locking/refcounts: Include fewer headers in <linux/refcount.h>
[linux/fpc-iii.git] / arch / x86 / xen / mmu_pv.c
blob2c30cabfda90fb94b36c88f5f35aef91d8f119d0
1 /*
2 * Xen mmu operations
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/export.h>
47 #include <linux/init.h>
48 #include <linux/gfp.h>
49 #include <linux/memblock.h>
50 #include <linux/seq_file.h>
51 #include <linux/crash_dump.h>
52 #ifdef CONFIG_KEXEC_CORE
53 #include <linux/kexec.h>
54 #endif
56 #include <trace/events/xen.h>
58 #include <asm/pgtable.h>
59 #include <asm/tlbflush.h>
60 #include <asm/fixmap.h>
61 #include <asm/mmu_context.h>
62 #include <asm/setup.h>
63 #include <asm/paravirt.h>
64 #include <asm/e820/api.h>
65 #include <asm/linkage.h>
66 #include <asm/page.h>
67 #include <asm/init.h>
68 #include <asm/pat.h>
69 #include <asm/smp.h>
71 #include <asm/xen/hypercall.h>
72 #include <asm/xen/hypervisor.h>
74 #include <xen/xen.h>
75 #include <xen/page.h>
76 #include <xen/interface/xen.h>
77 #include <xen/interface/hvm/hvm_op.h>
78 #include <xen/interface/version.h>
79 #include <xen/interface/memory.h>
80 #include <xen/hvc-console.h>
82 #include "multicalls.h"
83 #include "mmu.h"
84 #include "debugfs.h"
86 #ifdef CONFIG_X86_32
88 * Identity map, in addition to plain kernel map. This needs to be
89 * large enough to allocate page table pages to allocate the rest.
90 * Each page can map 2MB.
92 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
93 static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
94 #endif
95 #ifdef CONFIG_X86_64
96 /* l3 pud for userspace vsyscall mapping */
97 static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
98 #endif /* CONFIG_X86_64 */
101 * Note about cr3 (pagetable base) values:
103 * xen_cr3 contains the current logical cr3 value; it contains the
104 * last set cr3. This may not be the current effective cr3, because
105 * its update may be being lazily deferred. However, a vcpu looking
106 * at its own cr3 can use this value knowing that it everything will
107 * be self-consistent.
109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110 * hypercall to set the vcpu cr3 is complete (so it may be a little
111 * out of date, but it will never be set early). If one vcpu is
112 * looking at another vcpu's cr3 value, it should use this variable.
114 DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
115 DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
117 static phys_addr_t xen_pt_base, xen_pt_size __initdata;
119 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready);
122 * Just beyond the highest usermode address. STACK_TOP_MAX has a
123 * redzone above it, so round it up to a PGD boundary.
125 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
127 void make_lowmem_page_readonly(void *vaddr)
129 pte_t *pte, ptev;
130 unsigned long address = (unsigned long)vaddr;
131 unsigned int level;
133 pte = lookup_address(address, &level);
134 if (pte == NULL)
135 return; /* vaddr missing */
137 ptev = pte_wrprotect(*pte);
139 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
140 BUG();
143 void make_lowmem_page_readwrite(void *vaddr)
145 pte_t *pte, ptev;
146 unsigned long address = (unsigned long)vaddr;
147 unsigned int level;
149 pte = lookup_address(address, &level);
150 if (pte == NULL)
151 return; /* vaddr missing */
153 ptev = pte_mkwrite(*pte);
155 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
156 BUG();
161 * During early boot all page table pages are pinned, but we do not have struct
162 * pages, so return true until struct pages are ready.
164 static bool xen_page_pinned(void *ptr)
166 if (static_branch_likely(&xen_struct_pages_ready)) {
167 struct page *page = virt_to_page(ptr);
169 return PagePinned(page);
171 return true;
174 static void xen_extend_mmu_update(const struct mmu_update *update)
176 struct multicall_space mcs;
177 struct mmu_update *u;
179 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
181 if (mcs.mc != NULL) {
182 mcs.mc->args[1]++;
183 } else {
184 mcs = __xen_mc_entry(sizeof(*u));
185 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
188 u = mcs.args;
189 *u = *update;
192 static void xen_extend_mmuext_op(const struct mmuext_op *op)
194 struct multicall_space mcs;
195 struct mmuext_op *u;
197 mcs = xen_mc_extend_args(__HYPERVISOR_mmuext_op, sizeof(*u));
199 if (mcs.mc != NULL) {
200 mcs.mc->args[1]++;
201 } else {
202 mcs = __xen_mc_entry(sizeof(*u));
203 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
206 u = mcs.args;
207 *u = *op;
210 static void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
212 struct mmu_update u;
214 preempt_disable();
216 xen_mc_batch();
218 /* ptr may be ioremapped for 64-bit pagetable setup */
219 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
220 u.val = pmd_val_ma(val);
221 xen_extend_mmu_update(&u);
223 xen_mc_issue(PARAVIRT_LAZY_MMU);
225 preempt_enable();
228 static void xen_set_pmd(pmd_t *ptr, pmd_t val)
230 trace_xen_mmu_set_pmd(ptr, val);
232 /* If page is not pinned, we can just update the entry
233 directly */
234 if (!xen_page_pinned(ptr)) {
235 *ptr = val;
236 return;
239 xen_set_pmd_hyper(ptr, val);
243 * Associate a virtual page frame with a given physical page frame
244 * and protection flags for that frame.
246 void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
248 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
251 static bool xen_batched_set_pte(pte_t *ptep, pte_t pteval)
253 struct mmu_update u;
255 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU)
256 return false;
258 xen_mc_batch();
260 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
261 u.val = pte_val_ma(pteval);
262 xen_extend_mmu_update(&u);
264 xen_mc_issue(PARAVIRT_LAZY_MMU);
266 return true;
269 static inline void __xen_set_pte(pte_t *ptep, pte_t pteval)
271 if (!xen_batched_set_pte(ptep, pteval)) {
273 * Could call native_set_pte() here and trap and
274 * emulate the PTE write but with 32-bit guests this
275 * needs two traps (one for each of the two 32-bit
276 * words in the PTE) so do one hypercall directly
277 * instead.
279 struct mmu_update u;
281 u.ptr = virt_to_machine(ptep).maddr | MMU_NORMAL_PT_UPDATE;
282 u.val = pte_val_ma(pteval);
283 HYPERVISOR_mmu_update(&u, 1, NULL, DOMID_SELF);
287 static void xen_set_pte(pte_t *ptep, pte_t pteval)
289 trace_xen_mmu_set_pte(ptep, pteval);
290 __xen_set_pte(ptep, pteval);
293 static void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
294 pte_t *ptep, pte_t pteval)
296 trace_xen_mmu_set_pte_at(mm, addr, ptep, pteval);
297 __xen_set_pte(ptep, pteval);
300 pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
301 unsigned long addr, pte_t *ptep)
303 /* Just return the pte as-is. We preserve the bits on commit */
304 trace_xen_mmu_ptep_modify_prot_start(mm, addr, ptep, *ptep);
305 return *ptep;
308 void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
309 pte_t *ptep, pte_t pte)
311 struct mmu_update u;
313 trace_xen_mmu_ptep_modify_prot_commit(mm, addr, ptep, pte);
314 xen_mc_batch();
316 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
317 u.val = pte_val_ma(pte);
318 xen_extend_mmu_update(&u);
320 xen_mc_issue(PARAVIRT_LAZY_MMU);
323 /* Assume pteval_t is equivalent to all the other *val_t types. */
324 static pteval_t pte_mfn_to_pfn(pteval_t val)
326 if (val & _PAGE_PRESENT) {
327 unsigned long mfn = (val & XEN_PTE_MFN_MASK) >> PAGE_SHIFT;
328 unsigned long pfn = mfn_to_pfn(mfn);
330 pteval_t flags = val & PTE_FLAGS_MASK;
331 if (unlikely(pfn == ~0))
332 val = flags & ~_PAGE_PRESENT;
333 else
334 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
337 return val;
340 static pteval_t pte_pfn_to_mfn(pteval_t val)
342 if (val & _PAGE_PRESENT) {
343 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
344 pteval_t flags = val & PTE_FLAGS_MASK;
345 unsigned long mfn;
347 mfn = __pfn_to_mfn(pfn);
350 * If there's no mfn for the pfn, then just create an
351 * empty non-present pte. Unfortunately this loses
352 * information about the original pfn, so
353 * pte_mfn_to_pfn is asymmetric.
