ARM: 7989/1: Delete asm/system.h
[linux/fpc-iii.git] / drivers / power / ab8500_fg.c
blob3cb4178e397c014695d7985383fd806b1ae8b79e
1 /*
2 * Copyright (C) ST-Ericsson AB 2012
4 * Main and Back-up battery management driver.
6 * Note: Backup battery management is required in case of Li-Ion battery and not
7 * for capacitive battery. HREF boards have capacitive battery and hence backup
8 * battery management is not used and the supported code is available in this
9 * driver.
11 * License Terms: GNU General Public License v2
12 * Author:
13 * Johan Palsson <johan.palsson@stericsson.com>
14 * Karl Komierowski <karl.komierowski@stericsson.com>
15 * Arun R Murthy <arun.murthy@stericsson.com>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
28 #include <linux/of.h>
29 #include <linux/completion.h>
30 #include <linux/mfd/core.h>
31 #include <linux/mfd/abx500.h>
32 #include <linux/mfd/abx500/ab8500.h>
33 #include <linux/mfd/abx500/ab8500-bm.h>
34 #include <linux/mfd/abx500/ab8500-gpadc.h>
35 #include <linux/kernel.h>
37 #define MILLI_TO_MICRO 1000
38 #define FG_LSB_IN_MA 1627
39 #define QLSB_NANO_AMP_HOURS_X10 1071
40 #define INS_CURR_TIMEOUT (3 * HZ)
42 #define SEC_TO_SAMPLE(S) (S * 4)
44 #define NBR_AVG_SAMPLES 20
46 #define LOW_BAT_CHECK_INTERVAL (HZ / 16) /* 62.5 ms */
48 #define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
49 #define BATT_OK_MIN 2360 /* mV */
50 #define BATT_OK_INCREMENT 50 /* mV */
51 #define BATT_OK_MAX_NR_INCREMENTS 0xE
53 /* FG constants */
54 #define BATT_OVV 0x01
56 #define interpolate(x, x1, y1, x2, y2) \
57 ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
59 #define to_ab8500_fg_device_info(x) container_of((x), \
60 struct ab8500_fg, fg_psy);
62 /**
63 * struct ab8500_fg_interrupts - ab8500 fg interupts
64 * @name: name of the interrupt
65 * @isr function pointer to the isr
67 struct ab8500_fg_interrupts {
68 char *name;
69 irqreturn_t (*isr)(int irq, void *data);
72 enum ab8500_fg_discharge_state {
73 AB8500_FG_DISCHARGE_INIT,
74 AB8500_FG_DISCHARGE_INITMEASURING,
75 AB8500_FG_DISCHARGE_INIT_RECOVERY,
76 AB8500_FG_DISCHARGE_RECOVERY,
77 AB8500_FG_DISCHARGE_READOUT_INIT,
78 AB8500_FG_DISCHARGE_READOUT,
79 AB8500_FG_DISCHARGE_WAKEUP,
82 static char *discharge_state[] = {
83 "DISCHARGE_INIT",
84 "DISCHARGE_INITMEASURING",
85 "DISCHARGE_INIT_RECOVERY",
86 "DISCHARGE_RECOVERY",
87 "DISCHARGE_READOUT_INIT",
88 "DISCHARGE_READOUT",
89 "DISCHARGE_WAKEUP",
92 enum ab8500_fg_charge_state {
93 AB8500_FG_CHARGE_INIT,
94 AB8500_FG_CHARGE_READOUT,
97 static char *charge_state[] = {
98 "CHARGE_INIT",
99 "CHARGE_READOUT",
102 enum ab8500_fg_calibration_state {
103 AB8500_FG_CALIB_INIT,
104 AB8500_FG_CALIB_WAIT,
105 AB8500_FG_CALIB_END,
108 struct ab8500_fg_avg_cap {
109 int avg;
110 int samples[NBR_AVG_SAMPLES];
111 __kernel_time_t time_stamps[NBR_AVG_SAMPLES];
112 int pos;
113 int nbr_samples;
114 int sum;
117 struct ab8500_fg_cap_scaling {
118 bool enable;
119 int cap_to_scale[2];
120 int disable_cap_level;
121 int scaled_cap;
124 struct ab8500_fg_battery_capacity {
125 int max_mah_design;
126 int max_mah;
127 int mah;
128 int permille;
129 int level;
130 int prev_mah;
131 int prev_percent;
132 int prev_level;
133 int user_mah;
134 struct ab8500_fg_cap_scaling cap_scale;
137 struct ab8500_fg_flags {
138 bool fg_enabled;
139 bool conv_done;
140 bool charging;
141 bool fully_charged;
142 bool force_full;
143 bool low_bat_delay;
144 bool low_bat;
145 bool bat_ovv;
146 bool batt_unknown;
147 bool calibrate;
148 bool user_cap;
149 bool batt_id_received;
152 struct inst_curr_result_list {
153 struct list_head list;
154 int *result;
158 * struct ab8500_fg - ab8500 FG device information
159 * @dev: Pointer to the structure device
160 * @node: a list of AB8500 FGs, hence prepared for reentrance
161 * @irq holds the CCEOC interrupt number
162 * @vbat: Battery voltage in mV
163 * @vbat_nom: Nominal battery voltage in mV
164 * @inst_curr: Instantenous battery current in mA
165 * @avg_curr: Average battery current in mA
166 * @bat_temp battery temperature
167 * @fg_samples: Number of samples used in the FG accumulation
168 * @accu_charge: Accumulated charge from the last conversion
169 * @recovery_cnt: Counter for recovery mode
170 * @high_curr_cnt: Counter for high current mode
171 * @init_cnt: Counter for init mode
172 * @low_bat_cnt Counter for number of consecutive low battery measures
173 * @nbr_cceoc_irq_cnt Counter for number of CCEOC irqs received since enabled
174 * @recovery_needed: Indicate if recovery is needed
175 * @high_curr_mode: Indicate if we're in high current mode
176 * @init_capacity: Indicate if initial capacity measuring should be done
177 * @turn_off_fg: True if fg was off before current measurement
178 * @calib_state State during offset calibration
179 * @discharge_state: Current discharge state
180 * @charge_state: Current charge state
181 * @ab8500_fg_started Completion struct used for the instant current start
182 * @ab8500_fg_complete Completion struct used for the instant current reading
183 * @flags: Structure for information about events triggered
184 * @bat_cap: Structure for battery capacity specific parameters
185 * @avg_cap: Average capacity filter
186 * @parent: Pointer to the struct ab8500
187 * @gpadc: Pointer to the struct gpadc
188 * @bm: Platform specific battery management information
189 * @fg_psy: Structure that holds the FG specific battery properties
190 * @fg_wq: Work queue for running the FG algorithm
191 * @fg_periodic_work: Work to run the FG algorithm periodically
192 * @fg_low_bat_work: Work to check low bat condition
193 * @fg_reinit_work Work used to reset and reinitialise the FG algorithm
194 * @fg_work: Work to run the FG algorithm instantly
195 * @fg_acc_cur_work: Work to read the FG accumulator
196 * @fg_check_hw_failure_work: Work for checking HW state
197 * @cc_lock: Mutex for locking the CC
198 * @fg_kobject: Structure of type kobject
200 struct ab8500_fg {
201 struct device *dev;
202 struct list_head node;
203 int irq;
204 int vbat;
205 int vbat_nom;
206 int inst_curr;
207 int avg_curr;
208 int bat_temp;
209 int fg_samples;
210 int accu_charge;
211 int recovery_cnt;
212 int high_curr_cnt;
213 int init_cnt;
214 int low_bat_cnt;
215 int nbr_cceoc_irq_cnt;
216 bool recovery_needed;
217 bool high_curr_mode;
218 bool init_capacity;
219 bool turn_off_fg;
220 enum ab8500_fg_calibration_state calib_state;
221 enum ab8500_fg_discharge_state discharge_state;
222 enum ab8500_fg_charge_state charge_state;
223 struct completion ab8500_fg_started;
224 struct completion ab8500_fg_complete;
225 struct ab8500_fg_flags flags;
226 struct ab8500_fg_battery_capacity bat_cap;
227 struct ab8500_fg_avg_cap avg_cap;
228 struct ab8500 *parent;
229 struct ab8500_gpadc *gpadc;
230 struct abx500_bm_data *bm;
231 struct power_supply fg_psy;
232 struct workqueue_struct *fg_wq;
233 struct delayed_work fg_periodic_work;
234 struct delayed_work fg_low_bat_work;
235 struct delayed_work fg_reinit_work;
236 struct work_struct fg_work;
237 struct work_struct fg_acc_cur_work;
238 struct delayed_work fg_check_hw_failure_work;
239 struct mutex cc_lock;
240 struct kobject fg_kobject;
242 static LIST_HEAD(ab8500_fg_list);
245 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
246 * (i.e. the first fuel gauge in the instance list)
248 struct ab8500_fg *ab8500_fg_get(void)
250 struct ab8500_fg *fg;
252 if (list_empty(&ab8500_fg_list))
253 return NULL;
255 fg = list_first_entry(&ab8500_fg_list, struct ab8500_fg, node);
256 return fg;
259 /* Main battery properties */
260 static enum power_supply_property ab8500_fg_props[] = {
261 POWER_SUPPLY_PROP_VOLTAGE_NOW,
262 POWER_SUPPLY_PROP_CURRENT_NOW,
263 POWER_SUPPLY_PROP_CURRENT_AVG,
264 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
265 POWER_SUPPLY_PROP_ENERGY_FULL,
266 POWER_SUPPLY_PROP_ENERGY_NOW,
267 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
268 POWER_SUPPLY_PROP_CHARGE_FULL,
269 POWER_SUPPLY_PROP_CHARGE_NOW,
270 POWER_SUPPLY_PROP_CAPACITY,
271 POWER_SUPPLY_PROP_CAPACITY_LEVEL,
275 * This array maps the raw hex value to lowbat voltage used by the AB8500
276 * Values taken from the UM0836
278 static int ab8500_fg_lowbat_voltage_map[] = {
279 2300 ,
280 2325 ,
281 2350 ,
282 2375 ,
283 2400 ,
284 2425 ,
285 2450 ,
286 2475 ,
287 2500 ,
288 2525 ,
289 2550 ,
290 2575 ,
291 2600 ,
292 2625 ,
293 2650 ,
294 2675 ,
295 2700 ,
296 2725 ,
297 2750 ,
298 2775 ,
299 2800 ,
300 2825 ,
301 2850 ,
302 2875 ,
303 2900 ,
304 2925 ,
305 2950 ,
306 2975 ,
307 3000 ,
308 3025 ,
309 3050 ,
310 3075 ,
311 3100 ,
312 3125 ,
313 3150 ,
314 3175 ,
315 3200 ,
316 3225 ,
317 3250 ,
318 3275 ,
319 3300 ,
320 3325 ,
321 3350 ,
322 3375 ,
323 3400 ,
324 3425 ,
325 3450 ,
326 3475 ,
327 3500 ,
328 3525 ,
329 3550 ,
330 3575 ,
331 3600 ,
332 3625 ,
333 3650 ,
334 3675 ,
335 3700 ,
336 3725 ,
337 3750 ,
338 3775 ,
339 3800 ,
340 3825 ,
341 3850 ,
342 3850 ,
345 static u8 ab8500_volt_to_regval(int voltage)
347 int i;
349 if (voltage < ab8500_fg_lowbat_voltage_map[0])
350 return 0;
352 for (i = 0; i < ARRAY_SIZE(ab8500_fg_lowbat_voltage_map); i++) {
353 if (voltage < ab8500_fg_lowbat_voltage_map[i])
354 return (u8) i - 1;
357 /* If not captured above, return index of last element */
358 return (u8) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map) - 1;
362 * ab8500_fg_is_low_curr() - Low or high current mode
363 * @di: pointer to the ab8500_fg structure
364 * @curr: the current to base or our decision on
366 * Low current mode if the current consumption is below a certain threshold
368 static int ab8500_fg_is_low_curr(struct ab8500_fg *di, int curr)
371 * We want to know if we're in low current mode
373 if (curr > -di->bm->fg_params->high_curr_threshold)
374 return true;
375 else
376 return false;
380 * ab8500_fg_add_cap_sample() - Add capacity to average filter
381 * @di: pointer to the ab8500_fg structure
382 * @sample: the capacity in mAh to add to the filter
384 * A capacity is added to the filter and a new mean capacity is calculated and
385 * returned
387 static int ab8500_fg_add_cap_sample(struct ab8500_fg *di, int sample)
389 struct timespec ts;
390 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
392 getnstimeofday(&ts);
394 do {
395 avg->sum += sample - avg->samples[avg->pos];
396 avg->samples[avg->pos] = sample;
397 avg->time_stamps[avg->pos] = ts.tv_sec;
398 avg->pos++;
400 if (avg->pos == NBR_AVG_SAMPLES)
401 avg->pos = 0;
403 if (avg->nbr_samples < NBR_AVG_SAMPLES)
404 avg->nbr_samples++;
407 * Check the time stamp for each sample. If too old,
408 * replace with latest sample
410 } while (ts.tv_sec - VALID_CAPACITY_SEC > avg->time_stamps[avg->pos]);
412 avg->avg = avg->sum / avg->nbr_samples;
414 return avg->avg;
418 * ab8500_fg_clear_cap_samples() - Clear average filter
419 * @di: pointer to the ab8500_fg structure
421 * The capacity filter is is reset to zero.
