
, suidp
);
894 * Same as above, but for rgid, egid, sgid.
896 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
898 struct user_namespace
*ns
= current_user_ns();
899 const struct cred
*old
;
902 kgid_t krgid
, kegid
, ksgid
;
904 krgid
= make_kgid(ns
, rgid
);
905 kegid
= make_kgid(ns
, egid
);
906 ksgid
= make_kgid(ns
, sgid
);
908 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
910 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
912 if ((sgid
!= (gid_t
) -1) && !gid_valid(ksgid
))
915 new = prepare_creds();
918 old
= current_cred();
921 if (!nsown_capable(CAP_SETGID
)) {
922 if (rgid
!= (gid_t
) -1 && !gid_eq(krgid
, old
->gid
) &&
923 !gid_eq(krgid
, old
->egid
) && !gid_eq(krgid
, old
->sgid
))
925 if (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
) &&
926 !gid_eq(kegid
, old
->egid
) && !gid_eq(kegid
, old
->sgid
))
928 if (sgid
!= (gid_t
) -1 && !gid_eq(ksgid
, old
->gid
) &&
929 !gid_eq(ksgid
, old
->egid
) && !gid_eq(ksgid
, old
->sgid
))
933 if (rgid
!= (gid_t
) -1)
935 if (egid
!= (gid_t
) -1)
937 if (sgid
!= (gid_t
) -1)
939 new->fsgid
= new->egid
;
941 return commit_creds(new);
948 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgidp
, gid_t __user
*, egidp
, gid_t __user
*, sgidp
)
950 const struct cred
*cred
= current_cred();
952 gid_t rgid
, egid
, sgid
;
954 rgid
= from_kgid_munged(cred
->user_ns
, cred
->gid
);
955 egid
= from_kgid_munged(cred
->user_ns
, cred
->egid
);
956 sgid
= from_kgid_munged(cred
->user_ns
, cred
->sgid
);
958 if (!(retval
= put_user(rgid
, rgidp
)) &&
959 !(retval
= put_user(egid
, egidp
)))
960 retval
= put_user(sgid
, sgidp
);
967 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
968 * is used for "access()" and for the NFS daemon (letting nfsd stay at
969 * whatever uid it wants to). It normally shadows "euid", except when
970 * explicitly set by setfsuid() or for access..
972 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
974 const struct cred
*old
;
979 old
= current_cred();
980 old_fsuid
= from_kuid_munged(old
->user_ns
, old
->fsuid
);
982 kuid
= make_kuid(old
->user_ns
, uid
);
983 if (!uid_valid(kuid
))
986 new = prepare_creds();
990 if (uid_eq(kuid
, old
->uid
) || uid_eq(kuid
, old
->euid
) ||
991 uid_eq(kuid
, old
->suid
) || uid_eq(kuid
, old
->fsuid
) ||
992 nsown_capable(CAP_SETUID
)) {
993 if (!uid_eq(kuid
, old
->fsuid
)) {
995 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
1009 * Samma på svenska..
1011 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
1013 const struct cred
*old
;
1018 old
= current_cred();
1019 old_fsgid
= from_kgid_munged(old
->user_ns
, old
->fsgid
);
1021 kgid
= make_kgid(old
->user_ns
, gid
);
1022 if (!gid_valid(kgid
))
1025 new = prepare_creds();
1029 if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->egid
) ||
1030 gid_eq(kgid
, old
->sgid
) || gid_eq(kgid
, old
->fsgid
) ||
1031 nsown_capable(CAP_SETGID
)) {
1032 if (!gid_eq(kgid
, old
->fsgid
)) {
1046 void do_sys_times(struct tms
*tms
)
1048 cputime_t tgutime
, tgstime
, cutime
, cstime
;
1050 spin_lock_irq(¤t
->sighand
->siglock
);
1051 thread_group_cputime_adjusted(current
, &tgutime
, &tgstime
);
1052 cutime
= current
->signal
->cutime
;
1053 cstime
= current
->signal
->cstime
;
1054 spin_unlock_irq(¤t
->sighand
->siglock
);
1055 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
1056 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
1057 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
1058 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
1061 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
1067 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
1070 force_successful_syscall_return();
1071 return (long) jiffies_64_to_clock_t(get_jiffies_64());
1075 * This needs some heavy checking ...
1076 * I just haven't the stomach for it. I also don't fully
1077 * understand sessions/pgrp etc. Let somebody who does explain it.
