staging:iio:adc:ad7606 move to info_mask_(shared_by_type/separate)
[linux/fpc-iii.git] / arch / powerpc / kernel / signal_32.c
blob3acb28e245b411d65ebcc8c68bfeec802e7f4737
1 /*
2 * Signal handling for 32bit PPC and 32bit tasks on 64bit PPC
4 * PowerPC version
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 * Copyright (C) 2001 IBM
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu)
10 * Derived from "arch/i386/kernel/signal.c"
11 * Copyright (C) 1991, 1992 Linus Torvalds
12 * 1997-11-28 Modified for POSIX.1b signals by Richard Henderson
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
20 #include <linux/sched.h>
21 #include <linux/mm.h>
22 #include <linux/smp.h>
23 #include <linux/kernel.h>
24 #include <linux/signal.h>
25 #include <linux/errno.h>
26 #include <linux/elf.h>
27 #include <linux/ptrace.h>
28 #include <linux/ratelimit.h>
29 #ifdef CONFIG_PPC64
30 #include <linux/syscalls.h>
31 #include <linux/compat.h>
32 #else
33 #include <linux/wait.h>
34 #include <linux/unistd.h>
35 #include <linux/stddef.h>
36 #include <linux/tty.h>
37 #include <linux/binfmts.h>
38 #endif
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/syscalls.h>
43 #include <asm/sigcontext.h>
44 #include <asm/vdso.h>
45 #include <asm/switch_to.h>
46 #include <asm/tm.h>
47 #ifdef CONFIG_PPC64
48 #include "ppc32.h"
49 #include <asm/unistd.h>
50 #else
51 #include <asm/ucontext.h>
52 #include <asm/pgtable.h>
53 #endif
55 #include "signal.h"
57 #undef DEBUG_SIG
59 #ifdef CONFIG_PPC64
60 #define sys_rt_sigreturn compat_sys_rt_sigreturn
61 #define sys_swapcontext compat_sys_swapcontext
62 #define sys_sigreturn compat_sys_sigreturn
64 #define old_sigaction old_sigaction32
65 #define sigcontext sigcontext32
66 #define mcontext mcontext32
67 #define ucontext ucontext32
69 #define __save_altstack __compat_save_altstack
72 * Userspace code may pass a ucontext which doesn't include VSX added
73 * at the end. We need to check for this case.
75 #define UCONTEXTSIZEWITHOUTVSX \
76 (sizeof(struct ucontext) - sizeof(elf_vsrreghalf_t32))
79 * Returning 0 means we return to userspace via
80 * ret_from_except and thus restore all user
81 * registers from *regs. This is what we need
82 * to do when a signal has been delivered.
85 #define GP_REGS_SIZE min(sizeof(elf_gregset_t32), sizeof(struct pt_regs32))
86 #undef __SIGNAL_FRAMESIZE
87 #define __SIGNAL_FRAMESIZE __SIGNAL_FRAMESIZE32
88 #undef ELF_NVRREG
89 #define ELF_NVRREG ELF_NVRREG32
92 * Functions for flipping sigsets (thanks to brain dead generic
93 * implementation that makes things simple for little endian only)
95 static inline int put_sigset_t(compat_sigset_t __user *uset, sigset_t *set)
97 compat_sigset_t cset;
99 switch (_NSIG_WORDS) {
100 case 4: cset.sig[6] = set->sig[3] & 0xffffffffull;
101 cset.sig[7] = set->sig[3] >> 32;
102 case 3: cset.sig[4] = set->sig[2] & 0xffffffffull;
103 cset.sig[5] = set->sig[2] >> 32;
104 case 2: cset.sig[2] = set->sig[1] & 0xffffffffull;
105 cset.sig[3] = set->sig[1] >> 32;
106 case 1: cset.sig[0] = set->sig[0] & 0xffffffffull;
107 cset.sig[1] = set->sig[0] >> 32;
109 return copy_to_user(uset, &cset, sizeof(*uset));
112 static inline int get_sigset_t(sigset_t *set,
113 const compat_sigset_t __user *uset)
115 compat_sigset_t s32;
117 if (copy_from_user(&s32, uset, sizeof(*uset)))
118 return -EFAULT;
121 * Swap the 2 words of the 64-bit sigset_t (they are stored
122 * in the "wrong" endian in 32-bit user storage).
124 switch (_NSIG_WORDS) {
125 case 4: set->sig[3] = s32.sig[6] | (((long)s32.sig[7]) << 32);
126 case 3: set->sig[2] = s32.sig[4] | (((long)s32.sig[5]) << 32);
127 case 2: set->sig[1] = s32.sig[2] | (((long)s32.sig[3]) << 32);
128 case 1: set->sig[0] = s32.sig[0] | (((long)s32.sig[1]) << 32);
130 return 0;
133 #define to_user_ptr(p) ptr_to_compat(p)
134 #define from_user_ptr(p) compat_ptr(p)
136 static inline int save_general_regs(struct pt_regs *regs,
137 struct mcontext __user *frame)
139 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
140 int i;
142 WARN_ON(!FULL_REGS(regs));
144 for (i = 0; i <= PT_RESULT; i ++) {
145 if (i == 14 && !FULL_REGS(regs))
146 i = 32;
147 if (__put_user((unsigned int)gregs[i], &frame->mc_gregs[i]))
148 return -EFAULT;
150 return 0;
153 static inline int restore_general_regs(struct pt_regs *regs,
154 struct mcontext __user *sr)
156 elf_greg_t64 *gregs = (elf_greg_t64 *)regs;
157 int i;
159 for (i = 0; i <= PT_RESULT; i++) {
160 if ((i == PT_MSR) || (i == PT_SOFTE))
161 continue;
162 if (__get_user(gregs[i], &sr->mc_gregs[i]))
163 return -EFAULT;
165 return 0;
168 #else /* CONFIG_PPC64 */
170 #define GP_REGS_SIZE min(sizeof(elf_gregset_t), sizeof(struct pt_regs))
172 static inline int put_sigset_t(sigset_t __user *uset, sigset_t *set)
174 return copy_to_user(uset, set, sizeof(*uset));
177 static inline int get_sigset_t(sigset_t *set, const sigset_t __user *uset)
179 return copy_from_user(set, uset, sizeof(*uset));
182 #define to_user_ptr(p) ((unsigned long)(p))
183 #define from_user_ptr(p) ((void __user *)(p))
185 static inline int save_general_regs(struct pt_regs *regs,
186 struct mcontext __user *frame)
188 WARN_ON(!FULL_REGS(regs));
189 return __copy_to_user(&frame->mc_gregs, regs, GP_REGS_SIZE);
192 static inline int restore_general_regs(struct pt_regs *regs,
193 struct mcontext __user *sr)
195 /* copy up to but not including MSR */
196 if (__copy_from_user(regs, &sr->mc_gregs,
197 PT_MSR * sizeof(elf_greg_t)))
198 return -EFAULT;
199 /* copy from orig_r3 (the word after the MSR) up to the end */
200 if (__copy_from_user(&regs->orig_gpr3, &sr->mc_gregs[PT_ORIG_R3],
201 GP_REGS_SIZE - PT_ORIG_R3 * sizeof(elf_greg_t)))
202 return -EFAULT;
203 return 0;
205 #endif
208 * When we have signals to deliver, we set up on the
209 * user stack, going down from the original stack pointer:
210 * an ABI gap of 56 words
211 * an mcontext struct
212 * a sigcontext struct
213 * a gap of __SIGNAL_FRAMESIZE bytes
215 * Each of these things must be a multiple of 16 bytes in size. The following
216 * structure represent all of this except the __SIGNAL_FRAMESIZE gap
219 struct sigframe {
220 struct sigcontext sctx; /* the sigcontext */
221 struct mcontext mctx; /* all the register values */
222 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
223 struct sigcontext sctx_transact;
224 struct mcontext mctx_transact;
225 #endif
227 * Programs using the rs6000/xcoff abi can save up to 19 gp
228 * regs and 18 fp regs below sp before decrementing it.
