4 * Copyright (C) 1991, 1992 Linus Torvalds
7 #include <linux/export.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/reboot.h>
12 #include <linux/prctl.h>
13 #include <linux/highuid.h>
15 #include <linux/kmod.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/workqueue.h>
20 #include <linux/capability.h>
21 #include <linux/device.h>
22 #include <linux/key.h>
23 #include <linux/times.h>
24 #include <linux/posix-timers.h>
25 #include <linux/security.h>
26 #include <linux/dcookies.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/file.h>
39 #include <linux/mount.h>
40 #include <linux/gfp.h>
41 #include <linux/syscore_ops.h>
42 #include <linux/version.h>
43 #include <linux/ctype.h>
45 #include <linux/compat.h>
46 #include <linux/syscalls.h>
47 #include <linux/kprobes.h>
48 #include <linux/user_namespace.h>
49 #include <linux/binfmts.h>
51 #include <linux/sched.h>
52 #include <linux/rcupdate.h>
53 #include <linux/uidgid.h>
54 #include <linux/cred.h>
56 #include <linux/kmsg_dump.h>
57 /* Move somewhere else to avoid recompiling? */
58 #include <generated/utsrelease.h>
60 #include <asm/uaccess.h>
62 #include <asm/unistd.h>
64 #ifndef SET_UNALIGN_CTL
65 # define SET_UNALIGN_CTL(a, b) (-EINVAL)
67 #ifndef GET_UNALIGN_CTL
68 # define GET_UNALIGN_CTL(a, b) (-EINVAL)
71 # define SET_FPEMU_CTL(a, b) (-EINVAL)
74 # define GET_FPEMU_CTL(a, b) (-EINVAL)
77 # define SET_FPEXC_CTL(a, b) (-EINVAL)
80 # define GET_FPEXC_CTL(a, b) (-EINVAL)
83 # define GET_ENDIAN(a, b) (-EINVAL)
86 # define SET_ENDIAN(a, b) (-EINVAL)
89 # define GET_TSC_CTL(a) (-EINVAL)
92 # define SET_TSC_CTL(a) (-EINVAL)
94 #ifndef MPX_ENABLE_MANAGEMENT
95 # define MPX_ENABLE_MANAGEMENT(a) (-EINVAL)
97 #ifndef MPX_DISABLE_MANAGEMENT
98 # define MPX_DISABLE_MANAGEMENT(a) (-EINVAL)
102 * this is where the system-wide overflow UID and GID are defined, for
103 * architectures that now have 32-bit UID/GID but didn't in the past
106 int overflowuid
= DEFAULT_OVERFLOWUID
;
107 int overflowgid
= DEFAULT_OVERFLOWGID
;
109 EXPORT_SYMBOL(overflowuid
);
110 EXPORT_SYMBOL(overflowgid
);
113 * the same as above, but for filesystems which can only store a 16-bit
114 * UID and GID. as such, this is needed on all architectures
117 int fs_overflowuid
= DEFAULT_FS_OVERFLOWUID
;
118 int fs_overflowgid
= DEFAULT_FS_OVERFLOWUID
;
120 EXPORT_SYMBOL(fs_overflowuid
);
121 EXPORT_SYMBOL(fs_overflowgid
);
124 * Returns true if current's euid is same as p's uid or euid,
125 * or has CAP_SYS_NICE to p's user_ns.
127 * Called with rcu_read_lock, creds are safe
129 static bool set_one_prio_perm(struct task_struct
*p
)
131 const struct cred
*cred
= current_cred(), *pcred
= __task_cred(p
);
133 if (uid_eq(pcred
->uid
, cred
->euid
) ||
134 uid_eq(pcred
->euid
, cred
->euid
))
136 if (ns_capable(pcred
->user_ns
, CAP_SYS_NICE
))
142 * set the priority of a task
143 * - the caller must hold the RCU read lock
145 static int set_one_prio(struct task_struct
*p
, int niceval
, int error
)
149 if (!set_one_prio_perm(p
)) {
153 if (niceval
< task_nice(p
) && !can_nice(p
, niceval
)) {
157 no_nice
= security_task_setnice(p
, niceval
);
164 set_user_nice(p
, niceval
);
169 SYSCALL_DEFINE3(setpriority
, int, which
, int, who
, int, niceval
)
171 struct task_struct
*g
, *p
;
172 struct user_struct
*user
;
173 const struct cred
*cred
= current_cred();
178 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
181 /* normalize: avoid signed division (rounding problems) */
183 if (niceval
< MIN_NICE
)
185 if (niceval
> MAX_NICE
)
189 read_lock(&tasklist_lock
);
193 p
= find_task_by_vpid(who
);
197 error
= set_one_prio(p
, niceval
, error
);
201 pgrp
= find_vpid(who
);
203 pgrp
= task_pgrp(current
);
204 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
205 error
= set_one_prio(p
, niceval
, error
);
206 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
209 uid
= make_kuid(cred
->user_ns
, who
);
213 else if (!uid_eq(uid
, cred
->uid
)) {
214 user
= find_user(uid
);
216 goto out_unlock
; /* No processes for this user */
218 do_each_thread(g
, p
) {
219 if (uid_eq(task_uid(p
), uid
))
220 error
= set_one_prio(p
, niceval
, error
);
221 } while_each_thread(g
, p
);
222 if (!uid_eq(uid
, cred
->uid
))
223 free_uid(user
); /* For find_user() */
227 read_unlock(&tasklist_lock
);
234 * Ugh. To avoid negative return values, "getpriority()" will
235 * not return the normal nice-value, but a negated value that
236 * has been offset by 20 (ie it returns 40..1 instead of -20..19)
237 * to stay compatible.
239 SYSCALL_DEFINE2(getpriority
, int, which
, int, who
)
241 struct task_struct
*g
, *p
;
242 struct user_struct
*user
;
243 const struct cred
*cred
= current_cred();
244 long niceval
, retval
= -ESRCH
;
248 if (which
> PRIO_USER
|| which
< PRIO_PROCESS
)
252 read_lock(&tasklist_lock
);
256 p
= find_task_by_vpid(who
);
260 niceval
= nice_to_rlimit(task_nice(p
));
261 if (niceval
> retval
)
267 pgrp
= find_vpid(who
);
269 pgrp
= task_pgrp(current
);
270 do_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
) {
271 niceval
= nice_to_rlimit(task_nice(p
));
272 if (niceval
> retval
)
274 } while_each_pid_thread(pgrp
, PIDTYPE_PGID
, p
);
277 uid
= make_kuid(cred
->user_ns
, who
);
281 else if (!uid_eq(uid
, cred
->uid
)) {
282 user
= find_user(uid
);
284 goto out_unlock
; /* No processes for this user */
286 do_each_thread(g
, p
) {
287 if (uid_eq(task_uid(p
), uid
)) {
288 niceval
= nice_to_rlimit(task_nice(p
));
289 if (niceval
> retval
)
292 } while_each_thread(g
, p
);
293 if (!uid_eq(uid
, cred
->uid
))
294 free_uid(user
); /* for find_user() */
298 read_unlock(&tasklist_lock
);
305 * Unprivileged users may change the real gid to the effective gid
306 * or vice versa. (BSD-style)
308 * If you set the real gid at all, or set the effective gid to a value not
309 * equal to the real gid, then the saved gid is set to the new effective gid.
311 * This makes it possible for a setgid program to completely drop its
312 * privileges, which is often a useful assertion to make when you are doing
313 * a security audit over a program.
315 * The general idea is that a program which uses just setregid() will be
316 * 100% compatible with BSD. A program which uses just setgid() will be
317 * 100% compatible with POSIX with saved IDs.
319 * SMP: There are not races, the GIDs are checked only by filesystem
320 * operations (as far as semantic preservation is concerned).