1079 * OK, I think I have the protection semantics right.... this is really
1080 * only important on a multi-user system anyway, to make sure one user
1081 * can't send a signal to a process owned by another. -TYT, 12/12/91
1083 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
1086 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
1088 struct task_struct
*p
;
1089 struct task_struct
*group_leader
= current
->group_leader
;
1094 pid
= task_pid_vnr(group_leader
);
1101 /* From this point forward we keep holding onto the tasklist lock
1102 * so that our parent does not change from under us. -DaveM
1104 write_lock_irq(&tasklist_lock
);
1107 p
= find_task_by_vpid(pid
);
1112 if (!thread_group_leader(p
))
1115 if (same_thread_group(p
->real_parent
, group_leader
)) {
1117 if (task_session(p
) != task_session(group_leader
))
1124 if (p
!= group_leader
)
1129 if (p
->signal
->leader
)
1134 struct task_struct
*g
;
1136 pgrp
= find_vpid(pgid
);
1137 g
= pid_task(pgrp
, PIDTYPE_PGID
);
1138 if (!g
|| task_session(g
) != task_session(group_leader
))
1142 err
= security_task_setpgid(p
, pgid
);
1146 if (task_pgrp(p
) != pgrp
)
1147 change_pid(p
, PIDTYPE_PGID
, pgrp
);
1151 /* All paths lead to here, thus we are safe. -DaveM */
1152 write_unlock_irq(&tasklist_lock
);
1157 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
1159 struct task_struct
*p
;
1165 grp
= task_pgrp(current
);
1168 p
= find_task_by_vpid(pid
);
1175 retval
= security_task_getpgid(p
);
1179 retval
= pid_vnr(grp
);
1185 #ifdef __ARCH_WANT_SYS_GETPGRP
1187 SYSCALL_DEFINE0(getpgrp
)
1189 return sys_getpgid(0);
1194 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1196 struct task_struct
*p
;
1202 sid
= task_session(current
);
1205 p
= find_task_by_vpid(pid
);
1208 sid
= task_session(p
);
1212 retval
= security_task_getsid(p
);
1216 retval
= pid_vnr(sid
);
1222 SYSCALL_DEFINE0(setsid
)
1224 struct task_struct
*group_leader
= current
->group_leader
;
1225 struct pid
*sid
= task_pid(group_leader
);
1226 pid_t session
= pid_vnr(sid
);
1229 write_lock_irq(&tasklist_lock
);
1230 /* Fail if I am already a session leader */
1231 if (group_leader
->signal
->leader
)
1234 /* Fail if a process group id already exists that equals the
1235 * proposed session id.
1237 if (pid_task(sid
, PIDTYPE_PGID
))
1240 group_leader
->signal
->leader
= 1;
1241 __set_special_pids(sid
);
1243 proc_clear_tty(group_leader
);
1247 write_unlock_irq(&tasklist_lock
);
1249 proc_sid_connector(group_leader
);
1250 sched_autogroup_create_attach(group_leader
);
1255 DECLARE_RWSEM(uts_sem
);
1257 #ifdef COMPAT_UTS_MACHINE
1258 #define override_architecture(name) \
1259 (personality(current->personality) == PER_LINUX32 && \
1260 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1261 sizeof(COMPAT_UTS_MACHINE)))
1263 #define override_architecture(name) 0
1267 * Work around broken programs that cannot handle "Linux 3.0".
1268 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1270 static int override_release(char __user
*release
, size_t len
)
1274 if (current
->personality
& UNAME26
) {
1275 const char *rest
= UTS_RELEASE
;
1276 char buf
[65] = { 0 };
1282 if (*rest
== '.' && ++ndots
>= 3)
1284 if (!isdigit(*rest
) && *rest
!= '.')
