1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/iocontext.h>
12 #include <linux/capability.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kthread.h>
15 #include <linux/raid/pq.h>
16 #include <linux/semaphore.h>
17 #include <linux/uuid.h>
18 #include <linux/list_sort.h>
19 #include <asm/div64.h>
21 #include "extent_map.h"
23 #include "transaction.h"
24 #include "print-tree.h"
27 #include "async-thread.h"
28 #include "check-integrity.h"
29 #include "rcu-string.h"
31 #include "dev-replace.h"
34 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
35 [BTRFS_RAID_RAID10
] = {
38 .devs_max
= 0, /* 0 == as many as possible */
40 .tolerated_failures
= 1,
43 .raid_name
= "raid10",
44 .bg_flag
= BTRFS_BLOCK_GROUP_RAID10
,
45 .mindev_error
= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
47 [BTRFS_RAID_RAID1
] = {
52 .tolerated_failures
= 1,
56 .bg_flag
= BTRFS_BLOCK_GROUP_RAID1
,
57 .mindev_error
= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
64 .tolerated_failures
= 0,
68 .bg_flag
= BTRFS_BLOCK_GROUP_DUP
,
71 [BTRFS_RAID_RAID0
] = {
76 .tolerated_failures
= 0,
80 .bg_flag
= BTRFS_BLOCK_GROUP_RAID0
,
83 [BTRFS_RAID_SINGLE
] = {
88 .tolerated_failures
= 0,
91 .raid_name
= "single",
95 [BTRFS_RAID_RAID5
] = {
100 .tolerated_failures
= 1,
103 .raid_name
= "raid5",
104 .bg_flag
= BTRFS_BLOCK_GROUP_RAID5
,
105 .mindev_error
= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
107 [BTRFS_RAID_RAID6
] = {
112 .tolerated_failures
= 2,
115 .raid_name
= "raid6",
116 .bg_flag
= BTRFS_BLOCK_GROUP_RAID6
,
117 .mindev_error
= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
121 const char *get_raid_name(enum btrfs_raid_types type
)
123 if (type
>= BTRFS_NR_RAID_TYPES
)
126 return btrfs_raid_array
[type
].raid_name
;
129 static int init_first_rw_device(struct btrfs_trans_handle
*trans
,
130 struct btrfs_fs_info
*fs_info
);
131 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
);
132 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
);
133 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
134 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
135 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
136 enum btrfs_map_op op
,
137 u64 logical
, u64
*length
,
138 struct btrfs_bio
**bbio_ret
,
139 int mirror_num
, int need_raid_map
);
145 * There are several mutexes that protect manipulation of devices and low-level
146 * structures like chunks but not block groups, extents or files
148 * uuid_mutex (global lock)
149 * ------------------------
150 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
151 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
152 * device) or requested by the device= mount option
154 * the mutex can be very coarse and can cover long-running operations
156 * protects: updates to fs_devices counters like missing devices, rw devices,
157 * seeding, structure cloning, openning/closing devices at mount/umount time
159 * global::fs_devs - add, remove, updates to the global list
161 * does not protect: manipulation of the fs_devices::devices list!
163 * btrfs_device::name - renames (write side), read is RCU
165 * fs_devices::device_list_mutex (per-fs, with RCU)
166 * ------------------------------------------------
167 * protects updates to fs_devices::devices, ie. adding and deleting
169 * simple list traversal with read-only actions can be done with RCU protection
171 * may be used to exclude some operations from running concurrently without any
172 * modifications to the list (see write_all_supers)
176 * protects balance structures (status, state) and context accessed from
177 * several places (internally, ioctl)
181 * protects chunks, adding or removing during allocation, trim or when a new
182 * device is added/removed
186 * a big lock that is held by the cleaner thread and prevents running subvolume
187 * cleaning together with relocation or delayed iputs
200 * Exclusive operations, BTRFS_FS_EXCL_OP
201 * ======================================
203 * Maintains the exclusivity of the following operations that apply to the
204 * whole filesystem and cannot run in parallel.
209 * - Device replace (*)
212 * The device operations (as above) can be in one of the following states:
218 * Only device operations marked with (*) can go into the Paused state for the
221 * - ioctl (only Balance can be Paused through ioctl)
222 * - filesystem remounted as read-only
223 * - filesystem unmounted and mounted as read-only
224 * - system power-cycle and filesystem mounted as read-only
225 * - filesystem or device errors leading to forced read-only
227 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
228 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
229 * A device operation in Paused or Running state can be canceled or resumed
230 * either by ioctl (Balance only) or when remounted as read-write.
231 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
235 DEFINE_MUTEX(uuid_mutex
);
236 static LIST_HEAD(fs_uuids
);
237 struct list_head
*btrfs_get_fs_uuids(void)
243 * alloc_fs_devices - allocate struct btrfs_fs_devices
244 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
246 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
247 * The returned struct is not linked onto any lists and can be destroyed with
248 * kfree() right away.
250 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
)
252 struct btrfs_fs_devices
*fs_devs
;
254 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
256 return ERR_PTR(-ENOMEM
);
258 mutex_init(&fs_devs
->device_list_mutex
);
260 INIT_LIST_HEAD(&fs_devs
->devices
);
261 INIT_LIST_HEAD(&fs_devs
->resized_devices
);
262 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
263 INIT_LIST_HEAD(&fs_devs
->fs_list
);
265 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
270 void btrfs_free_device(struct btrfs_device
*device
)
272 rcu_string_free(device
->name
);
273 bio_put(device
->flush_bio
);
277 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
279 struct btrfs_device
*device
;
280 WARN_ON(fs_devices
->opened
);
281 while (!list_empty(&fs_devices
->devices
)) {
282 device
= list_entry(fs_devices
->devices
.next
,
283 struct btrfs_device
, dev_list
);
284 list_del(&device
->dev_list
);
285 btrfs_free_device(device
);
290 static void btrfs_kobject_uevent(struct block_device
*bdev
,
291 enum kobject_action action
)
295 ret
= kobject_uevent(&disk_to_dev(bdev
->bd_disk
)->kobj
, action
);
297 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
299 kobject_name(&disk_to_dev(bdev
->bd_disk
)->kobj
),
300 &disk_to_dev(bdev
->bd_disk
)->kobj
);
303 void __exit
btrfs_cleanup_fs_uuids(void)
305 struct btrfs_fs_devices
*fs_devices
;
307 while (!list_empty(&fs_uuids
)) {
308 fs_devices
= list_entry(fs_uuids
.next
,
309 struct btrfs_fs_devices
, fs_list
);
310 list_del(&fs_devices
->fs_list
);
311 free_fs_devices(fs_devices
);
316 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
317 * Returned struct is not linked onto any lists and must be destroyed using
320 static struct btrfs_device
*__alloc_device(void)
322 struct btrfs_device
*dev
;
324 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
326 return ERR_PTR(-ENOMEM
);
329 * Preallocate a bio that's always going to be used for flushing device
330 * barriers and matches the device lifespan
332 dev
->flush_bio
= bio_alloc_bioset(GFP_KERNEL
, 0, NULL
);
333 if (!dev
->flush_bio
) {
335 return ERR_PTR(-ENOMEM
);
338 INIT_LIST_HEAD(&dev
->dev_list
);
339 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
340 INIT_LIST_HEAD(&dev
->resized_list
);
342 spin_lock_init(&dev
->io_lock
);
344 atomic_set(&dev
->reada_in_flight
, 0);
345 atomic_set(&dev
->dev_stats_ccnt
, 0);
346 btrfs_device_data_ordered_init(dev
);
347 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
348 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
354 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
357 * If devid and uuid are both specified, the match must be exact, otherwise
358 * only devid is used.
360 static struct btrfs_device
*find_device(struct btrfs_fs_devices
*fs_devices
,
361 u64 devid
, const u8
*uuid
)
363 struct btrfs_device
*dev
;
365 list_for_each_entry(dev
, &fs_devices
->devices
, dev_list
) {
366 if (dev
->devid
== devid
&&
367 (!uuid
|| !memcmp(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
))) {
374 static noinline
struct btrfs_fs_devices
*find_fsid(u8
*fsid
)
376 struct btrfs_fs_devices
*fs_devices
;
378 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
379 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
386 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
387 int flush
, struct block_device
**bdev
,
388 struct buffer_head
**bh
)
392 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
395 ret
= PTR_ERR(*bdev
);
400 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
401 ret
= set_blocksize(*bdev
, BTRFS_BDEV_BLOCKSIZE
);
403 blkdev_put(*bdev
, flags
);
406 invalidate_bdev(*bdev
);
407 *bh
= btrfs_read_dev_super(*bdev
);
410 blkdev_put(*bdev
, flags
);
422 static void requeue_list(struct btrfs_pending_bios
*pending_bios
,
423 struct bio
*head
, struct bio
*tail
)
426 struct bio
*old_head
;
428 old_head
= pending_bios
->head
;
429 pending_bios
->head
= head
;
430 if (pending_bios
->tail
)
431 tail
->bi_next
= old_head
;
433 pending_bios
->tail
= tail
;
437 * we try to collect pending bios for a device so we don't get a large
438 * number of procs sending bios down to the same device. This greatly
439 * improves the schedulers ability to collect and merge the bios.
441 * But, it also turns into a long list of bios to process and that is sure
442 * to eventually make the worker thread block. The solution here is to
443 * make some progress and then put this work struct back at the end of
444 * the list if the block device is congested. This way, multiple devices
445 * can make progress from a single worker thread.
447 static noinline
void run_scheduled_bios(struct btrfs_device
*device
)
449 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
451 struct backing_dev_info
*bdi
;
452 struct btrfs_pending_bios
*pending_bios
;
456 unsigned long num_run
;
457 unsigned long batch_run
= 0;
458 unsigned long last_waited
= 0;
460 int sync_pending
= 0;
461 struct blk_plug plug
;
464 * this function runs all the bios we've collected for
465 * a particular device. We don't want to wander off to
466 * another device without first sending all of these down.
467 * So, setup a plug here and finish it off before we return
469 blk_start_plug(&plug
);
471 bdi
= device
->bdev
->bd_bdi
;
474 spin_lock(&device
->io_lock
);
479 /* take all the bios off the list at once and process them
480 * later on (without the lock held). But, remember the
481 * tail and other pointers so the bios can be properly reinserted
482 * into the list if we hit congestion
484 if (!force_reg
&& device
->pending_sync_bios
.head
) {
485 pending_bios
= &device
->pending_sync_bios
;
488 pending_bios
= &device
->pending_bios
;
492 pending
= pending_bios
->head
;
493 tail
= pending_bios
->tail
;
494 WARN_ON(pending
&& !tail
);
497 * if pending was null this time around, no bios need processing
498 * at all and we can stop. Otherwise it'll loop back up again
499 * and do an additional check so no bios are missed.
501 * device->running_pending is used to synchronize with the
504 if (device
->pending_sync_bios
.head
== NULL
&&
505 device
->pending_bios
.head
== NULL
) {
507 device
->running_pending
= 0;
510 device
->running_pending
= 1;
513 pending_bios
->head
= NULL
;
514 pending_bios
->tail
= NULL
;
516 spin_unlock(&device
->io_lock
);
521 /* we want to work on both lists, but do more bios on the
522 * sync list than the regular list
525 pending_bios
!= &device
->pending_sync_bios
&&
526 device
->pending_sync_bios
.head
) ||
527 (num_run
> 64 && pending_bios
== &device
->pending_sync_bios
&&
528 device
->pending_bios
.head
)) {
529 spin_lock(&device
->io_lock
);
530 requeue_list(pending_bios
, pending
, tail
);
535 pending
= pending
->bi_next
;
538 BUG_ON(atomic_read(&cur
->__bi_cnt
) == 0);
541 * if we're doing the sync list, record that our
542 * plug has some sync requests on it
544 * If we're doing the regular list and there are
545 * sync requests sitting around, unplug before
548 if (pending_bios
== &device
->pending_sync_bios
) {
550 } else if (sync_pending
) {
551 blk_finish_plug(&plug
);
552 blk_start_plug(&plug
);
556 btrfsic_submit_bio(cur
);
563 * we made progress, there is more work to do and the bdi
564 * is now congested. Back off and let other work structs
567 if (pending
&& bdi_write_congested(bdi
) && batch_run
> 8 &&
568 fs_info
->fs_devices
->open_devices
> 1) {
569 struct io_context
*ioc
;
571 ioc
= current
->io_context
;
574 * the main goal here is that we don't want to
575 * block if we're going to be able to submit
576 * more requests without blocking.
578 * This code does two great things, it pokes into
579 * the elevator code from a filesystem _and_
580 * it makes assumptions about how batching works.
582 if (ioc
&& ioc
->nr_batch_requests
> 0 &&
583 time_before(jiffies
, ioc
->last_waited
+ HZ
/50UL) &&
585 ioc
->last_waited
== last_waited
)) {
587 * we want to go through our batch of
588 * requests and stop. So, we copy out
589 * the ioc->last_waited time and test
590 * against it before looping
592 last_waited
= ioc
->last_waited
;
596 spin_lock(&device
->io_lock
);
597 requeue_list(pending_bios
, pending
, tail
);
598 device
->running_pending
= 1;
600 spin_unlock(&device
->io_lock
);
601 btrfs_queue_work(fs_info
->submit_workers
,
611 spin_lock(&device
->io_lock
);
612 if (device
->pending_bios
.head
|| device
->pending_sync_bios
.head
)
614 spin_unlock(&device
->io_lock
);
617 blk_finish_plug(&plug
);
620 static void pending_bios_fn(struct btrfs_work
*work
)
622 struct btrfs_device
*device
;
624 device
= container_of(work
, struct btrfs_device
, work
);
625 run_scheduled_bios(device
);
629 * Search and remove all stale (devices which are not mounted) devices.
