4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
41 #include <linux/sched/mm.h>
42 #include <linux/highmem.h>
43 #include <linux/debugfs.h>
44 #include <linux/bug.h>
45 #include <linux/vmalloc.h>
46 #include <linux/export.h>
47 #include <linux/init.h>
48 #include <linux/gfp.h>
49 #include <linux/memblock.h>
50 #include <linux/seq_file.h>
51 #include <linux/crash_dump.h>
52 #ifdef CONFIG_KEXEC_CORE
53 #include <linux/kexec.h>
56 #include <trace/events/xen.h>
58 #include <asm/pgtable.h>
59 #include <asm/tlbflush.h>
60 #include <asm/fixmap.h>
61 #include <asm/mmu_context.h>
62 #include <asm/setup.h>
63 #include <asm/paravirt.h>
64 #include <asm/e820/api.h>
65 #include <asm/linkage.h>
71 #include <asm/xen/hypercall.h>
72 #include <asm/xen/hypervisor.h>
76 #include <xen/interface/xen.h>
77 #include <xen/interface/hvm/hvm_op.h>
78 #include <xen/interface/version.h>
79 #include <xen/interface/memory.h>
80 #include <xen/hvc-console.h>
82 #include "multicalls.h"
88 * Identity map, in addition to plain kernel map. This needs to be
89 * large enough to allocate page table pages to allocate the rest.
90 * Each page can map 2MB.
92 #define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
93 static RESERVE_BRK_ARRAY(pte_t
, level1_ident_pgt
, LEVEL1_IDENT_ENTRIES
);
96 /* l3 pud for userspace vsyscall mapping */
97 static pud_t level3_user_vsyscall
[PTRS_PER_PUD
] __page_aligned_bss
;
98 #endif /* CONFIG_X86_64 */
101 * Note about cr3 (pagetable base) values:
103 * xen_cr3 contains the current logical cr3 value; it contains the
104 * last set cr3. This may not be the current effective cr3, because
105 * its update may be being lazily deferred. However, a vcpu looking
106 * at its own cr3 can use this value knowing that it everything will
107 * be self-consistent.
109 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
110 * hypercall to set the vcpu cr3 is complete (so it may be a little
111 * out of date, but it will never be set early). If one vcpu is
112 * looking at another vcpu's cr3 value, it should use this variable.
114 DEFINE_PER_CPU(unsigned long, xen_cr3
); /* cr3 stored as physaddr */
115 DEFINE_PER_CPU(unsigned long, xen_current_cr3
); /* actual vcpu cr3 */
117 static phys_addr_t xen_pt_base
, xen_pt_size __initdata
;
119 static DEFINE_STATIC_KEY_FALSE(xen_struct_pages_ready
);
122 * Just beyond the highest usermode address. STACK_TOP_MAX has a
123 * redzone above it, so round it up to a PGD boundary.
125 #define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
127 void make_lowmem_page_readonly(void *vaddr
)
130 unsigned long address
= (unsigned long)vaddr
;
133 pte
= lookup_address(address
, &level
);
135 return; /* vaddr missing */
137 ptev
= pte_wrprotect(*pte
);
139 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
143 void make_lowmem_page_readwrite(void *vaddr
)
146 unsigned long address
= (unsigned long)vaddr
;
149 pte
= lookup_address(address
, &level
);
151 return; /* vaddr missing */
153 ptev
= pte_mkwrite(*pte
);
155 if (HYPERVISOR_update_va_mapping(address
, ptev
, 0))
161 * During early boot all page table pages are pinned, but we do not have struct
162 * pages, so return true until struct pages are ready.
164 static bool xen_page_pinned(void *ptr
)
166 if (static_branch_likely(&xen_struct_pages_ready
)) {
167 struct page
*page
= virt_to_page(ptr
);
169 return PagePinned(page
);
174 static void xen_extend_mmu_update(const struct mmu_update
*update
)
176 struct multicall_space mcs
;
177 struct mmu_update
*u
;
179 mcs
= xen_mc_extend_args(__HYPERVISOR_mmu_update
, sizeof(*u
));
181 if (mcs
.mc
!= NULL
) {
184 mcs
= __xen_mc_entry(sizeof(*u
));
185 MULTI_mmu_update(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
192 static void xen_extend_mmuext_op(const struct mmuext_op
*op
)
194 struct multicall_space mcs
;
197 mcs
= xen_mc_extend_args(__HYPERVISOR_mmuext_op
, sizeof(*u
));
199 if (mcs
.mc
!= NULL
) {
202 mcs
= __xen_mc_entry(sizeof(*u
));
203 MULTI_mmuext_op(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
210 static void xen_set_pmd_hyper(pmd_t
*ptr
, pmd_t val
)
218 /* ptr may be ioremapped for 64-bit pagetable setup */
219 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
220 u
.val
= pmd_val_ma(val
);
221 xen_extend_mmu_update(&u
);
223 xen_mc_issue(PARAVIRT_LAZY_MMU
);
228 static void xen_set_pmd(pmd_t
*ptr
, pmd_t val
)
230 trace_xen_mmu_set_pmd(ptr
, val
);
232 /* If page is not pinned, we can just update the entry
234 if (!xen_page_pinned(ptr
)) {
239 xen_set_pmd_hyper(ptr
, val
);
243 * Associate a virtual page frame with a given physical page frame
244 * and protection flags for that frame.
246 void set_pte_mfn(unsigned long vaddr
, unsigned long mfn
, pgprot_t flags
)
248 set_pte_vaddr(vaddr
, mfn_pte(mfn
, flags
));
251 static bool xen_batched_set_pte(pte_t
*ptep
, pte_t pteval
)
255 if (paravirt_get_lazy_mode() != PARAVIRT_LAZY_MMU
)
260 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_NORMAL_PT_UPDATE
;
261 u
.val
= pte_val_ma(pteval
);
262 xen_extend_mmu_update(&u
);
264 xen_mc_issue(PARAVIRT_LAZY_MMU
);
269 static inline void __xen_set_pte(pte_t
*ptep
, pte_t pteval
)
271 if (!xen_batched_set_pte(ptep
, pteval
)) {
273 * Could call native_set_pte() here and trap and
274 * emulate the PTE write but with 32-bit guests this
275 * needs two traps (one for each of the two 32-bit
276 * words in the PTE) so do one hypercall directly
281 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_NORMAL_PT_UPDATE
;
282 u
.val
= pte_val_ma(pteval
);
283 HYPERVISOR_mmu_update(&u
, 1, NULL
, DOMID_SELF
);
287 static void xen_set_pte(pte_t
*ptep
, pte_t pteval
)
289 trace_xen_mmu_set_pte(ptep
, pteval
);
290 __xen_set_pte(ptep
, pteval
);
293 static void xen_set_pte_at(struct mm_struct
*mm
, unsigned long addr
,
294 pte_t
*ptep
, pte_t pteval
)
296 trace_xen_mmu_set_pte_at(mm
, addr
, ptep
, pteval
);
297 __xen_set_pte(ptep
, pteval
);
300 pte_t
xen_ptep_modify_prot_start(struct mm_struct
*mm
,
301 unsigned long addr
, pte_t
*ptep
)
303 /* Just return the pte as-is. We preserve the bits on commit */
304 trace_xen_mmu_ptep_modify_prot_start(mm
, addr
, ptep
, *ptep
);
308 void xen_ptep_modify_prot_commit(struct mm_struct
*mm
, unsigned long addr
,
309 pte_t
*ptep
, pte_t pte
)
313 trace_xen_mmu_ptep_modify_prot_commit(mm
, addr
, ptep
, pte
);
316 u
.ptr
= virt_to_machine(ptep
).maddr
| MMU_PT_UPDATE_PRESERVE_AD
;
317 u
.val
= pte_val_ma(pte
);
318 xen_extend_mmu_update(&u
);
320 xen_mc_issue(PARAVIRT_LAZY_MMU
);
323 /* Assume pteval_t is equivalent to all the other *val_t types. */
324 static pteval_t
pte_mfn_to_pfn(pteval_t val
)
326 if (val
& _PAGE_PRESENT
) {
327 unsigned long mfn
= (val
& XEN_PTE_MFN_MASK
) >> PAGE_SHIFT
;
328 unsigned long pfn
= mfn_to_pfn(mfn
);
330 pteval_t flags
= val
& PTE_FLAGS_MASK
;
331 if (unlikely(pfn
== ~0))
332 val
= flags
& ~_PAGE_PRESENT
;
334 val
= ((pteval_t
)pfn
<< PAGE_SHIFT
) | flags
;
340 static pteval_t
pte_pfn_to_mfn(pteval_t val
)
342 if (val
& _PAGE_PRESENT
) {
343 unsigned long pfn
= (val
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
344 pteval_t flags
= val
& PTE_FLAGS_MASK
;
347 mfn
= __pfn_to_mfn(pfn
);
350 * If there's no mfn for the pfn, then just create an
351 * empty non-present pte. Unfortunately this loses
352 * information about the original pfn, so
353 * pte_mfn_to_pfn is asymmetric.