1288 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 40;
1289 copy
= clamp_t(size_t, len
, 1, sizeof(buf
));
1290 copy
= scnprintf(buf
, copy
, "2.6.%u%s", v
, rest
);
1291 ret
= copy_to_user(release
, buf
, copy
+ 1);
1296 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1300 down_read(&uts_sem
);
1301 if (copy_to_user(name
, utsname(), sizeof *name
))
1305 if (!errno
&& override_release(name
->release
, sizeof(name
->release
)))
1307 if (!errno
&& override_architecture(name
))
1312 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1316 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1323 down_read(&uts_sem
);
1324 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1328 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1330 if (!error
&& override_architecture(name
))
1335 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1341 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1344 down_read(&uts_sem
);
1345 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1347 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1348 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1350 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1351 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1353 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1354 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1356 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1357 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1359 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1362 if (!error
&& override_architecture(name
))
1364 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1366 return error
? -EFAULT
: 0;
1370 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1373 char tmp
[__NEW_UTS_LEN
];
1375 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1378 if (len
< 0 || len
> __NEW_UTS_LEN
)
1380 down_write(&uts_sem
);
1382 if (!copy_from_user(tmp
, name
, len
)) {
1383 struct new_utsname
*u
= utsname();
1385 memcpy(u
->nodename
, tmp
, len
);
1386 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1388 uts_proc_notify(UTS_PROC_HOSTNAME
);
1394 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1396 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1399 struct new_utsname
*u
;
1403 down_read(&uts_sem
);
1405 i
= 1 + strlen(u
->nodename
);
1409 if (copy_to_user(name
, u
->nodename
, i
))
1418 * Only setdomainname; getdomainname can be implemented by calling
1421 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1424 char tmp
[__NEW_UTS_LEN
];
1426 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1428 if (len
< 0 || len
> __NEW_UTS_LEN
)
1431 down_write(&uts_sem
);
1433 if (!copy_from_user(tmp
, name
, len
)) {
1434 struct new_utsname
*u
= utsname();
1436 memcpy(u
->domainname
, tmp
, len
);
1437 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1439 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1445 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1447 struct rlimit value
;
1450 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1452 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1457 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1460 * Back compatibility for getrlimit. Needed for some apps.
1463 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1464 struct rlimit __user
*, rlim
)
1467 if (resource
>= RLIM_NLIMITS
)
1470 task_lock(current
->group_leader
);
1471 x
= current
->signal
->rlim
[resource
];
1472 task_unlock(current
->group_leader
);
1473 if (x
.rlim_cur
> 0x7FFFFFFF)
1474 x
.rlim_cur
= 0x7FFFFFFF;
1475 if (x
.rlim_max
> 0x7FFFFFFF)
1476 x
.rlim_max
= 0x7FFFFFFF;
1477 return copy_to_user(rlim
, &x
, sizeof(x
))?-EFAULT
:0;
1482 static inline bool rlim64_is_infinity(__u64 rlim64
)
1484 #if BITS_PER_LONG < 64
1485 return rlim64
>= ULONG_MAX
;
1487 return rlim64
== RLIM64_INFINITY
;
1491 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1493 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1494 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1496 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1497 if (rlim
->rlim_max
== RLIM_INFINITY
)
1498 rlim64
->rlim_max
= RLIM64_INFINITY
;
1500 rlim64
->rlim_max
= rlim
->rlim_max
;
1503 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1505 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1506 rlim
->rlim_cur
= RLIM_INFINITY
;
1508 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1509 if (rlim64_is_infinity(rlim64
->rlim_max
))
1510 rlim
->rlim_max
= RLIM_INFINITY
;
1512 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1515 /* make sure you are allowed to change @tsk limits before calling this */