630 * When both inputs are NULL, it will search and release all stale devices.
631 * path: Optional. When provided will it release all unmounted devices
632 * matching this path only.
633 * skip_dev: Optional. Will skip this device when searching for the stale
636 static void btrfs_free_stale_devices(const char *path
,
637 struct btrfs_device
*skip_dev
)
639 struct btrfs_fs_devices
*fs_devs
, *tmp_fs_devs
;
640 struct btrfs_device
*dev
, *tmp_dev
;
642 list_for_each_entry_safe(fs_devs
, tmp_fs_devs
, &fs_uuids
, fs_list
) {
647 list_for_each_entry_safe(dev
, tmp_dev
,
648 &fs_devs
->devices
, dev_list
) {
651 if (skip_dev
&& skip_dev
== dev
)
653 if (path
&& !dev
->name
)
658 not_found
= strcmp(rcu_str_deref(dev
->name
),
664 /* delete the stale device */
665 if (fs_devs
->num_devices
== 1) {
666 btrfs_sysfs_remove_fsid(fs_devs
);
667 list_del(&fs_devs
->fs_list
);
668 free_fs_devices(fs_devs
);
671 fs_devs
->num_devices
--;
672 list_del(&dev
->dev_list
);
673 btrfs_free_device(dev
);
679 static int btrfs_open_one_device(struct btrfs_fs_devices
*fs_devices
,
680 struct btrfs_device
*device
, fmode_t flags
,
683 struct request_queue
*q
;
684 struct block_device
*bdev
;
685 struct buffer_head
*bh
;
686 struct btrfs_super_block
*disk_super
;
695 ret
= btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
700 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
701 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
702 if (devid
!= device
->devid
)
705 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
, BTRFS_UUID_SIZE
))
708 device
->generation
= btrfs_super_generation(disk_super
);
710 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
711 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
712 fs_devices
->seeding
= 1;
714 if (bdev_read_only(bdev
))
715 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
717 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
720 q
= bdev_get_queue(bdev
);
721 if (!blk_queue_nonrot(q
))
722 fs_devices
->rotating
= 1;
725 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
726 device
->mode
= flags
;
728 fs_devices
->open_devices
++;
729 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
730 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
731 fs_devices
->rw_devices
++;
732 list_add_tail(&device
->dev_alloc_list
, &fs_devices
->alloc_list
);
740 blkdev_put(bdev
, flags
);
746 * Add new device to list of registered devices
749 * device pointer which was just added or updated when successful
750 * error pointer when failed
752 static noinline
struct btrfs_device
*device_list_add(const char *path
,
753 struct btrfs_super_block
*disk_super
)
755 struct btrfs_device
*device
;
756 struct btrfs_fs_devices
*fs_devices
;
757 struct rcu_string
*name
;
758 u64 found_transid
= btrfs_super_generation(disk_super
);
759 u64 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
761 fs_devices
= find_fsid(disk_super
->fsid
);
763 fs_devices
= alloc_fs_devices(disk_super
->fsid
);
764 if (IS_ERR(fs_devices
))
765 return ERR_CAST(fs_devices
);
767 list_add(&fs_devices
->fs_list
, &fs_uuids
);
771 device
= find_device(fs_devices
, devid
,
772 disk_super
->dev_item
.uuid
);
776 if (fs_devices
->opened
)
777 return ERR_PTR(-EBUSY
);
779 device
= btrfs_alloc_device(NULL
, &devid
,
780 disk_super
->dev_item
.uuid
);
781 if (IS_ERR(device
)) {
782 /* we can safely leave the fs_devices entry around */
786 name
= rcu_string_strdup(path
, GFP_NOFS
);
788 btrfs_free_device(device
);
789 return ERR_PTR(-ENOMEM
);
791 rcu_assign_pointer(device
->name
, name
);
793 mutex_lock(&fs_devices
->device_list_mutex
);
794 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
795 fs_devices
->num_devices
++;
796 mutex_unlock(&fs_devices
->device_list_mutex
);
798 device
->fs_devices
= fs_devices
;
799 btrfs_free_stale_devices(path
, device
);
801 if (disk_super
->label
[0])
802 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
803 disk_super
->label
, devid
, found_transid
, path
);
805 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
806 disk_super
->fsid
, devid
, found_transid
, path
);
808 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
810 * When FS is already mounted.
811 * 1. If you are here and if the device->name is NULL that
812 * means this device was missing at time of FS mount.
813 * 2. If you are here and if the device->name is different
814 * from 'path' that means either
815 * a. The same device disappeared and reappeared with
817 * b. The missing-disk-which-was-replaced, has
820 * We must allow 1 and 2a above. But 2b would be a spurious
823 * Further in case of 1 and 2a above, the disk at 'path'
824 * would have missed some transaction when it was away and
825 * in case of 2a the stale bdev has to be updated as well.
826 * 2b must not be allowed at all time.
830 * For now, we do allow update to btrfs_fs_device through the
831 * btrfs dev scan cli after FS has been mounted. We're still
832 * tracking a problem where systems fail mount by subvolume id
833 * when we reject replacement on a mounted FS.
835 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
837 * That is if the FS is _not_ mounted and if you
838 * are here, that means there is more than one
839 * disk with same uuid and devid.We keep the one
840 * with larger generation number or the last-in if
841 * generation are equal.
843 return ERR_PTR(-EEXIST
);
846 name
= rcu_string_strdup(path
, GFP_NOFS
);
848 return ERR_PTR(-ENOMEM
);
849 rcu_string_free(device
->name
);
850 rcu_assign_pointer(device
->name
, name
);
851 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
852 fs_devices
->missing_devices
--;
853 clear_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
858 * Unmount does not free the btrfs_device struct but would zero
859 * generation along with most of the other members. So just update
860 * it back. We need it to pick the disk with largest generation
863 if (!fs_devices
->opened
)
864 device
->generation
= found_transid
;
866 fs_devices
->total_devices
= btrfs_super_num_devices(disk_super
);
871 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
873 struct btrfs_fs_devices
*fs_devices
;
874 struct btrfs_device
*device
;
875 struct btrfs_device
*orig_dev
;
877 fs_devices
= alloc_fs_devices(orig
->fsid
);
878 if (IS_ERR(fs_devices
))
881 mutex_lock(&orig
->device_list_mutex
);
882 fs_devices
->total_devices
= orig
->total_devices
;
884 /* We have held the volume lock, it is safe to get the devices. */
885 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
886 struct rcu_string
*name
;
888 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
894 * This is ok to do without rcu read locked because we hold the
895 * uuid mutex so nothing we touch in here is going to disappear.
897 if (orig_dev
->name
) {
898 name
= rcu_string_strdup(orig_dev
->name
->str
,
901 btrfs_free_device(device
);
904 rcu_assign_pointer(device
->name
, name
);
907 list_add(&device
->dev_list
, &fs_devices
->devices
);
908 device
->fs_devices
= fs_devices
;
909 fs_devices
->num_devices
++;
911 mutex_unlock(&orig
->device_list_mutex
);
914 mutex_unlock(&orig
->device_list_mutex
);
915 free_fs_devices(fs_devices
);
916 return ERR_PTR(-ENOMEM
);
920 * After we have read the system tree and know devids belonging to
921 * this filesystem, remove the device which does not belong there.
923 void btrfs_free_extra_devids(struct btrfs_fs_devices
*fs_devices
, int step
)
925 struct btrfs_device
*device
, *next
;
926 struct btrfs_device
*latest_dev
= NULL
;
928 mutex_lock(&uuid_mutex
);
930 /* This is the initialized path, it is safe to release the devices. */
931 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
932 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
933 &device
->dev_state
)) {
934 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
935 &device
->dev_state
) &&
937 device
->generation
> latest_dev
->generation
)) {
943 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
945 * In the first step, keep the device which has
946 * the correct fsid and the devid that is used
947 * for the dev_replace procedure.
948 * In the second step, the dev_replace state is
949 * read from the device tree and it is known
950 * whether the procedure is really active or
951 * not, which means whether this device is
952 * used or whether it should be removed.
954 if (step
== 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
955 &device
->dev_state
)) {
960 blkdev_put(device
->bdev
, device
->mode
);
962 fs_devices
->open_devices
--;
964 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
965 list_del_init(&device
->dev_alloc_list
);
966 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
967 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
969 fs_devices
->rw_devices
--;
971 list_del_init(&device
->dev_list
);
972 fs_devices
->num_devices
--;
973 btrfs_free_device(device
);
976 if (fs_devices
->seed
) {
977 fs_devices
= fs_devices
->seed
;
981 fs_devices
->latest_bdev
= latest_dev
->bdev
;
983 mutex_unlock(&uuid_mutex
);
986 static void free_device_rcu(struct rcu_head
*head
)
988 struct btrfs_device
*device
;
990 device
= container_of(head
, struct btrfs_device
, rcu
);
991 btrfs_free_device(device
);
994 static void btrfs_close_bdev(struct btrfs_device
*device
)
999 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
1000 sync_blockdev(device
->bdev
);
1001 invalidate_bdev(device
->bdev
);
1004 blkdev_put(device
->bdev
, device
->mode
);
1007 static void btrfs_prepare_close_one_device(struct btrfs_device
*device
)
1009 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
1010 struct btrfs_device
*new_device
;
1011 struct rcu_string
*name
;
1014 fs_devices
->open_devices
--;
1016 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
1017 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
1018 list_del_init(&device
->dev_alloc_list
);
1019 fs_devices
->rw_devices
--;
1022 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
1023 fs_devices
->missing_devices
--;
1025 new_device
= btrfs_alloc_device(NULL
, &device
->devid
,
1027 BUG_ON(IS_ERR(new_device
)); /* -ENOMEM */
1029 /* Safe because we are under uuid_mutex */
1031 name
= rcu_string_strdup(device
->name
->str
, GFP_NOFS
);
1032 BUG_ON(!name
); /* -ENOMEM */
1033 rcu_assign_pointer(new_device
->name
, name
);
1036 list_replace_rcu(&device
->dev_list
, &new_device
->dev_list
);
1037 new_device
->fs_devices
= device
->fs_devices
;
1040 static int close_fs_devices(struct btrfs_fs_devices
*fs_devices
)
1042 struct btrfs_device
*device
, *tmp
;
1043 struct list_head pending_put
;
1045 INIT_LIST_HEAD(&pending_put
);
1047 if (--fs_devices
->opened
> 0)
1050 mutex_lock(&fs_devices
->device_list_mutex
);
1051 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
1052 btrfs_prepare_close_one_device(device
);
1053 list_add(&device
->dev_list
, &pending_put
);
1055 mutex_unlock(&fs_devices
->device_list_mutex
);
1058 * btrfs_show_devname() is using the device_list_mutex,
1059 * sometimes call to blkdev_put() leads vfs calling
1060 * into this func. So do put outside of device_list_mutex,
1063 while (!list_empty(&pending_put
)) {
1064 device
= list_first_entry(&pending_put
,
1065 struct btrfs_device
, dev_list
);
1066 list_del(&device
->dev_list
);
1067 btrfs_close_bdev(device
);
1068 call_rcu(&device
->rcu
, free_device_rcu
);
1071 WARN_ON(fs_devices
->open_devices
);
1072 WARN_ON(fs_devices
->rw_devices
);
1073 fs_devices
->opened
= 0;
1074 fs_devices
->seeding
= 0;
1079 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
1081 struct btrfs_fs_devices
*seed_devices
= NULL
;
1084 mutex_lock(&uuid_mutex
);
1085 ret
= close_fs_devices(fs_devices
);
1086 if (!fs_devices
->opened
) {
1087 seed_devices
= fs_devices
->seed
;
1088 fs_devices
->seed
= NULL
;
1090 mutex_unlock(&uuid_mutex
);
1092 while (seed_devices
) {
1093 fs_devices
= seed_devices
;
1094 seed_devices
= fs_devices
->seed
;
1095 close_fs_devices(fs_devices
);
1096 free_fs_devices(fs_devices
);
1101 static int open_fs_devices(struct btrfs_fs_devices
*fs_devices
,
1102 fmode_t flags
, void *holder
)
1104 struct btrfs_device
*device
;
1105 struct btrfs_device
*latest_dev
= NULL
;
1108 flags
|= FMODE_EXCL
;
1110 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
1111 /* Just open everything we can; ignore failures here */
1112 if (btrfs_open_one_device(fs_devices
, device
, flags
, holder
))
1116 device
->generation
> latest_dev
->generation
)
1117 latest_dev
= device
;
1119 if (fs_devices
->open_devices
== 0) {
1123 fs_devices
->opened
= 1;
1124 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1125 fs_devices
->total_rw_bytes
= 0;
1130 static int devid_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1132 struct btrfs_device
*dev1
, *dev2
;
1134 dev1
= list_entry(a
, struct btrfs_device
, dev_list
);
1135 dev2
= list_entry(b
, struct btrfs_device
, dev_list
);
1137 if (dev1
->devid
< dev2
->devid
)
1139 else if (dev1
->devid
> dev2
->devid
)
1144 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1145 fmode_t flags
, void *holder
)
1149 mutex_lock(&fs_devices
->device_list_mutex
);
1150 if (fs_devices
->opened
) {
1151 fs_devices
->opened
++;
1154 list_sort(NULL
, &fs_devices
->devices
, devid_cmp
);
1155 ret
= open_fs_devices(fs_devices
, flags
, holder
);
1157 mutex_unlock(&fs_devices
->device_list_mutex
);
1162 static void btrfs_release_disk_super(struct page
*page
)
1168 static int btrfs_read_disk_super(struct block_device
*bdev
, u64 bytenr
,
1170 struct btrfs_super_block
**disk_super
)
1175 /* make sure our super fits in the device */
1176 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1179 /* make sure our super fits in the page */
1180 if (sizeof(**disk_super
) > PAGE_SIZE
)
1183 /* make sure our super doesn't straddle pages on disk */
1184 index
= bytenr
>> PAGE_SHIFT
;
1185 if ((bytenr
+ sizeof(**disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1188 /* pull in the page with our super */
1189 *page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
,
1192 if (IS_ERR_OR_NULL(*page
))
1197 /* align our pointer to the offset of the super block */
1198 *disk_super
= p
+ (bytenr
& ~PAGE_MASK
);
1200 if (btrfs_super_bytenr(*disk_super
) != bytenr
||
1201 btrfs_super_magic(*disk_super
) != BTRFS_MAGIC
) {
1202 btrfs_release_disk_super(*page
);
1206 if ((*disk_super
)->label
[0] &&
1207 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1])
1208 (*disk_super
)->label
[BTRFS_LABEL_SIZE
- 1] = '\0';
1214 * Look for a btrfs signature on a device. This may be called out of the mount path
1215 * and we are not allowed to call set_blocksize during the scan. The superblock
1216 * is read via pagecache
1218 int btrfs_scan_one_device(const char *path
, fmode_t flags
, void *holder
,
1219 struct btrfs_fs_devices
**fs_devices_ret
)
1221 struct btrfs_super_block
*disk_super
;
1222 struct btrfs_device
*device
;
1223 struct block_device
*bdev
;
1229 * we would like to check all the supers, but that would make
1230 * a btrfs mount succeed after a mkfs from a different FS.