355 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
356 mfn = 0;
357 flags = 0;
358 } else
359 mfn &= ~(FOREIGN_FRAME_BIT | IDENTITY_FRAME_BIT);
360 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
363 return val;
366 __visible pteval_t xen_pte_val(pte_t pte)
368 pteval_t pteval = pte.pte;
370 return pte_mfn_to_pfn(pteval);
372 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
374 __visible pgdval_t xen_pgd_val(pgd_t pgd)
376 return pte_mfn_to_pfn(pgd.pgd);
378 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
380 __visible pte_t xen_make_pte(pteval_t pte)
382 pte = pte_pfn_to_mfn(pte);
384 return native_make_pte(pte);
386 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
388 __visible pgd_t xen_make_pgd(pgdval_t pgd)
390 pgd = pte_pfn_to_mfn(pgd);
391 return native_make_pgd(pgd);
393 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
395 __visible pmdval_t xen_pmd_val(pmd_t pmd)
397 return pte_mfn_to_pfn(pmd.pmd);
399 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
401 static void xen_set_pud_hyper(pud_t *ptr, pud_t val)
403 struct mmu_update u;
405 preempt_disable();
407 xen_mc_batch();
409 /* ptr may be ioremapped for 64-bit pagetable setup */
410 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
411 u.val = pud_val_ma(val);
412 xen_extend_mmu_update(&u);
414 xen_mc_issue(PARAVIRT_LAZY_MMU);
416 preempt_enable();
419 static void xen_set_pud(pud_t *ptr, pud_t val)
421 trace_xen_mmu_set_pud(ptr, val);
423 /* If page is not pinned, we can just update the entry
424 directly */
425 if (!xen_page_pinned(ptr)) {
426 *ptr = val;
427 return;
430 xen_set_pud_hyper(ptr, val);
433 #ifdef CONFIG_X86_PAE
434 static void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
436 trace_xen_mmu_set_pte_atomic(ptep, pte);
437 set_64bit((u64 *)ptep, native_pte_val(pte));
440 static void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
442 trace_xen_mmu_pte_clear(mm, addr, ptep);
443 if (!xen_batched_set_pte(ptep, native_make_pte(0)))
444 native_pte_clear(mm, addr, ptep);
447 static void xen_pmd_clear(pmd_t *pmdp)
449 trace_xen_mmu_pmd_clear(pmdp);
450 set_pmd(pmdp, __pmd(0));
452 #endif /* CONFIG_X86_PAE */
454 __visible pmd_t xen_make_pmd(pmdval_t pmd)
456 pmd = pte_pfn_to_mfn(pmd);
457 return native_make_pmd(pmd);
459 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
461 #ifdef CONFIG_X86_64
462 __visible pudval_t xen_pud_val(pud_t pud)
464 return pte_mfn_to_pfn(pud.pud);
466 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
468 __visible pud_t xen_make_pud(pudval_t pud)
470 pud = pte_pfn_to_mfn(pud);
472 return native_make_pud(pud);
474 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
476 static pgd_t *xen_get_user_pgd(pgd_t *pgd)
478 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
479 unsigned offset = pgd - pgd_page;
480 pgd_t *user_ptr = NULL;
482 if (offset < pgd_index(USER_LIMIT)) {
483 struct page *page = virt_to_page(pgd_page);
484 user_ptr = (pgd_t *)page->private;
485 if (user_ptr)
486 user_ptr += offset;
489 return user_ptr;
492 static void __xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
494 struct mmu_update u;
496 u.ptr = virt_to_machine(ptr).maddr;
497 u.val = p4d_val_ma(val);
498 xen_extend_mmu_update(&u);
502 * Raw hypercall-based set_p4d, intended for in early boot before
503 * there's a page structure. This implies:
504 * 1. The only existing pagetable is the kernel's
505 * 2. It is always pinned
506 * 3. It has no user pagetable attached to it
508 static void __init xen_set_p4d_hyper(p4d_t *ptr, p4d_t val)
510 preempt_disable();
512 xen_mc_batch();
514 __xen_set_p4d_hyper(ptr, val);
516 xen_mc_issue(PARAVIRT_LAZY_MMU);
518 preempt_enable();
521 static void xen_set_p4d(p4d_t *ptr, p4d_t val)
523 pgd_t *user_ptr = xen_get_user_pgd((pgd_t *)ptr);
524 pgd_t pgd_val;
526 trace_xen_mmu_set_p4d(ptr, (p4d_t *)user_ptr, val);
528 /* If page is not pinned, we can just update the entry
529 directly */
530 if (!xen_page_pinned(ptr)) {
531 *ptr = val;
532 if (user_ptr) {
533 WARN_ON(xen_page_pinned(user_ptr));
534 pgd_val.pgd = p4d_val_ma(val);
535 *user_ptr = pgd_val;
537 return;
540 /* If it's pinned, then we can at least batch the kernel and
541 user updates together. */
542 xen_mc_batch();
544 __xen_set_p4d_hyper(ptr, val);
545 if (user_ptr)
546 __xen_set_p4d_hyper((p4d_t *)user_ptr, val);
548 xen_mc_issue(PARAVIRT_LAZY_MMU);
551 #if CONFIG_PGTABLE_LEVELS >= 5
552 __visible p4dval_t xen_p4d_val(p4d_t p4d)
554 return pte_mfn_to_pfn(p4d.p4d);
556 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val);
558 __visible p4d_t xen_make_p4d(p4dval_t p4d)
560 p4d = pte_pfn_to_mfn(p4d);
562 return native_make_p4d(p4d);
564 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d);
565 #endif /* CONFIG_PGTABLE_LEVELS >= 5 */
566 #endif /* CONFIG_X86_64 */
568 static int xen_pmd_walk(struct mm_struct *mm, pmd_t *pmd,
569 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
570 bool last, unsigned long limit)
572 int i, nr, flush = 0;
574 nr = last ? pmd_index(limit) + 1 : PTRS_PER_PMD;
575 for (i = 0; i < nr; i++) {
576 if (!pmd_none(pmd[i]))
577 flush |= (*func)(mm, pmd_page(pmd[i]), PT_PTE);
579 return flush;
582 static int xen_pud_walk(struct mm_struct *mm, pud_t *pud,
583 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
584 bool last, unsigned long limit)
586 int i, nr, flush = 0;
588 nr = last ? pud_index(limit) + 1 : PTRS_PER_PUD;
589 for (i = 0; i < nr; i++) {
590 pmd_t *pmd;
592 if (pud_none(pud[i]))
593 continue;
595 pmd = pmd_offset(&pud[i], 0);
596 if (PTRS_PER_PMD > 1)
597 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
598 flush |= xen_pmd_walk(mm, pmd, func,
599 last && i == nr - 1, limit);
601 return flush;
604 static int xen_p4d_walk(struct mm_struct *mm, p4d_t *p4d,
605 int (*func)(struct mm_struct *mm, struct page *, enum pt_level),
606 bool last, unsigned long limit)
608 int flush = 0;
609 pud_t *pud;
612 if (p4d_none(*p4d))
613 return flush;
615 pud = pud_offset(p4d, 0);
616 if (PTRS_PER_PUD > 1)
617 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
618 flush |= xen_pud_walk(mm, pud, func, last, limit);
619 return flush;
623 * (Yet another) pagetable walker. This one is intended for pinning a
624 * pagetable. This means that it walks a pagetable and calls the
625 * callback function on each page it finds making up the page table,
626 * at every level. It walks the entire pagetable, but it only bothers
627 * pinning pte pages which are below limit. In the normal case this
628 * will be STACK_TOP_MAX, but at boot we need to pin up to
629 * FIXADDR_TOP.
631 * For 32-bit the important bit is that we don't pin beyond there,
632 * because then we start getting into Xen's ptes.
634 * For 64-bit, we must skip the Xen hole in the middle of the address
635 * space, just after the big x86-64 virtual hole.
637 static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
638 int (*func)(struct mm_struct *mm, struct page *,
639 enum pt_level),
640 unsigned long limit)
642 int i, nr, flush = 0;
643 unsigned hole_low, hole_high;
645 /* The limit is the last byte to be touched */
646 limit--;
647 BUG_ON(limit >= FIXADDR_TOP);
650 * 64-bit has a great big hole in the middle of the address
651 * space, which contains the Xen mappings. On 32-bit these
652 * will end up making a zero-sized hole and so is a no-op.
654 hole_low = pgd_index(USER_LIMIT);
655 hole_high = pgd_index(PAGE_OFFSET);
657 nr = pgd_index(limit) + 1;
658 for (i = 0; i < nr; i++) {
659 p4d_t *p4d;
661 if (i >= hole_low && i < hole_high)
662 continue;
664 if (pgd_none(pgd[i]))
665 continue;
667 p4d = p4d_offset(&pgd[i], 0);
668 flush |= xen_p4d_walk(mm, p4d, func, i == nr - 1, limit);
671 /* Do the top level last, so that the callbacks can use it as
672 a cue to do final things like tlb flushes. */
673 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
675 return flush;
678 static int xen_pgd_walk(struct mm_struct *mm,
679 int (*func)(struct mm_struct *mm, struct page *,
680 enum pt_level),
681 unsigned long limit)
683 return __xen_pgd_walk(mm, mm->pgd, func, limit);
686 /* If we're using split pte locks, then take the page's lock and
687 return a pointer to it. Otherwise return NULL. */
688 static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
690 spinlock_t *ptl = NULL;
692 #if USE_SPLIT_PTE_PTLOCKS
693 ptl = ptlock_ptr(page);
694 spin_lock_nest_lock(ptl, &mm->page_table_lock);
695 #endif
697 return ptl;
700 static void xen_pte_unlock(void *v)
702 spinlock_t *ptl = v;
703 spin_unlock(ptl);
706 static void xen_do_pin(unsigned level, unsigned long pfn)
708 struct mmuext_op op;
710 op.cmd = level;
711 op.arg1.mfn = pfn_to_mfn(pfn);
713 xen_extend_mmuext_op(&op);
716 static int xen_pin_page(struct mm_struct *mm, struct page *page,
717 enum pt_level level)
719 unsigned pgfl = TestSetPagePinned(page);
720 int flush;
722 if (pgfl)
723 flush = 0; /* already pinned */
724 else if (PageHighMem(page))
725 /* kmaps need flushing if we found an unpinned
726 highpage */
727 flush = 1;
728 else {
729 void *pt = lowmem_page_address(page);
730 unsigned long pfn = page_to_pfn(page);
731 struct multicall_space mcs = __xen_mc_entry(0);
732 spinlock_t *ptl;
734 flush = 0;
737 * We need to hold the pagetable lock between the time
738 * we make the pagetable RO and when we actually pin
739 * it. If we don't, then other users may come in and
740 * attempt to update the pagetable by writing it,
741 * which will fail because the memory is RO but not
742 * pinned, so Xen won't do the trap'n'emulate.
744 * If we're using split pte locks, we can't hold the
745 * entire pagetable's worth of locks during the
746 * traverse, because we may wrap the preempt count (8
747 * bits). The solution is to mark RO and pin each PTE
748 * page while holding the lock. This means the number
749 * of locks we end up holding is never more than a
750 * batch size (~32 entries, at present).
752 * If we're not using split pte locks, we needn't pin
753 * the PTE pages independently, because we're
754 * protected by the overall pagetable lock.