1516 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1517 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1519 struct rlimit
*rlim
;
1522 if (resource
>= RLIM_NLIMITS
)
1525 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1527 if (resource
== RLIMIT_NOFILE
&&
1528 new_rlim
->rlim_max
> sysctl_nr_open
)
1532 /* protect tsk->signal and tsk->sighand from disappearing */
1533 read_lock(&tasklist_lock
);
1534 if (!tsk
->sighand
) {
1539 rlim
= tsk
->signal
->rlim
+ resource
;
1540 task_lock(tsk
->group_leader
);
1542 /* Keep the capable check against init_user_ns until
1543 cgroups can contain all limits */
1544 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1545 !capable(CAP_SYS_RESOURCE
))
1548 retval
= security_task_setrlimit(tsk
->group_leader
,
1549 resource
, new_rlim
);
1550 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1552 * The caller is asking for an immediate RLIMIT_CPU
1553 * expiry. But we use the zero value to mean "it was
1554 * never set". So let's cheat and make it one second
1557 new_rlim
->rlim_cur
= 1;
1566 task_unlock(tsk
->group_leader
);
1569 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1570 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1571 * very long-standing error, and fixing it now risks breakage of
1572 * applications, so we live with it
1574 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1575 new_rlim
->rlim_cur
!= RLIM_INFINITY
)
1576 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1578 read_unlock(&tasklist_lock
);
1582 /* rcu lock must be held */
1583 static int check_prlimit_permission(struct task_struct
*task
)
1585 const struct cred
*cred
= current_cred(), *tcred
;
1587 if (current
== task
)
1590 tcred
= __task_cred(task
);
1591 if (uid_eq(cred
->uid
, tcred
->euid
) &&
1592 uid_eq(cred
->uid
, tcred
->suid
) &&
1593 uid_eq(cred
->uid
, tcred
->uid
) &&
1594 gid_eq(cred
->gid
, tcred
->egid
) &&
1595 gid_eq(cred
->gid
, tcred
->sgid
) &&
1596 gid_eq(cred
->gid
, tcred
->gid
))
1598 if (ns_capable(tcred
->user_ns
, CAP_SYS_RESOURCE
))
1604 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1605 const struct rlimit64 __user
*, new_rlim
,
1606 struct rlimit64 __user
*, old_rlim
)
1608 struct rlimit64 old64
, new64
;
1609 struct rlimit old
, new;
1610 struct task_struct
*tsk
;
1614 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1616 rlim64_to_rlim(&new64
, &new);
1620 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1625 ret
= check_prlimit_permission(tsk
);
1630 get_task_struct(tsk
);
1633 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1634 old_rlim
? &old
: NULL
);
1636 if (!ret
&& old_rlim
) {
1637 rlim_to_rlim64(&old
, &old64
);
1638 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1642 put_task_struct(tsk
);
1646 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1648 struct rlimit new_rlim
;
1650 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1652 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1656 * It would make sense to put struct rusage in the task_struct,
1657 * except that would make the task_struct be *really big*. After
1658 * task_struct gets moved into malloc'ed memory, it would
1659 * make sense to do this. It will make moving the rest of the information
1660 * a lot simpler! (Which we're not doing right now because we're not
1661 * measuring them yet).
1663 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1664 * races with threads incrementing their own counters. But since word
1665 * reads are atomic, we either get new values or old values and we don't
1666 * care which for the sums. We always take the siglock to protect reading
1667 * the c* fields from p->signal from races with exit.c updating those
1668 * fields when reaping, so a sample either gets all the additions of a
1669 * given child after it's reaped, or none so this sample is before reaping.
1672 * We need to take the siglock for CHILDEREN, SELF and BOTH
1673 * for the cases current multithreaded, non-current single threaded
1674 * non-current multithreaded. Thread traversal is now safe with
1676 * Strictly speaking, we donot need to take the siglock if we are current and
1677 * single threaded, as no one else can take our signal_struct away, no one
1678 * else can reap the children to update signal->c* counters, and no one else
1679 * can race with the signal-> fields. If we do not take any lock, the
1680 * signal-> fields could be read out of order while another thread was just
1681 * exiting. So we should place a read memory barrier when we avoid the lock.
1682 * On the writer side, write memory barrier is implied in __exit_signal
1683 * as __exit_signal releases the siglock spinlock after updating the signal->
1684 * fields. But we don't do this yet to keep things simple.