423 static void ab8500_fg_clear_cap_samples(struct ab8500_fg *di)
425 int i;
426 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
428 avg->pos = 0;
429 avg->nbr_samples = 0;
430 avg->sum = 0;
431 avg->avg = 0;
433 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
434 avg->samples[i] = 0;
435 avg->time_stamps[i] = 0;
440 * ab8500_fg_fill_cap_sample() - Fill average filter
441 * @di: pointer to the ab8500_fg structure
442 * @sample: the capacity in mAh to fill the filter with
444 * The capacity filter is filled with a capacity in mAh
446 static void ab8500_fg_fill_cap_sample(struct ab8500_fg *di, int sample)
448 int i;
449 struct timespec ts;
450 struct ab8500_fg_avg_cap *avg = &di->avg_cap;
452 getnstimeofday(&ts);
454 for (i = 0; i < NBR_AVG_SAMPLES; i++) {
455 avg->samples[i] = sample;
456 avg->time_stamps[i] = ts.tv_sec;
459 avg->pos = 0;
460 avg->nbr_samples = NBR_AVG_SAMPLES;
461 avg->sum = sample * NBR_AVG_SAMPLES;
462 avg->avg = sample;
466 * ab8500_fg_coulomb_counter() - enable coulomb counter
467 * @di: pointer to the ab8500_fg structure
468 * @enable: enable/disable
470 * Enable/Disable coulomb counter.
471 * On failure returns negative value.
473 static int ab8500_fg_coulomb_counter(struct ab8500_fg *di, bool enable)
475 int ret = 0;
476 mutex_lock(&di->cc_lock);
477 if (enable) {
478 /* To be able to reprogram the number of samples, we have to
479 * first stop the CC and then enable it again */
480 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
481 AB8500_RTC_CC_CONF_REG, 0x00);
482 if (ret)
483 goto cc_err;
485 /* Program the samples */
486 ret = abx500_set_register_interruptible(di->dev,
487 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
488 di->fg_samples);
489 if (ret)
490 goto cc_err;
492 /* Start the CC */
493 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
494 AB8500_RTC_CC_CONF_REG,
495 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
496 if (ret)
497 goto cc_err;
499 di->flags.fg_enabled = true;
500 } else {
501 /* Clear any pending read requests */
502 ret = abx500_mask_and_set_register_interruptible(di->dev,
503 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
504 (RESET_ACCU | READ_REQ), 0);
505 if (ret)
506 goto cc_err;
508 ret = abx500_set_register_interruptible(di->dev,
509 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU_CTRL, 0);
510 if (ret)
511 goto cc_err;
513 /* Stop the CC */
514 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
515 AB8500_RTC_CC_CONF_REG, 0);
516 if (ret)
517 goto cc_err;
519 di->flags.fg_enabled = false;
522 dev_dbg(di->dev, " CC enabled: %d Samples: %d\n",
523 enable, di->fg_samples);
525 mutex_unlock(&di->cc_lock);
527 return ret;
528 cc_err:
529 dev_err(di->dev, "%s Enabling coulomb counter failed\n", __func__);
530 mutex_unlock(&di->cc_lock);
531 return ret;
535 * ab8500_fg_inst_curr_start() - start battery instantaneous current
536 * @di: pointer to the ab8500_fg structure
538 * Returns 0 or error code
539 * Note: This is part "one" and has to be called before
540 * ab8500_fg_inst_curr_finalize()
542 int ab8500_fg_inst_curr_start(struct ab8500_fg *di)
544 u8 reg_val;
545 int ret;
547 mutex_lock(&di->cc_lock);
549 di->nbr_cceoc_irq_cnt = 0;
550 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
551 AB8500_RTC_CC_CONF_REG, &reg_val);
552 if (ret < 0)
553 goto fail;
555 if (!(reg_val & CC_PWR_UP_ENA)) {
556 dev_dbg(di->dev, "%s Enable FG\n", __func__);
557 di->turn_off_fg = true;
559 /* Program the samples */
560 ret = abx500_set_register_interruptible(di->dev,
561 AB8500_GAS_GAUGE, AB8500_GASG_CC_NCOV_ACCU,
562 SEC_TO_SAMPLE(10));
563 if (ret)
564 goto fail;
566 /* Start the CC */
567 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
568 AB8500_RTC_CC_CONF_REG,
569 (CC_DEEP_SLEEP_ENA | CC_PWR_UP_ENA));
570 if (ret)
571 goto fail;
572 } else {
573 di->turn_off_fg = false;
576 /* Return and WFI */
577 reinit_completion(&di->ab8500_fg_started);
578 reinit_completion(&di->ab8500_fg_complete);
579 enable_irq(di->irq);
581 /* Note: cc_lock is still locked */
582 return 0;
583 fail:
584 mutex_unlock(&di->cc_lock);
585 return ret;
589 * ab8500_fg_inst_curr_started() - check if fg conversion has started
590 * @di: pointer to the ab8500_fg structure
592 * Returns 1 if conversion started, 0 if still waiting
594 int ab8500_fg_inst_curr_started(struct ab8500_fg *di)
596 return completion_done(&di->ab8500_fg_started);
600 * ab8500_fg_inst_curr_done() - check if fg conversion is done
601 * @di: pointer to the ab8500_fg structure
603 * Returns 1 if conversion done, 0 if still waiting
605 int ab8500_fg_inst_curr_done(struct ab8500_fg *di)
607 return completion_done(&di->ab8500_fg_complete);
611 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
612 * @di: pointer to the ab8500_fg structure
613 * @res: battery instantenous current(on success)
615 * Returns 0 or an error code
616 * Note: This is part "two" and has to be called at earliest 250 ms
617 * after ab8500_fg_inst_curr_start()
619 int ab8500_fg_inst_curr_finalize(struct ab8500_fg *di, int *res)
621 u8 low, high;
622 int val;
623 int ret;
624 int timeout;
626 if (!completion_done(&di->ab8500_fg_complete)) {
627 timeout = wait_for_completion_timeout(
628 &di->ab8500_fg_complete,
629 INS_CURR_TIMEOUT);
630 dev_dbg(di->dev, "Finalize time: %d ms\n",
631 ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
632 if (!timeout) {
633 ret = -ETIME;
634 disable_irq(di->irq);
635 di->nbr_cceoc_irq_cnt = 0;
636 dev_err(di->dev, "completion timed out [%d]\n",
637 __LINE__);
638 goto fail;
642 disable_irq(di->irq);
643 di->nbr_cceoc_irq_cnt = 0;
645 ret = abx500_mask_and_set_register_interruptible(di->dev,
646 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
647 READ_REQ, READ_REQ);
649 /* 100uS between read request and read is needed */
650 usleep_range(100, 100);
652 /* Read CC Sample conversion value Low and high */
653 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
654 AB8500_GASG_CC_SMPL_CNVL_REG, &low);
655 if (ret < 0)
656 goto fail;
658 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
659 AB8500_GASG_CC_SMPL_CNVH_REG, &high);
660 if (ret < 0)
661 goto fail;
664 * negative value for Discharging
665 * convert 2's compliment into decimal
667 if (high & 0x10)
668 val = (low | (high << 8) | 0xFFFFE000);
669 else
670 val = (low | (high << 8));
673 * Convert to unit value in mA
674 * Full scale input voltage is
675 * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
676 * Given a 250ms conversion cycle time the LSB corresponds
677 * to 107.1 nAh. Convert to current by dividing by the conversion
678 * time in hours (250ms = 1 / (3600 * 4)h)
679 * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
681 val = (val * QLSB_NANO_AMP_HOURS_X10 * 36 * 4) /
682 (1000 * di->bm->fg_res);
684 if (di->turn_off_fg) {
685 dev_dbg(di->dev, "%s Disable FG\n", __func__);
687 /* Clear any pending read requests */
688 ret = abx500_set_register_interruptible(di->dev,
689 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG, 0);
690 if (ret)
691 goto fail;
693 /* Stop the CC */
694 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
695 AB8500_RTC_CC_CONF_REG, 0);
696 if (ret)
697 goto fail;
699 mutex_unlock(&di->cc_lock);
700 (*res) = val;
702 return 0;
703 fail:
704 mutex_unlock(&di->cc_lock);
705 return ret;
709 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
710 * @di: pointer to the ab8500_fg structure
711 * @res: battery instantenous current(on success)
713 * Returns 0 else error code
715 int ab8500_fg_inst_curr_blocking(struct ab8500_fg *di)
717 int ret;
718 int timeout;
719 int res = 0;
721 ret = ab8500_fg_inst_curr_start(di);
722 if (ret) {
723 dev_err(di->dev, "Failed to initialize fg_inst\n");
724 return 0;
727 /* Wait for CC to actually start */
728 if (!completion_done(&di->ab8500_fg_started)) {
729 timeout = wait_for_completion_timeout(
730 &di->ab8500_fg_started,
731 INS_CURR_TIMEOUT);
732 dev_dbg(di->dev, "Start time: %d ms\n",
733 ((INS_CURR_TIMEOUT - timeout) * 1000) / HZ);
734 if (!timeout) {
735 ret = -ETIME;
736 dev_err(di->dev, "completion timed out [%d]\n",
737 __LINE__);
738 goto fail;
742 ret = ab8500_fg_inst_curr_finalize(di, &res);
743 if (ret) {
744 dev_err(di->dev, "Failed to finalize fg_inst\n");
745 return 0;
748 dev_dbg(di->dev, "%s instant current: %d", __func__, res);
749 return res;
750 fail:
751 disable_irq(di->irq);
752 mutex_unlock(&di->cc_lock);
753 return ret;
757 * ab8500_fg_acc_cur_work() - average battery current
758 * @work: pointer to the work_struct structure
760 * Updated the average battery current obtained from the
761 * coulomb counter.
763 static void ab8500_fg_acc_cur_work(struct work_struct *work)
765 int val;
766 int ret;
767 u8 low, med, high;
769 struct ab8500_fg *di = container_of(work,
770 struct ab8500_fg, fg_acc_cur_work);
772 mutex_lock(&di->cc_lock);
773 ret = abx500_set_register_interruptible(di->dev, AB8500_GAS_GAUGE,
774 AB8500_GASG_CC_NCOV_ACCU_CTRL, RD_NCONV_ACCU_REQ);
775 if (ret)
776 goto exit;
778 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
779 AB8500_GASG_CC_NCOV_ACCU_LOW, &low);
780 if (ret < 0)
781 goto exit;
783 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
784 AB8500_GASG_CC_NCOV_ACCU_MED, &med);
785 if (ret < 0)
786 goto exit;
788 ret = abx500_get_register_interruptible(di->dev, AB8500_GAS_GAUGE,
789 AB8500_GASG_CC_NCOV_ACCU_HIGH, &high);
790 if (ret < 0)
791 goto exit;
793 /* Check for sign bit in case of negative value, 2's compliment */
794 if (high & 0x10)
795 val = (low | (med << 8) | (high << 16) | 0xFFE00000);
796 else
797 val = (low | (med << 8) | (high << 16));
800 * Convert to uAh
801 * Given a 250ms conversion cycle time the LSB corresponds
802 * to 112.9 nAh.