230 int abigap[56];
233 /* We use the mc_pad field for the signal return trampoline. */
234 #define tramp mc_pad
237 * When we have rt signals to deliver, we set up on the
238 * user stack, going down from the original stack pointer:
239 * one rt_sigframe struct (siginfo + ucontext + ABI gap)
240 * a gap of __SIGNAL_FRAMESIZE+16 bytes
241 * (the +16 is to get the siginfo and ucontext in the same
242 * positions as in older kernels).
244 * Each of these things must be a multiple of 16 bytes in size.
247 struct rt_sigframe {
248 #ifdef CONFIG_PPC64
249 compat_siginfo_t info;
250 #else
251 struct siginfo info;
252 #endif
253 struct ucontext uc;
254 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
255 struct ucontext uc_transact;
256 #endif
258 * Programs using the rs6000/xcoff abi can save up to 19 gp
259 * regs and 18 fp regs below sp before decrementing it.
261 int abigap[56];
264 #ifdef CONFIG_VSX
265 unsigned long copy_fpr_to_user(void __user *to,
266 struct task_struct *task)
268 double buf[ELF_NFPREG];
269 int i;
271 /* save FPR copy to local buffer then write to the thread_struct */
272 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
273 buf[i] = task->thread.TS_FPR(i);
274 memcpy(&buf[i], &task->thread.fpscr, sizeof(double));
275 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
278 unsigned long copy_fpr_from_user(struct task_struct *task,
279 void __user *from)
281 double buf[ELF_NFPREG];
282 int i;
284 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
285 return 1;
286 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
287 task->thread.TS_FPR(i) = buf[i];
288 memcpy(&task->thread.fpscr, &buf[i], sizeof(double));
290 return 0;
293 unsigned long copy_vsx_to_user(void __user *to,
294 struct task_struct *task)
296 double buf[ELF_NVSRHALFREG];
297 int i;
299 /* save FPR copy to local buffer then write to the thread_struct */
300 for (i = 0; i < ELF_NVSRHALFREG; i++)
301 buf[i] = task->thread.fpr[i][TS_VSRLOWOFFSET];
302 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
305 unsigned long copy_vsx_from_user(struct task_struct *task,
306 void __user *from)
308 double buf[ELF_NVSRHALFREG];
309 int i;
311 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
312 return 1;
313 for (i = 0; i < ELF_NVSRHALFREG ; i++)
314 task->thread.fpr[i][TS_VSRLOWOFFSET] = buf[i];
315 return 0;
318 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
319 unsigned long copy_transact_fpr_to_user(void __user *to,
320 struct task_struct *task)
322 double buf[ELF_NFPREG];
323 int i;
325 /* save FPR copy to local buffer then write to the thread_struct */
326 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
327 buf[i] = task->thread.TS_TRANS_FPR(i);
328 memcpy(&buf[i], &task->thread.transact_fpscr, sizeof(double));
329 return __copy_to_user(to, buf, ELF_NFPREG * sizeof(double));
332 unsigned long copy_transact_fpr_from_user(struct task_struct *task,
333 void __user *from)
335 double buf[ELF_NFPREG];
336 int i;
338 if (__copy_from_user(buf, from, ELF_NFPREG * sizeof(double)))
339 return 1;
340 for (i = 0; i < (ELF_NFPREG - 1) ; i++)
341 task->thread.TS_TRANS_FPR(i) = buf[i];
342 memcpy(&task->thread.transact_fpscr, &buf[i], sizeof(double));
344 return 0;
347 unsigned long copy_transact_vsx_to_user(void __user *to,
348 struct task_struct *task)
350 double buf[ELF_NVSRHALFREG];
351 int i;
353 /* save FPR copy to local buffer then write to the thread_struct */
354 for (i = 0; i < ELF_NVSRHALFREG; i++)
355 buf[i] = task->thread.transact_fpr[i][TS_VSRLOWOFFSET];
356 return __copy_to_user(to, buf, ELF_NVSRHALFREG * sizeof(double));
359 unsigned long copy_transact_vsx_from_user(struct task_struct *task,
360 void __user *from)
362 double buf[ELF_NVSRHALFREG];
363 int i;
365 if (__copy_from_user(buf, from, ELF_NVSRHALFREG * sizeof(double)))
366 return 1;
367 for (i = 0; i < ELF_NVSRHALFREG ; i++)
368 task->thread.transact_fpr[i][TS_VSRLOWOFFSET] = buf[i];
369 return 0;
371 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
372 #else
373 inline unsigned long copy_fpr_to_user(void __user *to,
374 struct task_struct *task)
376 return __copy_to_user(to, task->thread.fpr,
377 ELF_NFPREG * sizeof(double));
380 inline unsigned long copy_fpr_from_user(struct task_struct *task,
381 void __user *from)
383 return __copy_from_user(task->thread.fpr, from,
384 ELF_NFPREG * sizeof(double));
387 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
388 inline unsigned long copy_transact_fpr_to_user(void __user *to,
389 struct task_struct *task)
391 return __copy_to_user(to, task->thread.transact_fpr,
392 ELF_NFPREG * sizeof(double));
395 inline unsigned long copy_transact_fpr_from_user(struct task_struct *task,
396 void __user *from)
398 return __copy_from_user(task->thread.transact_fpr, from,
399 ELF_NFPREG * sizeof(double));
401 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
402 #endif
405 * Save the current user registers on the user stack.
406 * We only save the altivec/spe registers if the process has used
407 * altivec/spe instructions at some point.
