4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/rculist_bl.h>
37 #include <linux/prefetch.h>
38 #include <linux/ratelimit.h>
39 #include <linux/list_lru.h>
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_u.d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_roots bl list spinlock protects:
50 * - the s_roots list (see __d_drop)
51 * dentry->d_sb->s_dentry_lru_lock protects:
52 * - the dcache lru lists and counters
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_u.d_alias, d_inode
64 * dentry->d_inode->i_lock
66 * dentry->d_sb->s_dentry_lru_lock
67 * dcache_hash_bucket lock
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
73 * dentry->d_parent->d_lock
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
81 int sysctl_vfs_cache_pressure __read_mostly
= 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
84 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
86 EXPORT_SYMBOL(rename_lock
);
88 static struct kmem_cache
*dentry_cache __read_mostly
;
90 const struct qstr empty_name
= QSTR_INIT("", 0);
91 EXPORT_SYMBOL(empty_name
);
92 const struct qstr slash_name
= QSTR_INIT("/", 1);
93 EXPORT_SYMBOL(slash_name
);
96 * This is the single most critical data structure when it comes
97 * to the dcache: the hashtable for lookups. Somebody should try
98 * to make this good - I've just made it work.
100 * This hash-function tries to avoid losing too many bits of hash
101 * information, yet avoid using a prime hash-size or similar.
104 static unsigned int d_hash_shift __read_mostly
;
106 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
108 static inline struct hlist_bl_head
*d_hash(unsigned int hash
)
110 return dentry_hashtable
+ (hash
>> d_hash_shift
);
113 #define IN_LOOKUP_SHIFT 10
114 static struct hlist_bl_head in_lookup_hashtable
[1 << IN_LOOKUP_SHIFT
];
116 static inline struct hlist_bl_head
*in_lookup_hash(const struct dentry
*parent
,
119 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
120 return in_lookup_hashtable
+ hash_32(hash
, IN_LOOKUP_SHIFT
);
124 /* Statistics gathering. */
125 struct dentry_stat_t dentry_stat
= {
129 static DEFINE_PER_CPU(long, nr_dentry
);
130 static DEFINE_PER_CPU(long, nr_dentry_unused
);
132 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
135 * Here we resort to our own counters instead of using generic per-cpu counters
136 * for consistency with what the vfs inode code does. We are expected to harvest
137 * better code and performance by having our own specialized counters.
139 * Please note that the loop is done over all possible CPUs, not over all online
140 * CPUs. The reason for this is that we don't want to play games with CPUs going
141 * on and off. If one of them goes off, we will just keep their counters.
143 * glommer: See cffbc8a for details, and if you ever intend to change this,
144 * please update all vfs counters to match.
146 static long get_nr_dentry(void)
150 for_each_possible_cpu(i
)
151 sum
+= per_cpu(nr_dentry
, i
);
152 return sum
< 0 ? 0 : sum
;
155 static long get_nr_dentry_unused(void)
159 for_each_possible_cpu(i
)
160 sum
+= per_cpu(nr_dentry_unused
, i
);
161 return sum
< 0 ? 0 : sum
;
164 int proc_nr_dentry(struct ctl_table
*table
, int write
, void __user
*buffer
,
165 size_t *lenp
, loff_t
*ppos
)
167 dentry_stat
.nr_dentry
= get_nr_dentry();
168 dentry_stat
.nr_unused
= get_nr_dentry_unused();
169 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
174 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
175 * The strings are both count bytes long, and count is non-zero.
177 #ifdef CONFIG_DCACHE_WORD_ACCESS
179 #include <asm/word-at-a-time.h>
181 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
182 * aligned allocation for this particular component. We don't
183 * strictly need the load_unaligned_zeropad() safety, but it
184 * doesn't hurt either.
186 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
187 * need the careful unaligned handling.
189 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
191 unsigned long a
,b
,mask
;
194 a
= read_word_at_a_time(cs
);
195 b
= load_unaligned_zeropad(ct
);
196 if (tcount
< sizeof(unsigned long))
198 if (unlikely(a
!= b
))
200 cs
+= sizeof(unsigned long);
201 ct
+= sizeof(unsigned long);
202 tcount
-= sizeof(unsigned long);
206 mask
= bytemask_from_count(tcount
);
207 return unlikely(!!((a
^ b
) & mask
));
212 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
226 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
229 * Be careful about RCU walk racing with rename:
230 * use 'READ_ONCE' to fetch the name pointer.
232 * NOTE! Even if a rename will mean that the length
233 * was not loaded atomically, we don't care. The
234 * RCU walk will check the sequence count eventually,
235 * and catch it. And we won't overrun the buffer,
236 * because we're reading the name pointer atomically,
237 * and a dentry name is guaranteed to be properly
238 * terminated with a NUL byte.
240 * End result: even if 'len' is wrong, we'll exit
241 * early because the data cannot match (there can
242 * be no NUL in the ct/tcount data)
244 const unsigned char *cs
= READ_ONCE(dentry
->d_name
.name
);
246 return dentry_string_cmp(cs
, ct
, tcount
);
249 struct external_name
{
252 struct rcu_head head
;
254 unsigned char name
[];
257 static inline struct external_name
*external_name(struct dentry
*dentry
)
259 return container_of(dentry
->d_name
.name
, struct external_name
, name
[0]);
262 static void __d_free(struct rcu_head
*head
)
264 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
266 kmem_cache_free(dentry_cache
, dentry
);
269 static void __d_free_external(struct rcu_head
*head
)
271 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
272 kfree(external_name(dentry
));
273 kmem_cache_free(dentry_cache
, dentry
);
276 static inline int dname_external(const struct dentry
*dentry
)
278 return dentry
->d_name
.name
!= dentry
->d_iname
;
281 void take_dentry_name_snapshot(struct name_snapshot
*name
, struct dentry
*dentry
)
283 spin_lock(&dentry
->d_lock
);
284 if (unlikely(dname_external(dentry
))) {
285 struct external_name
*p
= external_name(dentry
);
286 atomic_inc(&p
->u
.count
);
287 spin_unlock(&dentry
->d_lock
);
288 name
->name
= p
->name
;
290 memcpy(name
->inline_name
, dentry
->d_iname
, DNAME_INLINE_LEN
);
291 spin_unlock(&dentry
->d_lock
);
292 name
->name
= name
->inline_name
;
295 EXPORT_SYMBOL(take_dentry_name_snapshot
);
297 void release_dentry_name_snapshot(struct name_snapshot
*name
)
299 if (unlikely(name
->name
!= name
->inline_name
)) {
300 struct external_name
*p
;
301 p
= container_of(name
->name
, struct external_name
, name
[0]);
302 if (unlikely(atomic_dec_and_test(&p
->u
.count
)))
303 kfree_rcu(p
, u
.head
);
306 EXPORT_SYMBOL(release_dentry_name_snapshot
);
308 static inline void __d_set_inode_and_type(struct dentry
*dentry
,
314 dentry
->d_inode
= inode
;
315 flags
= READ_ONCE(dentry
->d_flags
);
316 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
318 WRITE_ONCE(dentry
->d_flags
, flags
);
321 static inline void __d_clear_type_and_inode(struct dentry
*dentry
)
323 unsigned flags
= READ_ONCE(dentry
->d_flags
);
325 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
326 WRITE_ONCE(dentry
->d_flags
, flags
);
327 dentry
->d_inode
= NULL
;
330 static void dentry_free(struct dentry
*dentry
)
332 WARN_ON(!hlist_unhashed(&dentry
->d_u
.d_alias
));
333 if (unlikely(dname_external(dentry
))) {
334 struct external_name
*p
= external_name(dentry
);
335 if (likely(atomic_dec_and_test(&p
->u
.count
))) {
336 call_rcu(&dentry
->d_u
.d_rcu
, __d_free_external
);
340 /* if dentry was never visible to RCU, immediate free is OK */
341 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
342 __d_free(&dentry
->d_u
.d_rcu
);
344 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
348 * Release the dentry's inode, using the filesystem
349 * d_iput() operation if defined.
351 static void dentry_unlink_inode(struct dentry
* dentry
)
352 __releases(dentry
->d_lock
)
353 __releases(dentry
->d_inode
->i_lock
)
355 struct inode
*inode
= dentry
->d_inode
;
356 bool hashed
= !d_unhashed(dentry
);
359 raw_write_seqcount_begin(&dentry
->d_seq
);
360 __d_clear_type_and_inode(dentry
);
361 hlist_del_init(&dentry
->d_u
.d_alias
);
363 raw_write_seqcount_end(&dentry
->d_seq
);
364 spin_unlock(&dentry
->d_lock
);
365 spin_unlock(&inode
->i_lock
);
367 fsnotify_inoderemove(inode
);
368 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
369 dentry
->d_op
->d_iput(dentry
, inode
);
375 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
376 * is in use - which includes both the "real" per-superblock
377 * LRU list _and_ the DCACHE_SHRINK_LIST use.
379 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
380 * on the shrink list (ie not on the superblock LRU list).
382 * The per-cpu "nr_dentry_unused" counters are updated with
383 * the DCACHE_LRU_LIST bit.
385 * These helper functions make sure we always follow the
386 * rules. d_lock must be held by the caller.
388 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
389 static void d_lru_add(struct dentry
*dentry
)
391 D_FLAG_VERIFY(dentry
, 0);
392 dentry
->d_flags
|= DCACHE_LRU_LIST
;
393 this_cpu_inc(nr_dentry_unused
);
394 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
397 static void d_lru_del(struct dentry
*dentry
)
399 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
400 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
401 this_cpu_dec(nr_dentry_unused
);
402 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
405 static void d_shrink_del(struct dentry
*dentry
)
407 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
408 list_del_init(&dentry
->d_lru
);
409 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
410 this_cpu_dec(nr_dentry_unused
);
413 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
415 D_FLAG_VERIFY(dentry
, 0);
416 list_add(&dentry
->d_lru
, list
);
417 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
418 this_cpu_inc(nr_dentry_unused
);
422 * These can only be called under the global LRU lock, ie during the
423 * callback for freeing the LRU list. "isolate" removes it from the
424 * LRU lists entirely, while shrink_move moves it to the indicated
427 static void d_lru_isolate(struct list_lru_one
*lru
, struct dentry
*dentry
)
429 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
430 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
431 this_cpu_dec(nr_dentry_unused
);
432 list_lru_isolate(lru
, &dentry
->d_lru
);
435 static void d_lru_shrink_move(struct list_lru_one
*lru
, struct dentry
*dentry
,
436 struct list_head
*list
)
438 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
439 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
440 list_lru_isolate_move(lru
, &dentry
->d_lru
, list
);
444 * dentry_lru_(add|del)_list) must be called with d_lock held.
446 static void dentry_lru_add(struct dentry
*dentry
)
448 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
450 else if (unlikely(!(dentry
->d_flags
& DCACHE_REFERENCED
)))
451 dentry
->d_flags
|= DCACHE_REFERENCED
;
455 * d_drop - drop a dentry
456 * @dentry: dentry to drop
458 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
459 * be found through a VFS lookup any more. Note that this is different from
460 * deleting the dentry - d_delete will try to mark the dentry negative if
461 * possible, giving a successful _negative_ lookup, while d_drop will
462 * just make the cache lookup fail.
464 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
465 * reason (NFS timeouts or autofs deletes).