1231 * So, we need to add a special mount option to scan for
1232 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1234 bytenr
= btrfs_sb_offset(0);
1235 flags
|= FMODE_EXCL
;
1237 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1239 return PTR_ERR(bdev
);
1241 if (btrfs_read_disk_super(bdev
, bytenr
, &page
, &disk_super
)) {
1243 goto error_bdev_put
;
1246 mutex_lock(&uuid_mutex
);
1247 device
= device_list_add(path
, disk_super
);
1249 ret
= PTR_ERR(device
);
1251 *fs_devices_ret
= device
->fs_devices
;
1252 mutex_unlock(&uuid_mutex
);
1254 btrfs_release_disk_super(page
);
1257 blkdev_put(bdev
, flags
);
1262 /* helper to account the used device space in the range */
1263 int btrfs_account_dev_extents_size(struct btrfs_device
*device
, u64 start
,
1264 u64 end
, u64
*length
)
1266 struct btrfs_key key
;
1267 struct btrfs_root
*root
= device
->fs_info
->dev_root
;
1268 struct btrfs_dev_extent
*dev_extent
;
1269 struct btrfs_path
*path
;
1273 struct extent_buffer
*l
;
1277 if (start
>= device
->total_bytes
||
1278 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
1281 path
= btrfs_alloc_path();
1284 path
->reada
= READA_FORWARD
;
1286 key
.objectid
= device
->devid
;
1288 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1290 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1294 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1301 slot
= path
->slots
[0];
1302 if (slot
>= btrfs_header_nritems(l
)) {
1303 ret
= btrfs_next_leaf(root
, path
);
1311 btrfs_item_key_to_cpu(l
, &key
, slot
);
1313 if (key
.objectid
< device
->devid
)
1316 if (key
.objectid
> device
->devid
)
1319 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1322 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1323 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1325 if (key
.offset
<= start
&& extent_end
> end
) {
1326 *length
= end
- start
+ 1;
1328 } else if (key
.offset
<= start
&& extent_end
> start
)
1329 *length
+= extent_end
- start
;
1330 else if (key
.offset
> start
&& extent_end
<= end
)
1331 *length
+= extent_end
- key
.offset
;
1332 else if (key
.offset
> start
&& key
.offset
<= end
) {
1333 *length
+= end
- key
.offset
+ 1;
1335 } else if (key
.offset
> end
)
1343 btrfs_free_path(path
);
1347 static int contains_pending_extent(struct btrfs_transaction
*transaction
,
1348 struct btrfs_device
*device
,
1349 u64
*start
, u64 len
)
1351 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1352 struct extent_map
*em
;
1353 struct list_head
*search_list
= &fs_info
->pinned_chunks
;
1355 u64 physical_start
= *start
;
1358 search_list
= &transaction
->pending_chunks
;
1360 list_for_each_entry(em
, search_list
, list
) {
1361 struct map_lookup
*map
;
1364 map
= em
->map_lookup
;
1365 for (i
= 0; i
< map
->num_stripes
; i
++) {
1368 if (map
->stripes
[i
].dev
!= device
)
1370 if (map
->stripes
[i
].physical
>= physical_start
+ len
||
1371 map
->stripes
[i
].physical
+ em
->orig_block_len
<=
1375 * Make sure that while processing the pinned list we do
1376 * not override our *start with a lower value, because
1377 * we can have pinned chunks that fall within this
1378 * device hole and that have lower physical addresses
1379 * than the pending chunks we processed before. If we
1380 * do not take this special care we can end up getting
1381 * 2 pending chunks that start at the same physical
1382 * device offsets because the end offset of a pinned
1383 * chunk can be equal to the start offset of some
1386 end
= map
->stripes
[i
].physical
+ em
->orig_block_len
;
1393 if (search_list
!= &fs_info
->pinned_chunks
) {
1394 search_list
= &fs_info
->pinned_chunks
;
1403 * find_free_dev_extent_start - find free space in the specified device
1404 * @device: the device which we search the free space in
1405 * @num_bytes: the size of the free space that we need
1406 * @search_start: the position from which to begin the search
1407 * @start: store the start of the free space.
1408 * @len: the size of the free space. that we find, or the size
1409 * of the max free space if we don't find suitable free space
1411 * this uses a pretty simple search, the expectation is that it is
1412 * called very infrequently and that a given device has a small number
1415 * @start is used to store the start of the free space if we find. But if we
1416 * don't find suitable free space, it will be used to store the start position
1417 * of the max free space.
1419 * @len is used to store the size of the free space that we find.
1420 * But if we don't find suitable free space, it is used to store the size of
1421 * the max free space.
1423 int find_free_dev_extent_start(struct btrfs_transaction
*transaction
,
1424 struct btrfs_device
*device
, u64 num_bytes
,
1425 u64 search_start
, u64
*start
, u64
*len
)
1427 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1428 struct btrfs_root
*root
= fs_info
->dev_root
;
1429 struct btrfs_key key
;
1430 struct btrfs_dev_extent
*dev_extent
;
1431 struct btrfs_path
*path
;
1436 u64 search_end
= device
->total_bytes
;
1439 struct extent_buffer
*l
;
1442 * We don't want to overwrite the superblock on the drive nor any area
1443 * used by the boot loader (grub for example), so we make sure to start
1444 * at an offset of at least 1MB.
1446 search_start
= max_t(u64
, search_start
, SZ_1M
);
1448 path
= btrfs_alloc_path();
1452 max_hole_start
= search_start
;
1456 if (search_start
>= search_end
||
1457 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1462 path
->reada
= READA_FORWARD
;
1463 path
->search_commit_root
= 1;
1464 path
->skip_locking
= 1;
1466 key
.objectid
= device
->devid
;
1467 key
.offset
= search_start
;
1468 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1470 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1474 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1481 slot
= path
->slots
[0];
1482 if (slot
>= btrfs_header_nritems(l
)) {
1483 ret
= btrfs_next_leaf(root
, path
);
1491 btrfs_item_key_to_cpu(l
, &key
, slot
);
1493 if (key
.objectid
< device
->devid
)
1496 if (key
.objectid
> device
->devid
)
1499 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1502 if (key
.offset
> search_start
) {
1503 hole_size
= key
.offset
- search_start
;
1506 * Have to check before we set max_hole_start, otherwise
1507 * we could end up sending back this offset anyway.
1509 if (contains_pending_extent(transaction
, device
,
1512 if (key
.offset
>= search_start
) {
1513 hole_size
= key
.offset
- search_start
;
1520 if (hole_size
> max_hole_size
) {
1521 max_hole_start
= search_start
;
1522 max_hole_size
= hole_size
;
1526 * If this free space is greater than which we need,
1527 * it must be the max free space that we have found
1528 * until now, so max_hole_start must point to the start
1529 * of this free space and the length of this free space
1530 * is stored in max_hole_size. Thus, we return
1531 * max_hole_start and max_hole_size and go back to the
1534 if (hole_size
>= num_bytes
) {
1540 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1541 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1543 if (extent_end
> search_start
)
1544 search_start
= extent_end
;
1551 * At this point, search_start should be the end of
1552 * allocated dev extents, and when shrinking the device,
1553 * search_end may be smaller than search_start.
1555 if (search_end
> search_start
) {
1556 hole_size
= search_end
- search_start
;
1558 if (contains_pending_extent(transaction
, device
, &search_start
,
1560 btrfs_release_path(path
);
1564 if (hole_size
> max_hole_size
) {
1565 max_hole_start
= search_start
;
1566 max_hole_size
= hole_size
;
1571 if (max_hole_size
< num_bytes
)
1577 btrfs_free_path(path
);
1578 *start
= max_hole_start
;
1580 *len
= max_hole_size
;
1584 int find_free_dev_extent(struct btrfs_trans_handle
*trans
,
1585 struct btrfs_device
*device
, u64 num_bytes
,
1586 u64
*start
, u64
*len
)
1588 /* FIXME use last free of some kind */
1589 return find_free_dev_extent_start(trans
->transaction
, device
,
1590 num_bytes
, 0, start
, len
);
1593 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1594 struct btrfs_device
*device
,
1595 u64 start
, u64
*dev_extent_len
)
1597 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1598 struct btrfs_root
*root
= fs_info
->dev_root
;
1600 struct btrfs_path
*path
;
1601 struct btrfs_key key
;
1602 struct btrfs_key found_key
;
1603 struct extent_buffer
*leaf
= NULL
;
1604 struct btrfs_dev_extent
*extent
= NULL
;
1606 path
= btrfs_alloc_path();
1610 key
.objectid
= device
->devid
;
1612 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1614 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1616 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1617 BTRFS_DEV_EXTENT_KEY
);
1620 leaf
= path
->nodes
[0];
1621 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1622 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1623 struct btrfs_dev_extent
);
1624 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1625 btrfs_dev_extent_length(leaf
, extent
) < start
);
1627 btrfs_release_path(path
);
1629 } else if (ret
== 0) {
1630 leaf
= path
->nodes
[0];
1631 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1632 struct btrfs_dev_extent
);
1634 btrfs_handle_fs_error(fs_info
, ret
, "Slot search failed");
1638 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1640 ret
= btrfs_del_item(trans
, root
, path
);
1642 btrfs_handle_fs_error(fs_info
, ret
,
1643 "Failed to remove dev extent item");
1645 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1648 btrfs_free_path(path
);
1652 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1653 struct btrfs_device
*device
,
1654 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1657 struct btrfs_path
*path
;
1658 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1659 struct btrfs_root
*root
= fs_info
->dev_root
;
1660 struct btrfs_dev_extent
*extent
;
1661 struct extent_buffer
*leaf
;
1662 struct btrfs_key key
;
1664 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
));
1665 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
));
1666 path
= btrfs_alloc_path();
1670 key
.objectid
= device
->devid
;
1672 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1673 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1678 leaf
= path
->nodes
[0];
1679 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1680 struct btrfs_dev_extent
);
1681 btrfs_set_dev_extent_chunk_tree(leaf
, extent
,
1682 BTRFS_CHUNK_TREE_OBJECTID
);
1683 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
,
1684 BTRFS_FIRST_CHUNK_TREE_OBJECTID
);
1685 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1687 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1688 btrfs_mark_buffer_dirty(leaf
);
1690 btrfs_free_path(path
);
1694 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1696 struct extent_map_tree
*em_tree
;
1697 struct extent_map
*em
;
1701 em_tree
= &fs_info
->mapping_tree
.map_tree
;
1702 read_lock(&em_tree
->lock
);
1703 n
= rb_last(&em_tree
->map
);
1705 em
= rb_entry(n
, struct extent_map
, rb_node
);
1706 ret
= em
->start
+ em
->len
;
1708 read_unlock(&em_tree
->lock
);
1713 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1717 struct btrfs_key key
;
1718 struct btrfs_key found_key
;
1719 struct btrfs_path
*path
;
1721 path
= btrfs_alloc_path();
1725 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1726 key
.type
= BTRFS_DEV_ITEM_KEY
;
1727 key
.offset
= (u64
)-1;
1729 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1733 BUG_ON(ret
== 0); /* Corruption */
1735 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1736 BTRFS_DEV_ITEMS_OBJECTID
,
1737 BTRFS_DEV_ITEM_KEY
);
1741 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1743 *devid_ret
= found_key
.offset
+ 1;
1747 btrfs_free_path(path
);
1752 * the device information is stored in the chunk root
1753 * the btrfs_device struct should be fully filled in
1755 static int btrfs_add_dev_item(struct btrfs_trans_handle
*trans
,
1756 struct btrfs_fs_info
*fs_info
,
1757 struct btrfs_device
*device
)
1759 struct btrfs_root
*root
= fs_info
->chunk_root
;
1761 struct btrfs_path
*path
;
1762 struct btrfs_dev_item
*dev_item
;
1763 struct extent_buffer
*leaf
;
1764 struct btrfs_key key
;
1767 path
= btrfs_alloc_path();
1771 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1772 key
.type
= BTRFS_DEV_ITEM_KEY
;
1773 key
.offset
= device
->devid
;
1775 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1780 leaf
= path
->nodes
[0];
1781 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1783 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1784 btrfs_set_device_generation(leaf
, dev_item
, 0);
1785 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1786 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1787 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1788 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1789 btrfs_set_device_total_bytes(leaf
, dev_item
,
1790 btrfs_device_get_disk_total_bytes(device
));
1791 btrfs_set_device_bytes_used(leaf
, dev_item
,
1792 btrfs_device_get_bytes_used(device
));
1793 btrfs_set_device_group(leaf
, dev_item
, 0);
1794 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1795 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1796 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1798 ptr
= btrfs_device_uuid(dev_item
);
1799 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1800 ptr
= btrfs_device_fsid(dev_item
);
1801 write_extent_buffer(leaf
, fs_info
->fsid
, ptr
, BTRFS_FSID_SIZE
);
1802 btrfs_mark_buffer_dirty(leaf
);
1806 btrfs_free_path(path
);
1811 * Function to update ctime/mtime for a given device path.