409 static int save_user_regs(struct pt_regs *regs, struct mcontext __user *frame,
410 int sigret, int ctx_has_vsx_region)
412 unsigned long msr = regs->msr;
414 /* Make sure floating point registers are stored in regs */
415 flush_fp_to_thread(current);
417 /* save general registers */
418 if (save_general_regs(regs, frame))
419 return 1;
421 #ifdef CONFIG_ALTIVEC
422 /* save altivec registers */
423 if (current->thread.used_vr) {
424 flush_altivec_to_thread(current);
425 if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
426 ELF_NVRREG * sizeof(vector128)))
427 return 1;
428 /* set MSR_VEC in the saved MSR value to indicate that
429 frame->mc_vregs contains valid data */
430 msr |= MSR_VEC;
432 /* else assert((regs->msr & MSR_VEC) == 0) */
434 /* We always copy to/from vrsave, it's 0 if we don't have or don't
435 * use altivec. Since VSCR only contains 32 bits saved in the least
436 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
437 * most significant bits of that same vector. --BenH
439 if (__put_user(current->thread.vrsave, (u32 __user *)&frame->mc_vregs[32]))
440 return 1;
441 #endif /* CONFIG_ALTIVEC */
442 if (copy_fpr_to_user(&frame->mc_fregs, current))
443 return 1;
444 #ifdef CONFIG_VSX
446 * Copy VSR 0-31 upper half from thread_struct to local
447 * buffer, then write that to userspace. Also set MSR_VSX in
448 * the saved MSR value to indicate that frame->mc_vregs
449 * contains valid data
451 if (current->thread.used_vsr && ctx_has_vsx_region) {
452 __giveup_vsx(current);
453 if (copy_vsx_to_user(&frame->mc_vsregs, current))
454 return 1;
455 msr |= MSR_VSX;
457 #endif /* CONFIG_VSX */
458 #ifdef CONFIG_SPE
459 /* save spe registers */
460 if (current->thread.used_spe) {
461 flush_spe_to_thread(current);
462 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
463 ELF_NEVRREG * sizeof(u32)))
464 return 1;
465 /* set MSR_SPE in the saved MSR value to indicate that
466 frame->mc_vregs contains valid data */
467 msr |= MSR_SPE;
469 /* else assert((regs->msr & MSR_SPE) == 0) */
471 /* We always copy to/from spefscr */
472 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
473 return 1;
474 #endif /* CONFIG_SPE */
476 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
477 return 1;
478 if (sigret) {
479 /* Set up the sigreturn trampoline: li r0,sigret; sc */
480 if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
481 || __put_user(0x44000002UL, &frame->tramp[1]))
482 return 1;
483 flush_icache_range((unsigned long) &frame->tramp[0],
484 (unsigned long) &frame->tramp[2]);
487 return 0;
490 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
492 * Save the current user registers on the user stack.
493 * We only save the altivec/spe registers if the process has used
494 * altivec/spe instructions at some point.
495 * We also save the transactional registers to a second ucontext in the
496 * frame.
498 * See save_user_regs() and signal_64.c:setup_tm_sigcontexts().
500 static int save_tm_user_regs(struct pt_regs *regs,
501 struct mcontext __user *frame,
502 struct mcontext __user *tm_frame, int sigret)
504 unsigned long msr = regs->msr;
506 /* tm_reclaim rolls back all reg states, updating thread.ckpt_regs,
507 * thread.transact_fpr[], thread.transact_vr[], etc.
509 tm_enable();
510 tm_reclaim(&current->thread, msr, TM_CAUSE_SIGNAL);
512 /* Make sure floating point registers are stored in regs */
513 flush_fp_to_thread(current);
515 /* Save both sets of general registers */
516 if (save_general_regs(&current->thread.ckpt_regs, frame)
517 || save_general_regs(regs, tm_frame))
518 return 1;
520 /* Stash the top half of the 64bit MSR into the 32bit MSR word
521 * of the transactional mcontext. This way we have a backward-compatible
522 * MSR in the 'normal' (checkpointed) mcontext and additionally one can
523 * also look at what type of transaction (T or S) was active at the
524 * time of the signal.
526 if (__put_user((msr >> 32), &tm_frame->mc_gregs[PT_MSR]))
527 return 1;
529 #ifdef CONFIG_ALTIVEC
530 /* save altivec registers */
531 if (current->thread.used_vr) {
532 flush_altivec_to_thread(current);
533 if (__copy_to_user(&frame->mc_vregs, current->thread.vr,
534 ELF_NVRREG * sizeof(vector128)))
535 return 1;
536 if (msr & MSR_VEC) {
537 if (__copy_to_user(&tm_frame->mc_vregs,
538 current->thread.transact_vr,
539 ELF_NVRREG * sizeof(vector128)))
540 return 1;
541 } else {
542 if (__copy_to_user(&tm_frame->mc_vregs,
543 current->thread.vr,
544 ELF_NVRREG * sizeof(vector128)))
545 return 1;
548 /* set MSR_VEC in the saved MSR value to indicate that
549 * frame->mc_vregs contains valid data
551 msr |= MSR_VEC;
554 /* We always copy to/from vrsave, it's 0 if we don't have or don't
555 * use altivec. Since VSCR only contains 32 bits saved in the least
556 * significant bits of a vector, we "cheat" and stuff VRSAVE in the
557 * most significant bits of that same vector. --BenH
559 if (__put_user(current->thread.vrsave,
560 (u32 __user *)&frame->mc_vregs[32]))
561 return 1;
562 if (msr & MSR_VEC) {
563 if (__put_user(current->thread.transact_vrsave,
564 (u32 __user *)&tm_frame->mc_vregs[32]))
565 return 1;
566 } else {
567 if (__put_user(current->thread.vrsave,
568 (u32 __user *)&tm_frame->mc_vregs[32]))
569 return 1;
571 #endif /* CONFIG_ALTIVEC */
573 if (copy_fpr_to_user(&frame->mc_fregs, current))
574 return 1;
575 if (msr & MSR_FP) {
576 if (copy_transact_fpr_to_user(&tm_frame->mc_fregs, current))
577 return 1;
578 } else {
579 if (copy_fpr_to_user(&tm_frame->mc_fregs, current))
580 return 1;
583 #ifdef CONFIG_VSX
585 * Copy VSR 0-31 upper half from thread_struct to local
586 * buffer, then write that to userspace. Also set MSR_VSX in
587 * the saved MSR value to indicate that frame->mc_vregs
588 * contains valid data
590 if (current->thread.used_vsr) {
591 __giveup_vsx(current);
592 if (copy_vsx_to_user(&frame->mc_vsregs, current))
593 return 1;
594 if (msr & MSR_VSX) {
595 if (copy_transact_vsx_to_user(&tm_frame->mc_vsregs,
596 current))
597 return 1;
598 } else {
599 if (copy_vsx_to_user(&tm_frame->mc_vsregs, current))
600 return 1;
603 msr |= MSR_VSX;
605 #endif /* CONFIG_VSX */
606 #ifdef CONFIG_SPE
607 /* SPE regs are not checkpointed with TM, so this section is
608 * simply the same as in save_user_regs().