355 if (unlikely(mfn
== INVALID_P2M_ENTRY
)) {
359 mfn
&= ~(FOREIGN_FRAME_BIT
| IDENTITY_FRAME_BIT
);
360 val
= ((pteval_t
)mfn
<< PAGE_SHIFT
) | flags
;
366 __visible pteval_t
xen_pte_val(pte_t pte
)
368 pteval_t pteval
= pte
.pte
;
370 return pte_mfn_to_pfn(pteval
);
372 PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val
);
374 __visible pgdval_t
xen_pgd_val(pgd_t pgd
)
376 return pte_mfn_to_pfn(pgd
.pgd
);
378 PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val
);
380 __visible pte_t
xen_make_pte(pteval_t pte
)
382 pte
= pte_pfn_to_mfn(pte
);
384 return native_make_pte(pte
);
386 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte
);
388 __visible pgd_t
xen_make_pgd(pgdval_t pgd
)
390 pgd
= pte_pfn_to_mfn(pgd
);
391 return native_make_pgd(pgd
);
393 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd
);
395 __visible pmdval_t
xen_pmd_val(pmd_t pmd
)
397 return pte_mfn_to_pfn(pmd
.pmd
);
399 PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val
);
401 static void xen_set_pud_hyper(pud_t
*ptr
, pud_t val
)
409 /* ptr may be ioremapped for 64-bit pagetable setup */
410 u
.ptr
= arbitrary_virt_to_machine(ptr
).maddr
;
411 u
.val
= pud_val_ma(val
);
412 xen_extend_mmu_update(&u
);
414 xen_mc_issue(PARAVIRT_LAZY_MMU
);
419 static void xen_set_pud(pud_t
*ptr
, pud_t val
)
421 trace_xen_mmu_set_pud(ptr
, val
);
423 /* If page is not pinned, we can just update the entry
425 if (!xen_page_pinned(ptr
)) {
430 xen_set_pud_hyper(ptr
, val
);
433 #ifdef CONFIG_X86_PAE
434 static void xen_set_pte_atomic(pte_t
*ptep
, pte_t pte
)
436 trace_xen_mmu_set_pte_atomic(ptep
, pte
);
437 set_64bit((u64
*)ptep
, native_pte_val(pte
));
440 static void xen_pte_clear(struct mm_struct
*mm
, unsigned long addr
, pte_t
*ptep
)
442 trace_xen_mmu_pte_clear(mm
, addr
, ptep
);
443 if (!xen_batched_set_pte(ptep
, native_make_pte(0)))
444 native_pte_clear(mm
, addr
, ptep
);
447 static void xen_pmd_clear(pmd_t
*pmdp
)
449 trace_xen_mmu_pmd_clear(pmdp
);
450 set_pmd(pmdp
, __pmd(0));
452 #endif /* CONFIG_X86_PAE */
454 __visible pmd_t
xen_make_pmd(pmdval_t pmd
)
456 pmd
= pte_pfn_to_mfn(pmd
);
457 return native_make_pmd(pmd
);
459 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd
);
462 __visible pudval_t
xen_pud_val(pud_t pud
)
464 return pte_mfn_to_pfn(pud
.pud
);
466 PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val
);
468 __visible pud_t
xen_make_pud(pudval_t pud
)
470 pud
= pte_pfn_to_mfn(pud
);
472 return native_make_pud(pud
);
474 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud
);
476 static pgd_t
*xen_get_user_pgd(pgd_t
*pgd
)
478 pgd_t
*pgd_page
= (pgd_t
*)(((unsigned long)pgd
) & PAGE_MASK
);
479 unsigned offset
= pgd
- pgd_page
;
480 pgd_t
*user_ptr
= NULL
;
482 if (offset
< pgd_index(USER_LIMIT
)) {
483 struct page
*page
= virt_to_page(pgd_page
);
484 user_ptr
= (pgd_t
*)page
->private;
492 static void __xen_set_p4d_hyper(p4d_t
*ptr
, p4d_t val
)
496 u
.ptr
= virt_to_machine(ptr
).maddr
;
497 u
.val
= p4d_val_ma(val
);
498 xen_extend_mmu_update(&u
);
502 * Raw hypercall-based set_p4d, intended for in early boot before
503 * there's a page structure. This implies:
504 * 1. The only existing pagetable is the kernel's
505 * 2. It is always pinned
506 * 3. It has no user pagetable attached to it
508 static void __init
xen_set_p4d_hyper(p4d_t
*ptr
, p4d_t val
)
514 __xen_set_p4d_hyper(ptr
, val
);
516 xen_mc_issue(PARAVIRT_LAZY_MMU
);
521 static void xen_set_p4d(p4d_t
*ptr
, p4d_t val
)
523 pgd_t
*user_ptr
= xen_get_user_pgd((pgd_t
*)ptr
);
526 trace_xen_mmu_set_p4d(ptr
, (p4d_t
*)user_ptr
, val
);
528 /* If page is not pinned, we can just update the entry
530 if (!xen_page_pinned(ptr
)) {
533 WARN_ON(xen_page_pinned(user_ptr
));
534 pgd_val
.pgd
= p4d_val_ma(val
);
540 /* If it's pinned, then we can at least batch the kernel and
541 user updates together. */
544 __xen_set_p4d_hyper(ptr
, val
);
546 __xen_set_p4d_hyper((p4d_t
*)user_ptr
, val
);
548 xen_mc_issue(PARAVIRT_LAZY_MMU
);
551 #if CONFIG_PGTABLE_LEVELS >= 5
552 __visible p4dval_t
xen_p4d_val(p4d_t p4d
)
554 return pte_mfn_to_pfn(p4d
.p4d
);
556 PV_CALLEE_SAVE_REGS_THUNK(xen_p4d_val
);
558 __visible p4d_t
xen_make_p4d(p4dval_t p4d
)
560 p4d
= pte_pfn_to_mfn(p4d
);
562 return native_make_p4d(p4d
);
564 PV_CALLEE_SAVE_REGS_THUNK(xen_make_p4d
);
565 #endif /* CONFIG_PGTABLE_LEVELS >= 5 */
566 #endif /* CONFIG_X86_64 */
568 static int xen_pmd_walk(struct mm_struct
*mm
, pmd_t
*pmd
,
569 int (*func
)(struct mm_struct
*mm
, struct page
*, enum pt_level
),
570 bool last
, unsigned long limit
)
572 int i
, nr
, flush
= 0;
574 nr
= last
? pmd_index(limit
) + 1 : PTRS_PER_PMD
;
575 for (i
= 0; i
< nr
; i
++) {
576 if (!pmd_none(pmd
[i
]))
577 flush
|= (*func
)(mm
, pmd_page(pmd
[i
]), PT_PTE
);
582 static int xen_pud_walk(struct mm_struct
*mm
, pud_t
*pud
,
583 int (*func
)(struct mm_struct
*mm
, struct page
*, enum pt_level
),
584 bool last
, unsigned long limit
)
586 int i
, nr
, flush
= 0;
588 nr
= last
? pud_index(limit
) + 1 : PTRS_PER_PUD
;
589 for (i
= 0; i
< nr
; i
++) {
592 if (pud_none(pud
[i
]))
595 pmd
= pmd_offset(&pud
[i
], 0);
596 if (PTRS_PER_PMD
> 1)
597 flush
|= (*func
)(mm
, virt_to_page(pmd
), PT_PMD
);
598 flush
|= xen_pmd_walk(mm
, pmd
, func
,
599 last
&& i
== nr
- 1, limit
);
604 static int xen_p4d_walk(struct mm_struct
*mm
, p4d_t
*p4d
,
605 int (*func
)(struct mm_struct
*mm
, struct page
*, enum pt_level
),
606 bool last
, unsigned long limit
)
615 pud
= pud_offset(p4d
, 0);
616 if (PTRS_PER_PUD
> 1)
617 flush
|= (*func
)(mm
, virt_to_page(pud
), PT_PUD
);
618 flush
|= xen_pud_walk(mm
, pud
, func
, last
, limit
);
623 * (Yet another) pagetable walker. This one is intended for pinning a
624 * pagetable. This means that it walks a pagetable and calls the
625 * callback function on each page it finds making up the page table,
626 * at every level. It walks the entire pagetable, but it only bothers
627 * pinning pte pages which are below limit. In the normal case this
628 * will be STACK_TOP_MAX, but at boot we need to pin up to
631 * For 32-bit the important bit is that we don't pin beyond there,
632 * because then we start getting into Xen's ptes.
634 * For 64-bit, we must skip the Xen hole in the middle of the address
635 * space, just after the big x86-64 virtual hole.
637 static int __xen_pgd_walk(struct mm_struct
*mm
, pgd_t
*pgd
,
638 int (*func
)(struct mm_struct
*mm
, struct page
*,
642 int i
, nr
, flush
= 0;
643 unsigned hole_low
, hole_high
;
645 /* The limit is the last byte to be touched */
647 BUG_ON(limit
>= FIXADDR_TOP
);
650 * 64-bit has a great big hole in the middle of the address
651 * space, which contains the Xen mappings. On 32-bit these
652 * will end up making a zero-sized hole and so is a no-op.
654 hole_low
= pgd_index(USER_LIMIT
);
655 hole_high
= pgd_index(PAGE_OFFSET
);
657 nr
= pgd_index(limit
) + 1;
658 for (i
= 0; i
< nr
; i
++) {
661 if (i
>= hole_low
&& i
< hole_high
)
664 if (pgd_none(pgd
[i
]))
667 p4d
= p4d_offset(&pgd
[i
], 0);
668 flush
|= xen_p4d_walk(mm
, p4d
, func
, i
== nr
- 1, limit
);
671 /* Do the top level last, so that the callbacks can use it as
672 a cue to do final things like tlb flushes. */
673 flush
|= (*func
)(mm
, virt_to_page(pgd
), PT_PGD
);
678 static int xen_pgd_walk(struct mm_struct
*mm
,
679 int (*func
)(struct mm_struct
*mm
, struct page
*,
683 return __xen_pgd_walk(mm
, mm
->pgd
, func
, limit
);
686 /* If we're using split pte locks, then take the page's lock and
687 return a pointer to it. Otherwise return NULL. */
688 static spinlock_t
*xen_pte_lock(struct page
*page
, struct mm_struct
*mm
)
690 spinlock_t
*ptl
= NULL
;
692 #if USE_SPLIT_PTE_PTLOCKS
693 ptl
= ptlock_ptr(page
);
694 spin_lock_nest_lock(ptl
, &mm
->page_table_lock
);
700 static void xen_pte_unlock(void *v
)
706 static void xen_do_pin(unsigned level
, unsigned long pfn
)
711 op
.arg1
.mfn
= pfn_to_mfn(pfn
);
713 xen_extend_mmuext_op(&op
);
716 static int xen_pin_page(struct mm_struct
*mm
, struct page
*page
,
719 unsigned pgfl
= TestSetPagePinned(page
);
723 flush
= 0; /* already pinned */
724 else if (PageHighMem(page
))
725 /* kmaps need flushing if we found an unpinned
729 void *pt
= lowmem_page_address(page
);
730 unsigned long pfn
= page_to_pfn(page
);
731 struct multicall_space mcs
= __xen_mc_entry(0);
737 * We need to hold the pagetable lock between the time
738 * we make the pagetable RO and when we actually pin
739 * it. If we don't, then other users may come in and
740 * attempt to update the pagetable by writing it,
741 * which will fail because the memory is RO but not
742 * pinned, so Xen won't do the trap'n'emulate.
744 * If we're using split pte locks, we can't hold the
745 * entire pagetable's worth of locks during the
746 * traverse, because we may wrap the preempt count (8
747 * bits). The solution is to mark RO and pin each PTE
748 * page while holding the lock. This means the number
749 * of locks we end up holding is never more than a
750 * batch size (~32 entries, at present).
752 * If we're not using split pte locks, we needn't pin
753 * the PTE pages independently, because we're
754 * protected by the overall pagetable lock.
758 ptl
= xen_pte_lock(page
, mm
);
760 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
761 pfn_pte(pfn
, PAGE_KERNEL_RO
),
762 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
765 xen_do_pin(MMUEXT_PIN_L1_TABLE
, pfn
);
767 /* Queue a deferred unlock for when this batch
769 xen_mc_callback(xen_pte_unlock
, ptl
);
776 /* This is called just after a mm has been created, but it has not
777 been used yet. We need to make sure that its pagetable is all
778 read-only, and can be pinned. */
779 static void __xen_pgd_pin(struct mm_struct
*mm
, pgd_t
*pgd
)
781 trace_xen_mmu_pgd_pin(mm
, pgd
);
785 if (__xen_pgd_walk(mm
, pgd
, xen_pin_page
, USER_LIMIT
)) {
786 /* re-enable interrupts for flushing */
796 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
798 xen_do_pin(MMUEXT_PIN_L4_TABLE
, PFN_DOWN(__pa(pgd
)));
801 xen_pin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
802 xen_do_pin(MMUEXT_PIN_L4_TABLE
,
803 PFN_DOWN(__pa(user_pgd
)));
806 #else /* CONFIG_X86_32 */
807 #ifdef CONFIG_X86_PAE
808 /* Need to make sure unshared kernel PMD is pinnable */
809 xen_pin_page(mm
, pgd_page(pgd
[pgd_index(TASK_SIZE
)]),
812 xen_do_pin(MMUEXT_PIN_L3_TABLE
, PFN_DOWN(__pa(pgd
)));
813 #endif /* CONFIG_X86_64 */
817 static void xen_pgd_pin(struct mm_struct
*mm
)
819 __xen_pgd_pin(mm
, mm
->pgd
);
823 * On save, we need to pin all pagetables to make sure they get their
824 * mfns turned into pfns. Search the list for any unpinned pgds and pin
825 * them (unpinned pgds are not currently in use, probably because the
826 * process is under construction or destruction).