756 ptl = NULL;
757 if (level == PT_PTE)
758 ptl = xen_pte_lock(page, mm);
760 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
761 pfn_pte(pfn, PAGE_KERNEL_RO),
762 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
764 if (ptl) {
765 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
767 /* Queue a deferred unlock for when this batch
768 is completed. */
769 xen_mc_callback(xen_pte_unlock, ptl);
773 return flush;
776 /* This is called just after a mm has been created, but it has not
777 been used yet. We need to make sure that its pagetable is all
778 read-only, and can be pinned. */
779 static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
781 trace_xen_mmu_pgd_pin(mm, pgd);
783 xen_mc_batch();
785 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
786 /* re-enable interrupts for flushing */
787 xen_mc_issue(0);
789 kmap_flush_unused();
791 xen_mc_batch();
794 #ifdef CONFIG_X86_64
796 pgd_t *user_pgd = xen_get_user_pgd(pgd);
798 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
800 if (user_pgd) {
801 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
802 xen_do_pin(MMUEXT_PIN_L4_TABLE,
803 PFN_DOWN(__pa(user_pgd)));
806 #else /* CONFIG_X86_32 */
807 #ifdef CONFIG_X86_PAE
808 /* Need to make sure unshared kernel PMD is pinnable */
809 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
810 PT_PMD);
811 #endif
812 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
813 #endif /* CONFIG_X86_64 */
814 xen_mc_issue(0);
817 static void xen_pgd_pin(struct mm_struct *mm)
819 __xen_pgd_pin(mm, mm->pgd);
823 * On save, we need to pin all pagetables to make sure they get their
824 * mfns turned into pfns. Search the list for any unpinned pgds and pin
825 * them (unpinned pgds are not currently in use, probably because the
826 * process is under construction or destruction).
828 * Expected to be called in stop_machine() ("equivalent to taking
829 * every spinlock in the system"), so the locking doesn't really
830 * matter all that much.
832 void xen_mm_pin_all(void)
834 struct page *page;
836 spin_lock(&pgd_lock);
838 list_for_each_entry(page, &pgd_list, lru) {
839 if (!PagePinned(page)) {
840 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
841 SetPageSavePinned(page);
845 spin_unlock(&pgd_lock);
848 static int __init xen_mark_pinned(struct mm_struct *mm, struct page *page,
849 enum pt_level level)
851 SetPagePinned(page);
852 return 0;
856 * The init_mm pagetable is really pinned as soon as its created, but
857 * that's before we have page structures to store the bits. So do all
858 * the book-keeping now once struct pages for allocated pages are
859 * initialized. This happens only after free_all_bootmem() is called.
861 static void __init xen_after_bootmem(void)
863 static_branch_enable(&xen_struct_pages_ready);
864 #ifdef CONFIG_X86_64
865 SetPagePinned(virt_to_page(level3_user_vsyscall));
866 #endif
867 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
870 static int xen_unpin_page(struct mm_struct *mm, struct page *page,
871 enum pt_level level)
873 unsigned pgfl = TestClearPagePinned(page);
875 if (pgfl && !PageHighMem(page)) {
876 void *pt = lowmem_page_address(page);
877 unsigned long pfn = page_to_pfn(page);
878 spinlock_t *ptl = NULL;
879 struct multicall_space mcs;
882 * Do the converse to pin_page. If we're using split
883 * pte locks, we must be holding the lock for while
884 * the pte page is unpinned but still RO to prevent
885 * concurrent updates from seeing it in this
886 * partially-pinned state.
888 if (level == PT_PTE) {
889 ptl = xen_pte_lock(page, mm);
891 if (ptl)
892 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
895 mcs = __xen_mc_entry(0);
897 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
898 pfn_pte(pfn, PAGE_KERNEL),
899 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
901 if (ptl) {
902 /* unlock when batch completed */
903 xen_mc_callback(xen_pte_unlock, ptl);
907 return 0; /* never need to flush on unpin */
910 /* Release a pagetables pages back as normal RW */
911 static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
913 trace_xen_mmu_pgd_unpin(mm, pgd);
915 xen_mc_batch();
917 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
919 #ifdef CONFIG_X86_64
921 pgd_t *user_pgd = xen_get_user_pgd(pgd);
923 if (user_pgd) {
924 xen_do_pin(MMUEXT_UNPIN_TABLE,
925 PFN_DOWN(__pa(user_pgd)));
926 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
929 #endif
931 #ifdef CONFIG_X86_PAE
932 /* Need to make sure unshared kernel PMD is unpinned */
933 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
934 PT_PMD);
935 #endif
937 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
939 xen_mc_issue(0);
942 static void xen_pgd_unpin(struct mm_struct *mm)
944 __xen_pgd_unpin(mm, mm->pgd);
948 * On resume, undo any pinning done at save, so that the rest of the
949 * kernel doesn't see any unexpected pinned pagetables.
951 void xen_mm_unpin_all(void)
953 struct page *page;
955 spin_lock(&pgd_lock);
957 list_for_each_entry(page, &pgd_list, lru) {
958 if (PageSavePinned(page)) {
959 BUG_ON(!PagePinned(page));
960 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
961 ClearPageSavePinned(page);
965 spin_unlock(&pgd_lock);
968 static void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
970 spin_lock(&next->page_table_lock);
971 xen_pgd_pin(next);
972 spin_unlock(&next->page_table_lock);
975 static void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
977 spin_lock(&mm->page_table_lock);
978 xen_pgd_pin(mm);
979 spin_unlock(&mm->page_table_lock);
982 static void drop_mm_ref_this_cpu(void *info)
984 struct mm_struct *mm = info;
986 if (this_cpu_read(cpu_tlbstate.loaded_mm) == mm)
987 leave_mm(smp_processor_id());
990 * If this cpu still has a stale cr3 reference, then make sure
991 * it has been flushed.
993 if (this_cpu_read(xen_current_cr3) == __pa(mm->pgd))
994 xen_mc_flush();
997 #ifdef CONFIG_SMP
999 * Another cpu may still have their %cr3 pointing at the pagetable, so
1000 * we need to repoint it somewhere else before we can unpin it.
1002 static void xen_drop_mm_ref(struct mm_struct *mm)
1004 cpumask_var_t mask;
1005 unsigned cpu;
1007 drop_mm_ref_this_cpu(mm);
1009 /* Get the "official" set of cpus referring to our pagetable. */
1010 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1011 for_each_online_cpu(cpu) {
1012 if (per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1013 continue;
1014 smp_call_function_single(cpu, drop_mm_ref_this_cpu, mm, 1);
1016 return;
1020 * It's possible that a vcpu may have a stale reference to our
1021 * cr3, because its in lazy mode, and it hasn't yet flushed
1022 * its set of pending hypercalls yet. In this case, we can
1023 * look at its actual current cr3 value, and force it to flush
1024 * if needed.
1026 cpumask_clear(mask);
1027 for_each_online_cpu(cpu) {
1028 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1029 cpumask_set_cpu(cpu, mask);
1032 smp_call_function_many(mask, drop_mm_ref_this_cpu, mm, 1);
1033 free_cpumask_var(mask);
1035 #else
1036 static void xen_drop_mm_ref(struct mm_struct *mm)
1038 drop_mm_ref_this_cpu(mm);
1040 #endif
1043 * While a process runs, Xen pins its pagetables, which means that the
1044 * hypervisor forces it to be read-only, and it controls all updates
1045 * to it. This means that all pagetable updates have to go via the
1046 * hypervisor, which is moderately expensive.
1048 * Since we're pulling the pagetable down, we switch to use init_mm,
1049 * unpin old process pagetable and mark it all read-write, which
1050 * allows further operations on it to be simple memory accesses.
1052 * The only subtle point is that another CPU may be still using the
1053 * pagetable because of lazy tlb flushing. This means we need need to
1054 * switch all CPUs off this pagetable before we can unpin it.
1056 static void xen_exit_mmap(struct mm_struct *mm)
1058 get_cpu(); /* make sure we don't move around */
1059 xen_drop_mm_ref(mm);
1060 put_cpu();
1062 spin_lock(&mm->page_table_lock);
1064 /* pgd may not be pinned in the error exit path of execve */
1065 if (xen_page_pinned(mm->pgd))
1066 xen_pgd_unpin(mm);
1068 spin_unlock(&mm->page_table_lock);
1071 static void xen_post_allocator_init(void);
1073 static void __init pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1075 struct mmuext_op op;
1077 op.cmd = cmd;
1078 op.arg1.mfn = pfn_to_mfn(pfn);
1079 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1080 BUG();
1083 #ifdef CONFIG_X86_64
1084 static void __init xen_cleanhighmap(unsigned long vaddr,
1085 unsigned long vaddr_end)
1087 unsigned long kernel_end = roundup((unsigned long)_brk_end, PMD_SIZE) - 1;
1088 pmd_t *pmd = level2_kernel_pgt + pmd_index(vaddr);
1090 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1091 * We include the PMD passed in on _both_ boundaries. */
1092 for (; vaddr <= vaddr_end && (pmd < (level2_kernel_pgt + PTRS_PER_PMD));
1093 pmd++, vaddr += PMD_SIZE) {
1094 if (pmd_none(*pmd))
1095 continue;
1096 if (vaddr < (unsigned long) _text || vaddr > kernel_end)
1097 set_pmd(pmd, __pmd(0));
1099 /* In case we did something silly, we should crash in this function
1100 * instead of somewhere later and be confusing. */
1101 xen_mc_flush();
1105 * Make a page range writeable and free it.