1688 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1690 r
->ru_nvcsw
+= t
->nvcsw
;
1691 r
->ru_nivcsw
+= t
->nivcsw
;
1692 r
->ru_minflt
+= t
->min_flt
;
1693 r
->ru_majflt
+= t
->maj_flt
;
1694 r
->ru_inblock
+= task_io_get_inblock(t
);
1695 r
->ru_oublock
+= task_io_get_oublock(t
);
1698 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1700 struct task_struct
*t
;
1701 unsigned long flags
;
1702 cputime_t tgutime
, tgstime
, utime
, stime
;
1703 unsigned long maxrss
= 0;
1705 memset((char *) r
, 0, sizeof *r
);
1708 if (who
== RUSAGE_THREAD
) {
1709 task_cputime_adjusted(current
, &utime
, &stime
);
1710 accumulate_thread_rusage(p
, r
);
1711 maxrss
= p
->signal
->maxrss
;
1715 if (!lock_task_sighand(p
, &flags
))
1720 case RUSAGE_CHILDREN
:
1721 utime
= p
->signal
->cutime
;
1722 stime
= p
->signal
->cstime
;
1723 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1724 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1725 r
->ru_minflt
= p
->signal
->cmin_flt
;
1726 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1727 r
->ru_inblock
= p
->signal
->cinblock
;
1728 r
->ru_oublock
= p
->signal
->coublock
;
1729 maxrss
= p
->signal
->cmaxrss
;
1731 if (who
== RUSAGE_CHILDREN
)
1735 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1738 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1739 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1740 r
->ru_minflt
+= p
->signal
->min_flt
;
1741 r
->ru_majflt
+= p
->signal
->maj_flt
;
1742 r
->ru_inblock
+= p
->signal
->inblock
;
1743 r
->ru_oublock
+= p
->signal
->oublock
;
1744 if (maxrss
< p
->signal
->maxrss
)
1745 maxrss
= p
->signal
->maxrss
;
1748 accumulate_thread_rusage(t
, r
);
1756 unlock_task_sighand(p
, &flags
);
1759 cputime_to_timeval(utime
, &r
->ru_utime
);
1760 cputime_to_timeval(stime
, &r
->ru_stime
);
1762 if (who
!= RUSAGE_CHILDREN
) {
1763 struct mm_struct
*mm
= get_task_mm(p
);
1765 setmax_mm_hiwater_rss(&maxrss
, mm
);
1769 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1772 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1775 k_getrusage(p
, who
, &r
);
1776 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1779 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1781 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1782 who
!= RUSAGE_THREAD
)
1784 return getrusage(current
, who
, ru
);
1787 SYSCALL_DEFINE1(umask
, int, mask
)
1789 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1793 #ifdef CONFIG_CHECKPOINT_RESTORE
1794 static int prctl_set_mm_exe_file(struct mm_struct
*mm
, unsigned int fd
)
1797 struct inode
*inode
;
1804 inode
= file_inode(exe
.file
);
1807 * Because the original mm->exe_file points to executable file, make
1808 * sure that this one is executable as well, to avoid breaking an
1812 if (!S_ISREG(inode
->i_mode
) ||
1813 exe
.file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
1816 err
= inode_permission(inode
, MAY_EXEC
);
1820 down_write(&mm
->mmap_sem
);
1823 * Forbid mm->exe_file change if old file still mapped.
1827 struct vm_area_struct
*vma
;
1829 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
1831 path_equal(&vma
->vm_file
->f_path
,
1832 &mm
->exe_file
->f_path
))
1837 * The symlink can be changed only once, just to disallow arbitrary
1838 * transitions malicious software might bring in. This means one
1839 * could make a snapshot over all processes running and monitor
1840 * /proc/pid/exe changes to notice unusual activity if needed.
1843 if (test_and_set_bit(MMF_EXE_FILE_CHANGED
, &mm
->flags
))
1847 set_mm_exe_file(mm
, exe
.file
); /* this grabs a reference to exe.file */
1849 up_write(&mm
->mmap_sem
);
1856 static int prctl_set_mm(int opt