803 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
805 di->accu_charge = (val * QLSB_NANO_AMP_HOURS_X10) /
806 (100 * di->bm->fg_res);
809 * Convert to unit value in mA
810 * by dividing by the conversion
811 * time in hours (= samples / (3600 * 4)h)
812 * and multiply with 1000
814 di->avg_curr = (val * QLSB_NANO_AMP_HOURS_X10 * 36) /
815 (1000 * di->bm->fg_res * (di->fg_samples / 4));
817 di->flags.conv_done = true;
819 mutex_unlock(&di->cc_lock);
821 queue_work(di->fg_wq, &di->fg_work);
823 dev_dbg(di->dev, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
824 di->bm->fg_res, di->fg_samples, val, di->accu_charge);
825 return;
826 exit:
827 dev_err(di->dev,
828 "Failed to read or write gas gauge registers\n");
829 mutex_unlock(&di->cc_lock);
830 queue_work(di->fg_wq, &di->fg_work);
834 * ab8500_fg_bat_voltage() - get battery voltage
835 * @di: pointer to the ab8500_fg structure
837 * Returns battery voltage(on success) else error code
839 static int ab8500_fg_bat_voltage(struct ab8500_fg *di)
841 int vbat;
842 static int prev;
844 vbat = ab8500_gpadc_convert(di->gpadc, MAIN_BAT_V);
845 if (vbat < 0) {
846 dev_err(di->dev,
847 "%s gpadc conversion failed, using previous value\n",
848 __func__);
849 return prev;
852 prev = vbat;
853 return vbat;
857 * ab8500_fg_volt_to_capacity() - Voltage based capacity
858 * @di: pointer to the ab8500_fg structure
859 * @voltage: The voltage to convert to a capacity
861 * Returns battery capacity in per mille based on voltage
863 static int ab8500_fg_volt_to_capacity(struct ab8500_fg *di, int voltage)
865 int i, tbl_size;
866 const struct abx500_v_to_cap *tbl;
867 int cap = 0;
869 tbl = di->bm->bat_type[di->bm->batt_id].v_to_cap_tbl,
870 tbl_size = di->bm->bat_type[di->bm->batt_id].n_v_cap_tbl_elements;
872 for (i = 0; i < tbl_size; ++i) {
873 if (voltage > tbl[i].voltage)
874 break;
877 if ((i > 0) && (i < tbl_size)) {
878 cap = interpolate(voltage,
879 tbl[i].voltage,
880 tbl[i].capacity * 10,
881 tbl[i-1].voltage,
882 tbl[i-1].capacity * 10);
883 } else if (i == 0) {
884 cap = 1000;
885 } else {
886 cap = 0;
889 dev_dbg(di->dev, "%s Vbat: %d, Cap: %d per mille",
890 __func__, voltage, cap);
892 return cap;
896 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
897 * @di: pointer to the ab8500_fg structure
899 * Returns battery capacity based on battery voltage that is not compensated
900 * for the voltage drop due to the load
902 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg *di)
904 di->vbat = ab8500_fg_bat_voltage(di);
905 return ab8500_fg_volt_to_capacity(di, di->vbat);
909 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
910 * @di: pointer to the ab8500_fg structure
912 * Returns battery inner resistance added with the fuel gauge resistor value
913 * to get the total resistance in the whole link from gnd to bat+ node.
915 static int ab8500_fg_battery_resistance(struct ab8500_fg *di)
917 int i, tbl_size;
918 const struct batres_vs_temp *tbl;
919 int resist = 0;
921 tbl = di->bm->bat_type[di->bm->batt_id].batres_tbl;
922 tbl_size = di->bm->bat_type[di->bm->batt_id].n_batres_tbl_elements;
924 for (i = 0; i < tbl_size; ++i) {
925 if (di->bat_temp / 10 > tbl[i].temp)
926 break;
929 if ((i > 0) && (i < tbl_size)) {
930 resist = interpolate(di->bat_temp / 10,
931 tbl[i].temp,
932 tbl[i].resist,
933 tbl[i-1].temp,
934 tbl[i-1].resist);
935 } else if (i == 0) {
936 resist = tbl[0].resist;
937 } else {
938 resist = tbl[tbl_size - 1].resist;
941 dev_dbg(di->dev, "%s Temp: %d battery internal resistance: %d"
942 " fg resistance %d, total: %d (mOhm)\n",
943 __func__, di->bat_temp, resist, di->bm->fg_res / 10,
944 (di->bm->fg_res / 10) + resist);
946 /* fg_res variable is in 0.1mOhm */
947 resist += di->bm->fg_res / 10;
949 return resist;
953 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
954 * @di: pointer to the ab8500_fg structure
956 * Returns battery capacity based on battery voltage that is load compensated
957 * for the voltage drop
959 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg *di)
961 int vbat_comp, res;
962 int i = 0;
963 int vbat = 0;
965 ab8500_fg_inst_curr_start(di);
967 do {
968 vbat += ab8500_fg_bat_voltage(di);
969 i++;
970 usleep_range(5000, 6000);
971 } while (!ab8500_fg_inst_curr_done(di));
973 ab8500_fg_inst_curr_finalize(di, &di->inst_curr);
975 di->vbat = vbat / i;
976 res = ab8500_fg_battery_resistance(di);
978 /* Use Ohms law to get the load compensated voltage */
979 vbat_comp = di->vbat - (di->inst_curr * res) / 1000;
981 dev_dbg(di->dev, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
982 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
983 __func__, di->vbat, vbat_comp, res, di->inst_curr, i);
985 return ab8500_fg_volt_to_capacity(di, vbat_comp);
989 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
990 * @di: pointer to the ab8500_fg structure
991 * @cap_mah: capacity in mAh
993 * Converts capacity in mAh to capacity in permille
995 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg *di, int cap_mah)
997 return (cap_mah * 1000) / di->bat_cap.max_mah_design;
1001 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
1002 * @di: pointer to the ab8500_fg structure
1003 * @cap_pm: capacity in permille
1005 * Converts capacity in permille to capacity in mAh
1007 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg *di, int cap_pm)
1009 return cap_pm * di->bat_cap.max_mah_design / 1000;
1013 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1014 * @di: pointer to the ab8500_fg structure
1015 * @cap_mah: capacity in mAh
1017 * Converts capacity in mAh to capacity in uWh
1019 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg *di, int cap_mah)
1021 u64 div_res;
1022 u32 div_rem;
1024 div_res = ((u64) cap_mah) * ((u64) di->vbat_nom);
1025 div_rem = do_div(div_res, 1000);
1027 /* Make sure to round upwards if necessary */
1028 if (div_rem >= 1000 / 2)
1029 div_res++;
1031 return (int) div_res;
1035 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1036 * @di: pointer to the ab8500_fg structure
1038 * Return the capacity in mAh based on previous calculated capcity and the FG
1039 * accumulator register value. The filter is filled with this capacity
1041 static int ab8500_fg_calc_cap_charging(struct ab8500_fg *di)
1043 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1044 __func__,
1045 di->bat_cap.mah,
1046 di->accu_charge);
1048 /* Capacity should not be less than 0 */
1049 if (di->bat_cap.mah + di->accu_charge > 0)
1050 di->bat_cap.mah += di->accu_charge;
1051 else
1052 di->bat_cap.mah = 0;
1054 * We force capacity to 100% once when the algorithm
1055 * reports that it's full.
1057 if (di->bat_cap.mah >= di->bat_cap.max_mah_design ||
1058 di->flags.force_full) {
1059 di->bat_cap.mah = di->bat_cap.max_mah_design;
1062 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1063 di->bat_cap.permille =
1064 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1066 /* We need to update battery voltage and inst current when charging */
1067 di->vbat = ab8500_fg_bat_voltage(di);
1068 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1070 return di->bat_cap.mah;
1074 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1075 * @di: pointer to the ab8500_fg structure
1076 * @comp: if voltage should be load compensated before capacity calc
1078 * Return the capacity in mAh based on the battery voltage. The voltage can
1079 * either be load compensated or not. This value is added to the filter and a
1080 * new mean value is calculated and returned.
1082 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg *di, bool comp)
1084 int permille, mah;
1086 if (comp)
1087 permille = ab8500_fg_load_comp_volt_to_capacity(di);
1088 else
1089 permille = ab8500_fg_uncomp_volt_to_capacity(di);
1091 mah = ab8500_fg_convert_permille_to_mah(di, permille);
1093 di->bat_cap.mah = ab8500_fg_add_cap_sample(di, mah);
1094 di->bat_cap.permille =
1095 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1097 return di->bat_cap.mah;
1101 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1102 * @di: pointer to the ab8500_fg structure
1104 * Return the capacity in mAh based on previous calculated capcity and the FG
1105 * accumulator register value. This value is added to the filter and a
1106 * new mean value is calculated and returned.
1108 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg *di)
1110 int permille_volt, permille;
1112 dev_dbg(di->dev, "%s cap_mah %d accu_charge %d\n",
1113 __func__,
1114 di->bat_cap.mah,
1115 di->accu_charge);
1117 /* Capacity should not be less than 0 */
1118 if (di->bat_cap.mah + di->accu_charge > 0)
1119 di->bat_cap.mah += di->accu_charge;
1120 else
1121 di->bat_cap.mah = 0;
1123 if (di->bat_cap.mah >= di->bat_cap.max_mah_design)
1124 di->bat_cap.mah = di->bat_cap.max_mah_design;
1127 * Check against voltage based capacity. It can not be lower
1128 * than what the uncompensated voltage says
1130 permille = ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1131 permille_volt = ab8500_fg_uncomp_volt_to_capacity(di);
1133 if (permille < permille_volt) {
1134 di->bat_cap.permille = permille_volt;
1135 di->bat_cap.mah = ab8500_fg_convert_permille_to_mah(di,
1136 di->bat_cap.permille);
1138 dev_dbg(di->dev, "%s voltage based: perm %d perm_volt %d\n",
1139 __func__,
1140 permille,
1141 permille_volt);
1143 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1144 } else {
1145 ab8500_fg_fill_cap_sample(di, di->bat_cap.mah);
1146 di->bat_cap.permille =
1147 ab8500_fg_convert_mah_to_permille(di, di->bat_cap.mah);
1150 return di->bat_cap.mah;
1154 * ab8500_fg_capacity_level() - Get the battery capacity level
1155 * @di: pointer to the ab8500_fg structure
1157 * Get the battery capacity level based on the capacity in percent
1159 static int ab8500_fg_capacity_level(struct ab8500_fg *di)
1161 int ret, percent;
1163 percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1165 if (percent <= di->bm->cap_levels->critical ||
1166 di->flags.low_bat)
1167 ret = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;
1168 else if (percent <= di->bm->cap_levels->low)
1169 ret = POWER_SUPPLY_CAPACITY_LEVEL_LOW;
1170 else if (percent <= di->bm->cap_levels->normal)
1171 ret = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;
1172 else if (percent <= di->bm->cap_levels->high)
1173 ret = POWER_SUPPLY_CAPACITY_LEVEL_HIGH;
1174 else
1175 ret = POWER_SUPPLY_CAPACITY_LEVEL_FULL;
1177 return ret;
1181 * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1182 * @di: pointer to the ab8500_fg structure
1184 * Calculates the capacity to be shown to upper layers. Scales the capacity
1185 * to have 100% as a reference from the actual capacity upon removal of charger
1186 * when charging is in maintenance mode.
1188 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg *di)
1190 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1191 int capacity = di->bat_cap.prev_percent;
1193 if (!cs->enable)
1194 return capacity;
1197 * As long as we are in fully charge mode scale the capacity
1198 * to show 100%.
1200 if (di->flags.fully_charged) {
1201 cs->cap_to_scale[0] = 100;
1202 cs->cap_to_scale[1] =
1203 max(capacity, di->bm->fg_params->maint_thres);
1204 dev_dbg(di->dev, "Scale cap with %d/%d\n",
1205 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1208 /* Calculates the scaled capacity. */
1209 if ((cs->cap_to_scale[0] != cs->cap_to_scale[1])
1210 && (cs->cap_to_scale[1] > 0))
1211 capacity = min(100,
1212 DIV_ROUND_CLOSEST(di->bat_cap.prev_percent *
1213 cs->cap_to_scale[0],
1214 cs->cap_to_scale[1]));
1216 if (di->flags.charging) {
1217 if (capacity < cs->disable_cap_level) {
1218 cs->disable_cap_level = capacity;
1219 dev_dbg(di->dev, "Cap to stop scale lowered %d%%\n",
1220 cs->disable_cap_level);
1221 } else if (!di->flags.fully_charged) {
1222 if (di->bat_cap.prev_percent >=
1223 cs->disable_cap_level) {
1224 dev_dbg(di->dev, "Disabling scaled capacity\n");
1225 cs->enable = false;
1226 capacity = di->bat_cap.prev_percent;
1227 } else {
1228 dev_dbg(di->dev,
1229 "Waiting in cap to level %d%%\n",
1230 cs->disable_cap_level);
1231 capacity = cs->disable_cap_level;
1236 return capacity;
1240 * ab8500_fg_update_cap_scalers() - Capacity scaling
1241 * @di: pointer to the ab8500_fg structure
1243 * To be called when state change from charge<->discharge to update
1244 * the capacity scalers.