828 * Expected to be called in stop_machine() ("equivalent to taking
829 * every spinlock in the system"), so the locking doesn't really
830 * matter all that much.
832 void xen_mm_pin_all(void)
836 spin_lock(&pgd_lock
);
838 list_for_each_entry(page
, &pgd_list
, lru
) {
839 if (!PagePinned(page
)) {
840 __xen_pgd_pin(&init_mm
, (pgd_t
*)page_address(page
));
841 SetPageSavePinned(page
);
845 spin_unlock(&pgd_lock
);
848 static int __init
xen_mark_pinned(struct mm_struct
*mm
, struct page
*page
,
856 * The init_mm pagetable is really pinned as soon as its created, but
857 * that's before we have page structures to store the bits. So do all
858 * the book-keeping now once struct pages for allocated pages are
859 * initialized. This happens only after free_all_bootmem() is called.
861 static void __init
xen_after_bootmem(void)
863 static_branch_enable(&xen_struct_pages_ready
);
865 SetPagePinned(virt_to_page(level3_user_vsyscall
));
867 xen_pgd_walk(&init_mm
, xen_mark_pinned
, FIXADDR_TOP
);
870 static int xen_unpin_page(struct mm_struct
*mm
, struct page
*page
,
873 unsigned pgfl
= TestClearPagePinned(page
);
875 if (pgfl
&& !PageHighMem(page
)) {
876 void *pt
= lowmem_page_address(page
);
877 unsigned long pfn
= page_to_pfn(page
);
878 spinlock_t
*ptl
= NULL
;
879 struct multicall_space mcs
;
882 * Do the converse to pin_page. If we're using split
883 * pte locks, we must be holding the lock for while
884 * the pte page is unpinned but still RO to prevent
885 * concurrent updates from seeing it in this
886 * partially-pinned state.
888 if (level
== PT_PTE
) {
889 ptl
= xen_pte_lock(page
, mm
);
892 xen_do_pin(MMUEXT_UNPIN_TABLE
, pfn
);
895 mcs
= __xen_mc_entry(0);
897 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)pt
,
898 pfn_pte(pfn
, PAGE_KERNEL
),
899 level
== PT_PGD
? UVMF_TLB_FLUSH
: 0);
902 /* unlock when batch completed */
903 xen_mc_callback(xen_pte_unlock
, ptl
);
907 return 0; /* never need to flush on unpin */
910 /* Release a pagetables pages back as normal RW */
911 static void __xen_pgd_unpin(struct mm_struct
*mm
, pgd_t
*pgd
)
913 trace_xen_mmu_pgd_unpin(mm
, pgd
);
917 xen_do_pin(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
921 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
924 xen_do_pin(MMUEXT_UNPIN_TABLE
,
925 PFN_DOWN(__pa(user_pgd
)));
926 xen_unpin_page(mm
, virt_to_page(user_pgd
), PT_PGD
);
931 #ifdef CONFIG_X86_PAE
932 /* Need to make sure unshared kernel PMD is unpinned */
933 xen_unpin_page(mm
, pgd_page(pgd
[pgd_index(TASK_SIZE
)]),
937 __xen_pgd_walk(mm
, pgd
, xen_unpin_page
, USER_LIMIT
);
942 static void xen_pgd_unpin(struct mm_struct
*mm
)
944 __xen_pgd_unpin(mm
, mm
->pgd
);
948 * On resume, undo any pinning done at save, so that the rest of the
949 * kernel doesn't see any unexpected pinned pagetables.
951 void xen_mm_unpin_all(void)
955 spin_lock(&pgd_lock
);
957 list_for_each_entry(page
, &pgd_list
, lru
) {
958 if (PageSavePinned(page
)) {
959 BUG_ON(!PagePinned(page
));
960 __xen_pgd_unpin(&init_mm
, (pgd_t
*)page_address(page
));
961 ClearPageSavePinned(page
);
965 spin_unlock(&pgd_lock
);
968 static void xen_activate_mm(struct mm_struct
*prev
, struct mm_struct
*next
)
970 spin_lock(&next
->page_table_lock
);
972 spin_unlock(&next
->page_table_lock
);
975 static void xen_dup_mmap(struct mm_struct
*oldmm
, struct mm_struct
*mm
)
977 spin_lock(&mm
->page_table_lock
);
979 spin_unlock(&mm
->page_table_lock
);
982 static void drop_mm_ref_this_cpu(void *info
)
984 struct mm_struct
*mm
= info
;
986 if (this_cpu_read(cpu_tlbstate
.loaded_mm
) == mm
)
987 leave_mm(smp_processor_id());
990 * If this cpu still has a stale cr3 reference, then make sure
991 * it has been flushed.
993 if (this_cpu_read(xen_current_cr3
) == __pa(mm
->pgd
))
999 * Another cpu may still have their %cr3 pointing at the pagetable, so
1000 * we need to repoint it somewhere else before we can unpin it.
1002 static void xen_drop_mm_ref(struct mm_struct
*mm
)
1007 drop_mm_ref_this_cpu(mm
);
1009 /* Get the "official" set of cpus referring to our pagetable. */
1010 if (!alloc_cpumask_var(&mask
, GFP_ATOMIC
)) {
1011 for_each_online_cpu(cpu
) {
1012 if (per_cpu(xen_current_cr3
, cpu
) != __pa(mm
->pgd
))
1014 smp_call_function_single(cpu
, drop_mm_ref_this_cpu
, mm
, 1);
1020 * It's possible that a vcpu may have a stale reference to our
1021 * cr3, because its in lazy mode, and it hasn't yet flushed
1022 * its set of pending hypercalls yet. In this case, we can
1023 * look at its actual current cr3 value, and force it to flush
1026 cpumask_clear(mask
);
1027 for_each_online_cpu(cpu
) {
1028 if (per_cpu(xen_current_cr3
, cpu
) == __pa(mm
->pgd
))
1029 cpumask_set_cpu(cpu
, mask
);
1032 smp_call_function_many(mask
, drop_mm_ref_this_cpu
, mm
, 1);
1033 free_cpumask_var(mask
);
1036 static void xen_drop_mm_ref(struct mm_struct
*mm
)
1038 drop_mm_ref_this_cpu(mm
);
1043 * While a process runs, Xen pins its pagetables, which means that the
1044 * hypervisor forces it to be read-only, and it controls all updates
1045 * to it. This means that all pagetable updates have to go via the
1046 * hypervisor, which is moderately expensive.
1048 * Since we're pulling the pagetable down, we switch to use init_mm,
1049 * unpin old process pagetable and mark it all read-write, which
1050 * allows further operations on it to be simple memory accesses.
1052 * The only subtle point is that another CPU may be still using the
1053 * pagetable because of lazy tlb flushing. This means we need need to
1054 * switch all CPUs off this pagetable before we can unpin it.
1056 static void xen_exit_mmap(struct mm_struct
*mm
)
1058 get_cpu(); /* make sure we don't move around */
1059 xen_drop_mm_ref(mm
);
1062 spin_lock(&mm
->page_table_lock
);
1064 /* pgd may not be pinned in the error exit path of execve */
1065 if (xen_page_pinned(mm
->pgd
))
1068 spin_unlock(&mm
->page_table_lock
);
1071 static void xen_post_allocator_init(void);
1073 static void __init
pin_pagetable_pfn(unsigned cmd
, unsigned long pfn
)
1075 struct mmuext_op op
;
1078 op
.arg1
.mfn
= pfn_to_mfn(pfn
);
1079 if (HYPERVISOR_mmuext_op(&op
, 1, NULL
, DOMID_SELF
))
1083 #ifdef CONFIG_X86_64
1084 static void __init
xen_cleanhighmap(unsigned long vaddr
,
1085 unsigned long vaddr_end
)
1087 unsigned long kernel_end
= roundup((unsigned long)_brk_end
, PMD_SIZE
) - 1;
1088 pmd_t
*pmd
= level2_kernel_pgt
+ pmd_index(vaddr
);
1090 /* NOTE: The loop is more greedy than the cleanup_highmap variant.
1091 * We include the PMD passed in on _both_ boundaries. */
1092 for (; vaddr
<= vaddr_end
&& (pmd
< (level2_kernel_pgt
+ PTRS_PER_PMD
));
1093 pmd
++, vaddr
+= PMD_SIZE
) {
1096 if (vaddr
< (unsigned long) _text
|| vaddr
> kernel_end
)
1097 set_pmd(pmd
, __pmd(0));
1099 /* In case we did something silly, we should crash in this function
1100 * instead of somewhere later and be confusing. */
1105 * Make a page range writeable and free it.
1107 static void __init
xen_free_ro_pages(unsigned long paddr
, unsigned long size
)
1109 void *vaddr
= __va(paddr
);
1110 void *vaddr_end
= vaddr
+ size
;
1112 for (; vaddr
< vaddr_end
; vaddr
+= PAGE_SIZE
)
1113 make_lowmem_page_readwrite(vaddr
);
1115 memblock_free(paddr
, size
);
1118 static void __init
xen_cleanmfnmap_free_pgtbl(void *pgtbl
, bool unpin
)
1120 unsigned long pa
= __pa(pgtbl
) & PHYSICAL_PAGE_MASK
;
1123 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(pa
));
1124 ClearPagePinned(virt_to_page(__va(pa
)));
1125 xen_free_ro_pages(pa
, PAGE_SIZE
);
1128 static void __init
xen_cleanmfnmap_pmd(pmd_t
*pmd
, bool unpin
)
1134 if (pmd_large(*pmd
)) {
1135 pa
= pmd_val(*pmd
) & PHYSICAL_PAGE_MASK
;
1136 xen_free_ro_pages(pa
, PMD_SIZE
);
1140 pte_tbl
= pte_offset_kernel(pmd
, 0);
1141 for (i
= 0; i
< PTRS_PER_PTE
; i
++) {
1142 if (pte_none(pte_tbl
[i
]))
1144 pa
= pte_pfn(pte_tbl
[i
]) << PAGE_SHIFT
;
1145 xen_free_ro_pages(pa
, PAGE_SIZE
);
1147 set_pmd(pmd
, __pmd(0));
1148 xen_cleanmfnmap_free_pgtbl(pte_tbl
, unpin
);
1151 static void __init
xen_cleanmfnmap_pud(pud_t
*pud
, bool unpin
)
1157 if (pud_large(*pud
)) {
1158 pa
= pud_val(*pud
) & PHYSICAL_PAGE_MASK
;
1159 xen_free_ro_pages(pa
, PUD_SIZE
);
1163 pmd_tbl
= pmd_offset(pud
, 0);
1164 for (i
= 0; i
< PTRS_PER_PMD
; i
++) {
1165 if (pmd_none(pmd_tbl
[i
]))
1167 xen_cleanmfnmap_pmd(pmd_tbl
+ i
, unpin
);
1169 set_pud(pud
, __pud(0));
1170 xen_cleanmfnmap_free_pgtbl(pmd_tbl
, unpin
);
1173 static void __init
xen_cleanmfnmap_p4d(p4d_t
*p4d
, bool unpin
)
1179 if (p4d_large(*p4d
)) {
1180 pa
= p4d_val(*p4d
) & PHYSICAL_PAGE_MASK
;
1181 xen_free_ro_pages(pa
, P4D_SIZE
);
1185 pud_tbl
= pud_offset(p4d
, 0);
1186 for (i
= 0; i
< PTRS_PER_PUD
; i
++) {
1187 if (pud_none(pud_tbl
[i
]))
1189 xen_cleanmfnmap_pud(pud_tbl
+ i
, unpin
);
1191 set_p4d(p4d
, __p4d(0));
1192 xen_cleanmfnmap_free_pgtbl(pud_tbl
, unpin
);
1196 * Since it is well isolated we can (and since it is perhaps large we should)
1197 * also free the page tables mapping the initial P->M table.