, unsigned long addr
,
1857 unsigned long arg4
, unsigned long arg5
)
1859 unsigned long rlim
= rlimit(RLIMIT_DATA
);
1860 struct mm_struct
*mm
= current
->mm
;
1861 struct vm_area_struct
*vma
;
1864 if (arg5
|| (arg4
&& opt
!= PR_SET_MM_AUXV
))
1867 if (!capable(CAP_SYS_RESOURCE
))
1870 if (opt
== PR_SET_MM_EXE_FILE
)
1871 return prctl_set_mm_exe_file(mm
, (unsigned int)addr
);
1873 if (addr
>= TASK_SIZE
|| addr
< mmap_min_addr
)
1878 down_read(&mm
->mmap_sem
);
1879 vma
= find_vma(mm
, addr
);
1882 case PR_SET_MM_START_CODE
:
1883 mm
->start_code
= addr
;
1885 case PR_SET_MM_END_CODE
:
1886 mm
->end_code
= addr
;
1888 case PR_SET_MM_START_DATA
:
1889 mm
->start_data
= addr
;
1891 case PR_SET_MM_END_DATA
:
1892 mm
->end_data
= addr
;
1895 case PR_SET_MM_START_BRK
:
1896 if (addr
<= mm
->end_data
)
1899 if (rlim
< RLIM_INFINITY
&&
1901 (mm
->end_data
- mm
->start_data
) > rlim
)
1904 mm
->start_brk
= addr
;
1908 if (addr
<= mm
->end_data
)
1911 if (rlim
< RLIM_INFINITY
&&
1912 (addr
- mm
->start_brk
) +
1913 (mm
->end_data
- mm
->start_data
) > rlim
)
1920 * If command line arguments and environment
1921 * are placed somewhere else on stack, we can
1922 * set them up here, ARG_START/END to setup
1923 * command line argumets and ENV_START/END
1926 case PR_SET_MM_START_STACK
:
1927 case PR_SET_MM_ARG_START
:
1928 case PR_SET_MM_ARG_END
:
1929 case PR_SET_MM_ENV_START
:
1930 case PR_SET_MM_ENV_END
:
1935 if (opt
== PR_SET_MM_START_STACK
)
1936 mm
->start_stack
= addr
;
1937 else if (opt
== PR_SET_MM_ARG_START
)
1938 mm
->arg_start
= addr
;
1939 else if (opt
== PR_SET_MM_ARG_END
)
1941 else if (opt
== PR_SET_MM_ENV_START
)
1942 mm
->env_start
= addr
;
1943 else if (opt
== PR_SET_MM_ENV_END
)
1948 * This doesn't move auxiliary vector itself
1949 * since it's pinned to mm_struct, but allow
1950 * to fill vector with new values. It's up
1951 * to a caller to provide sane values here
1952 * otherwise user space tools which use this
1953 * vector might be unhappy.
1955 case PR_SET_MM_AUXV
: {
1956 unsigned long user_auxv
[AT_VECTOR_SIZE
];
1958 if (arg4
> sizeof(user_auxv
))
1960 up_read(&mm
->mmap_sem
);
1962 if (copy_from_user(user_auxv
, (const void __user
*)addr
, arg4
))
1965 /* Make sure the last entry is always AT_NULL */
1966 user_auxv
[AT_VECTOR_SIZE
- 2] = 0;
1967 user_auxv
[AT_VECTOR_SIZE
- 1] = 0;
1969 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
1972 memcpy(mm
->saved_auxv
, user_auxv
, arg4
);
1973 task_unlock(current
);
1983 up_read(&mm
->mmap_sem
);
1987 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
1989 return put_user(me
->clear_child_tid
, tid_addr
);
1992 #else /* CONFIG_CHECKPOINT_RESTORE */
1993 static int prctl_set_mm(int opt
, unsigned long addr
,
1994 unsigned long arg4
, unsigned long arg5
)
1998 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2004 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
2005 unsigned long, arg4
, unsigned long, arg5
)
2007 struct task_struct
*me
= current
;
2008 unsigned char comm
[sizeof(me
->comm
)];
2011 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2012 if (error
!= -ENOSYS
)
2017 case PR_SET_PDEATHSIG
:
2018 if (!valid_signal(arg2
)) {
2022 me
->pdeath_signal
= arg2
;
2024 case PR_GET_PDEATHSIG
:
2025 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
2027 case PR_GET_DUMPABLE
:
2028 error
= get_dumpable(me
->mm
);
2030 case PR_SET_DUMPABLE
:
2031 if (arg2
!= SUID_DUMP_DISABLE
&& arg2
!= SUID_DUMP_USER
) {
2035 set_dumpable(me
->mm
, arg2
);
2038 case PR_SET_UNALIGN
:
2039 error
= SET_UNALIGN_CTL(me
, arg2
);
2041 case PR_GET_UNALIGN
:
2042 error
= GET_UNALIGN_CTL(me
, arg2
);
2045 error
= SET_FPEMU_CTL(me
, arg2
);
2048 error
= GET_FPEMU_CTL(me
