2 * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
4 * Author Andreas Eversberg (jolly@eversberg.eu)
5 * ported to mqueue mechanism:
6 * Peter Sprenger (sprengermoving-bytes.de)
8 * inspired by existing hfc-pci driver:
9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
10 * Copyright 2008 by Karsten Keil (kkeil@suse.de)
11 * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu)
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
28 * Thanks to Cologne Chip AG for this great controller!
34 * By default (0), the card is automatically detected.
35 * Or use the following combinations:
36 * Bit 0-7 = 0x00001 = HFC-E1 (1 port)
37 * or Bit 0-7 = 0x00004 = HFC-4S (4 ports)
38 * or Bit 0-7 = 0x00008 = HFC-8S (8 ports)
39 * Bit 8 = 0x00100 = uLaw (instead of aLaw)
40 * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware
42 * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43 * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
45 * Bit 14 = 0x04000 = Use external ram (128K)
46 * Bit 15 = 0x08000 = Use external ram (512K)
47 * Bit 16 = 0x10000 = Use 64 timeslots instead of 32
48 * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else
50 * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51 * (all other bits are reserved and shall be 0)
52 * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
55 * port: (optional or required for all ports on all installed cards)
56 * HFC-4S/HFC-8S only bits:
57 * Bit 0 = 0x001 = Use master clock for this S/T interface
58 * (ony once per chip).
59 * Bit 1 = 0x002 = transmitter line setup (non capacitive mode)
60 * Don't use this unless you know what you are doing!
61 * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing)
62 * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63 * received from port 1
66 * Bit 0 = 0x0001 = interface: 0=copper, 1=optical
67 * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode)
68 * Bit 2 = 0x0004 = Report LOS
69 * Bit 3 = 0x0008 = Report AIS
70 * Bit 4 = 0x0010 = Report SLIP
71 * Bit 5 = 0x0020 = Report RDI
72 * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
74 * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode.
75 * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode.
76 * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
78 * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
80 * (all other bits are reserved and shall be 0)
83 * NOTE: only one debug value must be given for all cards
84 * enable debugging (see hfc_multi.h for debug options)
87 * NOTE: only one poll value must be given for all cards
88 * Give the number of samples for each fifo process.
89 * By default 128 is used. Decrease to reduce delay, increase to
90 * reduce cpu load. If unsure, don't mess with it!
91 * Valid is 8, 16, 32, 64, 128, 256.
94 * NOTE: only one pcm value must be given for every card.
95 * The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96 * By default (0), the PCM bus id is 100 for the card that is PCM master.
97 * If multiple cards are PCM master (because they are not interconnected),
98 * each card with PCM master will have increasing PCM id.
99 * All PCM busses with the same ID are expected to be connected and have
100 * common time slots slots.
101 * Only one chip of the PCM bus must be master, the others slave.
102 * -1 means no support of PCM bus not even.
103 * Omit this value, if all cards are interconnected or none is connected.
104 * If unsure, don't give this parameter.
107 * NOTE: One dmask value must be given for every HFC-E1 card.
108 * If omitted, the E1 card has D-channel on time slot 16, which is default.
109 * dmask is a 32 bit mask. The bit must be set for an alternate time slot.
110 * If multiple bits are set, multiple virtual card fragments are created.
111 * For each bit set, a bmask value must be given. Each bit on the bmask
112 * value stands for a B-channel. The bmask may not overlap with dmask or
113 * with other bmask values for that card.
114 * Example: dmask=0x00020002 bmask=0x0000fffc,0xfffc0000
115 * This will create one fragment with D-channel on slot 1 with
116 * B-channels on slots 2..15, and a second fragment with D-channel
117 * on slot 17 with B-channels on slot 18..31. Slot 16 is unused.
118 * If bit 0 is set (dmask=0x00000001) the D-channel is on slot 0 and will
120 * Example: dmask=0x00000001 bmask=0xfffffffe
121 * This will create a port with all 31 usable timeslots as
123 * If no bits are set on bmask, no B-channel is created for that fragment.
124 * Example: dmask=0xfffffffe bmask=0,0,0,0.... (31 0-values for bmask)
125 * This will create 31 ports with one D-channel only.
126 * If you don't know how to use it, you don't need it!
129 * NOTE: only one mode value must be given for every card.
130 * -> See hfc_multi.h for HFC_IO_MODE_* values
131 * By default, the IO mode is pci memory IO (MEMIO).
132 * Some cards require specific IO mode, so it cannot be changed.
133 * It may be useful to set IO mode to register io (REGIO) to solve
134 * PCI bridge problems.
135 * If unsure, don't give this parameter.
138 * NOTE: only one clockdelay_nt value must be given once for all cards.
139 * Give the value of the clock control register (A_ST_CLK_DLY)
140 * of the S/T interfaces in NT mode.
141 * This register is needed for the TBR3 certification, so don't change it.
144 * NOTE: only one clockdelay_te value must be given once
145 * Give the value of the clock control register (A_ST_CLK_DLY)
146 * of the S/T interfaces in TE mode.
147 * This register is needed for the TBR3 certification, so don't change it.
150 * NOTE: only one clock value must be given once
151 * Selects interface with clock source for mISDN and applications.
152 * Set to card number starting with 1. Set to -1 to disable.
153 * By default, the first card is used as clock source.
156 * NOTE: only one hwid value must be given once
157 * Enable special embedded devices with XHFC controllers.
161 * debug register access (never use this, it will flood your system log)
162 * #define HFC_REGISTER_DEBUG
165 #define HFC_MULTI_VERSION "2.03"
167 #include <linux/interrupt.h>
168 #include <linux/module.h>
169 #include <linux/slab.h>
170 #include <linux/pci.h>
171 #include <linux/delay.h>
172 #include <linux/mISDNhw.h>
173 #include <linux/mISDNdsp.h>
176 #define IRQCOUNT_DEBUG
180 #include "hfc_multi.h"
186 #define MAX_PORTS (8 * MAX_CARDS)
187 #define MAX_FRAGS (32 * MAX_CARDS)
189 static LIST_HEAD(HFClist
);
190 static spinlock_t HFClock
; /* global hfc list lock */
192 static void ph_state_change(struct dchannel
*);
194 static struct hfc_multi
*syncmaster
;
195 static int plxsd_master
; /* if we have a master card (yet) */
196 static spinlock_t plx_lock
; /* may not acquire other lock inside */
202 static int poll_timer
= 6; /* default = 128 samples = 16ms */
203 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
204 static int nt_t1_count
[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
205 #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
206 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode
207 (0x60 MUST be included!) */
209 #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
210 #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
211 #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */
217 static uint type
[MAX_CARDS
];
218 static int pcm
[MAX_CARDS
];
219 static uint dmask
[MAX_CARDS
];
220 static uint bmask
[MAX_FRAGS
];
221 static uint iomode
[MAX_CARDS
];
222 static uint port
[MAX_PORTS
];
227 static uint clockdelay_te
= CLKDEL_TE
;
228 static uint clockdelay_nt
= CLKDEL_NT
;
230 #define HWID_MINIP4 1
231 #define HWID_MINIP8 2
232 #define HWID_MINIP16 3
233 static uint hwid
= HWID_NONE
;
235 static int HFC_cnt
, E1_cnt
, bmask_cnt
, Port_cnt
, PCM_cnt
= 99;
237 MODULE_AUTHOR("Andreas Eversberg");
238 MODULE_LICENSE("GPL");
239 MODULE_VERSION(HFC_MULTI_VERSION
);
240 module_param(debug
, uint
, S_IRUGO
| S_IWUSR
);
241 module_param(poll
, uint
, S_IRUGO
| S_IWUSR
);
242 module_param(clock
, int, S_IRUGO
| S_IWUSR
);
243 module_param(timer
, uint
, S_IRUGO
| S_IWUSR
);
244 module_param(clockdelay_te
, uint
, S_IRUGO
| S_IWUSR
);
245 module_param(clockdelay_nt
, uint
, S_IRUGO
| S_IWUSR
);
246 module_param_array(type
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
247 module_param_array(pcm
, int, NULL
, S_IRUGO
| S_IWUSR
);
248 module_param_array(dmask
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
249 module_param_array(bmask
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
250 module_param_array(iomode
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
251 module_param_array(port
, uint
, NULL
, S_IRUGO
| S_IWUSR
);
252 module_param(hwid
, uint
, S_IRUGO
| S_IWUSR
); /* The hardware ID */
254 #ifdef HFC_REGISTER_DEBUG
255 #define HFC_outb(hc, reg, val) \
256 (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
257 #define HFC_outb_nodebug(hc, reg, val) \
258 (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
259 #define HFC_inb(hc, reg) \
260 (hc->HFC_inb(hc, reg, __func__, __LINE__))
261 #define HFC_inb_nodebug(hc, reg) \
262 (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
263 #define HFC_inw(hc, reg) \
264 (hc->HFC_inw(hc, reg, __func__, __LINE__))
265 #define HFC_inw_nodebug(hc, reg) \
266 (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
267 #define HFC_wait(hc) \
268 (hc->HFC_wait(hc, __func__, __LINE__))
269 #define HFC_wait_nodebug(hc) \
270 (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
272 #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val))
273 #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val))
274 #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg))
275 #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg))
276 #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg))
277 #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg))
278 #define HFC_wait(hc) (hc->HFC_wait(hc))
279 #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc))
282 #ifdef CONFIG_MISDN_HFCMULTI_8xx
283 #include "hfc_multi_8xx.h"
286 /* HFC_IO_MODE_PCIMEM */
288 #ifdef HFC_REGISTER_DEBUG
289 HFC_outb_pcimem(struct hfc_multi
*hc
, u_char reg
, u_char val
,
290 const char *function
, int line
)
292 HFC_outb_pcimem(struct hfc_multi
*hc
, u_char reg
, u_char val
)
295 writeb(val
, hc
->pci_membase
+ reg
);
298 #ifdef HFC_REGISTER_DEBUG
299 HFC_inb_pcimem(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
301 HFC_inb_pcimem(struct hfc_multi
*hc
, u_char reg
)
304 return readb(hc
->pci_membase
+ reg
);
307 #ifdef HFC_REGISTER_DEBUG
308 HFC_inw_pcimem(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
310 HFC_inw_pcimem(struct hfc_multi
*hc
, u_char reg
)
313 return readw(hc
->pci_membase
+ reg
);
316 #ifdef HFC_REGISTER_DEBUG
317 HFC_wait_pcimem(struct hfc_multi
*hc
, const char *function
, int line
)
319 HFC_wait_pcimem(struct hfc_multi
*hc
)
322 while (readb(hc
->pci_membase
+ R_STATUS
) & V_BUSY
)
326 /* HFC_IO_MODE_REGIO */
328 #ifdef HFC_REGISTER_DEBUG
329 HFC_outb_regio(struct hfc_multi
*hc
, u_char reg
, u_char val
,
330 const char *function
, int line
)
332 HFC_outb_regio(struct hfc_multi
*hc
, u_char reg
, u_char val
)
335 outb(reg
, hc
->pci_iobase
+ 4);
336 outb(val
, hc
->pci_iobase
);
339 #ifdef HFC_REGISTER_DEBUG
340 HFC_inb_regio(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
342 HFC_inb_regio(struct hfc_multi
*hc
, u_char reg
)
345 outb(reg
, hc
->pci_iobase
+ 4);
346 return inb(hc
->pci_iobase
);
349 #ifdef HFC_REGISTER_DEBUG
350 HFC_inw_regio(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
352 HFC_inw_regio(struct hfc_multi
*hc
, u_char reg
)
355 outb(reg
, hc
->pci_iobase
+ 4);
356 return inw(hc
->pci_iobase
);
359 #ifdef HFC_REGISTER_DEBUG
360 HFC_wait_regio(struct hfc_multi
*hc
, const char *function
, int line
)
362 HFC_wait_regio(struct hfc_multi
*hc
)
365 outb(R_STATUS
, hc
->pci_iobase
+ 4);
366 while (inb(hc
->pci_iobase
) & V_BUSY
)
370 #ifdef HFC_REGISTER_DEBUG
372 HFC_outb_debug(struct hfc_multi
*hc
, u_char reg
, u_char val
,
373 const char *function
, int line
)
375 char regname
[256] = "", bits
[9] = "xxxxxxxx";
379 while (hfc_register_names
[++i
].name
) {
380 if (hfc_register_names
[i
].reg
== reg
)
381 strcat(regname
, hfc_register_names
[i
].name
);
383 if (regname
[0] == '\0')
384 strcpy(regname
, "register");
386 bits
[7] = '0' + (!!(val
& 1));
387 bits
[6] = '0' + (!!(val
& 2));
388 bits
[5] = '0' + (!!(val
& 4));
389 bits
[4] = '0' + (!!(val
& 8));
390 bits
[3] = '0' + (!!(val
& 16));
391 bits
[2] = '0' + (!!(val
& 32));
392 bits
[1] = '0' + (!!(val
& 64));
393 bits
[0] = '0' + (!!(val
& 128));
395 "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
396 hc
->id
, reg
, regname
, val
, bits
, function
, line
);
397 HFC_outb_nodebug(hc
, reg
, val
);
400 HFC_inb_debug(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
402 char regname
[256] = "", bits
[9] = "xxxxxxxx";
403 u_char val
= HFC_inb_nodebug(hc
, reg
);
407 while (hfc_register_names
[i
++].name
)
409 while (hfc_register_names
[++i
].name
) {
410 if (hfc_register_names
[i
].reg
== reg
)
411 strcat(regname
, hfc_register_names
[i
].name
);
413 if (regname
[0] == '\0')
414 strcpy(regname
, "register");
416 bits
[7] = '0' + (!!(val
& 1));
417 bits
[6] = '0' + (!!(val
& 2));
418 bits
[5] = '0' + (!!(val
& 4));
419 bits
[4] = '0' + (!!(val
& 8));
420 bits
[3] = '0' + (!!(val
& 16));
421 bits
[2] = '0' + (!!(val
& 32));
422 bits
[1] = '0' + (!!(val
& 64));
423 bits
[0] = '0' + (!!(val
& 128));
425 "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
426 hc
->id
, reg
, regname
, val
, bits
, function
, line
);
430 HFC_inw_debug(struct hfc_multi
*hc
, u_char reg
, const char *function
, int line
)
432 char regname
[256] = "";
433 u_short val
= HFC_inw_nodebug(hc
, reg
);
437 while (hfc_register_names
[i
++].name
)
439 while (hfc_register_names
[++i
].name
) {
440 if (hfc_register_names
[i
].reg
== reg
)
441 strcat(regname
, hfc_register_names
[i
].name
);
443 if (regname
[0] == '\0')
444 strcpy(regname
, "register");
447 "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
448 hc
->id
, reg
, regname
, val
, function
, line
);
452 HFC_wait_debug(struct hfc_multi
*hc
, const char *function
, int line
)
454 printk(KERN_DEBUG
"HFC_wait(chip %d); in %s() line %d\n",
455 hc
->id
, function
, line
);
456 HFC_wait_nodebug(hc
);
460 /* write fifo data (REGIO) */
462 write_fifo_regio(struct hfc_multi
*hc
, u_char
*data
, int len
)
464 outb(A_FIFO_DATA0
, (hc
->pci_iobase
) + 4);
466 outl(cpu_to_le32(*(u32
*)data
), hc
->pci_iobase
);
471 outw(cpu_to_le16(*(u16
*)data
), hc
->pci_iobase
);
476 outb(*data
, hc
->pci_iobase
);
481 /* write fifo data (PCIMEM) */
483 write_fifo_pcimem(struct hfc_multi
*hc
, u_char
*data
, int len
)
486 writel(cpu_to_le32(*(u32
*)data
),
487 hc
->pci_membase
+ A_FIFO_DATA0
);
492 writew(cpu_to_le16(*(u16
*)data
),
493 hc
->pci_membase
+ A_FIFO_DATA0
);
498 writeb(*data
, hc
->pci_membase
+ A_FIFO_DATA0
);
504 /* read fifo data (REGIO) */
506 read_fifo_regio(struct hfc_multi
*hc
, u_char
*data
, int len
)
508 outb(A_FIFO_DATA0
, (hc
->pci_iobase
) + 4);
510 *(u32
*)data
= le32_to_cpu(inl(hc
->pci_iobase
));
515 *(u16
*)data
= le16_to_cpu(inw(hc
->pci_iobase
));
520 *data
= inb(hc
->pci_iobase
);
526 /* read fifo data (PCIMEM) */
528 read_fifo_pcimem(struct hfc_multi
*hc
, u_char
*data
, int len
)
532 le32_to_cpu(readl(hc
->pci_membase
+ A_FIFO_DATA0
));
538 le16_to_cpu(readw(hc
->pci_membase
+ A_FIFO_DATA0
));
543 *data
= readb(hc
->pci_membase
+ A_FIFO_DATA0
);
550 enable_hwirq(struct hfc_multi
*hc
)
552 hc
->hw
.r_irq_ctrl
|= V_GLOB_IRQ_EN
;
553 HFC_outb(hc
, R_IRQ_CTRL
, hc
->hw
.r_irq_ctrl
);
557 disable_hwirq(struct hfc_multi
*hc
)
559 hc
->hw
.r_irq_ctrl
&= ~((u_char
)V_GLOB_IRQ_EN
);
560 HFC_outb(hc
, R_IRQ_CTRL
, hc
->hw
.r_irq_ctrl
);
564 #define MAX_TDM_CHAN 32
568 enablepcibridge(struct hfc_multi
*c
)
570 HFC_outb(c
, R_BRG_PCM_CFG
, (0x0 << 6) | 0x3); /* was _io before */
574 disablepcibridge(struct hfc_multi
*c
)
576 HFC_outb(c
, R_BRG_PCM_CFG
, (0x0 << 6) | 0x2); /* was _io before */
579 static inline unsigned char
580 readpcibridge(struct hfc_multi
*hc
, unsigned char address
)
588 /* slow down a PCI read access by 1 PCI clock cycle */
589 HFC_outb(hc
, R_CTRL
, 0x4); /*was _io before*/
596 /* select local bridge port address by writing to CIP port */
597 /* data = HFC_inb(c, cipv); * was _io before */
598 outw(cipv
, hc
->pci_iobase
+ 4);
599 data
= inb(hc
->pci_iobase
);
601 /* restore R_CTRL for normal PCI read cycle speed */
602 HFC_outb(hc
, R_CTRL
, 0x0); /* was _io before */
608 writepcibridge(struct hfc_multi
*hc
, unsigned char address
, unsigned char data
)
621 /* select local bridge port address by writing to CIP port */
622 outw(cipv
, hc
->pci_iobase
+ 4);
623 /* define a 32 bit dword with 4 identical bytes for write sequence */
624 datav
= data
| ((__u32
) data
<< 8) | ((__u32
) data
<< 16) |
625 ((__u32
) data
<< 24);
628 * write this 32 bit dword to the bridge data port
629 * this will initiate a write sequence of up to 4 writes to the same
630 * address on the local bus interface the number of write accesses
631 * is undefined but >=1 and depends on the next PCI transaction
632 * during write sequence on the local bus
634 outl(datav
, hc
->pci_iobase
);
638 cpld_set_reg(struct hfc_multi
*hc
, unsigned char reg
)
640 /* Do data pin read low byte */
641 HFC_outb(hc
, R_GPIO_OUT1
, reg
);
645 cpld_write_reg(struct hfc_multi
*hc
, unsigned char reg
, unsigned char val
)
647 cpld_set_reg(hc
, reg
);
650 writepcibridge(hc
, 1, val
);
651 disablepcibridge(hc
);
656 static inline unsigned char
657 cpld_read_reg(struct hfc_multi
*hc
, unsigned char reg
)
659 unsigned char bytein
;
661 cpld_set_reg(hc
, reg
);
663 /* Do data pin read low byte */
664 HFC_outb(hc
, R_GPIO_OUT1
, reg
);
667 bytein
= readpcibridge(hc
, 1);
668 disablepcibridge(hc
);
674 vpm_write_address(struct hfc_multi
*hc
, unsigned short addr
)
676 cpld_write_reg(hc
, 0, 0xff & addr
);
677 cpld_write_reg(hc
, 1, 0x01 & (addr
>> 8));
680 static inline unsigned short
681 vpm_read_address(struct hfc_multi
*c
)
684 unsigned short highbit
;
686 addr
= cpld_read_reg(c
, 0);
687 highbit
= cpld_read_reg(c
, 1);
689 addr
= addr
| (highbit
<< 8);
694 static inline unsigned char
695 vpm_in(struct hfc_multi
*c
, int which
, unsigned short addr
)
699 vpm_write_address(c
, addr
);
707 res
= readpcibridge(c
, 1);
716 vpm_out(struct hfc_multi
*c
, int which
, unsigned short addr
,
719 vpm_write_address(c
, addr
);
728 writepcibridge(c
, 1, data
);
736 regin
= vpm_in(c
, which
, addr
);
738 printk(KERN_DEBUG
"Wrote 0x%x to register 0x%x but got back "
739 "0x%x\n", data
, addr
, regin
);
746 vpm_init(struct hfc_multi
*wc
)
750 unsigned int i
, x
, y
;
753 for (x
= 0; x
< NUM_EC
; x
++) {
756 ver
= vpm_in(wc
, x
, 0x1a0);
757 printk(KERN_DEBUG
"VPM: Chip %d: ver %02x\n", x
, ver
);
760 for (y
= 0; y
< 4; y
++) {
761 vpm_out(wc
, x
, 0x1a8 + y
, 0x00); /* GPIO out */
762 vpm_out(wc
, x
, 0x1ac + y
, 0x00); /* GPIO dir */
763 vpm_out(wc
, x
, 0x1b0 + y
, 0x00); /* GPIO sel */
766 /* Setup TDM path - sets fsync and tdm_clk as inputs */
767 reg
= vpm_in(wc
, x
, 0x1a3); /* misc_con */
768 vpm_out(wc
, x
, 0x1a3, reg
& ~2);
770 /* Setup Echo length (256 taps) */
771 vpm_out(wc
, x
, 0x022, 1);
772 vpm_out(wc
, x
, 0x023, 0xff);
774 /* Setup timeslots */
775 vpm_out(wc
, x
, 0x02f, 0x00);
776 mask
= 0x02020202 << (x
* 4);
778 /* Setup the tdm channel masks for all chips */
779 for (i
= 0; i
< 4; i
++)
780 vpm_out(wc
, x
, 0x33 - i
, (mask
>> (i
<< 3)) & 0xff);
782 /* Setup convergence rate */
783 printk(KERN_DEBUG
"VPM: A-law mode\n");
784 reg
= 0x00 | 0x10 | 0x01;
785 vpm_out(wc
, x
, 0x20, reg
);
786 printk(KERN_DEBUG
"VPM reg 0x20 is %x\n", reg
);
787 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
789 vpm_out(wc
, x
, 0x24, 0x02);
790 reg
= vpm_in(wc
, x
, 0x24);
791 printk(KERN_DEBUG
"NLP Thresh is set to %d (0x%x)\n", reg
, reg
);
793 /* Initialize echo cans */
794 for (i
= 0; i
< MAX_TDM_CHAN
; i
++) {
795 if (mask
& (0x00000001 << i
))
796 vpm_out(wc
, x
, i
, 0x00);
800 * ARM arch at least disallows a udelay of
801 * more than 2ms... it gives a fake "__bad_udelay"
802 * reference at link-time.
803 * long delays in kernel code are pretty sucky anyway
804 * for now work around it using 5 x 2ms instead of 1 x 10ms
813 /* Put in bypass mode */
814 for (i
= 0; i
< MAX_TDM_CHAN
; i
++) {
815 if (mask
& (0x00000001 << i
))
816 vpm_out(wc
, x
, i
, 0x01);
820 for (i
= 0; i
< MAX_TDM_CHAN
; i
++) {
821 if (mask
& (0x00000001 << i
))
822 vpm_out(wc
, x
, 0x78 + i
, 0x01);
830 vpm_check(struct hfc_multi
*hctmp
)
834 gpi2
= HFC_inb(hctmp
, R_GPI_IN2
);
836 if ((gpi2
& 0x3) != 0x3)
837 printk(KERN_DEBUG
"Got interrupt 0x%x from VPM!\n", gpi2
);
843 * Interface to enable/disable the HW Echocan
845 * these functions are called within a spin_lock_irqsave on
846 * the channel instance lock, so we are not disturbed by irqs
848 * we can later easily change the interface to make other
849 * things configurable, for now we configure the taps
854 vpm_echocan_on(struct hfc_multi
*hc
, int ch
, int taps
)
856 unsigned int timeslot
;
858 struct bchannel
*bch
= hc
->chan
[ch
].bch
;
863 if (hc
->chan
[ch
].protocol
!= ISDN_P_B_RAW
)
870 skb
= _alloc_mISDN_skb(PH_CONTROL_IND
, HFC_VOL_CHANGE_TX
,
871 sizeof(int), &txadj
, GFP_ATOMIC
);
873 recv_Bchannel_skb(bch
, skb
);
876 timeslot
= ((ch
/ 4) * 8) + ((ch
% 4) * 4) + 1;
879 printk(KERN_NOTICE
"vpm_echocan_on called taps [%d] on timeslot %d\n",
882 vpm_out(hc
, unit
, timeslot
, 0x7e);
886 vpm_echocan_off(struct hfc_multi
*hc
, int ch
)
888 unsigned int timeslot
;
890 struct bchannel
*bch
= hc
->chan
[ch
].bch
;
896 if (hc
->chan
[ch
].protocol
!= ISDN_P_B_RAW
)
903 skb
= _alloc_mISDN_skb(PH_CONTROL_IND
, HFC_VOL_CHANGE_TX
,
904 sizeof(int), &txadj
, GFP_ATOMIC
);
906 recv_Bchannel_skb(bch
, skb
);
909 timeslot
= ((ch
/ 4) * 8) + ((ch
% 4) * 4) + 1;
912 printk(KERN_NOTICE
"vpm_echocan_off called on timeslot %d\n",
915 vpm_out(hc
, unit
, timeslot
, 0x01);
920 * Speech Design resync feature
921 * NOTE: This is called sometimes outside interrupt handler.