1107 static void __init xen_free_ro_pages(unsigned long paddr, unsigned long size)
1109 void *vaddr = __va(paddr);
1110 void *vaddr_end = vaddr + size;
1112 for (; vaddr < vaddr_end; vaddr += PAGE_SIZE)
1113 make_lowmem_page_readwrite(vaddr);
1115 memblock_free(paddr, size);
1118 static void __init xen_cleanmfnmap_free_pgtbl(void *pgtbl, bool unpin)
1120 unsigned long pa = __pa(pgtbl) & PHYSICAL_PAGE_MASK;
1122 if (unpin)
1123 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(pa));
1124 ClearPagePinned(virt_to_page(__va(pa)));
1125 xen_free_ro_pages(pa, PAGE_SIZE);
1128 static void __init xen_cleanmfnmap_pmd(pmd_t *pmd, bool unpin)
1130 unsigned long pa;
1131 pte_t *pte_tbl;
1132 int i;
1134 if (pmd_large(*pmd)) {
1135 pa = pmd_val(*pmd) & PHYSICAL_PAGE_MASK;
1136 xen_free_ro_pages(pa, PMD_SIZE);
1137 return;
1140 pte_tbl = pte_offset_kernel(pmd, 0);
1141 for (i = 0; i < PTRS_PER_PTE; i++) {
1142 if (pte_none(pte_tbl[i]))
1143 continue;
1144 pa = pte_pfn(pte_tbl[i]) << PAGE_SHIFT;
1145 xen_free_ro_pages(pa, PAGE_SIZE);
1147 set_pmd(pmd, __pmd(0));
1148 xen_cleanmfnmap_free_pgtbl(pte_tbl, unpin);
1151 static void __init xen_cleanmfnmap_pud(pud_t *pud, bool unpin)
1153 unsigned long pa;
1154 pmd_t *pmd_tbl;
1155 int i;
1157 if (pud_large(*pud)) {
1158 pa = pud_val(*pud) & PHYSICAL_PAGE_MASK;
1159 xen_free_ro_pages(pa, PUD_SIZE);
1160 return;
1163 pmd_tbl = pmd_offset(pud, 0);
1164 for (i = 0; i < PTRS_PER_PMD; i++) {
1165 if (pmd_none(pmd_tbl[i]))
1166 continue;
1167 xen_cleanmfnmap_pmd(pmd_tbl + i, unpin);
1169 set_pud(pud, __pud(0));
1170 xen_cleanmfnmap_free_pgtbl(pmd_tbl, unpin);
1173 static void __init xen_cleanmfnmap_p4d(p4d_t *p4d, bool unpin)
1175 unsigned long pa;
1176 pud_t *pud_tbl;
1177 int i;
1179 if (p4d_large(*p4d)) {
1180 pa = p4d_val(*p4d) & PHYSICAL_PAGE_MASK;
1181 xen_free_ro_pages(pa, P4D_SIZE);
1182 return;
1185 pud_tbl = pud_offset(p4d, 0);
1186 for (i = 0; i < PTRS_PER_PUD; i++) {
1187 if (pud_none(pud_tbl[i]))
1188 continue;
1189 xen_cleanmfnmap_pud(pud_tbl + i, unpin);
1191 set_p4d(p4d, __p4d(0));
1192 xen_cleanmfnmap_free_pgtbl(pud_tbl, unpin);
1196 * Since it is well isolated we can (and since it is perhaps large we should)
1197 * also free the page tables mapping the initial P->M table.
1199 static void __init xen_cleanmfnmap(unsigned long vaddr)
1201 pgd_t *pgd;
1202 p4d_t *p4d;
1203 bool unpin;
1205 unpin = (vaddr == 2 * PGDIR_SIZE);
1206 vaddr &= PMD_MASK;
1207 pgd = pgd_offset_k(vaddr);
1208 p4d = p4d_offset(pgd, 0);
1209 if (!p4d_none(*p4d))
1210 xen_cleanmfnmap_p4d(p4d, unpin);
1213 static void __init xen_pagetable_p2m_free(void)
1215 unsigned long size;
1216 unsigned long addr;
1218 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
1220 /* No memory or already called. */
1221 if ((unsigned long)xen_p2m_addr == xen_start_info->mfn_list)
1222 return;
1224 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1225 memset((void *)xen_start_info->mfn_list, 0xff, size);
1227 addr = xen_start_info->mfn_list;
1229 * We could be in __ka space.
1230 * We roundup to the PMD, which means that if anybody at this stage is
1231 * using the __ka address of xen_start_info or
1232 * xen_start_info->shared_info they are in going to crash. Fortunatly
1233 * we have already revectored in xen_setup_kernel_pagetable and in
1234 * xen_setup_shared_info.
1236 size = roundup(size, PMD_SIZE);
1238 if (addr >= __START_KERNEL_map) {
1239 xen_cleanhighmap(addr, addr + size);
1240 size = PAGE_ALIGN(xen_start_info->nr_pages *
1241 sizeof(unsigned long));
1242 memblock_free(__pa(addr), size);
1243 } else {
1244 xen_cleanmfnmap(addr);
1248 static void __init xen_pagetable_cleanhighmap(void)
1250 unsigned long size;
1251 unsigned long addr;
1253 /* At this stage, cleanup_highmap has already cleaned __ka space
1254 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1255 * the ramdisk). We continue on, erasing PMD entries that point to page
1256 * tables - do note that they are accessible at this stage via __va.
1257 * As Xen is aligning the memory end to a 4MB boundary, for good
1258 * measure we also round up to PMD_SIZE * 2 - which means that if
1259 * anybody is using __ka address to the initial boot-stack - and try
1260 * to use it - they are going to crash. The xen_start_info has been
1261 * taken care of already in xen_setup_kernel_pagetable. */
1262 addr = xen_start_info->pt_base;
1263 size = xen_start_info->nr_pt_frames * PAGE_SIZE;
1265 xen_cleanhighmap(addr, roundup(addr + size, PMD_SIZE * 2));
1266 xen_start_info->pt_base = (unsigned long)__va(__pa(xen_start_info->pt_base));
1268 #endif
1270 static void __init xen_pagetable_p2m_setup(void)
1272 xen_vmalloc_p2m_tree();
1274 #ifdef CONFIG_X86_64
1275 xen_pagetable_p2m_free();
1277 xen_pagetable_cleanhighmap();
1278 #endif
1279 /* And revector! Bye bye old array */
1280 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
1283 static void __init xen_pagetable_init(void)
1285 paging_init();
1286 xen_post_allocator_init();
1288 xen_pagetable_p2m_setup();
1290 /* Allocate and initialize top and mid mfn levels for p2m structure */
1291 xen_build_mfn_list_list();
1293 /* Remap memory freed due to conflicts with E820 map */
1294 xen_remap_memory();
1296 xen_setup_shared_info();
1298 static void xen_write_cr2(unsigned long cr2)
1300 this_cpu_read(xen_vcpu)->arch.cr2 = cr2;
1303 static unsigned long xen_read_cr2(void)
1305 return this_cpu_read(xen_vcpu)->arch.cr2;
1308 unsigned long xen_read_cr2_direct(void)
1310 return this_cpu_read(xen_vcpu_info.arch.cr2);
1313 static noinline void xen_flush_tlb(void)
1315 struct mmuext_op *op;
1316 struct multicall_space mcs;
1318 preempt_disable();
1320 mcs = xen_mc_entry(sizeof(*op));
1322 op = mcs.args;
1323 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1324 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1326 xen_mc_issue(PARAVIRT_LAZY_MMU);
1328 preempt_enable();
1331 static void xen_flush_tlb_one_user(unsigned long addr)
1333 struct mmuext_op *op;
1334 struct multicall_space mcs;
1336 trace_xen_mmu_flush_tlb_one_user(addr);
1338 preempt_disable();
1340 mcs = xen_mc_entry(sizeof(*op));
1341 op = mcs.args;
1342 op->cmd = MMUEXT_INVLPG_LOCAL;
1343 op->arg1.linear_addr = addr & PAGE_MASK;
1344 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1346 xen_mc_issue(PARAVIRT_LAZY_MMU);
1348 preempt_enable();
1351 static void xen_flush_tlb_others(const struct cpumask *cpus,
1352 const struct flush_tlb_info *info)
1354 struct {
1355 struct mmuext_op op;
1356 DECLARE_BITMAP(mask, NR_CPUS);
1357 } *args;
1358 struct multicall_space mcs;
1359 const size_t mc_entry_size = sizeof(args->op) +
1360 sizeof(args->mask[0]) * BITS_TO_LONGS(num_possible_cpus());
1362 trace_xen_mmu_flush_tlb_others(cpus, info->mm, info->start, info->end);
1364 if (cpumask_empty(cpus))
1365 return; /* nothing to do */
1367 mcs = xen_mc_entry(mc_entry_size);
1368 args = mcs.args;
1369 args->op.arg2.vcpumask = to_cpumask(args->mask);
1371 /* Remove us, and any offline CPUS. */
1372 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1373 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
1375 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1376 if (info->end != TLB_FLUSH_ALL &&
1377 (info->end - info->start) <= PAGE_SIZE) {
1378 args->op.cmd = MMUEXT_INVLPG_MULTI;
1379 args->op.arg1.linear_addr = info->start;
1382 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1384 xen_mc_issue(PARAVIRT_LAZY_MMU);
1387 static unsigned long xen_read_cr3(void)
1389 return this_cpu_read(xen_cr3);
1392 static void set_current_cr3(void *v)
1394 this_cpu_write(xen_current_cr3, (unsigned long)v);
1397 static void __xen_write_cr3(bool kernel, unsigned long cr3)
1399 struct mmuext_op op;
1400 unsigned long mfn;
1402 trace_xen_mmu_write_cr3(kernel, cr3);
1404 if (cr3)
1405 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1406 else
1407 mfn = 0;
1409 WARN_ON(mfn == 0 && kernel);
1411 op.cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1412 op.arg1.mfn = mfn;
1414 xen_extend_mmuext_op(&op);
1416 if (kernel) {
1417 this_cpu_write(xen_cr3, cr3);
1419 /* Update xen_current_cr3 once the batch has actually
1420 been submitted. */
1421 xen_mc_callback(set_current_cr3, (void *)cr3);
1424 static void xen_write_cr3(unsigned long cr3)
1426 BUG_ON(preemptible());
1428 xen_mc_batch(); /* disables interrupts */
1430 /* Update while interrupts are disabled, so its atomic with
1431 respect to ipis */
1432 this_cpu_write(xen_cr3, cr3);
1434 __xen_write_cr3(true, cr3);
1436 #ifdef CONFIG_X86_64
1438 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1439 if (user_pgd)
1440 __xen_write_cr3(false, __pa(user_pgd));
1441 else
1442 __xen_write_cr3(false, 0);
1444 #endif
1446 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1449 #ifdef CONFIG_X86_64
1451 * At the start of the day - when Xen launches a guest, it has already
1452 * built pagetables for the guest. We diligently look over them
1453 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1454 * init_top_pgt and its friends. Then when we are happy we load
1455 * the new init_top_pgt - and continue on.