322 SYSCALL_DEFINE2(setregid
, gid_t
, rgid
, gid_t
, egid
)
324 struct user_namespace
*ns
= current_user_ns();
325 const struct cred
*old
;
330 krgid
= make_kgid(ns
, rgid
);
331 kegid
= make_kgid(ns
, egid
);
333 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
335 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
338 new = prepare_creds();
341 old
= current_cred();
344 if (rgid
!= (gid_t
) -1) {
345 if (gid_eq(old
->gid
, krgid
) ||
346 gid_eq(old
->egid
, krgid
) ||
347 ns_capable(old
->user_ns
, CAP_SETGID
))
352 if (egid
!= (gid_t
) -1) {
353 if (gid_eq(old
->gid
, kegid
) ||
354 gid_eq(old
->egid
, kegid
) ||
355 gid_eq(old
->sgid
, kegid
) ||
356 ns_capable(old
->user_ns
, CAP_SETGID
))
362 if (rgid
!= (gid_t
) -1 ||
363 (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
)))
364 new->sgid
= new->egid
;
365 new->fsgid
= new->egid
;
367 return commit_creds(new);
375 * setgid() is implemented like SysV w/ SAVED_IDS
377 * SMP: Same implicit races as above.
379 SYSCALL_DEFINE1(setgid
, gid_t
, gid
)
381 struct user_namespace
*ns
= current_user_ns();
382 const struct cred
*old
;
387 kgid
= make_kgid(ns
, gid
);
388 if (!gid_valid(kgid
))
391 new = prepare_creds();
394 old
= current_cred();
397 if (ns_capable(old
->user_ns
, CAP_SETGID
))
398 new->gid
= new->egid
= new->sgid
= new->fsgid
= kgid
;
399 else if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->sgid
))
400 new->egid
= new->fsgid
= kgid
;
404 return commit_creds(new);
412 * change the user struct in a credentials set to match the new UID
414 static int set_user(struct cred
*new)
416 struct user_struct
*new_user
;
418 new_user
= alloc_uid(new->uid
);
423 * We don't fail in case of NPROC limit excess here because too many
424 * poorly written programs don't check set*uid() return code, assuming
425 * it never fails if called by root. We may still enforce NPROC limit
426 * for programs doing set*uid()+execve() by harmlessly deferring the
427 * failure to the execve() stage.
429 if (atomic_read(&new_user
->processes
) >= rlimit(RLIMIT_NPROC
) &&
430 new_user
!= INIT_USER
)
431 current
->flags
|= PF_NPROC_EXCEEDED
;
433 current
->flags
&= ~PF_NPROC_EXCEEDED
;
436 new->user
= new_user
;
441 * Unprivileged users may change the real uid to the effective uid
442 * or vice versa. (BSD-style)
444 * If you set the real uid at all, or set the effective uid to a value not
445 * equal to the real uid, then the saved uid is set to the new effective uid.
447 * This makes it possible for a setuid program to completely drop its
448 * privileges, which is often a useful assertion to make when you are doing
449 * a security audit over a program.
451 * The general idea is that a program which uses just setreuid() will be
452 * 100% compatible with BSD. A program which uses just setuid() will be
453 * 100% compatible with POSIX with saved IDs.
455 SYSCALL_DEFINE2(setreuid
, uid_t
, ruid
, uid_t
, euid
)
457 struct user_namespace
*ns
= current_user_ns();
458 const struct cred
*old
;
463 kruid
= make_kuid(ns
, ruid
);
464 keuid
= make_kuid(ns
, euid
);
466 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
468 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
471 new = prepare_creds();
474 old
= current_cred();
477 if (ruid
!= (uid_t
) -1) {
479 if (!uid_eq(old
->uid
, kruid
) &&
480 !uid_eq(old
->euid
, kruid
) &&
481 !ns_capable(old
->user_ns
, CAP_SETUID
))
485 if (euid
!= (uid_t
) -1) {
487 if (!uid_eq(old
->uid
, keuid
) &&
488 !uid_eq(old
->euid
, keuid
) &&
489 !uid_eq(old
->suid
, keuid
) &&
490 !ns_capable(old
->user_ns
, CAP_SETUID
))
494 if (!uid_eq(new->uid
, old
->uid
)) {
495 retval
= set_user(new);
499 if (ruid
!= (uid_t
) -1 ||
500 (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
)))
501 new->suid
= new->euid
;
502 new->fsuid
= new->euid
;
504 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RE
);
508 return commit_creds(new);
516 * setuid() is implemented like SysV with SAVED_IDS
518 * Note that SAVED_ID's is deficient in that a setuid root program
519 * like sendmail, for example, cannot set its uid to be a normal
520 * user and then switch back, because if you're root, setuid() sets
521 * the saved uid too. If you don't like this, blame the bright people
522 * in the POSIX committee and/or USG. Note that the BSD-style setreuid()
523 * will allow a root program to temporarily drop privileges and be able to
524 * regain them by swapping the real and effective uid.
526 SYSCALL_DEFINE1(setuid
, uid_t
, uid
)
528 struct user_namespace
*ns
= current_user_ns();
529 const struct cred
*old
;
534 kuid
= make_kuid(ns
, uid
);
535 if (!uid_valid(kuid
))
538 new = prepare_creds();
541 old
= current_cred();
544 if (ns_capable(old
->user_ns
, CAP_SETUID
)) {
545 new->suid
= new->uid
= kuid
;
546 if (!uid_eq(kuid
, old
->uid
)) {
547 retval
= set_user(new);
551 } else if (!uid_eq(kuid
, old
->uid
) && !uid_eq(kuid
, new->suid
)) {
555 new->fsuid
= new->euid
= kuid
;
557 retval
= security_task_fix_setuid(new, old
, LSM_SETID_ID
);
561 return commit_creds(new);
570 * This function implements a generic ability to update ruid, euid,
571 * and suid. This allows you to implement the 4.4 compatible seteuid().
573 SYSCALL_DEFINE3(setresuid
, uid_t
, ruid
, uid_t
, euid
, uid_t
, suid
)
575 struct user_namespace
*ns
= current_user_ns();
576 const struct cred
*old
;
579 kuid_t kruid
, keuid
, ksuid
;
581 kruid
= make_kuid(ns
, ruid
);
582 keuid
= make_kuid(ns
, euid
);
583 ksuid
= make_kuid(ns
, suid
);
585 if ((ruid
!= (uid_t
) -1) && !uid_valid(kruid
))
588 if ((euid
!= (uid_t
) -1) && !uid_valid(keuid
))
591 if ((suid
!= (uid_t
) -1) && !uid_valid(ksuid
))
594 new = prepare_creds();
598 old
= current_cred();
601 if (!ns_capable(old
->user_ns
, CAP_SETUID
)) {
602 if (ruid
!= (uid_t
) -1 && !uid_eq(kruid
, old
->uid
) &&
603 !uid_eq(kruid
, old
->euid
) && !uid_eq(kruid
, old
->suid
))
605 if (euid
!= (uid_t
) -1 && !uid_eq(keuid
, old
->uid
) &&
606 !uid_eq(keuid
, old
->euid
) && !uid_eq(keuid
, old
->suid
))
608 if (suid
!= (uid_t
) -1 && !uid_eq(ksuid
, old
->uid
) &&
609 !uid_eq(ksuid
, old
->euid
) && !uid_eq(ksuid
, old
->suid
))
613 if (ruid
!= (uid_t
) -1) {
615 if (!uid_eq(kruid
, old
->uid
)) {
616 retval
= set_user(new);
621 if (euid
!= (uid_t
) -1)
623 if (suid
!= (uid_t
) -1)
625 new->fsuid
= new->euid
;
627 retval
= security_task_fix_setuid(new, old
, LSM_SETID_RES
);
631 return commit_creds(new);
638 SYSCALL_DEFINE3(getresuid
, uid_t __user
*, ruidp
, uid_t __user
*, euidp
, uid_t __user
*, suidp
)
640 const struct cred
*cred
= current_cred();
642 uid_t ruid
, euid
, suid
;
644 ruid
= from_kuid_munged(cred
->user_ns
, cred
->uid
);
645 euid
= from_kuid_munged(cred
->user_ns
, cred
->euid
);
646 suid
= from_kuid_munged(cred
->user_ns
, cred
->suid
);
648 retval
= put_user(ruid
, ruidp
);
650 retval
= put_user(euid
, euidp
);
652 return put_user(suid
, suidp
);
658 * Same as above, but for rgid, egid, sgid.