922 * We must lock irqsave, so no other interrupt (other card) will occur!
923 * Also multiple interrupts may nest, so must lock each access (lists, card)!
926 hfcmulti_resync(struct hfc_multi
*locked
, struct hfc_multi
*newmaster
, int rm
)
928 struct hfc_multi
*hc
, *next
, *pcmmaster
= NULL
;
929 void __iomem
*plx_acc_32
;
933 spin_lock_irqsave(&HFClock
, flags
);
934 spin_lock(&plx_lock
); /* must be locked inside other locks */
936 if (debug
& DEBUG_HFCMULTI_PLXSD
)
937 printk(KERN_DEBUG
"%s: RESYNC(syncmaster=0x%p)\n",
938 __func__
, syncmaster
);
940 /* select new master */
942 if (debug
& DEBUG_HFCMULTI_PLXSD
)
943 printk(KERN_DEBUG
"using provided controller\n");
945 list_for_each_entry_safe(hc
, next
, &HFClist
, list
) {
946 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
947 if (hc
->syncronized
) {
955 /* Disable sync of all cards */
956 list_for_each_entry_safe(hc
, next
, &HFClist
, list
) {
957 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
958 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
959 pv
= readl(plx_acc_32
);
960 pv
&= ~PLX_SYNC_O_EN
;
961 writel(pv
, plx_acc_32
);
962 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
)) {
964 if (hc
->ctype
== HFC_TYPE_E1
) {
965 if (debug
& DEBUG_HFCMULTI_PLXSD
)
967 "Schedule SYNC_I\n");
968 hc
->e1_resync
|= 1; /* get SYNC_I */
976 if (debug
& DEBUG_HFCMULTI_PLXSD
)
977 printk(KERN_DEBUG
"id=%d (0x%p) = syncronized with "
978 "interface.\n", hc
->id
, hc
);
979 /* Enable new sync master */
980 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
981 pv
= readl(plx_acc_32
);
983 writel(pv
, plx_acc_32
);
984 /* switch to jatt PLL, if not disabled by RX_SYNC */
985 if (hc
->ctype
== HFC_TYPE_E1
986 && !test_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
)) {
987 if (debug
& DEBUG_HFCMULTI_PLXSD
)
988 printk(KERN_DEBUG
"Schedule jatt PLL\n");
989 hc
->e1_resync
|= 2; /* switch to jatt */
994 if (debug
& DEBUG_HFCMULTI_PLXSD
)
996 "id=%d (0x%p) = PCM master syncronized "
997 "with QUARTZ\n", hc
->id
, hc
);
998 if (hc
->ctype
== HFC_TYPE_E1
) {
999 /* Use the crystal clock for the PCM
1001 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1003 "Schedule QUARTZ for HFC-E1\n");
1004 hc
->e1_resync
|= 4; /* switch quartz */
1006 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1008 "QUARTZ is automatically "
1009 "enabled by HFC-%dS\n", hc
->ctype
);
1011 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1012 pv
= readl(plx_acc_32
);
1013 pv
|= PLX_SYNC_O_EN
;
1014 writel(pv
, plx_acc_32
);
1017 printk(KERN_ERR
"%s no pcm master, this MUST "
1018 "not happen!\n", __func__
);
1020 syncmaster
= newmaster
;
1022 spin_unlock(&plx_lock
);
1023 spin_unlock_irqrestore(&HFClock
, flags
);
1026 /* This must be called AND hc must be locked irqsave!!! */
1028 plxsd_checksync(struct hfc_multi
*hc
, int rm
)
1030 if (hc
->syncronized
) {
1031 if (syncmaster
== NULL
) {
1032 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1033 printk(KERN_DEBUG
"%s: GOT sync on card %d"
1034 " (id=%d)\n", __func__
, hc
->id
+ 1,
1036 hfcmulti_resync(hc
, hc
, rm
);
1039 if (syncmaster
== hc
) {
1040 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1041 printk(KERN_DEBUG
"%s: LOST sync on card %d"
1042 " (id=%d)\n", __func__
, hc
->id
+ 1,
1044 hfcmulti_resync(hc
, NULL
, rm
);
1051 * free hardware resources used by driver
1054 release_io_hfcmulti(struct hfc_multi
*hc
)
1056 void __iomem
*plx_acc_32
;
1060 if (debug
& DEBUG_HFCMULTI_INIT
)
1061 printk(KERN_DEBUG
"%s: entered\n", __func__
);
1063 /* soft reset also masks all interrupts */
1064 hc
->hw
.r_cirm
|= V_SRES
;
1065 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1067 hc
->hw
.r_cirm
&= ~V_SRES
;
1068 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1069 udelay(1000); /* instead of 'wait' that may cause locking */
1071 /* release Speech Design card, if PLX was initialized */
1072 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
) && hc
->plx_membase
) {
1073 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1074 printk(KERN_DEBUG
"%s: release PLXSD card %d\n",
1075 __func__
, hc
->id
+ 1);
1076 spin_lock_irqsave(&plx_lock
, plx_flags
);
1077 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1078 writel(PLX_GPIOC_INIT
, plx_acc_32
);
1079 pv
= readl(plx_acc_32
);
1080 /* Termination off */
1082 /* Disconnect the PCM */
1083 pv
|= PLX_SLAVE_EN_N
;
1084 pv
&= ~PLX_MASTER_EN
;
1085 pv
&= ~PLX_SYNC_O_EN
;
1086 /* Put the DSP in Reset */
1087 pv
&= ~PLX_DSP_RES_N
;
1088 writel(pv
, plx_acc_32
);
1089 if (debug
& DEBUG_HFCMULTI_INIT
)
1090 printk(KERN_DEBUG
"%s: PCM off: PLX_GPIO=%x\n",
1092 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1095 /* disable memory mapped ports / io ports */
1096 test_and_clear_bit(HFC_CHIP_PLXSD
, &hc
->chip
); /* prevent resync */
1098 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, 0);
1099 if (hc
->pci_membase
)
1100 iounmap(hc
->pci_membase
);
1101 if (hc
->plx_membase
)
1102 iounmap(hc
->plx_membase
);
1104 release_region(hc
->pci_iobase
, 8);
1105 if (hc
->xhfc_membase
)
1106 iounmap((void *)hc
->xhfc_membase
);
1109 pci_disable_device(hc
->pci_dev
);
1110 pci_set_drvdata(hc
->pci_dev
, NULL
);
1112 if (debug
& DEBUG_HFCMULTI_INIT
)
1113 printk(KERN_DEBUG
"%s: done\n", __func__
);
1117 * function called to reset the HFC chip. A complete software reset of chip
1118 * and fifos is done. All configuration of the chip is done.
1122 init_chip(struct hfc_multi
*hc
)
1124 u_long flags
, val
, val2
= 0, rev
;
1126 u_char r_conf_en
, rval
;
1127 void __iomem
*plx_acc_32
;
1129 u_long plx_flags
, hfc_flags
;
1131 struct hfc_multi
*pos
, *next
, *plx_last_hc
;
1133 spin_lock_irqsave(&hc
->lock
, flags
);
1134 /* reset all registers */
1135 memset(&hc
->hw
, 0, sizeof(struct hfcm_hw
));
1137 /* revision check */
1138 if (debug
& DEBUG_HFCMULTI_INIT
)
1139 printk(KERN_DEBUG
"%s: entered\n", __func__
);
1140 val
= HFC_inb(hc
, R_CHIP_ID
);
1141 if ((val
>> 4) != 0x8 && (val
>> 4) != 0xc && (val
>> 4) != 0xe &&
1142 (val
>> 1) != 0x31) {
1143 printk(KERN_INFO
"HFC_multi: unknown CHIP_ID:%x\n", (u_int
)val
);
1147 rev
= HFC_inb(hc
, R_CHIP_RV
);
1149 "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1150 val
, rev
, (rev
== 0 && (hc
->ctype
!= HFC_TYPE_XHFC
)) ?
1151 " (old FIFO handling)" : "");
1152 if (hc
->ctype
!= HFC_TYPE_XHFC
&& rev
== 0) {
1153 test_and_set_bit(HFC_CHIP_REVISION0
, &hc
->chip
);
1155 "HFC_multi: NOTE: Your chip is revision 0, "
1156 "ask Cologne Chip for update. Newer chips "
1157 "have a better FIFO handling. Old chips "
1158 "still work but may have slightly lower "
1159 "HDLC transmit performance.\n");
1162 printk(KERN_WARNING
"HFC_multi: WARNING: This driver doesn't "
1163 "consider chip revision = %ld. The chip / "
1164 "bridge may not work.\n", rev
);
1167 /* set s-ram size */
1171 hc
->DTMFbase
= 0x1000;
1172 if (test_bit(HFC_CHIP_EXRAM_128
, &hc
->chip
)) {
1173 if (debug
& DEBUG_HFCMULTI_INIT
)
1174 printk(KERN_DEBUG
"%s: changing to 128K external RAM\n",
1176 hc
->hw
.r_ctrl
|= V_EXT_RAM
;
1177 hc
->hw
.r_ram_sz
= 1;
1181 hc
->DTMFbase
= 0x2000;
1183 if (test_bit(HFC_CHIP_EXRAM_512
, &hc
->chip
)) {
1184 if (debug
& DEBUG_HFCMULTI_INIT
)
1185 printk(KERN_DEBUG
"%s: changing to 512K external RAM\n",
1187 hc
->hw
.r_ctrl
|= V_EXT_RAM
;
1188 hc
->hw
.r_ram_sz
= 2;
1192 hc
->DTMFbase
= 0x2000;
1194 if (hc
->ctype
== HFC_TYPE_XHFC
) {
1200 hc
->max_trans
= poll
<< 1;
1201 if (hc
->max_trans
> hc
->Zlen
)
1202 hc
->max_trans
= hc
->Zlen
;
1204 /* Speech Design PLX bridge */
1205 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1206 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1207 printk(KERN_DEBUG
"%s: initializing PLXSD card %d\n",
1208 __func__
, hc
->id
+ 1);
1209 spin_lock_irqsave(&plx_lock
, plx_flags
);
1210 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1211 writel(PLX_GPIOC_INIT
, plx_acc_32
);
1212 pv
= readl(plx_acc_32
);
1213 /* The first and the last cards are terminating the PCM bus */
1214 pv
|= PLX_TERM_ON
; /* hc is currently the last */
1215 /* Disconnect the PCM */
1216 pv
|= PLX_SLAVE_EN_N
;
1217 pv
&= ~PLX_MASTER_EN
;
1218 pv
&= ~PLX_SYNC_O_EN
;
1219 /* Put the DSP in Reset */
1220 pv
&= ~PLX_DSP_RES_N
;
1221 writel(pv
, plx_acc_32
);
1222 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1223 if (debug
& DEBUG_HFCMULTI_INIT
)
1224 printk(KERN_DEBUG
"%s: slave/term: PLX_GPIO=%x\n",
1227 * If we are the 3rd PLXSD card or higher, we must turn
1228 * termination of last PLXSD card off.
1230 spin_lock_irqsave(&HFClock
, hfc_flags
);
1233 list_for_each_entry_safe(pos
, next
, &HFClist
, list
) {
1234 if (test_bit(HFC_CHIP_PLXSD
, &pos
->chip
)) {
1240 if (plx_count
>= 3) {
1241 if (debug
& DEBUG_HFCMULTI_PLXSD
)
1242 printk(KERN_DEBUG
"%s: card %d is between, so "
1243 "we disable termination\n",
1244 __func__
, plx_last_hc
->id
+ 1);
1245 spin_lock_irqsave(&plx_lock
, plx_flags
);
1246 plx_acc_32
= plx_last_hc
->plx_membase
+ PLX_GPIOC
;
1247 pv
= readl(plx_acc_32
);
1249 writel(pv
, plx_acc_32
);
1250 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1251 if (debug
& DEBUG_HFCMULTI_INIT
)
1253 "%s: term off: PLX_GPIO=%x\n",
1256 spin_unlock_irqrestore(&HFClock
, hfc_flags
);
1257 hc
->hw
.r_pcm_md0
= V_F0_LEN
; /* shift clock for DSP */
1260 if (test_bit(HFC_CHIP_EMBSD
, &hc
->chip
))
1261 hc
->hw
.r_pcm_md0
= V_F0_LEN
; /* shift clock for DSP */
1263 /* we only want the real Z2 read-pointer for revision > 0 */
1264 if (!test_bit(HFC_CHIP_REVISION0
, &hc
->chip
))
1265 hc
->hw
.r_ram_sz
|= V_FZ_MD
;
1267 /* select pcm mode */
1268 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
1269 if (debug
& DEBUG_HFCMULTI_INIT
)
1270 printk(KERN_DEBUG
"%s: setting PCM into slave mode\n",
1273 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
) && !plxsd_master
) {
1274 if (debug
& DEBUG_HFCMULTI_INIT
)
1275 printk(KERN_DEBUG
"%s: setting PCM into master mode\n",
1277 hc
->hw
.r_pcm_md0
|= V_PCM_MD
;
1279 if (debug
& DEBUG_HFCMULTI_INIT
)
1280 printk(KERN_DEBUG
"%s: performing PCM auto detect\n",
1285 HFC_outb(hc
, R_CTRL
, hc
->hw
.r_ctrl
);
1286 if (hc
->ctype
== HFC_TYPE_XHFC
)
1287 HFC_outb(hc
, 0x0C /* R_FIFO_THRES */,
1288 0x11 /* 16 Bytes TX/RX */);
1290 HFC_outb(hc
, R_RAM_SZ
, hc
->hw
.r_ram_sz
);
1291 HFC_outb(hc
, R_FIFO_MD
, 0);
1292 if (hc
->ctype
== HFC_TYPE_XHFC
)
1293 hc
->hw
.r_cirm
= V_SRES
| V_HFCRES
| V_PCMRES
| V_STRES
;
1295 hc
->hw
.r_cirm
= V_SRES
| V_HFCRES
| V_PCMRES
| V_STRES
1297 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1300 HFC_outb(hc
, R_CIRM
, hc
->hw
.r_cirm
);
1302 if (hc
->ctype
!= HFC_TYPE_XHFC
)
1303 HFC_outb(hc
, R_RAM_SZ
, hc
->hw
.r_ram_sz
);
1305 /* Speech Design PLX bridge pcm and sync mode */
1306 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1307 spin_lock_irqsave(&plx_lock
, plx_flags
);
1308 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1309 pv
= readl(plx_acc_32
);
1311 if (hc
->hw
.r_pcm_md0
& V_PCM_MD
) {
1312 pv
|= PLX_MASTER_EN
| PLX_SLAVE_EN_N
;
1313 pv
|= PLX_SYNC_O_EN
;
1314 if (debug
& DEBUG_HFCMULTI_INIT
)
1315 printk(KERN_DEBUG
"%s: master: PLX_GPIO=%x\n",
1318 pv
&= ~(PLX_MASTER_EN
| PLX_SLAVE_EN_N
);
1319 pv
&= ~PLX_SYNC_O_EN
;
1320 if (debug
& DEBUG_HFCMULTI_INIT
)
1321 printk(KERN_DEBUG
"%s: slave: PLX_GPIO=%x\n",
1324 writel(pv
, plx_acc_32
);
1325 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1329 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0x90);
1330 if (hc
->slots
== 32)
1331 HFC_outb(hc
, R_PCM_MD1
, 0x00);
1332 if (hc
->slots
== 64)
1333 HFC_outb(hc
, R_PCM_MD1
, 0x10);
1334 if (hc
->slots
== 128)
1335 HFC_outb(hc
, R_PCM_MD1
, 0x20);
1336 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0xa0);
1337 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
))
1338 HFC_outb(hc
, R_PCM_MD2
, V_SYNC_SRC
); /* sync via SYNC_I / O */
1339 else if (test_bit(HFC_CHIP_EMBSD
, &hc
->chip
))
1340 HFC_outb(hc
, R_PCM_MD2
, 0x10); /* V_C2O_EN */
1342 HFC_outb(hc
, R_PCM_MD2
, 0x00); /* sync from interface */
1343 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0x00);
1344 for (i
= 0; i
< 256; i
++) {
1345 HFC_outb_nodebug(hc
, R_SLOT
, i
);
1346 HFC_outb_nodebug(hc
, A_SL_CFG
, 0);
1347 if (hc
->ctype
!= HFC_TYPE_XHFC
)
1348 HFC_outb_nodebug(hc
, A_CONF
, 0);
1349 hc
->slot_owner
[i
] = -1;
1352 /* set clock speed */
1353 if (test_bit(HFC_CHIP_CLOCK2
, &hc
->chip
)) {
1354 if (debug
& DEBUG_HFCMULTI_INIT
)
1356 "%s: setting double clock\n", __func__
);
1357 HFC_outb(hc
, R_BRG_PCM_CFG
, V_PCM_CLK
);
1360 if (test_bit(HFC_CHIP_EMBSD
, &hc
->chip
))
1361 HFC_outb(hc
, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1364 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
)) {
1365 printk(KERN_NOTICE
"Setting GPIOs\n");
1366 HFC_outb(hc
, R_GPIO_SEL
, 0x30);
1367 HFC_outb(hc
, R_GPIO_EN1
, 0x3);
1369 printk(KERN_NOTICE
"calling vpm_init\n");
1373 /* check if R_F0_CNT counts (8 kHz frame count) */
1374 val
= HFC_inb(hc
, R_F0_CNTL
);
1375 val
+= HFC_inb(hc
, R_F0_CNTH
) << 8;
1376 if (debug
& DEBUG_HFCMULTI_INIT
)
1378 "HFC_multi F0_CNT %ld after reset\n", val
);
1379 spin_unlock_irqrestore(&hc
->lock
, flags
);
1380 set_current_state(TASK_UNINTERRUPTIBLE
);
1381 schedule_timeout((HZ
/ 100) ? : 1); /* Timeout minimum 10ms */
1382 spin_lock_irqsave(&hc
->lock
, flags
);
1383 val2
= HFC_inb(hc
, R_F0_CNTL
);
1384 val2
+= HFC_inb(hc
, R_F0_CNTH
) << 8;
1385 if (debug
& DEBUG_HFCMULTI_INIT
)
1387 "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1389 if (val2
>= val
+ 8) { /* 1 ms */
1390 /* it counts, so we keep the pcm mode */
1391 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
))
1392 printk(KERN_INFO
"controller is PCM bus MASTER\n");
1394 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
))
1395 printk(KERN_INFO
"controller is PCM bus SLAVE\n");
1397 test_and_set_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
1398 printk(KERN_INFO
"controller is PCM bus SLAVE "
1399 "(auto detected)\n");
1402 /* does not count */
1403 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
)) {
1405 printk(KERN_ERR
"HFC_multi ERROR, getting no 125us "
1406 "pulse. Seems that controller fails.\n");
1410 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
1411 printk(KERN_INFO
"controller is PCM bus SLAVE "
1412 "(ignoring missing PCM clock)\n");
1414 /* only one pcm master */
1415 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)
1417 printk(KERN_ERR
"HFC_multi ERROR, no clock "
1418 "on another Speech Design card found. "
1419 "Please be sure to connect PCM cable.\n");
1423 /* retry with master clock */
1424 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1425 spin_lock_irqsave(&plx_lock
, plx_flags
);
1426 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1427 pv
= readl(plx_acc_32
);
1428 pv
|= PLX_MASTER_EN
| PLX_SLAVE_EN_N
;
1429 pv
|= PLX_SYNC_O_EN
;
1430 writel(pv
, plx_acc_32
);
1431 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1432 if (debug
& DEBUG_HFCMULTI_INIT
)
1433 printk(KERN_DEBUG
"%s: master: "
1434 "PLX_GPIO=%x\n", __func__
, pv
);
1436 hc
->hw
.r_pcm_md0
|= V_PCM_MD
;
1437 HFC_outb(hc
, R_PCM_MD0
, hc
->hw
.r_pcm_md0
| 0x00);
1438 spin_unlock_irqrestore(&hc
->lock
, flags
);
1439 set_current_state(TASK_UNINTERRUPTIBLE
);
1440 schedule_timeout((HZ
/ 100) ?: 1); /* Timeout min. 10ms */
1441 spin_lock_irqsave(&hc
->lock
, flags
);
1442 val2
= HFC_inb(hc
, R_F0_CNTL
);
1443 val2
+= HFC_inb(hc
, R_F0_CNTH
) << 8;
1444 if (debug
& DEBUG_HFCMULTI_INIT
)
1445 printk(KERN_DEBUG
"HFC_multi F0_CNT %ld after "
1446 "10 ms (2nd try)\n", val2
);
1447 if (val2
>= val
+ 8) { /* 1 ms */
1448 test_and_set_bit(HFC_CHIP_PCM_MASTER
,
1450 printk(KERN_INFO
"controller is PCM bus MASTER "
1451 "(auto detected)\n");
1453 goto controller_fail
;
1457 /* Release the DSP Reset */
1458 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1459 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
))
1461 spin_lock_irqsave(&plx_lock
, plx_flags
);
1462 plx_acc_32
= hc
->plx_membase
+ PLX_GPIOC
;
1463 pv
= readl(plx_acc_32
);
1464 pv
|= PLX_DSP_RES_N
;
1465 writel(pv
, plx_acc_32
);
1466 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
1467 if (debug
& DEBUG_HFCMULTI_INIT
)
1468 printk(KERN_DEBUG
"%s: reset off: PLX_GPIO=%x\n",
1474 printk(KERN_INFO
"controller has given PCM BUS ID %d\n",
1477 if (test_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
)
1478 || test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
1479 PCM_cnt
++; /* SD has proprietary bridging */
1482 printk(KERN_INFO
"controller has PCM BUS ID %d "
1483 "(auto selected)\n", hc
->pcm
);
1487 HFC_outb(hc
, R_TI_WD
, poll_timer
);
1488 hc
->hw
.r_irqmsk_misc
|= V_TI_IRQMSK
;
1490 /* set E1 state machine IRQ */
1491 if (hc
->ctype
== HFC_TYPE_E1
)
1492 hc
->hw
.r_irqmsk_misc
|= V_STA_IRQMSK
;
1494 /* set DTMF detection */
1495 if (test_bit(HFC_CHIP_DTMF
, &hc
->chip
)) {
1496 if (debug
& DEBUG_HFCMULTI_INIT
)
1497 printk(KERN_DEBUG
"%s: enabling DTMF detection "
1498 "for all B-channel\n", __func__
);
1499 hc
->hw
.r_dtmf
= V_DTMF_EN
| V_DTMF_STOP
;
1500 if (test_bit(HFC_CHIP_ULAW
, &hc
->chip
))
1501 hc
->hw
.r_dtmf
|= V_ULAW_SEL
;
1502 HFC_outb(hc
, R_DTMF_N
, 102 - 1);
1503 hc
->hw
.r_irqmsk_misc
|= V_DTMF_IRQMSK
;
1506 /* conference engine */
1507 if (test_bit(HFC_CHIP_ULAW
, &hc
->chip
))
1508 r_conf_en
= V_CONF_EN
| V_ULAW
;
1510 r_conf_en
= V_CONF_EN
;
1511 if (hc
->ctype
!= HFC_TYPE_XHFC
)
1512 HFC_outb(hc
, R_CONF_EN
, r_conf_en
);
1516 case 1: /* HFC-E1 OEM */
1517 if (test_bit(HFC_CHIP_WATCHDOG
, &hc
->chip
))
1518 HFC_outb(hc
, R_GPIO_SEL
, 0x32);
1520 HFC_outb(hc
, R_GPIO_SEL
, 0x30);
1522 HFC_outb(hc
, R_GPIO_EN1
, 0x0f);
1523 HFC_outb(hc
, R_GPIO_OUT1
, 0x00);
1525 HFC_outb(hc
, R_GPIO_EN0
, V_GPIO_EN2
| V_GPIO_EN3
);
1528 case 2: /* HFC-4S OEM */
1530 HFC_outb(hc
, R_GPIO_SEL
, 0xf0);
1531 HFC_outb(hc
, R_GPIO_EN1
, 0xff);
1532 HFC_outb(hc
, R_GPIO_OUT1
, 0x00);
1536 if (test_bit(HFC_CHIP_EMBSD
, &hc
->chip
)) {
1537 hc
->hw
.r_st_sync
= 0x10; /* V_AUTO_SYNCI */
1538 HFC_outb(hc
, R_ST_SYNC
, hc
->hw
.r_st_sync
);
1541 /* set master clock */
1542 if (hc
->masterclk
>= 0) {
1543 if (debug
& DEBUG_HFCMULTI_INIT
)
1544 printk(KERN_DEBUG
"%s: setting ST master clock "
1545 "to port %d (0..%d)\n",
1546 __func__
, hc
->masterclk
, hc
->ports
- 1);
1547 hc
->hw
.r_st_sync
|= (hc
->masterclk
| V_AUTO_SYNC
);
1548 HFC_outb(hc
, R_ST_SYNC
, hc
->hw
.r_st_sync
);
1553 /* setting misc irq */
1554 HFC_outb(hc
, R_IRQMSK_MISC
, hc
->hw
.r_irqmsk_misc
);
1555 if (debug
& DEBUG_HFCMULTI_INIT
)
1556 printk(KERN_DEBUG
"r_irqmsk_misc.2: 0x%x\n",
1557 hc
->hw
.r_irqmsk_misc
);
1559 /* RAM access test */
1560 HFC_outb(hc
, R_RAM_ADDR0
, 0);
1561 HFC_outb(hc
, R_RAM_ADDR1
, 0);
1562 HFC_outb(hc
, R_RAM_ADDR2
, 0);
1563 for (i
= 0; i
< 256; i
++) {
1564 HFC_outb_nodebug(hc
, R_RAM_ADDR0
, i
);
1565 HFC_outb_nodebug(hc
, R_RAM_DATA
, ((i
* 3) & 0xff));
1567 for (i
= 0; i
< 256; i
++) {
1568 HFC_outb_nodebug(hc
, R_RAM_ADDR0
, i
);
1569 HFC_inb_nodebug(hc
, R_RAM_DATA
);
1570 rval
= HFC_inb_nodebug(hc
, R_INT_DATA
);
1571 if (rval
!= ((i
* 3) & 0xff)) {
1573 "addr:%x val:%x should:%x\n", i
, rval
,
1579 printk(KERN_DEBUG
"aborting - %d RAM access errors\n", err
);
1584 if (debug
& DEBUG_HFCMULTI_INIT
)
1585 printk(KERN_DEBUG
"%s: done\n", __func__
);
1587 spin_unlock_irqrestore(&hc
->lock
, flags
);
1593 * control the watchdog
1596 hfcmulti_watchdog(struct hfc_multi
*hc
)
1600 if (hc
->wdcount
> 10) {
1602 hc
->wdbyte
= hc
->wdbyte
== V_GPIO_OUT2
?