1457 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1458 * up the rest of the pagetables. When it has completed it loads the cr3.
1459 * N.B. that baremetal would start at 'start_kernel' (and the early
1460 * #PF handler would create bootstrap pagetables) - so we are running
1461 * with the same assumptions as what to do when write_cr3 is executed
1462 * at this point.
1464 * Since there are no user-page tables at all, we have two variants
1465 * of xen_write_cr3 - the early bootup (this one), and the late one
1466 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1467 * the Linux kernel and user-space are both in ring 3 while the
1468 * hypervisor is in ring 0.
1470 static void __init xen_write_cr3_init(unsigned long cr3)
1472 BUG_ON(preemptible());
1474 xen_mc_batch(); /* disables interrupts */
1476 /* Update while interrupts are disabled, so its atomic with
1477 respect to ipis */
1478 this_cpu_write(xen_cr3, cr3);
1480 __xen_write_cr3(true, cr3);
1482 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1484 #endif
1486 static int xen_pgd_alloc(struct mm_struct *mm)
1488 pgd_t *pgd = mm->pgd;
1489 int ret = 0;
1491 BUG_ON(PagePinned(virt_to_page(pgd)));
1493 #ifdef CONFIG_X86_64
1495 struct page *page = virt_to_page(pgd);
1496 pgd_t *user_pgd;
1498 BUG_ON(page->private != 0);
1500 ret = -ENOMEM;
1502 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1503 page->private = (unsigned long)user_pgd;
1505 if (user_pgd != NULL) {
1506 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1507 user_pgd[pgd_index(VSYSCALL_ADDR)] =
1508 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1509 #endif
1510 ret = 0;
1513 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1515 #endif
1516 return ret;
1519 static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1521 #ifdef CONFIG_X86_64
1522 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1524 if (user_pgd)
1525 free_page((unsigned long)user_pgd);
1526 #endif
1530 * Init-time set_pte while constructing initial pagetables, which
1531 * doesn't allow RO page table pages to be remapped RW.
1533 * If there is no MFN for this PFN then this page is initially
1534 * ballooned out so clear the PTE (as in decrease_reservation() in
1535 * drivers/xen/balloon.c).
1537 * Many of these PTE updates are done on unpinned and writable pages
1538 * and doing a hypercall for these is unnecessary and expensive. At
1539 * this point it is not possible to tell if a page is pinned or not,
1540 * so always write the PTE directly and rely on Xen trapping and
1541 * emulating any updates as necessary.
1543 __visible pte_t xen_make_pte_init(pteval_t pte)
1545 #ifdef CONFIG_X86_64
1546 unsigned long pfn;
1549 * Pages belonging to the initial p2m list mapped outside the default
1550 * address range must be mapped read-only. This region contains the
1551 * page tables for mapping the p2m list, too, and page tables MUST be
1552 * mapped read-only.
1554 pfn = (pte & PTE_PFN_MASK) >> PAGE_SHIFT;
1555 if (xen_start_info->mfn_list < __START_KERNEL_map &&
1556 pfn >= xen_start_info->first_p2m_pfn &&
1557 pfn < xen_start_info->first_p2m_pfn + xen_start_info->nr_p2m_frames)
1558 pte &= ~_PAGE_RW;
1559 #endif
1560 pte = pte_pfn_to_mfn(pte);
1561 return native_make_pte(pte);
1563 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init);
1565 static void __init xen_set_pte_init(pte_t *ptep, pte_t pte)
1567 #ifdef CONFIG_X86_32
1568 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1569 if (pte_mfn(pte) != INVALID_P2M_ENTRY
1570 && pte_val_ma(*ptep) & _PAGE_PRESENT)
1571 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1572 pte_val_ma(pte));
1573 #endif
1574 native_set_pte(ptep, pte);
1577 /* Early in boot, while setting up the initial pagetable, assume
1578 everything is pinned. */
1579 static void __init xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1581 #ifdef CONFIG_FLATMEM
1582 BUG_ON(mem_map); /* should only be used early */
1583 #endif
1584 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1585 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1588 /* Used for pmd and pud */
1589 static void __init xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1591 #ifdef CONFIG_FLATMEM
1592 BUG_ON(mem_map); /* should only be used early */
1593 #endif
1594 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1597 /* Early release_pte assumes that all pts are pinned, since there's
1598 only init_mm and anything attached to that is pinned. */
1599 static void __init xen_release_pte_init(unsigned long pfn)
1601 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1602 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1605 static void __init xen_release_pmd_init(unsigned long pfn)
1607 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1610 static inline void __pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1612 struct multicall_space mcs;
1613 struct mmuext_op *op;
1615 mcs = __xen_mc_entry(sizeof(*op));
1616 op = mcs.args;
1617 op->cmd = cmd;
1618 op->arg1.mfn = pfn_to_mfn(pfn);
1620 MULTI_mmuext_op(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
1623 static inline void __set_pfn_prot(unsigned long pfn, pgprot_t prot)
1625 struct multicall_space mcs;
1626 unsigned long addr = (unsigned long)__va(pfn << PAGE_SHIFT);
1628 mcs = __xen_mc_entry(0);
1629 MULTI_update_va_mapping(mcs.mc, (unsigned long)addr,
1630 pfn_pte(pfn, prot), 0);
1633 /* This needs to make sure the new pte page is pinned iff its being
1634 attached to a pinned pagetable. */
1635 static inline void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn,
1636 unsigned level)
1638 bool pinned = xen_page_pinned(mm->pgd);
1640 trace_xen_mmu_alloc_ptpage(mm, pfn, level, pinned);
1642 if (pinned) {
1643 struct page *page = pfn_to_page(pfn);
1645 if (static_branch_likely(&xen_struct_pages_ready))
1646 SetPagePinned(page);
1648 if (!PageHighMem(page)) {
1649 xen_mc_batch();
1651 __set_pfn_prot(pfn, PAGE_KERNEL_RO);
1653 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1654 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1656 xen_mc_issue(PARAVIRT_LAZY_MMU);
1657 } else {
1658 /* make sure there are no stray mappings of
1659 this page */
1660 kmap_flush_unused();
1665 static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1667 xen_alloc_ptpage(mm, pfn, PT_PTE);
1670 static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1672 xen_alloc_ptpage(mm, pfn, PT_PMD);
1675 /* This should never happen until we're OK to use struct page */
1676 static inline void xen_release_ptpage(unsigned long pfn, unsigned level)
1678 struct page *page = pfn_to_page(pfn);
1679 bool pinned = PagePinned(page);
1681 trace_xen_mmu_release_ptpage(pfn, level, pinned);
1683 if (pinned) {
1684 if (!PageHighMem(page)) {
1685 xen_mc_batch();
1687 if (level == PT_PTE && USE_SPLIT_PTE_PTLOCKS)
1688 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1690 __set_pfn_prot(pfn, PAGE_KERNEL);
1692 xen_mc_issue(PARAVIRT_LAZY_MMU);
1694 ClearPagePinned(page);
1698 static void xen_release_pte(unsigned long pfn)
1700 xen_release_ptpage(pfn, PT_PTE);
1703 static void xen_release_pmd(unsigned long pfn)
1705 xen_release_ptpage(pfn, PT_PMD);
1708 #ifdef CONFIG_X86_64
1709 static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1711 xen_alloc_ptpage(mm, pfn, PT_PUD);
1714 static void xen_release_pud(unsigned long pfn)
1716 xen_release_ptpage(pfn, PT_PUD);
1718 #endif
1720 void __init xen_reserve_top(void)
1722 #ifdef CONFIG_X86_32
1723 unsigned long top = HYPERVISOR_VIRT_START;
1724 struct xen_platform_parameters pp;
1726 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1727 top = pp.virt_start;
1729 reserve_top_address(-top);
1730 #endif /* CONFIG_X86_32 */
1734 * Like __va(), but returns address in the kernel mapping (which is
1735 * all we have until the physical memory mapping has been set up.