660 SYSCALL_DEFINE3(setresgid
, gid_t
, rgid
, gid_t
, egid
, gid_t
, sgid
)
662 struct user_namespace
*ns
= current_user_ns();
663 const struct cred
*old
;
666 kgid_t krgid
, kegid
, ksgid
;
668 krgid
= make_kgid(ns
, rgid
);
669 kegid
= make_kgid(ns
, egid
);
670 ksgid
= make_kgid(ns
, sgid
);
672 if ((rgid
!= (gid_t
) -1) && !gid_valid(krgid
))
674 if ((egid
!= (gid_t
) -1) && !gid_valid(kegid
))
676 if ((sgid
!= (gid_t
) -1) && !gid_valid(ksgid
))
679 new = prepare_creds();
682 old
= current_cred();
685 if (!ns_capable(old
->user_ns
, CAP_SETGID
)) {
686 if (rgid
!= (gid_t
) -1 && !gid_eq(krgid
, old
->gid
) &&
687 !gid_eq(krgid
, old
->egid
) && !gid_eq(krgid
, old
->sgid
))
689 if (egid
!= (gid_t
) -1 && !gid_eq(kegid
, old
->gid
) &&
690 !gid_eq(kegid
, old
->egid
) && !gid_eq(kegid
, old
->sgid
))
692 if (sgid
!= (gid_t
) -1 && !gid_eq(ksgid
, old
->gid
) &&
693 !gid_eq(ksgid
, old
->egid
) && !gid_eq(ksgid
, old
->sgid
))
697 if (rgid
!= (gid_t
) -1)
699 if (egid
!= (gid_t
) -1)
701 if (sgid
!= (gid_t
) -1)
703 new->fsgid
= new->egid
;
705 return commit_creds(new);
712 SYSCALL_DEFINE3(getresgid
, gid_t __user
*, rgidp
, gid_t __user
*, egidp
, gid_t __user
*, sgidp
)
714 const struct cred
*cred
= current_cred();
716 gid_t rgid
, egid
, sgid
;
718 rgid
= from_kgid_munged(cred
->user_ns
, cred
->gid
);
719 egid
= from_kgid_munged(cred
->user_ns
, cred
->egid
);
720 sgid
= from_kgid_munged(cred
->user_ns
, cred
->sgid
);
722 retval
= put_user(rgid
, rgidp
);
724 retval
= put_user(egid
, egidp
);
726 retval
= put_user(sgid
, sgidp
);
734 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
735 * is used for "access()" and for the NFS daemon (letting nfsd stay at
736 * whatever uid it wants to). It normally shadows "euid", except when
737 * explicitly set by setfsuid() or for access..
739 SYSCALL_DEFINE1(setfsuid
, uid_t
, uid
)
741 const struct cred
*old
;
746 old
= current_cred();
747 old_fsuid
= from_kuid_munged(old
->user_ns
, old
->fsuid
);
749 kuid
= make_kuid(old
->user_ns
, uid
);
750 if (!uid_valid(kuid
))
753 new = prepare_creds();
757 if (uid_eq(kuid
, old
->uid
) || uid_eq(kuid
, old
->euid
) ||
758 uid_eq(kuid
, old
->suid
) || uid_eq(kuid
, old
->fsuid
) ||
759 ns_capable(old
->user_ns
, CAP_SETUID
)) {
760 if (!uid_eq(kuid
, old
->fsuid
)) {
762 if (security_task_fix_setuid(new, old
, LSM_SETID_FS
) == 0)
776 * Samma på svenska..
778 SYSCALL_DEFINE1(setfsgid
, gid_t
, gid
)
780 const struct cred
*old
;
785 old
= current_cred();
786 old_fsgid
= from_kgid_munged(old
->user_ns
, old
->fsgid
);
788 kgid
= make_kgid(old
->user_ns
, gid
);
789 if (!gid_valid(kgid
))
792 new = prepare_creds();
796 if (gid_eq(kgid
, old
->gid
) || gid_eq(kgid
, old
->egid
) ||
797 gid_eq(kgid
, old
->sgid
) || gid_eq(kgid
, old
->fsgid
) ||
798 ns_capable(old
->user_ns
, CAP_SETGID
)) {
799 if (!gid_eq(kgid
, old
->fsgid
)) {
814 * sys_getpid - return the thread group id of the current process
816 * Note, despite the name, this returns the tgid not the pid. The tgid and
817 * the pid are identical unless CLONE_THREAD was specified on clone() in
818 * which case the tgid is the same in all threads of the same group.
820 * This is SMP safe as current->tgid does not change.
822 SYSCALL_DEFINE0(getpid
)
824 return task_tgid_vnr(current
);
827 /* Thread ID - the internal kernel "pid" */
828 SYSCALL_DEFINE0(gettid
)
830 return task_pid_vnr(current
);
834 * Accessing ->real_parent is not SMP-safe, it could
835 * change from under us. However, we can use a stale
836 * value of ->real_parent under rcu_read_lock(), see
837 * release_task()->call_rcu(delayed_put_task_struct).
839 SYSCALL_DEFINE0(getppid
)
844 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
850 SYSCALL_DEFINE0(getuid
)
852 /* Only we change this so SMP safe */
853 return from_kuid_munged(current_user_ns(), current_uid());
856 SYSCALL_DEFINE0(geteuid
)
858 /* Only we change this so SMP safe */
859 return from_kuid_munged(current_user_ns(), current_euid());
862 SYSCALL_DEFINE0(getgid
)
864 /* Only we change this so SMP safe */
865 return from_kgid_munged(current_user_ns(), current_gid());
868 SYSCALL_DEFINE0(getegid
)
870 /* Only we change this so SMP safe */
871 return from_kgid_munged(current_user_ns(), current_egid());
874 void do_sys_times(struct tms
*tms
)
876 cputime_t tgutime
, tgstime
, cutime
, cstime
;
878 thread_group_cputime_adjusted(current
, &tgutime
, &tgstime
);
879 cutime
= current
->signal
->cutime
;
880 cstime
= current
->signal
->cstime
;
881 tms
->tms_utime
= cputime_to_clock_t(tgutime
);
882 tms
->tms_stime
= cputime_to_clock_t(tgstime
);
883 tms
->tms_cutime
= cputime_to_clock_t(cutime
);
884 tms
->tms_cstime
= cputime_to_clock_t(cstime
);
887 SYSCALL_DEFINE1(times
, struct tms __user
*, tbuf
)
893 if (copy_to_user(tbuf
, &tmp
, sizeof(struct tms
)))
896 force_successful_syscall_return();
897 return (long) jiffies_64_to_clock_t(get_jiffies_64());
901 * This needs some heavy checking ...
902 * I just haven't the stomach for it. I also don't fully
903 * understand sessions/pgrp etc. Let somebody who does explain it.
905 * OK, I think I have the protection semantics right.... this is really
906 * only important on a multi-user system anyway, to make sure one user
907 * can't send a signal to a process owned by another. -TYT, 12/12/91
909 * !PF_FORKNOEXEC check to conform completely to POSIX.
911 SYSCALL_DEFINE2(setpgid
, pid_t
, pid
, pid_t
, pgid
)
913 struct task_struct
*p
;
914 struct task_struct
*group_leader
= current
->group_leader
;
919 pid
= task_pid_vnr(group_leader
);
926 /* From this point forward we keep holding onto the tasklist lock
927 * so that our parent does not change from under us. -DaveM
929 write_lock_irq(&tasklist_lock
);
932 p
= find_task_by_vpid(pid
);
937 if (!thread_group_leader(p
))
940 if (same_thread_group(p
->real_parent
, group_leader
)) {
942 if (task_session(p
) != task_session(group_leader
))
945 if (!(p
->flags
& PF_FORKNOEXEC
))
949 if (p
!= group_leader
)
954 if (p
->signal
->leader
)
959 struct task_struct
*g
;
961 pgrp
= find_vpid(pgid
);
962 g
= pid_task(pgrp
, PIDTYPE_PGID
);
963 if (!g
|| task_session(g
) != task_session(group_leader
))
967 err
= security_task_setpgid(p
, pgid
);
971 if (task_pgrp(p
) != pgrp
)
972 change_pid(p
, PIDTYPE_PGID
, pgrp
);
976 /* All paths lead to here, thus we are safe. -DaveM */
977 write_unlock_irq(&tasklist_lock
);
982 SYSCALL_DEFINE1(getpgid
, pid_t
, pid
)
984 struct task_struct
*p
;
990 grp
= task_pgrp(current
);
993 p
= find_task_by_vpid(pid
);
1000 retval
= security_task_getpgid(p
);
1004 retval
= pid_vnr(grp
);
1010 #ifdef __ARCH_WANT_SYS_GETPGRP
1012 SYSCALL_DEFINE0(getpgrp
)
1014 return sys_getpgid(0);
1019 SYSCALL_DEFINE1(getsid
, pid_t
, pid
)
1021 struct task_struct
*p
;
1027 sid
= task_session(current
);
1030 p
= find_task_by_vpid(pid
);
1033 sid
= task_session(p
);
1037 retval
= security_task_getsid(p
);
1041 retval
= pid_vnr(sid
);
1047 static void set_special_pids(struct pid
*pid
)
1049 struct task_struct
*curr
= current
->group_leader
;
1051 if (task_session(curr
) != pid
)
1052 change_pid(curr
, PIDTYPE_SID
, pid
);
1054 if (task_pgrp(curr
) != pid
)
1055 change_pid(curr
, PIDTYPE_PGID
, pid
);
1058 SYSCALL_DEFINE0(setsid
)
1060 struct task_struct
*group_leader
= current
->group_leader
;
1061 struct pid
*sid
= task_pid(group_leader
);
1062 pid_t session
= pid_vnr(sid
);
1065 write_lock_irq(&tasklist_lock
);
1066 /* Fail if I am already a session leader */
1067 if (group_leader
->signal
->leader
)
1070 /* Fail if a process group id already exists that equals the
1071 * proposed session id.