1246 static void ab8500_fg_update_cap_scalers(struct ab8500_fg *di)
1248 struct ab8500_fg_cap_scaling *cs = &di->bat_cap.cap_scale;
1250 if (!cs->enable)
1251 return;
1252 if (di->flags.charging) {
1253 di->bat_cap.cap_scale.disable_cap_level =
1254 di->bat_cap.cap_scale.scaled_cap;
1255 dev_dbg(di->dev, "Cap to stop scale at charge %d%%\n",
1256 di->bat_cap.cap_scale.disable_cap_level);
1257 } else {
1258 if (cs->scaled_cap != 100) {
1259 cs->cap_to_scale[0] = cs->scaled_cap;
1260 cs->cap_to_scale[1] = di->bat_cap.prev_percent;
1261 } else {
1262 cs->cap_to_scale[0] = 100;
1263 cs->cap_to_scale[1] =
1264 max(di->bat_cap.prev_percent,
1265 di->bm->fg_params->maint_thres);
1268 dev_dbg(di->dev, "Cap to scale at discharge %d/%d\n",
1269 cs->cap_to_scale[0], cs->cap_to_scale[1]);
1274 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1275 * @di: pointer to the ab8500_fg structure
1276 * @init: capacity is allowed to go up in init mode
1278 * Check if capacity or capacity limit has changed and notify the system
1279 * about it using the power_supply framework
1281 static void ab8500_fg_check_capacity_limits(struct ab8500_fg *di, bool init)
1283 bool changed = false;
1284 int percent = DIV_ROUND_CLOSEST(di->bat_cap.permille, 10);
1286 di->bat_cap.level = ab8500_fg_capacity_level(di);
1288 if (di->bat_cap.level != di->bat_cap.prev_level) {
1290 * We do not allow reported capacity level to go up
1291 * unless we're charging or if we're in init
1293 if (!(!di->flags.charging && di->bat_cap.level >
1294 di->bat_cap.prev_level) || init) {
1295 dev_dbg(di->dev, "level changed from %d to %d\n",
1296 di->bat_cap.prev_level,
1297 di->bat_cap.level);
1298 di->bat_cap.prev_level = di->bat_cap.level;
1299 changed = true;
1300 } else {
1301 dev_dbg(di->dev, "level not allowed to go up "
1302 "since no charger is connected: %d to %d\n",
1303 di->bat_cap.prev_level,
1304 di->bat_cap.level);
1309 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1310 * shutdown
1312 if (di->flags.low_bat) {
1313 dev_dbg(di->dev, "Battery low, set capacity to 0\n");
1314 di->bat_cap.prev_percent = 0;
1315 di->bat_cap.permille = 0;
1316 percent = 0;
1317 di->bat_cap.prev_mah = 0;
1318 di->bat_cap.mah = 0;
1319 changed = true;
1320 } else if (di->flags.fully_charged) {
1322 * We report 100% if algorithm reported fully charged
1323 * and show 100% during maintenance charging (scaling).
1325 if (di->flags.force_full) {
1326 di->bat_cap.prev_percent = percent;
1327 di->bat_cap.prev_mah = di->bat_cap.mah;
1329 changed = true;
1331 if (!di->bat_cap.cap_scale.enable &&
1332 di->bm->capacity_scaling) {
1333 di->bat_cap.cap_scale.enable = true;
1334 di->bat_cap.cap_scale.cap_to_scale[0] = 100;
1335 di->bat_cap.cap_scale.cap_to_scale[1] =
1336 di->bat_cap.prev_percent;
1337 di->bat_cap.cap_scale.disable_cap_level = 100;
1339 } else if (di->bat_cap.prev_percent != percent) {
1340 dev_dbg(di->dev,
1341 "battery reported full "
1342 "but capacity dropping: %d\n",
1343 percent);
1344 di->bat_cap.prev_percent = percent;
1345 di->bat_cap.prev_mah = di->bat_cap.mah;
1347 changed = true;
1349 } else if (di->bat_cap.prev_percent != percent) {
1350 if (percent == 0) {
1352 * We will not report 0% unless we've got
1353 * the LOW_BAT IRQ, no matter what the FG
1354 * algorithm says.
1356 di->bat_cap.prev_percent = 1;
1357 percent = 1;
1359 changed = true;
1360 } else if (!(!di->flags.charging &&
1361 percent > di->bat_cap.prev_percent) || init) {
1363 * We do not allow reported capacity to go up
1364 * unless we're charging or if we're in init
1366 dev_dbg(di->dev,
1367 "capacity changed from %d to %d (%d)\n",
1368 di->bat_cap.prev_percent,
1369 percent,
1370 di->bat_cap.permille);
1371 di->bat_cap.prev_percent = percent;
1372 di->bat_cap.prev_mah = di->bat_cap.mah;
1374 changed = true;
1375 } else {
1376 dev_dbg(di->dev, "capacity not allowed to go up since "
1377 "no charger is connected: %d to %d (%d)\n",
1378 di->bat_cap.prev_percent,
1379 percent,
1380 di->bat_cap.permille);
1384 if (changed) {
1385 if (di->bm->capacity_scaling) {
1386 di->bat_cap.cap_scale.scaled_cap =
1387 ab8500_fg_calculate_scaled_capacity(di);
1389 dev_info(di->dev, "capacity=%d (%d)\n",
1390 di->bat_cap.prev_percent,
1391 di->bat_cap.cap_scale.scaled_cap);
1393 power_supply_changed(&di->fg_psy);
1394 if (di->flags.fully_charged && di->flags.force_full) {
1395 dev_dbg(di->dev, "Battery full, notifying.\n");
1396 di->flags.force_full = false;
1397 sysfs_notify(&di->fg_kobject, NULL, "charge_full");
1399 sysfs_notify(&di->fg_kobject, NULL, "charge_now");
1403 static void ab8500_fg_charge_state_to(struct ab8500_fg *di,
1404 enum ab8500_fg_charge_state new_state)
1406 dev_dbg(di->dev, "Charge state from %d [%s] to %d [%s]\n",
1407 di->charge_state,
1408 charge_state[di->charge_state],
1409 new_state,
1410 charge_state[new_state]);
1412 di->charge_state = new_state;
1415 static void ab8500_fg_discharge_state_to(struct ab8500_fg *di,
1416 enum ab8500_fg_discharge_state new_state)
1418 dev_dbg(di->dev, "Disharge state from %d [%s] to %d [%s]\n",
1419 di->discharge_state,
1420 discharge_state[di->discharge_state],
1421 new_state,
1422 discharge_state[new_state]);
1424 di->discharge_state = new_state;
1428 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1429 * @di: pointer to the ab8500_fg structure
1431 * Battery capacity calculation state machine for when we're charging
1433 static void ab8500_fg_algorithm_charging(struct ab8500_fg *di)
1436 * If we change to discharge mode
1437 * we should start with recovery
1439 if (di->discharge_state != AB8500_FG_DISCHARGE_INIT_RECOVERY)
1440 ab8500_fg_discharge_state_to(di,
1441 AB8500_FG_DISCHARGE_INIT_RECOVERY);
1443 switch (di->charge_state) {
1444 case AB8500_FG_CHARGE_INIT:
1445 di->fg_samples = SEC_TO_SAMPLE(
1446 di->bm->fg_params->accu_charging);
1448 ab8500_fg_coulomb_counter(di, true);
1449 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_READOUT);
1451 break;
1453 case AB8500_FG_CHARGE_READOUT:
1455 * Read the FG and calculate the new capacity
1457 mutex_lock(&di->cc_lock);
1458 if (!di->flags.conv_done && !di->flags.force_full) {
1459 /* Wasn't the CC IRQ that got us here */
1460 mutex_unlock(&di->cc_lock);
1461 dev_dbg(di->dev, "%s CC conv not done\n",
1462 __func__);
1464 break;
1466 di->flags.conv_done = false;
1467 mutex_unlock(&di->cc_lock);
1469 ab8500_fg_calc_cap_charging(di);
1471 break;
1473 default:
1474 break;
1477 /* Check capacity limits */
1478 ab8500_fg_check_capacity_limits(di, false);
1481 static void force_capacity(struct ab8500_fg *di)
1483 int cap;
1485 ab8500_fg_clear_cap_samples(di);
1486 cap = di->bat_cap.user_mah;
1487 if (cap > di->bat_cap.max_mah_design) {
1488 dev_dbg(di->dev, "Remaining cap %d can't be bigger than total"
1489 " %d\n", cap, di->bat_cap.max_mah_design);
1490 cap = di->bat_cap.max_mah_design;
1492 ab8500_fg_fill_cap_sample(di, di->bat_cap.user_mah);
1493 di->bat_cap.permille = ab8500_fg_convert_mah_to_permille(di, cap);
1494 di->bat_cap.mah = cap;
1495 ab8500_fg_check_capacity_limits(di, true);
1498 static bool check_sysfs_capacity(struct ab8500_fg *di)
1500 int cap, lower, upper;
1501 int cap_permille;
1503 cap = di->bat_cap.user_mah;
1505 cap_permille = ab8500_fg_convert_mah_to_permille(di,
1506 di->bat_cap.user_mah);
1508 lower = di->bat_cap.permille - di->bm->fg_params->user_cap_limit * 10;
1509 upper = di->bat_cap.permille + di->bm->fg_params->user_cap_limit * 10;
1511 if (lower < 0)
1512 lower = 0;
1513 /* 1000 is permille, -> 100 percent */
1514 if (upper > 1000)
1515 upper = 1000;
1517 dev_dbg(di->dev, "Capacity limits:"
1518 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1519 lower, cap_permille, upper, cap, di->bat_cap.mah);
1521 /* If within limits, use the saved capacity and exit estimation...*/
1522 if (cap_permille > lower && cap_permille < upper) {
1523 dev_dbg(di->dev, "OK! Using users cap %d uAh now\n", cap);
1524 force_capacity(di);
1525 return true;
1527 dev_dbg(di->dev, "Capacity from user out of limits, ignoring");
1528 return false;
1532 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1533 * @di: pointer to the ab8500_fg structure
1535 * Battery capacity calculation state machine for when we're discharging
1537 static void ab8500_fg_algorithm_discharging(struct ab8500_fg *di)
1539 int sleep_time;
1541 /* If we change to charge mode we should start with init */
1542 if (di->charge_state != AB8500_FG_CHARGE_INIT)
1543 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
1545 switch (di->discharge_state) {
1546 case AB8500_FG_DISCHARGE_INIT:
1547 /* We use the FG IRQ to work on */
1548 di->init_cnt = 0;
1549 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
1550 ab8500_fg_coulomb_counter(di, true);
1551 ab8500_fg_discharge_state_to(di,
1552 AB8500_FG_DISCHARGE_INITMEASURING);
1554 /* Intentional fallthrough */
1555 case AB8500_FG_DISCHARGE_INITMEASURING:
1557 * Discard a number of samples during startup.
1558 * After that, use compensated voltage for a few
1559 * samples to get an initial capacity.
1560 * Then go to READOUT
1562 sleep_time = di->bm->fg_params->init_timer;
1564 /* Discard the first [x] seconds */
1565 if (di->init_cnt > di->bm->fg_params->init_discard_time) {
1566 ab8500_fg_calc_cap_discharge_voltage(di, true);
1568 ab8500_fg_check_capacity_limits(di, true);
1571 di->init_cnt += sleep_time;
1572 if (di->init_cnt > di->bm->fg_params->init_total_time)
1573 ab8500_fg_discharge_state_to(di,
1574 AB8500_FG_DISCHARGE_READOUT_INIT);
1576 break;
1578 case AB8500_FG_DISCHARGE_INIT_RECOVERY:
1579 di->recovery_cnt = 0;
1580 di->recovery_needed = true;
1581 ab8500_fg_discharge_state_to(di,
1582 AB8500_FG_DISCHARGE_RECOVERY);
1584 /* Intentional fallthrough */
1586 case AB8500_FG_DISCHARGE_RECOVERY:
1587 sleep_time = di->bm->fg_params->recovery_sleep_timer;
1590 * We should check the power consumption
1591 * If low, go to READOUT (after x min) or
1592 * RECOVERY_SLEEP if time left.
