locking/refcounts: Include fewer headers in <linux/refcount.h>
[linux/fpc-iii.git] / drivers / cpufreq / mediatek-cpufreq.c
blobeb8920d3981815f930d55465b5318c4356cca37b
1 /*
2 * Copyright (c) 2015 Linaro Ltd.
3 * Author: Pi-Cheng Chen <pi-cheng.chen@linaro.org>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
15 #include <linux/clk.h>
16 #include <linux/cpu.h>
17 #include <linux/cpu_cooling.h>
18 #include <linux/cpufreq.h>
19 #include <linux/cpumask.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_opp.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/slab.h>
26 #include <linux/thermal.h>
28 #define MIN_VOLT_SHIFT (100000)
29 #define MAX_VOLT_SHIFT (200000)
30 #define MAX_VOLT_LIMIT (1150000)
31 #define VOLT_TOL (10000)
34 * The struct mtk_cpu_dvfs_info holds necessary information for doing CPU DVFS
35 * on each CPU power/clock domain of Mediatek SoCs. Each CPU cluster in
36 * Mediatek SoCs has two voltage inputs, Vproc and Vsram. In some cases the two
37 * voltage inputs need to be controlled under a hardware limitation:
38 * 100mV < Vsram - Vproc < 200mV
40 * When scaling the clock frequency of a CPU clock domain, the clock source
41 * needs to be switched to another stable PLL clock temporarily until
42 * the original PLL becomes stable at target frequency.
44 struct mtk_cpu_dvfs_info {
45 struct cpumask cpus;
46 struct device *cpu_dev;
47 struct regulator *proc_reg;
48 struct regulator *sram_reg;
49 struct clk *cpu_clk;
50 struct clk *inter_clk;
51 struct thermal_cooling_device *cdev;
52 struct list_head list_head;
53 int intermediate_voltage;
54 bool need_voltage_tracking;
57 static LIST_HEAD(dvfs_info_list);
59 static struct mtk_cpu_dvfs_info *mtk_cpu_dvfs_info_lookup(int cpu)
61 struct mtk_cpu_dvfs_info *info;
63 list_for_each_entry(info, &dvfs_info_list, list_head) {
64 if (cpumask_test_cpu(cpu, &info->cpus))
65 return info;
68 return NULL;
71 static int mtk_cpufreq_voltage_tracking(struct mtk_cpu_dvfs_info *info,
72 int new_vproc)
74 struct regulator *proc_reg = info->proc_reg;
75 struct regulator *sram_reg = info->sram_reg;
76 int old_vproc, old_vsram, new_vsram, vsram, vproc, ret;
78 old_vproc = regulator_get_voltage(proc_reg);
79 if (old_vproc < 0) {
80 pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
81 return old_vproc;
83 /* Vsram should not exceed the maximum allowed voltage of SoC. */
84 new_vsram = min(new_vproc + MIN_VOLT_SHIFT, MAX_VOLT_LIMIT);
86 if (old_vproc < new_vproc) {
88 * When scaling up voltages, Vsram and Vproc scale up step
89 * by step. At each step, set Vsram to (Vproc + 200mV) first,
90 * then set Vproc to (Vsram - 100mV).
91 * Keep doing it until Vsram and Vproc hit target voltages.
93 do {
94 old_vsram = regulator_get_voltage(sram_reg);
95 if (old_vsram < 0) {
96 pr_err("%s: invalid Vsram value: %d\n",
97 __func__, old_vsram);
98 return old_vsram;
100 old_vproc = regulator_get_voltage(proc_reg);
101 if (old_vproc < 0) {
102 pr_err("%s: invalid Vproc value: %d\n",
103 __func__, old_vproc);
104 return old_vproc;
107 vsram = min(new_vsram, old_vproc + MAX_VOLT_SHIFT);
109 if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
110 vsram = MAX_VOLT_LIMIT;
113 * If the target Vsram hits the maximum voltage,
114 * try to set the exact voltage value first.