610 if (current->thread.used_spe) {
611 flush_spe_to_thread(current);
612 if (__copy_to_user(&frame->mc_vregs, current->thread.evr,
613 ELF_NEVRREG * sizeof(u32)))
614 return 1;
615 /* set MSR_SPE in the saved MSR value to indicate that
616 * frame->mc_vregs contains valid data */
617 msr |= MSR_SPE;
620 /* We always copy to/from spefscr */
621 if (__put_user(current->thread.spefscr, (u32 __user *)&frame->mc_vregs + ELF_NEVRREG))
622 return 1;
623 #endif /* CONFIG_SPE */
625 if (__put_user(msr, &frame->mc_gregs[PT_MSR]))
626 return 1;
627 if (sigret) {
628 /* Set up the sigreturn trampoline: li r0,sigret; sc */
629 if (__put_user(0x38000000UL + sigret, &frame->tramp[0])
630 || __put_user(0x44000002UL, &frame->tramp[1]))
631 return 1;
632 flush_icache_range((unsigned long) &frame->tramp[0],
633 (unsigned long) &frame->tramp[2]);
636 return 0;
638 #endif
641 * Restore the current user register values from the user stack,
642 * (except for MSR).
644 static long restore_user_regs(struct pt_regs *regs,
645 struct mcontext __user *sr, int sig)
647 long err;
648 unsigned int save_r2 = 0;
649 unsigned long msr;
650 #ifdef CONFIG_VSX
651 int i;
652 #endif
655 * restore general registers but not including MSR or SOFTE. Also
656 * take care of keeping r2 (TLS) intact if not a signal
658 if (!sig)
659 save_r2 = (unsigned int)regs->gpr[2];
660 err = restore_general_regs(regs, sr);
661 regs->trap = 0;
662 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
663 if (!sig)
664 regs->gpr[2] = (unsigned long) save_r2;
665 if (err)
666 return 1;
668 /* if doing signal return, restore the previous little-endian mode */
669 if (sig)
670 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
673 * Do this before updating the thread state in
674 * current->thread.fpr/vr/evr. That way, if we get preempted
675 * and another task grabs the FPU/Altivec/SPE, it won't be
676 * tempted to save the current CPU state into the thread_struct
677 * and corrupt what we are writing there.
679 discard_lazy_cpu_state();
681 #ifdef CONFIG_ALTIVEC
683 * Force the process to reload the altivec registers from
684 * current->thread when it next does altivec instructions
686 regs->msr &= ~MSR_VEC;
687 if (msr & MSR_VEC) {
688 /* restore altivec registers from the stack */
689 if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
690 sizeof(sr->mc_vregs)))
691 return 1;
692 } else if (current->thread.used_vr)
693 memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128));
695 /* Always get VRSAVE back */
696 if (__get_user(current->thread.vrsave, (u32 __user *)&sr->mc_vregs[32]))
697 return 1;
698 #endif /* CONFIG_ALTIVEC */
699 if (copy_fpr_from_user(current, &sr->mc_fregs))
700 return 1;
702 #ifdef CONFIG_VSX
704 * Force the process to reload the VSX registers from
705 * current->thread when it next does VSX instruction.
707 regs->msr &= ~MSR_VSX;
708 if (msr & MSR_VSX) {
710 * Restore altivec registers from the stack to a local
711 * buffer, then write this out to the thread_struct
713 if (copy_vsx_from_user(current, &sr->mc_vsregs))
714 return 1;
715 } else if (current->thread.used_vsr)
716 for (i = 0; i < 32 ; i++)
717 current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
718 #endif /* CONFIG_VSX */
720 * force the process to reload the FP registers from
721 * current->thread when it next does FP instructions
723 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
725 #ifdef CONFIG_SPE
726 /* force the process to reload the spe registers from
727 current->thread when it next does spe instructions */
728 regs->msr &= ~MSR_SPE;
729 if (msr & MSR_SPE) {
730 /* restore spe registers from the stack */
731 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
732 ELF_NEVRREG * sizeof(u32)))
733 return 1;
734 } else if (current->thread.used_spe)
735 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
737 /* Always get SPEFSCR back */
738 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs + ELF_NEVRREG))
739 return 1;
740 #endif /* CONFIG_SPE */
742 return 0;
745 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
747 * Restore the current user register values from the user stack, except for
748 * MSR, and recheckpoint the original checkpointed register state for processes
749 * in transactions.
751 static long restore_tm_user_regs(struct pt_regs *regs,
752 struct mcontext __user *sr,
753 struct mcontext __user *tm_sr)
755 long err;
756 unsigned long msr;
757 #ifdef CONFIG_VSX
758 int i;
759 #endif
762 * restore general registers but not including MSR or SOFTE. Also
763 * take care of keeping r2 (TLS) intact if not a signal.
764 * See comment in signal_64.c:restore_tm_sigcontexts();
765 * TFHAR is restored from the checkpointed NIP; TEXASR and TFIAR
766 * were set by the signal delivery.
768 err = restore_general_regs(regs, tm_sr);
769 err |= restore_general_regs(&current->thread.ckpt_regs, sr);
771 err |= __get_user(current->thread.tm_tfhar, &sr->mc_gregs[PT_NIP]);
773 err |= __get_user(msr, &sr->mc_gregs[PT_MSR]);
774 if (err)
775 return 1;
777 /* Restore the previous little-endian mode */
778 regs->msr = (regs->msr & ~MSR_LE) | (msr & MSR_LE);
781 * Do this before updating the thread state in
782 * current->thread.fpr/vr/evr. That way, if we get preempted
783 * and another task grabs the FPU/Altivec/SPE, it won't be
784 * tempted to save the current CPU state into the thread_struct
785 * and corrupt what we are writing there.
787 discard_lazy_cpu_state();
789 #ifdef CONFIG_ALTIVEC
790 regs->msr &= ~MSR_VEC;
791 if (msr & MSR_VEC) {
792 /* restore altivec registers from the stack */
793 if (__copy_from_user(current->thread.vr, &sr->mc_vregs,
794 sizeof(sr->mc_vregs)) ||
795 __copy_from_user(current->thread.transact_vr,
796 &tm_sr->mc_vregs,
797 sizeof(sr->mc_vregs)))
798 return 1;
799 } else if (current->thread.used_vr) {
800 memset(current->thread.vr, 0, ELF_NVRREG * sizeof(vector128));
801 memset(current->thread.transact_vr, 0,
802 ELF_NVRREG * sizeof(vector128));
805 /* Always get VRSAVE back */
806 if (__get_user(current->thread.vrsave,
807 (u32 __user *)&sr->mc_vregs[32]) ||
808 __get_user(current->thread.transact_vrsave,
809 (u32 __user *)&tm_sr->mc_vregs[32]))
810 return 1;
811 #endif /* CONFIG_ALTIVEC */
813 regs->msr &= ~(MSR_FP | MSR_FE0 | MSR_FE1);
815 if (copy_fpr_from_user(current, &sr->mc_fregs) ||
816 copy_transact_fpr_from_user(current, &tm_sr->mc_fregs))
817 return 1;
819 #ifdef CONFIG_VSX
820 regs->msr &= ~MSR_VSX;
821 if (msr & MSR_VSX) {
823 * Restore altivec registers from the stack to a local
824 * buffer, then write this out to the thread_struct
826 if (copy_vsx_from_user(current, &sr->mc_vsregs) ||
827 copy_transact_vsx_from_user(current, &tm_sr->mc_vsregs))
828 return 1;
829 } else if (current->thread.used_vsr)
830 for (i = 0; i < 32 ; i++) {
831 current->thread.fpr[i][TS_VSRLOWOFFSET] = 0;
832 current->thread.transact_fpr[i][TS_VSRLOWOFFSET] = 0;
834 #endif /* CONFIG_VSX */
836 #ifdef CONFIG_SPE
837 /* SPE regs are not checkpointed with TM, so this section is
838 * simply the same as in restore_user_regs().