1812 * Mainly used for ctime/mtime based probe like libblkid.
1814 static void update_dev_time(const char *path_name
)
1818 filp
= filp_open(path_name
, O_RDWR
, 0);
1821 file_update_time(filp
);
1822 filp_close(filp
, NULL
);
1825 static int btrfs_rm_dev_item(struct btrfs_fs_info
*fs_info
,
1826 struct btrfs_device
*device
)
1828 struct btrfs_root
*root
= fs_info
->chunk_root
;
1830 struct btrfs_path
*path
;
1831 struct btrfs_key key
;
1832 struct btrfs_trans_handle
*trans
;
1834 path
= btrfs_alloc_path();
1838 trans
= btrfs_start_transaction(root
, 0);
1839 if (IS_ERR(trans
)) {
1840 btrfs_free_path(path
);
1841 return PTR_ERR(trans
);
1843 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1844 key
.type
= BTRFS_DEV_ITEM_KEY
;
1845 key
.offset
= device
->devid
;
1847 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1851 btrfs_abort_transaction(trans
, ret
);
1852 btrfs_end_transaction(trans
);
1856 ret
= btrfs_del_item(trans
, root
, path
);
1858 btrfs_abort_transaction(trans
, ret
);
1859 btrfs_end_transaction(trans
);
1863 btrfs_free_path(path
);
1865 ret
= btrfs_commit_transaction(trans
);
1870 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1871 * filesystem. It's up to the caller to adjust that number regarding eg. device
1874 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
1882 seq
= read_seqbegin(&fs_info
->profiles_lock
);
1884 all_avail
= fs_info
->avail_data_alloc_bits
|
1885 fs_info
->avail_system_alloc_bits
|
1886 fs_info
->avail_metadata_alloc_bits
;
1887 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
1889 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
1890 if (!(all_avail
& btrfs_raid_array
[i
].bg_flag
))
1893 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
1894 int ret
= btrfs_raid_array
[i
].mindev_error
;
1904 static struct btrfs_device
* btrfs_find_next_active_device(
1905 struct btrfs_fs_devices
*fs_devs
, struct btrfs_device
*device
)
1907 struct btrfs_device
*next_device
;
1909 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
1910 if (next_device
!= device
&&
1911 !test_bit(BTRFS_DEV_STATE_MISSING
, &next_device
->dev_state
)
1912 && next_device
->bdev
)
1920 * Helper function to check if the given device is part of s_bdev / latest_bdev
1921 * and replace it with the provided or the next active device, in the context
1922 * where this function called, there should be always be another device (or
1923 * this_dev) which is active.
1925 void btrfs_assign_next_active_device(struct btrfs_fs_info
*fs_info
,
1926 struct btrfs_device
*device
, struct btrfs_device
*this_dev
)
1928 struct btrfs_device
*next_device
;
1931 next_device
= this_dev
;
1933 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
1935 ASSERT(next_device
);
1937 if (fs_info
->sb
->s_bdev
&&
1938 (fs_info
->sb
->s_bdev
== device
->bdev
))
1939 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1941 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
1942 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1945 int btrfs_rm_device(struct btrfs_fs_info
*fs_info
, const char *device_path
,
1948 struct btrfs_device
*device
;
1949 struct btrfs_fs_devices
*cur_devices
;
1950 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
1954 mutex_lock(&uuid_mutex
);
1956 num_devices
= fs_devices
->num_devices
;
1957 btrfs_dev_replace_read_lock(&fs_info
->dev_replace
);
1958 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
1959 WARN_ON(num_devices
< 1);
1962 btrfs_dev_replace_read_unlock(&fs_info
->dev_replace
);
1964 ret
= btrfs_check_raid_min_devices(fs_info
, num_devices
- 1);
1968 ret
= btrfs_find_device_by_devspec(fs_info
, devid
, device_path
,
1973 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1974 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
1978 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
1979 fs_info
->fs_devices
->rw_devices
== 1) {
1980 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
1984 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
1985 mutex_lock(&fs_info
->chunk_mutex
);
1986 list_del_init(&device
->dev_alloc_list
);
1987 device
->fs_devices
->rw_devices
--;
1988 mutex_unlock(&fs_info
->chunk_mutex
);
1991 mutex_unlock(&uuid_mutex
);
1992 ret
= btrfs_shrink_device(device
, 0);
1993 mutex_lock(&uuid_mutex
);
1998 * TODO: the superblock still includes this device in its num_devices
1999 * counter although write_all_supers() is not locked out. This
2000 * could give a filesystem state which requires a degraded mount.
2002 ret
= btrfs_rm_dev_item(fs_info
, device
);
2006 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2007 btrfs_scrub_cancel_dev(fs_info
, device
);
2010 * the device list mutex makes sure that we don't change
2011 * the device list while someone else is writing out all
2012 * the device supers. Whoever is writing all supers, should
2013 * lock the device list mutex before getting the number of
2014 * devices in the super block (super_copy). Conversely,
2015 * whoever updates the number of devices in the super block
2016 * (super_copy) should hold the device list mutex.
2020 * In normal cases the cur_devices == fs_devices. But in case
2021 * of deleting a seed device, the cur_devices should point to
2022 * its own fs_devices listed under the fs_devices->seed.
2024 cur_devices
= device
->fs_devices
;
2025 mutex_lock(&fs_devices
->device_list_mutex
);
2026 list_del_rcu(&device
->dev_list
);
2028 cur_devices
->num_devices
--;
2029 cur_devices
->total_devices
--;
2031 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
2032 cur_devices
->missing_devices
--;
2034 btrfs_assign_next_active_device(fs_info
, device
, NULL
);
2037 cur_devices
->open_devices
--;
2038 /* remove sysfs entry */
2039 btrfs_sysfs_rm_device_link(fs_devices
, device
);
2042 num_devices
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
2043 btrfs_set_super_num_devices(fs_info
->super_copy
, num_devices
);
2044 mutex_unlock(&fs_devices
->device_list_mutex
);
2047 * at this point, the device is zero sized and detached from
2048 * the devices list. All that's left is to zero out the old
2049 * supers and free the device.
2051 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2052 btrfs_scratch_superblocks(device
->bdev
, device
->name
->str
);
2054 btrfs_close_bdev(device
);
2055 call_rcu(&device
->rcu
, free_device_rcu
);
2057 if (cur_devices
->open_devices
== 0) {
2058 while (fs_devices
) {
2059 if (fs_devices
->seed
== cur_devices
) {
2060 fs_devices
->seed
= cur_devices
->seed
;
2063 fs_devices
= fs_devices
->seed
;
2065 cur_devices
->seed
= NULL
;
2066 close_fs_devices(cur_devices
);
2067 free_fs_devices(cur_devices
);
2071 mutex_unlock(&uuid_mutex
);
2075 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
2076 mutex_lock(&fs_info
->chunk_mutex
);
2077 list_add(&device
->dev_alloc_list
,
2078 &fs_devices
->alloc_list
);
2079 device
->fs_devices
->rw_devices
++;
2080 mutex_unlock(&fs_info
->chunk_mutex
);
2085 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info
*fs_info
,
2086 struct btrfs_device
*srcdev
)
2088 struct btrfs_fs_devices
*fs_devices
;
2090 lockdep_assert_held(&fs_info
->fs_devices
->device_list_mutex
);
2093 * in case of fs with no seed, srcdev->fs_devices will point
2094 * to fs_devices of fs_info. However when the dev being replaced is
2095 * a seed dev it will point to the seed's local fs_devices. In short
2096 * srcdev will have its correct fs_devices in both the cases.
2098 fs_devices
= srcdev
->fs_devices
;
2100 list_del_rcu(&srcdev
->dev_list
);
2101 list_del(&srcdev
->dev_alloc_list
);
2102 fs_devices
->num_devices
--;
2103 if (test_bit(BTRFS_DEV_STATE_MISSING
, &srcdev
->dev_state
))
2104 fs_devices
->missing_devices
--;
2106 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &srcdev
->dev_state
))
2107 fs_devices
->rw_devices
--;
2110 fs_devices
->open_devices
--;
2113 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info
*fs_info
,
2114 struct btrfs_device
*srcdev
)
2116 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
2118 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &srcdev
->dev_state
)) {
2119 /* zero out the old super if it is writable */
2120 btrfs_scratch_superblocks(srcdev
->bdev
, srcdev
->name
->str
);
2123 btrfs_close_bdev(srcdev
);
2124 call_rcu(&srcdev
->rcu
, free_device_rcu
);
2126 /* if this is no devs we rather delete the fs_devices */
2127 if (!fs_devices
->num_devices
) {
2128 struct btrfs_fs_devices
*tmp_fs_devices
;
2131 * On a mounted FS, num_devices can't be zero unless it's a
2132 * seed. In case of a seed device being replaced, the replace
2133 * target added to the sprout FS, so there will be no more
2134 * device left under the seed FS.
2136 ASSERT(fs_devices
->seeding
);
2138 tmp_fs_devices
= fs_info
->fs_devices
;
2139 while (tmp_fs_devices
) {
2140 if (tmp_fs_devices
->seed
== fs_devices
) {
2141 tmp_fs_devices
->seed
= fs_devices
->seed
;
2144 tmp_fs_devices
= tmp_fs_devices
->seed
;
2146 fs_devices
->seed
= NULL
;
2147 close_fs_devices(fs_devices
);
2148 free_fs_devices(fs_devices
);
2152 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info
*fs_info
,
2153 struct btrfs_device
*tgtdev
)
2155 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2158 mutex_lock(&fs_devices
->device_list_mutex
);
2160 btrfs_sysfs_rm_device_link(fs_devices
, tgtdev
);
2163 fs_devices
->open_devices
--;
2165 fs_devices
->num_devices
--;
2167 btrfs_assign_next_active_device(fs_info
, tgtdev
, NULL
);
2169 list_del_rcu(&tgtdev
->dev_list
);
2171 mutex_unlock(&fs_devices
->device_list_mutex
);
2174 * The update_dev_time() with in btrfs_scratch_superblocks()
2175 * may lead to a call to btrfs_show_devname() which will try
2176 * to hold device_list_mutex. And here this device
2177 * is already out of device list, so we don't have to hold
2178 * the device_list_mutex lock.
2180 btrfs_scratch_superblocks(tgtdev
->bdev
, tgtdev
->name
->str
);
2182 btrfs_close_bdev(tgtdev
);
2183 call_rcu(&tgtdev
->rcu
, free_device_rcu
);
2186 static int btrfs_find_device_by_path(struct btrfs_fs_info
*fs_info
,
2187 const char *device_path
,
2188 struct btrfs_device
**device
)
2191 struct btrfs_super_block
*disk_super
;
2194 struct block_device
*bdev
;
2195 struct buffer_head
*bh
;
2198 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2199 fs_info
->bdev_holder
, 0, &bdev
, &bh
);
2202 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
2203 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2204 dev_uuid
= disk_super
->dev_item
.uuid
;
2205 *device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, disk_super
->fsid
);
2209 blkdev_put(bdev
, FMODE_READ
);
2213 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info
*fs_info
,
2214 const char *device_path
,
2215 struct btrfs_device
**device
)
2218 if (strcmp(device_path
, "missing") == 0) {
2219 struct list_head
*devices
;
2220 struct btrfs_device
*tmp
;
2222 devices
= &fs_info
->fs_devices
->devices
;
2223 list_for_each_entry(tmp
, devices
, dev_list
) {
2224 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
2225 &tmp
->dev_state
) && !tmp
->bdev
) {
2232 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2236 return btrfs_find_device_by_path(fs_info
, device_path
, device
);
2241 * Lookup a device given by device id, or the path if the id is 0.
2243 int btrfs_find_device_by_devspec(struct btrfs_fs_info
*fs_info
, u64 devid
,
2244 const char *devpath
,
2245 struct btrfs_device
**device
)
2251 *device
= btrfs_find_device(fs_info
, devid
, NULL
, NULL
);
2255 if (!devpath
|| !devpath
[0])
2258 ret
= btrfs_find_device_missing_or_by_path(fs_info
, devpath
,
2265 * does all the dirty work required for changing file system's UUID.