116 ret = regulator_set_voltage(sram_reg, vsram,
117 vsram);
118 if (ret)
119 ret = regulator_set_voltage(sram_reg,
120 vsram - VOLT_TOL,
121 vsram);
123 vproc = new_vproc;
124 } else {
125 ret = regulator_set_voltage(sram_reg, vsram,
126 vsram + VOLT_TOL);
128 vproc = vsram - MIN_VOLT_SHIFT;
130 if (ret)
131 return ret;
133 ret = regulator_set_voltage(proc_reg, vproc,
134 vproc + VOLT_TOL);
135 if (ret) {
136 regulator_set_voltage(sram_reg, old_vsram,
137 old_vsram);
138 return ret;
140 } while (vproc < new_vproc || vsram < new_vsram);
141 } else if (old_vproc > new_vproc) {
143 * When scaling down voltages, Vsram and Vproc scale down step
144 * by step. At each step, set Vproc to (Vsram - 200mV) first,
145 * then set Vproc to (Vproc + 100mV).
146 * Keep doing it until Vsram and Vproc hit target voltages.
148 do {
149 old_vproc = regulator_get_voltage(proc_reg);
150 if (old_vproc < 0) {
151 pr_err("%s: invalid Vproc value: %d\n",
152 __func__, old_vproc);
153 return old_vproc;
155 old_vsram = regulator_get_voltage(sram_reg);
156 if (old_vsram < 0) {
157 pr_err("%s: invalid Vsram value: %d\n",
158 __func__, old_vsram);
159 return old_vsram;
162 vproc = max(new_vproc, old_vsram - MAX_VOLT_SHIFT);
163 ret = regulator_set_voltage(proc_reg, vproc,
164 vproc + VOLT_TOL);
165 if (ret)
166 return ret;
168 if (vproc == new_vproc)
169 vsram = new_vsram;
170 else
171 vsram = max(new_vsram, vproc + MIN_VOLT_SHIFT);
173 if (vsram + VOLT_TOL >= MAX_VOLT_LIMIT) {
174 vsram = MAX_VOLT_LIMIT;
177 * If the target Vsram hits the maximum voltage,
178 * try to set the exact voltage value first.
180 ret = regulator_set_voltage(sram_reg, vsram,
181 vsram);
182 if (ret)
183 ret = regulator_set_voltage(sram_reg,
184 vsram - VOLT_TOL,
185 vsram);
186 } else {
187 ret = regulator_set_voltage(sram_reg, vsram,
188 vsram + VOLT_TOL);
191 if (ret) {
192 regulator_set_voltage(proc_reg, old_vproc,
193 old_vproc);
194 return ret;
196 } while (vproc > new_vproc + VOLT_TOL ||
197 vsram > new_vsram + VOLT_TOL);
200 return 0;
203 static int mtk_cpufreq_set_voltage(struct mtk_cpu_dvfs_info *info, int vproc)
205 if (info->need_voltage_tracking)
206 return mtk_cpufreq_voltage_tracking(info, vproc);
207 else
208 return regulator_set_voltage(info->proc_reg, vproc,
209 vproc + VOLT_TOL);
212 static int mtk_cpufreq_set_target(struct cpufreq_policy *policy,
213 unsigned int index)
215 struct cpufreq_frequency_table *freq_table = policy->freq_table;
216 struct clk *cpu_clk = policy->clk;
217 struct clk *armpll = clk_get_parent(cpu_clk);
218 struct mtk_cpu_dvfs_info *info = policy->driver_data;
219 struct device *cpu_dev = info->cpu_dev;
220 struct dev_pm_opp *opp;
221 long freq_hz, old_freq_hz;
222 int vproc, old_vproc, inter_vproc, target_vproc, ret;
224 inter_vproc = info->intermediate_voltage;
226 old_freq_hz = clk_get_rate(cpu_clk);
227 old_vproc = regulator_get_voltage(info->proc_reg);
228 if (old_vproc < 0) {
229 pr_err("%s: invalid Vproc value: %d\n", __func__, old_vproc);
230 return old_vproc;
233 freq_hz = freq_table[index].frequency * 1000;
235 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
236 if (IS_ERR(opp)) {
237 pr_err("cpu%d: failed to find OPP for %ld\n",
238 policy->cpu, freq_hz);
239 return PTR_ERR(opp);
241 vproc = dev_pm_opp_get_voltage(opp);
242 dev_pm_opp_put(opp);
245 * If the new voltage or the intermediate voltage is higher than the
246 * current voltage, scale up voltage first.