1593 * If high, go to READOUT
1595 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1597 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1598 if (di->recovery_cnt >
1599 di->bm->fg_params->recovery_total_time) {
1600 di->fg_samples = SEC_TO_SAMPLE(
1601 di->bm->fg_params->accu_high_curr);
1602 ab8500_fg_coulomb_counter(di, true);
1603 ab8500_fg_discharge_state_to(di,
1604 AB8500_FG_DISCHARGE_READOUT);
1605 di->recovery_needed = false;
1606 } else {
1607 queue_delayed_work(di->fg_wq,
1608 &di->fg_periodic_work,
1609 sleep_time * HZ);
1611 di->recovery_cnt += sleep_time;
1612 } else {
1613 di->fg_samples = SEC_TO_SAMPLE(
1614 di->bm->fg_params->accu_high_curr);
1615 ab8500_fg_coulomb_counter(di, true);
1616 ab8500_fg_discharge_state_to(di,
1617 AB8500_FG_DISCHARGE_READOUT);
1619 break;
1621 case AB8500_FG_DISCHARGE_READOUT_INIT:
1622 di->fg_samples = SEC_TO_SAMPLE(
1623 di->bm->fg_params->accu_high_curr);
1624 ab8500_fg_coulomb_counter(di, true);
1625 ab8500_fg_discharge_state_to(di,
1626 AB8500_FG_DISCHARGE_READOUT);
1627 break;
1629 case AB8500_FG_DISCHARGE_READOUT:
1630 di->inst_curr = ab8500_fg_inst_curr_blocking(di);
1632 if (ab8500_fg_is_low_curr(di, di->inst_curr)) {
1633 /* Detect mode change */
1634 if (di->high_curr_mode) {
1635 di->high_curr_mode = false;
1636 di->high_curr_cnt = 0;
1639 if (di->recovery_needed) {
1640 ab8500_fg_discharge_state_to(di,
1641 AB8500_FG_DISCHARGE_INIT_RECOVERY);
1643 queue_delayed_work(di->fg_wq,
1644 &di->fg_periodic_work, 0);
1646 break;
1649 ab8500_fg_calc_cap_discharge_voltage(di, true);
1650 } else {
1651 mutex_lock(&di->cc_lock);
1652 if (!di->flags.conv_done) {
1653 /* Wasn't the CC IRQ that got us here */
1654 mutex_unlock(&di->cc_lock);
1655 dev_dbg(di->dev, "%s CC conv not done\n",
1656 __func__);
1658 break;
1660 di->flags.conv_done = false;
1661 mutex_unlock(&di->cc_lock);
1663 /* Detect mode change */
1664 if (!di->high_curr_mode) {
1665 di->high_curr_mode = true;
1666 di->high_curr_cnt = 0;
1669 di->high_curr_cnt +=
1670 di->bm->fg_params->accu_high_curr;
1671 if (di->high_curr_cnt >
1672 di->bm->fg_params->high_curr_time)
1673 di->recovery_needed = true;
1675 ab8500_fg_calc_cap_discharge_fg(di);
1678 ab8500_fg_check_capacity_limits(di, false);
1680 break;
1682 case AB8500_FG_DISCHARGE_WAKEUP:
1683 ab8500_fg_calc_cap_discharge_voltage(di, true);
1685 di->fg_samples = SEC_TO_SAMPLE(
1686 di->bm->fg_params->accu_high_curr);
1687 ab8500_fg_coulomb_counter(di, true);
1688 ab8500_fg_discharge_state_to(di,
1689 AB8500_FG_DISCHARGE_READOUT);
1691 ab8500_fg_check_capacity_limits(di, false);
1693 break;
1695 default:
1696 break;
1701 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1702 * @di: pointer to the ab8500_fg structure
1705 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg *di)
1707 int ret;
1709 switch (di->calib_state) {
1710 case AB8500_FG_CALIB_INIT:
1711 dev_dbg(di->dev, "Calibration ongoing...\n");
1713 ret = abx500_mask_and_set_register_interruptible(di->dev,
1714 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1715 CC_INT_CAL_N_AVG_MASK, CC_INT_CAL_SAMPLES_8);
1716 if (ret < 0)
1717 goto err;
1719 ret = abx500_mask_and_set_register_interruptible(di->dev,
1720 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1721 CC_INTAVGOFFSET_ENA, CC_INTAVGOFFSET_ENA);
1722 if (ret < 0)
1723 goto err;
1724 di->calib_state = AB8500_FG_CALIB_WAIT;
1725 break;
1726 case AB8500_FG_CALIB_END:
1727 ret = abx500_mask_and_set_register_interruptible(di->dev,
1728 AB8500_GAS_GAUGE, AB8500_GASG_CC_CTRL_REG,
1729 CC_MUXOFFSET, CC_MUXOFFSET);
1730 if (ret < 0)
1731 goto err;
1732 di->flags.calibrate = false;
1733 dev_dbg(di->dev, "Calibration done...\n");
1734 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1735 break;
1736 case AB8500_FG_CALIB_WAIT:
1737 dev_dbg(di->dev, "Calibration WFI\n");
1738 default:
1739 break;
1741 return;
1742 err:
1743 /* Something went wrong, don't calibrate then */
1744 dev_err(di->dev, "failed to calibrate the CC\n");
1745 di->flags.calibrate = false;
1746 di->calib_state = AB8500_FG_CALIB_INIT;
1747 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1751 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1752 * @di: pointer to the ab8500_fg structure
1754 * Entry point for the battery capacity calculation state machine
1756 static void ab8500_fg_algorithm(struct ab8500_fg *di)
1758 if (di->flags.calibrate)
1759 ab8500_fg_algorithm_calibrate(di);
1760 else {
1761 if (di->flags.charging)
1762 ab8500_fg_algorithm_charging(di);
1763 else
1764 ab8500_fg_algorithm_discharging(di);
1767 dev_dbg(di->dev, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1768 "%d %d %d %d %d %d %d\n",
1769 di->bat_cap.max_mah_design,
1770 di->bat_cap.max_mah,
1771 di->bat_cap.mah,
1772 di->bat_cap.permille,
1773 di->bat_cap.level,
1774 di->bat_cap.prev_mah,
1775 di->bat_cap.prev_percent,
1776 di->bat_cap.prev_level,
1777 di->vbat,
1778 di->inst_curr,
1779 di->avg_curr,
1780 di->accu_charge,
1781 di->flags.charging,
1782 di->charge_state,
1783 di->discharge_state,
1784 di->high_curr_mode,
1785 di->recovery_needed);
1789 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1790 * @work: pointer to the work_struct structure
1792 * Work queue function for periodic work
1794 static void ab8500_fg_periodic_work(struct work_struct *work)
1796 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1797 fg_periodic_work.work);
1799 if (di->init_capacity) {
1800 /* Get an initial capacity calculation */
1801 ab8500_fg_calc_cap_discharge_voltage(di, true);
1802 ab8500_fg_check_capacity_limits(di, true);
1803 di->init_capacity = false;
1805 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1806 } else if (di->flags.user_cap) {
1807 if (check_sysfs_capacity(di)) {
1808 ab8500_fg_check_capacity_limits(di, true);
1809 if (di->flags.charging)
1810 ab8500_fg_charge_state_to(di,
1811 AB8500_FG_CHARGE_INIT);
1812 else
1813 ab8500_fg_discharge_state_to(di,
1814 AB8500_FG_DISCHARGE_READOUT_INIT);
1816 di->flags.user_cap = false;
1817 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
1818 } else
1819 ab8500_fg_algorithm(di);
1824 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1825 * @work: pointer to the work_struct structure
1827 * Work queue function for checking the OVV_BAT condition
1829 static void ab8500_fg_check_hw_failure_work(struct work_struct *work)
1831 int ret;
1832 u8 reg_value;
1834 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1835 fg_check_hw_failure_work.work);
1838 * If we have had a battery over-voltage situation,
1839 * check ovv-bit to see if it should be reset.
1841 ret = abx500_get_register_interruptible(di->dev,
1842 AB8500_CHARGER, AB8500_CH_STAT_REG,
1843 &reg_value);
1844 if (ret < 0) {
1845 dev_err(di->dev, "%s ab8500 read failed\n", __func__);
1846 return;
1848 if ((reg_value & BATT_OVV) == BATT_OVV) {
1849 if (!di->flags.bat_ovv) {
1850 dev_dbg(di->dev, "Battery OVV\n");
1851 di->flags.bat_ovv = true;
1852 power_supply_changed(&di->fg_psy);
1854 /* Not yet recovered from ovv, reschedule this test */
1855 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work,
1856 HZ);
1857 } else {
1858 dev_dbg(di->dev, "Battery recovered from OVV\n");
1859 di->flags.bat_ovv = false;
1860 power_supply_changed(&di->fg_psy);
1865 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1866 * @work: pointer to the work_struct structure
1868 * Work queue function for checking the LOW_BAT condition
1870 static void ab8500_fg_low_bat_work(struct work_struct *work)
1872 int vbat;
1874 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
1875 fg_low_bat_work.work);
1877 vbat = ab8500_fg_bat_voltage(di);
1879 /* Check if LOW_BAT still fulfilled */
1880 if (vbat < di->bm->fg_params->lowbat_threshold) {
1881 /* Is it time to shut down? */
1882 if (di->low_bat_cnt < 1) {
1883 di->flags.low_bat = true;
1884 dev_warn(di->dev, "Shut down pending...\n");
1885 } else {
1887 * Else we need to re-schedule this check to be able to detect
1888 * if the voltage increases again during charging or
1889 * due to decreasing load.
1891 di->low_bat_cnt--;
1892 dev_warn(di->dev, "Battery voltage still LOW\n");
1893 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
1894 round_jiffies(LOW_BAT_CHECK_INTERVAL));
1896 } else {
1897 di->flags.low_bat_delay = false;
1898 di->low_bat_cnt = 10;
1899 dev_warn(di->dev, "Battery voltage OK again\n");
1902 /* This is needed to dispatch LOW_BAT */
1903 ab8500_fg_check_capacity_limits(di, false);
1907 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1908 * to the target voltage.
1909 * @di: pointer to the ab8500_fg structure
1910 * @target target voltage
1912 * Returns bit pattern closest to the target voltage
1913 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1916 static int ab8500_fg_battok_calc(struct ab8500_fg *di, int target)
1918 if (target > BATT_OK_MIN +
1919 (BATT_OK_INCREMENT * BATT_OK_MAX_NR_INCREMENTS))
1920 return BATT_OK_MAX_NR_INCREMENTS;
1921 if (target < BATT_OK_MIN)
1922 return 0;
1923 return (target - BATT_OK_MIN) / BATT_OK_INCREMENT;
1927 * ab8500_fg_battok_init_hw_register - init battok levels
1928 * @di: pointer to the ab8500_fg structure
1932 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg *di)
1934 int selected;
1935 int sel0;
1936 int sel1;
1937 int cbp_sel0;
1938 int cbp_sel1;
1939 int ret;
1940 int new_val;
1942 sel0 = di->bm->fg_params->battok_falling_th_sel0;
1943 sel1 = di->bm->fg_params->battok_raising_th_sel1;
1945 cbp_sel0 = ab8500_fg_battok_calc(di, sel0);
1946 cbp_sel1 = ab8500_fg_battok_calc(di, sel1);
1948 selected = BATT_OK_MIN + cbp_sel0 * BATT_OK_INCREMENT;
1950 if (selected != sel0)
1951 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1952 sel0, selected, cbp_sel0);
1954 selected = BATT_OK_MIN + cbp_sel1 * BATT_OK_INCREMENT;
1956 if (selected != sel1)
1957 dev_warn(di->dev, "Invalid voltage step:%d, using %d %d\n",
1958 sel1, selected, cbp_sel1);
1960 new_val = cbp_sel0 | (cbp_sel1 << 4);
1962 dev_dbg(di->dev, "using: %x %d %d\n", new_val, cbp_sel0, cbp_sel1);
1963 ret = abx500_set_register_interruptible(di->dev, AB8500_SYS_CTRL2_BLOCK,
1964 AB8500_BATT_OK_REG, new_val);
1965 return ret;
1969 * ab8500_fg_instant_work() - Run the FG state machine instantly
1970 * @work: pointer to the work_struct structure
1972 * Work queue function for instant work
1974 static void ab8500_fg_instant_work(struct work_struct *work)
1976 struct ab8500_fg *di = container_of(work, struct ab8500_fg, fg_work);
1978 ab8500_fg_algorithm(di);
1982 * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1983 * @irq: interrupt number
1984 * @_di: pointer to the ab8500_fg structure
1986 * Returns IRQ status(IRQ_HANDLED)
1988 static irqreturn_t ab8500_fg_cc_data_end_handler(int irq, void *_di)
1990 struct ab8500_fg *di = _di;
1991 if (!di->nbr_cceoc_irq_cnt) {
1992 di->nbr_cceoc_irq_cnt++;
1993 complete(&di->ab8500_fg_started);
1994 } else {
1995 di->nbr_cceoc_irq_cnt = 0;
1996 complete(&di->ab8500_fg_complete);
1998 return IRQ_HANDLED;
2002 * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
2003 * @irq: interrupt number
2004 * @_di: pointer to the ab8500_fg structure
2006 * Returns IRQ status(IRQ_HANDLED)
2008 static irqreturn_t ab8500_fg_cc_int_calib_handler(int irq, void *_di)
2010 struct ab8500_fg *di = _di;
2011 di->calib_state = AB8500_FG_CALIB_END;
2012 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2013 return IRQ_HANDLED;
2017 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2018 * @irq: interrupt number
2019 * @_di: pointer to the ab8500_fg structure
2021 * Returns IRQ status(IRQ_HANDLED)
2023 static irqreturn_t ab8500_fg_cc_convend_handler(int irq, void *_di)
2025 struct ab8500_fg *di = _di;
2027 queue_work(di->fg_wq, &di->fg_acc_cur_work);
2029 return IRQ_HANDLED;
2033 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2034 * @irq: interrupt number
2035 * @_di: pointer to the ab8500_fg structure
2037 * Returns IRQ status(IRQ_HANDLED)
2039 static irqreturn_t ab8500_fg_batt_ovv_handler(int irq, void *_di)
2041 struct ab8500_fg *di = _di;
2043 dev_dbg(di->dev, "Battery OVV\n");
2045 /* Schedule a new HW failure check */
2046 queue_delayed_work(di->fg_wq, &di->fg_check_hw_failure_work, 0);
2048 return IRQ_HANDLED;
2052 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2053 * @irq: interrupt number
2054 * @_di: pointer to the ab8500_fg structure
2056 * Returns IRQ status(IRQ_HANDLED)
2058 static irqreturn_t ab8500_fg_lowbatf_handler(int irq, void *_di)
2060 struct ab8500_fg *di = _di;
2062 /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2063 if (!di->flags.low_bat_delay) {
2064 dev_warn(di->dev, "Battery voltage is below LOW threshold\n");
2065 di->flags.low_bat_delay = true;
2067 * Start a timer to check LOW_BAT again after some time
2068 * This is done to avoid shutdown on single voltage dips
2070 queue_delayed_work(di->fg_wq, &di->fg_low_bat_work,
2071 round_jiffies(LOW_BAT_CHECK_INTERVAL));
2073 return IRQ_HANDLED;
2077 * ab8500_fg_get_property() - get the fg properties
2078 * @psy: pointer to the power_supply structure
2079 * @psp: pointer to the power_supply_property structure
2080 * @val: pointer to the power_supply_propval union
2082 * This function gets called when an application tries to get the
2083 * fg properties by reading the sysfs files.