2267 static int btrfs_prepare_sprout(struct btrfs_fs_info
*fs_info
)
2269 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2270 struct btrfs_fs_devices
*old_devices
;
2271 struct btrfs_fs_devices
*seed_devices
;
2272 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2273 struct btrfs_device
*device
;
2276 lockdep_assert_held(&uuid_mutex
);
2277 if (!fs_devices
->seeding
)
2280 seed_devices
= alloc_fs_devices(NULL
);
2281 if (IS_ERR(seed_devices
))
2282 return PTR_ERR(seed_devices
);
2284 old_devices
= clone_fs_devices(fs_devices
);
2285 if (IS_ERR(old_devices
)) {
2286 kfree(seed_devices
);
2287 return PTR_ERR(old_devices
);
2290 list_add(&old_devices
->fs_list
, &fs_uuids
);
2292 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2293 seed_devices
->opened
= 1;
2294 INIT_LIST_HEAD(&seed_devices
->devices
);
2295 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2296 mutex_init(&seed_devices
->device_list_mutex
);
2298 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2299 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2301 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2302 device
->fs_devices
= seed_devices
;
2304 mutex_lock(&fs_info
->chunk_mutex
);
2305 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2306 mutex_unlock(&fs_info
->chunk_mutex
);
2308 fs_devices
->seeding
= 0;
2309 fs_devices
->num_devices
= 0;
2310 fs_devices
->open_devices
= 0;
2311 fs_devices
->missing_devices
= 0;
2312 fs_devices
->rotating
= 0;
2313 fs_devices
->seed
= seed_devices
;
2315 generate_random_uuid(fs_devices
->fsid
);
2316 memcpy(fs_info
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2317 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2318 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2320 super_flags
= btrfs_super_flags(disk_super
) &
2321 ~BTRFS_SUPER_FLAG_SEEDING
;
2322 btrfs_set_super_flags(disk_super
, super_flags
);
2328 * Store the expected generation for seed devices in device items.
2330 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
,
2331 struct btrfs_fs_info
*fs_info
)
2333 struct btrfs_root
*root
= fs_info
->chunk_root
;
2334 struct btrfs_path
*path
;
2335 struct extent_buffer
*leaf
;
2336 struct btrfs_dev_item
*dev_item
;
2337 struct btrfs_device
*device
;
2338 struct btrfs_key key
;
2339 u8 fs_uuid
[BTRFS_FSID_SIZE
];
2340 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2344 path
= btrfs_alloc_path();
2348 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2350 key
.type
= BTRFS_DEV_ITEM_KEY
;
2353 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2357 leaf
= path
->nodes
[0];
2359 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2360 ret
= btrfs_next_leaf(root
, path
);
2365 leaf
= path
->nodes
[0];
2366 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2367 btrfs_release_path(path
);
2371 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2372 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2373 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2376 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2377 struct btrfs_dev_item
);
2378 devid
= btrfs_device_id(leaf
, dev_item
);
2379 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2381 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2383 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
2384 BUG_ON(!device
); /* Logic error */
2386 if (device
->fs_devices
->seeding
) {
2387 btrfs_set_device_generation(leaf
, dev_item
,
2388 device
->generation
);
2389 btrfs_mark_buffer_dirty(leaf
);
2397 btrfs_free_path(path
);
2401 int btrfs_init_new_device(struct btrfs_fs_info
*fs_info
, const char *device_path
)
2403 struct btrfs_root
*root
= fs_info
->dev_root
;
2404 struct request_queue
*q
;
2405 struct btrfs_trans_handle
*trans
;
2406 struct btrfs_device
*device
;
2407 struct block_device
*bdev
;
2408 struct list_head
*devices
;
2409 struct super_block
*sb
= fs_info
->sb
;
2410 struct rcu_string
*name
;
2412 int seeding_dev
= 0;
2414 bool unlocked
= false;
2416 if (sb_rdonly(sb
) && !fs_info
->fs_devices
->seeding
)
2419 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2420 fs_info
->bdev_holder
);
2422 return PTR_ERR(bdev
);
2424 if (fs_info
->fs_devices
->seeding
) {
2426 down_write(&sb
->s_umount
);
2427 mutex_lock(&uuid_mutex
);
2430 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2432 devices
= &fs_info
->fs_devices
->devices
;
2434 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2435 list_for_each_entry(device
, devices
, dev_list
) {
2436 if (device
->bdev
== bdev
) {
2439 &fs_info
->fs_devices
->device_list_mutex
);
2443 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2445 device
= btrfs_alloc_device(fs_info
, NULL
, NULL
);
2446 if (IS_ERR(device
)) {
2447 /* we can safely leave the fs_devices entry around */
2448 ret
= PTR_ERR(device
);
2452 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2455 goto error_free_device
;
2457 rcu_assign_pointer(device
->name
, name
);
2459 trans
= btrfs_start_transaction(root
, 0);
2460 if (IS_ERR(trans
)) {
2461 ret
= PTR_ERR(trans
);
2462 goto error_free_device
;
2465 q
= bdev_get_queue(bdev
);
2466 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
2467 device
->generation
= trans
->transid
;
2468 device
->io_width
= fs_info
->sectorsize
;
2469 device
->io_align
= fs_info
->sectorsize
;
2470 device
->sector_size
= fs_info
->sectorsize
;
2471 device
->total_bytes
= round_down(i_size_read(bdev
->bd_inode
),
2472 fs_info
->sectorsize
);
2473 device
->disk_total_bytes
= device
->total_bytes
;
2474 device
->commit_total_bytes
= device
->total_bytes
;
2475 device
->fs_info
= fs_info
;
2476 device
->bdev
= bdev
;
2477 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2478 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
2479 device
->mode
= FMODE_EXCL
;
2480 device
->dev_stats_valid
= 1;
2481 set_blocksize(device
->bdev
, BTRFS_BDEV_BLOCKSIZE
);
2484 sb
->s_flags
&= ~SB_RDONLY
;
2485 ret
= btrfs_prepare_sprout(fs_info
);
2487 btrfs_abort_transaction(trans
, ret
);
2492 device
->fs_devices
= fs_info
->fs_devices
;
2494 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2495 mutex_lock(&fs_info
->chunk_mutex
);
2496 list_add_rcu(&device
->dev_list
, &fs_info
->fs_devices
->devices
);
2497 list_add(&device
->dev_alloc_list
,
2498 &fs_info
->fs_devices
->alloc_list
);
2499 fs_info
->fs_devices
->num_devices
++;
2500 fs_info
->fs_devices
->open_devices
++;
2501 fs_info
->fs_devices
->rw_devices
++;
2502 fs_info
->fs_devices
->total_devices
++;
2503 fs_info
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2505 atomic64_add(device
->total_bytes
, &fs_info
->free_chunk_space
);
2507 if (!blk_queue_nonrot(q
))
2508 fs_info
->fs_devices
->rotating
= 1;
2510 tmp
= btrfs_super_total_bytes(fs_info
->super_copy
);
2511 btrfs_set_super_total_bytes(fs_info
->super_copy
,
2512 round_down(tmp
+ device
->total_bytes
, fs_info
->sectorsize
));
2514 tmp
= btrfs_super_num_devices(fs_info
->super_copy
);
2515 btrfs_set_super_num_devices(fs_info
->super_copy
, tmp
+ 1);
2517 /* add sysfs device entry */
2518 btrfs_sysfs_add_device_link(fs_info
->fs_devices
, device
);
2521 * we've got more storage, clear any full flags on the space
2524 btrfs_clear_space_info_full(fs_info
);
2526 mutex_unlock(&fs_info
->chunk_mutex
);
2527 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2530 mutex_lock(&fs_info
->chunk_mutex
);
2531 ret
= init_first_rw_device(trans
, fs_info
);
2532 mutex_unlock(&fs_info
->chunk_mutex
);
2534 btrfs_abort_transaction(trans
, ret
);
2539 ret
= btrfs_add_dev_item(trans
, fs_info
, device
);
2541 btrfs_abort_transaction(trans
, ret
);
2546 char fsid_buf
[BTRFS_UUID_UNPARSED_SIZE
];
2548 ret
= btrfs_finish_sprout(trans
, fs_info
);
2550 btrfs_abort_transaction(trans
, ret
);
2554 /* Sprouting would change fsid of the mounted root,
2555 * so rename the fsid on the sysfs
2557 snprintf(fsid_buf
, BTRFS_UUID_UNPARSED_SIZE
, "%pU",
2559 if (kobject_rename(&fs_info
->fs_devices
->fsid_kobj
, fsid_buf
))
2561 "sysfs: failed to create fsid for sprout");
2564 ret
= btrfs_commit_transaction(trans
);
2567 mutex_unlock(&uuid_mutex
);
2568 up_write(&sb
->s_umount
);
2571 if (ret
) /* transaction commit */
2574 ret
= btrfs_relocate_sys_chunks(fs_info
);
2576 btrfs_handle_fs_error(fs_info
, ret
,
2577 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2578 trans
= btrfs_attach_transaction(root
);
2579 if (IS_ERR(trans
)) {
2580 if (PTR_ERR(trans
) == -ENOENT
)
2582 ret
= PTR_ERR(trans
);
2586 ret
= btrfs_commit_transaction(trans
);
2589 /* Update ctime/mtime for libblkid */
2590 update_dev_time(device_path
);
2594 btrfs_sysfs_rm_device_link(fs_info
->fs_devices
, device
);
2597 sb
->s_flags
|= SB_RDONLY
;
2599 btrfs_end_transaction(trans
);
2601 btrfs_free_device(device
);
2603 blkdev_put(bdev
, FMODE_EXCL
);
2604 if (seeding_dev
&& !unlocked
) {
2605 mutex_unlock(&uuid_mutex
);
2606 up_write(&sb
->s_umount
);
2611 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2612 struct btrfs_device
*device
)
2615 struct btrfs_path
*path
;
2616 struct btrfs_root
*root
= device
->fs_info
->chunk_root
;
2617 struct btrfs_dev_item
*dev_item
;
2618 struct extent_buffer
*leaf
;
2619 struct btrfs_key key
;
2621 path
= btrfs_alloc_path();
2625 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2626 key
.type
= BTRFS_DEV_ITEM_KEY
;
2627 key
.offset
= device
->devid
;
2629 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2638 leaf
= path
->nodes
[0];
2639 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2641 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2642 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2643 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2644 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2645 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2646 btrfs_set_device_total_bytes(leaf
, dev_item
,
2647 btrfs_device_get_disk_total_bytes(device
));
2648 btrfs_set_device_bytes_used(leaf
, dev_item
,
2649 btrfs_device_get_bytes_used(device
));
2650 btrfs_mark_buffer_dirty(leaf
);
2653 btrfs_free_path(path
);
2657 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2658 struct btrfs_device
*device
, u64 new_size
)
2660 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
2661 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2662 struct btrfs_fs_devices
*fs_devices
;
2666 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2669 new_size
= round_down(new_size
, fs_info
->sectorsize
);
2671 mutex_lock(&fs_info
->chunk_mutex
);
2672 old_total
= btrfs_super_total_bytes(super_copy
);
2673 diff
= round_down(new_size
- device
->total_bytes
, fs_info
->sectorsize
);
2675 if (new_size
<= device
->total_bytes
||
2676 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
2677 mutex_unlock(&fs_info
->chunk_mutex
);
2681 fs_devices
= fs_info
->fs_devices
;
2683 btrfs_set_super_total_bytes(super_copy
,
2684 round_down(old_total
+ diff
, fs_info
->sectorsize
));
2685 device
->fs_devices
->total_rw_bytes
+= diff
;
2687 btrfs_device_set_total_bytes(device
, new_size
);
2688 btrfs_device_set_disk_total_bytes(device
, new_size
);
2689 btrfs_clear_space_info_full(device
->fs_info
);
2690 if (list_empty(&device
->resized_list
))
2691 list_add_tail(&device
->resized_list
,
2692 &fs_devices
->resized_devices
);
2693 mutex_unlock(&fs_info
->chunk_mutex
);
2695 return btrfs_update_device(trans
, device
);
2698 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
,
2699 struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2701 struct btrfs_root
*root
= fs_info
->chunk_root
;
2703 struct btrfs_path
*path
;
2704 struct btrfs_key key
;
2706 path
= btrfs_alloc_path();
2710 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2711 key
.offset
= chunk_offset
;
2712 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2714 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2717 else if (ret
> 0) { /* Logic error or corruption */
2718 btrfs_handle_fs_error(fs_info
, -ENOENT
,
2719 "Failed lookup while freeing chunk.");
2724 ret
= btrfs_del_item(trans
, root
, path
);
2726 btrfs_handle_fs_error(fs_info
, ret
,
2727 "Failed to delete chunk item.");
2729 btrfs_free_path(path
);
2733 static int btrfs_del_sys_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2735 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2736 struct btrfs_disk_key
*disk_key
;
2737 struct btrfs_chunk
*chunk
;
2744 struct btrfs_key key
;
2746 mutex_lock(&fs_info
->chunk_mutex
);
2747 array_size
= btrfs_super_sys_array_size(super_copy
);
2749 ptr
= super_copy
->sys_chunk_array
;
2752 while (cur
< array_size
) {
2753 disk_key
= (struct btrfs_disk_key
*)ptr
;
2754 btrfs_disk_key_to_cpu(&key
, disk_key
);
2756 len
= sizeof(*disk_key
);
2758 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2759 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2760 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2761 len
+= btrfs_chunk_item_size(num_stripes
);
2766 if (key
.objectid
== BTRFS_FIRST_CHUNK_TREE_OBJECTID
&&
2767 key
.offset
== chunk_offset
) {
2768 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2770 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2776 mutex_unlock(&fs_info
->chunk_mutex
);
2780 static struct extent_map
*get_chunk_map(struct btrfs_fs_info
*fs_info
,
2781 u64 logical
, u64 length
)
2783 struct extent_map_tree
*em_tree
;
2784 struct extent_map
*em
;
2786 em_tree
= &fs_info
->mapping_tree
.map_tree
;
2787 read_lock(&em_tree
->lock
);
2788 em
= lookup_extent_mapping(em_tree
, logical
, length
);
2789 read_unlock(&em_tree
->lock
);
2792 btrfs_crit(fs_info
, "unable to find logical %llu length %llu",
2794 return ERR_PTR(-EINVAL
);
2797 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
2799 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2800 logical
, length
, em
->start
, em
->start
+ em
->len
);
2801 free_extent_map(em
);
2802 return ERR_PTR(-EINVAL
);
2805 /* callers are responsible for dropping em's ref. */
2809 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
,
2810 struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2812 struct extent_map
*em
;
2813 struct map_lookup
*map
;
2814 u64 dev_extent_len
= 0;
2816 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2818 em
= get_chunk_map(fs_info
, chunk_offset
, 1);
2821 * This is a logic error, but we don't want to just rely on the
2822 * user having built with ASSERT enabled, so if ASSERT doesn't
2823 * do anything we still error out.