248 target_vproc = (inter_vproc > vproc) ? inter_vproc : vproc;
249 if (old_vproc < target_vproc) {
250 ret = mtk_cpufreq_set_voltage(info, target_vproc);
251 if (ret) {
252 pr_err("cpu%d: failed to scale up voltage!\n",
253 policy->cpu);
254 mtk_cpufreq_set_voltage(info, old_vproc);
255 return ret;
259 /* Reparent the CPU clock to intermediate clock. */
260 ret = clk_set_parent(cpu_clk, info->inter_clk);
261 if (ret) {
262 pr_err("cpu%d: failed to re-parent cpu clock!\n",
263 policy->cpu);
264 mtk_cpufreq_set_voltage(info, old_vproc);
265 WARN_ON(1);
266 return ret;
269 /* Set the original PLL to target rate. */
270 ret = clk_set_rate(armpll, freq_hz);
271 if (ret) {
272 pr_err("cpu%d: failed to scale cpu clock rate!\n",
273 policy->cpu);
274 clk_set_parent(cpu_clk, armpll);
275 mtk_cpufreq_set_voltage(info, old_vproc);
276 return ret;
279 /* Set parent of CPU clock back to the original PLL. */
280 ret = clk_set_parent(cpu_clk, armpll);
281 if (ret) {
282 pr_err("cpu%d: failed to re-parent cpu clock!\n",
283 policy->cpu);
284 mtk_cpufreq_set_voltage(info, inter_vproc);
285 WARN_ON(1);
286 return ret;
290 * If the new voltage is lower than the intermediate voltage or the
291 * original voltage, scale down to the new voltage.
293 if (vproc < inter_vproc || vproc < old_vproc) {
294 ret = mtk_cpufreq_set_voltage(info, vproc);
295 if (ret) {
296 pr_err("cpu%d: failed to scale down voltage!\n",
297 policy->cpu);
298 clk_set_parent(cpu_clk, info->inter_clk);
299 clk_set_rate(armpll, old_freq_hz);
300 clk_set_parent(cpu_clk, armpll);
301 return ret;
305 return 0;
308 #define DYNAMIC_POWER "dynamic-power-coefficient"
310 static void mtk_cpufreq_ready(struct cpufreq_policy *policy)
312 struct mtk_cpu_dvfs_info *info = policy->driver_data;
314 info->cdev = of_cpufreq_cooling_register(policy);
317 static int mtk_cpu_dvfs_info_init(struct mtk_cpu_dvfs_info *info, int cpu)
319 struct device *cpu_dev;
320 struct regulator *proc_reg = ERR_PTR(-ENODEV);
321 struct regulator *sram_reg = ERR_PTR(-ENODEV);
322 struct clk *cpu_clk = ERR_PTR(-ENODEV);
323 struct clk *inter_clk = ERR_PTR(-ENODEV);
324 struct dev_pm_opp *opp;
325 unsigned long rate;
326 int ret;
328 cpu_dev = get_cpu_device(cpu);
329 if (!cpu_dev) {
330 pr_err("failed to get cpu%d device\n", cpu);
331 return -ENODEV;
334 cpu_clk = clk_get(cpu_dev, "cpu");
335 if (IS_ERR(cpu_clk)) {
336 if (PTR_ERR(cpu_clk) == -EPROBE_DEFER)
337 pr_warn("cpu clk for cpu%d not ready, retry.\n", cpu);
338 else
339 pr_err("failed to get cpu clk for cpu%d\n", cpu);
341 ret = PTR_ERR(cpu_clk);
342 return ret;
345 inter_clk = clk_get(cpu_dev, "intermediate");
346 if (IS_ERR(inter_clk)) {
347 if (PTR_ERR(inter_clk) == -EPROBE_DEFER)
348 pr_warn("intermediate clk for cpu%d not ready, retry.\n",
349 cpu);
350 else
351 pr_err("failed to get intermediate clk for cpu%d\n",
352 cpu);
354 ret = PTR_ERR(inter_clk);
355 goto out_free_resources;
358 proc_reg = regulator_get_exclusive(cpu_dev, "proc");
359 if (IS_ERR(proc_reg)) {
360 if (PTR_ERR(proc_reg) == -EPROBE_DEFER)