2084 * voltage_now: battery voltage
2085 * current_now: battery instant current
2086 * current_avg: battery average current
2087 * charge_full_design: capacity where battery is considered full
2088 * charge_now: battery capacity in nAh
2089 * capacity: capacity in percent
2090 * capacity_level: capacity level
2092 * Returns error code in case of failure else 0 on success
2094 static int ab8500_fg_get_property(struct power_supply *psy,
2095 enum power_supply_property psp,
2096 union power_supply_propval *val)
2098 struct ab8500_fg *di;
2100 di = to_ab8500_fg_device_info(psy);
2103 * If battery is identified as unknown and charging of unknown
2104 * batteries is disabled, we always report 100% capacity and
2105 * capacity level UNKNOWN, since we can't calculate
2106 * remaining capacity
2109 switch (psp) {
2110 case POWER_SUPPLY_PROP_VOLTAGE_NOW:
2111 if (di->flags.bat_ovv)
2112 val->intval = BATT_OVV_VALUE * 1000;
2113 else
2114 val->intval = di->vbat * 1000;
2115 break;
2116 case POWER_SUPPLY_PROP_CURRENT_NOW:
2117 val->intval = di->inst_curr * 1000;
2118 break;
2119 case POWER_SUPPLY_PROP_CURRENT_AVG:
2120 val->intval = di->avg_curr * 1000;
2121 break;
2122 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
2123 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2124 di->bat_cap.max_mah_design);
2125 break;
2126 case POWER_SUPPLY_PROP_ENERGY_FULL:
2127 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2128 di->bat_cap.max_mah);
2129 break;
2130 case POWER_SUPPLY_PROP_ENERGY_NOW:
2131 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2132 di->flags.batt_id_received)
2133 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2134 di->bat_cap.max_mah);
2135 else
2136 val->intval = ab8500_fg_convert_mah_to_uwh(di,
2137 di->bat_cap.prev_mah);
2138 break;
2139 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
2140 val->intval = di->bat_cap.max_mah_design;
2141 break;
2142 case POWER_SUPPLY_PROP_CHARGE_FULL:
2143 val->intval = di->bat_cap.max_mah;
2144 break;
2145 case POWER_SUPPLY_PROP_CHARGE_NOW:
2146 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2147 di->flags.batt_id_received)
2148 val->intval = di->bat_cap.max_mah;
2149 else
2150 val->intval = di->bat_cap.prev_mah;
2151 break;
2152 case POWER_SUPPLY_PROP_CAPACITY:
2153 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2154 di->flags.batt_id_received)
2155 val->intval = 100;
2156 else
2157 val->intval = di->bat_cap.prev_percent;
2158 break;
2159 case POWER_SUPPLY_PROP_CAPACITY_LEVEL:
2160 if (di->flags.batt_unknown && !di->bm->chg_unknown_bat &&
2161 di->flags.batt_id_received)
2162 val->intval = POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN;
2163 else
2164 val->intval = di->bat_cap.prev_level;
2165 break;
2166 default:
2167 return -EINVAL;
2169 return 0;
2172 static int ab8500_fg_get_ext_psy_data(struct device *dev, void *data)
2174 struct power_supply *psy;
2175 struct power_supply *ext;
2176 struct ab8500_fg *di;
2177 union power_supply_propval ret;
2178 int i, j;
2179 bool psy_found = false;
2181 psy = (struct power_supply *)data;
2182 ext = dev_get_drvdata(dev);
2183 di = to_ab8500_fg_device_info(psy);
2186 * For all psy where the name of your driver
2187 * appears in any supplied_to
2189 for (i = 0; i < ext->num_supplicants; i++) {
2190 if (!strcmp(ext->supplied_to[i], psy->name))
2191 psy_found = true;
2194 if (!psy_found)
2195 return 0;
2197 /* Go through all properties for the psy */
2198 for (j = 0; j < ext->num_properties; j++) {
2199 enum power_supply_property prop;
2200 prop = ext->properties[j];
2202 if (ext->get_property(ext, prop, &ret))
2203 continue;
2205 switch (prop) {
2206 case POWER_SUPPLY_PROP_STATUS:
2207 switch (ext->type) {
2208 case POWER_SUPPLY_TYPE_BATTERY:
2209 switch (ret.intval) {
2210 case POWER_SUPPLY_STATUS_UNKNOWN:
2211 case POWER_SUPPLY_STATUS_DISCHARGING:
2212 case POWER_SUPPLY_STATUS_NOT_CHARGING:
2213 if (!di->flags.charging)
2214 break;
2215 di->flags.charging = false;
2216 di->flags.fully_charged = false;
2217 if (di->bm->capacity_scaling)
2218 ab8500_fg_update_cap_scalers(di);
2219 queue_work(di->fg_wq, &di->fg_work);
2220 break;
2221 case POWER_SUPPLY_STATUS_FULL:
2222 if (di->flags.fully_charged)
2223 break;
2224 di->flags.fully_charged = true;
2225 di->flags.force_full = true;
2226 /* Save current capacity as maximum */
2227 di->bat_cap.max_mah = di->bat_cap.mah;
2228 queue_work(di->fg_wq, &di->fg_work);
2229 break;
2230 case POWER_SUPPLY_STATUS_CHARGING:
2231 if (di->flags.charging &&
2232 !di->flags.fully_charged)
2233 break;
2234 di->flags.charging = true;
2235 di->flags.fully_charged = false;
2236 if (di->bm->capacity_scaling)
2237 ab8500_fg_update_cap_scalers(di);
2238 queue_work(di->fg_wq, &di->fg_work);
2239 break;
2241 default:
2242 break;
2244 break;
2245 case POWER_SUPPLY_PROP_TECHNOLOGY:
2246 switch (ext->type) {
2247 case POWER_SUPPLY_TYPE_BATTERY:
2248 if (!di->flags.batt_id_received &&
2249 di->bm->batt_id != BATTERY_UNKNOWN) {
2250 const struct abx500_battery_type *b;
2252 b = &(di->bm->bat_type[di->bm->batt_id]);
2254 di->flags.batt_id_received = true;
2256 di->bat_cap.max_mah_design =
2257 MILLI_TO_MICRO *
2258 b->charge_full_design;
2260 di->bat_cap.max_mah =
2261 di->bat_cap.max_mah_design;
2263 di->vbat_nom = b->nominal_voltage;
2266 if (ret.intval)
2267 di->flags.batt_unknown = false;
2268 else
2269 di->flags.batt_unknown = true;
2270 break;
2271 default:
2272 break;
2274 break;
2275 case POWER_SUPPLY_PROP_TEMP:
2276 switch (ext->type) {
2277 case POWER_SUPPLY_TYPE_BATTERY:
2278 if (di->flags.batt_id_received)
2279 di->bat_temp = ret.intval;
2280 break;
2281 default:
2282 break;
2284 break;
2285 default:
2286 break;
2289 return 0;
2293 * ab8500_fg_init_hw_registers() - Set up FG related registers
2294 * @di: pointer to the ab8500_fg structure
2296 * Set up battery OVV, low battery voltage registers
2298 static int ab8500_fg_init_hw_registers(struct ab8500_fg *di)
2300 int ret;
2302 /* Set VBAT OVV threshold */
2303 ret = abx500_mask_and_set_register_interruptible(di->dev,
2304 AB8500_CHARGER,
2305 AB8500_BATT_OVV,
2306 BATT_OVV_TH_4P75,
2307 BATT_OVV_TH_4P75);
2308 if (ret) {
2309 dev_err(di->dev, "failed to set BATT_OVV\n");
2310 goto out;
2313 /* Enable VBAT OVV detection */
2314 ret = abx500_mask_and_set_register_interruptible(di->dev,
2315 AB8500_CHARGER,
2316 AB8500_BATT_OVV,
2317 BATT_OVV_ENA,
2318 BATT_OVV_ENA);
2319 if (ret) {
2320 dev_err(di->dev, "failed to enable BATT_OVV\n");
2321 goto out;
2324 /* Low Battery Voltage */
2325 ret = abx500_set_register_interruptible(di->dev,
2326 AB8500_SYS_CTRL2_BLOCK,
2327 AB8500_LOW_BAT_REG,
2328 ab8500_volt_to_regval(
2329 di->bm->fg_params->lowbat_threshold) << 1 |
2330 LOW_BAT_ENABLE);
2331 if (ret) {
2332 dev_err(di->dev, "%s write failed\n", __func__);
2333 goto out;
2336 /* Battery OK threshold */
2337 ret = ab8500_fg_battok_init_hw_register(di);
2338 if (ret) {
2339 dev_err(di->dev, "BattOk init write failed.\n");
2340 goto out;
2343 if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2344 abx500_get_chip_id(di->dev) >= AB8500_CUT2P0)
2345 || is_ab8540(di->parent)) {
2346 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2347 AB8505_RTC_PCUT_MAX_TIME_REG, di->bm->fg_params->pcut_max_time);
2349 if (ret) {
2350 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__);
2351 goto out;
2354 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2355 AB8505_RTC_PCUT_FLAG_TIME_REG, di->bm->fg_params->pcut_flag_time);
2357 if (ret) {
2358 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__);
2359 goto out;
2362 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2363 AB8505_RTC_PCUT_RESTART_REG, di->bm->fg_params->pcut_max_restart);
2365 if (ret) {
2366 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__);
2367 goto out;
2370 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2371 AB8505_RTC_PCUT_DEBOUNCE_REG, di->bm->fg_params->pcut_debounce_time);
2373 if (ret) {
2374 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__);
2375 goto out;
2378 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2379 AB8505_RTC_PCUT_CTL_STATUS_REG, di->bm->fg_params->pcut_enable);
2381 if (ret) {
2382 dev_err(di->dev, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__);
2383 goto out;
2386 out:
2387 return ret;
2391 * ab8500_fg_external_power_changed() - callback for power supply changes
2392 * @psy: pointer to the structure power_supply
2394 * This function is the entry point of the pointer external_power_changed
2395 * of the structure power_supply.
2396 * This function gets executed when there is a change in any external power
2397 * supply that this driver needs to be notified of.
2399 static void ab8500_fg_external_power_changed(struct power_supply *psy)
2401 struct ab8500_fg *di = to_ab8500_fg_device_info(psy);
2403 class_for_each_device(power_supply_class, NULL,
2404 &di->fg_psy, ab8500_fg_get_ext_psy_data);
2408 * abab8500_fg_reinit_work() - work to reset the FG algorithm
2409 * @work: pointer to the work_struct structure
2411 * Used to reset the current battery capacity to be able to
2412 * retrigger a new voltage base capacity calculation. For
2413 * test and verification purpose.
2415 static void ab8500_fg_reinit_work(struct work_struct *work)
2417 struct ab8500_fg *di = container_of(work, struct ab8500_fg,
2418 fg_reinit_work.work);
2420 if (di->flags.calibrate == false) {
2421 dev_dbg(di->dev, "Resetting FG state machine to init.\n");
2422 ab8500_fg_clear_cap_samples(di);
2423 ab8500_fg_calc_cap_discharge_voltage(di, true);
2424 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
2425 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
2426 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2428 } else {
2429 dev_err(di->dev, "Residual offset calibration ongoing "
2430 "retrying..\n");
2431 /* Wait one second until next try*/
2432 queue_delayed_work(di->fg_wq, &di->fg_reinit_work,
2433 round_jiffies(1));
2438 * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2440 * This function can be used to force the FG algorithm to recalculate a new
2441 * voltage based battery capacity.