1737 static void * __init __ka(phys_addr_t paddr)
1739 #ifdef CONFIG_X86_64
1740 return (void *)(paddr + __START_KERNEL_map);
1741 #else
1742 return __va(paddr);
1743 #endif
1746 /* Convert a machine address to physical address */
1747 static unsigned long __init m2p(phys_addr_t maddr)
1749 phys_addr_t paddr;
1751 maddr &= XEN_PTE_MFN_MASK;
1752 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1754 return paddr;
1757 /* Convert a machine address to kernel virtual */
1758 static void * __init m2v(phys_addr_t maddr)
1760 return __ka(m2p(maddr));
1763 /* Set the page permissions on an identity-mapped pages */
1764 static void __init set_page_prot_flags(void *addr, pgprot_t prot,
1765 unsigned long flags)
1767 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1768 pte_t pte = pfn_pte(pfn, prot);
1770 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, flags))
1771 BUG();
1773 static void __init set_page_prot(void *addr, pgprot_t prot)
1775 return set_page_prot_flags(addr, prot, UVMF_NONE);
1777 #ifdef CONFIG_X86_32
1778 static void __init xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1780 unsigned pmdidx, pteidx;
1781 unsigned ident_pte;
1782 unsigned long pfn;
1784 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1785 PAGE_SIZE);
1787 ident_pte = 0;
1788 pfn = 0;
1789 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1790 pte_t *pte_page;
1792 /* Reuse or allocate a page of ptes */
1793 if (pmd_present(pmd[pmdidx]))
1794 pte_page = m2v(pmd[pmdidx].pmd);
1795 else {
1796 /* Check for free pte pages */
1797 if (ident_pte == LEVEL1_IDENT_ENTRIES)
1798 break;
1800 pte_page = &level1_ident_pgt[ident_pte];
1801 ident_pte += PTRS_PER_PTE;
1803 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1806 /* Install mappings */
1807 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1808 pte_t pte;
1810 if (pfn > max_pfn_mapped)
1811 max_pfn_mapped = pfn;
1813 if (!pte_none(pte_page[pteidx]))
1814 continue;
1816 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1817 pte_page[pteidx] = pte;
1821 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1822 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1824 set_page_prot(pmd, PAGE_KERNEL_RO);
1826 #endif
1827 void __init xen_setup_machphys_mapping(void)
1829 struct xen_machphys_mapping mapping;
1831 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1832 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1833 machine_to_phys_nr = mapping.max_mfn + 1;
1834 } else {
1835 machine_to_phys_nr = MACH2PHYS_NR_ENTRIES;
1837 #ifdef CONFIG_X86_32
1838 WARN_ON((machine_to_phys_mapping + (machine_to_phys_nr - 1))
1839 < machine_to_phys_mapping);
1840 #endif
1843 #ifdef CONFIG_X86_64
1844 static void __init convert_pfn_mfn(void *v)
1846 pte_t *pte = v;
1847 int i;
1849 /* All levels are converted the same way, so just treat them
1850 as ptes. */
1851 for (i = 0; i < PTRS_PER_PTE; i++)
1852 pte[i] = xen_make_pte(pte[i].pte);
1854 static void __init check_pt_base(unsigned long *pt_base, unsigned long *pt_end,
1855 unsigned long addr)
1857 if (*pt_base == PFN_DOWN(__pa(addr))) {
1858 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1859 clear_page((void *)addr);
1860 (*pt_base)++;
1862 if (*pt_end == PFN_DOWN(__pa(addr))) {
1863 set_page_prot_flags((void *)addr, PAGE_KERNEL, UVMF_INVLPG);
1864 clear_page((void *)addr);
1865 (*pt_end)--;
1869 * Set up the initial kernel pagetable.
1871 * We can construct this by grafting the Xen provided pagetable into
1872 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1873 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1874 * kernel has a physical mapping to start with - but that's enough to
1875 * get __va working. We need to fill in the rest of the physical
1876 * mapping once some sort of allocator has been set up.
1878 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
1880 pud_t *l3;
1881 pmd_t *l2;
1882 unsigned long addr[3];
1883 unsigned long pt_base, pt_end;
1884 unsigned i;
1886 /* max_pfn_mapped is the last pfn mapped in the initial memory
1887 * mappings. Considering that on Xen after the kernel mappings we
1888 * have the mappings of some pages that don't exist in pfn space, we
1889 * set max_pfn_mapped to the last real pfn mapped. */
1890 if (xen_start_info->mfn_list < __START_KERNEL_map)
1891 max_pfn_mapped = xen_start_info->first_p2m_pfn;
1892 else
1893 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->mfn_list));
1895 pt_base = PFN_DOWN(__pa(xen_start_info->pt_base));
1896 pt_end = pt_base + xen_start_info->nr_pt_frames;
1898 /* Zap identity mapping */
1899 init_top_pgt[0] = __pgd(0);
1901 /* Pre-constructed entries are in pfn, so convert to mfn */
1902 /* L4[272] -> level3_ident_pgt */
1903 /* L4[511] -> level3_kernel_pgt */
1904 convert_pfn_mfn(init_top_pgt);
1906 /* L3_i[0] -> level2_ident_pgt */
1907 convert_pfn_mfn(level3_ident_pgt);
1908 /* L3_k[510] -> level2_kernel_pgt */
1909 /* L3_k[511] -> level2_fixmap_pgt */
1910 convert_pfn_mfn(level3_kernel_pgt);
1912 /* L3_k[511][506] -> level1_fixmap_pgt */
1913 convert_pfn_mfn(level2_fixmap_pgt);
1915 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1916 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1917 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1919 addr[0] = (unsigned long)pgd;
1920 addr[1] = (unsigned long)l3;
1921 addr[2] = (unsigned long)l2;
1922 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1923 * Both L4[272][0] and L4[511][510] have entries that point to the same
1924 * L2 (PMD) tables. Meaning that if you modify it in __va space
1925 * it will be also modified in the __ka space! (But if you just
1926 * modify the PMD table to point to other PTE's or none, then you
1927 * are OK - which is what cleanup_highmap does) */
1928 copy_page(level2_ident_pgt, l2);
1929 /* Graft it onto L4[511][510] */
1930 copy_page(level2_kernel_pgt, l2);
1933 * Zap execute permission from the ident map. Due to the sharing of
1934 * L1 entries we need to do this in the L2.
1936 if (__supported_pte_mask & _PAGE_NX) {
1937 for (i = 0; i < PTRS_PER_PMD; ++i) {
1938 if (pmd_none(level2_ident_pgt[i]))
1939 continue;
1940 level2_ident_pgt[i] = pmd_set_flags(level2_ident_pgt[i], _PAGE_NX);
1944 /* Copy the initial P->M table mappings if necessary. */
1945 i = pgd_index(xen_start_info->mfn_list);
1946 if (i && i < pgd_index(__START_KERNEL_map))
1947 init_top_pgt[i] = ((pgd_t *)xen_start_info->pt_base)[i];
1949 /* Make pagetable pieces RO */
1950 set_page_prot(init_top_pgt, PAGE_KERNEL_RO);
1951 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1952 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1953 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1954 set_page_prot(level2_ident_pgt, PAGE_KERNEL_RO);
1955 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1956 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1957 set_page_prot(level1_fixmap_pgt, PAGE_KERNEL_RO);
1959 /* Pin down new L4 */
1960 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1961 PFN_DOWN(__pa_symbol(init_top_pgt)));
1963 /* Unpin Xen-provided one */
1964 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1967 * At this stage there can be no user pgd, and no page structure to
1968 * attach it to, so make sure we just set kernel pgd.
1970 xen_mc_batch();
1971 __xen_write_cr3(true, __pa(init_top_pgt));
1972 xen_mc_issue(PARAVIRT_LAZY_CPU);
1974 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1975 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1976 * the initial domain. For guests using the toolstack, they are in:
1977 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1978 * rip out the [L4] (pgd), but for guests we shave off three pages.
1980 for (i = 0; i < ARRAY_SIZE(addr); i++)
1981 check_pt_base(&pt_base, &pt_end, addr[i]);
1983 /* Our (by three pages) smaller Xen pagetable that we are using */
1984 xen_pt_base = PFN_PHYS(pt_base);
1985 xen_pt_size = (pt_end - pt_base) * PAGE_SIZE;
1986 memblock_reserve(xen_pt_base, xen_pt_size);
1988 /* Revector the xen_start_info */
1989 xen_start_info = (struct start_info *)__va(__pa(xen_start_info));
1993 * Read a value from a physical address.
1995 static unsigned long __init xen_read_phys_ulong(phys_addr_t addr)
1997 unsigned long *vaddr;
1998 unsigned long val;
2000 vaddr = early_memremap_ro(addr, sizeof(val));
2001 val = *vaddr;
2002 early_memunmap(vaddr, sizeof(val));
2003 return val;
2007 * Translate a virtual address to a physical one without relying on mapped
2008 * page tables. Don't rely on big pages being aligned in (guest) physical
2009 * space!
2011 static phys_addr_t __init xen_early_virt_to_phys(unsigned long vaddr)
2013 phys_addr_t pa;
2014 pgd_t pgd;
2015 pud_t pud;
2016 pmd_t pmd;
2017 pte_t pte;
2019 pa = read_cr3_pa();
2020 pgd = native_make_pgd(xen_read_phys_ulong(pa + pgd_index(vaddr) *
2021 sizeof(pgd)));
2022 if (!pgd_present(pgd))
2023 return 0;
2025 pa = pgd_val(pgd) & PTE_PFN_MASK;
2026 pud = native_make_pud(xen_read_phys_ulong(pa + pud_index(vaddr) *
2027 sizeof(pud)));
2028 if (!pud_present(pud))
2029 return 0;
2030 pa = pud_val(pud) & PTE_PFN_MASK;
2031 if (pud_large(pud))
2032 return pa + (vaddr & ~PUD_MASK);
2034 pmd = native_make_pmd(xen_read_phys_ulong(pa + pmd_index(vaddr) *
2035 sizeof(pmd)));
2036 if (!pmd_present(pmd))
2037 return 0;
2038 pa = pmd_val(pmd) & PTE_PFN_MASK;
2039 if (pmd_large(pmd))
2040 return pa + (vaddr & ~PMD_MASK);
2042 pte = native_make_pte(xen_read_phys_ulong(pa + pte_index(vaddr) *
2043 sizeof(pte)));
2044 if (!pte_present(pte))
2045 return 0;
2046 pa = pte_pfn(pte) << PAGE_SHIFT;
2048 return pa | (vaddr & ~PAGE_MASK);
2052 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2053 * this area.