2828 map
= em
->map_lookup
;
2829 mutex_lock(&fs_info
->chunk_mutex
);
2830 check_system_chunk(trans
, fs_info
, map
->type
);
2831 mutex_unlock(&fs_info
->chunk_mutex
);
2834 * Take the device list mutex to prevent races with the final phase of
2835 * a device replace operation that replaces the device object associated
2836 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2838 mutex_lock(&fs_devices
->device_list_mutex
);
2839 for (i
= 0; i
< map
->num_stripes
; i
++) {
2840 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2841 ret
= btrfs_free_dev_extent(trans
, device
,
2842 map
->stripes
[i
].physical
,
2845 mutex_unlock(&fs_devices
->device_list_mutex
);
2846 btrfs_abort_transaction(trans
, ret
);
2850 if (device
->bytes_used
> 0) {
2851 mutex_lock(&fs_info
->chunk_mutex
);
2852 btrfs_device_set_bytes_used(device
,
2853 device
->bytes_used
- dev_extent_len
);
2854 atomic64_add(dev_extent_len
, &fs_info
->free_chunk_space
);
2855 btrfs_clear_space_info_full(fs_info
);
2856 mutex_unlock(&fs_info
->chunk_mutex
);
2859 if (map
->stripes
[i
].dev
) {
2860 ret
= btrfs_update_device(trans
, map
->stripes
[i
].dev
);
2862 mutex_unlock(&fs_devices
->device_list_mutex
);
2863 btrfs_abort_transaction(trans
, ret
);
2868 mutex_unlock(&fs_devices
->device_list_mutex
);
2870 ret
= btrfs_free_chunk(trans
, fs_info
, chunk_offset
);
2872 btrfs_abort_transaction(trans
, ret
);
2876 trace_btrfs_chunk_free(fs_info
, map
, chunk_offset
, em
->len
);
2878 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2879 ret
= btrfs_del_sys_chunk(fs_info
, chunk_offset
);
2881 btrfs_abort_transaction(trans
, ret
);
2886 ret
= btrfs_remove_block_group(trans
, fs_info
, chunk_offset
, em
);
2888 btrfs_abort_transaction(trans
, ret
);
2894 free_extent_map(em
);
2898 static int btrfs_relocate_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2900 struct btrfs_root
*root
= fs_info
->chunk_root
;
2901 struct btrfs_trans_handle
*trans
;
2905 * Prevent races with automatic removal of unused block groups.
2906 * After we relocate and before we remove the chunk with offset
2907 * chunk_offset, automatic removal of the block group can kick in,
2908 * resulting in a failure when calling btrfs_remove_chunk() below.
2910 * Make sure to acquire this mutex before doing a tree search (dev
2911 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2912 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2913 * we release the path used to search the chunk/dev tree and before
2914 * the current task acquires this mutex and calls us.
2916 lockdep_assert_held(&fs_info
->delete_unused_bgs_mutex
);
2918 ret
= btrfs_can_relocate(fs_info
, chunk_offset
);
2922 /* step one, relocate all the extents inside this chunk */
2923 btrfs_scrub_pause(fs_info
);
2924 ret
= btrfs_relocate_block_group(fs_info
, chunk_offset
);
2925 btrfs_scrub_continue(fs_info
);
2930 * We add the kobjects here (and after forcing data chunk creation)
2931 * since relocation is the only place we'll create chunks of a new
2932 * type at runtime. The only place where we'll remove the last
2933 * chunk of a type is the call immediately below this one. Even
2934 * so, we're protected against races with the cleaner thread since
2935 * we're covered by the delete_unused_bgs_mutex.
2937 btrfs_add_raid_kobjects(fs_info
);
2939 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
2941 if (IS_ERR(trans
)) {
2942 ret
= PTR_ERR(trans
);
2943 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
2948 * step two, delete the device extents and the
2949 * chunk tree entries
2951 ret
= btrfs_remove_chunk(trans
, fs_info
, chunk_offset
);
2952 btrfs_end_transaction(trans
);
2956 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
)
2958 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
2959 struct btrfs_path
*path
;
2960 struct extent_buffer
*leaf
;
2961 struct btrfs_chunk
*chunk
;
2962 struct btrfs_key key
;
2963 struct btrfs_key found_key
;
2965 bool retried
= false;
2969 path
= btrfs_alloc_path();
2974 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2975 key
.offset
= (u64
)-1;
2976 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2979 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
2980 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
2982 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
2985 BUG_ON(ret
== 0); /* Corruption */
2987 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
2990 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
2996 leaf
= path
->nodes
[0];
2997 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2999 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
3000 struct btrfs_chunk
);
3001 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3002 btrfs_release_path(path
);
3004 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
3005 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3011 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3013 if (found_key
.offset
== 0)
3015 key
.offset
= found_key
.offset
- 1;
3018 if (failed
&& !retried
) {
3022 } else if (WARN_ON(failed
&& retried
)) {
3026 btrfs_free_path(path
);
3031 * return 1 : allocate a data chunk successfully,
3032 * return <0: errors during allocating a data chunk,
3033 * return 0 : no need to allocate a data chunk.
3035 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info
*fs_info
,
3038 struct btrfs_block_group_cache
*cache
;
3042 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3044 chunk_type
= cache
->flags
;
3045 btrfs_put_block_group(cache
);
3047 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
) {
3048 spin_lock(&fs_info
->data_sinfo
->lock
);
3049 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3050 spin_unlock(&fs_info
->data_sinfo
->lock
);
3053 struct btrfs_trans_handle
*trans
;
3056 trans
= btrfs_join_transaction(fs_info
->tree_root
);
3058 return PTR_ERR(trans
);
3060 ret
= btrfs_force_chunk_alloc(trans
, fs_info
,
3061 BTRFS_BLOCK_GROUP_DATA
);
3062 btrfs_end_transaction(trans
);
3066 btrfs_add_raid_kobjects(fs_info
);
3074 static int insert_balance_item(struct btrfs_fs_info
*fs_info
,
3075 struct btrfs_balance_control
*bctl
)
3077 struct btrfs_root
*root
= fs_info
->tree_root
;
3078 struct btrfs_trans_handle
*trans
;
3079 struct btrfs_balance_item
*item
;
3080 struct btrfs_disk_balance_args disk_bargs
;
3081 struct btrfs_path
*path
;
3082 struct extent_buffer
*leaf
;
3083 struct btrfs_key key
;
3086 path
= btrfs_alloc_path();
3090 trans
= btrfs_start_transaction(root
, 0);
3091 if (IS_ERR(trans
)) {
3092 btrfs_free_path(path
);
3093 return PTR_ERR(trans
);
3096 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3097 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3100 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3105 leaf
= path
->nodes
[0];
3106 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3108 memzero_extent_buffer(leaf
, (unsigned long)item
, sizeof(*item
));
3110 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3111 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3112 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3113 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3114 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3115 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3117 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3119 btrfs_mark_buffer_dirty(leaf
);
3121 btrfs_free_path(path
);
3122 err
= btrfs_commit_transaction(trans
);
3128 static int del_balance_item(struct btrfs_fs_info
*fs_info
)
3130 struct btrfs_root
*root
= fs_info
->tree_root
;
3131 struct btrfs_trans_handle
*trans
;
3132 struct btrfs_path
*path
;
3133 struct btrfs_key key
;
3136 path
= btrfs_alloc_path();
3140 trans
= btrfs_start_transaction(root
, 0);
3141 if (IS_ERR(trans
)) {
3142 btrfs_free_path(path
);
3143 return PTR_ERR(trans
);
3146 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3147 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3150 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3158 ret
= btrfs_del_item(trans
, root
, path
);
3160 btrfs_free_path(path
);
3161 err
= btrfs_commit_transaction(trans
);
3168 * This is a heuristic used to reduce the number of chunks balanced on
3169 * resume after balance was interrupted.
3171 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3174 * Turn on soft mode for chunk types that were being converted.
3176 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3177 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3178 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3179 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3180 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3181 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3184 * Turn on usage filter if is not already used. The idea is
3185 * that chunks that we have already balanced should be
3186 * reasonably full. Don't do it for chunks that are being
3187 * converted - that will keep us from relocating unconverted
3188 * (albeit full) chunks.
3190 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3191 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3192 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3193 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3194 bctl
->data
.usage
= 90;
3196 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3197 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3198 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3199 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3200 bctl
->sys
.usage
= 90;
3202 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3203 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3204 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3205 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3206 bctl
->meta
.usage
= 90;
3211 * Clear the balance status in fs_info and delete the balance item from disk.
3213 static void reset_balance_state(struct btrfs_fs_info
*fs_info
)
3215 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3218 BUG_ON(!fs_info
->balance_ctl
);
3220 spin_lock(&fs_info
->balance_lock
);
3221 fs_info
->balance_ctl
= NULL
;
3222 spin_unlock(&fs_info
->balance_lock
);
3225 ret
= del_balance_item(fs_info
);
3227 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3231 * Balance filters. Return 1 if chunk should be filtered out
3232 * (should not be balanced).
3234 static int chunk_profiles_filter(u64 chunk_type
,
3235 struct btrfs_balance_args
*bargs
)
3237 chunk_type
= chunk_to_extended(chunk_type
) &
3238 BTRFS_EXTENDED_PROFILE_MASK
;
3240 if (bargs
->profiles
& chunk_type
)
3246 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3247 struct btrfs_balance_args
*bargs
)
3249 struct btrfs_block_group_cache
*cache
;
3251 u64 user_thresh_min
;
3252 u64 user_thresh_max
;
3255 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3256 chunk_used
= btrfs_block_group_used(&cache
->item
);
3258 if (bargs
->usage_min
== 0)
3259 user_thresh_min
= 0;
3261 user_thresh_min
= div_factor_fine(cache
->key
.offset
,
3264 if (bargs
->usage_max
== 0)
3265 user_thresh_max
= 1;
3266 else if (bargs
->usage_max
> 100)
3267 user_thresh_max
= cache
->key
.offset
;
3269 user_thresh_max
= div_factor_fine(cache
->key
.offset
,
3272 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3275 btrfs_put_block_group(cache
);
3279 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3280 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3282 struct btrfs_block_group_cache
*cache
;
3283 u64 chunk_used
, user_thresh
;
3286 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3287 chunk_used
= btrfs_block_group_used(&cache
->item
);
3289 if (bargs
->usage_min
== 0)
3291 else if (bargs
->usage
> 100)
3292 user_thresh
= cache
->key
.offset
;
3294 user_thresh
= div_factor_fine(cache
->key
.offset
,
3297 if (chunk_used
< user_thresh
)
3300 btrfs_put_block_group(cache
);
3304 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3305 struct btrfs_chunk
*chunk
,
3306 struct btrfs_balance_args
*bargs
)
3308 struct btrfs_stripe
*stripe
;
3309 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3312 for (i
= 0; i
< num_stripes
; i
++) {
3313 stripe
= btrfs_stripe_nr(chunk
, i
);
3314 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3321 /* [pstart, pend) */
3322 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3323 struct btrfs_chunk
*chunk
,
3324 struct btrfs_balance_args
*bargs
)
3326 struct btrfs_stripe
*stripe
;
3327 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3333 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3336 if (btrfs_chunk_type(leaf
, chunk
) & (BTRFS_BLOCK_GROUP_DUP
|
3337 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)) {
3338 factor
= num_stripes
/ 2;
3339 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID5
) {
3340 factor
= num_stripes
- 1;
3341 } else if (btrfs_chunk_type(leaf
, chunk
) & BTRFS_BLOCK_GROUP_RAID6
) {
3342 factor
= num_stripes
- 2;
3344 factor
= num_stripes
;
3347 for (i
= 0; i
< num_stripes
; i
++) {
3348 stripe
= btrfs_stripe_nr(chunk
, i
);
3349 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3352 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3353 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3354 stripe_length
= div_u64(stripe_length
, factor
);
3356 if (stripe_offset
< bargs
->pend
&&
3357 stripe_offset
+ stripe_length
> bargs
->pstart
)
3364 /* [vstart, vend) */
3365 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3366 struct btrfs_chunk
*chunk
,
3368 struct btrfs_balance_args
*bargs
)
3370 if (chunk_offset
< bargs
->vend
&&
3371 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3372 /* at least part of the chunk is inside this vrange */
3378 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3379 struct btrfs_chunk
*chunk
,
3380 struct btrfs_balance_args
*bargs
)
3382 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3384 if (bargs
->stripes_min
<= num_stripes
3385 && num_stripes
<= bargs
->stripes_max
)
3391 static int chunk_soft_convert_filter(u64 chunk_type
,
3392 struct btrfs_balance_args
*bargs
)
3394 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3397 chunk_type
= chunk_to_extended(chunk_type
) &
3398 BTRFS_EXTENDED_PROFILE_MASK
;
3400 if (bargs
->target
== chunk_type
)
3406 static int should_balance_chunk(struct btrfs_fs_info
*fs_info
,
3407 struct extent_buffer
*leaf
,
3408 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3410 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3411 struct btrfs_balance_args
*bargs
= NULL
;
3412 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3415 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3416 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3420 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3421 bargs
= &bctl
->data
;
3422 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3424 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3425 bargs
= &bctl
->meta
;
3427 /* profiles filter */
3428 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3429 chunk_profiles_filter(chunk_type
, bargs
)) {
3434 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3435 chunk_usage_filter(fs_info
, chunk_offset
, bargs
)) {
3437 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3438 chunk_usage_range_filter(fs_info
, chunk_offset
, bargs
)) {
3443 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3444 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3448 /* drange filter, makes sense only with devid filter */
3449 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3450 chunk_drange_filter(leaf
, chunk
, bargs
)) {
3455 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3456 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3460 /* stripes filter */
3461 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3462 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3466 /* soft profile changing mode */
3467 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3468 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3473 * limited by count, must be the last filter
3475 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3476 if (bargs
->limit
== 0)
3480 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3482 * Same logic as the 'limit' filter; the minimum cannot be
3483 * determined here because we do not have the global information
3484 * about the count of all chunks that satisfy the filters.