1199 static void __init
xen_cleanmfnmap(unsigned long vaddr
)
1205 unpin
= (vaddr
== 2 * PGDIR_SIZE
);
1207 pgd
= pgd_offset_k(vaddr
);
1208 p4d
= p4d_offset(pgd
, 0);
1209 if (!p4d_none(*p4d
))
1210 xen_cleanmfnmap_p4d(p4d
, unpin
);
1213 static void __init
xen_pagetable_p2m_free(void)
1218 size
= PAGE_ALIGN(xen_start_info
->nr_pages
* sizeof(unsigned long));
1220 /* No memory or already called. */
1221 if ((unsigned long)xen_p2m_addr
== xen_start_info
->mfn_list
)
1224 /* using __ka address and sticking INVALID_P2M_ENTRY! */
1225 memset((void *)xen_start_info
->mfn_list
, 0xff, size
);
1227 addr
= xen_start_info
->mfn_list
;
1229 * We could be in __ka space.
1230 * We roundup to the PMD, which means that if anybody at this stage is
1231 * using the __ka address of xen_start_info or
1232 * xen_start_info->shared_info they are in going to crash. Fortunatly
1233 * we have already revectored in xen_setup_kernel_pagetable and in
1234 * xen_setup_shared_info.
1236 size
= roundup(size
, PMD_SIZE
);
1238 if (addr
>= __START_KERNEL_map
) {
1239 xen_cleanhighmap(addr
, addr
+ size
);
1240 size
= PAGE_ALIGN(xen_start_info
->nr_pages
*
1241 sizeof(unsigned long));
1242 memblock_free(__pa(addr
), size
);
1244 xen_cleanmfnmap(addr
);
1248 static void __init
xen_pagetable_cleanhighmap(void)
1253 /* At this stage, cleanup_highmap has already cleaned __ka space
1254 * from _brk_limit way up to the max_pfn_mapped (which is the end of
1255 * the ramdisk). We continue on, erasing PMD entries that point to page
1256 * tables - do note that they are accessible at this stage via __va.
1257 * As Xen is aligning the memory end to a 4MB boundary, for good
1258 * measure we also round up to PMD_SIZE * 2 - which means that if
1259 * anybody is using __ka address to the initial boot-stack - and try
1260 * to use it - they are going to crash. The xen_start_info has been
1261 * taken care of already in xen_setup_kernel_pagetable. */
1262 addr
= xen_start_info
->pt_base
;
1263 size
= xen_start_info
->nr_pt_frames
* PAGE_SIZE
;
1265 xen_cleanhighmap(addr
, roundup(addr
+ size
, PMD_SIZE
* 2));
1266 xen_start_info
->pt_base
= (unsigned long)__va(__pa(xen_start_info
->pt_base
));
1270 static void __init
xen_pagetable_p2m_setup(void)
1272 xen_vmalloc_p2m_tree();
1274 #ifdef CONFIG_X86_64
1275 xen_pagetable_p2m_free();
1277 xen_pagetable_cleanhighmap();
1279 /* And revector! Bye bye old array */
1280 xen_start_info
->mfn_list
= (unsigned long)xen_p2m_addr
;
1283 static void __init
xen_pagetable_init(void)
1286 xen_post_allocator_init();
1288 xen_pagetable_p2m_setup();
1290 /* Allocate and initialize top and mid mfn levels for p2m structure */
1291 xen_build_mfn_list_list();
1293 /* Remap memory freed due to conflicts with E820 map */
1296 xen_setup_shared_info();
1298 static void xen_write_cr2(unsigned long cr2
)
1300 this_cpu_read(xen_vcpu
)->arch
.cr2
= cr2
;
1303 static unsigned long xen_read_cr2(void)
1305 return this_cpu_read(xen_vcpu
)->arch
.cr2
;
1308 unsigned long xen_read_cr2_direct(void)
1310 return this_cpu_read(xen_vcpu_info
.arch
.cr2
);
1313 static noinline
void xen_flush_tlb(void)
1315 struct mmuext_op
*op
;
1316 struct multicall_space mcs
;
1320 mcs
= xen_mc_entry(sizeof(*op
));
1323 op
->cmd
= MMUEXT_TLB_FLUSH_LOCAL
;
1324 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1326 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1331 static void xen_flush_tlb_one_user(unsigned long addr
)
1333 struct mmuext_op
*op
;
1334 struct multicall_space mcs
;
1336 trace_xen_mmu_flush_tlb_one_user(addr
);
1340 mcs
= xen_mc_entry(sizeof(*op
));
1342 op
->cmd
= MMUEXT_INVLPG_LOCAL
;
1343 op
->arg1
.linear_addr
= addr
& PAGE_MASK
;
1344 MULTI_mmuext_op(mcs
.mc
, op
, 1, NULL
, DOMID_SELF
);
1346 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1351 static void xen_flush_tlb_others(const struct cpumask
*cpus
,
1352 const struct flush_tlb_info
*info
)
1355 struct mmuext_op op
;
1356 DECLARE_BITMAP(mask
, NR_CPUS
);
1358 struct multicall_space mcs
;
1359 const size_t mc_entry_size
= sizeof(args
->op
) +
1360 sizeof(args
->mask
[0]) * BITS_TO_LONGS(num_possible_cpus());
1362 trace_xen_mmu_flush_tlb_others(cpus
, info
->mm
, info
->start
, info
->end
);
1364 if (cpumask_empty(cpus
))
1365 return; /* nothing to do */
1367 mcs
= xen_mc_entry(mc_entry_size
);
1369 args
->op
.arg2
.vcpumask
= to_cpumask(args
->mask
);
1371 /* Remove us, and any offline CPUS. */
1372 cpumask_and(to_cpumask(args
->mask
), cpus
, cpu_online_mask
);
1373 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args
->mask
));
1375 args
->op
.cmd
= MMUEXT_TLB_FLUSH_MULTI
;
1376 if (info
->end
!= TLB_FLUSH_ALL
&&
1377 (info
->end
- info
->start
) <= PAGE_SIZE
) {
1378 args
->op
.cmd
= MMUEXT_INVLPG_MULTI
;
1379 args
->op
.arg1
.linear_addr
= info
->start
;
1382 MULTI_mmuext_op(mcs
.mc
, &args
->op
, 1, NULL
, DOMID_SELF
);
1384 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1387 static unsigned long xen_read_cr3(void)
1389 return this_cpu_read(xen_cr3
);
1392 static void set_current_cr3(void *v
)
1394 this_cpu_write(xen_current_cr3
, (unsigned long)v
);
1397 static void __xen_write_cr3(bool kernel
, unsigned long cr3
)
1399 struct mmuext_op op
;
1402 trace_xen_mmu_write_cr3(kernel
, cr3
);
1405 mfn
= pfn_to_mfn(PFN_DOWN(cr3
));
1409 WARN_ON(mfn
== 0 && kernel
);
1411 op
.cmd
= kernel
? MMUEXT_NEW_BASEPTR
: MMUEXT_NEW_USER_BASEPTR
;
1414 xen_extend_mmuext_op(&op
);
1417 this_cpu_write(xen_cr3
, cr3
);
1419 /* Update xen_current_cr3 once the batch has actually
1421 xen_mc_callback(set_current_cr3
, (void *)cr3
);
1424 static void xen_write_cr3(unsigned long cr3
)
1426 BUG_ON(preemptible());
1428 xen_mc_batch(); /* disables interrupts */
1430 /* Update while interrupts are disabled, so its atomic with
1432 this_cpu_write(xen_cr3
, cr3
);
1434 __xen_write_cr3(true, cr3
);
1436 #ifdef CONFIG_X86_64
1438 pgd_t
*user_pgd
= xen_get_user_pgd(__va(cr3
));
1440 __xen_write_cr3(false, __pa(user_pgd
));
1442 __xen_write_cr3(false, 0);
1446 xen_mc_issue(PARAVIRT_LAZY_CPU
); /* interrupts restored */
1449 #ifdef CONFIG_X86_64
1451 * At the start of the day - when Xen launches a guest, it has already
1452 * built pagetables for the guest. We diligently look over them
1453 * in xen_setup_kernel_pagetable and graft as appropriate them in the
1454 * init_top_pgt and its friends. Then when we are happy we load
1455 * the new init_top_pgt - and continue on.
1457 * The generic code starts (start_kernel) and 'init_mem_mapping' sets
1458 * up the rest of the pagetables. When it has completed it loads the cr3.
1459 * N.B. that baremetal would start at 'start_kernel' (and the early
1460 * #PF handler would create bootstrap pagetables) - so we are running
1461 * with the same assumptions as what to do when write_cr3 is executed
1464 * Since there are no user-page tables at all, we have two variants
1465 * of xen_write_cr3 - the early bootup (this one), and the late one
1466 * (xen_write_cr3). The reason we have to do that is that in 64-bit
1467 * the Linux kernel and user-space are both in ring 3 while the
1468 * hypervisor is in ring 0.