467 * __d_drop requires dentry->d_lock
468 * ___d_drop doesn't mark dentry as "unhashed"
469 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
471 static void ___d_drop(struct dentry
*dentry
)
473 if (!d_unhashed(dentry
)) {
474 struct hlist_bl_head
*b
;
476 * Hashed dentries are normally on the dentry hashtable,
477 * with the exception of those newly allocated by
478 * d_obtain_root, which are always IS_ROOT:
480 if (unlikely(IS_ROOT(dentry
)))
481 b
= &dentry
->d_sb
->s_roots
;
483 b
= d_hash(dentry
->d_name
.hash
);
486 __hlist_bl_del(&dentry
->d_hash
);
488 /* After this call, in-progress rcu-walk path lookup will fail. */
489 write_seqcount_invalidate(&dentry
->d_seq
);
493 void __d_drop(struct dentry
*dentry
)
496 dentry
->d_hash
.pprev
= NULL
;
498 EXPORT_SYMBOL(__d_drop
);
500 void d_drop(struct dentry
*dentry
)
502 spin_lock(&dentry
->d_lock
);
504 spin_unlock(&dentry
->d_lock
);
506 EXPORT_SYMBOL(d_drop
);
508 static inline void dentry_unlist(struct dentry
*dentry
, struct dentry
*parent
)
512 * Inform d_walk() and shrink_dentry_list() that we are no longer
513 * attached to the dentry tree
515 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
516 if (unlikely(list_empty(&dentry
->d_child
)))
518 __list_del_entry(&dentry
->d_child
);
520 * Cursors can move around the list of children. While we'd been
521 * a normal list member, it didn't matter - ->d_child.next would've
522 * been updated. However, from now on it won't be and for the
523 * things like d_walk() it might end up with a nasty surprise.
524 * Normally d_walk() doesn't care about cursors moving around -
525 * ->d_lock on parent prevents that and since a cursor has no children
526 * of its own, we get through it without ever unlocking the parent.
527 * There is one exception, though - if we ascend from a child that
528 * gets killed as soon as we unlock it, the next sibling is found
529 * using the value left in its ->d_child.next. And if _that_
530 * pointed to a cursor, and cursor got moved (e.g. by lseek())
531 * before d_walk() regains parent->d_lock, we'll end up skipping
532 * everything the cursor had been moved past.
534 * Solution: make sure that the pointer left behind in ->d_child.next
535 * points to something that won't be moving around. I.e. skip the
538 while (dentry
->d_child
.next
!= &parent
->d_subdirs
) {
539 next
= list_entry(dentry
->d_child
.next
, struct dentry
, d_child
);
540 if (likely(!(next
->d_flags
& DCACHE_DENTRY_CURSOR
)))
542 dentry
->d_child
.next
= next
->d_child
.next
;
546 static void __dentry_kill(struct dentry
*dentry
)
548 struct dentry
*parent
= NULL
;
549 bool can_free
= true;
550 if (!IS_ROOT(dentry
))
551 parent
= dentry
->d_parent
;
554 * The dentry is now unrecoverably dead to the world.
556 lockref_mark_dead(&dentry
->d_lockref
);
559 * inform the fs via d_prune that this dentry is about to be
560 * unhashed and destroyed.
562 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
563 dentry
->d_op
->d_prune(dentry
);
565 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
566 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
569 /* if it was on the hash then remove it */
571 dentry_unlist(dentry
, parent
);
573 spin_unlock(&parent
->d_lock
);
575 dentry_unlink_inode(dentry
);
577 spin_unlock(&dentry
->d_lock
);
578 this_cpu_dec(nr_dentry
);
579 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
580 dentry
->d_op
->d_release(dentry
);
582 spin_lock(&dentry
->d_lock
);
583 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
584 dentry
->d_flags
|= DCACHE_MAY_FREE
;
587 spin_unlock(&dentry
->d_lock
);
588 if (likely(can_free
))
593 * Finish off a dentry we've decided to kill.
594 * dentry->d_lock must be held, returns with it unlocked.
595 * If ref is non-zero, then decrement the refcount too.
596 * Returns dentry requiring refcount drop, or NULL if we're done.
598 static struct dentry
*dentry_kill(struct dentry
*dentry
)
599 __releases(dentry
->d_lock
)
601 struct inode
*inode
= dentry
->d_inode
;
602 struct dentry
*parent
= NULL
;
604 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
)))
607 if (!IS_ROOT(dentry
)) {
608 parent
= dentry
->d_parent
;
609 if (unlikely(!spin_trylock(&parent
->d_lock
))) {
611 spin_unlock(&inode
->i_lock
);
616 __dentry_kill(dentry
);
620 spin_unlock(&dentry
->d_lock
);
621 return dentry
; /* try again with same dentry */
624 static inline struct dentry
*lock_parent(struct dentry
*dentry
)
626 struct dentry
*parent
= dentry
->d_parent
;
629 if (unlikely(dentry
->d_lockref
.count
< 0))
631 if (likely(spin_trylock(&parent
->d_lock
)))
634 spin_unlock(&dentry
->d_lock
);
636 parent
= READ_ONCE(dentry
->d_parent
);
637 spin_lock(&parent
->d_lock
);
639 * We can't blindly lock dentry until we are sure
640 * that we won't violate the locking order.
641 * Any changes of dentry->d_parent must have
642 * been done with parent->d_lock held, so
643 * spin_lock() above is enough of a barrier
644 * for checking if it's still our child.
646 if (unlikely(parent
!= dentry
->d_parent
)) {
647 spin_unlock(&parent
->d_lock
);
650 if (parent
!= dentry
) {
651 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
652 if (unlikely(dentry
->d_lockref
.count
< 0)) {
653 spin_unlock(&parent
->d_lock
);
664 * Try to do a lockless dput(), and return whether that was successful.
666 * If unsuccessful, we return false, having already taken the dentry lock.
668 * The caller needs to hold the RCU read lock, so that the dentry is
669 * guaranteed to stay around even if the refcount goes down to zero!
671 static inline bool fast_dput(struct dentry
*dentry
)
674 unsigned int d_flags
;
677 * If we have a d_op->d_delete() operation, we sould not
678 * let the dentry count go to zero, so use "put_or_lock".
680 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
))
681 return lockref_put_or_lock(&dentry
->d_lockref
);
684 * .. otherwise, we can try to just decrement the
685 * lockref optimistically.
687 ret
= lockref_put_return(&dentry
->d_lockref
);
690 * If the lockref_put_return() failed due to the lock being held
691 * by somebody else, the fast path has failed. We will need to
692 * get the lock, and then check the count again.
694 if (unlikely(ret
< 0)) {
695 spin_lock(&dentry
->d_lock
);
696 if (dentry
->d_lockref
.count
> 1) {
697 dentry
->d_lockref
.count
--;
698 spin_unlock(&dentry
->d_lock
);
705 * If we weren't the last ref, we're done.
711 * Careful, careful. The reference count went down
712 * to zero, but we don't hold the dentry lock, so
713 * somebody else could get it again, and do another
714 * dput(), and we need to not race with that.
716 * However, there is a very special and common case
717 * where we don't care, because there is nothing to
718 * do: the dentry is still hashed, it does not have
719 * a 'delete' op, and it's referenced and already on
722 * NOTE! Since we aren't locked, these values are
723 * not "stable". However, it is sufficient that at
724 * some point after we dropped the reference the
725 * dentry was hashed and the flags had the proper
726 * value. Other dentry users may have re-gotten
727 * a reference to the dentry and change that, but
728 * our work is done - we can leave the dentry
729 * around with a zero refcount.
732 d_flags
= READ_ONCE(dentry
->d_flags
);
733 d_flags
&= DCACHE_REFERENCED
| DCACHE_LRU_LIST
| DCACHE_DISCONNECTED
;
735 /* Nothing to do? Dropping the reference was all we needed? */
736 if (d_flags
== (DCACHE_REFERENCED
| DCACHE_LRU_LIST
) && !d_unhashed(dentry
))
740 * Not the fast normal case? Get the lock. We've already decremented
741 * the refcount, but we'll need to re-check the situation after
744 spin_lock(&dentry
->d_lock
);
747 * Did somebody else grab a reference to it in the meantime, and
748 * we're no longer the last user after all? Alternatively, somebody
749 * else could have killed it and marked it dead. Either way, we
750 * don't need to do anything else.
752 if (dentry
->d_lockref
.count
) {
753 spin_unlock(&dentry
->d_lock
);
758 * Re-get the reference we optimistically dropped. We hold the
759 * lock, and we just tested that it was zero, so we can just
762 dentry
->d_lockref
.count
= 1;
770 * This is complicated by the fact that we do not want to put
771 * dentries that are no longer on any hash chain on the unused
772 * list: we'd much rather just get rid of them immediately.
774 * However, that implies that we have to traverse the dentry
775 * tree upwards to the parents which might _also_ now be
776 * scheduled for deletion (it may have been only waiting for
777 * its last child to go away).
779 * This tail recursion is done by hand as we don't want to depend
780 * on the compiler to always get this right (gcc generally doesn't).
781 * Real recursion would eat up our stack space.
785 * dput - release a dentry
786 * @dentry: dentry to release
788 * Release a dentry. This will drop the usage count and if appropriate
789 * call the dentry unlink method as well as removing it from the queues and
790 * releasing its resources. If the parent dentries were scheduled for release
791 * they too may now get deleted.
793 void dput(struct dentry
*dentry
)
795 if (unlikely(!dentry
))
802 if (likely(fast_dput(dentry
))) {
807 /* Slow case: now with the dentry lock held */
810 WARN_ON(d_in_lookup(dentry
));
812 /* Unreachable? Get rid of it */
813 if (unlikely(d_unhashed(dentry
)))
816 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
819 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
820 if (dentry
->d_op
->d_delete(dentry
))
824 dentry_lru_add(dentry
);
826 dentry
->d_lockref
.count
--;
827 spin_unlock(&dentry
->d_lock
);
831 dentry
= dentry_kill(dentry
);
840 /* This must be called with d_lock held */
841 static inline void __dget_dlock(struct dentry
*dentry
)
843 dentry
->d_lockref
.count
++;
846 static inline void __dget(struct dentry
*dentry
)
848 lockref_get(&dentry
->d_lockref
);
851 struct dentry
*dget_parent(struct dentry
*dentry
)
857 * Do optimistic parent lookup without any
861 ret
= READ_ONCE(dentry
->d_parent
);
862 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
864 if (likely(gotref
)) {
865 if (likely(ret
== READ_ONCE(dentry
->d_parent
)))
872 * Don't need rcu_dereference because we re-check it was correct under
876 ret
= dentry
->d_parent
;
877 spin_lock(&ret
->d_lock
);
878 if (unlikely(ret
!= dentry
->d_parent
)) {
879 spin_unlock(&ret
->d_lock
);
884 BUG_ON(!ret
->d_lockref
.count
);
885 ret
->d_lockref
.count
++;
886 spin_unlock(&ret
->d_lock
);
889 EXPORT_SYMBOL(dget_parent
);
892 * d_find_alias - grab a hashed alias of inode
893 * @inode: inode in question
895 * If inode has a hashed alias, or is a directory and has any alias,
896 * acquire the reference to alias and return it. Otherwise return NULL.
897 * Notice that if inode is a directory there can be only one alias and
898 * it can be unhashed only if it has no children, or if it is the root
899 * of a filesystem, or if the directory was renamed and d_revalidate
900 * was the first vfs operation to notice.
902 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
903 * any other hashed alias over that one.
905 static struct dentry
*__d_find_alias(struct inode
*inode
)
907 struct dentry
*alias
, *discon_alias
;
911 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
912 spin_lock(&alias
->d_lock
);
913 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
914 if (IS_ROOT(alias
) &&
915 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
916 discon_alias
= alias
;
919 spin_unlock(&alias
->d_lock
);
923 spin_unlock(&alias
->d_lock
);
926 alias
= discon_alias
;
927 spin_lock(&alias
->d_lock
);
928 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
930 spin_unlock(&alias
->d_lock
);
933 spin_unlock(&alias
->d_lock
);
939 struct dentry
*d_find_alias(struct inode
*inode
)
941 struct dentry
*de
= NULL
;
943 if (!hlist_empty(&inode
->i_dentry
)) {
944 spin_lock(&inode
->i_lock
);
945 de
= __d_find_alias(inode
);
946 spin_unlock(&inode
->i_lock
);
950 EXPORT_SYMBOL(d_find_alias
);
953 * Try to kill dentries associated with this inode.