840 regs->msr &= ~MSR_SPE;
841 if (msr & MSR_SPE) {
842 if (__copy_from_user(current->thread.evr, &sr->mc_vregs,
843 ELF_NEVRREG * sizeof(u32)))
844 return 1;
845 } else if (current->thread.used_spe)
846 memset(current->thread.evr, 0, ELF_NEVRREG * sizeof(u32));
848 /* Always get SPEFSCR back */
849 if (__get_user(current->thread.spefscr, (u32 __user *)&sr->mc_vregs
850 + ELF_NEVRREG))
851 return 1;
852 #endif /* CONFIG_SPE */
854 /* Now, recheckpoint. This loads up all of the checkpointed (older)
855 * registers, including FP and V[S]Rs. After recheckpointing, the
856 * transactional versions should be loaded.
858 tm_enable();
859 /* This loads the checkpointed FP/VEC state, if used */
860 tm_recheckpoint(&current->thread, msr);
861 /* The task has moved into TM state S, so ensure MSR reflects this */
862 regs->msr = (regs->msr & ~MSR_TS_MASK) | MSR_TS_S;
864 /* This loads the speculative FP/VEC state, if used */
865 if (msr & MSR_FP) {
866 do_load_up_transact_fpu(&current->thread);
867 regs->msr |= (MSR_FP | current->thread.fpexc_mode);
869 if (msr & MSR_VEC) {
870 do_load_up_transact_altivec(&current->thread);
871 regs->msr |= MSR_VEC;
874 return 0;
876 #endif
878 #ifdef CONFIG_PPC64
879 int copy_siginfo_to_user32(struct compat_siginfo __user *d, siginfo_t *s)
881 int err;
883 if (!access_ok (VERIFY_WRITE, d, sizeof(*d)))
884 return -EFAULT;
886 /* If you change siginfo_t structure, please be sure
887 * this code is fixed accordingly.
888 * It should never copy any pad contained in the structure
889 * to avoid security leaks, but must copy the generic
890 * 3 ints plus the relevant union member.
891 * This routine must convert siginfo from 64bit to 32bit as well
892 * at the same time.
894 err = __put_user(s->si_signo, &d->si_signo);
895 err |= __put_user(s->si_errno, &d->si_errno);
896 err |= __put_user((short)s->si_code, &d->si_code);
897 if (s->si_code < 0)
898 err |= __copy_to_user(&d->_sifields._pad, &s->_sifields._pad,
899 SI_PAD_SIZE32);
900 else switch(s->si_code >> 16) {
901 case __SI_CHLD >> 16:
902 err |= __put_user(s->si_pid, &d->si_pid);
903 err |= __put_user(s->si_uid, &d->si_uid);
904 err |= __put_user(s->si_utime, &d->si_utime);
905 err |= __put_user(s->si_stime, &d->si_stime);
906 err |= __put_user(s->si_status, &d->si_status);
907 break;
908 case __SI_FAULT >> 16:
909 err |= __put_user((unsigned int)(unsigned long)s->si_addr,
910 &d->si_addr);
911 break;
912 case __SI_POLL >> 16:
913 err |= __put_user(s->si_band, &d->si_band);
914 err |= __put_user(s->si_fd, &d->si_fd);
915 break;
916 case __SI_TIMER >> 16:
917 err |= __put_user(s->si_tid, &d->si_tid);
918 err |= __put_user(s->si_overrun, &d->si_overrun);
919 err |= __put_user(s->si_int, &d->si_int);
920 break;
921 case __SI_RT >> 16: /* This is not generated by the kernel as of now. */
922 case __SI_MESGQ >> 16:
923 err |= __put_user(s->si_int, &d->si_int);
924 /* fallthrough */
925 case __SI_KILL >> 16:
926 default:
927 err |= __put_user(s->si_pid, &d->si_pid);
928 err |= __put_user(s->si_uid, &d->si_uid);
929 break;
931 return err;
934 #define copy_siginfo_to_user copy_siginfo_to_user32
936 int copy_siginfo_from_user32(siginfo_t *to, struct compat_siginfo __user *from)
938 memset(to, 0, sizeof *to);
940 if (copy_from_user(to, from, 3*sizeof(int)) ||
941 copy_from_user(to->_sifields._pad,
942 from->_sifields._pad, SI_PAD_SIZE32))
943 return -EFAULT;
945 return 0;
947 #endif /* CONFIG_PPC64 */
950 * Set up a signal frame for a "real-time" signal handler
951 * (one which gets siginfo).