361 pr_warn("proc regulator for cpu%d not ready, retry.\n",
362 cpu);
363 else
364 pr_err("failed to get proc regulator for cpu%d\n",
365 cpu);
367 ret = PTR_ERR(proc_reg);
368 goto out_free_resources;
371 /* Both presence and absence of sram regulator are valid cases. */
372 sram_reg = regulator_get_exclusive(cpu_dev, "sram");
374 /* Get OPP-sharing information from "operating-points-v2" bindings */
375 ret = dev_pm_opp_of_get_sharing_cpus(cpu_dev, &info->cpus);
376 if (ret) {
377 pr_err("failed to get OPP-sharing information for cpu%d\n",
378 cpu);
379 goto out_free_resources;
382 ret = dev_pm_opp_of_cpumask_add_table(&info->cpus);
383 if (ret) {
384 pr_warn("no OPP table for cpu%d\n", cpu);
385 goto out_free_resources;
388 /* Search a safe voltage for intermediate frequency. */
389 rate = clk_get_rate(inter_clk);
390 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &rate);
391 if (IS_ERR(opp)) {
392 pr_err("failed to get intermediate opp for cpu%d\n", cpu);
393 ret = PTR_ERR(opp);
394 goto out_free_opp_table;
396 info->intermediate_voltage = dev_pm_opp_get_voltage(opp);
397 dev_pm_opp_put(opp);
399 info->cpu_dev = cpu_dev;
400 info->proc_reg = proc_reg;
401 info->sram_reg = IS_ERR(sram_reg) ? NULL : sram_reg;
402 info->cpu_clk = cpu_clk;
403 info->inter_clk = inter_clk;
406 * If SRAM regulator is present, software "voltage tracking" is needed
407 * for this CPU power domain.
409 info->need_voltage_tracking = !IS_ERR(sram_reg);
411 return 0;
413 out_free_opp_table:
414 dev_pm_opp_of_cpumask_remove_table(&info->cpus);
416 out_free_resources:
417 if (!IS_ERR(proc_reg))
418 regulator_put(proc_reg);
419 if (!IS_ERR(sram_reg))
420 regulator_put(sram_reg);
421 if (!IS_ERR(cpu_clk))
422 clk_put(cpu_clk);
423 if (!IS_ERR(inter_clk))
424 clk_put(inter_clk);
426 return ret;
429 static void mtk_cpu_dvfs_info_release(struct mtk_cpu_dvfs_info *info)
431 if (!IS_ERR(info->proc_reg))
432 regulator_put(info->proc_reg);
433 if (!IS_ERR(info->sram_reg))
434 regulator_put(info->sram_reg);
435 if (!IS_ERR(info->cpu_clk))
436 clk_put(info->cpu_clk);
437 if (!IS_ERR(info->inter_clk))
438 clk_put(info->inter_clk);
440 dev_pm_opp_of_cpumask_remove_table(&info->cpus);
443 static int mtk_cpufreq_init(struct cpufreq_policy *policy)
445 struct mtk_cpu_dvfs_info *info;
446 struct cpufreq_frequency_table *freq_table;
447 int ret;
449 info = mtk_cpu_dvfs_info_lookup(policy->cpu);
450 if (!info) {
451 pr_err("dvfs info for cpu%d is not initialized.\n",
452 policy->cpu);
453 return -EINVAL;
456 ret = dev_pm_opp_init_cpufreq_table(info->cpu_dev, &freq_table);
457 if (ret) {
458 pr_err("failed to init cpufreq table for cpu%d: %d\n",
459 policy->cpu, ret);
460 return ret;
463 cpumask_copy(policy->cpus, &info->cpus);
464 policy->freq_table = freq_table;
465 policy->driver_data = info;
466 policy->clk = info->cpu_clk;
468 return 0;
471 static int mtk_cpufreq_exit(struct cpufreq_policy *policy)
473 struct mtk_cpu_dvfs_info *info = policy->driver_data;
475 cpufreq_cooling_unregister(info->cdev);
476 dev_pm_opp_free_cpufreq_table(info->cpu_dev, &policy->freq_table);