1603 V_GPIO_OUT3
: V_GPIO_OUT2
;
1605 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1606 HFC_outb(hc
, R_GPIO_EN0
, V_GPIO_EN2
| V_GPIO_EN3
);
1607 HFC_outb(hc
, R_GPIO_OUT0
, hc
->wdbyte
);
1617 hfcmulti_leds(struct hfc_multi
*hc
)
1620 unsigned long leddw
;
1621 int i
, state
, active
, leds
;
1622 struct dchannel
*dch
;
1626 case 1: /* HFC-E1 OEM */
1627 /* 2 red steady: LOS
1628 * 1 red steady: L1 not active
1629 * 2 green steady: L1 active
1630 * 1st green flashing: activity on TX
1631 * 2nd green flashing: activity on RX
1637 dch
= hc
->chan
[hc
->dnum
[0]].dch
;
1639 if (hc
->chan
[hc
->dnum
[0]].los
)
1641 if (hc
->e1_state
!= 1) {
1648 if (!hc
->flash
[2] && hc
->activity_tx
)
1649 hc
->flash
[2] = poll
;
1650 if (!hc
->flash
[3] && hc
->activity_rx
)
1651 hc
->flash
[3] = poll
;
1652 if (hc
->flash
[2] && hc
->flash
[2] < 1024)
1654 if (hc
->flash
[3] && hc
->flash
[3] < 1024)
1656 if (hc
->flash
[2] >= 2048)
1658 if (hc
->flash
[3] >= 2048)
1661 hc
->flash
[2] += poll
;
1663 hc
->flash
[3] += poll
;
1666 leds
= (led
[0] | (led
[1]<<2) | (led
[2]<<1) | (led
[3]<<3))^0xF;
1667 /* leds are inverted */
1668 if (leds
!= (int)hc
->ledstate
) {
1669 HFC_outb_nodebug(hc
, R_GPIO_OUT1
, leds
);
1670 hc
->ledstate
= leds
;
1674 case 2: /* HFC-4S OEM */
1675 /* red steady: PH_DEACTIVATE
1676 * green steady: PH_ACTIVATE
1677 * green flashing: activity on TX
1679 for (i
= 0; i
< 4; i
++) {
1682 dch
= hc
->chan
[(i
<< 2) | 2].dch
;
1685 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
1691 if (state
== active
) {
1692 led
[i
] = 1; /* led green */
1693 hc
->activity_tx
|= hc
->activity_rx
;
1694 if (!hc
->flash
[i
] &&
1695 (hc
->activity_tx
& (1 << i
)))
1696 hc
->flash
[i
] = poll
;
1697 if (hc
->flash
[i
] && hc
->flash
[i
] < 1024)
1698 led
[i
] = 0; /* led off */
1699 if (hc
->flash
[i
] >= 2048)
1702 hc
->flash
[i
] += poll
;
1704 led
[i
] = 2; /* led red */
1708 led
[i
] = 0; /* led off */
1710 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
)) {
1712 for (i
= 0; i
< 4; i
++) {
1715 leds
|= (0x2 << (i
* 2));
1716 } else if (led
[i
] == 2) {
1718 leds
|= (0x1 << (i
* 2));
1721 if (leds
!= (int)hc
->ledstate
) {
1722 vpm_out(hc
, 0, 0x1a8 + 3, leds
);
1723 hc
->ledstate
= leds
;
1726 leds
= ((led
[3] > 0) << 0) | ((led
[1] > 0) << 1) |
1727 ((led
[0] > 0) << 2) | ((led
[2] > 0) << 3) |
1728 ((led
[3] & 1) << 4) | ((led
[1] & 1) << 5) |
1729 ((led
[0] & 1) << 6) | ((led
[2] & 1) << 7);
1730 if (leds
!= (int)hc
->ledstate
) {
1731 HFC_outb_nodebug(hc
, R_GPIO_EN1
, leds
& 0x0F);
1732 HFC_outb_nodebug(hc
, R_GPIO_OUT1
, leds
>> 4);
1733 hc
->ledstate
= leds
;
1738 case 3: /* HFC 1S/2S Beronet */
1739 /* red steady: PH_DEACTIVATE
1740 * green steady: PH_ACTIVATE
1741 * green flashing: activity on TX
1743 for (i
= 0; i
< 2; i
++) {
1746 dch
= hc
->chan
[(i
<< 2) | 2].dch
;
1749 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
1755 if (state
== active
) {
1756 led
[i
] = 1; /* led green */
1757 hc
->activity_tx
|= hc
->activity_rx
;
1758 if (!hc
->flash
[i
] &&
1759 (hc
->activity_tx
& (1 << i
)))
1760 hc
->flash
[i
] = poll
;
1761 if (hc
->flash
[i
] < 1024)
1762 led
[i
] = 0; /* led off */
1763 if (hc
->flash
[i
] >= 2048)
1766 hc
->flash
[i
] += poll
;
1768 led
[i
] = 2; /* led red */
1772 led
[i
] = 0; /* led off */
1774 leds
= (led
[0] > 0) | ((led
[1] > 0) << 1) | ((led
[0]&1) << 2)
1775 | ((led
[1]&1) << 3);
1776 if (leds
!= (int)hc
->ledstate
) {
1777 HFC_outb_nodebug(hc
, R_GPIO_EN1
,
1778 ((led
[0] > 0) << 2) | ((led
[1] > 0) << 3));
1779 HFC_outb_nodebug(hc
, R_GPIO_OUT1
,
1780 ((led
[0] & 1) << 2) | ((led
[1] & 1) << 3));
1781 hc
->ledstate
= leds
;
1784 case 8: /* HFC 8S+ Beronet */
1785 /* off: PH_DEACTIVATE
1786 * steady: PH_ACTIVATE
1787 * flashing: activity on TX
1789 lled
= 0xff; /* leds off */
1790 for (i
= 0; i
< 8; i
++) {
1793 dch
= hc
->chan
[(i
<< 2) | 2].dch
;
1796 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
1802 if (state
== active
) {
1803 lled
&= ~(1 << i
); /* led on */
1804 hc
->activity_tx
|= hc
->activity_rx
;
1805 if (!hc
->flash
[i
] &&
1806 (hc
->activity_tx
& (1 << i
)))
1807 hc
->flash
[i
] = poll
;
1808 if (hc
->flash
[i
] < 1024)
1809 lled
|= 1 << i
; /* led off */
1810 if (hc
->flash
[i
] >= 2048)
1813 hc
->flash
[i
] += poll
;
1818 leddw
= lled
<< 24 | lled
<< 16 | lled
<< 8 | lled
;
1819 if (leddw
!= hc
->ledstate
) {
1820 /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1821 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1822 /* was _io before */
1823 HFC_outb_nodebug(hc
, R_BRG_PCM_CFG
, 1 | V_PCM_CLK
);
1824 outw(0x4000, hc
->pci_iobase
+ 4);
1825 outl(leddw
, hc
->pci_iobase
);
1826 HFC_outb_nodebug(hc
, R_BRG_PCM_CFG
, V_PCM_CLK
);
1827 hc
->ledstate
= leddw
;
1831 hc
->activity_tx
= 0;
1832 hc
->activity_rx
= 0;
1835 * read dtmf coefficients
1839 hfcmulti_dtmf(struct hfc_multi
*hc
)
1844 struct bchannel
*bch
= NULL
;
1849 struct sk_buff
*skb
;
1850 struct mISDNhead
*hh
;
1852 if (debug
& DEBUG_HFCMULTI_DTMF
)
1853 printk(KERN_DEBUG
"%s: dtmf detection irq\n", __func__
);
1854 for (ch
= 0; ch
<= 31; ch
++) {
1855 /* only process enabled B-channels */
1856 bch
= hc
->chan
[ch
].bch
;
1859 if (!hc
->created
[hc
->chan
[ch
].port
])
1861 if (!test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
1863 if (debug
& DEBUG_HFCMULTI_DTMF
)
1864 printk(KERN_DEBUG
"%s: dtmf channel %d:",
1866 coeff
= &(hc
->chan
[ch
].coeff
[hc
->chan
[ch
].coeff_count
* 16]);
1868 for (co
= 0; co
< 8; co
++) {
1869 /* read W(n-1) coefficient */
1870 addr
= hc
->DTMFbase
+ ((co
<< 7) | (ch
<< 2));
1871 HFC_outb_nodebug(hc
, R_RAM_ADDR0
, addr
);
1872 HFC_outb_nodebug(hc
, R_RAM_ADDR1
, addr
>> 8);
1873 HFC_outb_nodebug(hc
, R_RAM_ADDR2
, (addr
>> 16)
1875 w_float
= HFC_inb_nodebug(hc
, R_RAM_DATA
);
1876 w_float
|= (HFC_inb_nodebug(hc
, R_RAM_DATA
) << 8);
1877 if (debug
& DEBUG_HFCMULTI_DTMF
)
1878 printk(" %04x", w_float
);
1880 /* decode float (see chip doc) */
1881 mantissa
= w_float
& 0x0fff;
1882 if (w_float
& 0x8000)
1883 mantissa
|= 0xfffff000;
1884 exponent
= (w_float
>> 12) & 0x7;
1887 mantissa
<<= (exponent
- 1);
1890 /* store coefficient */
1891 coeff
[co
<< 1] = mantissa
;
1893 /* read W(n) coefficient */
1894 w_float
= HFC_inb_nodebug(hc
, R_RAM_DATA
);
1895 w_float
|= (HFC_inb_nodebug(hc
, R_RAM_DATA
) << 8);
1896 if (debug
& DEBUG_HFCMULTI_DTMF
)
1897 printk(" %04x", w_float
);
1899 /* decode float (see chip doc) */
1900 mantissa
= w_float
& 0x0fff;
1901 if (w_float
& 0x8000)
1902 mantissa
|= 0xfffff000;
1903 exponent
= (w_float
>> 12) & 0x7;
1906 mantissa
<<= (exponent
- 1);
1909 /* store coefficient */
1910 coeff
[(co
<< 1) | 1] = mantissa
;
1912 if (debug
& DEBUG_HFCMULTI_DTMF
)
1913 printk(" DTMF ready %08x %08x %08x %08x "
1914 "%08x %08x %08x %08x\n",
1915 coeff
[0], coeff
[1], coeff
[2], coeff
[3],
1916 coeff
[4], coeff
[5], coeff
[6], coeff
[7]);
1917 hc
->chan
[ch
].coeff_count
++;
1918 if (hc
->chan
[ch
].coeff_count
== 8) {
1919 hc
->chan
[ch
].coeff_count
= 0;
1920 skb
= mI_alloc_skb(512, GFP_ATOMIC
);
1922 printk(KERN_DEBUG
"%s: No memory for skb\n",
1926 hh
= mISDN_HEAD_P(skb
);
1927 hh
->prim
= PH_CONTROL_IND
;
1928 hh
->id
= DTMF_HFC_COEF
;
1929 skb_put_data(skb
, hc
->chan
[ch
].coeff
, 512);
1930 recv_Bchannel_skb(bch
, skb
);
1934 /* restart DTMF processing */
1937 HFC_outb_nodebug(hc
, R_DTMF
, hc
->hw
.r_dtmf
| V_RST_DTMF
);
1942 * fill fifo as much as possible
1946 hfcmulti_tx(struct hfc_multi
*hc
, int ch
)
1948 int i
, ii
, temp
, len
= 0;
1949 int Zspace
, z1
, z2
; /* must be int for calculation */
1952 int *txpending
, slot_tx
;
1953 struct bchannel
*bch
;
1954 struct dchannel
*dch
;
1955 struct sk_buff
**sp
= NULL
;
1958 bch
= hc
->chan
[ch
].bch
;
1959 dch
= hc
->chan
[ch
].dch
;
1960 if ((!dch
) && (!bch
))
1963 txpending
= &hc
->chan
[ch
].txpending
;
1964 slot_tx
= hc
->chan
[ch
].slot_tx
;
1966 if (!test_bit(FLG_ACTIVE
, &dch
->Flags
))
1969 idxp
= &dch
->tx_idx
;
1971 if (!test_bit(FLG_ACTIVE
, &bch
->Flags
))
1974 idxp
= &bch
->tx_idx
;
1979 if ((!len
) && *txpending
!= 1)
1980 return; /* no data */
1982 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
) &&
1983 (hc
->chan
[ch
].protocol
== ISDN_P_B_RAW
) &&
1984 (hc
->chan
[ch
].slot_rx
< 0) &&
1985 (hc
->chan
[ch
].slot_tx
< 0))
1986 HFC_outb_nodebug(hc
, R_FIFO
, 0x20 | (ch
<< 1));
1988 HFC_outb_nodebug(hc
, R_FIFO
, ch
<< 1);
1989 HFC_wait_nodebug(hc
);
1991 if (*txpending
== 2) {
1993 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_RES_F
);
1994 HFC_wait_nodebug(hc
);
1995 HFC_outb(hc
, A_SUBCH_CFG
, 0);
1999 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
2000 f1
= HFC_inb_nodebug(hc
, A_F1
);
2001 f2
= HFC_inb_nodebug(hc
, A_F2
);
2002 while (f2
!= (temp
= HFC_inb_nodebug(hc
, A_F2
))) {
2003 if (debug
& DEBUG_HFCMULTI_FIFO
)
2005 "%s(card %d): reread f2 because %d!=%d\n",
2006 __func__
, hc
->id
+ 1, temp
, f2
);
2007 f2
= temp
; /* repeat until F2 is equal */
2009 Fspace
= f2
- f1
- 1;
2013 * Old FIFO handling doesn't give us the current Z2 read
2014 * pointer, so we cannot send the next frame before the fifo
2015 * is empty. It makes no difference except for a slightly
2016 * lower performance.
2018 if (test_bit(HFC_CHIP_REVISION0
, &hc
->chip
)) {
2024 /* one frame only for ST D-channels, to allow resending */
2025 if (hc
->ctype
!= HFC_TYPE_E1
&& dch
) {
2029 /* F-counter full condition */
2033 z1
= HFC_inw_nodebug(hc
, A_Z1
) - hc
->Zmin
;
2034 z2
= HFC_inw_nodebug(hc
, A_Z2
) - hc
->Zmin
;
2035 while (z2
!= (temp
= (HFC_inw_nodebug(hc
, A_Z2
) - hc
->Zmin
))) {
2036 if (debug
& DEBUG_HFCMULTI_FIFO
)
2037 printk(KERN_DEBUG
"%s(card %d): reread z2 because "
2038 "%d!=%d\n", __func__
, hc
->id
+ 1, temp
, z2
);
2039 z2
= temp
; /* repeat unti Z2 is equal */
2041 hc
->chan
[ch
].Zfill
= z1
- z2
;
2042 if (hc
->chan
[ch
].Zfill
< 0)
2043 hc
->chan
[ch
].Zfill
+= hc
->Zlen
;
2047 Zspace
-= 4; /* keep not too full, so pointers will not overrun */
2048 /* fill transparent data only to maxinum transparent load (minus 4) */
2049 if (bch
&& test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
2050 Zspace
= Zspace
- hc
->Zlen
+ hc
->max_trans
;
2051 if (Zspace
<= 0) /* no space of 4 bytes */
2056 if (z1
== z2
) { /* empty */
2057 /* if done with FIFO audio data during PCM connection */
2058 if (bch
&& (!test_bit(FLG_HDLC
, &bch
->Flags
)) &&
2059 *txpending
&& slot_tx
>= 0) {
2060 if (debug
& DEBUG_HFCMULTI_MODE
)
2062 "%s: reconnecting PCM due to no "
2063 "more FIFO data: channel %d "
2065 __func__
, ch
, slot_tx
);
2067 if (hc
->ctype
== HFC_TYPE_XHFC
)
2068 HFC_outb(hc
, A_CON_HDLC
, 0xc0
2069 | 0x07 << 2 | V_HDLC_TRP
| V_IFF
);
2070 /* Enable FIFO, no interrupt */
2072 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | 0x00 |
2073 V_HDLC_TRP
| V_IFF
);
2074 HFC_outb_nodebug(hc
, R_FIFO
, ch
<< 1 | 1);
2075 HFC_wait_nodebug(hc
);
2076 if (hc
->ctype
== HFC_TYPE_XHFC
)
2077 HFC_outb(hc
, A_CON_HDLC
, 0xc0
2078 | 0x07 << 2 | V_HDLC_TRP
| V_IFF
);
2079 /* Enable FIFO, no interrupt */
2081 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | 0x00 |
2082 V_HDLC_TRP
| V_IFF
);
2083 HFC_outb_nodebug(hc
, R_FIFO
, ch
<< 1);
2084 HFC_wait_nodebug(hc
);
2088 return; /* no data */
2091 /* "fill fifo if empty" feature */
2092 if (bch
&& test_bit(FLG_FILLEMPTY
, &bch
->Flags
)
2093 && !test_bit(FLG_HDLC
, &bch
->Flags
) && z2
== z1
) {
2094 if (debug
& DEBUG_HFCMULTI_FILL
)
2095 printk(KERN_DEBUG
"%s: buffer empty, so we have "
2096 "underrun\n", __func__
);
2097 /* fill buffer, to prevent future underrun */
2098 hc
->write_fifo(hc
, hc
->silence_data
, poll
>> 1);
2099 Zspace
-= (poll
>> 1);
2102 /* if audio data and connected slot */
2103 if (bch
&& (!test_bit(FLG_HDLC
, &bch
->Flags
)) && (!*txpending
)
2105 if (debug
& DEBUG_HFCMULTI_MODE
)
2106 printk(KERN_DEBUG
"%s: disconnecting PCM due to "
2107 "FIFO data: channel %d slot_tx %d\n",
2108 __func__
, ch
, slot_tx
);
2109 /* disconnect slot */
2110 if (hc
->ctype
== HFC_TYPE_XHFC
)
2111 HFC_outb(hc
, A_CON_HDLC
, 0x80
2112 | 0x07 << 2 | V_HDLC_TRP
| V_IFF
);
2113 /* Enable FIFO, no interrupt */
2115 HFC_outb(hc
, A_CON_HDLC
, 0x80 | 0x00 |
2116 V_HDLC_TRP
| V_IFF
);
2117 HFC_outb_nodebug(hc
, R_FIFO
, ch
<< 1 | 1);
2118 HFC_wait_nodebug(hc
);
2119 if (hc
->ctype
== HFC_TYPE_XHFC
)
2120 HFC_outb(hc
, A_CON_HDLC
, 0x80
2121 | 0x07 << 2 | V_HDLC_TRP
| V_IFF
);
2122 /* Enable FIFO, no interrupt */
2124 HFC_outb(hc
, A_CON_HDLC
, 0x80 | 0x00 |
2125 V_HDLC_TRP
| V_IFF
);
2126 HFC_outb_nodebug(hc
, R_FIFO
, ch
<< 1);
2127 HFC_wait_nodebug(hc
);
2133 hc
->activity_tx
|= 1 << hc
->chan
[ch
].port
;
2135 /* fill fifo to what we have left */
2137 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
))
2142 d
= (*sp
)->data
+ i
;
2143 if (ii
- i
> Zspace
)
2145 if (debug
& DEBUG_HFCMULTI_FIFO
)
2146 printk(KERN_DEBUG
"%s(card %d): fifo(%d) has %d bytes space "
2147 "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2148 __func__
, hc
->id
+ 1, ch
, Zspace
, z1
, z2
, ii
-i
, len
-i
,
2149 temp
? "HDLC" : "TRANS");
2151 /* Have to prep the audio data */
2152 hc
->write_fifo(hc
, d
, ii
- i
);
2153 hc
->chan
[ch
].Zfill
+= ii
- i
;
2156 /* if not all data has been written */
2158 /* NOTE: fifo is started by the calling function */
2162 /* if all data has been written, terminate frame */
2163 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
2164 /* increment f-counter */
2165 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_INC_F
);
2166 HFC_wait_nodebug(hc
);
2170 /* check for next frame */
2171 if (bch
&& get_next_bframe(bch
)) {
2175 if (dch
&& get_next_dframe(dch
)) {
2181 * now we have no more data, so in case of transparent,
2182 * we set the last byte in fifo to 'silence' in case we will get
2183 * no more data at all. this prevents sending an undefined value.