953 int handle_rt_signal32(unsigned long sig, struct k_sigaction *ka,
954 siginfo_t *info, sigset_t *oldset,
955 struct pt_regs *regs)
957 struct rt_sigframe __user *rt_sf;
958 struct mcontext __user *frame;
959 void __user *addr;
960 unsigned long newsp = 0;
961 int sigret;
962 unsigned long tramp;
964 /* Set up Signal Frame */
965 /* Put a Real Time Context onto stack */
966 rt_sf = get_sigframe(ka, regs, sizeof(*rt_sf), 1);
967 addr = rt_sf;
968 if (unlikely(rt_sf == NULL))
969 goto badframe;
971 /* Put the siginfo & fill in most of the ucontext */
972 if (copy_siginfo_to_user(&rt_sf->info, info)
973 || __put_user(0, &rt_sf->uc.uc_flags)
974 || __save_altstack(&rt_sf->uc.uc_stack, regs->gpr[1])
975 || __put_user(to_user_ptr(&rt_sf->uc.uc_mcontext),
976 &rt_sf->uc.uc_regs)
977 || put_sigset_t(&rt_sf->uc.uc_sigmask, oldset))
978 goto badframe;
980 /* Save user registers on the stack */
981 frame = &rt_sf->uc.uc_mcontext;
982 addr = frame;
983 if (vdso32_rt_sigtramp && current->mm->context.vdso_base) {
984 sigret = 0;
985 tramp = current->mm->context.vdso_base + vdso32_rt_sigtramp;
986 } else {
987 sigret = __NR_rt_sigreturn;
988 tramp = (unsigned long) frame->tramp;
991 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
992 if (MSR_TM_ACTIVE(regs->msr)) {
993 if (save_tm_user_regs(regs, &rt_sf->uc.uc_mcontext,
994 &rt_sf->uc_transact.uc_mcontext, sigret))
995 goto badframe;
997 else
998 #endif
999 if (save_user_regs(regs, frame, sigret, 1))
1000 goto badframe;
1001 regs->link = tramp;
1003 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1004 if (MSR_TM_ACTIVE(regs->msr)) {
1005 if (__put_user((unsigned long)&rt_sf->uc_transact,
1006 &rt_sf->uc.uc_link)
1007 || __put_user(to_user_ptr(&rt_sf->uc_transact.uc_mcontext),
1008 &rt_sf->uc_transact.uc_regs))
1009 goto badframe;
1011 else
1012 #endif
1013 if (__put_user(0, &rt_sf->uc.uc_link))
1014 goto badframe;
1016 current->thread.fpscr.val = 0; /* turn off all fp exceptions */
1018 /* create a stack frame for the caller of the handler */
1019 newsp = ((unsigned long)rt_sf) - (__SIGNAL_FRAMESIZE + 16);
1020 addr = (void __user *)regs->gpr[1];
1021 if (put_user(regs->gpr[1], (u32 __user *)newsp))
1022 goto badframe;
1024 /* Fill registers for signal handler */
1025 regs->gpr[1] = newsp;
1026 regs->gpr[3] = sig;
1027 regs->gpr[4] = (unsigned long) &rt_sf->info;
1028 regs->gpr[5] = (unsigned long) &rt_sf->uc;
1029 regs->gpr[6] = (unsigned long) rt_sf;
1030 regs->nip = (unsigned long) ka->sa.sa_handler;
1031 /* enter the signal handler in big-endian mode */
1032 regs->msr &= ~MSR_LE;
1033 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1034 /* Remove TM bits from thread's MSR. The MSR in the sigcontext
1035 * just indicates to userland that we were doing a transaction, but we
1036 * don't want to return in transactional state:
1038 regs->msr &= ~MSR_TS_MASK;
1039 #endif
1040 return 1;
1042 badframe:
1043 #ifdef DEBUG_SIG
1044 printk("badframe in handle_rt_signal, regs=%p frame=%p newsp=%lx\n",
1045 regs, frame, newsp);
1046 #endif
1047 if (show_unhandled_signals)
1048 printk_ratelimited(KERN_INFO
1049 "%s[%d]: bad frame in handle_rt_signal32: "
1050 "%p nip %08lx lr %08lx\n",
1051 current->comm, current->pid,
1052 addr, regs->nip, regs->link);
1054 force_sigsegv(sig, current);
1055 return 0;
1058 static int do_setcontext(struct ucontext __user *ucp, struct pt_regs *regs, int sig)
1060 sigset_t set;
1061 struct mcontext __user *mcp;
1063 if (get_sigset_t(&set, &ucp->uc_sigmask))
1064 return -EFAULT;
1065 #ifdef CONFIG_PPC64
1067 u32 cmcp;
1069 if (__get_user(cmcp, &ucp->uc_regs))
1070 return -EFAULT;
1071 mcp = (struct mcontext __user *)(u64)cmcp;
1072 /* no need to check access_ok(mcp), since mcp < 4GB */
1074 #else
1075 if (__get_user(mcp, &ucp->uc_regs))
1076 return -EFAULT;
1077 if (!access_ok(VERIFY_READ, mcp, sizeof(*mcp)))
1078 return -EFAULT;
1079 #endif
1080 set_current_blocked(&set);
1081 if (restore_user_regs(regs, mcp, sig))
1082 return -EFAULT;
1084 return 0;
1087 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1088 static int do_setcontext_tm(struct ucontext __user *ucp,
1089 struct ucontext __user *tm_ucp,
1090 struct pt_regs *regs)
1092 sigset_t set;
1093 struct mcontext __user *mcp;
1094 struct mcontext __user *tm_mcp;
1095 u32 cmcp;
1096 u32 tm_cmcp;
1098 if (get_sigset_t(&set, &ucp->uc_sigmask))
1099 return -EFAULT;
1101 if (__get_user(cmcp, &ucp->uc_regs) ||
1102 __get_user(tm_cmcp, &tm_ucp->uc_regs))
1103 return -EFAULT;
1104 mcp = (struct mcontext __user *)(u64)cmcp;
1105 tm_mcp = (struct mcontext __user *)(u64)tm_cmcp;
1106 /* no need to check access_ok(mcp), since mcp < 4GB */
1108 set_current_blocked(&set);
1109 if (restore_tm_user_regs(regs, mcp, tm_mcp))
1110 return -EFAULT;
1112 return 0;
1114 #endif
1116 long sys_swapcontext(struct ucontext __user *old_ctx,
1117 struct ucontext __user *new_ctx,
1118 int ctx_size, int r6, int r7, int r8, struct pt_regs *regs)
1120 unsigned char tmp;
1121 int ctx_has_vsx_region = 0;
1123 #ifdef CONFIG_PPC64
1124 unsigned long new_msr = 0;
1126 if (new_ctx) {
1127 struct mcontext __user *mcp;
1128 u32 cmcp;
1131 * Get pointer to the real mcontext. No need for
1132 * access_ok since we are dealing with compat
1133 * pointers.
1135 if (__get_user(cmcp, &new_ctx->uc_regs))
1136 return -EFAULT;
1137 mcp = (struct mcontext __user *)(u64)cmcp;
1138 if (__get_user(new_msr, &mcp->mc_gregs[PT_MSR]))
1139 return -EFAULT;
1142 * Check that the context is not smaller than the original
1143 * size (with VMX but without VSX)
1145 if (ctx_size < UCONTEXTSIZEWITHOUTVSX)
1146 return -EINVAL;
1148 * If the new context state sets the MSR VSX bits but
1149 * it doesn't provide VSX state.
1151 if ((ctx_size < sizeof(struct ucontext)) &&
1152 (new_msr & MSR_VSX))
1153 return -EINVAL;
1154 /* Does the context have enough room to store VSX data? */
1155 if (ctx_size >= sizeof(struct ucontext))
1156 ctx_has_vsx_region = 1;
1157 #else
1158 /* Context size is for future use. Right now, we only make sure
1159 * we are passed something we understand
1161 if (ctx_size < sizeof(struct ucontext))
1162 return -EINVAL;
1163 #endif
1164 if (old_ctx != NULL) {
1165 struct mcontext __user *mctx;
1168 * old_ctx might not be 16-byte aligned, in which
1169 * case old_ctx->uc_mcontext won't be either.