3486 if (bargs
->limit_max
== 0)
3495 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3497 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3498 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3499 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
3500 struct list_head
*devices
;
3501 struct btrfs_device
*device
;
3505 struct btrfs_chunk
*chunk
;
3506 struct btrfs_path
*path
= NULL
;
3507 struct btrfs_key key
;
3508 struct btrfs_key found_key
;
3509 struct btrfs_trans_handle
*trans
;
3510 struct extent_buffer
*leaf
;
3513 int enospc_errors
= 0;
3514 bool counting
= true;
3515 /* The single value limit and min/max limits use the same bytes in the */
3516 u64 limit_data
= bctl
->data
.limit
;
3517 u64 limit_meta
= bctl
->meta
.limit
;
3518 u64 limit_sys
= bctl
->sys
.limit
;
3522 int chunk_reserved
= 0;
3524 /* step one make some room on all the devices */
3525 devices
= &fs_info
->fs_devices
->devices
;
3526 list_for_each_entry(device
, devices
, dev_list
) {
3527 old_size
= btrfs_device_get_total_bytes(device
);
3528 size_to_free
= div_factor(old_size
, 1);
3529 size_to_free
= min_t(u64
, size_to_free
, SZ_1M
);
3530 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) ||
3531 btrfs_device_get_total_bytes(device
) -
3532 btrfs_device_get_bytes_used(device
) > size_to_free
||
3533 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
3536 ret
= btrfs_shrink_device(device
, old_size
- size_to_free
);
3540 /* btrfs_shrink_device never returns ret > 0 */
3545 trans
= btrfs_start_transaction(dev_root
, 0);
3546 if (IS_ERR(trans
)) {
3547 ret
= PTR_ERR(trans
);
3548 btrfs_info_in_rcu(fs_info
,
3549 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3550 rcu_str_deref(device
->name
), ret
,
3551 old_size
, old_size
- size_to_free
);
3555 ret
= btrfs_grow_device(trans
, device
, old_size
);
3557 btrfs_end_transaction(trans
);
3558 /* btrfs_grow_device never returns ret > 0 */
3560 btrfs_info_in_rcu(fs_info
,
3561 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3562 rcu_str_deref(device
->name
), ret
,
3563 old_size
, old_size
- size_to_free
);
3567 btrfs_end_transaction(trans
);
3570 /* step two, relocate all the chunks */
3571 path
= btrfs_alloc_path();
3577 /* zero out stat counters */
3578 spin_lock(&fs_info
->balance_lock
);
3579 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3580 spin_unlock(&fs_info
->balance_lock
);
3584 * The single value limit and min/max limits use the same bytes
3587 bctl
->data
.limit
= limit_data
;
3588 bctl
->meta
.limit
= limit_meta
;
3589 bctl
->sys
.limit
= limit_sys
;
3591 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3592 key
.offset
= (u64
)-1;
3593 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3596 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3597 atomic_read(&fs_info
->balance_cancel_req
)) {
3602 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3603 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3605 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3610 * this shouldn't happen, it means the last relocate
3614 BUG(); /* FIXME break ? */
3616 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3617 BTRFS_CHUNK_ITEM_KEY
);
3619 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3624 leaf
= path
->nodes
[0];
3625 slot
= path
->slots
[0];
3626 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3628 if (found_key
.objectid
!= key
.objectid
) {
3629 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3633 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3634 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3637 spin_lock(&fs_info
->balance_lock
);
3638 bctl
->stat
.considered
++;
3639 spin_unlock(&fs_info
->balance_lock
);
3642 ret
= should_balance_chunk(fs_info
, leaf
, chunk
,
3645 btrfs_release_path(path
);
3647 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3652 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3653 spin_lock(&fs_info
->balance_lock
);
3654 bctl
->stat
.expected
++;
3655 spin_unlock(&fs_info
->balance_lock
);
3657 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3659 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3661 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3668 * Apply limit_min filter, no need to check if the LIMITS
3669 * filter is used, limit_min is 0 by default
3671 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3672 count_data
< bctl
->data
.limit_min
)
3673 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3674 count_meta
< bctl
->meta
.limit_min
)
3675 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3676 count_sys
< bctl
->sys
.limit_min
)) {
3677 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3681 if (!chunk_reserved
) {
3683 * We may be relocating the only data chunk we have,
3684 * which could potentially end up with losing data's
3685 * raid profile, so lets allocate an empty one in
3688 ret
= btrfs_may_alloc_data_chunk(fs_info
,
3691 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3693 } else if (ret
== 1) {
3698 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3699 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3700 if (ret
&& ret
!= -ENOSPC
)
3702 if (ret
== -ENOSPC
) {
3705 spin_lock(&fs_info
->balance_lock
);
3706 bctl
->stat
.completed
++;
3707 spin_unlock(&fs_info
->balance_lock
);
3710 if (found_key
.offset
== 0)
3712 key
.offset
= found_key
.offset
- 1;
3716 btrfs_release_path(path
);
3721 btrfs_free_path(path
);
3722 if (enospc_errors
) {
3723 btrfs_info(fs_info
, "%d enospc errors during balance",
3733 * alloc_profile_is_valid - see if a given profile is valid and reduced
3734 * @flags: profile to validate
3735 * @extended: if true @flags is treated as an extended profile
3737 static int alloc_profile_is_valid(u64 flags
, int extended
)
3739 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3740 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3742 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3744 /* 1) check that all other bits are zeroed */
3748 /* 2) see if profile is reduced */
3750 return !extended
; /* "0" is valid for usual profiles */
3752 /* true if exactly one bit set */
3753 return (flags
& (flags
- 1)) == 0;
3756 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3758 /* cancel requested || normal exit path */
3759 return atomic_read(&fs_info
->balance_cancel_req
) ||
3760 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3761 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3764 /* Non-zero return value signifies invalidity */
3765 static inline int validate_convert_profile(struct btrfs_balance_args
*bctl_arg
,
3768 return ((bctl_arg
->flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3769 (!alloc_profile_is_valid(bctl_arg
->target
, 1) ||
3770 (bctl_arg
->target
& ~allowed
)));
3774 * Should be called with balance mutexe held
3776 int btrfs_balance(struct btrfs_fs_info
*fs_info
,
3777 struct btrfs_balance_control
*bctl
,
3778 struct btrfs_ioctl_balance_args
*bargs
)
3780 u64 meta_target
, data_target
;
3787 if (btrfs_fs_closing(fs_info
) ||
3788 atomic_read(&fs_info
->balance_pause_req
) ||
3789 atomic_read(&fs_info
->balance_cancel_req
)) {
3794 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
3795 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
3799 * In case of mixed groups both data and meta should be picked,
3800 * and identical options should be given for both of them.
3802 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
3803 if (mixed
&& (bctl
->flags
& allowed
)) {
3804 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
3805 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
3806 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
3808 "balance: mixed groups data and metadata options must be the same");
3814 num_devices
= fs_info
->fs_devices
->num_devices
;
3815 btrfs_dev_replace_read_lock(&fs_info
->dev_replace
);
3816 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
3817 BUG_ON(num_devices
< 1);
3820 btrfs_dev_replace_read_unlock(&fs_info
->dev_replace
);
3821 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
| BTRFS_BLOCK_GROUP_DUP
;
3822 if (num_devices
> 1)
3823 allowed
|= (BTRFS_BLOCK_GROUP_RAID0
| BTRFS_BLOCK_GROUP_RAID1
);
3824 if (num_devices
> 2)
3825 allowed
|= BTRFS_BLOCK_GROUP_RAID5
;
3826 if (num_devices
> 3)
3827 allowed
|= (BTRFS_BLOCK_GROUP_RAID10
|
3828 BTRFS_BLOCK_GROUP_RAID6
);
3829 if (validate_convert_profile(&bctl
->data
, allowed
)) {
3830 int index
= btrfs_bg_flags_to_raid_index(bctl
->data
.target
);
3833 "balance: invalid convert data profile %s",
3834 get_raid_name(index
));
3838 if (validate_convert_profile(&bctl
->meta
, allowed
)) {
3839 int index
= btrfs_bg_flags_to_raid_index(bctl
->meta
.target
);
3842 "balance: invalid convert metadata profile %s",
3843 get_raid_name(index
));
3847 if (validate_convert_profile(&bctl
->sys
, allowed
)) {
3848 int index
= btrfs_bg_flags_to_raid_index(bctl
->sys
.target
);
3851 "balance: invalid convert system profile %s",
3852 get_raid_name(index
));
3857 /* allow to reduce meta or sys integrity only if force set */
3858 allowed
= BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
3859 BTRFS_BLOCK_GROUP_RAID10
|
3860 BTRFS_BLOCK_GROUP_RAID5
|
3861 BTRFS_BLOCK_GROUP_RAID6
;
3863 seq
= read_seqbegin(&fs_info
->profiles_lock
);
3865 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3866 (fs_info
->avail_system_alloc_bits
& allowed
) &&
3867 !(bctl
->sys
.target
& allowed
)) ||
3868 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
3869 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
3870 !(bctl
->meta
.target
& allowed
))) {
3871 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
3873 "balance: force reducing metadata integrity");
3876 "balance: reduces metadata integrity, use --force if you want this");
3881 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
3883 /* if we're not converting, the target field is uninitialized */
3884 meta_target
= (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3885 bctl
->meta
.target
: fs_info
->avail_metadata_alloc_bits
;
3886 data_target
= (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
3887 bctl
->data
.target
: fs_info
->avail_data_alloc_bits
;
3888 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target
) <
3889 btrfs_get_num_tolerated_disk_barrier_failures(data_target
)) {
3890 int meta_index
= btrfs_bg_flags_to_raid_index(meta_target
);
3891 int data_index
= btrfs_bg_flags_to_raid_index(data_target
);
3894 "balance: metadata profile %s has lower redundancy than data profile %s",
3895 get_raid_name(meta_index
), get_raid_name(data_index
));
3898 ret
= insert_balance_item(fs_info
, bctl
);
3899 if (ret
&& ret
!= -EEXIST
)
3902 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
3903 BUG_ON(ret
== -EEXIST
);
3904 BUG_ON(fs_info
->balance_ctl
);
3905 spin_lock(&fs_info
->balance_lock
);
3906 fs_info
->balance_ctl
= bctl
;
3907 spin_unlock(&fs_info
->balance_lock
);
3909 BUG_ON(ret
!= -EEXIST
);
3910 spin_lock(&fs_info
->balance_lock
);
3911 update_balance_args(bctl
);
3912 spin_unlock(&fs_info
->balance_lock
);
3915 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
3916 set_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
);
3917 mutex_unlock(&fs_info
->balance_mutex
);
3919 ret
= __btrfs_balance(fs_info
);
3921 mutex_lock(&fs_info
->balance_mutex
);
3922 clear_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
);
3925 memset(bargs
, 0, sizeof(*bargs
));
3926 btrfs_update_ioctl_balance_args(fs_info
, bargs
);
3929 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
3930 balance_need_close(fs_info
)) {
3931 reset_balance_state(fs_info
);
3932 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3935 wake_up(&fs_info
->balance_wait_q
);
3939 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
3940 reset_balance_state(fs_info
);
3943 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
3948 static int balance_kthread(void *data
)
3950 struct btrfs_fs_info
*fs_info
= data
;
3953 mutex_lock(&fs_info
->balance_mutex
);
3954 if (fs_info
->balance_ctl
) {
3955 btrfs_info(fs_info
, "balance: resuming");
3956 ret
= btrfs_balance(fs_info
, fs_info
->balance_ctl
, NULL
);
3958 mutex_unlock(&fs_info
->balance_mutex
);
3963 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
3965 struct task_struct
*tsk
;
3967 mutex_lock(&fs_info
->balance_mutex
);
3968 if (!fs_info
->balance_ctl
) {
3969 mutex_unlock(&fs_info
->balance_mutex
);
3972 mutex_unlock(&fs_info
->balance_mutex
);
3974 if (btrfs_test_opt(fs_info
, SKIP_BALANCE
)) {
3975 btrfs_info(fs_info
, "balance: resume skipped");
3980 * A ro->rw remount sequence should continue with the paused balance
3981 * regardless of who pauses it, system or the user as of now, so set
3984 spin_lock(&fs_info
->balance_lock
);
3985 fs_info
->balance_ctl
->flags
|= BTRFS_BALANCE_RESUME
;
3986 spin_unlock(&fs_info
->balance_lock
);
3988 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
3989 return PTR_ERR_OR_ZERO(tsk
);
3992 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
3994 struct btrfs_balance_control
*bctl
;
3995 struct btrfs_balance_item
*item
;
3996 struct btrfs_disk_balance_args disk_bargs
;
3997 struct btrfs_path
*path
;
3998 struct extent_buffer
*leaf
;
3999 struct btrfs_key key
;
4002 path
= btrfs_alloc_path();
4006 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
4007 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
4010 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
4013 if (ret
> 0) { /* ret = -ENOENT; */
4018 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
4024 leaf
= path
->nodes
[0];
4025 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
4027 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
4028 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4030 btrfs_balance_data(leaf
, item
, &disk_bargs
);
4031 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
4032 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
4033 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
4034 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
4035 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
4038 * This should never happen, as the paused balance state is recovered
4039 * during mount without any chance of other exclusive ops to collide.