2185 if (bch
&& test_bit(FLG_TRANSPARENT
, &bch
->Flags
))
2186 HFC_outb_nodebug(hc
, A_FIFO_DATA0_NOINC
, hc
->silence
);
2190 /* NOTE: only called if E1 card is in active state */
2192 hfcmulti_rx(struct hfc_multi
*hc
, int ch
)
2195 int Zsize
, z1
, z2
= 0; /* = 0, to make GCC happy */
2196 int f1
= 0, f2
= 0; /* = 0, to make GCC happy */
2198 struct bchannel
*bch
;
2199 struct dchannel
*dch
= NULL
;
2200 struct sk_buff
*skb
, **sp
= NULL
;
2203 bch
= hc
->chan
[ch
].bch
;
2205 if (!test_bit(FLG_ACTIVE
, &bch
->Flags
))
2207 } else if (hc
->chan
[ch
].dch
) {
2208 dch
= hc
->chan
[ch
].dch
;
2209 if (!test_bit(FLG_ACTIVE
, &dch
->Flags
))
2215 /* on first AND before getting next valid frame, R_FIFO must be written
2217 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
) &&
2218 (hc
->chan
[ch
].protocol
== ISDN_P_B_RAW
) &&
2219 (hc
->chan
[ch
].slot_rx
< 0) &&
2220 (hc
->chan
[ch
].slot_tx
< 0))
2221 HFC_outb_nodebug(hc
, R_FIFO
, 0x20 | (ch
<< 1) | 1);
2223 HFC_outb_nodebug(hc
, R_FIFO
, (ch
<< 1) | 1);
2224 HFC_wait_nodebug(hc
);
2226 /* ignore if rx is off BUT change fifo (above) to start pending TX */
2227 if (hc
->chan
[ch
].rx_off
) {
2229 bch
->dropcnt
+= poll
; /* not exact but fair enough */
2233 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
2234 f1
= HFC_inb_nodebug(hc
, A_F1
);
2235 while (f1
!= (temp
= HFC_inb_nodebug(hc
, A_F1
))) {
2236 if (debug
& DEBUG_HFCMULTI_FIFO
)
2238 "%s(card %d): reread f1 because %d!=%d\n",
2239 __func__
, hc
->id
+ 1, temp
, f1
);
2240 f1
= temp
; /* repeat until F1 is equal */
2242 f2
= HFC_inb_nodebug(hc
, A_F2
);
2244 z1
= HFC_inw_nodebug(hc
, A_Z1
) - hc
->Zmin
;
2245 while (z1
!= (temp
= (HFC_inw_nodebug(hc
, A_Z1
) - hc
->Zmin
))) {
2246 if (debug
& DEBUG_HFCMULTI_FIFO
)
2247 printk(KERN_DEBUG
"%s(card %d): reread z2 because "
2248 "%d!=%d\n", __func__
, hc
->id
+ 1, temp
, z2
);
2249 z1
= temp
; /* repeat until Z1 is equal */
2251 z2
= HFC_inw_nodebug(hc
, A_Z2
) - hc
->Zmin
;
2253 if ((dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) && f1
!= f2
)
2254 /* complete hdlc frame */
2258 /* if buffer is empty */
2263 maxlen
= bchannel_get_rxbuf(bch
, Zsize
);
2265 pr_warning("card%d.B%d: No bufferspace for %d bytes\n",
2266 hc
->id
+ 1, bch
->nr
, Zsize
);
2270 maxlen
= bch
->maxlen
;
2271 } else { /* Dchannel */
2273 maxlen
= dch
->maxlen
+ 3;
2275 *sp
= mI_alloc_skb(maxlen
, GFP_ATOMIC
);
2277 pr_warning("card%d: No mem for dch rx_skb\n",
2285 hc
->activity_rx
|= 1 << hc
->chan
[ch
].port
;
2287 /* empty fifo with what we have */
2288 if (dch
|| test_bit(FLG_HDLC
, &bch
->Flags
)) {
2289 if (debug
& DEBUG_HFCMULTI_FIFO
)
2290 printk(KERN_DEBUG
"%s(card %d): fifo(%d) reading %d "
2291 "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2292 "got=%d (again %d)\n", __func__
, hc
->id
+ 1, ch
,
2293 Zsize
, z1
, z2
, (f1
== f2
) ? "fragment" : "COMPLETE",
2294 f1
, f2
, Zsize
+ (*sp
)->len
, again
);
2296 if ((Zsize
+ (*sp
)->len
) > maxlen
) {
2297 if (debug
& DEBUG_HFCMULTI_FIFO
)
2299 "%s(card %d): hdlc-frame too large.\n",
2300 __func__
, hc
->id
+ 1);
2302 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_RES_F
);
2303 HFC_wait_nodebug(hc
);
2307 hc
->read_fifo(hc
, skb_put(*sp
, Zsize
), Zsize
);
2310 /* increment Z2,F2-counter */
2311 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_INC_F
);
2312 HFC_wait_nodebug(hc
);
2314 if ((*sp
)->len
< 4) {
2315 if (debug
& DEBUG_HFCMULTI_FIFO
)
2317 "%s(card %d): Frame below minimum "
2318 "size\n", __func__
, hc
->id
+ 1);
2322 /* there is at least one complete frame, check crc */
2323 if ((*sp
)->data
[(*sp
)->len
- 1]) {
2324 if (debug
& DEBUG_HFCMULTI_CRC
)
2326 "%s: CRC-error\n", __func__
);
2330 skb_trim(*sp
, (*sp
)->len
- 3);
2331 if ((*sp
)->len
< MISDN_COPY_SIZE
) {
2333 *sp
= mI_alloc_skb(skb
->len
, GFP_ATOMIC
);
2335 skb_put_data(*sp
, skb
->data
, skb
->len
);
2338 printk(KERN_DEBUG
"%s: No mem\n",
2346 if (debug
& DEBUG_HFCMULTI_FIFO
) {
2347 printk(KERN_DEBUG
"%s(card %d):",
2348 __func__
, hc
->id
+ 1);
2350 while (temp
< (*sp
)->len
)
2351 printk(" %02x", (*sp
)->data
[temp
++]);
2357 recv_Bchannel(bch
, MISDN_ID_ANY
, false);
2362 /* there is an incomplete frame */
2365 hc
->read_fifo(hc
, skb_put(*sp
, Zsize
), Zsize
);
2366 if (debug
& DEBUG_HFCMULTI_FIFO
)
2368 "%s(card %d): fifo(%d) reading %d bytes "
2369 "(z1=%04x, z2=%04x) TRANS\n",
2370 __func__
, hc
->id
+ 1, ch
, Zsize
, z1
, z2
);
2371 /* only bch is transparent */
2372 recv_Bchannel(bch
, hc
->chan
[ch
].Zfill
, false);
2381 signal_state_up(struct dchannel
*dch
, int info
, char *msg
)
2383 struct sk_buff
*skb
;
2384 int id
, data
= info
;
2386 if (debug
& DEBUG_HFCMULTI_STATE
)
2387 printk(KERN_DEBUG
"%s: %s\n", __func__
, msg
);
2389 id
= TEI_SAPI
| (GROUP_TEI
<< 8); /* manager address */
2391 skb
= _alloc_mISDN_skb(MPH_INFORMATION_IND
, id
, sizeof(data
), &data
,
2395 recv_Dchannel_skb(dch
, skb
);
2399 handle_timer_irq(struct hfc_multi
*hc
)
2402 struct dchannel
*dch
;
2405 /* process queued resync jobs */
2406 if (hc
->e1_resync
) {
2407 /* lock, so e1_resync gets not changed */
2408 spin_lock_irqsave(&HFClock
, flags
);
2409 if (hc
->e1_resync
& 1) {
2410 if (debug
& DEBUG_HFCMULTI_PLXSD
)
2411 printk(KERN_DEBUG
"Enable SYNC_I\n");
2412 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
);
2413 /* disable JATT, if RX_SYNC is set */
2414 if (test_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
))
2415 HFC_outb(hc
, R_SYNC_OUT
, V_SYNC_E1_RX
);
2417 if (hc
->e1_resync
& 2) {
2418 if (debug
& DEBUG_HFCMULTI_PLXSD
)
2419 printk(KERN_DEBUG
"Enable jatt PLL\n");
2420 HFC_outb(hc
, R_SYNC_CTRL
, V_SYNC_OFFS
);
2422 if (hc
->e1_resync
& 4) {
2423 if (debug
& DEBUG_HFCMULTI_PLXSD
)
2425 "Enable QUARTZ for HFC-E1\n");
2426 /* set jatt to quartz */
2427 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
2429 /* switch to JATT, in case it is not already */
2430 HFC_outb(hc
, R_SYNC_OUT
, 0);
2433 spin_unlock_irqrestore(&HFClock
, flags
);
2436 if (hc
->ctype
!= HFC_TYPE_E1
|| hc
->e1_state
== 1)
2437 for (ch
= 0; ch
<= 31; ch
++) {
2438 if (hc
->created
[hc
->chan
[ch
].port
]) {
2439 hfcmulti_tx(hc
, ch
);
2440 /* fifo is started when switching to rx-fifo */
2441 hfcmulti_rx(hc
, ch
);
2442 if (hc
->chan
[ch
].dch
&&
2443 hc
->chan
[ch
].nt_timer
> -1) {
2444 dch
= hc
->chan
[ch
].dch
;
2445 if (!(--hc
->chan
[ch
].nt_timer
)) {
2449 DEBUG_HFCMULTI_STATE
)
2459 if (hc
->ctype
== HFC_TYPE_E1
&& hc
->created
[0]) {
2460 dch
= hc
->chan
[hc
->dnum
[0]].dch
;
2462 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
) & V_SIG_LOS
;
2463 hc
->chan
[hc
->dnum
[0]].los
= temp
;
2464 if (test_bit(HFC_CFG_REPORT_LOS
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
2465 if (!temp
&& hc
->chan
[hc
->dnum
[0]].los
)
2466 signal_state_up(dch
, L1_SIGNAL_LOS_ON
,
2468 if (temp
&& !hc
->chan
[hc
->dnum
[0]].los
)
2469 signal_state_up(dch
, L1_SIGNAL_LOS_OFF
,
2472 if (test_bit(HFC_CFG_REPORT_AIS
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
2474 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
) & V_AIS
;
2475 if (!temp
&& hc
->chan
[hc
->dnum
[0]].ais
)
2476 signal_state_up(dch
, L1_SIGNAL_AIS_ON
,
2478 if (temp
&& !hc
->chan
[hc
->dnum
[0]].ais
)
2479 signal_state_up(dch
, L1_SIGNAL_AIS_OFF
,
2481 hc
->chan
[hc
->dnum
[0]].ais
= temp
;
2483 if (test_bit(HFC_CFG_REPORT_SLIP
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
2485 temp
= HFC_inb_nodebug(hc
, R_SLIP
) & V_FOSLIP_RX
;
2486 if (!temp
&& hc
->chan
[hc
->dnum
[0]].slip_rx
)
2487 signal_state_up(dch
, L1_SIGNAL_SLIP_RX
,
2488 " bit SLIP detected RX");
2489 hc
->chan
[hc
->dnum
[0]].slip_rx
= temp
;
2490 temp
= HFC_inb_nodebug(hc
, R_SLIP
) & V_FOSLIP_TX
;
2491 if (!temp
&& hc
->chan
[hc
->dnum
[0]].slip_tx
)
2492 signal_state_up(dch
, L1_SIGNAL_SLIP_TX
,
2493 " bit SLIP detected TX");
2494 hc
->chan
[hc
->dnum
[0]].slip_tx
= temp
;
2496 if (test_bit(HFC_CFG_REPORT_RDI
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
2498 temp
= HFC_inb_nodebug(hc
, R_RX_SL0_0
) & V_A
;
2499 if (!temp
&& hc
->chan
[hc
->dnum
[0]].rdi
)
2500 signal_state_up(dch
, L1_SIGNAL_RDI_ON
,
2502 if (temp
&& !hc
->chan
[hc
->dnum
[0]].rdi
)
2503 signal_state_up(dch
, L1_SIGNAL_RDI_OFF
,
2505 hc
->chan
[hc
->dnum
[0]].rdi
= temp
;
2507 temp
= HFC_inb_nodebug(hc
, R_JATT_DIR
);
2508 switch (hc
->chan
[hc
->dnum
[0]].sync
) {
2510 if ((temp
& 0x60) == 0x60) {
2511 if (debug
& DEBUG_HFCMULTI_SYNC
)
2513 "%s: (id=%d) E1 now "
2516 HFC_outb(hc
, R_RX_OFF
,
2517 hc
->chan
[hc
->dnum
[0]].jitter
| V_RX_INIT
);
2518 HFC_outb(hc
, R_TX_OFF
,
2519 hc
->chan
[hc
->dnum
[0]].jitter
| V_RX_INIT
);
2520 hc
->chan
[hc
->dnum
[0]].sync
= 1;
2521 goto check_framesync
;
2525 if ((temp
& 0x60) != 0x60) {
2526 if (debug
& DEBUG_HFCMULTI_SYNC
)
2529 "lost clock sync\n",
2531 hc
->chan
[hc
->dnum
[0]].sync
= 0;
2535 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
);
2537 if (debug
& DEBUG_HFCMULTI_SYNC
)
2540 "now in frame sync\n",
2542 hc
->chan
[hc
->dnum
[0]].sync
= 2;
2546 if ((temp
& 0x60) != 0x60) {
2547 if (debug
& DEBUG_HFCMULTI_SYNC
)
2549 "%s: (id=%d) E1 lost "
2550 "clock & frame sync\n",
2552 hc
->chan
[hc
->dnum
[0]].sync
= 0;
2555 temp
= HFC_inb_nodebug(hc
, R_SYNC_STA
);
2557 if (debug
& DEBUG_HFCMULTI_SYNC
)
2560 "lost frame sync\n",
2562 hc
->chan
[hc
->dnum
[0]].sync
= 1;
2568 if (test_bit(HFC_CHIP_WATCHDOG
, &hc
->chip
))
2569 hfcmulti_watchdog(hc
);
2576 ph_state_irq(struct hfc_multi
*hc
, u_char r_irq_statech
)
2578 struct dchannel
*dch
;
2581 u_char st_status
, temp
;
2584 for (ch
= 0; ch
<= 31; ch
++) {
2585 if (hc
->chan
[ch
].dch
) {
2586 dch
= hc
->chan
[ch
].dch
;
2587 if (r_irq_statech
& 1) {
2588 HFC_outb_nodebug(hc
, R_ST_SEL
,
2590 /* undocumented: delay after R_ST_SEL */
2592 /* undocumented: status changes during read */
2593 st_status
= HFC_inb_nodebug(hc
, A_ST_RD_STATE
);
2594 while (st_status
!= (temp
=
2595 HFC_inb_nodebug(hc
, A_ST_RD_STATE
))) {
2596 if (debug
& DEBUG_HFCMULTI_STATE
)
2597 printk(KERN_DEBUG
"%s: reread "
2598 "STATE because %d!=%d\n",
2601 st_status
= temp
; /* repeat */
2604 /* Speech Design TE-sync indication */
2605 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
) &&
2606 dch
->dev
.D
.protocol
== ISDN_P_TE_S0
) {
2607 if (st_status
& V_FR_SYNC_ST
)
2609 (1 << hc
->chan
[ch
].port
);
2612 ~(1 << hc
->chan
[ch
].port
);
2614 dch
->state
= st_status
& 0x0f;
2615 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
)
2619 if (dch
->state
== active
) {
2620 HFC_outb_nodebug(hc
, R_FIFO
,
2622 HFC_wait_nodebug(hc
);
2623 HFC_outb_nodebug(hc
,
2624 R_INC_RES_FIFO
, V_RES_F
);
2625 HFC_wait_nodebug(hc
);
2628 schedule_event(dch
, FLG_PHCHANGE
);
2629 if (debug
& DEBUG_HFCMULTI_STATE
)
2631 "%s: S/T newstate %x port %d\n",
2632 __func__
, dch
->state
,
2635 r_irq_statech
>>= 1;
2638 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
))
2639 plxsd_checksync(hc
, 0);
2643 fifo_irq(struct hfc_multi
*hc
, int block
)
2646 struct dchannel
*dch
;
2647 struct bchannel
*bch
;
2648 u_char r_irq_fifo_bl
;
2650 r_irq_fifo_bl
= HFC_inb_nodebug(hc
, R_IRQ_FIFO_BL0
+ block
);
2653 ch
= (block
<< 2) + (j
>> 1);
2654 dch
= hc
->chan
[ch
].dch
;
2655 bch
= hc
->chan
[ch
].bch
;
2656 if (((!dch
) && (!bch
)) || (!hc
->created
[hc
->chan
[ch
].port
])) {
2660 if (dch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2661 test_bit(FLG_ACTIVE
, &dch
->Flags
)) {
2662 hfcmulti_tx(hc
, ch
);
2664 HFC_outb_nodebug(hc
, R_FIFO
, 0);
2665 HFC_wait_nodebug(hc
);
2667 if (bch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2668 test_bit(FLG_ACTIVE
, &bch
->Flags
)) {
2669 hfcmulti_tx(hc
, ch
);
2671 HFC_outb_nodebug(hc
, R_FIFO
, 0);
2672 HFC_wait_nodebug(hc
);
2675 if (dch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2676 test_bit(FLG_ACTIVE
, &dch
->Flags
)) {
2677 hfcmulti_rx(hc
, ch
);
2679 if (bch
&& (r_irq_fifo_bl
& (1 << j
)) &&
2680 test_bit(FLG_ACTIVE
, &bch
->Flags
)) {
2681 hfcmulti_rx(hc
, ch
);
2691 hfcmulti_interrupt(int intno
, void *dev_id
)
2693 #ifdef IRQCOUNT_DEBUG
2694 static int iq1
= 0, iq2
= 0, iq3
= 0, iq4
= 0,
2695 iq5
= 0, iq6
= 0, iqcnt
= 0;
2697 struct hfc_multi
*hc
= dev_id
;
2698 struct dchannel
*dch
;
2699 u_char r_irq_statech
, status
, r_irq_misc
, r_irq_oview
;
2701 void __iomem
*plx_acc
;
2703 u_char e1_syncsta
, temp
, temp2
;
2707 printk(KERN_ERR
"HFC-multi: Spurious interrupt!\n");
2711 spin_lock(&hc
->lock
);
2715 printk(KERN_ERR
"irq for card %d during irq from "
2716 "card %d, this is no bug.\n", hc
->id
+ 1, irqsem
);
2717 irqsem
= hc
->id
+ 1;
2719 #ifdef CONFIG_MISDN_HFCMULTI_8xx
2720 if (hc
->immap
->im_cpm
.cp_pbdat
& hc
->pb_irqmsk
)
2723 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
2724 spin_lock_irqsave(&plx_lock
, flags
);
2725 plx_acc
= hc
->plx_membase
+ PLX_INTCSR
;
2726 wval
= readw(plx_acc
);
2727 spin_unlock_irqrestore(&plx_lock
, flags
);
2728 if (!(wval
& PLX_INTCSR_LINTI1_STATUS
))
2732 status
= HFC_inb_nodebug(hc
, R_STATUS
);
2733 r_irq_statech
= HFC_inb_nodebug(hc
, R_IRQ_STATECH
);
2734 #ifdef IRQCOUNT_DEBUG
2737 if (status
& V_DTMF_STA
)
2739 if (status
& V_LOST_STA
)
2741 if (status
& V_EXT_IRQSTA
)
2743 if (status
& V_MISC_IRQSTA
)
2745 if (status
& V_FR_IRQSTA
)
2747 if (iqcnt
++ > 5000) {
2748 printk(KERN_ERR
"iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2749 iq1
, iq2
, iq3
, iq4
, iq5
, iq6
);
2754 if (!r_irq_statech
&&
2755 !(status
& (V_DTMF_STA
| V_LOST_STA
| V_EXT_IRQSTA
|
2756 V_MISC_IRQSTA
| V_FR_IRQSTA
))) {
2757 /* irq is not for us */
2761 if (r_irq_statech
) {
2762 if (hc
->ctype
!= HFC_TYPE_E1
)
2763 ph_state_irq(hc
, r_irq_statech
);
2765 if (status
& V_EXT_IRQSTA
)
2766 ; /* external IRQ */
2767 if (status
& V_LOST_STA
) {
2769 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_LOST
); /* clear irq! */
2771 if (status
& V_MISC_IRQSTA
) {
2773 r_irq_misc
= HFC_inb_nodebug(hc
, R_IRQ_MISC
);
2774 r_irq_misc
&= hc
->hw
.r_irqmsk_misc
; /* ignore disabled irqs */
2775 if (r_irq_misc
& V_STA_IRQ
) {
2776 if (hc
->ctype
== HFC_TYPE_E1
) {
2778 dch
= hc
->chan
[hc
->dnum
[0]].dch
;
2779 e1_syncsta
= HFC_inb_nodebug(hc
, R_SYNC_STA
);
2780 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)
2781 && hc
->e1_getclock
) {
2782 if (e1_syncsta
& V_FR_SYNC_E1
)
2783 hc
->syncronized
= 1;
2785 hc
->syncronized
= 0;
2787 /* undocumented: status changes during read */
2788 temp
= HFC_inb_nodebug(hc
, R_E1_RD_STA
);
2789 while (temp
!= (temp2
=
2790 HFC_inb_nodebug(hc
, R_E1_RD_STA
))) {
2791 if (debug
& DEBUG_HFCMULTI_STATE
)
2792 printk(KERN_DEBUG
"%s: reread "
2793 "STATE because %d!=%d\n",
2794 __func__
, temp
, temp2
);
2795 temp
= temp2
; /* repeat */
2797 /* broadcast state change to all fragments */
2798 if (debug
& DEBUG_HFCMULTI_STATE
)
2800 "%s: E1 (id=%d) newstate %x\n",
2801 __func__
, hc
->id
, temp
& 0x7);
2802 for (i
= 0; i
< hc
->ports
; i
++) {
2803 dch
= hc
->chan
[hc
->dnum
[i
]].dch
;
2804 dch
->state
= temp
& 0x7;
2805 schedule_event(dch
, FLG_PHCHANGE
);
2808 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
))
2809 plxsd_checksync(hc
, 0);
2812 if (r_irq_misc
& V_TI_IRQ
) {
2814 mISDN_clock_update(hc
->iclock
, poll
, NULL
);
2815 handle_timer_irq(hc
);
2818 if (r_irq_misc
& V_DTMF_IRQ
)
2821 if (r_irq_misc
& V_IRQ_PROC
) {
2822 static int irq_proc_cnt
;
2823 if (!irq_proc_cnt
++)
2824 printk(KERN_DEBUG
"%s: got V_IRQ_PROC -"
2825 " this should not happen\n", __func__
);
2829 if (status
& V_FR_IRQSTA
) {
2831 r_irq_oview
= HFC_inb_nodebug(hc
, R_IRQ_OVIEW
);
2832 for (i
= 0; i
< 8; i
++) {
2833 if (r_irq_oview
& (1 << i
))
2841 spin_unlock(&hc
->lock
);
2848 spin_unlock(&hc
->lock
);
2854 * timer callback for D-chan busy resolution. Currently no function
2858 hfcmulti_dbusy_timer(struct timer_list
*t
)
2864 * activate/deactivate hardware for selected channels and mode
2866 * configure B-channel with the given protocol
2867 * ch eqals to the HFC-channel (0-31)
2868 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2869 * for S/T, 1-31 for E1)
2870 * the hdlc interrupts will be set/unset
2873 mode_hfcmulti(struct hfc_multi
*hc
, int ch
, int protocol
, int slot_tx
,
2874 int bank_tx
, int slot_rx
, int bank_rx
)
2876 int flow_tx
= 0, flow_rx
= 0, routing
= 0;
2877 int oslot_tx
, oslot_rx
;
2880 if (ch
< 0 || ch
> 31)
2882 oslot_tx
= hc
->chan
[ch
].slot_tx
;
2883 oslot_rx
= hc
->chan
[ch
].slot_rx
;
2884 conf
= hc
->chan
[ch
].conf
;
2886 if (debug
& DEBUG_HFCMULTI_MODE
)
2888 "%s: card %d channel %d protocol %x slot old=%d new=%d "
2889 "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2890 __func__
, hc
->id
, ch
, protocol
, oslot_tx
, slot_tx
,
2891 bank_tx
, oslot_rx
, slot_rx
, bank_rx
);
2893 if (oslot_tx
>= 0 && slot_tx
!= oslot_tx
) {
2894 /* remove from slot */
2895 if (debug
& DEBUG_HFCMULTI_MODE
)
2896 printk(KERN_DEBUG
"%s: remove from slot %d (TX)\n",
2897 __func__
, oslot_tx
);
2898 if (hc
->slot_owner
[oslot_tx
<< 1] == ch
) {
2899 HFC_outb(hc
, R_SLOT
, oslot_tx
<< 1);
2900 HFC_outb(hc
, A_SL_CFG
, 0);
2901 if (hc
->ctype
!= HFC_TYPE_XHFC
)
2902 HFC_outb(hc
, A_CONF
, 0);
2903 hc
->slot_owner
[oslot_tx
<< 1] = -1;
2905 if (debug
& DEBUG_HFCMULTI_MODE
)
2907 "%s: we are not owner of this tx slot "
2908 "anymore, channel %d is.\n",
2909 __func__
, hc
->slot_owner
[oslot_tx
<< 1]);
2913 if (oslot_rx
>= 0 && slot_rx
!= oslot_rx
) {
2914 /* remove from slot */
2915 if (debug
& DEBUG_HFCMULTI_MODE
)
2917 "%s: remove from slot %d (RX)\n",
2918 __func__
, oslot_rx
);
2919 if (hc
->slot_owner