1170 * Because we have the old_ctx->uc_pad2 field
1171 * before old_ctx->uc_mcontext, we need to round down
1172 * from &old_ctx->uc_mcontext to a 16-byte boundary.
1174 mctx = (struct mcontext __user *)
1175 ((unsigned long) &old_ctx->uc_mcontext & ~0xfUL);
1176 if (!access_ok(VERIFY_WRITE, old_ctx, ctx_size)
1177 || save_user_regs(regs, mctx, 0, ctx_has_vsx_region)
1178 || put_sigset_t(&old_ctx->uc_sigmask, &current->blocked)
1179 || __put_user(to_user_ptr(mctx), &old_ctx->uc_regs))
1180 return -EFAULT;
1182 if (new_ctx == NULL)
1183 return 0;
1184 if (!access_ok(VERIFY_READ, new_ctx, ctx_size)
1185 || __get_user(tmp, (u8 __user *) new_ctx)
1186 || __get_user(tmp, (u8 __user *) new_ctx + ctx_size - 1))
1187 return -EFAULT;
1190 * If we get a fault copying the context into the kernel's
1191 * image of the user's registers, we can't just return -EFAULT
1192 * because the user's registers will be corrupted. For instance
1193 * the NIP value may have been updated but not some of the
1194 * other registers. Given that we have done the access_ok
1195 * and successfully read the first and last bytes of the region
1196 * above, this should only happen in an out-of-memory situation
1197 * or if another thread unmaps the region containing the context.
1198 * We kill the task with a SIGSEGV in this situation.
1200 if (do_setcontext(new_ctx, regs, 0))
1201 do_exit(SIGSEGV);
1203 set_thread_flag(TIF_RESTOREALL);
1204 return 0;
1207 long sys_rt_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1208 struct pt_regs *regs)
1210 struct rt_sigframe __user *rt_sf;
1211 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1212 struct ucontext __user *uc_transact;
1213 unsigned long msr_hi;
1214 unsigned long tmp;
1215 int tm_restore = 0;
1216 #endif
1217 /* Always make any pending restarted system calls return -EINTR */
1218 current_thread_info()->restart_block.fn = do_no_restart_syscall;
1220 rt_sf = (struct rt_sigframe __user *)
1221 (regs->gpr[1] + __SIGNAL_FRAMESIZE + 16);
1222 if (!access_ok(VERIFY_READ, rt_sf, sizeof(*rt_sf)))
1223 goto bad;
1224 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1225 if (__get_user(tmp, &rt_sf->uc.uc_link))
1226 goto bad;
1227 uc_transact = (struct ucontext __user *)(uintptr_t)tmp;
1228 if (uc_transact) {
1229 u32 cmcp;
1230 struct mcontext __user *mcp;
1232 if (__get_user(cmcp, &uc_transact->uc_regs))
1233 return -EFAULT;
1234 mcp = (struct mcontext __user *)(u64)cmcp;
1235 /* The top 32 bits of the MSR are stashed in the transactional
1236 * ucontext. */
1237 if (__get_user(msr_hi, &mcp->mc_gregs[PT_MSR]))
1238 goto bad;
1240 if (MSR_TM_SUSPENDED(msr_hi<<32)) {
1241 /* We only recheckpoint on return if we're
1242 * transaction.
1244 tm_restore = 1;
1245 if (do_setcontext_tm(&rt_sf->uc, uc_transact, regs))
1246 goto bad;
1249 if (!tm_restore)
1250 /* Fall through, for non-TM restore */
1251 #endif
1252 if (do_setcontext(&rt_sf->uc, regs, 1))
1253 goto bad;
1256 * It's not clear whether or why it is desirable to save the
1257 * sigaltstack setting on signal delivery and restore it on
1258 * signal return. But other architectures do this and we have
1259 * always done it up until now so it is probably better not to
1260 * change it. -- paulus
1262 #ifdef CONFIG_PPC64
1263 if (compat_restore_altstack(&rt_sf->uc.uc_stack))
1264 goto bad;
1265 #else
1266 if (restore_altstack(&rt_sf->uc.uc_stack))
1267 goto bad;
1268 #endif
1269 set_thread_flag(TIF_RESTOREALL);
1270 return 0;
1272 bad:
1273 if (show_unhandled_signals)
1274 printk_ratelimited(KERN_INFO
1275 "%s[%d]: bad frame in sys_rt_sigreturn: "
1276 "%p nip %08lx lr %08lx\n",
1277 current->comm, current->pid,
1278 rt_sf, regs->nip, regs->link);
1280 force_sig(SIGSEGV, current);
1281 return 0;
1284 #ifdef CONFIG_PPC32
1285 int sys_debug_setcontext(struct ucontext __user *ctx,
1286 int ndbg, struct sig_dbg_op __user *dbg,
1287 int r6, int r7, int r8,
1288 struct pt_regs *regs)
1290 struct sig_dbg_op op;
1291 int i;
1292 unsigned char tmp;
1293 unsigned long new_msr = regs->msr;
1294 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1295 unsigned long new_dbcr0 = current->thread.dbcr0;
1296 #endif
1298 for (i=0; i<ndbg; i++) {
1299 if (copy_from_user(&op, dbg + i, sizeof(op)))
1300 return -EFAULT;
1301 switch (op.dbg_type) {
1302 case SIG_DBG_SINGLE_STEPPING:
1303 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1304 if (op.dbg_value) {
1305 new_msr |= MSR_DE;
1306 new_dbcr0 |= (DBCR0_IDM | DBCR0_IC);
1307 } else {
1308 new_dbcr0 &= ~DBCR0_IC;
1309 if (!DBCR_ACTIVE_EVENTS(new_dbcr0,
1310 current->thread.dbcr1)) {
1311 new_msr &= ~MSR_DE;
1312 new_dbcr0 &= ~DBCR0_IDM;
1315 #else
1316 if (op.dbg_value)
1317 new_msr |= MSR_SE;
1318 else
1319 new_msr &= ~MSR_SE;
1320 #endif
1321 break;
1322 case SIG_DBG_BRANCH_TRACING:
1323 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1324 return -EINVAL;
1325 #else
1326 if (op.dbg_value)
1327 new_msr |= MSR_BE;
1328 else
1329 new_msr &= ~MSR_BE;
1330 #endif
1331 break;
1333 default:
1334 return -EINVAL;
1338 /* We wait until here to actually install the values in the
1339 registers so if we fail in the above loop, it will not
1340 affect the contents of these registers. After this point,
1341 failure is a problem, anyway, and it's very unlikely unless
1342 the user is really doing something wrong. */
1343 regs->msr = new_msr;
1344 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1345 current->thread.dbcr0 = new_dbcr0;
1346 #endif
1348 if (!access_ok(VERIFY_READ, ctx, sizeof(*ctx))
1349 || __get_user(tmp, (u8 __user *) ctx)
1350 || __get_user(tmp, (u8 __user *) (ctx + 1) - 1))
1351 return -EFAULT;
1354 * If we get a fault copying the context into the kernel's
1355 * image of the user's registers, we can't just return -EFAULT
1356 * because the user's registers will be corrupted. For instance
1357 * the NIP value may have been updated but not some of the
1358 * other registers. Given that we have done the access_ok
1359 * and successfully read the first and last bytes of the region
1360 * above, this should only happen in an out-of-memory situation
1361 * or if another thread unmaps the region containing the context.