1073 if (pid_task(sid
, PIDTYPE_PGID
))
1076 group_leader
->signal
->leader
= 1;
1077 set_special_pids(sid
);
1079 proc_clear_tty(group_leader
);
1083 write_unlock_irq(&tasklist_lock
);
1085 proc_sid_connector(group_leader
);
1086 sched_autogroup_create_attach(group_leader
);
1091 DECLARE_RWSEM(uts_sem
);
1093 #ifdef COMPAT_UTS_MACHINE
1094 #define override_architecture(name) \
1095 (personality(current->personality) == PER_LINUX32 && \
1096 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1097 sizeof(COMPAT_UTS_MACHINE)))
1099 #define override_architecture(name) 0
1103 * Work around broken programs that cannot handle "Linux 3.0".
1104 * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1106 static int override_release(char __user
*release
, size_t len
)
1110 if (current
->personality
& UNAME26
) {
1111 const char *rest
= UTS_RELEASE
;
1112 char buf
[65] = { 0 };
1118 if (*rest
== '.' && ++ndots
>= 3)
1120 if (!isdigit(*rest
) && *rest
!= '.')
1124 v
= ((LINUX_VERSION_CODE
>> 8) & 0xff) + 40;
1125 copy
= clamp_t(size_t, len
, 1, sizeof(buf
));
1126 copy
= scnprintf(buf
, copy
, "2.6.%u%s", v
, rest
);
1127 ret
= copy_to_user(release
, buf
, copy
+ 1);
1132 SYSCALL_DEFINE1(newuname
, struct new_utsname __user
*, name
)
1136 down_read(&uts_sem
);
1137 if (copy_to_user(name
, utsname(), sizeof *name
))
1141 if (!errno
&& override_release(name
->release
, sizeof(name
->release
)))
1143 if (!errno
&& override_architecture(name
))
1148 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1152 SYSCALL_DEFINE1(uname
, struct old_utsname __user
*, name
)
1159 down_read(&uts_sem
);
1160 if (copy_to_user(name
, utsname(), sizeof(*name
)))
1164 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1166 if (!error
&& override_architecture(name
))
1171 SYSCALL_DEFINE1(olduname
, struct oldold_utsname __user
*, name
)
1177 if (!access_ok(VERIFY_WRITE
, name
, sizeof(struct oldold_utsname
)))
1180 down_read(&uts_sem
);
1181 error
= __copy_to_user(&name
->sysname
, &utsname()->sysname
,
1183 error
|= __put_user(0, name
->sysname
+ __OLD_UTS_LEN
);
1184 error
|= __copy_to_user(&name
->nodename
, &utsname()->nodename
,
1186 error
|= __put_user(0, name
->nodename
+ __OLD_UTS_LEN
);
1187 error
|= __copy_to_user(&name
->release
, &utsname()->release
,
1189 error
|= __put_user(0, name
->release
+ __OLD_UTS_LEN
);
1190 error
|= __copy_to_user(&name
->version
, &utsname()->version
,
1192 error
|= __put_user(0, name
->version
+ __OLD_UTS_LEN
);
1193 error
|= __copy_to_user(&name
->machine
, &utsname()->machine
,
1195 error
|= __put_user(0, name
->machine
+ __OLD_UTS_LEN
);
1198 if (!error
&& override_architecture(name
))
1200 if (!error
&& override_release(name
->release
, sizeof(name
->release
)))
1202 return error
? -EFAULT
: 0;
1206 SYSCALL_DEFINE2(sethostname
, char __user
*, name
, int, len
)
1209 char tmp
[__NEW_UTS_LEN
];
1211 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1214 if (len
< 0 || len
> __NEW_UTS_LEN
)
1216 down_write(&uts_sem
);
1218 if (!copy_from_user(tmp
, name
, len
)) {
1219 struct new_utsname
*u
= utsname();
1221 memcpy(u
->nodename
, tmp
, len
);
1222 memset(u
->nodename
+ len
, 0, sizeof(u
->nodename
) - len
);
1224 uts_proc_notify(UTS_PROC_HOSTNAME
);
1230 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1232 SYSCALL_DEFINE2(gethostname
, char __user
*, name
, int, len
)
1235 struct new_utsname
*u
;
1239 down_read(&uts_sem
);
1241 i
= 1 + strlen(u
->nodename
);
1245 if (copy_to_user(name
, u
->nodename
, i
))
1254 * Only setdomainname; getdomainname can be implemented by calling
1257 SYSCALL_DEFINE2(setdomainname
, char __user
*, name
, int, len
)
1260 char tmp
[__NEW_UTS_LEN
];
1262 if (!ns_capable(current
->nsproxy
->uts_ns
->user_ns
, CAP_SYS_ADMIN
))
1264 if (len
< 0 || len
> __NEW_UTS_LEN
)
1267 down_write(&uts_sem
);
1269 if (!copy_from_user(tmp
, name
, len
)) {
1270 struct new_utsname
*u
= utsname();
1272 memcpy(u
->domainname
, tmp
, len
);
1273 memset(u
->domainname
+ len
, 0, sizeof(u
->domainname
) - len
);
1275 uts_proc_notify(UTS_PROC_DOMAINNAME
);
1281 SYSCALL_DEFINE2(getrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1283 struct rlimit value
;
1286 ret
= do_prlimit(current
, resource
, NULL
, &value
);
1288 ret
= copy_to_user(rlim
, &value
, sizeof(*rlim
)) ? -EFAULT
: 0;
1293 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1296 * Back compatibility for getrlimit. Needed for some apps.