[(oslot_rx
<< 1) | 1] == ch
) {
2920 HFC_outb(hc
, R_SLOT
, (oslot_rx
<< 1) | V_SL_DIR
);
2921 HFC_outb(hc
, A_SL_CFG
, 0);
2922 hc
->slot_owner
[(oslot_rx
<< 1) | 1] = -1;
2924 if (debug
& DEBUG_HFCMULTI_MODE
)
2926 "%s: we are not owner of this rx slot "
2927 "anymore, channel %d is.\n",
2929 hc
->slot_owner
[(oslot_rx
<< 1) | 1]);
2934 flow_tx
= 0x80; /* FIFO->ST */
2935 /* disable pcm slot */
2936 hc
->chan
[ch
].slot_tx
= -1;
2937 hc
->chan
[ch
].bank_tx
= 0;
2940 if (hc
->chan
[ch
].txpending
)
2941 flow_tx
= 0x80; /* FIFO->ST */
2943 flow_tx
= 0xc0; /* PCM->ST */
2945 routing
= bank_tx
? 0xc0 : 0x80;
2946 if (conf
>= 0 || bank_tx
> 1)
2947 routing
= 0x40; /* loop */
2948 if (debug
& DEBUG_HFCMULTI_MODE
)
2949 printk(KERN_DEBUG
"%s: put channel %d to slot %d bank"
2950 " %d flow %02x routing %02x conf %d (TX)\n",
2951 __func__
, ch
, slot_tx
, bank_tx
,
2952 flow_tx
, routing
, conf
);
2953 HFC_outb(hc
, R_SLOT
, slot_tx
<< 1);
2954 HFC_outb(hc
, A_SL_CFG
, (ch
<< 1) | routing
);
2955 if (hc
->ctype
!= HFC_TYPE_XHFC
)
2956 HFC_outb(hc
, A_CONF
,
2957 (conf
< 0) ? 0 : (conf
| V_CONF_SL
));
2958 hc
->slot_owner
[slot_tx
<< 1] = ch
;
2959 hc
->chan
[ch
].slot_tx
= slot_tx
;
2960 hc
->chan
[ch
].bank_tx
= bank_tx
;
2963 /* disable pcm slot */
2964 flow_rx
= 0x80; /* ST->FIFO */
2965 hc
->chan
[ch
].slot_rx
= -1;
2966 hc
->chan
[ch
].bank_rx
= 0;
2969 if (hc
->chan
[ch
].txpending
)
2970 flow_rx
= 0x80; /* ST->FIFO */
2972 flow_rx
= 0xc0; /* ST->(FIFO,PCM) */
2974 routing
= bank_rx
? 0x80 : 0xc0; /* reversed */
2975 if (conf
>= 0 || bank_rx
> 1)
2976 routing
= 0x40; /* loop */
2977 if (debug
& DEBUG_HFCMULTI_MODE
)
2978 printk(KERN_DEBUG
"%s: put channel %d to slot %d bank"
2979 " %d flow %02x routing %02x conf %d (RX)\n",
2980 __func__
, ch
, slot_rx
, bank_rx
,
2981 flow_rx
, routing
, conf
);
2982 HFC_outb(hc
, R_SLOT
, (slot_rx
<< 1) | V_SL_DIR
);
2983 HFC_outb(hc
, A_SL_CFG
, (ch
<< 1) | V_CH_DIR
| routing
);
2984 hc
->slot_owner
[(slot_rx
<< 1) | 1] = ch
;
2985 hc
->chan
[ch
].slot_rx
= slot_rx
;
2986 hc
->chan
[ch
].bank_rx
= bank_rx
;
2991 /* disable TX fifo */
2992 HFC_outb(hc
, R_FIFO
, ch
<< 1);
2994 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x00 | V_IFF
);
2995 HFC_outb(hc
, A_SUBCH_CFG
, 0);
2996 HFC_outb(hc
, A_IRQ_MSK
, 0);
2997 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
2999 /* disable RX fifo */
3000 HFC_outb(hc
, R_FIFO
, (ch
<< 1) | 1);
3002 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x00);
3003 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3004 HFC_outb(hc
, A_IRQ_MSK
, 0);
3005 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3007 if (hc
->chan
[ch
].bch
&& hc
->ctype
!= HFC_TYPE_E1
) {
3008 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
] &=
3009 ((ch
& 0x3) == 0) ? ~V_B1_EN
: ~V_B2_EN
;
3010 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[ch
].port
);
3011 /* undocumented: delay after R_ST_SEL */
3013 HFC_outb(hc
, A_ST_CTRL0
,
3014 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
]);
3016 if (hc
->chan
[ch
].bch
) {
3017 test_and_clear_bit(FLG_HDLC
, &hc
->chan
[ch
].bch
->Flags
);
3018 test_and_clear_bit(FLG_TRANSPARENT
,
3019 &hc
->chan
[ch
].bch
->Flags
);
3022 case (ISDN_P_B_RAW
): /* B-channel */
3024 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
) &&
3025 (hc
->chan
[ch
].slot_rx
< 0) &&
3026 (hc
->chan
[ch
].slot_tx
< 0)) {
3029 "Setting B-channel %d to echo cancelable "
3030 "state on PCM slot %d\n", ch
,
3031 ((ch
/ 4) * 8) + ((ch
% 4) * 4) + 1);
3033 "Enabling pass through for channel\n");
3034 vpm_out(hc
, ch
, ((ch
/ 4) * 8) +
3035 ((ch
% 4) * 4) + 1, 0x01);
3038 HFC_outb(hc
, R_FIFO
, (ch
<< 1));
3040 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | V_HDLC_TRP
| V_IFF
);
3041 HFC_outb(hc
, R_SLOT
, (((ch
/ 4) * 8) +
3042 ((ch
% 4) * 4) + 1) << 1);
3043 HFC_outb(hc
, A_SL_CFG
, 0x80 | (ch
<< 1));
3046 HFC_outb(hc
, R_FIFO
, 0x20 | (ch
<< 1) | 1);
3048 HFC_outb(hc
, A_CON_HDLC
, 0x20 | V_HDLC_TRP
| V_IFF
);
3049 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3050 HFC_outb(hc
, A_IRQ_MSK
, 0);
3051 if (hc
->chan
[ch
].protocol
!= protocol
) {
3052 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3055 HFC_outb(hc
, R_SLOT
, ((((ch
/ 4) * 8) +
3056 ((ch
% 4) * 4) + 1) << 1) | 1);
3057 HFC_outb(hc
, A_SL_CFG
, 0x80 | 0x20 | (ch
<< 1) | 1);
3061 HFC_outb(hc
, R_FIFO
, (ch
<< 1) | 1);
3063 HFC_outb(hc
, A_CON_HDLC
, 0xc0 | V_HDLC_TRP
| V_IFF
);
3064 HFC_outb(hc
, R_SLOT
, ((((ch
/ 4) * 8) +
3065 ((ch
% 4) * 4)) << 1) | 1);
3066 HFC_outb(hc
, A_SL_CFG
, 0x80 | 0x40 | (ch
<< 1) | 1);
3069 HFC_outb(hc
, R_FIFO
, 0x20 | (ch
<< 1));
3071 HFC_outb(hc
, A_CON_HDLC
, 0x20 | V_HDLC_TRP
| V_IFF
);
3072 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3073 HFC_outb(hc
, A_IRQ_MSK
, 0);
3074 if (hc
->chan
[ch
].protocol
!= protocol
) {
3075 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3079 HFC_outb_nodebug(hc
, A_FIFO_DATA0_NOINC
, hc
->silence
);
3080 HFC_outb(hc
, R_SLOT
, (((ch
/ 4) * 8) +
3081 ((ch
% 4) * 4)) << 1);
3082 HFC_outb(hc
, A_SL_CFG
, 0x80 | 0x20 | (ch
<< 1));
3084 /* enable TX fifo */
3085 HFC_outb(hc
, R_FIFO
, ch
<< 1);
3087 if (hc
->ctype
== HFC_TYPE_XHFC
)
3088 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x07 << 2 |
3089 V_HDLC_TRP
| V_IFF
);
3090 /* Enable FIFO, no interrupt */
3092 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x00 |
3093 V_HDLC_TRP
| V_IFF
);
3094 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3095 HFC_outb(hc
, A_IRQ_MSK
, 0);
3096 if (hc
->chan
[ch
].protocol
!= protocol
) {
3097 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3101 HFC_outb_nodebug(hc
, A_FIFO_DATA0_NOINC
, hc
->silence
);
3102 /* enable RX fifo */
3103 HFC_outb(hc
, R_FIFO
, (ch
<< 1) | 1);
3105 if (hc
->ctype
== HFC_TYPE_XHFC
)
3106 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x07 << 2 |
3108 /* Enable FIFO, no interrupt*/
3110 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x00 |
3112 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3113 HFC_outb(hc
, A_IRQ_MSK
, 0);
3114 if (hc
->chan
[ch
].protocol
!= protocol
) {
3115 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3119 if (hc
->ctype
!= HFC_TYPE_E1
) {
3120 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
] |=
3121 ((ch
& 0x3) == 0) ? V_B1_EN
: V_B2_EN
;
3122 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[ch
].port
);
3123 /* undocumented: delay after R_ST_SEL */
3125 HFC_outb(hc
, A_ST_CTRL0
,
3126 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
]);
3128 if (hc
->chan
[ch
].bch
)
3129 test_and_set_bit(FLG_TRANSPARENT
,
3130 &hc
->chan
[ch
].bch
->Flags
);
3132 case (ISDN_P_B_HDLC
): /* B-channel */
3133 case (ISDN_P_TE_S0
): /* D-channel */
3134 case (ISDN_P_NT_S0
):
3135 case (ISDN_P_TE_E1
):
3136 case (ISDN_P_NT_E1
):
3137 /* enable TX fifo */
3138 HFC_outb(hc
, R_FIFO
, ch
<< 1);
3140 if (hc
->ctype
== HFC_TYPE_E1
|| hc
->chan
[ch
].bch
) {
3141 /* E1 or B-channel */
3142 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x04);
3143 HFC_outb(hc
, A_SUBCH_CFG
, 0);
3145 /* D-Channel without HDLC fill flags */
3146 HFC_outb(hc
, A_CON_HDLC
, flow_tx
| 0x04 | V_IFF
);
3147 HFC_outb(hc
, A_SUBCH_CFG
, 2);
3149 HFC_outb(hc
, A_IRQ_MSK
, V_IRQ
);
3150 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3152 /* enable RX fifo */
3153 HFC_outb(hc
, R_FIFO
, (ch
<< 1) | 1);
3155 HFC_outb(hc
, A_CON_HDLC
, flow_rx
| 0x04);
3156 if (hc
->ctype
== HFC_TYPE_E1
|| hc
->chan
[ch
].bch
)
3157 HFC_outb(hc
, A_SUBCH_CFG
, 0); /* full 8 bits */
3159 HFC_outb(hc
, A_SUBCH_CFG
, 2); /* 2 bits dchannel */
3160 HFC_outb(hc
, A_IRQ_MSK
, V_IRQ
);
3161 HFC_outb(hc
, R_INC_RES_FIFO
, V_RES_F
);
3163 if (hc
->chan
[ch
].bch
) {
3164 test_and_set_bit(FLG_HDLC
, &hc
->chan
[ch
].bch
->Flags
);
3165 if (hc
->ctype
!= HFC_TYPE_E1
) {
3166 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
] |=
3167 ((ch
& 0x3) == 0) ? V_B1_EN
: V_B2_EN
;
3168 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[ch
].port
);
3169 /* undocumented: delay after R_ST_SEL */
3171 HFC_outb(hc
, A_ST_CTRL0
,
3172 hc
->hw
.a_st_ctrl0
[hc
->chan
[ch
].port
]);
3177 printk(KERN_DEBUG
"%s: protocol not known %x\n",
3178 __func__
, protocol
);
3179 hc
->chan
[ch
].protocol
= ISDN_P_NONE
;
3180 return -ENOPROTOOPT
;
3182 hc
->chan
[ch
].protocol
= protocol
;
3188 * connect/disconnect PCM
3192 hfcmulti_pcm(struct hfc_multi
*hc
, int ch
, int slot_tx
, int bank_tx
,
3193 int slot_rx
, int bank_rx
)
3195 if (slot_tx
< 0 || slot_rx
< 0 || bank_tx
< 0 || bank_rx
< 0) {
3197 mode_hfcmulti(hc
, ch
, hc
->chan
[ch
].protocol
, -1, 0, -1, 0);
3202 mode_hfcmulti(hc
, ch
, hc
->chan
[ch
].protocol
, slot_tx
, bank_tx
,
3207 * set/disable conference
3211 hfcmulti_conf(struct hfc_multi
*hc
, int ch
, int num
)
3213 if (num
>= 0 && num
<= 7)
3214 hc
->chan
[ch
].conf
= num
;
3216 hc
->chan
[ch
].conf
= -1;
3217 mode_hfcmulti(hc
, ch
, hc
->chan
[ch
].protocol
, hc
->chan
[ch
].slot_tx
,
3218 hc
->chan
[ch
].bank_tx
, hc
->chan
[ch
].slot_rx
,
3219 hc
->chan
[ch
].bank_rx
);
3224 * set/disable sample loop
3227 /* NOTE: this function is experimental and therefore disabled */
3230 * Layer 1 callback function
3233 hfcm_l1callback(struct dchannel
*dch
, u_int cmd
)
3235 struct hfc_multi
*hc
= dch
->hw
;
3243 /* start activation */
3244 spin_lock_irqsave(&hc
->lock
, flags
);
3245 if (hc
->ctype
== HFC_TYPE_E1
) {
3246 if (debug
& DEBUG_HFCMULTI_MSG
)
3248 "%s: HW_RESET_REQ no BRI\n",
3251 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[dch
->slot
].port
);
3252 /* undocumented: delay after R_ST_SEL */
3254 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_LD_STA
| 3); /* F3 */
3255 udelay(6); /* wait at least 5,21us */
3256 HFC_outb(hc
, A_ST_WR_STATE
, 3);
3257 HFC_outb(hc
, A_ST_WR_STATE
, 3 | (V_ST_ACT
* 3));
3260 spin_unlock_irqrestore(&hc
->lock
, flags
);
3261 l1_event(dch
->l1
, HW_POWERUP_IND
);
3264 /* start deactivation */
3265 spin_lock_irqsave(&hc
->lock
, flags
);
3266 if (hc
->ctype
== HFC_TYPE_E1
) {
3267 if (debug
& DEBUG_HFCMULTI_MSG
)
3269 "%s: HW_DEACT_REQ no BRI\n",
3272 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[dch
->slot
].port
);
3273 /* undocumented: delay after R_ST_SEL */
3275 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_ACT
* 2);
3277 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
3279 ~(1 << hc
->chan
[dch
->slot
].port
);
3280 plxsd_checksync(hc
, 0);
3283 skb_queue_purge(&dch
->squeue
);
3285 dev_kfree_skb(dch
->tx_skb
);
3290 dev_kfree_skb(dch
->rx_skb
);
3293 test_and_clear_bit(FLG_TX_BUSY
, &dch
->Flags
);
3294 if (test_and_clear_bit(FLG_BUSY_TIMER
, &dch
->Flags
))
3295 del_timer(&dch
->timer
);
3296 spin_unlock_irqrestore(&hc
->lock
, flags
);
3298 case HW_POWERUP_REQ
:
3299 spin_lock_irqsave(&hc
->lock
, flags
);
3300 if (hc
->ctype
== HFC_TYPE_E1
) {
3301 if (debug
& DEBUG_HFCMULTI_MSG
)
3303 "%s: HW_POWERUP_REQ no BRI\n",
3306 HFC_outb(hc
, R_ST_SEL
, hc
->chan
[dch
->slot
].port
);
3307 /* undocumented: delay after R_ST_SEL */
3309 HFC_outb(hc
, A_ST_WR_STATE
, 3 | 0x10); /* activate */
3310 udelay(6); /* wait at least 5,21us */
3311 HFC_outb(hc
, A_ST_WR_STATE
, 3); /* activate */
3313 spin_unlock_irqrestore(&hc
->lock
, flags
);
3315 case PH_ACTIVATE_IND
:
3316 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
3317 _queue_data(&dch
->dev
.D
, cmd
, MISDN_ID_ANY
, 0, NULL
,
3320 case PH_DEACTIVATE_IND
:
3321 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
3322 _queue_data(&dch
->dev
.D
, cmd
, MISDN_ID_ANY
, 0, NULL
,
3326 if (dch
->debug
& DEBUG_HW
)
3327 printk(KERN_DEBUG
"%s: unknown command %x\n",
3335 * Layer2 -> Layer 1 Transfer
3339 handle_dmsg(struct mISDNchannel
*ch
, struct sk_buff
*skb
)
3341 struct mISDNdevice
*dev
= container_of(ch
, struct mISDNdevice
, D
);
3342 struct dchannel
*dch
= container_of(dev
, struct dchannel
, dev
);
3343 struct hfc_multi
*hc
= dch
->hw
;
3344 struct mISDNhead
*hh
= mISDN_HEAD_P(skb
);
3353 spin_lock_irqsave(&hc
->lock
, flags
);
3354 ret
= dchannel_senddata(dch
, skb
);
3355 if (ret
> 0) { /* direct TX */
3356 id
= hh
->id
; /* skb can be freed */
3357 hfcmulti_tx(hc
, dch
->slot
);
3360 HFC_outb(hc
, R_FIFO
, 0);
3362 spin_unlock_irqrestore(&hc
->lock
, flags
);
3363 queue_ch_frame(ch
, PH_DATA_CNF
, id
, NULL
);
3365 spin_unlock_irqrestore(&hc
->lock
, flags
);
3367 case PH_ACTIVATE_REQ
:
3368 if (dch
->dev
.D
.protocol
!= ISDN_P_TE_S0
) {
3369 spin_lock_irqsave(&hc
->lock
, flags
);
3371 if (debug
& DEBUG_HFCMULTI_MSG
)
3373 "%s: PH_ACTIVATE port %d (0..%d)\n",
3374 __func__
, hc
->chan
[dch
->slot
].port
,
3376 /* start activation */
3377 if (hc
->ctype
== HFC_TYPE_E1
) {
3378 ph_state_change(dch
);
3379 if (debug
& DEBUG_HFCMULTI_STATE
)
3381 "%s: E1 report state %x \n",
3382 __func__
, dch
->state
);
3384 HFC_outb(hc
, R_ST_SEL
,
3385 hc
->chan
[dch
->slot
].port
);
3386 /* undocumented: delay after R_ST_SEL */
3388 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_LD_STA
| 1);
3390 udelay(6); /* wait at least 5,21us */
3391 HFC_outb(hc
, A_ST_WR_STATE
, 1);
3392 HFC_outb(hc
, A_ST_WR_STATE
, 1 |
3393 (V_ST_ACT
* 3)); /* activate */
3396 spin_unlock_irqrestore(&hc
->lock
, flags
);
3398 ret
= l1_event(dch
->l1
, hh
->prim
);
3400 case PH_DEACTIVATE_REQ
:
3401 test_and_clear_bit(FLG_L2_ACTIVATED
, &dch
->Flags
);
3402 if (dch
->dev
.D
.protocol
!= ISDN_P_TE_S0
) {
3403 spin_lock_irqsave(&hc
->lock
, flags
);
3404 if (debug
& DEBUG_HFCMULTI_MSG
)
3406 "%s: PH_DEACTIVATE port %d (0..%d)\n",
3407 __func__
, hc
->chan
[dch
->slot
].port
,
3409 /* start deactivation */
3410 if (hc
->ctype
== HFC_TYPE_E1
) {
3411 if (debug
& DEBUG_HFCMULTI_MSG
)
3413 "%s: PH_DEACTIVATE no BRI\n",
3416 HFC_outb(hc
, R_ST_SEL
,
3417 hc
->chan
[dch
->slot
].port
);
3418 /* undocumented: delay after R_ST_SEL */
3420 HFC_outb(hc
, A_ST_WR_STATE
, V_ST_ACT
* 2);
3424 skb_queue_purge(&dch
->squeue
);
3426 dev_kfree_skb(dch
->tx_skb
);
3431 dev_kfree_skb(dch
->rx_skb
);
3434 test_and_clear_bit(FLG_TX_BUSY
, &dch
->Flags
);
3435 if (test_and_clear_bit(FLG_BUSY_TIMER
, &dch
->Flags
))
3436 del_timer(&dch
->timer
);
3438 if (test_and_clear_bit(FLG_L1_BUSY
, &dch
->Flags
))
3439 dchannel_sched_event(&hc
->dch
, D_CLEARBUSY
);
3442 spin_unlock_irqrestore(&hc
->lock
, flags
);
3444 ret
= l1_event(dch
->l1
, hh
->prim
);
3453 deactivate_bchannel(struct bchannel
*bch
)
3455 struct hfc_multi
*hc
= bch
->hw
;
3458 spin_lock_irqsave(&hc
->lock
, flags
);
3459 mISDN_clear_bchannel(bch
);
3460 hc
->chan
[bch
->slot
].coeff_count
= 0;
3461 hc
->chan
[bch
->slot
].rx_off
= 0;
3462 hc
->chan
[bch
->slot
].conf
= -1;
3463 mode_hfcmulti(hc
, bch
->slot
, ISDN_P_NONE
, -1, 0, -1, 0);
3464 spin_unlock_irqrestore(&hc
->lock
, flags
);
3468 handle_bmsg(struct mISDNchannel
*ch
, struct sk_buff
*skb
)
3470 struct bchannel
*bch
= container_of(ch
, struct bchannel
, ch
);
3471 struct hfc_multi
*hc
= bch
->hw
;
3473 struct mISDNhead
*hh
= mISDN_HEAD_P(skb
);
3474 unsigned long flags
;
3480 spin_lock_irqsave(&hc
->lock
, flags
);
3481 ret
= bchannel_senddata(bch
, skb
);
3482 if (ret
> 0) { /* direct TX */
3483 hfcmulti_tx(hc
, bch
->slot
);
3486 HFC_outb_nodebug(hc
, R_FIFO
, 0);
3487 HFC_wait_nodebug(hc
);
3489 spin_unlock_irqrestore(&hc
->lock
, flags
);
3491 case PH_ACTIVATE_REQ
:
3492 if (debug
& DEBUG_HFCMULTI_MSG
)
3493 printk(KERN_DEBUG
"%s: PH_ACTIVATE ch %d (0..32)\n",
3494 __func__
, bch
->slot
);
3495 spin_lock_irqsave(&hc
->lock
, flags
);
3496 /* activate B-channel if not already activated */
3497 if (!test_and_set_bit(FLG_ACTIVE
, &bch
->Flags
)) {
3498 hc
->chan
[bch
->slot
].txpending
= 0;
3499 ret
= mode_hfcmulti(hc
, bch
->slot
,
3501 hc
->chan
[bch
->slot
].slot_tx
,
3502 hc
->chan
[bch
->slot
].bank_tx
,
3503 hc
->chan
[bch
->slot
].slot_rx
,
3504 hc
->chan
[bch
->slot
].bank_rx
);
3506 if (ch
->protocol
== ISDN_P_B_RAW
&& !hc
->dtmf
3507 && test_bit(HFC_CHIP_DTMF
, &hc
->chip
)) {
3510 if (debug
& DEBUG_HFCMULTI_DTMF
)
3512 "%s: start dtmf decoder\n",
3514 HFC_outb(hc
, R_DTMF
, hc
->hw
.r_dtmf
|
3520 spin_unlock_irqrestore(&hc
->lock
, flags
);
3522 _queue_data(ch
, PH_ACTIVATE_IND
, MISDN_ID_ANY
, 0, NULL
,
3525 case PH_CONTROL_REQ
:
3526 spin_lock_irqsave(&hc
->lock
, flags
);
3528 case HFC_SPL_LOOP_ON
: /* set sample loop */
3529 if (debug
& DEBUG_HFCMULTI_MSG
)
3531 "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3532 __func__
, skb
->len
);
3535 case HFC_SPL_LOOP_OFF
: /* set silence */
3536 if (debug
& DEBUG_HFCMULTI_MSG
)
3537 printk(KERN_DEBUG
"%s: HFC_SPL_LOOP_OFF\n",
3543 "%s: unknown PH_CONTROL_REQ info %x\n",
3547 spin_unlock_irqrestore(&hc
->lock
, flags
);
3549 case PH_DEACTIVATE_REQ
:
3550 deactivate_bchannel(bch
); /* locked there */
3551 _queue_data(ch
, PH_DEACTIVATE_IND
, MISDN_ID_ANY
, 0, NULL
,
3562 * bchannel control function
3565 channel_bctrl(struct bchannel
*bch
, struct mISDN_ctrl_req
*cq
)
3568 struct dsp_features
*features
=
3569 (struct dsp_features
*)(*((u_long
*)&cq
->p1
));
3570 struct hfc_multi
*hc
= bch
->hw
;
3578 case MISDN_CTRL_GETOP
:
3579 ret
= mISDN_ctrl_bchannel(bch
, cq
);
3580 cq
->op
|= MISDN_CTRL_HFC_OP
| MISDN_CTRL_HW_FEATURES_OP
;
3582 case MISDN_CTRL_RX_OFF
: /* turn off / on rx stream */
3583 ret
= mISDN_ctrl_bchannel(bch
, cq
);
3584 hc
->chan
[bch
->slot
].rx_off
= !!cq
->p1
;
3585 if (!hc
->chan
[bch
->slot
].rx_off
) {
3586 /* reset fifo on rx on */
3587 HFC_outb_nodebug(hc
, R_FIFO
, (bch
->slot
<< 1) | 1);
3588 HFC_wait_nodebug(hc
);
3589 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