954 * WARNING: you must own a reference to inode.
956 void d_prune_aliases(struct inode
*inode
)
958 struct dentry
*dentry
;
960 spin_lock(&inode
->i_lock
);
961 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
962 spin_lock(&dentry
->d_lock
);
963 if (!dentry
->d_lockref
.count
) {
964 struct dentry
*parent
= lock_parent(dentry
);
965 if (likely(!dentry
->d_lockref
.count
)) {
966 __dentry_kill(dentry
);
971 spin_unlock(&parent
->d_lock
);
973 spin_unlock(&dentry
->d_lock
);
975 spin_unlock(&inode
->i_lock
);
977 EXPORT_SYMBOL(d_prune_aliases
);
979 static void shrink_dentry_list(struct list_head
*list
)
981 struct dentry
*dentry
, *parent
;
983 while (!list_empty(list
)) {
985 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
986 spin_lock(&dentry
->d_lock
);
987 parent
= lock_parent(dentry
);
990 * The dispose list is isolated and dentries are not accounted
991 * to the LRU here, so we can simply remove it from the list
992 * here regardless of whether it is referenced or not.
994 d_shrink_del(dentry
);
997 * We found an inuse dentry which was not removed from
998 * the LRU because of laziness during lookup. Do not free it.
1000 if (dentry
->d_lockref
.count
> 0) {
1001 spin_unlock(&dentry
->d_lock
);
1003 spin_unlock(&parent
->d_lock
);
1008 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_KILLED
)) {
1009 bool can_free
= dentry
->d_flags
& DCACHE_MAY_FREE
;
1010 spin_unlock(&dentry
->d_lock
);
1012 spin_unlock(&parent
->d_lock
);
1014 dentry_free(dentry
);
1018 inode
= dentry
->d_inode
;
1019 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
))) {
1020 d_shrink_add(dentry
, list
);
1021 spin_unlock(&dentry
->d_lock
);
1023 spin_unlock(&parent
->d_lock
);
1027 __dentry_kill(dentry
);
1030 * We need to prune ancestors too. This is necessary to prevent
1031 * quadratic behavior of shrink_dcache_parent(), but is also
1032 * expected to be beneficial in reducing dentry cache
1036 while (dentry
&& !lockref_put_or_lock(&dentry
->d_lockref
)) {
1037 parent
= lock_parent(dentry
);
1038 if (dentry
->d_lockref
.count
!= 1) {
1039 dentry
->d_lockref
.count
--;
1040 spin_unlock(&dentry
->d_lock
);
1042 spin_unlock(&parent
->d_lock
);
1045 inode
= dentry
->d_inode
; /* can't be NULL */
1046 if (unlikely(!spin_trylock(&inode
->i_lock
))) {
1047 spin_unlock(&dentry
->d_lock
);
1049 spin_unlock(&parent
->d_lock
);
1053 __dentry_kill(dentry
);
1059 static enum lru_status
dentry_lru_isolate(struct list_head
*item
,
1060 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1062 struct list_head
*freeable
= arg
;
1063 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1067 * we are inverting the lru lock/dentry->d_lock here,
1068 * so use a trylock. If we fail to get the lock, just skip
1071 if (!spin_trylock(&dentry
->d_lock
))
1075 * Referenced dentries are still in use. If they have active
1076 * counts, just remove them from the LRU. Otherwise give them
1077 * another pass through the LRU.
1079 if (dentry
->d_lockref
.count
) {
1080 d_lru_isolate(lru
, dentry
);
1081 spin_unlock(&dentry
->d_lock
);
1085 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
1086 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
1087 spin_unlock(&dentry
->d_lock
);
1090 * The list move itself will be made by the common LRU code. At
1091 * this point, we've dropped the dentry->d_lock but keep the
1092 * lru lock. This is safe to do, since every list movement is
1093 * protected by the lru lock even if both locks are held.
1095 * This is guaranteed by the fact that all LRU management
1096 * functions are intermediated by the LRU API calls like
1097 * list_lru_add and list_lru_del. List movement in this file
1098 * only ever occur through this functions or through callbacks
1099 * like this one, that are called from the LRU API.
1101 * The only exceptions to this are functions like
1102 * shrink_dentry_list, and code that first checks for the
1103 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1104 * operating only with stack provided lists after they are
1105 * properly isolated from the main list. It is thus, always a
1111 d_lru_shrink_move(lru
, dentry
, freeable
);
1112 spin_unlock(&dentry
->d_lock
);
1118 * prune_dcache_sb - shrink the dcache
1120 * @sc: shrink control, passed to list_lru_shrink_walk()
1122 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1123 * is done when we need more memory and called from the superblock shrinker
1126 * This function may fail to free any resources if all the dentries are in
1129 long prune_dcache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
1134 freed
= list_lru_shrink_walk(&sb
->s_dentry_lru
, sc
,
1135 dentry_lru_isolate
, &dispose
);
1136 shrink_dentry_list(&dispose
);
1140 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
1141 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1143 struct list_head
*freeable
= arg
;
1144 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1147 * we are inverting the lru lock/dentry->d_lock here,
1148 * so use a trylock. If we fail to get the lock, just skip
1151 if (!spin_trylock(&dentry
->d_lock
))
1154 d_lru_shrink_move(lru
, dentry
, freeable
);
1155 spin_unlock(&dentry
->d_lock
);
1162 * shrink_dcache_sb - shrink dcache for a superblock
1165 * Shrink the dcache for the specified super block. This is used to free
1166 * the dcache before unmounting a file system.
1168 void shrink_dcache_sb(struct super_block
*sb
)
1175 freed
= list_lru_walk(&sb
->s_dentry_lru
,
1176 dentry_lru_isolate_shrink
, &dispose
, 1024);
1178 this_cpu_sub(nr_dentry_unused
, freed
);
1179 shrink_dentry_list(&dispose
);
1181 } while (list_lru_count(&sb
->s_dentry_lru
) > 0);
1183 EXPORT_SYMBOL(shrink_dcache_sb
);
1186 * enum d_walk_ret - action to talke during tree walk
1187 * @D_WALK_CONTINUE: contrinue walk
1188 * @D_WALK_QUIT: quit walk
1189 * @D_WALK_NORETRY: quit when retry is needed
1190 * @D_WALK_SKIP: skip this dentry and its children
1200 * d_walk - walk the dentry tree
1201 * @parent: start of walk
1202 * @data: data passed to @enter() and @finish()
1203 * @enter: callback when first entering the dentry
1204 * @finish: callback when successfully finished the walk
1206 * The @enter() and @finish() callbacks are called with d_lock held.
1208 static void d_walk(struct dentry
*parent
, void *data
,
1209 enum d_walk_ret (*enter
)(void *, struct dentry
*),
1210 void (*finish
)(void *))
1212 struct dentry
*this_parent
;
1213 struct list_head
*next
;
1215 enum d_walk_ret ret
;
1219 read_seqbegin_or_lock(&rename_lock
, &seq
);
1220 this_parent
= parent
;
1221 spin_lock(&this_parent
->d_lock
);
1223 ret
= enter(data
, this_parent
);
1225 case D_WALK_CONTINUE
:
1230 case D_WALK_NORETRY
:
1235 next
= this_parent
->d_subdirs
.next
;
1237 while (next
!= &this_parent
->d_subdirs
) {
1238 struct list_head
*tmp
= next
;
1239 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1242 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_CURSOR
))
1245 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1247 ret
= enter(data
, dentry
);
1249 case D_WALK_CONTINUE
:
1252 spin_unlock(&dentry
->d_lock
);
1254 case D_WALK_NORETRY
:
1258 spin_unlock(&dentry
->d_lock
);
1262 if (!list_empty(&dentry
->d_subdirs
)) {
1263 spin_unlock(&this_parent
->d_lock
);
1264 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1265 this_parent
= dentry
;
1266 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1269 spin_unlock(&dentry
->d_lock
);
1272 * All done at this level ... ascend and resume the search.
1276 if (this_parent
!= parent
) {
1277 struct dentry
*child
= this_parent
;
1278 this_parent
= child
->d_parent
;
1280 spin_unlock(&child
->d_lock
);
1281 spin_lock(&this_parent
->d_lock
);
1283 /* might go back up the wrong parent if we have had a rename. */
1284 if (need_seqretry(&rename_lock
, seq
))
1286 /* go into the first sibling still alive */
1288 next
= child
->d_child
.next
;
1289 if (next
== &this_parent
->d_subdirs
)
1291 child
= list_entry(next
, struct dentry
, d_child
);
1292 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
1296 if (need_seqretry(&rename_lock
, seq
))
1303 spin_unlock(&this_parent
->d_lock
);
1304 done_seqretry(&rename_lock
, seq
);
1308 spin_unlock(&this_parent
->d_lock
);
1317 struct check_mount
{
1318 struct vfsmount
*mnt
;
1319 unsigned int mounted
;
1322 static enum d_walk_ret
path_check_mount(void *data
, struct dentry
*dentry
)
1324 struct check_mount
*info
= data
;
1325 struct path path
= { .mnt
= info
->mnt
, .dentry
= dentry
};
1327 if (likely(!d_mountpoint(dentry
)))
1328 return D_WALK_CONTINUE
;
1329 if (__path_is_mountpoint(&path
)) {
1333 return D_WALK_CONTINUE
;
1337 * path_has_submounts - check for mounts over a dentry in the
1338 * current namespace.
1339 * @parent: path to check.
1341 * Return true if the parent or its subdirectories contain
1342 * a mount point in the current namespace.
1344 int path_has_submounts(const struct path
*parent
)
1346 struct check_mount data
= { .mnt
= parent
->mnt
, .mounted
= 0 };
1348 read_seqlock_excl(&mount_lock
);
1349 d_walk(parent
->dentry
, &data
, path_check_mount
, NULL
);
1350 read_sequnlock_excl(&mount_lock
);
1352 return data
.mounted
;
1354 EXPORT_SYMBOL(path_has_submounts
);
1357 * Called by mount code to set a mountpoint and check if the mountpoint is
1358 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1359 * subtree can become unreachable).
1361 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1362 * this reason take rename_lock and d_lock on dentry and ancestors.
1364 int d_set_mounted(struct dentry
*dentry
)
1368 write_seqlock(&rename_lock
);
1369 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1370 /* Need exclusion wrt. d_invalidate() */
1371 spin_lock(&p
->d_lock
);
1372 if (unlikely(d_unhashed(p
))) {
1373 spin_unlock(&p
->d_lock
);
1376 spin_unlock(&p
->d_lock
);
1378 spin_lock(&dentry
->d_lock
);
1379 if (!d_unlinked(dentry
)) {
1381 if (!d_mountpoint(dentry
)) {
1382 dentry
->d_flags
|= DCACHE_MOUNTED
;
1386 spin_unlock(&dentry
->d_lock
);
1388 write_sequnlock(&rename_lock
);
1393 * Search the dentry child list of the specified parent,
1394 * and move any unused dentries to the end of the unused
1395 * list for prune_dcache(). We descend to the next level
1396 * whenever the d_subdirs list is non-empty and continue
1399 * It returns zero iff there are no unused children,
1400 * otherwise it returns the number of children moved to
1401 * the end of the unused list. This may not be the total
1402 * number of unused children, because select_parent can
1403 * drop the lock and return early due to latency
1407 struct select_data
{
1408 struct dentry
*start
;
1409 struct list_head dispose
;
1413 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1415 struct select_data
*data
= _data
;
1416 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1418 if (data
->start
== dentry
)
1421 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1424 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1426 if (!dentry
->d_lockref
.count
) {
1427 d_shrink_add(dentry
, &data
->dispose
);
1432 * We can return to the caller if we have found some (this
1433 * ensures forward progress). We'll be coming back to find
1436 if (!list_empty(&data
->dispose
))
1437 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1443 * shrink_dcache_parent - prune dcache
1444 * @parent: parent of entries to prune
1446 * Prune the dcache to remove unused children of the parent dentry.