1298 SYSCALL_DEFINE2(old_getrlimit
, unsigned int, resource
,
1299 struct rlimit __user
*, rlim
)
1302 if (resource
>= RLIM_NLIMITS
)
1305 task_lock(current
->group_leader
);
1306 x
= current
->signal
->rlim
[resource
];
1307 task_unlock(current
->group_leader
);
1308 if (x
.rlim_cur
> 0x7FFFFFFF)
1309 x
.rlim_cur
= 0x7FFFFFFF;
1310 if (x
.rlim_max
> 0x7FFFFFFF)
1311 x
.rlim_max
= 0x7FFFFFFF;
1312 return copy_to_user(rlim
, &x
, sizeof(x
)) ? -EFAULT
: 0;
1317 static inline bool rlim64_is_infinity(__u64 rlim64
)
1319 #if BITS_PER_LONG < 64
1320 return rlim64
>= ULONG_MAX
;
1322 return rlim64
== RLIM64_INFINITY
;
1326 static void rlim_to_rlim64(const struct rlimit
*rlim
, struct rlimit64
*rlim64
)
1328 if (rlim
->rlim_cur
== RLIM_INFINITY
)
1329 rlim64
->rlim_cur
= RLIM64_INFINITY
;
1331 rlim64
->rlim_cur
= rlim
->rlim_cur
;
1332 if (rlim
->rlim_max
== RLIM_INFINITY
)
1333 rlim64
->rlim_max
= RLIM64_INFINITY
;
1335 rlim64
->rlim_max
= rlim
->rlim_max
;
1338 static void rlim64_to_rlim(const struct rlimit64
*rlim64
, struct rlimit
*rlim
)
1340 if (rlim64_is_infinity(rlim64
->rlim_cur
))
1341 rlim
->rlim_cur
= RLIM_INFINITY
;
1343 rlim
->rlim_cur
= (unsigned long)rlim64
->rlim_cur
;
1344 if (rlim64_is_infinity(rlim64
->rlim_max
))
1345 rlim
->rlim_max
= RLIM_INFINITY
;
1347 rlim
->rlim_max
= (unsigned long)rlim64
->rlim_max
;
1350 /* make sure you are allowed to change @tsk limits before calling this */
1351 int do_prlimit(struct task_struct
*tsk
, unsigned int resource
,
1352 struct rlimit
*new_rlim
, struct rlimit
*old_rlim
)
1354 struct rlimit
*rlim
;
1357 if (resource
>= RLIM_NLIMITS
)
1360 if (new_rlim
->rlim_cur
> new_rlim
->rlim_max
)
1362 if (resource
== RLIMIT_NOFILE
&&
1363 new_rlim
->rlim_max
> sysctl_nr_open
)
1367 /* protect tsk->signal and tsk->sighand from disappearing */
1368 read_lock(&tasklist_lock
);
1369 if (!tsk
->sighand
) {
1374 rlim
= tsk
->signal
->rlim
+ resource
;
1375 task_lock(tsk
->group_leader
);
1377 /* Keep the capable check against init_user_ns until
1378 cgroups can contain all limits */
1379 if (new_rlim
->rlim_max
> rlim
->rlim_max
&&
1380 !capable(CAP_SYS_RESOURCE
))
1383 retval
= security_task_setrlimit(tsk
->group_leader
,
1384 resource
, new_rlim
);
1385 if (resource
== RLIMIT_CPU
&& new_rlim
->rlim_cur
== 0) {
1387 * The caller is asking for an immediate RLIMIT_CPU
1388 * expiry. But we use the zero value to mean "it was
1389 * never set". So let's cheat and make it one second
1392 new_rlim
->rlim_cur
= 1;
1401 task_unlock(tsk
->group_leader
);
1404 * RLIMIT_CPU handling. Note that the kernel fails to return an error
1405 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a
1406 * very long-standing error, and fixing it now risks breakage of
1407 * applications, so we live with it
1409 if (!retval
&& new_rlim
&& resource
== RLIMIT_CPU
&&
1410 new_rlim
->rlim_cur
!= RLIM_INFINITY
)
1411 update_rlimit_cpu(tsk
, new_rlim
->rlim_cur
);
1413 read_unlock(&tasklist_lock
);
1417 /* rcu lock must be held */
1418 static int check_prlimit_permission(struct task_struct
*task
)
1420 const struct cred
*cred
= current_cred(), *tcred
;
1422 if (current
== task
)
1425 tcred
= __task_cred(task
);
1426 if (uid_eq(cred
->uid
, tcred
->euid
) &&
1427 uid_eq(cred
->uid
, tcred
->suid
) &&
1428 uid_eq(cred
->uid
, tcred
->uid
) &&
1429 gid_eq(cred
->gid
, tcred
->egid
) &&
1430 gid_eq(cred
->gid
, tcred
->sgid
) &&
1431 gid_eq(cred
->gid
, tcred
->gid
))
1433 if (ns_capable(tcred
->user_ns
, CAP_SYS_RESOURCE
))
1439 SYSCALL_DEFINE4(prlimit64
, pid_t
, pid
, unsigned int, resource
,
1440 const struct rlimit64 __user
*, new_rlim
,
1441 struct rlimit64 __user
*, old_rlim
)
1443 struct rlimit64 old64
, new64
;
1444 struct rlimit old
, new;
1445 struct task_struct
*tsk
;
1449 if (copy_from_user(&new64
, new_rlim
, sizeof(new64
)))
1451 rlim64_to_rlim(&new64
, &new);
1455 tsk
= pid
? find_task_by_vpid(pid
) : current
;
1460 ret
= check_prlimit_permission(tsk
);
1465 get_task_struct(tsk
);
1468 ret
= do_prlimit(tsk
, resource
, new_rlim
? &new : NULL
,
1469 old_rlim
? &old
: NULL
);
1471 if (!ret
&& old_rlim
) {
1472 rlim_to_rlim64(&old
, &old64
);
1473 if (copy_to_user(old_rlim
, &old64
, sizeof(old64
)))
1477 put_task_struct(tsk
);
1481 SYSCALL_DEFINE2(setrlimit
, unsigned int, resource
, struct rlimit __user
*, rlim
)
1483 struct rlimit new_rlim
;
1485 if (copy_from_user(&new_rlim
, rlim
, sizeof(*rlim
)))
1487 return do_prlimit(current
, resource
, &new_rlim
, NULL
);
1491 * It would make sense to put struct rusage in the task_struct,
1492 * except that would make the task_struct be *really big*. After
1493 * task_struct gets moved into malloc'ed memory, it would
1494 * make sense to do this. It will make moving the rest of the information
1495 * a lot simpler! (Which we're not doing right now because we're not
1496 * measuring them yet).
1498 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1499 * races with threads incrementing their own counters. But since word
1500 * reads are atomic, we either get new values or old values and we don't
1501 * care which for the sums. We always take the siglock to protect reading
1502 * the c* fields from p->signal from races with exit.c updating those
1503 * fields when reaping, so a sample either gets all the additions of a
1504 * given child after it's reaped, or none so this sample is before reaping.
1507 * We need to take the siglock for CHILDEREN, SELF and BOTH
1508 * for the cases current multithreaded, non-current single threaded
1509 * non-current multithreaded. Thread traversal is now safe with
1511 * Strictly speaking, we donot need to take the siglock if we are current and
1512 * single threaded, as no one else can take our signal_struct away, no one
1513 * else can reap the children to update signal->c* counters, and no one else
1514 * can race with the signal-> fields. If we do not take any lock, the
1515 * signal-> fields could be read out of order while another thread was just
1516 * exiting. So we should place a read memory barrier when we avoid the lock.
1517 * On the writer side, write memory barrier is implied in __exit_signal
1518 * as __exit_signal releases the siglock spinlock after updating the signal->
1519 * fields. But we don't do this yet to keep things simple.