, V_RES_F
);
3590 HFC_wait_nodebug(hc
);
3592 if (debug
& DEBUG_HFCMULTI_MSG
)
3593 printk(KERN_DEBUG
"%s: RX_OFF request (nr=%d off=%d)\n",
3594 __func__
, bch
->nr
, hc
->chan
[bch
->slot
].rx_off
);
3596 case MISDN_CTRL_FILL_EMPTY
:
3597 ret
= mISDN_ctrl_bchannel(bch
, cq
);
3598 hc
->silence
= bch
->fill
[0];
3599 memset(hc
->silence_data
, hc
->silence
, sizeof(hc
->silence_data
));
3601 case MISDN_CTRL_HW_FEATURES
: /* fill features structure */
3602 if (debug
& DEBUG_HFCMULTI_MSG
)
3603 printk(KERN_DEBUG
"%s: HW_FEATURE request\n",
3605 /* create confirm */
3606 features
->hfc_id
= hc
->id
;
3607 if (test_bit(HFC_CHIP_DTMF
, &hc
->chip
))
3608 features
->hfc_dtmf
= 1;
3609 if (test_bit(HFC_CHIP_CONF
, &hc
->chip
))
3610 features
->hfc_conf
= 1;
3611 features
->hfc_loops
= 0;
3612 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
)) {
3613 features
->hfc_echocanhw
= 1;
3615 features
->pcm_id
= hc
->pcm
;
3616 features
->pcm_slots
= hc
->slots
;
3617 features
->pcm_banks
= 2;
3620 case MISDN_CTRL_HFC_PCM_CONN
: /* connect to pcm timeslot (0..N) */
3621 slot_tx
= cq
->p1
& 0xff;
3622 bank_tx
= cq
->p1
>> 8;
3623 slot_rx
= cq
->p2
& 0xff;
3624 bank_rx
= cq
->p2
>> 8;
3625 if (debug
& DEBUG_HFCMULTI_MSG
)
3627 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3628 "slot %d bank %d (RX)\n",
3629 __func__
, slot_tx
, bank_tx
,
3631 if (slot_tx
< hc
->slots
&& bank_tx
<= 2 &&
3632 slot_rx
< hc
->slots
&& bank_rx
<= 2)
3633 hfcmulti_pcm(hc
, bch
->slot
,
3634 slot_tx
, bank_tx
, slot_rx
, bank_rx
);
3637 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3638 "slot %d bank %d (RX) out of range\n",
3639 __func__
, slot_tx
, bank_tx
,
3644 case MISDN_CTRL_HFC_PCM_DISC
: /* release interface from pcm timeslot */
3645 if (debug
& DEBUG_HFCMULTI_MSG
)
3646 printk(KERN_DEBUG
"%s: HFC_PCM_DISC\n",
3648 hfcmulti_pcm(hc
, bch
->slot
, -1, 0, -1, 0);
3650 case MISDN_CTRL_HFC_CONF_JOIN
: /* join conference (0..7) */
3651 num
= cq
->p1
& 0xff;
3652 if (debug
& DEBUG_HFCMULTI_MSG
)
3653 printk(KERN_DEBUG
"%s: HFC_CONF_JOIN conf %d\n",
3656 hfcmulti_conf(hc
, bch
->slot
, num
);
3659 "%s: HW_CONF_JOIN conf %d out of range\n",
3664 case MISDN_CTRL_HFC_CONF_SPLIT
: /* split conference */
3665 if (debug
& DEBUG_HFCMULTI_MSG
)
3666 printk(KERN_DEBUG
"%s: HFC_CONF_SPLIT\n", __func__
);
3667 hfcmulti_conf(hc
, bch
->slot
, -1);
3669 case MISDN_CTRL_HFC_ECHOCAN_ON
:
3670 if (debug
& DEBUG_HFCMULTI_MSG
)
3671 printk(KERN_DEBUG
"%s: HFC_ECHOCAN_ON\n", __func__
);
3672 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
))
3673 vpm_echocan_on(hc
, bch
->slot
, cq
->p1
);
3678 case MISDN_CTRL_HFC_ECHOCAN_OFF
:
3679 if (debug
& DEBUG_HFCMULTI_MSG
)
3680 printk(KERN_DEBUG
"%s: HFC_ECHOCAN_OFF\n",
3682 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
))
3683 vpm_echocan_off(hc
, bch
->slot
);
3688 ret
= mISDN_ctrl_bchannel(bch
, cq
);
3695 hfcm_bctrl(struct mISDNchannel
*ch
, u_int cmd
, void *arg
)
3697 struct bchannel
*bch
= container_of(ch
, struct bchannel
, ch
);
3698 struct hfc_multi
*hc
= bch
->hw
;
3702 if (bch
->debug
& DEBUG_HW
)
3703 printk(KERN_DEBUG
"%s: cmd:%x %p\n",
3704 __func__
, cmd
, arg
);
3707 test_and_clear_bit(FLG_OPEN
, &bch
->Flags
);
3708 deactivate_bchannel(bch
); /* locked there */
3709 ch
->protocol
= ISDN_P_NONE
;
3711 module_put(THIS_MODULE
);
3714 case CONTROL_CHANNEL
:
3715 spin_lock_irqsave(&hc
->lock
, flags
);
3716 err
= channel_bctrl(bch
, arg
);
3717 spin_unlock_irqrestore(&hc
->lock
, flags
);
3720 printk(KERN_WARNING
"%s: unknown prim(%x)\n",
3727 * handle D-channel events
3729 * handle state change event
3732 ph_state_change(struct dchannel
*dch
)
3734 struct hfc_multi
*hc
;
3738 printk(KERN_WARNING
"%s: ERROR given dch is NULL\n", __func__
);
3744 if (hc
->ctype
== HFC_TYPE_E1
) {
3745 if (dch
->dev
.D
.protocol
== ISDN_P_TE_E1
) {
3746 if (debug
& DEBUG_HFCMULTI_STATE
)
3748 "%s: E1 TE (id=%d) newstate %x\n",
3749 __func__
, hc
->id
, dch
->state
);
3751 if (debug
& DEBUG_HFCMULTI_STATE
)
3753 "%s: E1 NT (id=%d) newstate %x\n",
3754 __func__
, hc
->id
, dch
->state
);
3756 switch (dch
->state
) {
3758 if (hc
->e1_state
!= 1) {
3759 for (i
= 1; i
<= 31; i
++) {
3760 /* reset fifos on e1 activation */
3761 HFC_outb_nodebug(hc
, R_FIFO
,
3763 HFC_wait_nodebug(hc
);
3764 HFC_outb_nodebug(hc
, R_INC_RES_FIFO
,
3766 HFC_wait_nodebug(hc
);
3769 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
3770 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
,
3771 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3775 if (hc
->e1_state
!= 1)
3777 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
3778 _queue_data(&dch
->dev
.D
, PH_DEACTIVATE_IND
,
3779 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3781 hc
->e1_state
= dch
->state
;
3783 if (dch
->dev
.D
.protocol
== ISDN_P_TE_S0
) {
3784 if (debug
& DEBUG_HFCMULTI_STATE
)
3786 "%s: S/T TE newstate %x\n",
3787 __func__
, dch
->state
);
3788 switch (dch
->state
) {
3790 l1_event(dch
->l1
, HW_RESET_IND
);
3793 l1_event(dch
->l1
, HW_DEACT_IND
);
3797 l1_event(dch
->l1
, ANYSIGNAL
);
3800 l1_event(dch
->l1
, INFO2
);
3803 l1_event(dch
->l1
, INFO4_P8
);
3807 if (debug
& DEBUG_HFCMULTI_STATE
)
3808 printk(KERN_DEBUG
"%s: S/T NT newstate %x\n",
3809 __func__
, dch
->state
);
3810 switch (dch
->state
) {
3812 if (hc
->chan
[ch
].nt_timer
== 0) {
3813 hc
->chan
[ch
].nt_timer
= -1;
3814 HFC_outb(hc
, R_ST_SEL
,
3816 /* undocumented: delay after R_ST_SEL */
3818 HFC_outb(hc
, A_ST_WR_STATE
, 4 |
3819 V_ST_LD_STA
); /* G4 */
3820 udelay(6); /* wait at least 5,21us */
3821 HFC_outb(hc
, A_ST_WR_STATE
, 4);
3824 /* one extra count for the next event */
3825 hc
->chan
[ch
].nt_timer
=
3826 nt_t1_count
[poll_timer
] + 1;
3827 HFC_outb(hc
, R_ST_SEL
,
3829 /* undocumented: delay after R_ST_SEL */
3831 /* allow G2 -> G3 transition */
3832 HFC_outb(hc
, A_ST_WR_STATE
, 2 |
3837 hc
->chan
[ch
].nt_timer
= -1;
3838 test_and_clear_bit(FLG_ACTIVE
, &dch
->Flags
);
3839 _queue_data(&dch
->dev
.D
, PH_DEACTIVATE_IND
,
3840 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3843 hc
->chan
[ch
].nt_timer
= -1;
3846 hc
->chan
[ch
].nt_timer
= -1;
3847 test_and_set_bit(FLG_ACTIVE
, &dch
->Flags
);
3848 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
,
3849 MISDN_ID_ANY
, 0, NULL
, GFP_ATOMIC
);
3857 * called for card mode init message
3861 hfcmulti_initmode(struct dchannel
*dch
)
3863 struct hfc_multi
*hc
= dch
->hw
;
3864 u_char a_st_wr_state
, r_e1_wr_sta
;
3867 if (debug
& DEBUG_HFCMULTI_INIT
)
3868 printk(KERN_DEBUG
"%s: entered\n", __func__
);
3871 pt
= hc
->chan
[i
].port
;
3872 if (hc
->ctype
== HFC_TYPE_E1
) {
3874 hc
->chan
[hc
->dnum
[pt
]].slot_tx
= -1;
3875 hc
->chan
[hc
->dnum
[pt
]].slot_rx
= -1;
3876 hc
->chan
[hc
->dnum
[pt
]].conf
= -1;
3878 mode_hfcmulti(hc
, dch
->slot
, dch
->dev
.D
.protocol
,
3880 timer_setup(&dch
->timer
, hfcmulti_dbusy_timer
, 0);
3882 for (i
= 1; i
<= 31; i
++) {
3883 if (!((1 << i
) & hc
->bmask
[pt
])) /* skip unused chan */
3885 hc
->chan
[i
].slot_tx
= -1;
3886 hc
->chan
[i
].slot_rx
= -1;
3887 hc
->chan
[i
].conf
= -1;
3888 mode_hfcmulti(hc
, i
, ISDN_P_NONE
, -1, 0, -1, 0);
3891 if (hc
->ctype
== HFC_TYPE_E1
&& pt
== 0) {
3893 dch
= hc
->chan
[hc
->dnum
[0]].dch
;
3894 if (test_bit(HFC_CFG_REPORT_LOS
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
3895 HFC_outb(hc
, R_LOS0
, 255); /* 2 ms */
3896 HFC_outb(hc
, R_LOS1
, 255); /* 512 ms */
3898 if (test_bit(HFC_CFG_OPTICAL
, &hc
->chan
[hc
->dnum
[0]].cfg
)) {
3899 HFC_outb(hc
, R_RX0
, 0);
3900 hc
->hw
.r_tx0
= 0 | V_OUT_EN
;
3902 HFC_outb(hc
, R_RX0
, 1);
3903 hc
->hw
.r_tx0
= 1 | V_OUT_EN
;
3905 hc
->hw
.r_tx1
= V_ATX
| V_NTRI
;
3906 HFC_outb(hc
, R_TX0
, hc
->hw
.r_tx0
);
3907 HFC_outb(hc
, R_TX1
, hc
->hw
.r_tx1
);
3908 HFC_outb(hc
, R_TX_FR0
, 0x00);
3909 HFC_outb(hc
, R_TX_FR1
, 0xf8);
3911 if (test_bit(HFC_CFG_CRC4
, &hc
->chan
[hc
->dnum
[0]].cfg
))
3912 HFC_outb(hc
, R_TX_FR2
, V_TX_MF
| V_TX_E
| V_NEG_E
);
3914 HFC_outb(hc
, R_RX_FR0
, V_AUTO_RESYNC
| V_AUTO_RECO
| 0);
3916 if (test_bit(HFC_CFG_CRC4
, &hc
->chan
[hc
->dnum
[0]].cfg
))
3917 HFC_outb(hc
, R_RX_FR1
, V_RX_MF
| V_RX_MF_SYNC
);
3919 if (dch
->dev
.D
.protocol
== ISDN_P_NT_E1
) {
3920 if (debug
& DEBUG_HFCMULTI_INIT
)
3921 printk(KERN_DEBUG
"%s: E1 port is NT-mode\n",
3923 r_e1_wr_sta
= 0; /* G0 */
3924 hc
->e1_getclock
= 0;
3926 if (debug
& DEBUG_HFCMULTI_INIT
)
3927 printk(KERN_DEBUG
"%s: E1 port is TE-mode\n",
3929 r_e1_wr_sta
= 0; /* F0 */
3930 hc
->e1_getclock
= 1;
3932 if (test_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
))
3933 HFC_outb(hc
, R_SYNC_OUT
, V_SYNC_E1_RX
);
3935 HFC_outb(hc
, R_SYNC_OUT
, 0);
3936 if (test_bit(HFC_CHIP_E1CLOCK_GET
, &hc
->chip
))
3937 hc
->e1_getclock
= 1;
3938 if (test_bit(HFC_CHIP_E1CLOCK_PUT
, &hc
->chip
))
3939 hc
->e1_getclock
= 0;
3940 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
3941 /* SLAVE (clock master) */
3942 if (debug
& DEBUG_HFCMULTI_INIT
)
3944 "%s: E1 port is clock master "
3945 "(clock from PCM)\n", __func__
);
3946 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
| V_PCM_SYNC
);
3948 if (hc
->e1_getclock
) {
3949 /* MASTER (clock slave) */
3950 if (debug
& DEBUG_HFCMULTI_INIT
)
3952 "%s: E1 port is clock slave "
3953 "(clock to PCM)\n", __func__
);
3954 HFC_outb(hc
, R_SYNC_CTRL
, V_SYNC_OFFS
);
3956 /* MASTER (clock master) */
3957 if (debug
& DEBUG_HFCMULTI_INIT
)
3958 printk(KERN_DEBUG
"%s: E1 port is "
3960 "(clock from QUARTZ)\n",
3962 HFC_outb(hc
, R_SYNC_CTRL
, V_EXT_CLK_SYNC
|
3963 V_PCM_SYNC
| V_JATT_OFF
);
3964 HFC_outb(hc
, R_SYNC_OUT
, 0);
3967 HFC_outb(hc
, R_JATT_ATT
, 0x9c); /* undoc register */
3968 HFC_outb(hc
, R_PWM_MD
, V_PWM0_MD
);
3969 HFC_outb(hc
, R_PWM0
, 0x50);
3970 HFC_outb(hc
, R_PWM1
, 0xff);
3971 /* state machine setup */
3972 HFC_outb(hc
, R_E1_WR_STA
, r_e1_wr_sta
| V_E1_LD_STA
);
3973 udelay(6); /* wait at least 5,21us */
3974 HFC_outb(hc
, R_E1_WR_STA
, r_e1_wr_sta
);
3975 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
3976 hc
->syncronized
= 0;
3977 plxsd_checksync(hc
, 0);
3980 if (hc
->ctype
!= HFC_TYPE_E1
) {
3982 hc
->chan
[i
].slot_tx
= -1;
3983 hc
->chan
[i
].slot_rx
= -1;
3984 hc
->chan
[i
].conf
= -1;
3985 mode_hfcmulti(hc
, i
, dch
->dev
.D
.protocol
, -1, 0, -1, 0);
3986 timer_setup(&dch
->timer
, hfcmulti_dbusy_timer
, 0);
3987 hc
->chan
[i
- 2].slot_tx
= -1;
3988 hc
->chan
[i
- 2].slot_rx
= -1;
3989 hc
->chan
[i
- 2].conf
= -1;
3990 mode_hfcmulti(hc
, i
- 2, ISDN_P_NONE
, -1, 0, -1, 0);
3991 hc
->chan
[i
- 1].slot_tx
= -1;
3992 hc
->chan
[i
- 1].slot_rx
= -1;
3993 hc
->chan
[i
- 1].conf
= -1;
3994 mode_hfcmulti(hc
, i
- 1, ISDN_P_NONE
, -1, 0, -1, 0);
3995 /* select interface */
3996 HFC_outb(hc
, R_ST_SEL
, pt
);
3997 /* undocumented: delay after R_ST_SEL */
3999 if (dch
->dev
.D
.protocol
== ISDN_P_NT_S0
) {
4000 if (debug
& DEBUG_HFCMULTI_INIT
)
4002 "%s: ST port %d is NT-mode\n",
4005 HFC_outb(hc
, A_ST_CLK_DLY
, clockdelay_nt
);
4006 a_st_wr_state
= 1; /* G1 */
4007 hc
->hw
.a_st_ctrl0
[pt
] = V_ST_MD
;
4009 if (debug
& DEBUG_HFCMULTI_INIT
)
4011 "%s: ST port %d is TE-mode\n",
4014 HFC_outb(hc
, A_ST_CLK_DLY
, clockdelay_te
);
4015 a_st_wr_state
= 2; /* F2 */
4016 hc
->hw
.a_st_ctrl0
[pt
] = 0;
4018 if (!test_bit(HFC_CFG_NONCAP_TX
, &hc
->chan
[i
].cfg
))
4019 hc
->hw
.a_st_ctrl0
[pt
] |= V_TX_LI
;
4020 if (hc
->ctype
== HFC_TYPE_XHFC
) {
4021 hc
->hw
.a_st_ctrl0
[pt
] |= 0x40 /* V_ST_PU_CTRL */;
4022 HFC_outb(hc
, 0x35 /* A_ST_CTRL3 */,
4023 0x7c << 1 /* V_ST_PULSE */);
4026 HFC_outb(hc
, A_ST_CTRL0
, hc
->hw
.a_st_ctrl0
[pt
]);
4027 /* disable E-channel */
4028 if ((dch
->dev
.D
.protocol
== ISDN_P_NT_S0
) ||
4029 test_bit(HFC_CFG_DIS_ECHANNEL
, &hc
->chan
[i
].cfg
))
4030 HFC_outb(hc
, A_ST_CTRL1
, V_E_IGNO
);
4032 HFC_outb(hc
, A_ST_CTRL1
, 0);
4033 /* enable B-channel receive */
4034 HFC_outb(hc
, A_ST_CTRL2
, V_B1_RX_EN
| V_B2_RX_EN
);
4035 /* state machine setup */
4036 HFC_outb(hc
, A_ST_WR_STATE
, a_st_wr_state
| V_ST_LD_STA
);
4037 udelay(6); /* wait at least 5,21us */
4038 HFC_outb(hc
, A_ST_WR_STATE
, a_st_wr_state
);
4039 hc
->hw
.r_sci_msk
|= 1 << pt
;
4040 /* state machine interrupts */
4041 HFC_outb(hc
, R_SCI_MSK
, hc
->hw
.r_sci_msk
);
4042 /* unset sync on port */
4043 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4045 ~(1 << hc
->chan
[dch
->slot
].port
);
4046 plxsd_checksync(hc
, 0);
4049 if (debug
& DEBUG_HFCMULTI_INIT
)
4050 printk("%s: done\n", __func__
);
4055 open_dchannel(struct hfc_multi
*hc
, struct dchannel
*dch
,
4056 struct channel_req
*rq
)
4061 if (debug
& DEBUG_HW_OPEN
)
4062 printk(KERN_DEBUG
"%s: dev(%d) open from %p\n", __func__
,
4063 dch
->dev
.id
, __builtin_return_address(0));
4064 if (rq
->protocol
== ISDN_P_NONE
)
4066 if ((dch
->dev
.D
.protocol
!= ISDN_P_NONE
) &&
4067 (dch
->dev
.D
.protocol
!= rq
->protocol
)) {
4068 if (debug
& DEBUG_HFCMULTI_MODE
)
4069 printk(KERN_DEBUG
"%s: change protocol %x to %x\n",
4070 __func__
, dch
->dev
.D
.protocol
, rq
->protocol
);
4072 if ((dch
->dev
.D
.protocol
== ISDN_P_TE_S0
) &&
4073 (rq
->protocol
!= ISDN_P_TE_S0
))
4074 l1_event(dch
->l1
, CLOSE_CHANNEL
);
4075 if (dch
->dev
.D
.protocol
!= rq
->protocol
) {
4076 if (rq
->protocol
== ISDN_P_TE_S0
) {
4077 err
= create_l1(dch
, hfcm_l1callback
);
4081 dch
->dev
.D
.protocol
= rq
->protocol
;
4082 spin_lock_irqsave(&hc
->lock
, flags
);
4083 hfcmulti_initmode(dch
);
4084 spin_unlock_irqrestore(&hc
->lock
, flags
);
4086 if (test_bit(FLG_ACTIVE
, &dch
->Flags
))
4087 _queue_data(&dch
->dev
.D
, PH_ACTIVATE_IND
, MISDN_ID_ANY
,
4088 0, NULL
, GFP_KERNEL
);
4089 rq
->ch
= &dch
->dev
.D
;
4090 if (!try_module_get(THIS_MODULE
))
4091 printk(KERN_WARNING
"%s:cannot get module\n", __func__
);
4096 open_bchannel(struct hfc_multi
*hc
, struct dchannel
*dch
,
4097 struct channel_req
*rq
)
4099 struct bchannel
*bch
;
4102 if (!test_channelmap(rq
->adr
.channel
, dch
->dev
.channelmap
))
4104 if (rq
->protocol
== ISDN_P_NONE
)
4106 if (hc
->ctype
== HFC_TYPE_E1
)
4107 ch
= rq
->adr
.channel
;
4109 ch
= (rq
->adr
.channel
- 1) + (dch
->slot
- 2);
4110 bch
= hc
->chan
[ch
].bch
;
4112 printk(KERN_ERR
"%s:internal error ch %d has no bch\n",
4116 if (test_and_set_bit(FLG_OPEN
, &bch
->Flags
))
4117 return -EBUSY
; /* b-channel can be only open once */
4118 bch
->ch
.protocol
= rq
->protocol
;
4119 hc
->chan
[ch
].rx_off
= 0;
4121 if (!try_module_get(THIS_MODULE
))
4122 printk(KERN_WARNING
"%s:cannot get module\n", __func__
);
4127 * device control function
4130 channel_dctrl(struct dchannel
*dch
, struct mISDN_ctrl_req
*cq
)
4132 struct hfc_multi
*hc
= dch
->hw
;
4134 int wd_mode
, wd_cnt
;
4137 case MISDN_CTRL_GETOP
:
4138 cq
->op
= MISDN_CTRL_HFC_OP
| MISDN_CTRL_L1_TIMER3
;
4140 case MISDN_CTRL_HFC_WD_INIT
: /* init the watchdog */
4141 wd_cnt
= cq
->p1
& 0xf;
4142 wd_mode
= !!(cq
->p1
>> 4);
4143 if (debug
& DEBUG_HFCMULTI_MSG
)
4144 printk(KERN_DEBUG
"%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4145 ", counter 0x%x\n", __func__
,
4146 wd_mode
? "AUTO" : "MANUAL", wd_cnt
);
4147 /* set the watchdog timer */
4148 HFC_outb(hc
, R_TI_WD
, poll_timer
| (wd_cnt
<< 4));
4149 hc
->hw
.r_bert_wd_md
= (wd_mode
? V_AUTO_WD_RES
: 0);
4150 if (hc
->ctype
== HFC_TYPE_XHFC
)
4151 hc
->hw
.r_bert_wd_md
|= 0x40 /* V_WD_EN */;
4152 /* init the watchdog register and reset the counter */
4153 HFC_outb(hc
, R_BERT_WD_MD
, hc
->hw
.r_bert_wd_md
| V_WD_RES
);
4154 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4155 /* enable the watchdog output for Speech-Design */
4156 HFC_outb(hc
, R_GPIO_SEL
, V_GPIO_SEL7
);
4157 HFC_outb(hc
, R_GPIO_EN1
, V_GPIO_EN15
);
4158 HFC_outb(hc
, R_GPIO_OUT1
, 0);
4159 HFC_outb(hc
, R_GPIO_OUT1
, V_GPIO_OUT15
);
4162 case MISDN_CTRL_HFC_WD_RESET
: /* reset the watchdog counter */
4163 if (debug
& DEBUG_HFCMULTI_MSG
)
4164 printk(KERN_DEBUG
"%s: MISDN_CTRL_HFC_WD_RESET\n",
4166 HFC_outb(hc
, R_BERT_WD_MD
, hc
->hw
.r_bert_wd_md
| V_WD_RES
);
4168 case MISDN_CTRL_L1_TIMER3
:
4169 ret
= l1_event(dch
->l1
, HW_TIMER3_VALUE
| (cq
->p1
& 0xff));
4172 printk(KERN_WARNING
"%s: unknown Op %x\n",
4181 hfcm_dctrl(struct mISDNchannel
*ch
, u_int cmd
, void *arg
)
4183 struct mISDNdevice
*dev
= container_of(ch
, struct mISDNdevice
, D
);
4184 struct dchannel
*dch
= container_of(dev
, struct dchannel
, dev
);
4185 struct hfc_multi
*hc
= dch
->hw
;
4186 struct channel_req
*rq
;
4190 if (dch
->debug
& DEBUG_HW
)
4191 printk(KERN_DEBUG
"%s: cmd:%x %p\n",
4192 __func__
, cmd
, arg
);
4196 switch (rq
->protocol
) {
4199 if (hc
->ctype
== HFC_TYPE_E1
) {
4203 err
= open_dchannel(hc
, dch
, rq
); /* locked there */
4207 if (hc
->ctype
!= HFC_TYPE_E1
) {
4211 err
= open_dchannel(hc
, dch
, rq
); /* locked there */
4214 spin_lock_irqsave(&hc
->lock
, flags
);
4215 err
= open_bchannel(hc
, dch
, rq
);
4216 spin_unlock_irqrestore(&hc
->lock
, flags
);
4220 if (debug
& DEBUG_HW_OPEN
)
4221 printk(KERN_DEBUG
"%s: dev(%d) close from %p\n",
4222 __func__
, dch
->dev
.id
,
4223 __builtin_return_address(0));
4224 module_put(THIS_MODULE
);
4226 case CONTROL_CHANNEL
:
4227 spin_lock_irqsave(&hc
->lock
, flags
);
4228 err
= channel_dctrl(dch
, arg
);
4229 spin_unlock_irqrestore(&hc
->lock
, flags
);
4232 if (dch
->debug
& DEBUG_HW
)
4233 printk(KERN_DEBUG
"%s: unknown command %x\n",
4241 clockctl(void *priv
, int enable
)
4243 struct hfc_multi
*hc
= priv
;
4245 hc
->iclock_on
= enable
;
4250 * initialize the card
4254 * start timer irq, wait some time and check if we have interrupts.