1448 void shrink_dcache_parent(struct dentry
*parent
)
1451 struct select_data data
;
1453 INIT_LIST_HEAD(&data
.dispose
);
1454 data
.start
= parent
;
1457 d_walk(parent
, &data
, select_collect
, NULL
);
1461 shrink_dentry_list(&data
.dispose
);
1465 EXPORT_SYMBOL(shrink_dcache_parent
);
1467 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1469 /* it has busy descendents; complain about those instead */
1470 if (!list_empty(&dentry
->d_subdirs
))
1471 return D_WALK_CONTINUE
;
1473 /* root with refcount 1 is fine */
1474 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1475 return D_WALK_CONTINUE
;
1477 printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%pd} "
1478 " still in use (%d) [unmount of %s %s]\n",
1481 dentry
->d_inode
->i_ino
: 0UL,
1483 dentry
->d_lockref
.count
,
1484 dentry
->d_sb
->s_type
->name
,
1485 dentry
->d_sb
->s_id
);
1487 return D_WALK_CONTINUE
;
1490 static void do_one_tree(struct dentry
*dentry
)
1492 shrink_dcache_parent(dentry
);
1493 d_walk(dentry
, dentry
, umount_check
, NULL
);
1499 * destroy the dentries attached to a superblock on unmounting
1501 void shrink_dcache_for_umount(struct super_block
*sb
)
1503 struct dentry
*dentry
;
1505 WARN(down_read_trylock(&sb
->s_umount
), "s_umount should've been locked");
1507 dentry
= sb
->s_root
;
1509 do_one_tree(dentry
);
1511 while (!hlist_bl_empty(&sb
->s_roots
)) {
1512 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_roots
), struct dentry
, d_hash
));
1513 do_one_tree(dentry
);
1517 struct detach_data
{
1518 struct select_data select
;
1519 struct dentry
*mountpoint
;
1521 static enum d_walk_ret
detach_and_collect(void *_data
, struct dentry
*dentry
)
1523 struct detach_data
*data
= _data
;
1525 if (d_mountpoint(dentry
)) {
1526 __dget_dlock(dentry
);
1527 data
->mountpoint
= dentry
;
1531 return select_collect(&data
->select
, dentry
);
1534 static void check_and_drop(void *_data
)
1536 struct detach_data
*data
= _data
;
1538 if (!data
->mountpoint
&& list_empty(&data
->select
.dispose
))
1539 __d_drop(data
->select
.start
);
1543 * d_invalidate - detach submounts, prune dcache, and drop
1544 * @dentry: dentry to invalidate (aka detach, prune and drop)
1548 * The final d_drop is done as an atomic operation relative to
1549 * rename_lock ensuring there are no races with d_set_mounted. This
1550 * ensures there are no unhashed dentries on the path to a mountpoint.
1552 void d_invalidate(struct dentry
*dentry
)
1555 * If it's already been dropped, return OK.
1557 spin_lock(&dentry
->d_lock
);
1558 if (d_unhashed(dentry
)) {
1559 spin_unlock(&dentry
->d_lock
);
1562 spin_unlock(&dentry
->d_lock
);
1564 /* Negative dentries can be dropped without further checks */
1565 if (!dentry
->d_inode
) {
1571 struct detach_data data
;
1573 data
.mountpoint
= NULL
;
1574 INIT_LIST_HEAD(&data
.select
.dispose
);
1575 data
.select
.start
= dentry
;
1576 data
.select
.found
= 0;
1578 d_walk(dentry
, &data
, detach_and_collect
, check_and_drop
);
1580 if (!list_empty(&data
.select
.dispose
))
1581 shrink_dentry_list(&data
.select
.dispose
);
1582 else if (!data
.mountpoint
)
1585 if (data
.mountpoint
) {
1586 detach_mounts(data
.mountpoint
);
1587 dput(data
.mountpoint
);
1592 EXPORT_SYMBOL(d_invalidate
);
1595 * __d_alloc - allocate a dcache entry
1596 * @sb: filesystem it will belong to
1597 * @name: qstr of the name
1599 * Allocates a dentry. It returns %NULL if there is insufficient memory
1600 * available. On a success the dentry is returned. The name passed in is
1601 * copied and the copy passed in may be reused after this call.
1604 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1606 struct dentry
*dentry
;
1610 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1615 * We guarantee that the inline name is always NUL-terminated.
1616 * This way the memcpy() done by the name switching in rename
1617 * will still always have a NUL at the end, even if we might
1618 * be overwriting an internal NUL character
1620 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1621 if (unlikely(!name
)) {
1623 dname
= dentry
->d_iname
;
1624 } else if (name
->len
> DNAME_INLINE_LEN
-1) {
1625 size_t size
= offsetof(struct external_name
, name
[1]);
1626 struct external_name
*p
= kmalloc(size
+ name
->len
,
1627 GFP_KERNEL_ACCOUNT
);
1629 kmem_cache_free(dentry_cache
, dentry
);
1632 atomic_set(&p
->u
.count
, 1);
1635 dname
= dentry
->d_iname
;
1638 dentry
->d_name
.len
= name
->len
;
1639 dentry
->d_name
.hash
= name
->hash
;
1640 memcpy(dname
, name
->name
, name
->len
);
1641 dname
[name
->len
] = 0;
1643 /* Make sure we always see the terminating NUL character */
1644 smp_store_release(&dentry
->d_name
.name
, dname
); /* ^^^ */
1646 dentry
->d_lockref
.count
= 1;
1647 dentry
->d_flags
= 0;
1648 spin_lock_init(&dentry
->d_lock
);
1649 seqcount_init(&dentry
->d_seq
);
1650 dentry
->d_inode
= NULL
;
1651 dentry
->d_parent
= dentry
;
1653 dentry
->d_op
= NULL
;
1654 dentry
->d_fsdata
= NULL
;
1655 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1656 INIT_LIST_HEAD(&dentry
->d_lru
);
1657 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1658 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
1659 INIT_LIST_HEAD(&dentry
->d_child
);
1660 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1662 if (dentry
->d_op
&& dentry
->d_op
->d_init
) {
1663 err
= dentry
->d_op
->d_init(dentry
);
1665 if (dname_external(dentry
))
1666 kfree(external_name(dentry
));
1667 kmem_cache_free(dentry_cache
, dentry
);
1672 this_cpu_inc(nr_dentry
);
1678 * d_alloc - allocate a dcache entry
1679 * @parent: parent of entry to allocate
1680 * @name: qstr of the name
1682 * Allocates a dentry. It returns %NULL if there is insufficient memory
1683 * available. On a success the dentry is returned. The name passed in is
1684 * copied and the copy passed in may be reused after this call.
1686 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1688 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1691 dentry
->d_flags
|= DCACHE_RCUACCESS
;
1692 spin_lock(&parent
->d_lock
);
1694 * don't need child lock because it is not subject
1695 * to concurrency here
1697 __dget_dlock(parent
);
1698 dentry
->d_parent
= parent
;
1699 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
1700 spin_unlock(&parent
->d_lock
);
1704 EXPORT_SYMBOL(d_alloc
);
1706 struct dentry
*d_alloc_anon(struct super_block
*sb
)
1708 return __d_alloc(sb
, NULL
);
1710 EXPORT_SYMBOL(d_alloc_anon
);
1712 struct dentry
*d_alloc_cursor(struct dentry
* parent
)
1714 struct dentry
*dentry
= d_alloc_anon(parent
->d_sb
);
1716 dentry
->d_flags
|= DCACHE_RCUACCESS
| DCACHE_DENTRY_CURSOR
;
1717 dentry
->d_parent
= dget(parent
);
1723 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1724 * @sb: the superblock
1725 * @name: qstr of the name
1727 * For a filesystem that just pins its dentries in memory and never
1728 * performs lookups at all, return an unhashed IS_ROOT dentry.
1730 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1732 return __d_alloc(sb
, name
);
1734 EXPORT_SYMBOL(d_alloc_pseudo
);
1736 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1741 q
.hash_len
= hashlen_string(parent
, name
);
1742 return d_alloc(parent
, &q
);
1744 EXPORT_SYMBOL(d_alloc_name
);
1746 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1748 WARN_ON_ONCE(dentry
->d_op
);
1749 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1751 DCACHE_OP_REVALIDATE
|
1752 DCACHE_OP_WEAK_REVALIDATE
|
1759 dentry
->d_flags
|= DCACHE_OP_HASH
;
1761 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1762 if (op
->d_revalidate
)
1763 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1764 if (op
->d_weak_revalidate
)
1765 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1767 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1769 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1771 dentry
->d_flags
|= DCACHE_OP_REAL
;
1774 EXPORT_SYMBOL(d_set_d_op
);
1778 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1779 * @dentry - The dentry to mark
1781 * Mark a dentry as falling through to the lower layer (as set with
1782 * d_pin_lower()). This flag may be recorded on the medium.
1784 void d_set_fallthru(struct dentry
*dentry
)
1786 spin_lock(&dentry
->d_lock
);
1787 dentry
->d_flags
|= DCACHE_FALLTHRU
;
1788 spin_unlock(&dentry
->d_lock
);
1790 EXPORT_SYMBOL(d_set_fallthru
);
1792 static unsigned d_flags_for_inode(struct inode
*inode
)
1794 unsigned add_flags
= DCACHE_REGULAR_TYPE
;
1797 return DCACHE_MISS_TYPE
;
1799 if (S_ISDIR(inode
->i_mode
)) {
1800 add_flags
= DCACHE_DIRECTORY_TYPE
;
1801 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1802 if (unlikely(!inode
->i_op
->lookup
))
1803 add_flags
= DCACHE_AUTODIR_TYPE
;
1805 inode
->i_opflags
|= IOP_LOOKUP
;
1807 goto type_determined
;
1810 if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1811 if (unlikely(inode
->i_op
->get_link
)) {
1812 add_flags
= DCACHE_SYMLINK_TYPE
;
1813 goto type_determined
;
1815 inode
->i_opflags
|= IOP_NOFOLLOW
;
1818 if (unlikely(!S_ISREG(inode
->i_mode
)))
1819 add_flags
= DCACHE_SPECIAL_TYPE
;
1822 if (unlikely(IS_AUTOMOUNT(inode
)))
1823 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1827 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1829 unsigned add_flags
= d_flags_for_inode(inode
);
1830 WARN_ON(d_in_lookup(dentry
));
1832 spin_lock(&dentry
->d_lock
);
1833 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1834 raw_write_seqcount_begin(&dentry
->d_seq
);
1835 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1836 raw_write_seqcount_end(&dentry
->d_seq
);
1837 fsnotify_update_flags(dentry
);
1838 spin_unlock(&dentry
->d_lock
);
1842 * d_instantiate - fill in inode information for a dentry
1843 * @entry: dentry to complete
1844 * @inode: inode to attach to this dentry
1846 * Fill in inode information in the entry.
1848 * This turns negative dentries into productive full members
1851 * NOTE! This assumes that the inode count has been incremented
1852 * (or otherwise set) by the caller to indicate that it is now
1853 * in use by the dcache.