1523 static void accumulate_thread_rusage(struct task_struct
*t
, struct rusage
*r
)
1525 r
->ru_nvcsw
+= t
->nvcsw
;
1526 r
->ru_nivcsw
+= t
->nivcsw
;
1527 r
->ru_minflt
+= t
->min_flt
;
1528 r
->ru_majflt
+= t
->maj_flt
;
1529 r
->ru_inblock
+= task_io_get_inblock(t
);
1530 r
->ru_oublock
+= task_io_get_oublock(t
);
1533 static void k_getrusage(struct task_struct
*p
, int who
, struct rusage
*r
)
1535 struct task_struct
*t
;
1536 unsigned long flags
;
1537 cputime_t tgutime
, tgstime
, utime
, stime
;
1538 unsigned long maxrss
= 0;
1540 memset((char *)r
, 0, sizeof (*r
));
1543 if (who
== RUSAGE_THREAD
) {
1544 task_cputime_adjusted(current
, &utime
, &stime
);
1545 accumulate_thread_rusage(p
, r
);
1546 maxrss
= p
->signal
->maxrss
;
1550 if (!lock_task_sighand(p
, &flags
))
1555 case RUSAGE_CHILDREN
:
1556 utime
= p
->signal
->cutime
;
1557 stime
= p
->signal
->cstime
;
1558 r
->ru_nvcsw
= p
->signal
->cnvcsw
;
1559 r
->ru_nivcsw
= p
->signal
->cnivcsw
;
1560 r
->ru_minflt
= p
->signal
->cmin_flt
;
1561 r
->ru_majflt
= p
->signal
->cmaj_flt
;
1562 r
->ru_inblock
= p
->signal
->cinblock
;
1563 r
->ru_oublock
= p
->signal
->coublock
;
1564 maxrss
= p
->signal
->cmaxrss
;
1566 if (who
== RUSAGE_CHILDREN
)
1570 thread_group_cputime_adjusted(p
, &tgutime
, &tgstime
);
1573 r
->ru_nvcsw
+= p
->signal
->nvcsw
;
1574 r
->ru_nivcsw
+= p
->signal
->nivcsw
;
1575 r
->ru_minflt
+= p
->signal
->min_flt
;
1576 r
->ru_majflt
+= p
->signal
->maj_flt
;
1577 r
->ru_inblock
+= p
->signal
->inblock
;
1578 r
->ru_oublock
+= p
->signal
->oublock
;
1579 if (maxrss
< p
->signal
->maxrss
)
1580 maxrss
= p
->signal
->maxrss
;
1583 accumulate_thread_rusage(t
, r
);
1584 } while_each_thread(p
, t
);
1590 unlock_task_sighand(p
, &flags
);
1593 cputime_to_timeval(utime
, &r
->ru_utime
);
1594 cputime_to_timeval(stime
, &r
->ru_stime
);
1596 if (who
!= RUSAGE_CHILDREN
) {
1597 struct mm_struct
*mm
= get_task_mm(p
);
1600 setmax_mm_hiwater_rss(&maxrss
, mm
);
1604 r
->ru_maxrss
= maxrss
* (PAGE_SIZE
/ 1024); /* convert pages to KBs */
1607 int getrusage(struct task_struct
*p
, int who
, struct rusage __user
*ru
)
1611 k_getrusage(p
, who
, &r
);
1612 return copy_to_user(ru
, &r
, sizeof(r
)) ? -EFAULT
: 0;
1615 SYSCALL_DEFINE2(getrusage
, int, who
, struct rusage __user
*, ru
)
1617 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1618 who
!= RUSAGE_THREAD
)
1620 return getrusage(current
, who
, ru
);
1623 #ifdef CONFIG_COMPAT
1624 COMPAT_SYSCALL_DEFINE2(getrusage
, int, who
, struct compat_rusage __user
*, ru
)
1628 if (who
!= RUSAGE_SELF
&& who
!= RUSAGE_CHILDREN
&&
1629 who
!= RUSAGE_THREAD
)
1632 k_getrusage(current
, who
, &r
);
1633 return put_compat_rusage(&r
, ru
);
1637 SYSCALL_DEFINE1(umask
, int, mask
)
1639 mask
= xchg(¤t
->fs
->umask
, mask
& S_IRWXUGO
);
1643 static int prctl_set_mm_exe_file_locked(struct mm_struct
*mm
, unsigned int fd
)
1646 struct inode
*inode
;
1649 VM_BUG_ON_MM(!rwsem_is_locked(&mm
->mmap_sem
), mm
);
1655 inode
= file_inode(exe
.file
);
1658 * Because the original mm->exe_file points to executable file, make
1659 * sure that this one is executable as well, to avoid breaking an
1663 if (!S_ISREG(inode
->i_mode
) ||
1664 exe
.file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)
1667 err
= inode_permission(inode
, MAY_EXEC
);
1672 * Forbid mm->exe_file change if old file still mapped.
1676 struct vm_area_struct
*vma
;
1678 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
1680 path_equal(&vma
->vm_file
->f_path
,
1681 &mm
->exe_file
->f_path
))
1686 * The symlink can be changed only once, just to disallow arbitrary
1687 * transitions malicious software might bring in. This means one
1688 * could make a snapshot over all processes running and monitor
1689 * /proc/pid/exe changes to notice unusual activity if needed.
1692 if (test_and_set_bit(MMF_EXE_FILE_CHANGED
, &mm
->flags
))
1696 set_mm_exe_file(mm
, exe
.file
); /* this grabs a reference to exe.file */
1702 #ifdef CONFIG_CHECKPOINT_RESTORE
1704 * WARNING: we don't require any capability here so be very careful
1705 * in what is allowed for modification from userspace.
1707 static int validate_prctl_map(struct prctl_mm_map
*prctl_map
)
1709 unsigned long mmap_max_addr
= TASK_SIZE
;
1710 struct mm_struct
*mm
= current
->mm
;
1711 int error
= -EINVAL
, i
;
1713 static const unsigned char offsets
[] = {
1714 offsetof(struct prctl_mm_map
, start_code
),
1715 offsetof(struct prctl_mm_map
, end_code
),
1716 offsetof(struct prctl_mm_map
, start_data
),
1717 offsetof(struct prctl_mm_map
, end_data
),
1718 offsetof(struct prctl_mm_map
, start_brk
),
1719 offsetof(struct prctl_mm_map
, brk
),
1720 offsetof(struct prctl_mm_map
, start_stack
),
1721 offsetof(struct prctl_mm_map
, arg_start
),
1722 offsetof(struct prctl_mm_map
, arg_end
),
1723 offsetof(struct prctl_mm_map
, env_start
),
1724 offsetof(struct prctl_mm_map
, env_end
),
1728 * Make sure the members are not somewhere outside
1729 * of allowed address space.
1731 for (i
= 0; i
< ARRAY_SIZE(offsets
); i
++) {
1732 u64 val
= *(u64
*)((char *)prctl_map
+ offsets
[i
]);
1734 if ((unsigned long)val
>= mmap_max_addr
||
1735 (unsigned long)val
< mmap_min_addr
)
1740 * Make sure the pairs are ordered.
1742 #define __prctl_check_order(__m1, __op, __m2) \
1743 ((unsigned long)prctl_map->__m1 __op \
1744 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1745 error
= __prctl_check_order(start_code
, <, end_code
);
1746 error
|= __prctl_check_order(start_data
, <, end_data
);
1747 error
|= __prctl_check_order(start_brk
, <=, brk
);
1748 error
|= __prctl_check_order(arg_start
, <=, arg_end
);
1749 error
|= __prctl_check_order(env_start
, <=, env_end
);
1752 #undef __prctl_check_order
1757 * @brk should be after @end_data in traditional maps.
1759 if (prctl_map
->start_brk
<= prctl_map
->end_data
||
1760 prctl_map
->brk
<= prctl_map
->end_data
)
1764 * Neither we should allow to override limits if they set.
1766 if (check_data_rlimit(rlimit(RLIMIT_DATA
), prctl_map
->brk
,
1767 prctl_map
->start_brk
, prctl_map
->end_data
,
1768 prctl_map
->start_data
))
1772 * Someone is trying to cheat the auxv vector.