, arg2
);
2051 error
= SET_FPEXC_CTL(me
, arg2
);
2054 error
= GET_FPEXC_CTL(me
, arg2
);
2057 error
= PR_TIMING_STATISTICAL
;
2060 if (arg2
!= PR_TIMING_STATISTICAL
)
2064 comm
[sizeof(me
->comm
) - 1] = 0;
2065 if (strncpy_from_user(comm
, (char __user
*)arg2
,
2066 sizeof(me
->comm
) - 1) < 0)
2068 set_task_comm(me
, comm
);
2069 proc_comm_connector(me
);
2072 get_task_comm(comm
, me
);
2073 if (copy_to_user((char __user
*)arg2
, comm
, sizeof(comm
)))
2077 error
= GET_ENDIAN(me
, arg2
);
2080 error
= SET_ENDIAN(me
, arg2
);
2082 case PR_GET_SECCOMP
:
2083 error
= prctl_get_seccomp();
2085 case PR_SET_SECCOMP
:
2086 error
= prctl_set_seccomp(arg2
, (char __user
*)arg3
);
2089 error
= GET_TSC_CTL(arg2
);
2092 error
= SET_TSC_CTL(arg2
);
2094 case PR_TASK_PERF_EVENTS_DISABLE
:
2095 error
= perf_event_task_disable();
2097 case PR_TASK_PERF_EVENTS_ENABLE
:
2098 error
= perf_event_task_enable();
2100 case PR_GET_TIMERSLACK
:
2101 error
= current
->timer_slack_ns
;
2103 case PR_SET_TIMERSLACK
:
2105 current
->timer_slack_ns
=
2106 current
->default_timer_slack_ns
;
2108 current
->timer_slack_ns
= arg2
;
2114 case PR_MCE_KILL_CLEAR
:
2117 current
->flags
&= ~PF_MCE_PROCESS
;
2119 case PR_MCE_KILL_SET
:
2120 current
->flags
|= PF_MCE_PROCESS
;
2121 if (arg3
== PR_MCE_KILL_EARLY
)
2122 current
->flags
|= PF_MCE_EARLY
;
2123 else if (arg3
== PR_MCE_KILL_LATE
)
2124 current
->flags
&= ~PF_MCE_EARLY
;
2125 else if (arg3
== PR_MCE_KILL_DEFAULT
)
2127 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
2135 case PR_MCE_KILL_GET
:
2136 if (arg2
| arg3
| arg4
| arg5
)
2138 if (current
->flags
& PF_MCE_PROCESS
)
2139 error
= (current
->flags
& PF_MCE_EARLY
) ?
2140 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
2142 error
= PR_MCE_KILL_DEFAULT
;
2145 error
= prctl_set_mm(arg2
, arg3
, arg4
, arg5
);
2147 case PR_GET_TID_ADDRESS
:
2148 error
= prctl_get_tid_address(me
, (int __user
**)arg2
);
2150 case PR_SET_CHILD_SUBREAPER
:
2151 me
->signal
->is_child_subreaper
= !!arg2
;
2153 case PR_GET_CHILD_SUBREAPER
:
2154 error
= put_user(me
->signal
->is_child_subreaper
,
2155 (int __user
*)arg2
);
2157 case PR_SET_NO_NEW_PRIVS
:
2158 if (arg2
!= 1 || arg3
|| arg4
|| arg5
)
2161 current
->no_new_privs
= 1;
2163 case PR_GET_NO_NEW_PRIVS
:
2164 if (arg2
|| arg3
|| arg4
|| arg5
)
2166 return current
->no_new_privs
? 1 : 0;
2174 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
2175 struct getcpu_cache __user
*, unused
)
2178 int cpu
= raw_smp_processor_id();
2180 err
|= put_user(cpu
, cpup
);
2182 err
|= put_user(cpu_to_node(cpu
), nodep
);
2183 return err
? -EFAULT
: 0;
2186 char poweroff_cmd
[POWEROFF_CMD_PATH_LEN
] = "/sbin/poweroff";
2188 static int __orderly_poweroff(void)
2192 static char *envp
[] = {
2194 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
2199 argv
= argv_split(GFP_ATOMIC
, poweroff_cmd
, &argc
);
2201 printk(KERN_WARNING
"%s failed to allocate memory for \"%s\"\n",
2202 __func__
, poweroff_cmd
);
2206 ret
= call_usermodehelper_fns(argv
[0], argv
, envp
, UMH_WAIT_EXEC
,
2214 * orderly_poweroff - Trigger an orderly system poweroff
2215 * @force: force poweroff if command execution fails
2217 * This may be called from any context to trigger a system shutdown.
2218 * If the orderly shutdown fails, it will force an immediate shutdown.
2220 int orderly_poweroff(bool force
)
2222 int ret
= __orderly_poweroff();
2225 printk(KERN_WARNING
"Failed to start orderly shutdown: "
2226 "forcing the issue\n");
2229 * I guess this should try to kick off some daemon to sync and
2230 * poweroff asap. Or not even bother syncing if we're doing an
2231 * emergency shutdown?
2239 EXPORT_SYMBOL_GPL(orderly_poweroff
);