1856 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1858 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1860 security_d_instantiate(entry
, inode
);
1861 spin_lock(&inode
->i_lock
);
1862 __d_instantiate(entry
, inode
);
1863 spin_unlock(&inode
->i_lock
);
1866 EXPORT_SYMBOL(d_instantiate
);
1869 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1870 * @entry: dentry to complete
1871 * @inode: inode to attach to this dentry
1873 * Fill in inode information in the entry. If a directory alias is found, then
1874 * return an error (and drop inode). Together with d_materialise_unique() this
1875 * guarantees that a directory inode may never have more than one alias.
1877 int d_instantiate_no_diralias(struct dentry
*entry
, struct inode
*inode
)
1879 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1881 security_d_instantiate(entry
, inode
);
1882 spin_lock(&inode
->i_lock
);
1883 if (S_ISDIR(inode
->i_mode
) && !hlist_empty(&inode
->i_dentry
)) {
1884 spin_unlock(&inode
->i_lock
);
1888 __d_instantiate(entry
, inode
);
1889 spin_unlock(&inode
->i_lock
);
1893 EXPORT_SYMBOL(d_instantiate_no_diralias
);
1895 struct dentry
*d_make_root(struct inode
*root_inode
)
1897 struct dentry
*res
= NULL
;
1900 res
= d_alloc_anon(root_inode
->i_sb
);
1902 d_instantiate(res
, root_inode
);
1908 EXPORT_SYMBOL(d_make_root
);
1910 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1912 struct dentry
*alias
;
1914 if (hlist_empty(&inode
->i_dentry
))
1916 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_u
.d_alias
);
1922 * d_find_any_alias - find any alias for a given inode
1923 * @inode: inode to find an alias for
1925 * If any aliases exist for the given inode, take and return a
1926 * reference for one of them. If no aliases exist, return %NULL.
1928 struct dentry
*d_find_any_alias(struct inode
*inode
)
1932 spin_lock(&inode
->i_lock
);
1933 de
= __d_find_any_alias(inode
);
1934 spin_unlock(&inode
->i_lock
);
1937 EXPORT_SYMBOL(d_find_any_alias
);
1939 static struct dentry
*__d_instantiate_anon(struct dentry
*dentry
,
1940 struct inode
*inode
,
1946 security_d_instantiate(dentry
, inode
);
1947 spin_lock(&inode
->i_lock
);
1948 res
= __d_find_any_alias(inode
);
1950 spin_unlock(&inode
->i_lock
);
1955 /* attach a disconnected dentry */
1956 add_flags
= d_flags_for_inode(inode
);
1959 add_flags
|= DCACHE_DISCONNECTED
;
1961 spin_lock(&dentry
->d_lock
);
1962 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1963 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1964 if (!disconnected
) {
1965 hlist_bl_lock(&dentry
->d_sb
->s_roots
);
1966 hlist_bl_add_head(&dentry
->d_hash
, &dentry
->d_sb
->s_roots
);
1967 hlist_bl_unlock(&dentry
->d_sb
->s_roots
);
1969 spin_unlock(&dentry
->d_lock
);
1970 spin_unlock(&inode
->i_lock
);
1979 struct dentry
*d_instantiate_anon(struct dentry
*dentry
, struct inode
*inode
)
1981 return __d_instantiate_anon(dentry
, inode
, true);
1983 EXPORT_SYMBOL(d_instantiate_anon
);
1985 static struct dentry
*__d_obtain_alias(struct inode
*inode
, bool disconnected
)
1991 return ERR_PTR(-ESTALE
);
1993 return ERR_CAST(inode
);
1995 res
= d_find_any_alias(inode
);
1999 tmp
= d_alloc_anon(inode
->i_sb
);
2001 res
= ERR_PTR(-ENOMEM
);
2005 return __d_instantiate_anon(tmp
, inode
, disconnected
);
2013 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2014 * @inode: inode to allocate the dentry for
2016 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2017 * similar open by handle operations. The returned dentry may be anonymous,
2018 * or may have a full name (if the inode was already in the cache).
2020 * When called on a directory inode, we must ensure that the inode only ever
2021 * has one dentry. If a dentry is found, that is returned instead of
2022 * allocating a new one.
2024 * On successful return, the reference to the inode has been transferred
2025 * to the dentry. In case of an error the reference on the inode is released.
2026 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2027 * be passed in and the error will be propagated to the return value,
2028 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2030 struct dentry
*d_obtain_alias(struct inode
*inode
)
2032 return __d_obtain_alias(inode
, true);
2034 EXPORT_SYMBOL(d_obtain_alias
);
2037 * d_obtain_root - find or allocate a dentry for a given inode
2038 * @inode: inode to allocate the dentry for
2040 * Obtain an IS_ROOT dentry for the root of a filesystem.
2042 * We must ensure that directory inodes only ever have one dentry. If a
2043 * dentry is found, that is returned instead of allocating a new one.
2045 * On successful return, the reference to the inode has been transferred
2046 * to the dentry. In case of an error the reference on the inode is
2047 * released. A %NULL or IS_ERR inode may be passed in and will be the
2048 * error will be propagate to the return value, with a %NULL @inode
2049 * replaced by ERR_PTR(-ESTALE).
2051 struct dentry
*d_obtain_root(struct inode
*inode
)
2053 return __d_obtain_alias(inode
, false);
2055 EXPORT_SYMBOL(d_obtain_root
);
2058 * d_add_ci - lookup or allocate new dentry with case-exact name
2059 * @inode: the inode case-insensitive lookup has found
2060 * @dentry: the negative dentry that was passed to the parent's lookup func
2061 * @name: the case-exact name to be associated with the returned dentry
2063 * This is to avoid filling the dcache with case-insensitive names to the
2064 * same inode, only the actual correct case is stored in the dcache for
2065 * case-insensitive filesystems.
2067 * For a case-insensitive lookup match and if the the case-exact dentry
2068 * already exists in in the dcache, use it and return it.
2070 * If no entry exists with the exact case name, allocate new dentry with
2071 * the exact case, and return the spliced entry.
2073 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
2076 struct dentry
*found
, *res
;
2079 * First check if a dentry matching the name already exists,
2080 * if not go ahead and create it now.
2082 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
2087 if (d_in_lookup(dentry
)) {
2088 found
= d_alloc_parallel(dentry
->d_parent
, name
,
2090 if (IS_ERR(found
) || !d_in_lookup(found
)) {
2095 found
= d_alloc(dentry
->d_parent
, name
);
2098 return ERR_PTR(-ENOMEM
);
2101 res
= d_splice_alias(inode
, found
);
2108 EXPORT_SYMBOL(d_add_ci
);
2111 static inline bool d_same_name(const struct dentry
*dentry
,
2112 const struct dentry
*parent
,
2113 const struct qstr
*name
)
2115 if (likely(!(parent
->d_flags
& DCACHE_OP_COMPARE
))) {
2116 if (dentry
->d_name
.len
!= name
->len
)
2118 return dentry_cmp(dentry
, name
->name
, name
->len
) == 0;
2120 return parent
->d_op
->d_compare(dentry
,
2121 dentry
->d_name
.len
, dentry
->d_name
.name
,
2126 * __d_lookup_rcu - search for a dentry (racy, store-free)
2127 * @parent: parent dentry
2128 * @name: qstr of name we wish to find
2129 * @seqp: returns d_seq value at the point where the dentry was found
2130 * Returns: dentry, or NULL
2132 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2133 * resolution (store-free path walking) design described in
2134 * Documentation/filesystems/path-lookup.txt.
2136 * This is not to be used outside core vfs.
2138 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2139 * held, and rcu_read_lock held. The returned dentry must not be stored into
2140 * without taking d_lock and checking d_seq sequence count against @seq
2143 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2146 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2147 * the returned dentry, so long as its parent's seqlock is checked after the
2148 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2149 * is formed, giving integrity down the path walk.
2151 * NOTE! The caller *has* to check the resulting dentry against the sequence
2152 * number we've returned before using any of the resulting dentry state!
2154 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2155 const struct qstr
*name
,
2158 u64 hashlen
= name
->hash_len
;
2159 const unsigned char *str
= name
->name
;
2160 struct hlist_bl_head
*b
= d_hash(hashlen_hash(hashlen
));
2161 struct hlist_bl_node
*node
;
2162 struct dentry
*dentry
;
2165 * Note: There is significant duplication with __d_lookup_rcu which is
2166 * required to prevent single threaded performance regressions
2167 * especially on architectures where smp_rmb (in seqcounts) are costly.
2168 * Keep the two functions in sync.
2172 * The hash list is protected using RCU.
2174 * Carefully use d_seq when comparing a candidate dentry, to avoid
2175 * races with d_move().
2177 * It is possible that concurrent renames can mess up our list
2178 * walk here and result in missing our dentry, resulting in the
2179 * false-negative result. d_lookup() protects against concurrent
2180 * renames using rename_lock seqlock.
2182 * See Documentation/filesystems/path-lookup.txt for more details.
2184 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2189 * The dentry sequence count protects us from concurrent
2190 * renames, and thus protects parent and name fields.
2192 * The caller must perform a seqcount check in order
2193 * to do anything useful with the returned dentry.
2195 * NOTE! We do a "raw" seqcount_begin here. That means that
2196 * we don't wait for the sequence count to stabilize if it
2197 * is in the middle of a sequence change. If we do the slow
2198 * dentry compare, we will do seqretries until it is stable,
2199 * and if we end up with a successful lookup, we actually
2200 * want to exit RCU lookup anyway.
2202 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2203 * we are still guaranteed NUL-termination of ->d_name.name.
2205 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2206 if (dentry
->d_parent
!= parent
)
2208 if (d_unhashed(dentry
))
2211 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2214 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2216 tlen
= dentry
->d_name
.len
;
2217 tname
= dentry
->d_name
.name
;
2218 /* we want a consistent (name,len) pair */
2219 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
2223 if (parent
->d_op
->d_compare(dentry
,
2224 tlen
, tname
, name
) != 0)
2227 if (dentry
->d_name
.hash_len
!= hashlen
)
2229 if (dentry_cmp(dentry
, str
, hashlen_len(hashlen
)) != 0)
2239 * d_lookup - search for a dentry
2240 * @parent: parent dentry
2241 * @name: qstr of name we wish to find
2242 * Returns: dentry, or NULL
2244 * d_lookup searches the children of the parent dentry for the name in
2245 * question. If the dentry is found its reference count is incremented and the
2246 * dentry is returned. The caller must use dput to free the entry when it has
2247 * finished using it. %NULL is returned if the dentry does not exist.
2249 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2251 struct dentry
*dentry
;
2255 seq
= read_seqbegin(&rename_lock
);
2256 dentry
= __d_lookup(parent
, name
);
2259 } while (read_seqretry(&rename_lock
, seq
));
2262 EXPORT_SYMBOL(d_lookup
);
2265 * __d_lookup - search for a dentry (racy)
2266 * @parent: parent dentry
2267 * @name: qstr of name we wish to find
2268 * Returns: dentry, or NULL
2270 * __d_lookup is like d_lookup, however it may (rarely) return a
2271 * false-negative result due to unrelated rename activity.
2273 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2274 * however it must be used carefully, eg. with a following d_lookup in
2275 * the case of failure.
2277 * __d_lookup callers must be commented.
2279 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2281 unsigned int hash
= name
->hash
;
2282 struct hlist_bl_head
*b
= d_hash(hash
);
2283 struct hlist_bl_node
*node
;
2284 struct dentry
*found
= NULL
;
2285 struct dentry
*dentry
;
2288 * Note: There is significant duplication with __d_lookup_rcu which is
2289 * required to prevent single threaded performance regressions
2290 * especially on architectures where smp_rmb (in seqcounts) are costly.
2291 * Keep the two functions in sync.
2295 * The hash list is protected using RCU.