1774 if (prctl_map
->auxv_size
) {
1775 if (!prctl_map
->auxv
|| prctl_map
->auxv_size
> sizeof(mm
->saved_auxv
))
1780 * Finally, make sure the caller has the rights to
1781 * change /proc/pid/exe link: only local root should
1784 if (prctl_map
->exe_fd
!= (u32
)-1) {
1785 struct user_namespace
*ns
= current_user_ns();
1786 const struct cred
*cred
= current_cred();
1788 if (!uid_eq(cred
->uid
, make_kuid(ns
, 0)) ||
1789 !gid_eq(cred
->gid
, make_kgid(ns
, 0)))
1798 static int prctl_set_mm_map(int opt
, const void __user
*addr
, unsigned long data_size
)
1800 struct prctl_mm_map prctl_map
= { .exe_fd
= (u32
)-1, };
1801 unsigned long user_auxv
[AT_VECTOR_SIZE
];
1802 struct mm_struct
*mm
= current
->mm
;
1805 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
1806 BUILD_BUG_ON(sizeof(struct prctl_mm_map
) > 256);
1808 if (opt
== PR_SET_MM_MAP_SIZE
)
1809 return put_user((unsigned int)sizeof(prctl_map
),
1810 (unsigned int __user
*)addr
);
1812 if (data_size
!= sizeof(prctl_map
))
1815 if (copy_from_user(&prctl_map
, addr
, sizeof(prctl_map
)))
1818 error
= validate_prctl_map(&prctl_map
);
1822 if (prctl_map
.auxv_size
) {
1823 memset(user_auxv
, 0, sizeof(user_auxv
));
1824 if (copy_from_user(user_auxv
,
1825 (const void __user
*)prctl_map
.auxv
,
1826 prctl_map
.auxv_size
))
1829 /* Last entry must be AT_NULL as specification requires */
1830 user_auxv
[AT_VECTOR_SIZE
- 2] = AT_NULL
;
1831 user_auxv
[AT_VECTOR_SIZE
- 1] = AT_NULL
;
1834 down_write(&mm
->mmap_sem
);
1835 if (prctl_map
.exe_fd
!= (u32
)-1)
1836 error
= prctl_set_mm_exe_file_locked(mm
, prctl_map
.exe_fd
);
1837 downgrade_write(&mm
->mmap_sem
);
1842 * We don't validate if these members are pointing to
1843 * real present VMAs because application may have correspond
1844 * VMAs already unmapped and kernel uses these members for statistics
1845 * output in procfs mostly, except
1847 * - @start_brk/@brk which are used in do_brk but kernel lookups
1848 * for VMAs when updating these memvers so anything wrong written
1849 * here cause kernel to swear at userspace program but won't lead
1850 * to any problem in kernel itself
1853 mm
->start_code
= prctl_map
.start_code
;
1854 mm
->end_code
= prctl_map
.end_code
;
1855 mm
->start_data
= prctl_map
.start_data
;
1856 mm
->end_data
= prctl_map
.end_data
;
1857 mm
->start_brk
= prctl_map
.start_brk
;
1858 mm
->brk
= prctl_map
.brk
;
1859 mm
->start_stack
= prctl_map
.start_stack
;
1860 mm
->arg_start
= prctl_map
.arg_start
;
1861 mm
->arg_end
= prctl_map
.arg_end
;
1862 mm
->env_start
= prctl_map
.env_start
;
1863 mm
->env_end
= prctl_map
.env_end
;
1866 * Note this update of @saved_auxv is lockless thus
1867 * if someone reads this member in procfs while we're
1868 * updating -- it may get partly updated results. It's
1869 * known and acceptable trade off: we leave it as is to
1870 * not introduce additional locks here making the kernel
1873 if (prctl_map
.auxv_size
)
1874 memcpy(mm
->saved_auxv
, user_auxv
, sizeof(user_auxv
));
1878 up_read(&mm
->mmap_sem
);
1881 #endif /* CONFIG_CHECKPOINT_RESTORE */
1883 static int prctl_set_mm(int opt
, unsigned long addr
,
1884 unsigned long arg4
, unsigned long arg5
)
1886 struct mm_struct
*mm
= current
->mm
;
1887 struct vm_area_struct
*vma
;
1890 if (arg5
|| (arg4
&& (opt
!= PR_SET_MM_AUXV
&&
1891 opt
!= PR_SET_MM_MAP
&&
1892 opt
!= PR_SET_MM_MAP_SIZE
)))
1895 #ifdef CONFIG_CHECKPOINT_RESTORE
1896 if (opt
== PR_SET_MM_MAP
|| opt
== PR_SET_MM_MAP_SIZE
)
1897 return prctl_set_mm_map(opt
, (const void __user
*)addr
, arg4
);
1900 if (!capable(CAP_SYS_RESOURCE
))
1903 if (opt
== PR_SET_MM_EXE_FILE
) {
1904 down_write(&mm
->mmap_sem
);
1905 error
= prctl_set_mm_exe_file_locked(mm
, (unsigned int)addr
);
1906 up_write(&mm
->mmap_sem
);
1910 if (addr
>= TASK_SIZE
|| addr
< mmap_min_addr
)
1915 down_read(&mm
->mmap_sem
);
1916 vma
= find_vma(mm
, addr
);
1919 case PR_SET_MM_START_CODE
:
1920 mm
->start_code
= addr
;
1922 case PR_SET_MM_END_CODE
:
1923 mm
->end_code
= addr
;
1925 case PR_SET_MM_START_DATA
:
1926 mm
->start_data
= addr
;
1928 case PR_SET_MM_END_DATA
:
1929 mm
->end_data
= addr
;
1932 case PR_SET_MM_START_BRK
:
1933 if (addr
<= mm
->end_data
)
1936 if (check_data_rlimit(rlimit(RLIMIT_DATA
), mm
->brk
, addr
,
1937 mm
->end_data
, mm
->start_data
))
1940 mm
->start_brk
= addr
;
1944 if (addr
<= mm
->end_data
)
1947 if (check_data_rlimit(rlimit(RLIMIT_DATA
), addr
, mm
->start_brk
,
1948 mm
->end_data
, mm
->start_data
))
1955 * If command line arguments and environment
1956 * are placed somewhere else on stack, we can
1957 * set them up here, ARG_START/END to setup
1958 * command line argumets and ENV_START/END
1961 case PR_SET_MM_START_STACK
:
1962 case PR_SET_MM_ARG_START
:
1963 case PR_SET_MM_ARG_END
:
1964 case PR_SET_MM_ENV_START
:
1965 case PR_SET_MM_ENV_END
:
1970 if (opt
== PR_SET_MM_START_STACK
)
1971 mm
->start_stack
= addr
;
1972 else if (opt
== PR_SET_MM_ARG_START
)
1973 mm
->arg_start
= addr
;
1974 else if (opt
== PR_SET_MM_ARG_END
)
1976 else if (opt
== PR_SET_MM_ENV_START
)
1977 mm
->env_start
= addr
;
1978 else if (opt
== PR_SET_MM_ENV_END
)
1983 * This doesn't move auxiliary vector itself
1984 * since it's pinned to mm_struct, but allow
1985 * to fill vector with new values. It's up
1986 * to a caller to provide sane values here
1987 * otherwise user space tools which use this
1988 * vector might be unhappy.
1990 case PR_SET_MM_AUXV
: {
1991 unsigned long user_auxv
[AT_VECTOR_SIZE
];
1993 if (arg4
> sizeof(user_auxv
))
1995 up_read(&mm
->mmap_sem
);
1997 if (copy_from_user(user_auxv
, (const void __user
*)addr
, arg4
))
2000 /* Make sure the last entry is always AT_NULL */
2001 user_auxv
[AT_VECTOR_SIZE
- 2] = 0;
2002 user_auxv
[AT_VECTOR_SIZE
- 1] = 0;
2004 BUILD_BUG_ON(sizeof(user_auxv
) != sizeof(mm
->saved_auxv
));
2007 memcpy(mm
->saved_auxv
, user_auxv
, arg4
);
2008 task_unlock(current
);
2018 up_read(&mm
->mmap_sem
);
2022 #ifdef CONFIG_CHECKPOINT_RESTORE
2023 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2025 return put_user(me
->clear_child_tid
, tid_addr
);
2028 static int prctl_get_tid_address(struct task_struct
*me
, int __user
**tid_addr
)
2034 SYSCALL_DEFINE5(prctl
, int, option
, unsigned long, arg2
, unsigned long, arg3
,
2035 unsigned long, arg4
, unsigned long, arg5
)
2037 struct task_struct
*me
= current
;
2038 unsigned char comm
[sizeof(me
->comm
)];
2041 error
= security_task_prctl(option
, arg2
, arg3
, arg4
, arg5
);
2042 if (error
!= -ENOSYS
)
2047 case PR_SET_PDEATHSIG
:
2048 if (!valid_signal(arg2
)) {
2052 me
->pdeath_signal
= arg2
;
2054 case PR_GET_PDEATHSIG
:
2055 error
= put_user(me
->pdeath_signal
, (int __user
*)arg2
);
2057 case PR_GET_DUMPABLE
:
2058 error
= get_dumpable(me
->mm
);
2060 case PR_SET_DUMPABLE
:
2061 if (arg2
!= SUID_DUMP_DISABLE
&& arg2
!= SUID_DUMP_USER
) {
2065 set_dumpable(me
->mm
, arg2
);
2068 case PR_SET_UNALIGN
:
2069 error
= SET_UNALIGN_CTL(me
, arg2
);
2071 case PR_GET_UNALIGN
:
2072 error
= GET_UNALIGN_CTL(me
, arg2
);
2075 error
= SET_FPEMU_CTL(me
, arg2
);
2078 error
= GET_FPEMU_CTL(me
, arg2
);
2081 error
= SET_FPEXC_CTL(me
, arg2
);
2084 error
= GET_FPEXC_CTL(me
, arg2
);
2087 error
= PR_TIMING_STATISTICAL
;
2090 if (arg2
!= PR_TIMING_STATISTICAL
)
2094 comm
[sizeof(me
->comm
) - 1] = 0;
2095 if (strncpy_from_user(comm
, (char __user
*)arg2
,
2096 sizeof(me
->comm
) - 1) < 0)
2098 set_task_comm(me
, comm
);
2099 proc_comm_connector(me
);
2102 get_task_comm(comm
, me
);
2103 if (copy_to_user((char __user
*)arg2
, comm
, sizeof(comm
)))
2107 error
= GET_ENDIAN(me
, arg2
);
2110 error
= SET_ENDIAN(me
, arg2
);
2112 case PR_GET_SECCOMP
:
2113 error
= prctl_get_seccomp();
2115 case PR_SET_SECCOMP
:
2116 error
= prctl_set_seccomp(arg2
, (char __user
*)arg3
);
2119 error
= GET_TSC_CTL(arg2
);
2122 error
= SET_TSC_CTL(arg2
);
2124 case PR_TASK_PERF_EVENTS_DISABLE
:
2125 error
= perf_event_task_disable();
2127 case PR_TASK_PERF_EVENTS_ENABLE
:
2128 error
= perf_event_task_enable();
2130 case PR_GET_TIMERSLACK
:
2131 error
= current
->timer_slack_ns
;
2133 case PR_SET_TIMERSLACK
:
2135 current
->timer_slack_ns
=
2136 current
->default_timer_slack_ns
;
2138 current
->timer_slack_ns
= arg2
;
2144 case PR_MCE_KILL_CLEAR
:
2147 current
->flags
&= ~PF_MCE_PROCESS
;
2149 case PR_MCE_KILL_SET
:
2150 current
->flags
|= PF_MCE_PROCESS
;
2151 if (arg3
== PR_MCE_KILL_EARLY
)
2152 current
->flags
|= PF_MCE_EARLY
;
2153 else if (arg3
== PR_MCE_KILL_LATE
)
2154 current
->flags
&= ~PF_MCE_EARLY
;
2155 else if (arg3
== PR_MCE_KILL_DEFAULT
)
2157 ~(PF_MCE_EARLY
|PF_MCE_PROCESS
);
2165 case PR_MCE_KILL_GET
:
2166 if (arg2
| arg3
| arg4
| arg5
)
2168 if (current
->flags
& PF_MCE_PROCESS
)
2169 error
= (current
->flags
& PF_MCE_EARLY
) ?