2443 void ab8500_fg_reinit(void)
2445 struct ab8500_fg *di = ab8500_fg_get();
2446 /* User won't be notified if a null pointer returned. */
2447 if (di != NULL)
2448 queue_delayed_work(di->fg_wq, &di->fg_reinit_work, 0);
2451 /* Exposure to the sysfs interface */
2453 struct ab8500_fg_sysfs_entry {
2454 struct attribute attr;
2455 ssize_t (*show)(struct ab8500_fg *, char *);
2456 ssize_t (*store)(struct ab8500_fg *, const char *, size_t);
2459 static ssize_t charge_full_show(struct ab8500_fg *di, char *buf)
2461 return sprintf(buf, "%d\n", di->bat_cap.max_mah);
2464 static ssize_t charge_full_store(struct ab8500_fg *di, const char *buf,
2465 size_t count)
2467 unsigned long charge_full;
2468 ssize_t ret;
2470 ret = kstrtoul(buf, 10, &charge_full);
2472 dev_dbg(di->dev, "Ret %zd charge_full %lu", ret, charge_full);
2474 if (!ret) {
2475 di->bat_cap.max_mah = (int) charge_full;
2476 ret = count;
2478 return ret;
2481 static ssize_t charge_now_show(struct ab8500_fg *di, char *buf)
2483 return sprintf(buf, "%d\n", di->bat_cap.prev_mah);
2486 static ssize_t charge_now_store(struct ab8500_fg *di, const char *buf,
2487 size_t count)
2489 unsigned long charge_now;
2490 ssize_t ret;
2492 ret = kstrtoul(buf, 10, &charge_now);
2494 dev_dbg(di->dev, "Ret %zd charge_now %lu was %d",
2495 ret, charge_now, di->bat_cap.prev_mah);
2497 if (!ret) {
2498 di->bat_cap.user_mah = (int) charge_now;
2499 di->flags.user_cap = true;
2500 ret = count;
2501 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
2503 return ret;
2506 static struct ab8500_fg_sysfs_entry charge_full_attr =
2507 __ATTR(charge_full, 0644, charge_full_show, charge_full_store);
2509 static struct ab8500_fg_sysfs_entry charge_now_attr =
2510 __ATTR(charge_now, 0644, charge_now_show, charge_now_store);
2512 static ssize_t
2513 ab8500_fg_show(struct kobject *kobj, struct attribute *attr, char *buf)
2515 struct ab8500_fg_sysfs_entry *entry;
2516 struct ab8500_fg *di;
2518 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2519 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2521 if (!entry->show)
2522 return -EIO;
2524 return entry->show(di, buf);
2526 static ssize_t
2527 ab8500_fg_store(struct kobject *kobj, struct attribute *attr, const char *buf,
2528 size_t count)
2530 struct ab8500_fg_sysfs_entry *entry;
2531 struct ab8500_fg *di;
2533 entry = container_of(attr, struct ab8500_fg_sysfs_entry, attr);
2534 di = container_of(kobj, struct ab8500_fg, fg_kobject);
2536 if (!entry->store)
2537 return -EIO;
2539 return entry->store(di, buf, count);
2542 static const struct sysfs_ops ab8500_fg_sysfs_ops = {
2543 .show = ab8500_fg_show,
2544 .store = ab8500_fg_store,
2547 static struct attribute *ab8500_fg_attrs[] = {
2548 &charge_full_attr.attr,
2549 &charge_now_attr.attr,
2550 NULL,
2553 static struct kobj_type ab8500_fg_ktype = {
2554 .sysfs_ops = &ab8500_fg_sysfs_ops,
2555 .default_attrs = ab8500_fg_attrs,
2559 * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2560 * @di: pointer to the struct ab8500_chargalg
2562 * This function removes the entry in sysfs.
2564 static void ab8500_fg_sysfs_exit(struct ab8500_fg *di)
2566 kobject_del(&di->fg_kobject);
2570 * ab8500_chargalg_sysfs_init() - init of sysfs entry
2571 * @di: pointer to the struct ab8500_chargalg
2573 * This function adds an entry in sysfs.
2574 * Returns error code in case of failure else 0(on success)
2576 static int ab8500_fg_sysfs_init(struct ab8500_fg *di)
2578 int ret = 0;
2580 ret = kobject_init_and_add(&di->fg_kobject,
2581 &ab8500_fg_ktype,
2582 NULL, "battery");
2583 if (ret < 0)
2584 dev_err(di->dev, "failed to create sysfs entry\n");
2586 return ret;
2589 static ssize_t ab8505_powercut_flagtime_read(struct device *dev,
2590 struct device_attribute *attr,
2591 char *buf)
2593 int ret;
2594 u8 reg_value;
2595 struct power_supply *psy = dev_get_drvdata(dev);
2596 struct ab8500_fg *di;
2598 di = to_ab8500_fg_device_info(psy);
2600 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2601 AB8505_RTC_PCUT_FLAG_TIME_REG, &reg_value);
2603 if (ret < 0) {
2604 dev_err(dev, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2605 goto fail;
2608 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2610 fail:
2611 return ret;
2614 static ssize_t ab8505_powercut_flagtime_write(struct device *dev,
2615 struct device_attribute *attr,
2616 const char *buf, size_t count)
2618 int ret;
2619 long unsigned reg_value;
2620 struct power_supply *psy = dev_get_drvdata(dev);
2621 struct ab8500_fg *di;
2623 di = to_ab8500_fg_device_info(psy);
2625 reg_value = simple_strtoul(buf, NULL, 10);
2627 if (reg_value > 0x7F) {
2628 dev_err(dev, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2629 goto fail;
2632 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2633 AB8505_RTC_PCUT_FLAG_TIME_REG, (u8)reg_value);
2635 if (ret < 0)
2636 dev_err(dev, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2638 fail:
2639 return count;
2642 static ssize_t ab8505_powercut_maxtime_read(struct device *dev,
2643 struct device_attribute *attr,
2644 char *buf)
2646 int ret;
2647 u8 reg_value;
2648 struct power_supply *psy = dev_get_drvdata(dev);
2649 struct ab8500_fg *di;
2651 di = to_ab8500_fg_device_info(psy);
2653 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2654 AB8505_RTC_PCUT_MAX_TIME_REG, &reg_value);
2656 if (ret < 0) {
2657 dev_err(dev, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2658 goto fail;
2661 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2663 fail:
2664 return ret;
2668 static ssize_t ab8505_powercut_maxtime_write(struct device *dev,
2669 struct device_attribute *attr,
2670 const char *buf, size_t count)
2672 int ret;
2673 int reg_value;
2674 struct power_supply *psy = dev_get_drvdata(dev);
2675 struct ab8500_fg *di;
2677 di = to_ab8500_fg_device_info(psy);
2679 reg_value = simple_strtoul(buf, NULL, 10);
2680 if (reg_value > 0x7F) {
2681 dev_err(dev, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2682 goto fail;
2685 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2686 AB8505_RTC_PCUT_MAX_TIME_REG, (u8)reg_value);
2688 if (ret < 0)
2689 dev_err(dev, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2691 fail:
2692 return count;
2695 static ssize_t ab8505_powercut_restart_read(struct device *dev,
2696 struct device_attribute *attr,
2697 char *buf)
2699 int ret;
2700 u8 reg_value;
2701 struct power_supply *psy = dev_get_drvdata(dev);
2702 struct ab8500_fg *di;
2704 di = to_ab8500_fg_device_info(psy);
2706 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2707 AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2709 if (ret < 0) {
2710 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2711 goto fail;
2714 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF));
2716 fail:
2717 return ret;
2720 static ssize_t ab8505_powercut_restart_write(struct device *dev,
2721 struct device_attribute *attr,
2722 const char *buf, size_t count)
2724 int ret;
2725 int reg_value;
2726 struct power_supply *psy = dev_get_drvdata(dev);
2727 struct ab8500_fg *di;
2729 di = to_ab8500_fg_device_info(psy);
2731 reg_value = simple_strtoul(buf, NULL, 10);
2732 if (reg_value > 0xF) {
2733 dev_err(dev, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2734 goto fail;
2737 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2738 AB8505_RTC_PCUT_RESTART_REG, (u8)reg_value);
2740 if (ret < 0)
2741 dev_err(dev, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2743 fail:
2744 return count;
2748 static ssize_t ab8505_powercut_timer_read(struct device *dev,
2749 struct device_attribute *attr,
2750 char *buf)
2752 int ret;
2753 u8 reg_value;
2754 struct power_supply *psy = dev_get_drvdata(dev);
2755 struct ab8500_fg *di;
2757 di = to_ab8500_fg_device_info(psy);
2759 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2760 AB8505_RTC_PCUT_TIME_REG, &reg_value);
2762 if (ret < 0) {
2763 dev_err(dev, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2764 goto fail;
2767 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7F));
2769 fail:
2770 return ret;
2773 static ssize_t ab8505_powercut_restart_counter_read(struct device *dev,
2774 struct device_attribute *attr,
2775 char *buf)
2777 int ret;
2778 u8 reg_value;
2779 struct power_supply *psy = dev_get_drvdata(dev);
2780 struct ab8500_fg *di;
2782 di = to_ab8500_fg_device_info(psy);
2784 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2785 AB8505_RTC_PCUT_RESTART_REG, &reg_value);
2787 if (ret < 0) {
2788 dev_err(dev, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2789 goto fail;
2792 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0xF0) >> 4);
2794 fail:
2795 return ret;
2798 static ssize_t ab8505_powercut_read(struct device *dev,
2799 struct device_attribute *attr,
2800 char *buf)
2802 int ret;
2803 u8 reg_value;
2804 struct power_supply *psy = dev_get_drvdata(dev);
2805 struct ab8500_fg *di;
2807 di = to_ab8500_fg_device_info(psy);
2809 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2810 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2812 if (ret < 0)
2813 goto fail;
2815 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x1));
2817 fail:
2818 return ret;
2821 static ssize_t ab8505_powercut_write(struct device *dev,
2822 struct device_attribute *attr,
2823 const char *buf, size_t count)
2825 int ret;
2826 int reg_value;
2827 struct power_supply *psy = dev_get_drvdata(dev);
2828 struct ab8500_fg *di;
2830 di = to_ab8500_fg_device_info(psy);
2832 reg_value = simple_strtoul(buf, NULL, 10);
2833 if (reg_value > 0x1) {
2834 dev_err(dev, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2835 goto fail;
2838 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2839 AB8505_RTC_PCUT_CTL_STATUS_REG, (u8)reg_value);
2841 if (ret < 0)
2842 dev_err(dev, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2844 fail:
2845 return count;
2848 static ssize_t ab8505_powercut_flag_read(struct device *dev,
2849 struct device_attribute *attr,
2850 char *buf)
2853 int ret;
2854 u8 reg_value;
2855 struct power_supply *psy = dev_get_drvdata(dev);
2856 struct ab8500_fg *di;
2858 di = to_ab8500_fg_device_info(psy);
2860 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2861 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2863 if (ret < 0) {
2864 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2865 goto fail;
2868 return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x10) >> 4));
2870 fail:
2871 return ret;
2874 static ssize_t ab8505_powercut_debounce_read(struct device *dev,
2875 struct device_attribute *attr,
2876 char *buf)
2878 int ret;
2879 u8 reg_value;
2880 struct power_supply *psy = dev_get_drvdata(dev);
2881 struct ab8500_fg *di;
2883 di = to_ab8500_fg_device_info(psy);
2885 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2886 AB8505_RTC_PCUT_DEBOUNCE_REG, &reg_value);
2888 if (ret < 0) {
2889 dev_err(dev, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2890 goto fail;
2893 return scnprintf(buf, PAGE_SIZE, "%d\n", (reg_value & 0x7));
2895 fail:
2896 return ret;
2899 static ssize_t ab8505_powercut_debounce_write(struct device *dev,
2900 struct device_attribute *attr,
2901 const char *buf, size_t count)
2903 int ret;
2904 int reg_value;
2905 struct power_supply *psy = dev_get_drvdata(dev);
2906 struct ab8500_fg *di;
2908 di = to_ab8500_fg_device_info(psy);
2910 reg_value = simple_strtoul(buf, NULL, 10);
2911 if (reg_value > 0x7) {
2912 dev_err(dev, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2913 goto fail;
2916 ret = abx500_set_register_interruptible(di->dev, AB8500_RTC,