2297 * Take d_lock when comparing a candidate dentry, to avoid races
2300 * It is possible that concurrent renames can mess up our list
2301 * walk here and result in missing our dentry, resulting in the
2302 * false-negative result. d_lookup() protects against concurrent
2303 * renames using rename_lock seqlock.
2305 * See Documentation/filesystems/path-lookup.txt for more details.
2309 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2311 if (dentry
->d_name
.hash
!= hash
)
2314 spin_lock(&dentry
->d_lock
);
2315 if (dentry
->d_parent
!= parent
)
2317 if (d_unhashed(dentry
))
2320 if (!d_same_name(dentry
, parent
, name
))
2323 dentry
->d_lockref
.count
++;
2325 spin_unlock(&dentry
->d_lock
);
2328 spin_unlock(&dentry
->d_lock
);
2336 * d_hash_and_lookup - hash the qstr then search for a dentry
2337 * @dir: Directory to search in
2338 * @name: qstr of name we wish to find
2340 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2342 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2345 * Check for a fs-specific hash function. Note that we must
2346 * calculate the standard hash first, as the d_op->d_hash()
2347 * routine may choose to leave the hash value unchanged.
2349 name
->hash
= full_name_hash(dir
, name
->name
, name
->len
);
2350 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2351 int err
= dir
->d_op
->d_hash(dir
, name
);
2352 if (unlikely(err
< 0))
2353 return ERR_PTR(err
);
2355 return d_lookup(dir
, name
);
2357 EXPORT_SYMBOL(d_hash_and_lookup
);
2360 * When a file is deleted, we have two options:
2361 * - turn this dentry into a negative dentry
2362 * - unhash this dentry and free it.
2364 * Usually, we want to just turn this into
2365 * a negative dentry, but if anybody else is
2366 * currently using the dentry or the inode
2367 * we can't do that and we fall back on removing
2368 * it from the hash queues and waiting for
2369 * it to be deleted later when it has no users
2373 * d_delete - delete a dentry
2374 * @dentry: The dentry to delete
2376 * Turn the dentry into a negative dentry if possible, otherwise
2377 * remove it from the hash queues so it can be deleted later
2380 void d_delete(struct dentry
* dentry
)
2382 struct inode
*inode
;
2385 * Are we the only user?
2388 spin_lock(&dentry
->d_lock
);
2389 inode
= dentry
->d_inode
;
2390 isdir
= S_ISDIR(inode
->i_mode
);
2391 if (dentry
->d_lockref
.count
== 1) {
2392 if (!spin_trylock(&inode
->i_lock
)) {
2393 spin_unlock(&dentry
->d_lock
);
2397 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2398 dentry_unlink_inode(dentry
);
2399 fsnotify_nameremove(dentry
, isdir
);
2403 if (!d_unhashed(dentry
))
2406 spin_unlock(&dentry
->d_lock
);
2408 fsnotify_nameremove(dentry
, isdir
);
2410 EXPORT_SYMBOL(d_delete
);
2412 static void __d_rehash(struct dentry
*entry
)
2414 struct hlist_bl_head
*b
= d_hash(entry
->d_name
.hash
);
2417 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2422 * d_rehash - add an entry back to the hash
2423 * @entry: dentry to add to the hash
2425 * Adds a dentry to the hash according to its name.
2428 void d_rehash(struct dentry
* entry
)
2430 spin_lock(&entry
->d_lock
);
2432 spin_unlock(&entry
->d_lock
);
2434 EXPORT_SYMBOL(d_rehash
);
2436 static inline unsigned start_dir_add(struct inode
*dir
)
2440 unsigned n
= dir
->i_dir_seq
;
2441 if (!(n
& 1) && cmpxchg(&dir
->i_dir_seq
, n
, n
+ 1) == n
)
2447 static inline void end_dir_add(struct inode
*dir
, unsigned n
)
2449 smp_store_release(&dir
->i_dir_seq
, n
+ 2);
2452 static void d_wait_lookup(struct dentry
*dentry
)
2454 if (d_in_lookup(dentry
)) {
2455 DECLARE_WAITQUEUE(wait
, current
);
2456 add_wait_queue(dentry
->d_wait
, &wait
);
2458 set_current_state(TASK_UNINTERRUPTIBLE
);
2459 spin_unlock(&dentry
->d_lock
);
2461 spin_lock(&dentry
->d_lock
);
2462 } while (d_in_lookup(dentry
));
2466 struct dentry
*d_alloc_parallel(struct dentry
*parent
,
2467 const struct qstr
*name
,
2468 wait_queue_head_t
*wq
)
2470 unsigned int hash
= name
->hash
;
2471 struct hlist_bl_head
*b
= in_lookup_hash(parent
, hash
);
2472 struct hlist_bl_node
*node
;
2473 struct dentry
*new = d_alloc(parent
, name
);
2474 struct dentry
*dentry
;
2475 unsigned seq
, r_seq
, d_seq
;
2478 return ERR_PTR(-ENOMEM
);
2482 seq
= smp_load_acquire(&parent
->d_inode
->i_dir_seq
);
2483 r_seq
= read_seqbegin(&rename_lock
);
2484 dentry
= __d_lookup_rcu(parent
, name
, &d_seq
);
2485 if (unlikely(dentry
)) {
2486 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2490 if (read_seqcount_retry(&dentry
->d_seq
, d_seq
)) {
2499 if (unlikely(read_seqretry(&rename_lock
, r_seq
))) {
2504 if (unlikely(seq
& 1)) {
2510 if (unlikely(READ_ONCE(parent
->d_inode
->i_dir_seq
) != seq
)) {
2516 * No changes for the parent since the beginning of d_lookup().
2517 * Since all removals from the chain happen with hlist_bl_lock(),
2518 * any potential in-lookup matches are going to stay here until
2519 * we unlock the chain. All fields are stable in everything
2522 hlist_bl_for_each_entry(dentry
, node
, b
, d_u
.d_in_lookup_hash
) {
2523 if (dentry
->d_name
.hash
!= hash
)
2525 if (dentry
->d_parent
!= parent
)
2527 if (!d_same_name(dentry
, parent
, name
))
2530 /* now we can try to grab a reference */
2531 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2538 * somebody is likely to be still doing lookup for it;
2539 * wait for them to finish
2541 spin_lock(&dentry
->d_lock
);
2542 d_wait_lookup(dentry
);
2544 * it's not in-lookup anymore; in principle we should repeat
2545 * everything from dcache lookup, but it's likely to be what
2546 * d_lookup() would've found anyway. If it is, just return it;
2547 * otherwise we really have to repeat the whole thing.
2549 if (unlikely(dentry
->d_name
.hash
!= hash
))
2551 if (unlikely(dentry
->d_parent
!= parent
))
2553 if (unlikely(d_unhashed(dentry
)))
2555 if (unlikely(!d_same_name(dentry
, parent
, name
)))
2557 /* OK, it *is* a hashed match; return it */
2558 spin_unlock(&dentry
->d_lock
);
2563 /* we can't take ->d_lock here; it's OK, though. */
2564 new->d_flags
|= DCACHE_PAR_LOOKUP
;
2566 hlist_bl_add_head_rcu(&new->d_u
.d_in_lookup_hash
, b
);
2570 spin_unlock(&dentry
->d_lock
);
2574 EXPORT_SYMBOL(d_alloc_parallel
);
2576 void __d_lookup_done(struct dentry
*dentry
)
2578 struct hlist_bl_head
*b
= in_lookup_hash(dentry
->d_parent
,
2579 dentry
->d_name
.hash
);
2581 dentry
->d_flags
&= ~DCACHE_PAR_LOOKUP
;
2582 __hlist_bl_del(&dentry
->d_u
.d_in_lookup_hash
);
2583 wake_up_all(dentry
->d_wait
);
2584 dentry
->d_wait
= NULL
;
2586 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
2587 INIT_LIST_HEAD(&dentry
->d_lru
);
2589 EXPORT_SYMBOL(__d_lookup_done
);
2591 /* inode->i_lock held if inode is non-NULL */
2593 static inline void __d_add(struct dentry
*dentry
, struct inode
*inode
)
2595 struct inode
*dir
= NULL
;
2597 spin_lock(&dentry
->d_lock
);
2598 if (unlikely(d_in_lookup(dentry
))) {
2599 dir
= dentry
->d_parent
->d_inode
;
2600 n
= start_dir_add(dir
);
2601 __d_lookup_done(dentry
);
2604 unsigned add_flags
= d_flags_for_inode(inode
);
2605 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
2606 raw_write_seqcount_begin(&dentry
->d_seq
);
2607 __d_set_inode_and_type(dentry
, inode
, add_flags
);
2608 raw_write_seqcount_end(&dentry
->d_seq
);
2609 fsnotify_update_flags(dentry
);
2613 end_dir_add(dir
, n
);
2614 spin_unlock(&dentry
->d_lock
);
2616 spin_unlock(&inode
->i_lock
);
2620 * d_add - add dentry to hash queues
2621 * @entry: dentry to add
2622 * @inode: The inode to attach to this dentry
2624 * This adds the entry to the hash queues and initializes @inode.
2625 * The entry was actually filled in earlier during d_alloc().
2628 void d_add(struct dentry
*entry
, struct inode
*inode
)
2631 security_d_instantiate(entry
, inode
);
2632 spin_lock(&inode
->i_lock
);
2634 __d_add(entry
, inode
);
2636 EXPORT_SYMBOL(d_add
);
2639 * d_exact_alias - find and hash an exact unhashed alias
2640 * @entry: dentry to add
2641 * @inode: The inode to go with this dentry
2643 * If an unhashed dentry with the same name/parent and desired
2644 * inode already exists, hash and return it. Otherwise, return
2647 * Parent directory should be locked.
2649 struct dentry
*d_exact_alias(struct dentry
*entry
, struct inode
*inode
)
2651 struct dentry
*alias
;
2652 unsigned int hash
= entry
->d_name
.hash
;
2654 spin_lock(&inode
->i_lock
);
2655 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
2657 * Don't need alias->d_lock here, because aliases with
2658 * d_parent == entry->d_parent are not subject to name or
2659 * parent changes, because the parent inode i_mutex is held.
2661 if (alias
->d_name
.hash
!= hash
)
2663 if (alias
->d_parent
!= entry
->d_parent
)
2665 if (!d_same_name(alias
, entry
->d_parent
, &entry
->d_name
))
2667 spin_lock(&alias
->d_lock
);
2668 if (!d_unhashed(alias
)) {
2669 spin_unlock(&alias
->d_lock
);
2672 __dget_dlock(alias
);
2674 spin_unlock(&alias
->d_lock
);
2676 spin_unlock(&inode
->i_lock
);
2679 spin_unlock(&inode
->i_lock
);
2682 EXPORT_SYMBOL(d_exact_alias
);
2685 * dentry_update_name_case - update case insensitive dentry with a new name
2686 * @dentry: dentry to be updated
2689 * Update a case insensitive dentry with new case of name.
2691 * dentry must have been returned by d_lookup with name @name. Old and new
2692 * name lengths must match (ie. no d_compare which allows mismatched name
2695 * Parent inode i_mutex must be held over d_lookup and into this call (to
2696 * keep renames and concurrent inserts, and readdir(2) away).
2698 void dentry_update_name_case(struct dentry
*dentry
, const struct qstr
*name
)
2700 BUG_ON(!inode_is_locked(dentry
->d_parent
->d_inode
));
2701 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2703 spin_lock(&dentry
->d_lock
);
2704 write_seqcount_begin(&dentry
->d_seq
);
2705 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2706 write_seqcount_end(&dentry
->d_seq
);
2707 spin_unlock(&dentry
->d_lock
);
2709 EXPORT_SYMBOL(dentry_update_name_case
);
2711 static void swap_names(struct dentry
*dentry
, struct dentry
*target
)
2713 if (unlikely(dname_external(target
))) {
2714 if (unlikely(dname_external(dentry
))) {
2716 * Both external: swap the pointers
2718 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2721 * dentry:internal, target:external. Steal target's
2722 * storage and make target internal.