4255 * if not, reset chip and try again.
4258 init_card(struct hfc_multi
*hc
)
4262 void __iomem
*plx_acc
;
4265 if (debug
& DEBUG_HFCMULTI_INIT
)
4266 printk(KERN_DEBUG
"%s: entered\n", __func__
);
4268 spin_lock_irqsave(&hc
->lock
, flags
);
4269 /* set interrupts but leave global interrupt disabled */
4270 hc
->hw
.r_irq_ctrl
= V_FIFO_IRQ
;
4272 spin_unlock_irqrestore(&hc
->lock
, flags
);
4274 if (request_irq(hc
->irq
, hfcmulti_interrupt
, IRQF_SHARED
,
4276 printk(KERN_WARNING
"mISDN: Could not get interrupt %d.\n",
4282 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4283 spin_lock_irqsave(&plx_lock
, plx_flags
);
4284 plx_acc
= hc
->plx_membase
+ PLX_INTCSR
;
4285 writew((PLX_INTCSR_PCIINT_ENABLE
| PLX_INTCSR_LINTI1_ENABLE
),
4286 plx_acc
); /* enable PCI & LINT1 irq */
4287 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
4290 if (debug
& DEBUG_HFCMULTI_INIT
)
4291 printk(KERN_DEBUG
"%s: IRQ %d count %d\n",
4292 __func__
, hc
->irq
, hc
->irqcnt
);
4293 err
= init_chip(hc
);
4297 * Finally enable IRQ output
4298 * this is only allowed, if an IRQ routine is already
4299 * established for this HFC, so don't do that earlier
4301 spin_lock_irqsave(&hc
->lock
, flags
);
4303 spin_unlock_irqrestore(&hc
->lock
, flags
);
4304 /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4305 set_current_state(TASK_UNINTERRUPTIBLE
);
4306 schedule_timeout((100 * HZ
) / 1000); /* Timeout 100ms */
4307 /* turn IRQ off until chip is completely initialized */
4308 spin_lock_irqsave(&hc
->lock
, flags
);
4310 spin_unlock_irqrestore(&hc
->lock
, flags
);
4311 if (debug
& DEBUG_HFCMULTI_INIT
)
4312 printk(KERN_DEBUG
"%s: IRQ %d count %d\n",
4313 __func__
, hc
->irq
, hc
->irqcnt
);
4315 if (debug
& DEBUG_HFCMULTI_INIT
)
4316 printk(KERN_DEBUG
"%s: done\n", __func__
);
4320 if (test_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
)) {
4321 printk(KERN_INFO
"ignoring missing interrupts\n");
4325 printk(KERN_ERR
"HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4331 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4332 spin_lock_irqsave(&plx_lock
, plx_flags
);
4333 plx_acc
= hc
->plx_membase
+ PLX_INTCSR
;
4334 writew(0x00, plx_acc
); /*disable IRQs*/
4335 spin_unlock_irqrestore(&plx_lock
, plx_flags
);
4338 if (debug
& DEBUG_HFCMULTI_INIT
)
4339 printk(KERN_DEBUG
"%s: free irq %d\n", __func__
, hc
->irq
);
4341 free_irq(hc
->irq
, hc
);
4345 if (debug
& DEBUG_HFCMULTI_INIT
)
4346 printk(KERN_DEBUG
"%s: done (err=%d)\n", __func__
, err
);
4351 * find pci device and set it up
4355 setup_pci(struct hfc_multi
*hc
, struct pci_dev
*pdev
,
4356 const struct pci_device_id
*ent
)
4358 struct hm_map
*m
= (struct hm_map
*)ent
->driver_data
;
4361 "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4362 m
->vendor_name
, m
->card_name
, m
->clock2
? "double" : "normal");
4366 test_and_set_bit(HFC_CHIP_CLOCK2
, &hc
->chip
);
4368 if (ent
->device
== 0xB410) {
4369 test_and_set_bit(HFC_CHIP_B410P
, &hc
->chip
);
4370 test_and_set_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
);
4371 test_and_clear_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
4375 if (hc
->pci_dev
->irq
<= 0) {
4376 printk(KERN_WARNING
"HFC-multi: No IRQ for PCI card found.\n");
4379 if (pci_enable_device(hc
->pci_dev
)) {
4380 printk(KERN_WARNING
"HFC-multi: Error enabling PCI card.\n");
4384 hc
->ledstate
= 0xAFFEAFFE;
4385 hc
->opticalsupport
= m
->opticalsupport
;
4388 hc
->pci_membase
= NULL
;
4389 hc
->plx_membase
= NULL
;
4391 /* set memory access methods */
4392 if (m
->io_mode
) /* use mode from card config */
4393 hc
->io_mode
= m
->io_mode
;
4394 switch (hc
->io_mode
) {
4395 case HFC_IO_MODE_PLXSD
:
4396 test_and_set_bit(HFC_CHIP_PLXSD
, &hc
->chip
);
4397 hc
->slots
= 128; /* required */
4398 hc
->HFC_outb
= HFC_outb_pcimem
;
4399 hc
->HFC_inb
= HFC_inb_pcimem
;
4400 hc
->HFC_inw
= HFC_inw_pcimem
;
4401 hc
->HFC_wait
= HFC_wait_pcimem
;
4402 hc
->read_fifo
= read_fifo_pcimem
;
4403 hc
->write_fifo
= write_fifo_pcimem
;
4404 hc
->plx_origmembase
= hc
->pci_dev
->resource
[0].start
;
4405 /* MEMBASE 1 is PLX PCI Bridge */
4407 if (!hc
->plx_origmembase
) {
4409 "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4410 pci_disable_device(hc
->pci_dev
);
4414 hc
->plx_membase
= ioremap(hc
->plx_origmembase
, 0x80);
4415 if (!hc
->plx_membase
) {
4417 "HFC-multi: failed to remap plx address space. "
4418 "(internal error)\n");
4419 pci_disable_device(hc
->pci_dev
);
4423 "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4424 (u_long
)hc
->plx_membase
, hc
->plx_origmembase
);
4426 hc
->pci_origmembase
= hc
->pci_dev
->resource
[2].start
;
4427 /* MEMBASE 1 is PLX PCI Bridge */
4428 if (!hc
->pci_origmembase
) {
4430 "HFC-multi: No IO-Memory for PCI card found\n");
4431 pci_disable_device(hc
->pci_dev
);
4435 hc
->pci_membase
= ioremap(hc
->pci_origmembase
, 0x400);
4436 if (!hc
->pci_membase
) {
4437 printk(KERN_WARNING
"HFC-multi: failed to remap io "
4438 "address space. (internal error)\n");
4439 pci_disable_device(hc
->pci_dev
);
4444 "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4446 hc
->id
, (u_long
)hc
->pci_membase
, hc
->pci_origmembase
,
4447 hc
->pci_dev
->irq
, HZ
, hc
->leds
);
4448 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, PCI_ENA_MEMIO
);
4450 case HFC_IO_MODE_PCIMEM
:
4451 hc
->HFC_outb
= HFC_outb_pcimem
;
4452 hc
->HFC_inb
= HFC_inb_pcimem
;
4453 hc
->HFC_inw
= HFC_inw_pcimem
;
4454 hc
->HFC_wait
= HFC_wait_pcimem
;
4455 hc
->read_fifo
= read_fifo_pcimem
;
4456 hc
->write_fifo
= write_fifo_pcimem
;
4457 hc
->pci_origmembase
= hc
->pci_dev
->resource
[1].start
;
4458 if (!hc
->pci_origmembase
) {
4460 "HFC-multi: No IO-Memory for PCI card found\n");
4461 pci_disable_device(hc
->pci_dev
);
4465 hc
->pci_membase
= ioremap(hc
->pci_origmembase
, 256);
4466 if (!hc
->pci_membase
) {
4468 "HFC-multi: failed to remap io address space. "
4469 "(internal error)\n");
4470 pci_disable_device(hc
->pci_dev
);
4473 printk(KERN_INFO
"card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4474 "%d HZ %d leds-type %d\n", hc
->id
, (u_long
)hc
->pci_membase
,
4475 hc
->pci_origmembase
, hc
->pci_dev
->irq
, HZ
, hc
->leds
);
4476 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, PCI_ENA_MEMIO
);
4478 case HFC_IO_MODE_REGIO
:
4479 hc
->HFC_outb
= HFC_outb_regio
;
4480 hc
->HFC_inb
= HFC_inb_regio
;
4481 hc
->HFC_inw
= HFC_inw_regio
;
4482 hc
->HFC_wait
= HFC_wait_regio
;
4483 hc
->read_fifo
= read_fifo_regio
;
4484 hc
->write_fifo
= write_fifo_regio
;
4485 hc
->pci_iobase
= (u_int
) hc
->pci_dev
->resource
[0].start
;
4486 if (!hc
->pci_iobase
) {
4488 "HFC-multi: No IO for PCI card found\n");
4489 pci_disable_device(hc
->pci_dev
);
4493 if (!request_region(hc
->pci_iobase
, 8, "hfcmulti")) {
4494 printk(KERN_WARNING
"HFC-multi: failed to request "
4495 "address space at 0x%08lx (internal error)\n",
4497 pci_disable_device(hc
->pci_dev
);
4502 "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4503 m
->vendor_name
, m
->card_name
, (u_int
) hc
->pci_iobase
,
4504 hc
->pci_dev
->irq
, HZ
, hc
->leds
);
4505 pci_write_config_word(hc
->pci_dev
, PCI_COMMAND
, PCI_ENA_REGIO
);
4508 printk(KERN_WARNING
"HFC-multi: Invalid IO mode.\n");
4509 pci_disable_device(hc
->pci_dev
);
4513 pci_set_drvdata(hc
->pci_dev
, hc
);
4515 /* At this point the needed PCI config is done */
4516 /* fifos are still not enabled */
4526 release_port(struct hfc_multi
*hc
, struct dchannel
*dch
)
4530 struct bchannel
*pb
;
4533 pt
= hc
->chan
[ci
].port
;
4535 if (debug
& DEBUG_HFCMULTI_INIT
)
4536 printk(KERN_DEBUG
"%s: entered for port %d\n",
4539 if (pt
>= hc
->ports
) {
4540 printk(KERN_WARNING
"%s: ERROR port out of range (%d).\n",
4545 if (debug
& DEBUG_HFCMULTI_INIT
)
4546 printk(KERN_DEBUG
"%s: releasing port=%d\n",
4549 if (dch
->dev
.D
.protocol
== ISDN_P_TE_S0
)
4550 l1_event(dch
->l1
, CLOSE_CHANNEL
);
4552 hc
->chan
[ci
].dch
= NULL
;
4554 if (hc
->created
[pt
]) {
4555 hc
->created
[pt
] = 0;
4556 mISDN_unregister_device(&dch
->dev
);
4559 spin_lock_irqsave(&hc
->lock
, flags
);
4561 if (dch
->timer
.function
) {
4562 del_timer(&dch
->timer
);
4563 dch
->timer
.function
= NULL
;
4566 if (hc
->ctype
== HFC_TYPE_E1
) { /* E1 */
4568 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4569 hc
->syncronized
= 0;
4570 plxsd_checksync(hc
, 1);
4573 for (i
= 0; i
<= 31; i
++) {
4574 if (!((1 << i
) & hc
->bmask
[pt
])) /* skip unused chan */
4576 if (hc
->chan
[i
].bch
) {
4577 if (debug
& DEBUG_HFCMULTI_INIT
)
4579 "%s: free port %d channel %d\n",
4580 __func__
, hc
->chan
[i
].port
+ 1, i
);
4581 pb
= hc
->chan
[i
].bch
;
4582 hc
->chan
[i
].bch
= NULL
;
4583 spin_unlock_irqrestore(&hc
->lock
, flags
);
4584 mISDN_freebchannel(pb
);
4586 kfree(hc
->chan
[i
].coeff
);
4587 spin_lock_irqsave(&hc
->lock
, flags
);
4592 if (test_bit(HFC_CHIP_PLXSD
, &hc
->chip
)) {
4594 ~(1 << hc
->chan
[ci
].port
);
4595 plxsd_checksync(hc
, 1);
4598 if (hc
->chan
[ci
- 2].bch
) {
4599 if (debug
& DEBUG_HFCMULTI_INIT
)
4601 "%s: free port %d channel %d\n",
4602 __func__
, hc
->chan
[ci
- 2].port
+ 1,
4604 pb
= hc
->chan
[ci
- 2].bch
;
4605 hc
->chan
[ci
- 2].bch
= NULL
;
4606 spin_unlock_irqrestore(&hc
->lock
, flags
);
4607 mISDN_freebchannel(pb
);
4609 kfree(hc
->chan
[ci
- 2].coeff
);
4610 spin_lock_irqsave(&hc
->lock
, flags
);
4612 if (hc
->chan
[ci
- 1].bch
) {
4613 if (debug
& DEBUG_HFCMULTI_INIT
)
4615 "%s: free port %d channel %d\n",
4616 __func__
, hc
->chan
[ci
- 1].port
+ 1,
4618 pb
= hc
->chan
[ci
- 1].bch
;
4619 hc
->chan
[ci
- 1].bch
= NULL
;
4620 spin_unlock_irqrestore(&hc
->lock
, flags
);
4621 mISDN_freebchannel(pb
);
4623 kfree(hc
->chan
[ci
- 1].coeff
);
4624 spin_lock_irqsave(&hc
->lock
, flags
);
4628 spin_unlock_irqrestore(&hc
->lock
, flags
);
4630 if (debug
& DEBUG_HFCMULTI_INIT
)
4631 printk(KERN_DEBUG
"%s: free port %d channel D(%d)\n", __func__
,
4633 mISDN_freedchannel(dch
);
4636 if (debug
& DEBUG_HFCMULTI_INIT
)
4637 printk(KERN_DEBUG
"%s: done!\n", __func__
);
4641 release_card(struct hfc_multi
*hc
)
4646 if (debug
& DEBUG_HFCMULTI_INIT
)
4647 printk(KERN_DEBUG
"%s: release card (%d) entered\n",
4650 /* unregister clock source */
4652 mISDN_unregister_clock(hc
->iclock
);
4654 /* disable and free irq */
4655 spin_lock_irqsave(&hc
->lock
, flags
);
4657 spin_unlock_irqrestore(&hc
->lock
, flags
);
4660 if (debug
& DEBUG_HFCMULTI_INIT
)
4661 printk(KERN_DEBUG
"%s: free irq %d (hc=%p)\n",
4662 __func__
, hc
->irq
, hc
);
4663 free_irq(hc
->irq
, hc
);
4668 /* disable D-channels & B-channels */
4669 if (debug
& DEBUG_HFCMULTI_INIT
)
4670 printk(KERN_DEBUG
"%s: disable all channels (d and b)\n",
4672 for (ch
= 0; ch
<= 31; ch
++) {
4673 if (hc
->chan
[ch
].dch
)
4674 release_port(hc
, hc
->chan
[ch
].dch
);
4681 /* release hardware */
4682 release_io_hfcmulti(hc
);
4684 if (debug
& DEBUG_HFCMULTI_INIT
)
4685 printk(KERN_DEBUG
"%s: remove instance from list\n",
4687 list_del(&hc
->list
);
4689 if (debug
& DEBUG_HFCMULTI_INIT
)
4690 printk(KERN_DEBUG
"%s: delete instance\n", __func__
);
4691 if (hc
== syncmaster
)
4694 if (debug
& DEBUG_HFCMULTI_INIT
)
4695 printk(KERN_DEBUG
"%s: card successfully removed\n",
4700 init_e1_port_hw(struct hfc_multi
*hc
, struct hm_map
*m
)
4702 /* set optical line type */
4703 if (port
[Port_cnt
] & 0x001) {
4704 if (!m
->opticalsupport
) {
4706 "This board has no optical "
4709 if (debug
& DEBUG_HFCMULTI_INIT
)
4711 "%s: PORT set optical "
4712 "interfacs: card(%d) "
4716 test_and_set_bit(HFC_CFG_OPTICAL
,
4717 &hc
->chan
[hc
->dnum
[0]].cfg
);
4720 /* set LOS report */
4721 if (port
[Port_cnt
] & 0x004) {
4722 if (debug
& DEBUG_HFCMULTI_INIT
)
4723 printk(KERN_DEBUG
"%s: PORT set "
4724 "LOS report: card(%d) port(%d)\n",
4725 __func__
, HFC_cnt
+ 1, 1);
4726 test_and_set_bit(HFC_CFG_REPORT_LOS
,
4727 &hc
->chan
[hc
->dnum
[0]].cfg
);
4729 /* set AIS report */
4730 if (port
[Port_cnt
] & 0x008) {
4731 if (debug
& DEBUG_HFCMULTI_INIT
)
4732 printk(KERN_DEBUG
"%s: PORT set "
4733 "AIS report: card(%d) port(%d)\n",
4734 __func__
, HFC_cnt
+ 1, 1);
4735 test_and_set_bit(HFC_CFG_REPORT_AIS
,
4736 &hc
->chan
[hc
->dnum
[0]].cfg
);
4738 /* set SLIP report */
4739 if (port
[Port_cnt
] & 0x010) {
4740 if (debug
& DEBUG_HFCMULTI_INIT
)
4742 "%s: PORT set SLIP report: "
4743 "card(%d) port(%d)\n",
4744 __func__
, HFC_cnt
+ 1, 1);
4745 test_and_set_bit(HFC_CFG_REPORT_SLIP
,
4746 &hc
->chan
[hc
->dnum
[0]].cfg
);
4748 /* set RDI report */
4749 if (port
[Port_cnt
] & 0x020) {
4750 if (debug
& DEBUG_HFCMULTI_INIT
)
4752 "%s: PORT set RDI report: "
4753 "card(%d) port(%d)\n",
4754 __func__
, HFC_cnt
+ 1, 1);
4755 test_and_set_bit(HFC_CFG_REPORT_RDI
,
4756 &hc
->chan
[hc
->dnum
[0]].cfg
);
4758 /* set CRC-4 Mode */
4759 if (!(port
[Port_cnt
] & 0x100)) {
4760 if (debug
& DEBUG_HFCMULTI_INIT
)
4761 printk(KERN_DEBUG
"%s: PORT turn on CRC4 report:"
4762 " card(%d) port(%d)\n",
4763 __func__
, HFC_cnt
+ 1, 1);
4764 test_and_set_bit(HFC_CFG_CRC4
,
4765 &hc
->chan
[hc
->dnum
[0]].cfg
);
4767 if (debug
& DEBUG_HFCMULTI_INIT
)
4768 printk(KERN_DEBUG
"%s: PORT turn off CRC4"
4769 " report: card(%d) port(%d)\n",
4770 __func__
, HFC_cnt
+ 1, 1);
4772 /* set forced clock */
4773 if (port
[Port_cnt
] & 0x0200) {
4774 if (debug
& DEBUG_HFCMULTI_INIT
)
4775 printk(KERN_DEBUG
"%s: PORT force getting clock from "
4776 "E1: card(%d) port(%d)\n",
4777 __func__
, HFC_cnt
+ 1, 1);
4778 test_and_set_bit(HFC_CHIP_E1CLOCK_GET
, &hc
->chip
);
4780 if (port
[Port_cnt
] & 0x0400) {
4781 if (debug
& DEBUG_HFCMULTI_INIT
)
4782 printk(KERN_DEBUG
"%s: PORT force putting clock to "
4783 "E1: card(%d) port(%d)\n",
4784 __func__
, HFC_cnt
+ 1, 1);
4785 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT
, &hc
->chip
);
4788 if (port
[Port_cnt
] & 0x0800) {
4789 if (debug
& DEBUG_HFCMULTI_INIT
)
4790 printk(KERN_DEBUG
"%s: PORT disable JATT PLL on "
4791 "E1: card(%d) port(%d)\n",
4792 __func__
, HFC_cnt
+ 1, 1);
4793 test_and_set_bit(HFC_CHIP_RX_SYNC
, &hc
->chip
);
4795 /* set elastic jitter buffer */
4796 if (port
[Port_cnt
] & 0x3000) {
4797 hc
->chan
[hc
->dnum
[0]].jitter
= (port
[Port_cnt
]>>12) & 0x3;
4798 if (debug
& DEBUG_HFCMULTI_INIT
)
4800 "%s: PORT set elastic "
4801 "buffer to %d: card(%d) port(%d)\n",
4802 __func__
, hc
->chan
[hc
->dnum
[0]].jitter
,
4805 hc
->chan
[hc
->dnum
[0]].jitter
= 2; /* default */
4809 init_e1_port(struct hfc_multi
*hc
, struct hm_map
*m
, int pt
)
4811 struct dchannel
*dch
;
4812 struct bchannel
*bch
;
4814 char name
[MISDN_MAX_IDLEN
];
4817 dch
= kzalloc(sizeof(struct dchannel
), GFP_KERNEL
);
4821 mISDN_initdchannel(dch
, MAX_DFRAME_LEN_L1
, ph_state_change
);
4823 dch
->dev
.Dprotocols
= (1 << ISDN_P_TE_E1
) | (1 << ISDN_P_NT_E1
);
4824 dch
->dev
.Bprotocols
= (1 << (ISDN_P_B_RAW
& ISDN_P_B_MASK
)) |
4825 (1 << (ISDN_P_B_HDLC
& ISDN_P_B_MASK
));
4826 dch
->dev
.D
.send
= handle_dmsg
;
4827 dch
->dev
.D
.ctrl
= hfcm_dctrl
;
4828 dch
->slot
= hc
->dnum
[pt
];
4829 hc
->chan
[hc
->dnum
[pt
]].dch
= dch
;
4830 hc
->chan
[hc
->dnum
[pt
]].port
= pt
;
4831 hc
->chan
[hc
->dnum
[pt
]].nt_timer
= -1;
4832 for (ch
= 1; ch
<= 31; ch
++) {
4833 if (!((1 << ch
) & hc
->bmask
[pt
])) /* skip unused channel */
4835 bch
= kzalloc(sizeof(struct bchannel
), GFP_KERNEL
);
4837 printk(KERN_ERR
"%s: no memory for bchannel\n",
4842 hc
->chan
[ch
].coeff
= kzalloc(512, GFP_KERNEL
);
4843 if (!hc
->chan
[ch
].coeff
) {
4844 printk(KERN_ERR
"%s: no memory for coeffs\n",
4853 mISDN_initbchannel(bch
, MAX_DATA_MEM
, poll
>> 1);
4855 bch
->ch
.send
= handle_bmsg
;
4856 bch
->ch
.ctrl
= hfcm_bctrl
;
4858 list_add(&bch
->ch
.list
, &dch
->dev
.bchannels
);
4859 hc
->chan
[ch
].bch
= bch
;
4860 hc
->chan
[ch
].port
= pt
;
4861 set_channelmap(bch
->nr
, dch
->dev
.channelmap
);
4864 dch
->dev
.nrbchan
= bcount
;
4866 init_e1_port_hw(hc
, m
);
4868 snprintf(name
, MISDN_MAX_IDLEN
- 1, "hfc-e1.%d-%d",
4871 snprintf(name
, MISDN_MAX_IDLEN
- 1, "hfc-e1.%d", HFC_cnt
+ 1);
4872 ret
= mISDN_register_device(&dch
->dev
, &hc
->pci_dev
->dev
, name
);
4875 hc
->created
[pt
] = 1;
4878 release_port(hc
, dch
);
4883 init_multi_port(struct hfc_multi
*hc
, int pt
)
4885 struct dchannel
*dch
;
4886 struct bchannel
*bch
;
4888 char name
[MISDN_MAX_IDLEN
];
4890 dch
= kzalloc(sizeof(struct dchannel
), GFP_KERNEL
);
4894 mISDN_initdchannel(dch
, MAX_DFRAME_LEN_L1
, ph_state_change
);
4896 dch
->dev
.Dprotocols
= (1 << ISDN_P_TE_S0
) | (1 << ISDN_P_NT_S0
);
4897 dch
->dev
.Bprotocols
= (1 << (ISDN_P_B_RAW
& ISDN_P_B_MASK
)) |
4898 (1 << (ISDN_P_B_HDLC
& ISDN_P_B_MASK
));
4899 dch
->dev
.D
.send
= handle_dmsg
;
4900 dch
->dev
.D
.ctrl
= hfcm_dctrl
;
4901 dch
->dev
.nrbchan
= 2;
4904 hc
->chan
[i
+ 2].dch
= dch
;
4905 hc
->chan
[i
+ 2].port
= pt
;
4906 hc
->chan
[i
+ 2].nt_timer
= -1;
4907 for (ch
= 0; ch
< dch
->dev
.nrbchan
; ch
++) {
4908 bch
= kzalloc(sizeof(struct bchannel
), GFP_KERNEL
);
4910 printk(KERN_ERR
"%s: no memory for bchannel\n",
4915 hc
->chan
[i
+ ch
].coeff
= kzalloc(512, GFP_KERNEL
);
4916 if (!hc
->chan
[i
+ ch
].coeff
) {
4917 printk(KERN_ERR
"%s: no memory for coeffs\n",
4926 mISDN_initbchannel(bch
, MAX_DATA_MEM
, poll
>> 1);
4928 bch
->ch
.send
= handle_bmsg
;
4929 bch
->ch
.ctrl
= hfcm_bctrl
;
4930 bch
->ch
.nr
= ch
+ 1;
4931 list_add(&bch
->ch
.list
, &dch
->dev
.bchannels
);
4932 hc
->chan
[i
+ ch
].bch
= bch
;
4933 hc
->chan
[i
+ ch
].port
= pt
;
4934 set_channelmap(bch
->nr
, dch
->dev
.channelmap
);
4936 /* set master clock */
4937 if (port
[Port_cnt
] & 0x001) {
4938 if (debug
& DEBUG_HFCMULTI_INIT
)
4940 "%s: PROTOCOL set master clock: "
4941 "card(%d) port(%d)\n",
4942 __func__
, HFC_cnt
+ 1, pt
+ 1);
4943 if (dch
->dev
.D
.protocol
!= ISDN_P_TE_S0
) {
4944 printk(KERN_ERR
"Error: Master clock "
4945 "for port(%d) of card(%d) is only"
4946 " possible with TE-mode\n",
4947 pt
+ 1, HFC_cnt
+ 1);
4951 if (hc
->masterclk
>= 0) {
4952 printk(KERN_ERR
"Error: Master clock "
4953 "for port(%d) of card(%d) already "
4954 "defined for port(%d)\n",
4955 pt
+ 1, HFC_cnt
+ 1, hc
->masterclk
+ 1);