1470 static void __init
xen_write_cr3_init(unsigned long cr3
)
1472 BUG_ON(preemptible());
1474 xen_mc_batch(); /* disables interrupts */
1476 /* Update while interrupts are disabled, so its atomic with
1478 this_cpu_write(xen_cr3
, cr3
);
1480 __xen_write_cr3(true, cr3
);
1482 xen_mc_issue(PARAVIRT_LAZY_CPU
); /* interrupts restored */
1486 static int xen_pgd_alloc(struct mm_struct
*mm
)
1488 pgd_t
*pgd
= mm
->pgd
;
1491 BUG_ON(PagePinned(virt_to_page(pgd
)));
1493 #ifdef CONFIG_X86_64
1495 struct page
*page
= virt_to_page(pgd
);
1498 BUG_ON(page
->private != 0);
1502 user_pgd
= (pgd_t
*)__get_free_page(GFP_KERNEL
| __GFP_ZERO
);
1503 page
->private = (unsigned long)user_pgd
;
1505 if (user_pgd
!= NULL
) {
1506 #ifdef CONFIG_X86_VSYSCALL_EMULATION
1507 user_pgd
[pgd_index(VSYSCALL_ADDR
)] =
1508 __pgd(__pa(level3_user_vsyscall
) | _PAGE_TABLE
);
1513 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd
))));
1519 static void xen_pgd_free(struct mm_struct
*mm
, pgd_t
*pgd
)
1521 #ifdef CONFIG_X86_64
1522 pgd_t
*user_pgd
= xen_get_user_pgd(pgd
);
1525 free_page((unsigned long)user_pgd
);
1530 * Init-time set_pte while constructing initial pagetables, which
1531 * doesn't allow RO page table pages to be remapped RW.
1533 * If there is no MFN for this PFN then this page is initially
1534 * ballooned out so clear the PTE (as in decrease_reservation() in
1535 * drivers/xen/balloon.c).
1537 * Many of these PTE updates are done on unpinned and writable pages
1538 * and doing a hypercall for these is unnecessary and expensive. At
1539 * this point it is not possible to tell if a page is pinned or not,
1540 * so always write the PTE directly and rely on Xen trapping and
1541 * emulating any updates as necessary.
1543 __visible pte_t
xen_make_pte_init(pteval_t pte
)
1545 #ifdef CONFIG_X86_64
1549 * Pages belonging to the initial p2m list mapped outside the default
1550 * address range must be mapped read-only. This region contains the
1551 * page tables for mapping the p2m list, too, and page tables MUST be
1554 pfn
= (pte
& PTE_PFN_MASK
) >> PAGE_SHIFT
;
1555 if (xen_start_info
->mfn_list
< __START_KERNEL_map
&&
1556 pfn
>= xen_start_info
->first_p2m_pfn
&&
1557 pfn
< xen_start_info
->first_p2m_pfn
+ xen_start_info
->nr_p2m_frames
)
1560 pte
= pte_pfn_to_mfn(pte
);
1561 return native_make_pte(pte
);
1563 PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_init
);
1565 static void __init
xen_set_pte_init(pte_t
*ptep
, pte_t pte
)
1567 #ifdef CONFIG_X86_32
1568 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1569 if (pte_mfn(pte
) != INVALID_P2M_ENTRY
1570 && pte_val_ma(*ptep
) & _PAGE_PRESENT
)
1571 pte
= __pte_ma(((pte_val_ma(*ptep
) & _PAGE_RW
) | ~_PAGE_RW
) &
1574 native_set_pte(ptep
, pte
);
1577 /* Early in boot, while setting up the initial pagetable, assume
1578 everything is pinned. */
1579 static void __init
xen_alloc_pte_init(struct mm_struct
*mm
, unsigned long pfn
)
1581 #ifdef CONFIG_FLATMEM
1582 BUG_ON(mem_map
); /* should only be used early */
1584 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1585 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1588 /* Used for pmd and pud */
1589 static void __init
xen_alloc_pmd_init(struct mm_struct
*mm
, unsigned long pfn
)
1591 #ifdef CONFIG_FLATMEM
1592 BUG_ON(mem_map
); /* should only be used early */
1594 make_lowmem_page_readonly(__va(PFN_PHYS(pfn
)));
1597 /* Early release_pte assumes that all pts are pinned, since there's
1598 only init_mm and anything attached to that is pinned. */
1599 static void __init
xen_release_pte_init(unsigned long pfn
)
1601 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1602 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1605 static void __init
xen_release_pmd_init(unsigned long pfn
)
1607 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
1610 static inline void __pin_pagetable_pfn(unsigned cmd
, unsigned long pfn
)
1612 struct multicall_space mcs
;
1613 struct mmuext_op
*op
;
1615 mcs
= __xen_mc_entry(sizeof(*op
));
1618 op
->arg1
.mfn
= pfn_to_mfn(pfn
);
1620 MULTI_mmuext_op(mcs
.mc
, mcs
.args
, 1, NULL
, DOMID_SELF
);
1623 static inline void __set_pfn_prot(unsigned long pfn
, pgprot_t prot
)
1625 struct multicall_space mcs
;
1626 unsigned long addr
= (unsigned long)__va(pfn
<< PAGE_SHIFT
);
1628 mcs
= __xen_mc_entry(0);
1629 MULTI_update_va_mapping(mcs
.mc
, (unsigned long)addr
,
1630 pfn_pte(pfn
, prot
), 0);
1633 /* This needs to make sure the new pte page is pinned iff its being
1634 attached to a pinned pagetable. */
1635 static inline void xen_alloc_ptpage(struct mm_struct
*mm
, unsigned long pfn
,
1638 bool pinned
= xen_page_pinned(mm
->pgd
);
1640 trace_xen_mmu_alloc_ptpage(mm
, pfn
, level
, pinned
);
1643 struct page
*page
= pfn_to_page(pfn
);
1645 if (static_branch_likely(&xen_struct_pages_ready
))
1646 SetPagePinned(page
);
1648 if (!PageHighMem(page
)) {
1651 __set_pfn_prot(pfn
, PAGE_KERNEL_RO
);
1653 if (level
== PT_PTE
&& USE_SPLIT_PTE_PTLOCKS
)
1654 __pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
, pfn
);
1656 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1658 /* make sure there are no stray mappings of
1660 kmap_flush_unused();
1665 static void xen_alloc_pte(struct mm_struct
*mm
, unsigned long pfn
)
1667 xen_alloc_ptpage(mm
, pfn
, PT_PTE
);
1670 static void xen_alloc_pmd(struct mm_struct
*mm
, unsigned long pfn
)
1672 xen_alloc_ptpage(mm
, pfn
, PT_PMD
);
1675 /* This should never happen until we're OK to use struct page */
1676 static inline void xen_release_ptpage(unsigned long pfn
, unsigned level
)
1678 struct page
*page
= pfn_to_page(pfn
);
1679 bool pinned
= PagePinned(page
);
1681 trace_xen_mmu_release_ptpage(pfn
, level
, pinned
);
1684 if (!PageHighMem(page
)) {
1687 if (level
== PT_PTE
&& USE_SPLIT_PTE_PTLOCKS
)
1688 __pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, pfn
);
1690 __set_pfn_prot(pfn
, PAGE_KERNEL
);
1692 xen_mc_issue(PARAVIRT_LAZY_MMU
);
1694 ClearPagePinned(page
);
1698 static void xen_release_pte(unsigned long pfn
)
1700 xen_release_ptpage(pfn
, PT_PTE
);
1703 static void xen_release_pmd(unsigned long pfn
)
1705 xen_release_ptpage(pfn
, PT_PMD
);
1708 #ifdef CONFIG_X86_64
1709 static void xen_alloc_pud(struct mm_struct
*mm
, unsigned long pfn
)
1711 xen_alloc_ptpage(mm
, pfn
, PT_PUD
);
1714 static void xen_release_pud(unsigned long pfn
)
1716 xen_release_ptpage(pfn
, PT_PUD
);
1720 void __init
xen_reserve_top(void)
1722 #ifdef CONFIG_X86_32
1723 unsigned long top
= HYPERVISOR_VIRT_START
;
1724 struct xen_platform_parameters pp
;
1726 if (HYPERVISOR_xen_version(XENVER_platform_parameters
, &pp
) == 0)
1727 top
= pp
.virt_start
;
1729 reserve_top_address(-top
);
1730 #endif /* CONFIG_X86_32 */
1734 * Like __va(), but returns address in the kernel mapping (which is
1735 * all we have until the physical memory mapping has been set up.
1737 static void * __init
__ka(phys_addr_t paddr
)
1739 #ifdef CONFIG_X86_64
1740 return (void *)(paddr
+ __START_KERNEL_map
);
1746 /* Convert a machine address to physical address */
1747 static unsigned long __init
m2p(phys_addr_t maddr
)
1751 maddr
&= XEN_PTE_MFN_MASK
;
1752 paddr
= mfn_to_pfn(maddr
>> PAGE_SHIFT
) << PAGE_SHIFT
;
1757 /* Convert a machine address to kernel virtual */
1758 static void * __init
m2v(phys_addr_t maddr
)
1760 return __ka(m2p(maddr
));
1763 /* Set the page permissions on an identity-mapped pages */
1764 static void __init
set_page_prot_flags(void *addr
, pgprot_t prot
,
1765 unsigned long flags
)
1767 unsigned long pfn
= __pa(addr
) >> PAGE_SHIFT
;
1768 pte_t pte
= pfn_pte(pfn
, prot
);
1770 if (HYPERVISOR_update_va_mapping((unsigned long)addr
, pte
, flags
))
1773 static void __init
set_page_prot(void *addr
, pgprot_t prot
)
1775 return set_page_prot_flags(addr
, prot
, UVMF_NONE
);
1777 #ifdef CONFIG_X86_32
1778 static void __init
xen_map_identity_early(pmd_t
*pmd
, unsigned long max_pfn
)
1780 unsigned pmdidx
, pteidx
;
1784 level1_ident_pgt
= extend_brk(sizeof(pte_t
) * LEVEL1_IDENT_ENTRIES
,
1789 for (pmdidx
= 0; pmdidx
< PTRS_PER_PMD
&& pfn
< max_pfn
; pmdidx
++) {
1792 /* Reuse or allocate a page of ptes */
1793 if (pmd_present(pmd
[pmdidx
]))
1794 pte_page
= m2v(pmd
[pmdidx
].pmd
);
1796 /* Check for free pte pages */
1797 if (ident_pte
== LEVEL1_IDENT_ENTRIES
)
1800 pte_page
= &level1_ident_pgt
[ident_pte
];
1801 ident_pte
+= PTRS_PER_PTE
;
1803 pmd
[pmdidx
] = __pmd(__pa(pte_page
) | _PAGE_TABLE
);
1806 /* Install mappings */
1807 for (pteidx
= 0; pteidx
< PTRS_PER_PTE
; pteidx
++, pfn
++) {
1810 if (pfn
> max_pfn_mapped
)
1811 max_pfn_mapped
= pfn
;
1813 if (!pte_none(pte_page
[pteidx
]))
1816 pte
= pfn_pte(pfn
, PAGE_KERNEL_EXEC
);
1817 pte_page
[pteidx
] = pte
;
1821 for (pteidx
= 0; pteidx
< ident_pte
; pteidx
+= PTRS_PER_PTE
)
1822 set_page_prot(&level1_ident_pgt
[pteidx
], PAGE_KERNEL_RO
);
1824 set_page_prot(pmd
, PAGE_KERNEL_RO
);
1827 void __init
xen_setup_machphys_mapping(void)
1829 struct xen_machphys_mapping mapping
;
1831 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping
, &mapping
) == 0) {
1832 machine_to_phys_mapping
= (unsigned long *)mapping
.v_start
;
1833 machine_to_phys_nr
= mapping
.max_mfn
+ 1;
1835 machine_to_phys_nr
= MACH2PHYS_NR_ENTRIES
;
1837 #ifdef CONFIG_X86_32
1838 WARN_ON((machine_to_phys_mapping
+ (machine_to_phys_nr
- 1))
1839 < machine_to_phys_mapping
);
1843 #ifdef CONFIG_X86_64
1844 static void __init
convert_pfn_mfn(void *v
)
1849 /* All levels are converted the same way, so just treat them
1851 for (i
= 0; i
< PTRS_PER_PTE
; i
++)
1852 pte
[i
] = xen_make_pte(pte
[i
].pte
);
1854 static void __init
check_pt_base(unsigned long *pt_base
, unsigned long *pt_end
,
1857 if (*pt_base
== PFN_DOWN(__pa(addr
))) {
1858 set_page_prot_flags((void *)addr
, PAGE_KERNEL
, UVMF_INVLPG
);
1859 clear_page((void *)addr
);
1862 if (*pt_end
== PFN_DOWN(__pa(addr
))) {
1863 set_page_prot_flags((void *)addr
, PAGE_KERNEL
, UVMF_INVLPG
);
1864 clear_page((void *)addr
);
1869 * Set up the initial kernel pagetable.