2724 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2725 dentry
->d_name
.len
+ 1);
2726 dentry
->d_name
.name
= target
->d_name
.name
;
2727 target
->d_name
.name
= target
->d_iname
;
2730 if (unlikely(dname_external(dentry
))) {
2732 * dentry:external, target:internal. Give dentry's
2733 * storage to target and make dentry internal
2735 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2736 target
->d_name
.len
+ 1);
2737 target
->d_name
.name
= dentry
->d_name
.name
;
2738 dentry
->d_name
.name
= dentry
->d_iname
;
2741 * Both are internal.
2744 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2745 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2746 swap(((long *) &dentry
->d_iname
)[i
],
2747 ((long *) &target
->d_iname
)[i
]);
2751 swap(dentry
->d_name
.hash_len
, target
->d_name
.hash_len
);
2754 static void copy_name(struct dentry
*dentry
, struct dentry
*target
)
2756 struct external_name
*old_name
= NULL
;
2757 if (unlikely(dname_external(dentry
)))
2758 old_name
= external_name(dentry
);
2759 if (unlikely(dname_external(target
))) {
2760 atomic_inc(&external_name(target
)->u
.count
);
2761 dentry
->d_name
= target
->d_name
;
2763 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2764 target
->d_name
.len
+ 1);
2765 dentry
->d_name
.name
= dentry
->d_iname
;
2766 dentry
->d_name
.hash_len
= target
->d_name
.hash_len
;
2768 if (old_name
&& likely(atomic_dec_and_test(&old_name
->u
.count
)))
2769 kfree_rcu(old_name
, u
.head
);
2772 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2775 * XXXX: do we really need to take target->d_lock?
2777 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2778 spin_lock(&target
->d_parent
->d_lock
);
2780 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2781 spin_lock(&dentry
->d_parent
->d_lock
);
2782 spin_lock_nested(&target
->d_parent
->d_lock
,
2783 DENTRY_D_LOCK_NESTED
);
2785 spin_lock(&target
->d_parent
->d_lock
);
2786 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2787 DENTRY_D_LOCK_NESTED
);
2790 if (target
< dentry
) {
2791 spin_lock_nested(&target
->d_lock
, 2);
2792 spin_lock_nested(&dentry
->d_lock
, 3);
2794 spin_lock_nested(&dentry
->d_lock
, 2);
2795 spin_lock_nested(&target
->d_lock
, 3);
2799 static void dentry_unlock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2801 if (target
->d_parent
!= dentry
->d_parent
)
2802 spin_unlock(&dentry
->d_parent
->d_lock
);
2803 if (target
->d_parent
!= target
)
2804 spin_unlock(&target
->d_parent
->d_lock
);
2805 spin_unlock(&target
->d_lock
);
2806 spin_unlock(&dentry
->d_lock
);
2810 * When switching names, the actual string doesn't strictly have to
2811 * be preserved in the target - because we're dropping the target
2812 * anyway. As such, we can just do a simple memcpy() to copy over
2813 * the new name before we switch, unless we are going to rehash
2814 * it. Note that if we *do* unhash the target, we are not allowed
2815 * to rehash it without giving it a new name/hash key - whether
2816 * we swap or overwrite the names here, resulting name won't match
2817 * the reality in filesystem; it's only there for d_path() purposes.
2818 * Note that all of this is happening under rename_lock, so the
2819 * any hash lookup seeing it in the middle of manipulations will
2820 * be discarded anyway. So we do not care what happens to the hash
2824 * __d_move - move a dentry
2825 * @dentry: entry to move
2826 * @target: new dentry
2827 * @exchange: exchange the two dentries
2829 * Update the dcache to reflect the move of a file name. Negative
2830 * dcache entries should not be moved in this way. Caller must hold
2831 * rename_lock, the i_mutex of the source and target directories,
2832 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2834 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2837 struct inode
*dir
= NULL
;
2839 if (!dentry
->d_inode
)
2840 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2842 BUG_ON(d_ancestor(dentry
, target
));
2843 BUG_ON(d_ancestor(target
, dentry
));
2845 dentry_lock_for_move(dentry
, target
);
2846 if (unlikely(d_in_lookup(target
))) {
2847 dir
= target
->d_parent
->d_inode
;
2848 n
= start_dir_add(dir
);
2849 __d_lookup_done(target
);
2852 write_seqcount_begin(&dentry
->d_seq
);
2853 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2856 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2860 /* Switch the names.. */
2862 swap_names(dentry
, target
);
2864 copy_name(dentry
, target
);
2866 /* rehash in new place(s) */
2871 target
->d_hash
.pprev
= NULL
;
2873 /* ... and switch them in the tree */
2874 if (IS_ROOT(dentry
)) {
2875 /* splicing a tree */
2876 dentry
->d_flags
|= DCACHE_RCUACCESS
;
2877 dentry
->d_parent
= target
->d_parent
;
2878 target
->d_parent
= target
;
2879 list_del_init(&target
->d_child
);
2880 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2882 /* swapping two dentries */
2883 swap(dentry
->d_parent
, target
->d_parent
);
2884 list_move(&target
->d_child
, &target
->d_parent
->d_subdirs
);
2885 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2887 fsnotify_update_flags(target
);
2888 fsnotify_update_flags(dentry
);
2891 write_seqcount_end(&target
->d_seq
);
2892 write_seqcount_end(&dentry
->d_seq
);
2895 end_dir_add(dir
, n
);
2896 dentry_unlock_for_move(dentry
, target
);
2900 * d_move - move a dentry
2901 * @dentry: entry to move
2902 * @target: new dentry
2904 * Update the dcache to reflect the move of a file name. Negative
2905 * dcache entries should not be moved in this way. See the locking
2906 * requirements for __d_move.
2908 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2910 write_seqlock(&rename_lock
);
2911 __d_move(dentry
, target
, false);
2912 write_sequnlock(&rename_lock
);
2914 EXPORT_SYMBOL(d_move
);
2917 * d_exchange - exchange two dentries
2918 * @dentry1: first dentry
2919 * @dentry2: second dentry
2921 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2923 write_seqlock(&rename_lock
);
2925 WARN_ON(!dentry1
->d_inode
);
2926 WARN_ON(!dentry2
->d_inode
);
2927 WARN_ON(IS_ROOT(dentry1
));
2928 WARN_ON(IS_ROOT(dentry2
));
2930 __d_move(dentry1
, dentry2
, true);
2932 write_sequnlock(&rename_lock
);
2936 * d_ancestor - search for an ancestor
2937 * @p1: ancestor dentry
2940 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2941 * an ancestor of p2, else NULL.
2943 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2947 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2948 if (p
->d_parent
== p1
)
2955 * This helper attempts to cope with remotely renamed directories
2957 * It assumes that the caller is already holding
2958 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2960 * Note: If ever the locking in lock_rename() changes, then please
2961 * remember to update this too...
2963 static int __d_unalias(struct inode
*inode
,
2964 struct dentry
*dentry
, struct dentry
*alias
)
2966 struct mutex
*m1
= NULL
;
2967 struct rw_semaphore
*m2
= NULL
;
2970 /* If alias and dentry share a parent, then no extra locks required */
2971 if (alias
->d_parent
== dentry
->d_parent
)
2974 /* See lock_rename() */
2975 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2977 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2978 if (!inode_trylock_shared(alias
->d_parent
->d_inode
))
2980 m2
= &alias
->d_parent
->d_inode
->i_rwsem
;
2982 __d_move(alias
, dentry
, false);
2993 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2994 * @inode: the inode which may have a disconnected dentry
2995 * @dentry: a negative dentry which we want to point to the inode.
2997 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2998 * place of the given dentry and return it, else simply d_add the inode
2999 * to the dentry and return NULL.
3001 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3002 * we should error out: directories can't have multiple aliases.
3004 * This is needed in the lookup routine of any filesystem that is exportable
3005 * (via knfsd) so that we can build dcache paths to directories effectively.
3007 * If a dentry was found and moved, then it is returned. Otherwise NULL
3008 * is returned. This matches the expected return value of ->lookup.
3010 * Cluster filesystems may call this function with a negative, hashed dentry.
3011 * In that case, we know that the inode will be a regular file, and also this
3012 * will only occur during atomic_open. So we need to check for the dentry
3013 * being already hashed only in the final case.
3015 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
3018 return ERR_CAST(inode
);
3020 BUG_ON(!d_unhashed(dentry
));
3025 security_d_instantiate(dentry
, inode
);
3026 spin_lock(&inode
->i_lock
);
3027 if (S_ISDIR(inode
->i_mode
)) {
3028 struct dentry
*new = __d_find_any_alias(inode
);
3029 if (unlikely(new)) {
3030 /* The reference to new ensures it remains an alias */
3031 spin_unlock(&inode
->i_lock
);
3032 write_seqlock(&rename_lock
);
3033 if (unlikely(d_ancestor(new, dentry
))) {
3034 write_sequnlock(&rename_lock
);
3036 new = ERR_PTR(-ELOOP
);
3037 pr_warn_ratelimited(
3038 "VFS: Lookup of '%s' in %s %s"
3039 " would have caused loop\n",
3040 dentry
->d_name
.name
,
3041 inode
->i_sb
->s_type
->name
,
3043 } else if (!IS_ROOT(new)) {
3044 int err
= __d_unalias(inode
, dentry
, new);
3045 write_sequnlock(&rename_lock
);
3051 __d_move(new, dentry
, false);
3052 write_sequnlock(&rename_lock
);
3059 __d_add(dentry
, inode
);
3062 EXPORT_SYMBOL(d_splice_alias
);
3064 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
3068 return -ENAMETOOLONG
;
3070 memcpy(*buffer
, str
, namelen
);
3075 * prepend_name - prepend a pathname in front of current buffer pointer
3076 * @buffer: buffer pointer
3077 * @buflen: allocated length of the buffer
3078 * @name: name string and length qstr structure
3080 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
3081 * make sure that either the old or the new name pointer and length are
3082 * fetched. However, there may be mismatch between length and pointer.
3083 * The length cannot be trusted, we need to copy it byte-by-byte until
3084 * the length is reached or a null byte is found. It also prepends "/" at
3085 * the beginning of the name. The sequence number check at the caller will
3086 * retry it again when a d_move() does happen. So any garbage in the buffer
3087 * due to mismatched pointer and length will be discarded.
3089 * Load acquire is needed to make sure that we see that terminating NUL.
3091 static int prepend_name(char **buffer
, int *buflen
, const struct qstr
*name
)
3093 const char *dname
= smp_load_acquire(&name
->name
); /* ^^^ */
3094 u32 dlen
= READ_ONCE(name
->len
);
3097 *buflen
-= dlen
+ 1;
3099 return -ENAMETOOLONG
;
3100 p
= *buffer
-= dlen
+ 1;
3112 * prepend_path - Prepend path string to a buffer
3113 * @path: the dentry/vfsmount to report
3114 * @root: root vfsmnt/dentry
3115 * @buffer: pointer to the end of the buffer
3116 * @buflen: pointer to buffer length
3118 * The function will first try to write out the pathname without taking any
3119 * lock other than the RCU read lock to make sure that dentries won't go away.
3120 * It only checks the sequence number of the global rename_lock as any change
3121 * in the dentry's d_seq will be preceded by changes in the rename_lock
3122 * sequence number. If the sequence number had been changed, it will restart
3123 * the whole pathname back-tracing sequence again by taking the rename_lock.
3124 * In this case, there is no need to take the RCU read lock as the recursive
3125 * parent pointer references will keep the dentry chain alive as long as no
3126 * rename operation is performed.