478 return 0;
481 static struct cpufreq_driver mtk_cpufreq_driver = {
482 .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK |
483 CPUFREQ_HAVE_GOVERNOR_PER_POLICY,
484 .verify = cpufreq_generic_frequency_table_verify,
485 .target_index = mtk_cpufreq_set_target,
486 .get = cpufreq_generic_get,
487 .init = mtk_cpufreq_init,
488 .exit = mtk_cpufreq_exit,
489 .ready = mtk_cpufreq_ready,
490 .name = "mtk-cpufreq",
491 .attr = cpufreq_generic_attr,
494 static int mtk_cpufreq_probe(struct platform_device *pdev)
496 struct mtk_cpu_dvfs_info *info, *tmp;
497 int cpu, ret;
499 for_each_possible_cpu(cpu) {
500 info = mtk_cpu_dvfs_info_lookup(cpu);
501 if (info)
502 continue;
504 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
505 if (!info) {
506 ret = -ENOMEM;
507 goto release_dvfs_info_list;
510 ret = mtk_cpu_dvfs_info_init(info, cpu);
511 if (ret) {
512 dev_err(&pdev->dev,
513 "failed to initialize dvfs info for cpu%d\n",
514 cpu);
515 goto release_dvfs_info_list;
518 list_add(&info->list_head, &dvfs_info_list);
521 ret = cpufreq_register_driver(&mtk_cpufreq_driver);
522 if (ret) {
523 dev_err(&pdev->dev, "failed to register mtk cpufreq driver\n");
524 goto release_dvfs_info_list;
527 return 0;
529 release_dvfs_info_list:
530 list_for_each_entry_safe(info, tmp, &dvfs_info_list, list_head) {
531 mtk_cpu_dvfs_info_release(info);
532 list_del(&info->list_head);
535 return ret;
538 static struct platform_driver mtk_cpufreq_platdrv = {
539 .driver = {
540 .name = "mtk-cpufreq",
542 .probe = mtk_cpufreq_probe,
545 /* List of machines supported by this driver */
546 static const struct of_device_id mtk_cpufreq_machines[] __initconst = {
547 { .compatible = "mediatek,mt2701", },
548 { .compatible = "mediatek,mt2712", },
549 { .compatible = "mediatek,mt7622", },
550 { .compatible = "mediatek,mt7623", },
551 { .compatible = "mediatek,mt817x", },
552 { .compatible = "mediatek,mt8173", },
553 { .compatible = "mediatek,mt8176", },
558 static int __init mtk_cpufreq_driver_init(void)
560 struct device_node *np;
561 const struct of_device_id *match;
562 struct platform_device *pdev;
563 int err;
565 np = of_find_node_by_path("/");
566 if (!np)
567 return -ENODEV;
569 match = of_match_node(mtk_cpufreq_machines, np);
570 of_node_put(np);
571 if (!match) {
572 pr_debug("Machine is not compatible with mtk-cpufreq\n");
573 return -ENODEV;
576 err = platform_driver_register(&mtk_cpufreq_platdrv);
577 if (err)
578 return err;
581 * Since there's no place to hold device registration code and no
582 * device tree based way to match cpufreq driver yet, both the driver
583 * and the device registration codes are put here to handle defer
584 * probing.
586 pdev = platform_device_register_simple("mtk-cpufreq", -1, NULL, 0);
587 if (IS_ERR(pdev)) {
588 pr_err("failed to register mtk-cpufreq platform device\n");
589 return PTR_ERR(pdev);
592 return 0;
594 device_initcall(mtk_cpufreq_driver_init);
596 MODULE_DESCRIPTION("MediaTek CPUFreq driver");
597 MODULE_AUTHOR("Pi-Cheng Chen <pi-cheng.chen@linaro.org>");
598 MODULE_LICENSE("GPL v2");