1871 * We can construct this by grafting the Xen provided pagetable into
1872 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1873 * level2_ident_pgt, and level2_kernel_pgt. This means that only the
1874 * kernel has a physical mapping to start with - but that's enough to
1875 * get __va working. We need to fill in the rest of the physical
1876 * mapping once some sort of allocator has been set up.
1878 void __init
xen_setup_kernel_pagetable(pgd_t
*pgd
, unsigned long max_pfn
)
1882 unsigned long addr
[3];
1883 unsigned long pt_base
, pt_end
;
1886 /* max_pfn_mapped is the last pfn mapped in the initial memory
1887 * mappings. Considering that on Xen after the kernel mappings we
1888 * have the mappings of some pages that don't exist in pfn space, we
1889 * set max_pfn_mapped to the last real pfn mapped. */
1890 if (xen_start_info
->mfn_list
< __START_KERNEL_map
)
1891 max_pfn_mapped
= xen_start_info
->first_p2m_pfn
;
1893 max_pfn_mapped
= PFN_DOWN(__pa(xen_start_info
->mfn_list
));
1895 pt_base
= PFN_DOWN(__pa(xen_start_info
->pt_base
));
1896 pt_end
= pt_base
+ xen_start_info
->nr_pt_frames
;
1898 /* Zap identity mapping */
1899 init_top_pgt
[0] = __pgd(0);
1901 /* Pre-constructed entries are in pfn, so convert to mfn */
1902 /* L4[272] -> level3_ident_pgt */
1903 /* L4[511] -> level3_kernel_pgt */
1904 convert_pfn_mfn(init_top_pgt
);
1906 /* L3_i[0] -> level2_ident_pgt */
1907 convert_pfn_mfn(level3_ident_pgt
);
1908 /* L3_k[510] -> level2_kernel_pgt */
1909 /* L3_k[511] -> level2_fixmap_pgt */
1910 convert_pfn_mfn(level3_kernel_pgt
);
1912 /* L3_k[511][506] -> level1_fixmap_pgt */
1913 convert_pfn_mfn(level2_fixmap_pgt
);
1915 /* We get [511][511] and have Xen's version of level2_kernel_pgt */
1916 l3
= m2v(pgd
[pgd_index(__START_KERNEL_map
)].pgd
);
1917 l2
= m2v(l3
[pud_index(__START_KERNEL_map
)].pud
);
1919 addr
[0] = (unsigned long)pgd
;
1920 addr
[1] = (unsigned long)l3
;
1921 addr
[2] = (unsigned long)l2
;
1922 /* Graft it onto L4[272][0]. Note that we creating an aliasing problem:
1923 * Both L4[272][0] and L4[511][510] have entries that point to the same
1924 * L2 (PMD) tables. Meaning that if you modify it in __va space
1925 * it will be also modified in the __ka space! (But if you just
1926 * modify the PMD table to point to other PTE's or none, then you
1927 * are OK - which is what cleanup_highmap does) */
1928 copy_page(level2_ident_pgt
, l2
);
1929 /* Graft it onto L4[511][510] */
1930 copy_page(level2_kernel_pgt
, l2
);
1933 * Zap execute permission from the ident map. Due to the sharing of
1934 * L1 entries we need to do this in the L2.
1936 if (__supported_pte_mask
& _PAGE_NX
) {
1937 for (i
= 0; i
< PTRS_PER_PMD
; ++i
) {
1938 if (pmd_none(level2_ident_pgt
[i
]))
1940 level2_ident_pgt
[i
] = pmd_set_flags(level2_ident_pgt
[i
], _PAGE_NX
);
1944 /* Copy the initial P->M table mappings if necessary. */
1945 i
= pgd_index(xen_start_info
->mfn_list
);
1946 if (i
&& i
< pgd_index(__START_KERNEL_map
))
1947 init_top_pgt
[i
] = ((pgd_t
*)xen_start_info
->pt_base
)[i
];
1949 /* Make pagetable pieces RO */
1950 set_page_prot(init_top_pgt
, PAGE_KERNEL_RO
);
1951 set_page_prot(level3_ident_pgt
, PAGE_KERNEL_RO
);
1952 set_page_prot(level3_kernel_pgt
, PAGE_KERNEL_RO
);
1953 set_page_prot(level3_user_vsyscall
, PAGE_KERNEL_RO
);
1954 set_page_prot(level2_ident_pgt
, PAGE_KERNEL_RO
);
1955 set_page_prot(level2_kernel_pgt
, PAGE_KERNEL_RO
);
1956 set_page_prot(level2_fixmap_pgt
, PAGE_KERNEL_RO
);
1957 set_page_prot(level1_fixmap_pgt
, PAGE_KERNEL_RO
);
1959 /* Pin down new L4 */
1960 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE
,
1961 PFN_DOWN(__pa_symbol(init_top_pgt
)));
1963 /* Unpin Xen-provided one */
1964 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
1967 * At this stage there can be no user pgd, and no page structure to
1968 * attach it to, so make sure we just set kernel pgd.
1971 __xen_write_cr3(true, __pa(init_top_pgt
));
1972 xen_mc_issue(PARAVIRT_LAZY_CPU
);
1974 /* We can't that easily rip out L3 and L2, as the Xen pagetables are
1975 * set out this way: [L4], [L1], [L2], [L3], [L1], [L1] ... for
1976 * the initial domain. For guests using the toolstack, they are in:
1977 * [L4], [L3], [L2], [L1], [L1], order .. So for dom0 we can only
1978 * rip out the [L4] (pgd), but for guests we shave off three pages.
1980 for (i
= 0; i
< ARRAY_SIZE(addr
); i
++)
1981 check_pt_base(&pt_base
, &pt_end
, addr
[i
]);
1983 /* Our (by three pages) smaller Xen pagetable that we are using */
1984 xen_pt_base
= PFN_PHYS(pt_base
);
1985 xen_pt_size
= (pt_end
- pt_base
) * PAGE_SIZE
;
1986 memblock_reserve(xen_pt_base
, xen_pt_size
);
1988 /* Revector the xen_start_info */
1989 xen_start_info
= (struct start_info
*)__va(__pa(xen_start_info
));
1993 * Read a value from a physical address.
1995 static unsigned long __init
xen_read_phys_ulong(phys_addr_t addr
)
1997 unsigned long *vaddr
;
2000 vaddr
= early_memremap_ro(addr
, sizeof(val
));
2002 early_memunmap(vaddr
, sizeof(val
));
2007 * Translate a virtual address to a physical one without relying on mapped
2008 * page tables. Don't rely on big pages being aligned in (guest) physical
2011 static phys_addr_t __init
xen_early_virt_to_phys(unsigned long vaddr
)
2020 pgd
= native_make_pgd(xen_read_phys_ulong(pa
+ pgd_index(vaddr
) *
2022 if (!pgd_present(pgd
))
2025 pa
= pgd_val(pgd
) & PTE_PFN_MASK
;
2026 pud
= native_make_pud(xen_read_phys_ulong(pa
+ pud_index(vaddr
) *
2028 if (!pud_present(pud
))
2030 pa
= pud_val(pud
) & PTE_PFN_MASK
;
2032 return pa
+ (vaddr
& ~PUD_MASK
);
2034 pmd
= native_make_pmd(xen_read_phys_ulong(pa
+ pmd_index(vaddr
) *
2036 if (!pmd_present(pmd
))
2038 pa
= pmd_val(pmd
) & PTE_PFN_MASK
;
2040 return pa
+ (vaddr
& ~PMD_MASK
);
2042 pte
= native_make_pte(xen_read_phys_ulong(pa
+ pte_index(vaddr
) *
2044 if (!pte_present(pte
))
2046 pa
= pte_pfn(pte
) << PAGE_SHIFT
;
2048 return pa
| (vaddr
& ~PAGE_MASK
);
2052 * Find a new area for the hypervisor supplied p2m list and relocate the p2m to
2055 void __init
xen_relocate_p2m(void)
2057 phys_addr_t size
, new_area
, pt_phys
, pmd_phys
, pud_phys
;
2058 unsigned long p2m_pfn
, p2m_pfn_end
, n_frames
, pfn
, pfn_end
;
2059 int n_pte
, n_pt
, n_pmd
, n_pud
, idx_pte
, idx_pt
, idx_pmd
, idx_pud
;
2064 unsigned long *new_p2m
;
2067 size
= PAGE_ALIGN(xen_start_info
->nr_pages
* sizeof(unsigned long));
2068 n_pte
= roundup(size
, PAGE_SIZE
) >> PAGE_SHIFT
;
2069 n_pt
= roundup(size
, PMD_SIZE
) >> PMD_SHIFT
;
2070 n_pmd
= roundup(size
, PUD_SIZE
) >> PUD_SHIFT
;
2071 n_pud
= roundup(size
, P4D_SIZE
) >> P4D_SHIFT
;
2072 n_frames
= n_pte
+ n_pt
+ n_pmd
+ n_pud
;
2074 new_area
= xen_find_free_area(PFN_PHYS(n_frames
));
2076 xen_raw_console_write("Can't find new memory area for p2m needed due to E820 map conflict\n");
2081 * Setup the page tables for addressing the new p2m list.
2082 * We have asked the hypervisor to map the p2m list at the user address
2083 * PUD_SIZE. It may have done so, or it may have used a kernel space
2084 * address depending on the Xen version.
2085 * To avoid any possible virtual address collision, just use
2086 * 2 * PUD_SIZE for the new area.