3128 static int prepend_path(const struct path
*path
,
3129 const struct path
*root
,
3130 char **buffer
, int *buflen
)
3132 struct dentry
*dentry
;
3133 struct vfsmount
*vfsmnt
;
3136 unsigned seq
, m_seq
= 0;
3142 read_seqbegin_or_lock(&mount_lock
, &m_seq
);
3149 dentry
= path
->dentry
;
3151 mnt
= real_mount(vfsmnt
);
3152 read_seqbegin_or_lock(&rename_lock
, &seq
);
3153 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
3154 struct dentry
* parent
;
3156 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
3157 struct mount
*parent
= READ_ONCE(mnt
->mnt_parent
);
3159 if (dentry
!= vfsmnt
->mnt_root
) {
3166 if (mnt
!= parent
) {
3167 dentry
= READ_ONCE(mnt
->mnt_mountpoint
);
3173 error
= is_mounted(vfsmnt
) ? 1 : 2;
3176 parent
= dentry
->d_parent
;
3178 error
= prepend_name(&bptr
, &blen
, &dentry
->d_name
);
3186 if (need_seqretry(&rename_lock
, seq
)) {
3190 done_seqretry(&rename_lock
, seq
);
3194 if (need_seqretry(&mount_lock
, m_seq
)) {
3198 done_seqretry(&mount_lock
, m_seq
);
3200 if (error
>= 0 && bptr
== *buffer
) {
3202 error
= -ENAMETOOLONG
;
3212 * __d_path - return the path of a dentry
3213 * @path: the dentry/vfsmount to report
3214 * @root: root vfsmnt/dentry
3215 * @buf: buffer to return value in
3216 * @buflen: buffer length
3218 * Convert a dentry into an ASCII path name.
3220 * Returns a pointer into the buffer or an error code if the
3221 * path was too long.
3223 * "buflen" should be positive.
3225 * If the path is not reachable from the supplied root, return %NULL.
3227 char *__d_path(const struct path
*path
,
3228 const struct path
*root
,
3229 char *buf
, int buflen
)
3231 char *res
= buf
+ buflen
;
3234 prepend(&res
, &buflen
, "\0", 1);
3235 error
= prepend_path(path
, root
, &res
, &buflen
);
3238 return ERR_PTR(error
);
3244 char *d_absolute_path(const struct path
*path
,
3245 char *buf
, int buflen
)
3247 struct path root
= {};
3248 char *res
= buf
+ buflen
;
3251 prepend(&res
, &buflen
, "\0", 1);
3252 error
= prepend_path(path
, &root
, &res
, &buflen
);
3257 return ERR_PTR(error
);
3262 * same as __d_path but appends "(deleted)" for unlinked files.
3264 static int path_with_deleted(const struct path
*path
,
3265 const struct path
*root
,
3266 char **buf
, int *buflen
)
3268 prepend(buf
, buflen
, "\0", 1);
3269 if (d_unlinked(path
->dentry
)) {
3270 int error
= prepend(buf
, buflen
, " (deleted)", 10);
3275 return prepend_path(path
, root
, buf
, buflen
);
3278 static int prepend_unreachable(char **buffer
, int *buflen
)
3280 return prepend(buffer
, buflen
, "(unreachable)", 13);
3283 static void get_fs_root_rcu(struct fs_struct
*fs
, struct path
*root
)
3288 seq
= read_seqcount_begin(&fs
->seq
);
3290 } while (read_seqcount_retry(&fs
->seq
, seq
));
3294 * d_path - return the path of a dentry
3295 * @path: path to report
3296 * @buf: buffer to return value in
3297 * @buflen: buffer length
3299 * Convert a dentry into an ASCII path name. If the entry has been deleted
3300 * the string " (deleted)" is appended. Note that this is ambiguous.
3302 * Returns a pointer into the buffer or an error code if the path was
3303 * too long. Note: Callers should use the returned pointer, not the passed
3304 * in buffer, to use the name! The implementation often starts at an offset
3305 * into the buffer, and may leave 0 bytes at the start.
3307 * "buflen" should be positive.
3309 char *d_path(const struct path
*path
, char *buf
, int buflen
)
3311 char *res
= buf
+ buflen
;
3316 * We have various synthetic filesystems that never get mounted. On
3317 * these filesystems dentries are never used for lookup purposes, and
3318 * thus don't need to be hashed. They also don't need a name until a
3319 * user wants to identify the object in /proc/pid/fd/. The little hack
3320 * below allows us to generate a name for these objects on demand:
3322 * Some pseudo inodes are mountable. When they are mounted
3323 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3324 * and instead have d_path return the mounted path.
3326 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
&&
3327 (!IS_ROOT(path
->dentry
) || path
->dentry
!= path
->mnt
->mnt_root
))
3328 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
3331 get_fs_root_rcu(current
->fs
, &root
);
3332 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
3336 res
= ERR_PTR(error
);
3339 EXPORT_SYMBOL(d_path
);
3342 * Helper function for dentry_operations.d_dname() members
3344 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
3345 const char *fmt
, ...)
3351 va_start(args
, fmt
);
3352 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
3355 if (sz
> sizeof(temp
) || sz
> buflen
)
3356 return ERR_PTR(-ENAMETOOLONG
);
3358 buffer
+= buflen
- sz
;
3359 return memcpy(buffer
, temp
, sz
);
3362 char *simple_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
3364 char *end
= buffer
+ buflen
;
3365 /* these dentries are never renamed, so d_lock is not needed */
3366 if (prepend(&end
, &buflen
, " (deleted)", 11) ||
3367 prepend(&end
, &buflen
, dentry
->d_name
.name
, dentry
->d_name
.len
) ||
3368 prepend(&end
, &buflen
, "/", 1))
3369 end
= ERR_PTR(-ENAMETOOLONG
);
3372 EXPORT_SYMBOL(simple_dname
);
3375 * Write full pathname from the root of the filesystem into the buffer.
3377 static char *__dentry_path(struct dentry
*d
, char *buf
, int buflen
)
3379 struct dentry
*dentry
;
3392 prepend(&end
, &len
, "\0", 1);
3396 read_seqbegin_or_lock(&rename_lock
, &seq
);
3397 while (!IS_ROOT(dentry
)) {
3398 struct dentry
*parent
= dentry
->d_parent
;
3401 error
= prepend_name(&end
, &len
, &dentry
->d_name
);
3410 if (need_seqretry(&rename_lock
, seq
)) {
3414 done_seqretry(&rename_lock
, seq
);
3419 return ERR_PTR(-ENAMETOOLONG
);
3422 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
3424 return __dentry_path(dentry
, buf
, buflen
);
3426 EXPORT_SYMBOL(dentry_path_raw
);
3428 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
3433 if (d_unlinked(dentry
)) {
3435 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
3439 retval
= __dentry_path(dentry
, buf
, buflen
);
3440 if (!IS_ERR(retval
) && p
)
3441 *p
= '/'; /* restore '/' overriden with '\0' */
3444 return ERR_PTR(-ENAMETOOLONG
);
3447 static void get_fs_root_and_pwd_rcu(struct fs_struct
*fs
, struct path
*root
,
3453 seq
= read_seqcount_begin(&fs
->seq
);
3456 } while (read_seqcount_retry(&fs
->seq
, seq
));
3460 * NOTE! The user-level library version returns a
3461 * character pointer. The kernel system call just
3462 * returns the length of the buffer filled (which
3463 * includes the ending '\0' character), or a negative
3464 * error value. So libc would do something like
3466 * char *getcwd(char * buf, size_t size)
3470 * retval = sys_getcwd(buf, size);
3477 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
3480 struct path pwd
, root
;
3481 char *page
= __getname();
3487 get_fs_root_and_pwd_rcu(current
->fs
, &root
, &pwd
);
3490 if (!d_unlinked(pwd
.dentry
)) {
3492 char *cwd
= page
+ PATH_MAX
;
3493 int buflen
= PATH_MAX
;
3495 prepend(&cwd
, &buflen
, "\0", 1);
3496 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
3502 /* Unreachable from current root */
3504 error
= prepend_unreachable(&cwd
, &buflen
);
3510 len
= PATH_MAX
+ page
- cwd
;
3513 if (copy_to_user(buf
, cwd
, len
))
3526 * Test whether new_dentry is a subdirectory of old_dentry.
3528 * Trivially implemented using the dcache structure
3532 * is_subdir - is new dentry a subdirectory of old_dentry
3533 * @new_dentry: new dentry
3534 * @old_dentry: old dentry
3536 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3537 * Returns false otherwise.
3538 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3541 bool is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3546 if (new_dentry
== old_dentry
)
3550 /* for restarting inner loop in case of seq retry */
3551 seq
= read_seqbegin(&rename_lock
);
3553 * Need rcu_readlock to protect against the d_parent trashing
3557 if (d_ancestor(old_dentry
, new_dentry
))
3562 } while (read_seqretry(&rename_lock
, seq
));
3566 EXPORT_SYMBOL(is_subdir
);
3568 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3570 struct dentry
*root
= data
;
3571 if (dentry
!= root
) {
3572 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3575 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3576 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3577 dentry
->d_lockref
.count
--;
3580 return D_WALK_CONTINUE
;
3583 void d_genocide(struct dentry
*parent
)
3585 d_walk(parent
, parent
, d_genocide_kill
, NULL
);
3588 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3590 inode_dec_link_count(inode
);
3591 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3592 !hlist_unhashed(&dentry
->d_u
.d_alias
) ||
3593 !d_unlinked(dentry
));
3594 spin_lock(&dentry
->d_parent
->d_lock
);
3595 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3596 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3597 (unsigned long long)inode
->i_ino
);
3598 spin_unlock(&dentry
->d_lock
);
3599 spin_unlock(&dentry
->d_parent
->d_lock
);
3600 d_instantiate(dentry
, inode
);
3602 EXPORT_SYMBOL(d_tmpfile
);
3604 static __initdata
unsigned long dhash_entries
;
3605 static int __init
set_dhash_entries(char *str
)
3609 dhash_entries
= simple_strtoul(str
, &str
, 0);
3612 __setup("dhash_entries=", set_dhash_entries
);
3614 static void __init
dcache_init_early(void)
3616 /* If hashes are distributed across NUMA nodes, defer
3617 * hash allocation until vmalloc space is available.
3623 alloc_large_system_hash("Dentry cache",
3624 sizeof(struct hlist_bl_head
),
3627 HASH_EARLY
| HASH_ZERO
,
3632 d_hash_shift
= 32 - d_hash_shift
;
3635 static void __init
dcache_init(void)
3638 * A constructor could be added for stable state like the lists,
3639 * but it is probably not worth it because of the cache nature
3642 dentry_cache
= KMEM_CACHE_USERCOPY(dentry
,
3643 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
|SLAB_ACCOUNT
,
3646 /* Hash may have been set up in dcache_init_early */
3651 alloc_large_system_hash("Dentry cache",
3652 sizeof(struct hlist_bl_head
),
3660 d_hash_shift
= 32 - d_hash_shift
;
3663 /* SLAB cache for __getname() consumers */
3664 struct kmem_cache
*names_cachep __read_mostly
;
3665 EXPORT_SYMBOL(names_cachep
);
3667 EXPORT_SYMBOL(d_genocide
);
3669 void __init
vfs_caches_init_early(void)
3673 for (i
= 0; i
< ARRAY_SIZE(in_lookup_hashtable
); i
++)
3674 INIT_HLIST_BL_HEAD(&in_lookup_hashtable
[i
]);
3676 dcache_init_early();
3680 void __init
vfs_caches_init(void)
3682 names_cachep
= kmem_cache_create_usercopy("names_cache", PATH_MAX
, 0,
3683 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, 0, PATH_MAX
, NULL
);
3688 files_maxfiles_init();