2917 AB8505_RTC_PCUT_DEBOUNCE_REG, (u8)reg_value);
2919 if (ret < 0)
2920 dev_err(dev, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2922 fail:
2923 return count;
2926 static ssize_t ab8505_powercut_enable_status_read(struct device *dev,
2927 struct device_attribute *attr,
2928 char *buf)
2930 int ret;
2931 u8 reg_value;
2932 struct power_supply *psy = dev_get_drvdata(dev);
2933 struct ab8500_fg *di;
2935 di = to_ab8500_fg_device_info(psy);
2937 ret = abx500_get_register_interruptible(di->dev, AB8500_RTC,
2938 AB8505_RTC_PCUT_CTL_STATUS_REG, &reg_value);
2940 if (ret < 0) {
2941 dev_err(dev, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2942 goto fail;
2945 return scnprintf(buf, PAGE_SIZE, "%d\n", ((reg_value & 0x20) >> 5));
2947 fail:
2948 return ret;
2951 static struct device_attribute ab8505_fg_sysfs_psy_attrs[] = {
2952 __ATTR(powercut_flagtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2953 ab8505_powercut_flagtime_read, ab8505_powercut_flagtime_write),
2954 __ATTR(powercut_maxtime, (S_IRUGO | S_IWUSR | S_IWGRP),
2955 ab8505_powercut_maxtime_read, ab8505_powercut_maxtime_write),
2956 __ATTR(powercut_restart_max, (S_IRUGO | S_IWUSR | S_IWGRP),
2957 ab8505_powercut_restart_read, ab8505_powercut_restart_write),
2958 __ATTR(powercut_timer, S_IRUGO, ab8505_powercut_timer_read, NULL),
2959 __ATTR(powercut_restart_counter, S_IRUGO,
2960 ab8505_powercut_restart_counter_read, NULL),
2961 __ATTR(powercut_enable, (S_IRUGO | S_IWUSR | S_IWGRP),
2962 ab8505_powercut_read, ab8505_powercut_write),
2963 __ATTR(powercut_flag, S_IRUGO, ab8505_powercut_flag_read, NULL),
2964 __ATTR(powercut_debounce_time, (S_IRUGO | S_IWUSR | S_IWGRP),
2965 ab8505_powercut_debounce_read, ab8505_powercut_debounce_write),
2966 __ATTR(powercut_enable_status, S_IRUGO,
2967 ab8505_powercut_enable_status_read, NULL),
2970 static int ab8500_fg_sysfs_psy_create_attrs(struct device *dev)
2972 unsigned int i, j;
2973 struct power_supply *psy = dev_get_drvdata(dev);
2974 struct ab8500_fg *di;
2976 di = to_ab8500_fg_device_info(psy);
2978 if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
2979 abx500_get_chip_id(dev->parent) >= AB8500_CUT2P0)
2980 || is_ab8540(di->parent)) {
2981 for (j = 0; j < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); j++)
2982 if (device_create_file(dev, &ab8505_fg_sysfs_psy_attrs[j]))
2983 goto sysfs_psy_create_attrs_failed_ab8505;
2985 return 0;
2986 sysfs_psy_create_attrs_failed_ab8505:
2987 dev_err(dev, "Failed creating sysfs psy attrs for ab8505.\n");
2988 while (j--)
2989 device_remove_file(dev, &ab8505_fg_sysfs_psy_attrs[i]);
2991 return -EIO;
2994 static void ab8500_fg_sysfs_psy_remove_attrs(struct device *dev)
2996 unsigned int i;
2997 struct power_supply *psy = dev_get_drvdata(dev);
2998 struct ab8500_fg *di;
3000 di = to_ab8500_fg_device_info(psy);
3002 if (((is_ab8505(di->parent) || is_ab9540(di->parent)) &&
3003 abx500_get_chip_id(dev->parent) >= AB8500_CUT2P0)
3004 || is_ab8540(di->parent)) {
3005 for (i = 0; i < ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs); i++)
3006 (void)device_remove_file(dev, &ab8505_fg_sysfs_psy_attrs[i]);
3010 /* Exposure to the sysfs interface <<END>> */
3012 #if defined(CONFIG_PM)
3013 static int ab8500_fg_resume(struct platform_device *pdev)
3015 struct ab8500_fg *di = platform_get_drvdata(pdev);
3018 * Change state if we're not charging. If we're charging we will wake
3019 * up on the FG IRQ
3021 if (!di->flags.charging) {
3022 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_WAKEUP);
3023 queue_work(di->fg_wq, &di->fg_work);
3026 return 0;
3029 static int ab8500_fg_suspend(struct platform_device *pdev,
3030 pm_message_t state)
3032 struct ab8500_fg *di = platform_get_drvdata(pdev);
3034 flush_delayed_work(&di->fg_periodic_work);
3035 flush_work(&di->fg_work);
3036 flush_work(&di->fg_acc_cur_work);
3037 flush_delayed_work(&di->fg_reinit_work);
3038 flush_delayed_work(&di->fg_low_bat_work);
3039 flush_delayed_work(&di->fg_check_hw_failure_work);
3042 * If the FG is enabled we will disable it before going to suspend
3043 * only if we're not charging
3045 if (di->flags.fg_enabled && !di->flags.charging)
3046 ab8500_fg_coulomb_counter(di, false);
3048 return 0;
3050 #else
3051 #define ab8500_fg_suspend NULL
3052 #define ab8500_fg_resume NULL
3053 #endif
3055 static int ab8500_fg_remove(struct platform_device *pdev)
3057 int ret = 0;
3058 struct ab8500_fg *di = platform_get_drvdata(pdev);
3060 list_del(&di->node);
3062 /* Disable coulomb counter */
3063 ret = ab8500_fg_coulomb_counter(di, false);
3064 if (ret)
3065 dev_err(di->dev, "failed to disable coulomb counter\n");
3067 destroy_workqueue(di->fg_wq);
3068 ab8500_fg_sysfs_exit(di);
3070 flush_scheduled_work();
3071 ab8500_fg_sysfs_psy_remove_attrs(di->fg_psy.dev);
3072 power_supply_unregister(&di->fg_psy);
3073 return ret;
3076 /* ab8500 fg driver interrupts and their respective isr */
3077 static struct ab8500_fg_interrupts ab8500_fg_irq[] = {
3078 {"NCONV_ACCU", ab8500_fg_cc_convend_handler},
3079 {"BATT_OVV", ab8500_fg_batt_ovv_handler},
3080 {"LOW_BAT_F", ab8500_fg_lowbatf_handler},
3081 {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler},
3082 {"CCEOC", ab8500_fg_cc_data_end_handler},
3085 static char *supply_interface[] = {
3086 "ab8500_chargalg",
3087 "ab8500_usb",
3090 static int ab8500_fg_probe(struct platform_device *pdev)
3092 struct device_node *np = pdev->dev.of_node;
3093 struct abx500_bm_data *plat = pdev->dev.platform_data;
3094 struct ab8500_fg *di;
3095 int i, irq;
3096 int ret = 0;
3098 di = devm_kzalloc(&pdev->dev, sizeof(*di), GFP_KERNEL);
3099 if (!di) {
3100 dev_err(&pdev->dev, "%s no mem for ab8500_fg\n", __func__);
3101 return -ENOMEM;
3104 if (!plat) {
3105 dev_err(&pdev->dev, "no battery management data supplied\n");
3106 return -EINVAL;
3108 di->bm = plat;
3110 if (np) {
3111 ret = ab8500_bm_of_probe(&pdev->dev, np, di->bm);
3112 if (ret) {
3113 dev_err(&pdev->dev, "failed to get battery information\n");
3114 return ret;
3118 mutex_init(&di->cc_lock);
3120 /* get parent data */
3121 di->dev = &pdev->dev;
3122 di->parent = dev_get_drvdata(pdev->dev.parent);
3123 di->gpadc = ab8500_gpadc_get("ab8500-gpadc.0");
3125 di->fg_psy.name = "ab8500_fg";
3126 di->fg_psy.type = POWER_SUPPLY_TYPE_BATTERY;
3127 di->fg_psy.properties = ab8500_fg_props;
3128 di->fg_psy.num_properties = ARRAY_SIZE(ab8500_fg_props);
3129 di->fg_psy.get_property = ab8500_fg_get_property;
3130 di->fg_psy.supplied_to = supply_interface;
3131 di->fg_psy.num_supplicants = ARRAY_SIZE(supply_interface),
3132 di->fg_psy.external_power_changed = ab8500_fg_external_power_changed;
3134 di->bat_cap.max_mah_design = MILLI_TO_MICRO *
3135 di->bm->bat_type[di->bm->batt_id].charge_full_design;
3137 di->bat_cap.max_mah = di->bat_cap.max_mah_design;
3139 di->vbat_nom = di->bm->bat_type[di->bm->batt_id].nominal_voltage;
3141 di->init_capacity = true;
3143 ab8500_fg_charge_state_to(di, AB8500_FG_CHARGE_INIT);
3144 ab8500_fg_discharge_state_to(di, AB8500_FG_DISCHARGE_INIT);
3146 /* Create a work queue for running the FG algorithm */
3147 di->fg_wq = create_singlethread_workqueue("ab8500_fg_wq");
3148 if (di->fg_wq == NULL) {
3149 dev_err(di->dev, "failed to create work queue\n");
3150 return -ENOMEM;
3153 /* Init work for running the fg algorithm instantly */
3154 INIT_WORK(&di->fg_work, ab8500_fg_instant_work);
3156 /* Init work for getting the battery accumulated current */
3157 INIT_WORK(&di->fg_acc_cur_work, ab8500_fg_acc_cur_work);
3159 /* Init work for reinitialising the fg algorithm */
3160 INIT_DEFERRABLE_WORK(&di->fg_reinit_work,
3161 ab8500_fg_reinit_work);
3163 /* Work delayed Queue to run the state machine */
3164 INIT_DEFERRABLE_WORK(&di->fg_periodic_work,
3165 ab8500_fg_periodic_work);
3167 /* Work to check low battery condition */
3168 INIT_DEFERRABLE_WORK(&di->fg_low_bat_work,
3169 ab8500_fg_low_bat_work);
3171 /* Init work for HW failure check */
3172 INIT_DEFERRABLE_WORK(&di->fg_check_hw_failure_work,
3173 ab8500_fg_check_hw_failure_work);
3175 /* Reset battery low voltage flag */
3176 di->flags.low_bat = false;
3178 /* Initialize low battery counter */
3179 di->low_bat_cnt = 10;
3181 /* Initialize OVV, and other registers */
3182 ret = ab8500_fg_init_hw_registers(di);
3183 if (ret) {
3184 dev_err(di->dev, "failed to initialize registers\n");
3185 goto free_inst_curr_wq;
3188 /* Consider battery unknown until we're informed otherwise */
3189 di->flags.batt_unknown = true;
3190 di->flags.batt_id_received = false;
3192 /* Register FG power supply class */
3193 ret = power_supply_register(di->dev, &di->fg_psy);
3194 if (ret) {
3195 dev_err(di->dev, "failed to register FG psy\n");
3196 goto free_inst_curr_wq;
3199 di->fg_samples = SEC_TO_SAMPLE(di->bm->fg_params->init_timer);
3200 ab8500_fg_coulomb_counter(di, true);
3203 * Initialize completion used to notify completion and start
3204 * of inst current
3206 init_completion(&di->ab8500_fg_started);
3207 init_completion(&di->ab8500_fg_complete);
3209 /* Register interrupts */
3210 for (i = 0; i < ARRAY_SIZE(ab8500_fg_irq); i++) {
3211 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
3212 ret = request_threaded_irq(irq, NULL, ab8500_fg_irq[i].isr,
3213 IRQF_SHARED | IRQF_NO_SUSPEND,
3214 ab8500_fg_irq[i].name, di);
3216 if (ret != 0) {
3217 dev_err(di->dev, "failed to request %s IRQ %d: %d\n"
3218 , ab8500_fg_irq[i].name, irq, ret);
3219 goto free_irq;
3221 dev_dbg(di->dev, "Requested %s IRQ %d: %d\n",
3222 ab8500_fg_irq[i].name, irq, ret);
3224 di->irq = platform_get_irq_byname(pdev, "CCEOC");
3225 disable_irq(di->irq);
3226 di->nbr_cceoc_irq_cnt = 0;
3228 platform_set_drvdata(pdev, di);
3230 ret = ab8500_fg_sysfs_init(di);
3231 if (ret) {
3232 dev_err(di->dev, "failed to create sysfs entry\n");
3233 goto free_irq;
3236 ret = ab8500_fg_sysfs_psy_create_attrs(di->fg_psy.dev);
3237 if (ret) {
3238 dev_err(di->dev, "failed to create FG psy\n");
3239 ab8500_fg_sysfs_exit(di);
3240 goto free_irq;
3243 /* Calibrate the fg first time */
3244 di->flags.calibrate = true;
3245 di->calib_state = AB8500_FG_CALIB_INIT;
3247 /* Use room temp as default value until we get an update from driver. */
3248 di->bat_temp = 210;
3250 /* Run the FG algorithm */
3251 queue_delayed_work(di->fg_wq, &di->fg_periodic_work, 0);
3253 list_add_tail(&di->node, &ab8500_fg_list);
3255 return ret;
3257 free_irq:
3258 power_supply_unregister(&di->fg_psy);
3260 /* We also have to free all successfully registered irqs */
3261 for (i = i - 1; i >= 0; i--) {
3262 irq = platform_get_irq_byname(pdev, ab8500_fg_irq[i].name);
3263 free_irq(irq, di);
3265 free_inst_curr_wq:
3266 destroy_workqueue(di->fg_wq);
3267 return ret;
3270 static const struct of_device_id ab8500_fg_match[] = {
3271 { .compatible = "stericsson,ab8500-fg", },
3272 { },
3275 static struct platform_driver ab8500_fg_driver = {
3276 .probe = ab8500_fg_probe,
3277 .remove = ab8500_fg_remove,
3278 .suspend = ab8500_fg_suspend,
3279 .resume = ab8500_fg_resume,
3280 .driver = {
3281 .name = "ab8500-fg",
3282 .owner = THIS_MODULE,
3283 .of_match_table = ab8500_fg_match,
3287 static int __init ab8500_fg_init(void)
3289 return platform_driver_register(&ab8500_fg_driver);
3292 static void __exit ab8500_fg_exit(void)
3294 platform_driver_unregister(&ab8500_fg_driver);
3297 subsys_initcall_sync(ab8500_fg_init);
3298 module_exit(ab8500_fg_exit);
3300 MODULE_LICENSE("GPL v2");
3301 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3302 MODULE_ALIAS("platform:ab8500-fg");
3303 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");