2088 pud_phys
= new_area
;
2089 pmd_phys
= pud_phys
+ PFN_PHYS(n_pud
);
2090 pt_phys
= pmd_phys
+ PFN_PHYS(n_pmd
);
2091 p2m_pfn
= PFN_DOWN(pt_phys
) + n_pt
;
2093 pgd
= __va(read_cr3_pa());
2094 new_p2m
= (unsigned long *)(2 * PGDIR_SIZE
);
2096 for (idx_pud
= 0; idx_pud
< n_pud
; idx_pud
++) {
2097 pud
= early_memremap(pud_phys
, PAGE_SIZE
);
2099 for (idx_pmd
= 0; idx_pmd
< min(n_pmd
, PTRS_PER_PUD
);
2101 pmd
= early_memremap(pmd_phys
, PAGE_SIZE
);
2103 for (idx_pt
= 0; idx_pt
< min(n_pt
, PTRS_PER_PMD
);
2105 pt
= early_memremap(pt_phys
, PAGE_SIZE
);
2108 idx_pte
< min(n_pte
, PTRS_PER_PTE
);
2110 set_pte(pt
+ idx_pte
,
2111 pfn_pte(p2m_pfn
, PAGE_KERNEL
));
2114 n_pte
-= PTRS_PER_PTE
;
2115 early_memunmap(pt
, PAGE_SIZE
);
2116 make_lowmem_page_readonly(__va(pt_phys
));
2117 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE
,
2119 set_pmd(pmd
+ idx_pt
,
2120 __pmd(_PAGE_TABLE
| pt_phys
));
2121 pt_phys
+= PAGE_SIZE
;
2123 n_pt
-= PTRS_PER_PMD
;
2124 early_memunmap(pmd
, PAGE_SIZE
);
2125 make_lowmem_page_readonly(__va(pmd_phys
));
2126 pin_pagetable_pfn(MMUEXT_PIN_L2_TABLE
,
2127 PFN_DOWN(pmd_phys
));
2128 set_pud(pud
+ idx_pmd
, __pud(_PAGE_TABLE
| pmd_phys
));
2129 pmd_phys
+= PAGE_SIZE
;
2131 n_pmd
-= PTRS_PER_PUD
;
2132 early_memunmap(pud
, PAGE_SIZE
);
2133 make_lowmem_page_readonly(__va(pud_phys
));
2134 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
, PFN_DOWN(pud_phys
));
2135 set_pgd(pgd
+ 2 + idx_pud
, __pgd(_PAGE_TABLE
| pud_phys
));
2136 pud_phys
+= PAGE_SIZE
;
2139 /* Now copy the old p2m info to the new area. */
2140 memcpy(new_p2m
, xen_p2m_addr
, size
);
2141 xen_p2m_addr
= new_p2m
;
2143 /* Release the old p2m list and set new list info. */
2144 p2m_pfn
= PFN_DOWN(xen_early_virt_to_phys(xen_start_info
->mfn_list
));
2146 p2m_pfn_end
= p2m_pfn
+ PFN_DOWN(size
);
2148 if (xen_start_info
->mfn_list
< __START_KERNEL_map
) {
2149 pfn
= xen_start_info
->first_p2m_pfn
;
2150 pfn_end
= xen_start_info
->first_p2m_pfn
+
2151 xen_start_info
->nr_p2m_frames
;
2152 set_pgd(pgd
+ 1, __pgd(0));
2155 pfn_end
= p2m_pfn_end
;
2158 memblock_free(PFN_PHYS(pfn
), PAGE_SIZE
* (pfn_end
- pfn
));
2159 while (pfn
< pfn_end
) {
2160 if (pfn
== p2m_pfn
) {
2164 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn
)));
2168 xen_start_info
->mfn_list
= (unsigned long)xen_p2m_addr
;
2169 xen_start_info
->first_p2m_pfn
= PFN_DOWN(new_area
);
2170 xen_start_info
->nr_p2m_frames
= n_frames
;
2173 #else /* !CONFIG_X86_64 */
2174 static RESERVE_BRK_ARRAY(pmd_t
, initial_kernel_pmd
, PTRS_PER_PMD
);
2175 static RESERVE_BRK_ARRAY(pmd_t
, swapper_kernel_pmd
, PTRS_PER_PMD
);
2177 static void __init
xen_write_cr3_init(unsigned long cr3
)
2179 unsigned long pfn
= PFN_DOWN(__pa(swapper_pg_dir
));
2181 BUG_ON(read_cr3_pa() != __pa(initial_page_table
));
2182 BUG_ON(cr3
!= __pa(swapper_pg_dir
));
2185 * We are switching to swapper_pg_dir for the first time (from
2186 * initial_page_table) and therefore need to mark that page
2187 * read-only and then pin it.
2189 * Xen disallows sharing of kernel PMDs for PAE
2190 * guests. Therefore we must copy the kernel PMD from
2191 * initial_page_table into a new kernel PMD to be used in
2194 swapper_kernel_pmd
=
2195 extend_brk(sizeof(pmd_t
) * PTRS_PER_PMD
, PAGE_SIZE
);
2196 copy_page(swapper_kernel_pmd
, initial_kernel_pmd
);
2197 swapper_pg_dir
[KERNEL_PGD_BOUNDARY
] =
2198 __pgd(__pa(swapper_kernel_pmd
) | _PAGE_PRESENT
);
2199 set_page_prot(swapper_kernel_pmd
, PAGE_KERNEL_RO
);
2201 set_page_prot(swapper_pg_dir
, PAGE_KERNEL_RO
);
2203 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
, pfn
);
2205 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
,
2206 PFN_DOWN(__pa(initial_page_table
)));
2207 set_page_prot(initial_page_table
, PAGE_KERNEL
);
2208 set_page_prot(initial_kernel_pmd
, PAGE_KERNEL
);
2210 pv_mmu_ops
.write_cr3
= &xen_write_cr3
;
2214 * For 32 bit domains xen_start_info->pt_base is the pgd address which might be
2215 * not the first page table in the page table pool.
2216 * Iterate through the initial page tables to find the real page table base.
2218 static phys_addr_t __init
xen_find_pt_base(pmd_t
*pmd
)
2220 phys_addr_t pt_base
, paddr
;
2223 pt_base
= min(__pa(xen_start_info
->pt_base
), __pa(pmd
));
2225 for (pmdidx
= 0; pmdidx
< PTRS_PER_PMD
; pmdidx
++)
2226 if (pmd_present(pmd
[pmdidx
]) && !pmd_large(pmd
[pmdidx
])) {
2227 paddr
= m2p(pmd
[pmdidx
].pmd
);
2228 pt_base
= min(pt_base
, paddr
);
2234 void __init
xen_setup_kernel_pagetable(pgd_t
*pgd
, unsigned long max_pfn
)
2238 kernel_pmd
= m2v(pgd
[KERNEL_PGD_BOUNDARY
].pgd
);
2240 xen_pt_base
= xen_find_pt_base(kernel_pmd
);
2241 xen_pt_size
= xen_start_info
->nr_pt_frames
* PAGE_SIZE
;
2243 initial_kernel_pmd
=
2244 extend_brk(sizeof(pmd_t
) * PTRS_PER_PMD
, PAGE_SIZE
);
2246 max_pfn_mapped
= PFN_DOWN(xen_pt_base
+ xen_pt_size
+ 512 * 1024);
2248 copy_page(initial_kernel_pmd
, kernel_pmd
);
2250 xen_map_identity_early(initial_kernel_pmd
, max_pfn
);
2252 copy_page(initial_page_table
, pgd
);
2253 initial_page_table
[KERNEL_PGD_BOUNDARY
] =
2254 __pgd(__pa(initial_kernel_pmd
) | _PAGE_PRESENT
);
2256 set_page_prot(initial_kernel_pmd
, PAGE_KERNEL_RO
);
2257 set_page_prot(initial_page_table
, PAGE_KERNEL_RO
);
2258 set_page_prot(empty_zero_page
, PAGE_KERNEL_RO
);
2260 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE
, PFN_DOWN(__pa(pgd
)));
2262 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE
,
2263 PFN_DOWN(__pa(initial_page_table
)));
2264 xen_write_cr3(__pa(initial_page_table
));
2266 memblock_reserve(xen_pt_base
, xen_pt_size
);
2268 #endif /* CONFIG_X86_64 */
2270 void __init
xen_reserve_special_pages(void)
2274 memblock_reserve(__pa(xen_start_info
), PAGE_SIZE
);
2275 if (xen_start_info
->store_mfn
) {
2276 paddr
= PFN_PHYS(mfn_to_pfn(xen_start_info
->store_mfn
));
2277 memblock_reserve(paddr
, PAGE_SIZE
);
2279 if (!xen_initial_domain()) {
2280 paddr
= PFN_PHYS(mfn_to_pfn(xen_start_info
->console
.domU
.mfn
));
2281 memblock_reserve(paddr
, PAGE_SIZE
);
2285 void __init
xen_pt_check_e820(void)
2287 if (xen_is_e820_reserved(xen_pt_base
, xen_pt_size
)) {
2288 xen_raw_console_write("Xen hypervisor allocated page table memory conflicts with E820 map\n");
2293 static unsigned char dummy_mapping
[PAGE_SIZE
] __page_aligned_bss
;
2295 static void xen_set_fixmap(unsigned idx
, phys_addr_t phys
, pgprot_t prot
)
2299 phys
>>= PAGE_SHIFT
;
2302 case FIX_BTMAP_END
... FIX_BTMAP_BEGIN
:
2303 #ifdef CONFIG_X86_32
2305 # ifdef CONFIG_HIGHMEM
2306 case FIX_KMAP_BEGIN
... FIX_KMAP_END
:
2308 #elif defined(CONFIG_X86_VSYSCALL_EMULATION)
2311 case FIX_TEXT_POKE0
:
2312 case FIX_TEXT_POKE1
:
2313 /* All local page mappings */
2314 pte
= pfn_pte(phys
, prot
);
2317 #ifdef CONFIG_X86_LOCAL_APIC
2318 case FIX_APIC_BASE
: /* maps dummy local APIC */
2319 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
2323 #ifdef CONFIG_X86_IO_APIC
2324 case FIX_IO_APIC_BASE_0
... FIX_IO_APIC_BASE_END
:
2326 * We just don't map the IO APIC - all access is via
2327 * hypercalls. Keep the address in the pte for reference.