4961 /* set transmitter line to non capacitive */
4962 if (port
[Port_cnt
] & 0x002) {
4963 if (debug
& DEBUG_HFCMULTI_INIT
)
4965 "%s: PROTOCOL set non capacitive "
4966 "transmitter: card(%d) port(%d)\n",
4967 __func__
, HFC_cnt
+ 1, pt
+ 1);
4968 test_and_set_bit(HFC_CFG_NONCAP_TX
,
4969 &hc
->chan
[i
+ 2].cfg
);
4971 /* disable E-channel */
4972 if (port
[Port_cnt
] & 0x004) {
4973 if (debug
& DEBUG_HFCMULTI_INIT
)
4975 "%s: PROTOCOL disable E-channel: "
4976 "card(%d) port(%d)\n",
4977 __func__
, HFC_cnt
+ 1, pt
+ 1);
4978 test_and_set_bit(HFC_CFG_DIS_ECHANNEL
,
4979 &hc
->chan
[i
+ 2].cfg
);
4981 if (hc
->ctype
== HFC_TYPE_XHFC
) {
4982 snprintf(name
, MISDN_MAX_IDLEN
- 1, "xhfc.%d-%d",
4983 HFC_cnt
+ 1, pt
+ 1);
4984 ret
= mISDN_register_device(&dch
->dev
, NULL
, name
);
4986 snprintf(name
, MISDN_MAX_IDLEN
- 1, "hfc-%ds.%d-%d",
4987 hc
->ctype
, HFC_cnt
+ 1, pt
+ 1);
4988 ret
= mISDN_register_device(&dch
->dev
, &hc
->pci_dev
->dev
, name
);
4992 hc
->created
[pt
] = 1;
4995 release_port(hc
, dch
);
5000 hfcmulti_init(struct hm_map
*m
, struct pci_dev
*pdev
,
5001 const struct pci_device_id
*ent
)
5005 struct hfc_multi
*hc
;
5007 u_char dips
= 0, pmj
= 0; /* dip settings, port mode Jumpers */
5011 if (HFC_cnt
>= MAX_CARDS
) {
5012 printk(KERN_ERR
"too many cards (max=%d).\n",
5016 if ((type
[HFC_cnt
] & 0xff) && (type
[HFC_cnt
] & 0xff) != m
->type
) {
5017 printk(KERN_WARNING
"HFC-MULTI: Card '%s:%s' type %d found but "
5018 "type[%d] %d was supplied as module parameter\n",
5019 m
->vendor_name
, m
->card_name
, m
->type
, HFC_cnt
,
5020 type
[HFC_cnt
] & 0xff);
5021 printk(KERN_WARNING
"HFC-MULTI: Load module without parameters "
5022 "first, to see cards and their types.");
5025 if (debug
& DEBUG_HFCMULTI_INIT
)
5026 printk(KERN_DEBUG
"%s: Registering %s:%s chip type %d (0x%x)\n",
5027 __func__
, m
->vendor_name
, m
->card_name
, m
->type
,
5030 /* allocate card+fifo structure */
5031 hc
= kzalloc(sizeof(struct hfc_multi
), GFP_KERNEL
);
5033 printk(KERN_ERR
"No kmem for HFC-Multi card\n");
5036 spin_lock_init(&hc
->lock
);
5038 hc
->ctype
= m
->type
;
5039 hc
->ports
= m
->ports
;
5041 hc
->pcm
= pcm
[HFC_cnt
];
5042 hc
->io_mode
= iomode
[HFC_cnt
];
5043 if (hc
->ctype
== HFC_TYPE_E1
&& dmask
[E1_cnt
]) {
5047 for (ch
= 0; ch
<= 31; ch
++) {
5048 if (!((1 << ch
) & dmask
[E1_cnt
]))
5051 hc
->bmask
[pt
] = bmask
[bmask_cnt
++];
5052 if ((maskcheck
& hc
->bmask
[pt
])
5053 || (dmask
[E1_cnt
] & hc
->bmask
[pt
])) {
5055 "HFC-E1 #%d has overlapping B-channels on fragment #%d\n",
5060 maskcheck
|= hc
->bmask
[pt
];
5062 "HFC-E1 #%d uses D-channel on slot %d and a B-channel map of 0x%08x\n",
5063 E1_cnt
+ 1, ch
, hc
->bmask
[pt
]);
5068 if (hc
->ctype
== HFC_TYPE_E1
&& !dmask
[E1_cnt
]) {
5069 /* default card layout */
5071 hc
->bmask
[0] = 0xfffefffe;
5075 /* set chip specific features */
5077 if (type
[HFC_cnt
] & 0x100) {
5078 test_and_set_bit(HFC_CHIP_ULAW
, &hc
->chip
);
5079 hc
->silence
= 0xff; /* ulaw silence */
5081 hc
->silence
= 0x2a; /* alaw silence */
5082 if ((poll
>> 1) > sizeof(hc
->silence_data
)) {
5083 printk(KERN_ERR
"HFCMULTI error: silence_data too small, "
5088 for (i
= 0; i
< (poll
>> 1); i
++)
5089 hc
->silence_data
[i
] = hc
->silence
;
5091 if (hc
->ctype
!= HFC_TYPE_XHFC
) {
5092 if (!(type
[HFC_cnt
] & 0x200))
5093 test_and_set_bit(HFC_CHIP_DTMF
, &hc
->chip
);
5094 test_and_set_bit(HFC_CHIP_CONF
, &hc
->chip
);
5097 if (type
[HFC_cnt
] & 0x800)
5098 test_and_set_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
5099 if (type
[HFC_cnt
] & 0x1000) {
5100 test_and_set_bit(HFC_CHIP_PCM_MASTER
, &hc
->chip
);
5101 test_and_clear_bit(HFC_CHIP_PCM_SLAVE
, &hc
->chip
);
5103 if (type
[HFC_cnt
] & 0x4000)
5104 test_and_set_bit(HFC_CHIP_EXRAM_128
, &hc
->chip
);
5105 if (type
[HFC_cnt
] & 0x8000)
5106 test_and_set_bit(HFC_CHIP_EXRAM_512
, &hc
->chip
);
5108 if (type
[HFC_cnt
] & 0x10000)
5110 if (type
[HFC_cnt
] & 0x20000)
5112 if (type
[HFC_cnt
] & 0x80000) {
5113 test_and_set_bit(HFC_CHIP_WATCHDOG
, &hc
->chip
);
5115 hc
->wdbyte
= V_GPIO_OUT2
;
5116 printk(KERN_NOTICE
"Watchdog enabled\n");
5120 /* setup pci, hc->slots may change due to PLXSD */
5121 ret_err
= setup_pci(hc
, pdev
, ent
);
5123 #ifdef CONFIG_MISDN_HFCMULTI_8xx
5124 ret_err
= setup_embedded(hc
, m
);
5127 printk(KERN_WARNING
"Embedded IO Mode not selected\n");
5132 if (hc
== syncmaster
)
5138 hc
->HFC_outb_nodebug
= hc
->HFC_outb
;
5139 hc
->HFC_inb_nodebug
= hc
->HFC_inb
;
5140 hc
->HFC_inw_nodebug
= hc
->HFC_inw
;
5141 hc
->HFC_wait_nodebug
= hc
->HFC_wait
;
5142 #ifdef HFC_REGISTER_DEBUG
5143 hc
->HFC_outb
= HFC_outb_debug
;
5144 hc
->HFC_inb
= HFC_inb_debug
;
5145 hc
->HFC_inw
= HFC_inw_debug
;
5146 hc
->HFC_wait
= HFC_wait_debug
;
5148 /* create channels */
5149 for (pt
= 0; pt
< hc
->ports
; pt
++) {
5150 if (Port_cnt
>= MAX_PORTS
) {
5151 printk(KERN_ERR
"too many ports (max=%d).\n",
5156 if (hc
->ctype
== HFC_TYPE_E1
)
5157 ret_err
= init_e1_port(hc
, m
, pt
);
5159 ret_err
= init_multi_port(hc
, pt
);
5160 if (debug
& DEBUG_HFCMULTI_INIT
)
5162 "%s: Registering D-channel, card(%d) port(%d) "
5164 __func__
, HFC_cnt
+ 1, pt
+ 1, ret_err
);
5167 while (pt
) { /* release already registered ports */
5169 if (hc
->ctype
== HFC_TYPE_E1
)
5171 hc
->chan
[hc
->dnum
[pt
]].dch
);
5174 hc
->chan
[(pt
<< 2) + 2].dch
);
5178 if (hc
->ctype
!= HFC_TYPE_E1
)
5179 Port_cnt
++; /* for each S0 port */
5181 if (hc
->ctype
== HFC_TYPE_E1
) {
5182 Port_cnt
++; /* for each E1 port */
5187 switch (m
->dip_type
) {
5190 * Get DIP setting for beroNet 1S/2S/4S cards
5191 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5192 * GPI 19/23 (R_GPI_IN2))
5194 dips
= ((~HFC_inb(hc
, R_GPIO_IN1
) & 0xE0) >> 5) |
5195 ((~HFC_inb(hc
, R_GPI_IN2
) & 0x80) >> 3) |
5196 (~HFC_inb(hc
, R_GPI_IN2
) & 0x08);
5198 /* Port mode (TE/NT) jumpers */
5199 pmj
= ((HFC_inb(hc
, R_GPI_IN3
) >> 4) & 0xf);
5201 if (test_bit(HFC_CHIP_B410P
, &hc
->chip
))
5204 printk(KERN_INFO
"%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5205 m
->vendor_name
, m
->card_name
, dips
, pmj
);
5209 * Get DIP Setting for beroNet 8S0+ cards
5210 * Enable PCI auxbridge function
5212 HFC_outb(hc
, R_BRG_PCM_CFG
, 1 | V_PCM_CLK
);
5213 /* prepare access to auxport */
5214 outw(0x4000, hc
->pci_iobase
+ 4);
5216 * some dummy reads are required to
5217 * read valid DIP switch data
5219 dips
= inb(hc
->pci_iobase
);
5220 dips
= inb(hc
->pci_iobase
);
5221 dips
= inb(hc
->pci_iobase
);
5222 dips
= ~inb(hc
->pci_iobase
) & 0x3F;
5223 outw(0x0, hc
->pci_iobase
+ 4);
5224 /* disable PCI auxbridge function */
5225 HFC_outb(hc
, R_BRG_PCM_CFG
, V_PCM_CLK
);
5226 printk(KERN_INFO
"%s: %s DIPs(0x%x)\n",
5227 m
->vendor_name
, m
->card_name
, dips
);
5231 * get DIP Setting for beroNet E1 cards
5232 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5234 dips
= (~HFC_inb(hc
, R_GPI_IN0
) & 0xF0) >> 4;
5235 printk(KERN_INFO
"%s: %s DIPs(0x%x)\n",
5236 m
->vendor_name
, m
->card_name
, dips
);
5241 spin_lock_irqsave(&HFClock
, flags
);
5242 list_add_tail(&hc
->list
, &HFClist
);
5243 spin_unlock_irqrestore(&HFClock
, flags
);
5245 /* use as clock source */
5246 if (clock
== HFC_cnt
+ 1)
5247 hc
->iclock
= mISDN_register_clock("HFCMulti", 0, clockctl
, hc
);
5249 /* initialize hardware */
5250 hc
->irq
= (m
->irq
) ? : hc
->pci_dev
->irq
;
5251 ret_err
= init_card(hc
);
5253 printk(KERN_ERR
"init card returns %d\n", ret_err
);
5258 /* start IRQ and return */
5259 spin_lock_irqsave(&hc
->lock
, flags
);
5261 spin_unlock_irqrestore(&hc
->lock
, flags
);
5265 release_io_hfcmulti(hc
);
5266 if (hc
== syncmaster
)
5272 static void hfc_remove_pci(struct pci_dev
*pdev
)
5274 struct hfc_multi
*card
= pci_get_drvdata(pdev
);
5278 printk(KERN_INFO
"removing hfc_multi card vendor:%x "
5279 "device:%x subvendor:%x subdevice:%x\n",
5280 pdev
->vendor
, pdev
->device
,
5281 pdev
->subsystem_vendor
, pdev
->subsystem_device
);
5284 spin_lock_irqsave(&HFClock
, flags
);
5286 spin_unlock_irqrestore(&HFClock
, flags
);
5289 printk(KERN_DEBUG
"%s: drvdata already removed\n",
5294 #define VENDOR_CCD "Cologne Chip AG"
5295 #define VENDOR_BN "beroNet GmbH"
5296 #define VENDOR_DIG "Digium Inc."
5297 #define VENDOR_JH "Junghanns.NET GmbH"
5298 #define VENDOR_PRIM "PrimuX"
5300 static const struct hm_map hfcm_map
[] = {
5301 /*0*/ {VENDOR_BN
, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S
, 0, 0},
5302 /*1*/ {VENDOR_BN
, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S
, 0, 0},
5303 /*2*/ {VENDOR_BN
, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S
, 0, 0},
5304 /*3*/ {VENDOR_BN
, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S
, 0, 0},
5305 /*4*/ {VENDOR_BN
, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5306 /*5*/ {VENDOR_CCD
, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5307 /*6*/ {VENDOR_CCD
, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S
, 0, 0},
5308 /*7*/ {VENDOR_CCD
, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5309 /*8*/ {VENDOR_DIG
, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO
, 0},
5310 /*9*/ {VENDOR_CCD
, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5311 /*10*/ {VENDOR_JH
, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5312 /*11*/ {VENDOR_PRIM
, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5314 /*12*/ {VENDOR_BN
, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5315 /*13*/ {VENDOR_BN
, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S
,
5316 HFC_IO_MODE_REGIO
, 0},
5317 /*14*/ {VENDOR_CCD
, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5318 /*15*/ {VENDOR_CCD
, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5320 /*16*/ {VENDOR_CCD
, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5321 /*17*/ {VENDOR_CCD
, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5322 /*18*/ {VENDOR_CCD
, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5324 /*19*/ {VENDOR_BN
, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1
, 0, 0},
5325 /*20*/ {VENDOR_BN
, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5326 /*21*/ {VENDOR_BN
, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1
, 0, 0},
5327 /*22*/ {VENDOR_BN
, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1
, 0, 0},
5329 /*23*/ {VENDOR_CCD
, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5330 /*24*/ {VENDOR_CCD
, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5331 /*25*/ {VENDOR_CCD
, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5333 /*26*/ {VENDOR_CCD
, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5334 HFC_IO_MODE_PLXSD
, 0},
5335 /*27*/ {VENDOR_CCD
, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5336 HFC_IO_MODE_PLXSD
, 0},
5337 /*28*/ {VENDOR_CCD
, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5338 /*29*/ {VENDOR_CCD
, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5339 /*30*/ {VENDOR_CCD
, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5340 /*31*/ {VENDOR_CCD
, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5341 HFC_IO_MODE_EMBSD
, XHFC_IRQ
},
5342 /*32*/ {VENDOR_JH
, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5343 /*33*/ {VENDOR_BN
, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S
, 0, 0},
5344 /*34*/ {VENDOR_BN
, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S
, 0, 0},
5348 #define H(x) ((unsigned long)&hfcm_map[x])
5349 static const struct pci_device_id hfmultipci_ids
[] = {
5351 /* Cards with HFC-4S Chip */
5352 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5353 PCI_SUBDEVICE_ID_CCD_BN1SM
, 0, 0, H(0)}, /* BN1S mini PCI */
5354 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5355 PCI_SUBDEVICE_ID_CCD_BN2S
, 0, 0, H(1)}, /* BN2S */
5356 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5357 PCI_SUBDEVICE_ID_CCD_BN2SM
, 0, 0, H(2)}, /* BN2S mini PCI */
5358 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5359 PCI_SUBDEVICE_ID_CCD_BN4S
, 0, 0, H(3)}, /* BN4S */
5360 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5361 PCI_SUBDEVICE_ID_CCD_BN4SM
, 0, 0, H(4)}, /* BN4S mini PCI */
5362 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5363 PCI_DEVICE_ID_CCD_HFC4S
, 0, 0, H(5)}, /* Old Eval */
5364 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5365 PCI_SUBDEVICE_ID_CCD_IOB4ST
, 0, 0, H(6)}, /* IOB4ST */
5366 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5367 PCI_SUBDEVICE_ID_CCD_HFC4S
, 0, 0, H(7)}, /* 4S */
5368 { PCI_VENDOR_ID_DIGIUM
, PCI_DEVICE_ID_DIGIUM_HFC4S
,
5369 PCI_VENDOR_ID_DIGIUM
, PCI_DEVICE_ID_DIGIUM_HFC4S
, 0, 0, H(8)},
5370 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5371 PCI_SUBDEVICE_ID_CCD_SWYX4S
, 0, 0, H(9)}, /* 4S Swyx */
5372 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5373 PCI_SUBDEVICE_ID_CCD_JH4S20
, 0, 0, H(10)},
5374 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5375 PCI_SUBDEVICE_ID_CCD_PMX2S
, 0, 0, H(11)}, /* Primux */
5376 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5377 PCI_SUBDEVICE_ID_CCD_OV4S
, 0, 0, H(28)}, /* OpenVox 4 */
5378 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5379 PCI_SUBDEVICE_ID_CCD_OV2S
, 0, 0, H(29)}, /* OpenVox 2 */
5380 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5381 0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5382 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC4S
, PCI_VENDOR_ID_CCD
,
5383 0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5385 /* Cards with HFC-8S Chip */
5386 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5387 PCI_SUBDEVICE_ID_CCD_BN8S
, 0, 0, H(12)}, /* BN8S */
5388 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5389 PCI_SUBDEVICE_ID_CCD_BN8SP
, 0, 0, H(13)}, /* BN8S+ */
5390 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5391 PCI_DEVICE_ID_CCD_HFC8S
, 0, 0, H(14)}, /* old Eval */
5392 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5393 PCI_SUBDEVICE_ID_CCD_IOB8STR
, 0, 0, H(15)}, /* IOB8ST Recording */
5394 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5395 PCI_SUBDEVICE_ID_CCD_IOB8ST
, 0, 0, H(16)}, /* IOB8ST */
5396 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5397 PCI_SUBDEVICE_ID_CCD_IOB8ST_1
, 0, 0, H(17)}, /* IOB8ST */
5398 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5399 PCI_SUBDEVICE_ID_CCD_HFC8S
, 0, 0, H(18)}, /* 8S */
5400 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5401 PCI_SUBDEVICE_ID_CCD_OV8S
, 0, 0, H(30)}, /* OpenVox 8 */
5402 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFC8S
, PCI_VENDOR_ID_CCD
,
5403 PCI_SUBDEVICE_ID_CCD_JH8S
, 0, 0, H(32)}, /* Junganns 8S */
5406 /* Cards with HFC-E1 Chip */
5407 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5408 PCI_SUBDEVICE_ID_CCD_BNE1
, 0, 0, H(19)}, /* BNE1 */
5409 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5410 PCI_SUBDEVICE_ID_CCD_BNE1M
, 0, 0, H(20)}, /* BNE1 mini PCI */
5411 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5412 PCI_SUBDEVICE_ID_CCD_BNE1DP
, 0, 0, H(21)}, /* BNE1 + (Dual) */
5413 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5414 PCI_SUBDEVICE_ID_CCD_BNE1D
, 0, 0, H(22)}, /* BNE1 (Dual) */
5416 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5417 PCI_DEVICE_ID_CCD_HFCE1
, 0, 0, H(23)}, /* Old Eval */
5418 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5419 PCI_SUBDEVICE_ID_CCD_IOB1E1
, 0, 0, H(24)}, /* IOB1E1 */
5420 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5421 PCI_SUBDEVICE_ID_CCD_HFCE1
, 0, 0, H(25)}, /* E1 */
5423 { PCI_VENDOR_ID_PLX
, PCI_DEVICE_ID_PLX_9030
, PCI_VENDOR_ID_CCD
,
5424 PCI_SUBDEVICE_ID_CCD_SPD4S
, 0, 0, H(26)}, /* PLX PCI Bridge */
5425 { PCI_VENDOR_ID_PLX
, PCI_DEVICE_ID_PLX_9030
, PCI_VENDOR_ID_CCD
,
5426 PCI_SUBDEVICE_ID_CCD_SPDE1
, 0, 0, H(27)}, /* PLX PCI Bridge */
5428 { PCI_VENDOR_ID_CCD
, PCI_DEVICE_ID_CCD_HFCE1
, PCI_VENDOR_ID_CCD
,
5429 PCI_SUBDEVICE_ID_CCD_JHSE1
, 0, 0, H(25)}, /* Junghanns E1 */
5431 { PCI_VDEVICE(CCD
, PCI_DEVICE_ID_CCD_HFC4S
), 0 },
5432 { PCI_VDEVICE(CCD
, PCI_DEVICE_ID_CCD_HFC8S
), 0 },
5433 { PCI_VDEVICE(CCD
, PCI_DEVICE_ID_CCD_HFCE1
), 0 },
5438 MODULE_DEVICE_TABLE(pci
, hfmultipci_ids
);
5441 hfcmulti_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
5443 struct hm_map
*m
= (struct hm_map
*)ent
->driver_data
;
5446 if (m
== NULL
&& ent
->vendor
== PCI_VENDOR_ID_CCD
&& (
5447 ent
->device
== PCI_DEVICE_ID_CCD_HFC4S
||
5448 ent
->device
== PCI_DEVICE_ID_CCD_HFC8S
||
5449 ent
->device
== PCI_DEVICE_ID_CCD_HFCE1
)) {
5451 "Unknown HFC multiport controller (vendor:%04x device:%04x "
5452 "subvendor:%04x subdevice:%04x)\n", pdev
->vendor
,
5453 pdev
->device
, pdev
->subsystem_vendor
,
5454 pdev
->subsystem_device
);
5456 "Please contact the driver maintainer for support.\n");
5459 ret
= hfcmulti_init(m
, pdev
, ent
);
5463 printk(KERN_INFO
"%d devices registered\n", HFC_cnt
);
5467 static struct pci_driver hfcmultipci_driver
= {
5468 .name
= "hfc_multi",
5469 .probe
= hfcmulti_probe
,
5470 .remove
= hfc_remove_pci
,
5471 .id_table
= hfmultipci_ids
,
5475 HFCmulti_cleanup(void)
5477 struct hfc_multi
*card
, *next
;
5479 /* get rid of all devices of this driver */
5480 list_for_each_entry_safe(card
, next
, &HFClist
, list
)
5482 pci_unregister_driver(&hfcmultipci_driver
);
5492 printk(KERN_INFO
"mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION
);
5495 printk(KERN_DEBUG
"%s: IRQ_DEBUG IS ENABLED!\n", __func__
);
5498 spin_lock_init(&HFClock
);
5499 spin_lock_init(&plx_lock
);
5501 if (debug
& DEBUG_HFCMULTI_INIT
)
5502 printk(KERN_DEBUG
"%s: init entered\n", __func__
);
5529 "%s: Wrong poll value (%d).\n", __func__
, poll
);
5538 /* Register the embedded devices.
5539 * This should be done before the PCI cards registration */
5557 for (i
= 0; i
< xhfc
; ++i
) {
5558 err
= hfcmulti_init(&m
, NULL
, NULL
);
5560 printk(KERN_ERR
"error registering embedded driver: "
5565 printk(KERN_INFO
"%d devices registered\n", HFC_cnt
);
5568 /* Register the PCI cards */
5569 err
= pci_register_driver(&hfcmultipci_driver
);
5571 printk(KERN_ERR
"error registering pci driver: %x\n", err
);
5579 module_init(HFCmulti_init
);
5580 module_exit(HFCmulti_cleanup
);