1362 * We kill the task with a SIGSEGV in this situation.
1364 if (do_setcontext(ctx, regs, 1)) {
1365 if (show_unhandled_signals)
1366 printk_ratelimited(KERN_INFO "%s[%d]: bad frame in "
1367 "sys_debug_setcontext: %p nip %08lx "
1368 "lr %08lx\n",
1369 current->comm, current->pid,
1370 ctx, regs->nip, regs->link);
1372 force_sig(SIGSEGV, current);
1373 goto out;
1377 * It's not clear whether or why it is desirable to save the
1378 * sigaltstack setting on signal delivery and restore it on
1379 * signal return. But other architectures do this and we have
1380 * always done it up until now so it is probably better not to
1381 * change it. -- paulus
1383 restore_altstack(&ctx->uc_stack);
1385 set_thread_flag(TIF_RESTOREALL);
1386 out:
1387 return 0;
1389 #endif
1392 * OK, we're invoking a handler
1394 int handle_signal32(unsigned long sig, struct k_sigaction *ka,
1395 siginfo_t *info, sigset_t *oldset, struct pt_regs *regs)
1397 struct sigcontext __user *sc;
1398 struct sigframe __user *frame;
1399 unsigned long newsp = 0;
1400 int sigret;
1401 unsigned long tramp;
1403 /* Set up Signal Frame */
1404 frame = get_sigframe(ka, regs, sizeof(*frame), 1);
1405 if (unlikely(frame == NULL))
1406 goto badframe;
1407 sc = (struct sigcontext __user *) &frame->sctx;
1409 #if _NSIG != 64
1410 #error "Please adjust handle_signal()"
1411 #endif
1412 if (__put_user(to_user_ptr(ka->sa.sa_handler), &sc->handler)
1413 || __put_user(oldset->sig[0], &sc->oldmask)
1414 #ifdef CONFIG_PPC64
1415 || __put_user((oldset->sig[0] >> 32), &sc->_unused[3])
1416 #else
1417 || __put_user(oldset->sig[1], &sc->_unused[3])
1418 #endif
1419 || __put_user(to_user_ptr(&frame->mctx), &sc->regs)
1420 || __put_user(sig, &sc->signal))
1421 goto badframe;
1423 if (vdso32_sigtramp && current->mm->context.vdso_base) {
1424 sigret = 0;
1425 tramp = current->mm->context.vdso_base + vdso32_sigtramp;
1426 } else {
1427 sigret = __NR_sigreturn;
1428 tramp = (unsigned long) frame->mctx.tramp;
1431 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1432 if (MSR_TM_ACTIVE(regs->msr)) {
1433 if (save_tm_user_regs(regs, &frame->mctx, &frame->mctx_transact,
1434 sigret))
1435 goto badframe;
1437 else
1438 #endif
1439 if (save_user_regs(regs, &frame->mctx, sigret, 1))
1440 goto badframe;
1442 regs->link = tramp;
1444 current->thread.fpscr.val = 0; /* turn off all fp exceptions */
1446 /* create a stack frame for the caller of the handler */
1447 newsp = ((unsigned long)frame) - __SIGNAL_FRAMESIZE;
1448 if (put_user(regs->gpr[1], (u32 __user *)newsp))
1449 goto badframe;
1451 regs->gpr[1] = newsp;
1452 regs->gpr[3] = sig;
1453 regs->gpr[4] = (unsigned long) sc;
1454 regs->nip = (unsigned long) ka->sa.sa_handler;
1455 /* enter the signal handler in big-endian mode */
1456 regs->msr &= ~MSR_LE;
1457 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1458 /* Remove TM bits from thread's MSR. The MSR in the sigcontext
1459 * just indicates to userland that we were doing a transaction, but we
1460 * don't want to return in transactional state:
1462 regs->msr &= ~MSR_TS_MASK;
1463 #endif
1464 return 1;
1466 badframe:
1467 #ifdef DEBUG_SIG
1468 printk("badframe in handle_signal, regs=%p frame=%p newsp=%lx\n",
1469 regs, frame, newsp);
1470 #endif
1471 if (show_unhandled_signals)
1472 printk_ratelimited(KERN_INFO
1473 "%s[%d]: bad frame in handle_signal32: "
1474 "%p nip %08lx lr %08lx\n",
1475 current->comm, current->pid,
1476 frame, regs->nip, regs->link);
1478 force_sigsegv(sig, current);
1479 return 0;
1483 * Do a signal return; undo the signal stack.
1485 long sys_sigreturn(int r3, int r4, int r5, int r6, int r7, int r8,
1486 struct pt_regs *regs)
1488 struct sigcontext __user *sc;
1489 struct sigcontext sigctx;
1490 struct mcontext __user *sr;
1491 void __user *addr;
1492 sigset_t set;
1494 /* Always make any pending restarted system calls return -EINTR */
1495 current_thread_info()->restart_block.fn = do_no_restart_syscall;
1497 sc = (struct sigcontext __user *)(regs->gpr[1] + __SIGNAL_FRAMESIZE);
1498 addr = sc;
1499 if (copy_from_user(&sigctx, sc, sizeof(sigctx)))
1500 goto badframe;
1502 #ifdef CONFIG_PPC64
1504 * Note that PPC32 puts the upper 32 bits of the sigmask in the
1505 * unused part of the signal stackframe
1507 set.sig[0] = sigctx.oldmask + ((long)(sigctx._unused[3]) << 32);
1508 #else
1509 set.sig[0] = sigctx.oldmask;
1510 set.sig[1] = sigctx._unused[3];
1511 #endif
1512 set_current_blocked(&set);
1514 sr = (struct mcontext __user *)from_user_ptr(sigctx.regs);
1515 addr = sr;
1516 if (!access_ok(VERIFY_READ, sr, sizeof(*sr))
1517 || restore_user_regs(regs, sr, 1))
1518 goto badframe;
1520 set_thread_flag(TIF_RESTOREALL);
1521 return 0;
1523 badframe:
1524 if (show_unhandled_signals)
1525 printk_ratelimited(KERN_INFO
1526 "%s[%d]: bad frame in sys_sigreturn: "
1527 "%p nip %08lx lr %08lx\n",
1528 current->comm, current->pid,
1529 addr, regs->nip, regs->link);
1531 force_sig(SIGSEGV, current);
1532 return 0;