2055 void __init xen_relocate_p2m(void)
2057 phys_addr_t size, new_area, pt_phys, pmd_phys, pud_phys;
2058 unsigned long p2m_pfn, p2m_pfn_end, n_frames, pfn, pfn_end;
2059 int n_pte, n_pt, n_pmd, n_pud, idx_pte, idx_pt, idx_pmd, idx_pud;
2060 pte_t *pt;
2061 pmd_t *pmd;
2062 pud_t *pud;
2063 pgd_t *pgd;
2064 unsigned long *new_p2m;
2065 int save_pud;
2067 size = PAGE_ALIGN(xen_start_info->nr_pages * sizeof(unsigned long));
2068 n_pte = roundup(size, PAGE_SIZE) >> PAGE_SHIFT;
2069 n_pt = roundup(size, PMD_SIZE) >> PMD_SHIFT;
2070 n_pmd = roundup(size, PUD_SIZE) >> PUD_SHIFT;
2071 n_pud = roundup(size, P4D_SIZE) >> P4D_SHIFT;
2072 n_frames = n_pte + n_pt + n_pmd + n_pud;
2074 new_area = xen_find_free_area(PFN_PHYS(n_frames));
2075 if (!new_area) {
2076 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2077 BUG();
2081 * Setup the page tables for addressing the new p2m list.
2082 * We have asked the hypervisor to map the p2m list at the user address
2083 * PUD_SIZE. It may have done so, or it may have used a kernel space
2084 * address depending on the Xen version.
2085 * To avoid any possible virtual address collision, just use
2086 * 2 * PUD_SIZE for the new area.
2088 pud_phys = new_area;
2089 pmd_phys = pud_phys + PFN_PHYS(n_pud);
2090 pt_phys = pmd_phys + PFN_PHYS(n_pmd);
2091 p2m_pfn = PFN_DOWN(pt_phys) + n_pt;
2093 pgd = __va(read_cr3_pa());
2094 new_p2m = (unsigned long *)(2 * PGDIR_SIZE);
2095 save_pud = n_pud;
2096 for (idx_pud = 0; idx_pud < n_pud; idx_pud++) {
2097 pud = early_memremap(pud_phys, PAGE_SIZE);
2098 clear_page(pud);
2099 for (idx_pmd = 0; idx_pmd < min(n_pmd, PTRS_PER_PUD);
2100 idx_pmd++) {
2101 pmd = early_memremap(pmd_phys, PAGE_SIZE);
2102 clear_page(pmd);
2103 for (idx_pt = 0; idx_pt < min(n_pt, PTRS_PER_PMD);
2104 idx_pt++) {
2105 pt = early_memremap(pt_phys, PAGE_SIZE);
2106 clear_page(pt);
2107 for (idx_pte = 0;
2108 idx_pte < min(n_pte, PTRS_PER_PTE);
2109 idx_pte++) {
2110 set_pte(pt + idx_pte,
2111 pfn_pte(p2m_pfn, PAGE_KERNEL));
2112 p2m_pfn++;
2114 n_pte -= PTRS_PER_PTE;
2115 early_memunmap(pt, PAGE_SIZE);
2116 make_lowmem_page_readonly(__va(pt_phys));
2117 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE,
2118 PFN_DOWN(pt_phys));
2119 set_pmd(pmd + idx_pt,
2120 __pmd(_PAGE_TABLE | pt_phys));
2121 pt_phys += PAGE_SIZE;
2123 n_pt -= PTRS_PER_PMD;
2124 early_memunmap(pmd, PAGE_SIZE);
2125 make_lowmem_page_readonly(__va(pmd_phys));
2126 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE,
2127 PFN_DOWN(pmd_phys));
2128 set_pud(pud + idx_pmd, __pud(_PAGE_TABLE | pmd_phys));
2129 pmd_phys += PAGE_SIZE;
2131 n_pmd -= PTRS_PER_PUD;
2132 early_memunmap(pud, PAGE_SIZE);
2133 make_lowmem_page_readonly(__va(pud_phys));
2134 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(pud_phys));
2135 set_pgd(pgd + 2 + idx_pud, __pgd(_PAGE_TABLE | pud_phys));
2136 pud_phys += PAGE_SIZE;
2139 /* Now copy the old p2m info to the new area. */
2140 memcpy(new_p2m, xen_p2m_addr, size);
2141 xen_p2m_addr = new_p2m;
2143 /* Release the old p2m list and set new list info. */
2144 p2m_pfn = PFN_DOWN(xen_early_virt_to_phys(xen_start_info->mfn_list));
2145 BUG_ON(!p2m_pfn);
2146 p2m_pfn_end = p2m_pfn + PFN_DOWN(size);
2148 if (xen_start_info->mfn_list < __START_KERNEL_map) {
2149 pfn = xen_start_info->first_p2m_pfn;
2150 pfn_end = xen_start_info->first_p2m_pfn +
2151 xen_start_info->nr_p2m_frames;
2152 set_pgd(pgd + 1, __pgd(0));
2153 } else {
2154 pfn = p2m_pfn;
2155 pfn_end = p2m_pfn_end;
2158 memblock_free(PFN_PHYS(pfn), PAGE_SIZE * (pfn_end - pfn));
2159 while (pfn < pfn_end) {
2160 if (pfn == p2m_pfn) {
2161 pfn = p2m_pfn_end;
2162 continue;
2164 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
2165 pfn++;
2168 xen_start_info->mfn_list = (unsigned long)xen_p2m_addr;
2169 xen_start_info->first_p2m_pfn = PFN_DOWN(new_area);
2170 xen_start_info->nr_p2m_frames = n_frames;
2173 #else /* !CONFIG_X86_64 */
2174 static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
2175 static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
2177 static void __init xen_write_cr3_init(unsigned long cr3)
2179 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
2181 BUG_ON(read_cr3_pa() != __pa(initial_page_table));
2182 BUG_ON(cr3 != __pa(swapper_pg_dir));
2185 * We are switching to swapper_pg_dir for the first time (from
2186 * initial_page_table) and therefore need to mark that page
2187 * read-only and then pin it.
2189 * Xen disallows sharing of kernel PMDs for PAE
2190 * guests. Therefore we must copy the kernel PMD from
2191 * initial_page_table into a new kernel PMD to be used in
2192 * swapper_pg_dir.
2194 swapper_kernel_pmd =
2195 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2196 copy_page(swapper_kernel_pmd, initial_kernel_pmd);
2197 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
2198 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
2199 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
2201 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
2202 xen_write_cr3(cr3);
2203 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
2205 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
2206 PFN_DOWN(__pa(initial_page_table)));
2207 set_page_prot(initial_page_table, PAGE_KERNEL);
2208 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
2210 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2214 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2215 * not the first page table in the page table pool.
2216 * Iterate through the initial page tables to find the real page table base.
2218 static phys_addr_t __init xen_find_pt_base(pmd_t *pmd)
2220 phys_addr_t pt_base, paddr;
2221 unsigned pmdidx;
2223 pt_base = min(__pa(xen_start_info->pt_base), __pa(pmd));
2225 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++)
2226 if (pmd_present(pmd[pmdidx]) && !pmd_large(pmd[pmdidx])) {
2227 paddr = m2p(pmd[pmdidx].pmd);
2228 pt_base = min(pt_base, paddr);
2231 return pt_base;
2234 void __init xen_setup_kernel_pagetable(pgd_t *pgd, unsigned long max_pfn)
2236 pmd_t *kernel_pmd;
2238 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
2240 xen_pt_base = xen_find_pt_base(kernel_pmd);
2241 xen_pt_size = xen_start_info->nr_pt_frames * PAGE_SIZE;
2243 initial_kernel_pmd =
2244 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
2246 max_pfn_mapped = PFN_DOWN(xen_pt_base + xen_pt_size + 512 * 1024);
2248 copy_page(initial_kernel_pmd, kernel_pmd);
2250 xen_map_identity_early(initial_kernel_pmd, max_pfn);
2252 copy_page(initial_page_table, pgd);
2253 initial_page_table[KERNEL_PGD_BOUNDARY] =
2254 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
2256 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
2257 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
2258 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
2260 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
2262 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
2263 PFN_DOWN(__pa(initial_page_table)));
2264 xen_write_cr3(__pa(initial_page_table));
2266 memblock_reserve(xen_pt_base, xen_pt_size);
2268 #endif /* CONFIG_X86_64 */
2270 void __init xen_reserve_special_pages(void)
2272 phys_addr_t paddr;
2274 memblock_reserve(__pa(xen_start_info), PAGE_SIZE);
2275 if (xen_start_info->store_mfn) {
2276 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->store_mfn));
2277 memblock_reserve(paddr, PAGE_SIZE);
2279 if (!xen_initial_domain()) {
2280 paddr = PFN_PHYS(mfn_to_pfn(xen_start_info->console.domU.mfn));
2281 memblock_reserve(paddr, PAGE_SIZE);
2285 void __init xen_pt_check_e820(void)
2287 if (xen_is_e820_reserved(xen_pt_base, xen_pt_size)) {
2288 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2289 BUG();
2293 static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
2295 static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
2297 pte_t pte;
2299 phys >>= PAGE_SHIFT;
2301 switch (idx) {
2302 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
2303 #ifdef CONFIG_X86_32
2304 case FIX_WP_TEST:
2305 # ifdef CONFIG_HIGHMEM
2306 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
2307 # endif
2308 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2309 case VSYSCALL_PAGE:
2310 #endif
2311 case FIX_TEXT_POKE0:
2312 case FIX_TEXT_POKE1:
2313 /* All local page mappings */
2314 pte = pfn_pte(phys, prot);
2315 break;
2317 #ifdef CONFIG_X86_LOCAL_APIC
2318 case FIX_APIC_BASE: /* maps dummy local APIC */
2319 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2320 break;
2321 #endif
2323 #ifdef CONFIG_X86_IO_APIC
2324 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
2326 * We just don't map the IO APIC - all access is via
2327 * hypercalls. Keep the address in the pte for reference.