2170 PR_MCE_KILL_EARLY
: PR_MCE_KILL_LATE
;
2172 error
= PR_MCE_KILL_DEFAULT
;
2175 error
= prctl_set_mm(arg2
, arg3
, arg4
, arg5
);
2177 case PR_GET_TID_ADDRESS
:
2178 error
= prctl_get_tid_address(me
, (int __user
**)arg2
);
2180 case PR_SET_CHILD_SUBREAPER
:
2181 me
->signal
->is_child_subreaper
= !!arg2
;
2183 case PR_GET_CHILD_SUBREAPER
:
2184 error
= put_user(me
->signal
->is_child_subreaper
,
2185 (int __user
*)arg2
);
2187 case PR_SET_NO_NEW_PRIVS
:
2188 if (arg2
!= 1 || arg3
|| arg4
|| arg5
)
2191 task_set_no_new_privs(current
);
2193 case PR_GET_NO_NEW_PRIVS
:
2194 if (arg2
|| arg3
|| arg4
|| arg5
)
2196 return task_no_new_privs(current
) ? 1 : 0;
2197 case PR_GET_THP_DISABLE
:
2198 if (arg2
|| arg3
|| arg4
|| arg5
)
2200 error
= !!(me
->mm
->def_flags
& VM_NOHUGEPAGE
);
2202 case PR_SET_THP_DISABLE
:
2203 if (arg3
|| arg4
|| arg5
)
2205 down_write(&me
->mm
->mmap_sem
);
2207 me
->mm
->def_flags
|= VM_NOHUGEPAGE
;
2209 me
->mm
->def_flags
&= ~VM_NOHUGEPAGE
;
2210 up_write(&me
->mm
->mmap_sem
);
2212 case PR_MPX_ENABLE_MANAGEMENT
:
2213 error
= MPX_ENABLE_MANAGEMENT(me
);
2215 case PR_MPX_DISABLE_MANAGEMENT
:
2216 error
= MPX_DISABLE_MANAGEMENT(me
);
2225 SYSCALL_DEFINE3(getcpu
, unsigned __user
*, cpup
, unsigned __user
*, nodep
,
2226 struct getcpu_cache __user
*, unused
)
2229 int cpu
= raw_smp_processor_id();
2232 err
|= put_user(cpu
, cpup
);
2234 err
|= put_user(cpu_to_node(cpu
), nodep
);
2235 return err
? -EFAULT
: 0;
2239 * do_sysinfo - fill in sysinfo struct
2240 * @info: pointer to buffer to fill
2242 static int do_sysinfo(struct sysinfo
*info
)
2244 unsigned long mem_total
, sav_total
;
2245 unsigned int mem_unit
, bitcount
;
2248 memset(info
, 0, sizeof(struct sysinfo
));
2250 get_monotonic_boottime(&tp
);
2251 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
2253 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
2255 info
->procs
= nr_threads
;
2261 * If the sum of all the available memory (i.e. ram + swap)
2262 * is less than can be stored in a 32 bit unsigned long then
2263 * we can be binary compatible with 2.2.x kernels. If not,
2264 * well, in that case 2.2.x was broken anyways...
2266 * -Erik Andersen <andersee@debian.org>
2269 mem_total
= info
->totalram
+ info
->totalswap
;
2270 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
2273 mem_unit
= info
->mem_unit
;
2274 while (mem_unit
> 1) {
2277 sav_total
= mem_total
;
2279 if (mem_total
< sav_total
)
2284 * If mem_total did not overflow, multiply all memory values by
2285 * info->mem_unit and set it to 1. This leaves things compatible
2286 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2291 info
->totalram
<<= bitcount
;
2292 info
->freeram
<<= bitcount
;
2293 info
->sharedram
<<= bitcount
;
2294 info
->bufferram
<<= bitcount
;
2295 info
->totalswap
<<= bitcount
;
2296 info
->freeswap
<<= bitcount
;
2297 info
->totalhigh
<<= bitcount
;
2298 info
->freehigh
<<= bitcount
;
2304 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
2310 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
2316 #ifdef CONFIG_COMPAT
2317 struct compat_sysinfo
{
2331 char _f
[20-2*sizeof(u32
)-sizeof(int)];
2334 COMPAT_SYSCALL_DEFINE1(sysinfo
, struct compat_sysinfo __user
*, info
)
2340 /* Check to see if any memory value is too large for 32-bit and scale
2343 if (upper_32_bits(s
.totalram
) || upper_32_bits(s
.totalswap
)) {
2346 while (s
.mem_unit
< PAGE_SIZE
) {
2351 s
.totalram
>>= bitcount
;
2352 s
.freeram
>>= bitcount
;
2353 s
.sharedram
>>= bitcount
;
2354 s
.bufferram
>>= bitcount
;
2355 s
.totalswap
>>= bitcount
;
2356 s
.freeswap
>>= bitcount
;
2357 s
.totalhigh
>>= bitcount
;
2358 s
.freehigh
>>= bitcount
;
2361 if (!access_ok(VERIFY_WRITE
, info
, sizeof(struct compat_sysinfo
)) ||
2362 __put_user(s
.uptime
, &info
->uptime
) ||
2363 __put_user(s
.loads
[0], &info
->loads
[0]) ||
2364 __put_user(s
.loads
[1], &info
->loads
[1]) ||
2365 __put_user(s
.loads
[2], &info
->loads
[2]) ||
2366 __put_user(s
.totalram
, &info
->totalram
) ||
2367 __put_user(s
.freeram
, &info
->freeram
) ||
2368 __put_user(s
.sharedram
, &info
->sharedram
) ||
2369 __put_user(s
.bufferram
, &info
->bufferram
) ||
2370 __put_user(s
.totalswap
, &info
->totalswap
) ||
2371 __put_user(s
.freeswap
, &info
->freeswap
) ||
2372 __put_user(s
.procs
, &info
->procs
) ||
2373 __put_user(s
.totalhigh
, &info
->totalhigh
) ||
2374 __put_user(s
.freehigh
, &info
->freehigh
) ||
2375 __put_user(s
.mem_unit
, &info
->mem_unit
))
2380 #endif /* CONFIG_COMPAT */