2329 pte
= pfn_pte(PFN_DOWN(__pa(dummy_mapping
)), PAGE_KERNEL
);
2333 case FIX_PARAVIRT_BOOTMAP
:
2334 /* This is an MFN, but it isn't an IO mapping from the
2336 pte
= mfn_pte(phys
, prot
);
2340 /* By default, set_fixmap is used for hardware mappings */
2341 pte
= mfn_pte(phys
, prot
);
2345 __native_set_fixmap(idx
, pte
);
2347 #ifdef CONFIG_X86_VSYSCALL_EMULATION
2348 /* Replicate changes to map the vsyscall page into the user
2349 pagetable vsyscall mapping. */
2350 if (idx
== VSYSCALL_PAGE
) {
2351 unsigned long vaddr
= __fix_to_virt(idx
);
2352 set_pte_vaddr_pud(level3_user_vsyscall
, vaddr
, pte
);
2357 static void __init
xen_post_allocator_init(void)
2359 pv_mmu_ops
.set_pte
= xen_set_pte
;
2360 pv_mmu_ops
.set_pmd
= xen_set_pmd
;
2361 pv_mmu_ops
.set_pud
= xen_set_pud
;
2362 #ifdef CONFIG_X86_64
2363 pv_mmu_ops
.set_p4d
= xen_set_p4d
;
2366 /* This will work as long as patching hasn't happened yet
2367 (which it hasn't) */
2368 pv_mmu_ops
.alloc_pte
= xen_alloc_pte
;
2369 pv_mmu_ops
.alloc_pmd
= xen_alloc_pmd
;
2370 pv_mmu_ops
.release_pte
= xen_release_pte
;
2371 pv_mmu_ops
.release_pmd
= xen_release_pmd
;
2372 #ifdef CONFIG_X86_64
2373 pv_mmu_ops
.alloc_pud
= xen_alloc_pud
;
2374 pv_mmu_ops
.release_pud
= xen_release_pud
;
2376 pv_mmu_ops
.make_pte
= PV_CALLEE_SAVE(xen_make_pte
);
2378 #ifdef CONFIG_X86_64
2379 pv_mmu_ops
.write_cr3
= &xen_write_cr3
;
2383 static void xen_leave_lazy_mmu(void)
2387 paravirt_leave_lazy_mmu();
2391 static const struct pv_mmu_ops xen_mmu_ops __initconst
= {
2392 .read_cr2
= xen_read_cr2
,
2393 .write_cr2
= xen_write_cr2
,
2395 .read_cr3
= xen_read_cr3
,
2396 .write_cr3
= xen_write_cr3_init
,
2398 .flush_tlb_user
= xen_flush_tlb
,
2399 .flush_tlb_kernel
= xen_flush_tlb
,
2400 .flush_tlb_one_user
= xen_flush_tlb_one_user
,
2401 .flush_tlb_others
= xen_flush_tlb_others
,
2403 .pgd_alloc
= xen_pgd_alloc
,
2404 .pgd_free
= xen_pgd_free
,
2406 .alloc_pte
= xen_alloc_pte_init
,
2407 .release_pte
= xen_release_pte_init
,
2408 .alloc_pmd
= xen_alloc_pmd_init
,
2409 .release_pmd
= xen_release_pmd_init
,
2411 .set_pte
= xen_set_pte_init
,
2412 .set_pte_at
= xen_set_pte_at
,
2413 .set_pmd
= xen_set_pmd_hyper
,
2415 .ptep_modify_prot_start
= __ptep_modify_prot_start
,
2416 .ptep_modify_prot_commit
= __ptep_modify_prot_commit
,
2418 .pte_val
= PV_CALLEE_SAVE(xen_pte_val
),
2419 .pgd_val
= PV_CALLEE_SAVE(xen_pgd_val
),
2421 .make_pte
= PV_CALLEE_SAVE(xen_make_pte_init
),
2422 .make_pgd
= PV_CALLEE_SAVE(xen_make_pgd
),
2424 #ifdef CONFIG_X86_PAE
2425 .set_pte_atomic
= xen_set_pte_atomic
,
2426 .pte_clear
= xen_pte_clear
,
2427 .pmd_clear
= xen_pmd_clear
,
2428 #endif /* CONFIG_X86_PAE */
2429 .set_pud
= xen_set_pud_hyper
,
2431 .make_pmd
= PV_CALLEE_SAVE(xen_make_pmd
),
2432 .pmd_val
= PV_CALLEE_SAVE(xen_pmd_val
),
2434 #ifdef CONFIG_X86_64
2435 .pud_val
= PV_CALLEE_SAVE(xen_pud_val
),
2436 .make_pud
= PV_CALLEE_SAVE(xen_make_pud
),
2437 .set_p4d
= xen_set_p4d_hyper
,
2439 .alloc_pud
= xen_alloc_pmd_init
,
2440 .release_pud
= xen_release_pmd_init
,
2442 #if CONFIG_PGTABLE_LEVELS >= 5
2443 .p4d_val
= PV_CALLEE_SAVE(xen_p4d_val
),
2444 .make_p4d
= PV_CALLEE_SAVE(xen_make_p4d
),
2446 #endif /* CONFIG_X86_64 */
2448 .activate_mm
= xen_activate_mm
,
2449 .dup_mmap
= xen_dup_mmap
,
2450 .exit_mmap
= xen_exit_mmap
,
2453 .enter
= paravirt_enter_lazy_mmu
,
2454 .leave
= xen_leave_lazy_mmu
,
2455 .flush
= paravirt_flush_lazy_mmu
,
2458 .set_fixmap
= xen_set_fixmap
,
2461 void __init
xen_init_mmu_ops(void)
2463 x86_init
.paging
.pagetable_init
= xen_pagetable_init
;
2464 x86_init
.hyper
.init_after_bootmem
= xen_after_bootmem
;
2466 pv_mmu_ops
= xen_mmu_ops
;
2468 memset(dummy_mapping
, 0xff, PAGE_SIZE
);
2471 /* Protected by xen_reservation_lock. */
2472 #define MAX_CONTIG_ORDER 9 /* 2MB */
2473 static unsigned long discontig_frames
[1<<MAX_CONTIG_ORDER
];
2475 #define VOID_PTE (mfn_pte(0, __pgprot(0)))
2476 static void xen_zap_pfn_range(unsigned long vaddr
, unsigned int order
,
2477 unsigned long *in_frames
,
2478 unsigned long *out_frames
)
2481 struct multicall_space mcs
;
2484 for (i
= 0; i
< (1UL<<order
); i
++, vaddr
+= PAGE_SIZE
) {
2485 mcs
= __xen_mc_entry(0);
2488 in_frames
[i
] = virt_to_mfn(vaddr
);
2490 MULTI_update_va_mapping(mcs
.mc
, vaddr
, VOID_PTE
, 0);
2491 __set_phys_to_machine(virt_to_pfn(vaddr
), INVALID_P2M_ENTRY
);
2494 out_frames
[i
] = virt_to_pfn(vaddr
);
2500 * Update the pfn-to-mfn mappings for a virtual address range, either to
2501 * point to an array of mfns, or contiguously from a single starting
2504 static void xen_remap_exchanged_ptes(unsigned long vaddr
, int order
,
2505 unsigned long *mfns
,
2506 unsigned long first_mfn
)
2513 limit
= 1u << order
;
2514 for (i
= 0; i
< limit
; i
++, vaddr
+= PAGE_SIZE
) {
2515 struct multicall_space mcs
;
2518 mcs
= __xen_mc_entry(0);
2522 mfn
= first_mfn
+ i
;
2524 if (i
< (limit
- 1))
2528 flags
= UVMF_INVLPG
| UVMF_ALL
;
2530 flags
= UVMF_TLB_FLUSH
| UVMF_ALL
;
2533 MULTI_update_va_mapping(mcs
.mc
, vaddr
,
2534 mfn_pte(mfn
, PAGE_KERNEL
), flags
);
2536 set_phys_to_machine(virt_to_pfn(vaddr
), mfn
);
2543 * Perform the hypercall to exchange a region of our pfns to point to
2544 * memory with the required contiguous alignment. Takes the pfns as
2545 * input, and populates mfns as output.
2547 * Returns a success code indicating whether the hypervisor was able to
2548 * satisfy the request or not.
2550 static int xen_exchange_memory(unsigned long extents_in
, unsigned int order_in
,
2551 unsigned long *pfns_in
,
2552 unsigned long extents_out
,
2553 unsigned int order_out
,
2554 unsigned long *mfns_out
,
2555 unsigned int address_bits
)
2560 struct xen_memory_exchange exchange
= {
2562 .nr_extents
= extents_in
,
2563 .extent_order
= order_in
,
2564 .extent_start
= pfns_in
,
2568 .nr_extents
= extents_out
,
2569 .extent_order
= order_out
,
2570 .extent_start
= mfns_out
,
2571 .address_bits
= address_bits
,
2576 BUG_ON(extents_in
<< order_in
!= extents_out
<< order_out
);
2578 rc
= HYPERVISOR_memory_op(XENMEM_exchange
, &exchange
);
2579 success
= (exchange
.nr_exchanged
== extents_in
);
2581 BUG_ON(!success
&& ((exchange
.nr_exchanged
!= 0) || (rc
== 0)));
2582 BUG_ON(success
&& (rc
!= 0));
2587 int xen_create_contiguous_region(phys_addr_t pstart
, unsigned int order
,
2588 unsigned int address_bits
,
2589 dma_addr_t
*dma_handle
)
2591 unsigned long *in_frames
= discontig_frames
, out_frame
;
2592 unsigned long flags
;
2594 unsigned long vstart
= (unsigned long)phys_to_virt(pstart
);
2597 * Currently an auto-translated guest will not perform I/O, nor will
2598 * it require PAE page directories below 4GB. Therefore any calls to
2599 * this function are redundant and can be ignored.
2602 if (unlikely(order
> MAX_CONTIG_ORDER
))
2605 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2607 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2609 /* 1. Zap current PTEs, remembering MFNs. */
2610 xen_zap_pfn_range(vstart
, order
, in_frames
, NULL
);
2612 /* 2. Get a new contiguous memory extent. */
2613 out_frame
= virt_to_pfn(vstart
);
2614 success
= xen_exchange_memory(1UL << order
, 0, in_frames
,
2615 1, order
, &out_frame
,
2618 /* 3. Map the new extent in place of old pages. */
2620 xen_remap_exchanged_ptes(vstart
, order
, NULL
, out_frame
);
2622 xen_remap_exchanged_ptes(vstart
, order
, in_frames
, 0);
2624 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2626 *dma_handle
= virt_to_machine(vstart
).maddr
;
2627 return success
? 0 : -ENOMEM
;
2629 EXPORT_SYMBOL_GPL(xen_create_contiguous_region
);
2631 void xen_destroy_contiguous_region(phys_addr_t pstart
, unsigned int order
)
2633 unsigned long *out_frames
= discontig_frames
, in_frame
;
2634 unsigned long flags
;
2636 unsigned long vstart
;
2638 if (unlikely(order
> MAX_CONTIG_ORDER
))
2641 vstart
= (unsigned long)phys_to_virt(pstart
);
2642 memset((void *) vstart
, 0, PAGE_SIZE
<< order
);
2644 spin_lock_irqsave(&xen_reservation_lock
, flags
);
2646 /* 1. Find start MFN of contiguous extent. */
2647 in_frame
= virt_to_mfn(vstart
);
2649 /* 2. Zap current PTEs. */
2650 xen_zap_pfn_range(vstart
, order
, NULL
, out_frames
);
2652 /* 3. Do the exchange for non-contiguous MFNs. */
2653 success
= xen_exchange_memory(1, order
, &in_frame
, 1UL << order
,
2656 /* 4. Map new pages in place of old pages. */
2658 xen_remap_exchanged_ptes(vstart
, order
, out_frames
, 0);
2660 xen_remap_exchanged_ptes(vstart
, order
, NULL
, in_frame
);
2662 spin_unlock_irqrestore(&xen_reservation_lock
, flags
);
2664 EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region
);
2666 #ifdef CONFIG_KEXEC_CORE
2667 phys_addr_t
paddr_vmcoreinfo_note(void)
2669 if (xen_pv_domain())
2670 return virt_to_machine(vmcoreinfo_note
).maddr
;
2672 return __pa(vmcoreinfo_note
);
2674 #endif /* CONFIG_KEXEC_CORE */