2329 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
2330 break;
2331 #endif
2333 case FIX_PARAVIRT_BOOTMAP:
2334 /* This is an MFN, but it isn't an IO mapping from the
2335 IO domain */
2336 pte = mfn_pte(phys, prot);
2337 break;
2339 default:
2340 /* By default, set_fixmap is used for hardware mappings */
2341 pte = mfn_pte(phys, prot);
2342 break;
2345 __native_set_fixmap(idx, pte);
2347 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2348 /* Replicate changes to map the vsyscall page into the user
2349 pagetable vsyscall mapping. */
2350 if (idx == VSYSCALL_PAGE) {
2351 unsigned long vaddr = __fix_to_virt(idx);
2352 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
2354 #endif
2357 static void __init xen_post_allocator_init(void)
2359 pv_mmu_ops.set_pte = xen_set_pte;
2360 pv_mmu_ops.set_pmd = xen_set_pmd;
2361 pv_mmu_ops.set_pud = xen_set_pud;
2362 #ifdef CONFIG_X86_64
2363 pv_mmu_ops.set_p4d = xen_set_p4d;
2364 #endif
2366 /* This will work as long as patching hasn't happened yet
2367 (which it hasn't) */
2368 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2369 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2370 pv_mmu_ops.release_pte = xen_release_pte;
2371 pv_mmu_ops.release_pmd = xen_release_pmd;
2372 #ifdef CONFIG_X86_64
2373 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2374 pv_mmu_ops.release_pud = xen_release_pud;
2375 #endif
2376 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte);
2378 #ifdef CONFIG_X86_64
2379 pv_mmu_ops.write_cr3 = &xen_write_cr3;
2380 #endif
2383 static void xen_leave_lazy_mmu(void)
2385 preempt_disable();
2386 xen_mc_flush();
2387 paravirt_leave_lazy_mmu();
2388 preempt_enable();
2391 static const struct pv_mmu_ops xen_mmu_ops __initconst = {
2392 .read_cr2 = xen_read_cr2,
2393 .write_cr2 = xen_write_cr2,
2395 .read_cr3 = xen_read_cr3,
2396 .write_cr3 = xen_write_cr3_init,
2398 .flush_tlb_user = xen_flush_tlb,
2399 .flush_tlb_kernel = xen_flush_tlb,
2400 .flush_tlb_one_user = xen_flush_tlb_one_user,
2401 .flush_tlb_others = xen_flush_tlb_others,
2403 .pgd_alloc = xen_pgd_alloc,
2404 .pgd_free = xen_pgd_free,
2406 .alloc_pte = xen_alloc_pte_init,
2407 .release_pte = xen_release_pte_init,
2408 .alloc_pmd = xen_alloc_pmd_init,
2409 .release_pmd = xen_release_pmd_init,
2411 .set_pte = xen_set_pte_init,
2412 .set_pte_at = xen_set_pte_at,
2413 .set_pmd = xen_set_pmd_hyper,
2415 .ptep_modify_prot_start = __ptep_modify_prot_start,
2416 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2418 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2419 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
2421 .make_pte = PV_CALLEE_SAVE(xen_make_pte_init),
2422 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
2424 #ifdef CONFIG_X86_PAE
2425 .set_pte_atomic = xen_set_pte_atomic,
2426 .pte_clear = xen_pte_clear,
2427 .pmd_clear = xen_pmd_clear,
2428 #endif /* CONFIG_X86_PAE */
2429 .set_pud = xen_set_pud_hyper,
2431 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2432 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
2434 #ifdef CONFIG_X86_64
2435 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2436 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
2437 .set_p4d = xen_set_p4d_hyper,
2439 .alloc_pud = xen_alloc_pmd_init,
2440 .release_pud = xen_release_pmd_init,
2442 #if CONFIG_PGTABLE_LEVELS >= 5
2443 .p4d_val = PV_CALLEE_SAVE(xen_p4d_val),
2444 .make_p4d = PV_CALLEE_SAVE(xen_make_p4d),
2445 #endif
2446 #endif /* CONFIG_X86_64 */
2448 .activate_mm = xen_activate_mm,
2449 .dup_mmap = xen_dup_mmap,
2450 .exit_mmap = xen_exit_mmap,
2452 .lazy_mode = {
2453 .enter = paravirt_enter_lazy_mmu,
2454 .leave = xen_leave_lazy_mmu,
2455 .flush = paravirt_flush_lazy_mmu,
2458 .set_fixmap = xen_set_fixmap,
2461 void __init xen_init_mmu_ops(void)
2463 x86_init.paging.pagetable_init = xen_pagetable_init;
2464 x86_init.hyper.init_after_bootmem = xen_after_bootmem;
2466 pv_mmu_ops = xen_mmu_ops;
2468 memset(dummy_mapping, 0xff, PAGE_SIZE);
2471 /* Protected by xen_reservation_lock. */
2472 #define MAX_CONTIG_ORDER 9 /* 2MB */
2473 static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2475 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2476 static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2477 unsigned long *in_frames,
2478 unsigned long *out_frames)
2480 int i;
2481 struct multicall_space mcs;
2483 xen_mc_batch();
2484 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2485 mcs = __xen_mc_entry(0);
2487 if (in_frames)
2488 in_frames[i] = virt_to_mfn(vaddr);
2490 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
2491 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
2493 if (out_frames)
2494 out_frames[i] = virt_to_pfn(vaddr);
2496 xen_mc_issue(0);
2500 * Update the pfn-to-mfn mappings for a virtual address range, either to
2501 * point to an array of mfns, or contiguously from a single starting
2502 * mfn.
2504 static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2505 unsigned long *mfns,
2506 unsigned long first_mfn)
2508 unsigned i, limit;
2509 unsigned long mfn;
2511 xen_mc_batch();
2513 limit = 1u << order;
2514 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2515 struct multicall_space mcs;
2516 unsigned flags;
2518 mcs = __xen_mc_entry(0);
2519 if (mfns)
2520 mfn = mfns[i];
2521 else
2522 mfn = first_mfn + i;
2524 if (i < (limit - 1))
2525 flags = 0;
2526 else {
2527 if (order == 0)
2528 flags = UVMF_INVLPG | UVMF_ALL;
2529 else
2530 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2533 MULTI_update_va_mapping(mcs.mc, vaddr,
2534 mfn_pte(mfn, PAGE_KERNEL), flags);
2536 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2539 xen_mc_issue(0);
2543 * Perform the hypercall to exchange a region of our pfns to point to
2544 * memory with the required contiguous alignment. Takes the pfns as
2545 * input, and populates mfns as output.
2547 * Returns a success code indicating whether the hypervisor was able to
2548 * satisfy the request or not.
2550 static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2551 unsigned long *pfns_in,
2552 unsigned long extents_out,
2553 unsigned int order_out,
2554 unsigned long *mfns_out,
2555 unsigned int address_bits)
2557 long rc;
2558 int success;
2560 struct xen_memory_exchange exchange = {
2561 .in = {
2562 .nr_extents = extents_in,
2563 .extent_order = order_in,
2564 .extent_start = pfns_in,
2565 .domid = DOMID_SELF
2567 .out = {
2568 .nr_extents = extents_out,
2569 .extent_order = order_out,
2570 .extent_start = mfns_out,
2571 .address_bits = address_bits,
2572 .domid = DOMID_SELF
2576 BUG_ON(extents_in << order_in != extents_out << order_out);
2578 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2579 success = (exchange.nr_exchanged == extents_in);
2581 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2582 BUG_ON(success && (rc != 0));
2584 return success;
2587 int xen_create_contiguous_region(phys_addr_t pstart, unsigned int order,
2588 unsigned int address_bits,
2589 dma_addr_t *dma_handle)
2591 unsigned long *in_frames = discontig_frames, out_frame;
2592 unsigned long flags;
2593 int success;
2594 unsigned long vstart = (unsigned long)phys_to_virt(pstart);
2597 * Currently an auto-translated guest will not perform I/O, nor will
2598 * it require PAE page directories below 4GB. Therefore any calls to
2599 * this function are redundant and can be ignored.
2602 if (unlikely(order > MAX_CONTIG_ORDER))
2603 return -ENOMEM;
2605 memset((void *) vstart, 0, PAGE_SIZE << order);
2607 spin_lock_irqsave(&xen_reservation_lock, flags);
2609 /* 1. Zap current PTEs, remembering MFNs. */
2610 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2612 /* 2. Get a new contiguous memory extent. */
2613 out_frame = virt_to_pfn(vstart);
2614 success = xen_exchange_memory(1UL << order, 0, in_frames,
2615 1, order, &out_frame,
2616 address_bits);
2618 /* 3. Map the new extent in place of old pages. */
2619 if (success)
2620 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2621 else
2622 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2624 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2626 *dma_handle = virt_to_machine(vstart).maddr;
2627 return success ? 0 : -ENOMEM;
2629 EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2631 void xen_destroy_contiguous_region(phys_addr_t pstart, unsigned int order)
2633 unsigned long *out_frames = discontig_frames, in_frame;
2634 unsigned long flags;
2635 int success;
2636 unsigned long vstart;
2638 if (unlikely(order > MAX_CONTIG_ORDER))
2639 return;
2641 vstart = (unsigned long)phys_to_virt(pstart);
2642 memset((void *) vstart, 0, PAGE_SIZE << order);
2644 spin_lock_irqsave(&xen_reservation_lock, flags);
2646 /* 1. Find start MFN of contiguous extent. */
2647 in_frame = virt_to_mfn(vstart);
2649 /* 2. Zap current PTEs. */
2650 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2652 /* 3. Do the exchange for non-contiguous MFNs. */
2653 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2654 0, out_frames, 0);
2656 /* 4. Map new pages in place of old pages. */
2657 if (success)
2658 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2659 else
2660 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2662 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2664 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
2666 #ifdef CONFIG_KEXEC_CORE
2667 phys_addr_t paddr_vmcoreinfo_note(void)
2669 if (xen_pv_domain())
2670 return virt_to_machine(vmcoreinfo_note).maddr;
2671 else
2672 return __pa(vmcoreinfo_note);
2674 #endif /* CONFIG_KEXEC_CORE */