4041 * This gives the exclusive op status to balance and keeps in paused
4042 * state until user intervention (cancel or umount). If the ownership
4043 * cannot be assigned, show a message but do not fail. The balance
4044 * is in a paused state and must have fs_info::balance_ctl properly
4047 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
))
4049 "balance: cannot set exclusive op status, resume manually");
4051 mutex_lock(&fs_info
->balance_mutex
);
4052 BUG_ON(fs_info
->balance_ctl
);
4053 spin_lock(&fs_info
->balance_lock
);
4054 fs_info
->balance_ctl
= bctl
;
4055 spin_unlock(&fs_info
->balance_lock
);
4056 mutex_unlock(&fs_info
->balance_mutex
);
4058 btrfs_free_path(path
);
4062 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
4066 mutex_lock(&fs_info
->balance_mutex
);
4067 if (!fs_info
->balance_ctl
) {
4068 mutex_unlock(&fs_info
->balance_mutex
);
4072 if (test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
4073 atomic_inc(&fs_info
->balance_pause_req
);
4074 mutex_unlock(&fs_info
->balance_mutex
);
4076 wait_event(fs_info
->balance_wait_q
,
4077 !test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4079 mutex_lock(&fs_info
->balance_mutex
);
4080 /* we are good with balance_ctl ripped off from under us */
4081 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4082 atomic_dec(&fs_info
->balance_pause_req
);
4087 mutex_unlock(&fs_info
->balance_mutex
);
4091 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
4093 mutex_lock(&fs_info
->balance_mutex
);
4094 if (!fs_info
->balance_ctl
) {
4095 mutex_unlock(&fs_info
->balance_mutex
);
4100 * A paused balance with the item stored on disk can be resumed at
4101 * mount time if the mount is read-write. Otherwise it's still paused
4102 * and we must not allow cancelling as it deletes the item.
4104 if (sb_rdonly(fs_info
->sb
)) {
4105 mutex_unlock(&fs_info
->balance_mutex
);
4109 atomic_inc(&fs_info
->balance_cancel_req
);
4111 * if we are running just wait and return, balance item is
4112 * deleted in btrfs_balance in this case
4114 if (test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
4115 mutex_unlock(&fs_info
->balance_mutex
);
4116 wait_event(fs_info
->balance_wait_q
,
4117 !test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4118 mutex_lock(&fs_info
->balance_mutex
);
4120 mutex_unlock(&fs_info
->balance_mutex
);
4122 * Lock released to allow other waiters to continue, we'll
4123 * reexamine the status again.
4125 mutex_lock(&fs_info
->balance_mutex
);
4127 if (fs_info
->balance_ctl
) {
4128 reset_balance_state(fs_info
);
4129 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4130 btrfs_info(fs_info
, "balance: canceled");
4134 BUG_ON(fs_info
->balance_ctl
||
4135 test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4136 atomic_dec(&fs_info
->balance_cancel_req
);
4137 mutex_unlock(&fs_info
->balance_mutex
);
4141 static int btrfs_uuid_scan_kthread(void *data
)
4143 struct btrfs_fs_info
*fs_info
= data
;
4144 struct btrfs_root
*root
= fs_info
->tree_root
;
4145 struct btrfs_key key
;
4146 struct btrfs_path
*path
= NULL
;
4148 struct extent_buffer
*eb
;
4150 struct btrfs_root_item root_item
;
4152 struct btrfs_trans_handle
*trans
= NULL
;
4154 path
= btrfs_alloc_path();
4161 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4165 ret
= btrfs_search_forward(root
, &key
, path
,
4166 BTRFS_OLDEST_GENERATION
);
4173 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4174 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4175 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4176 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4179 eb
= path
->nodes
[0];
4180 slot
= path
->slots
[0];
4181 item_size
= btrfs_item_size_nr(eb
, slot
);
4182 if (item_size
< sizeof(root_item
))
4185 read_extent_buffer(eb
, &root_item
,
4186 btrfs_item_ptr_offset(eb
, slot
),
4187 (int)sizeof(root_item
));
4188 if (btrfs_root_refs(&root_item
) == 0)
4191 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4192 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4196 btrfs_release_path(path
);
4198 * 1 - subvol uuid item
4199 * 1 - received_subvol uuid item
4201 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4202 if (IS_ERR(trans
)) {
4203 ret
= PTR_ERR(trans
);
4211 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4212 ret
= btrfs_uuid_tree_add(trans
, root_item
.uuid
,
4213 BTRFS_UUID_KEY_SUBVOL
,
4216 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4222 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4223 ret
= btrfs_uuid_tree_add(trans
,
4224 root_item
.received_uuid
,
4225 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4228 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4236 ret
= btrfs_end_transaction(trans
);
4242 btrfs_release_path(path
);
4243 if (key
.offset
< (u64
)-1) {
4245 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4247 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4248 } else if (key
.objectid
< (u64
)-1) {
4250 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4259 btrfs_free_path(path
);
4260 if (trans
&& !IS_ERR(trans
))
4261 btrfs_end_transaction(trans
);
4263 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4265 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
4266 up(&fs_info
->uuid_tree_rescan_sem
);
4271 * Callback for btrfs_uuid_tree_iterate().
4273 * 0 check succeeded, the entry is not outdated.
4274 * < 0 if an error occurred.
4275 * > 0 if the check failed, which means the caller shall remove the entry.
4277 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info
*fs_info
,
4278 u8
*uuid
, u8 type
, u64 subid
)
4280 struct btrfs_key key
;
4282 struct btrfs_root
*subvol_root
;
4284 if (type
!= BTRFS_UUID_KEY_SUBVOL
&&
4285 type
!= BTRFS_UUID_KEY_RECEIVED_SUBVOL
)
4288 key
.objectid
= subid
;
4289 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4290 key
.offset
= (u64
)-1;
4291 subvol_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
4292 if (IS_ERR(subvol_root
)) {
4293 ret
= PTR_ERR(subvol_root
);
4300 case BTRFS_UUID_KEY_SUBVOL
:
4301 if (memcmp(uuid
, subvol_root
->root_item
.uuid
, BTRFS_UUID_SIZE
))
4304 case BTRFS_UUID_KEY_RECEIVED_SUBVOL
:
4305 if (memcmp(uuid
, subvol_root
->root_item
.received_uuid
,
4315 static int btrfs_uuid_rescan_kthread(void *data
)
4317 struct btrfs_fs_info
*fs_info
= (struct btrfs_fs_info
*)data
;
4321 * 1st step is to iterate through the existing UUID tree and
4322 * to delete all entries that contain outdated data.
4323 * 2nd step is to add all missing entries to the UUID tree.
4325 ret
= btrfs_uuid_tree_iterate(fs_info
, btrfs_check_uuid_tree_entry
);
4327 btrfs_warn(fs_info
, "iterating uuid_tree failed %d", ret
);
4328 up(&fs_info
->uuid_tree_rescan_sem
);
4331 return btrfs_uuid_scan_kthread(data
);
4334 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4336 struct btrfs_trans_handle
*trans
;
4337 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4338 struct btrfs_root
*uuid_root
;
4339 struct task_struct
*task
;
4346 trans
= btrfs_start_transaction(tree_root
, 2);
4348 return PTR_ERR(trans
);
4350 uuid_root
= btrfs_create_tree(trans
, fs_info
,
4351 BTRFS_UUID_TREE_OBJECTID
);
4352 if (IS_ERR(uuid_root
)) {
4353 ret
= PTR_ERR(uuid_root
);
4354 btrfs_abort_transaction(trans
, ret
);
4355 btrfs_end_transaction(trans
);
4359 fs_info
->uuid_root
= uuid_root
;
4361 ret
= btrfs_commit_transaction(trans
);
4365 down(&fs_info
->uuid_tree_rescan_sem
);
4366 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4368 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4369 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4370 up(&fs_info
->uuid_tree_rescan_sem
);
4371 return PTR_ERR(task
);
4377 int btrfs_check_uuid_tree(struct btrfs_fs_info
*fs_info
)
4379 struct task_struct
*task
;
4381 down(&fs_info
->uuid_tree_rescan_sem
);
4382 task
= kthread_run(btrfs_uuid_rescan_kthread
, fs_info
, "btrfs-uuid");
4384 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4385 btrfs_warn(fs_info
, "failed to start uuid_rescan task");
4386 up(&fs_info
->uuid_tree_rescan_sem
);
4387 return PTR_ERR(task
);
4394 * shrinking a device means finding all of the device extents past
4395 * the new size, and then following the back refs to the chunks.
4396 * The chunk relocation code actually frees the device extent
4398 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4400 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
4401 struct btrfs_root
*root
= fs_info
->dev_root
;
4402 struct btrfs_trans_handle
*trans
;
4403 struct btrfs_dev_extent
*dev_extent
= NULL
;
4404 struct btrfs_path
*path
;
4410 bool retried
= false;
4411 bool checked_pending_chunks
= false;
4412 struct extent_buffer
*l
;
4413 struct btrfs_key key
;
4414 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4415 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4416 u64 old_size
= btrfs_device_get_total_bytes(device
);
4419 new_size
= round_down(new_size
, fs_info
->sectorsize
);
4420 diff
= round_down(old_size
- new_size
, fs_info
->sectorsize
);
4422 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
4425 path
= btrfs_alloc_path();
4429 path
->reada
= READA_BACK
;
4431 mutex_lock(&fs_info
->chunk_mutex
);
4433 btrfs_device_set_total_bytes(device
, new_size
);
4434 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4435 device
->fs_devices
->total_rw_bytes
-= diff
;
4436 atomic64_sub(diff
, &fs_info
->free_chunk_space
);
4438 mutex_unlock(&fs_info
->chunk_mutex
);
4441 key
.objectid
= device
->devid
;
4442 key
.offset
= (u64
)-1;
4443 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4446 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
4447 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4449 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4453 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4455 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4460 btrfs_release_path(path
);
4465 slot
= path
->slots
[0];
4466 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4468 if (key
.objectid
!= device
->devid
) {
4469 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4470 btrfs_release_path(path
);
4474 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4475 length
= btrfs_dev_extent_length(l
, dev_extent
);
4477 if (key
.offset
+ length
<= new_size
) {
4478 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4479 btrfs_release_path(path
);
4483 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4484 btrfs_release_path(path
);
4487 * We may be relocating the only data chunk we have,
4488 * which could potentially end up with losing data's
4489 * raid profile, so lets allocate an empty one in
4492 ret
= btrfs_may_alloc_data_chunk(fs_info
, chunk_offset
);
4494 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4498 ret
= btrfs_relocate_chunk(fs_info
, chunk_offset
);
4499 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4500 if (ret
&& ret
!= -ENOSPC
)
4504 } while (key
.offset
-- > 0);
4506 if (failed
&& !retried
) {
4510 } else if (failed
&& retried
) {
4515 /* Shrinking succeeded, else we would be at "done". */
4516 trans
= btrfs_start_transaction(root
, 0);
4517 if (IS_ERR(trans
)) {
4518 ret
= PTR_ERR(trans
);
4522 mutex_lock(&fs_info
->chunk_mutex
);
4525 * We checked in the above loop all device extents that were already in
4526 * the device tree. However before we have updated the device's
4527 * total_bytes to the new size, we might have had chunk allocations that
4528 * have not complete yet (new block groups attached to transaction
4529 * handles), and therefore their device extents were not yet in the
4530 * device tree and we missed them in the loop above. So if we have any
4531 * pending chunk using a device extent that overlaps the device range
4532 * that we can not use anymore, commit the current transaction and
4533 * repeat the search on the device tree - this way we guarantee we will
4534 * not have chunks using device extents that end beyond 'new_size'.
4536 if (!checked_pending_chunks
) {
4537 u64 start
= new_size
;
4538 u64 len
= old_size
- new_size
;
4540 if (contains_pending_extent(trans
->transaction
, device
,
4542 mutex_unlock(&fs_info
->chunk_mutex
);
4543 checked_pending_chunks
= true;
4546 ret
= btrfs_commit_transaction(trans
);
4553 btrfs_device_set_disk_total_bytes(device
, new_size
);
4554 if (list_empty(&device
->resized_list
))
4555 list_add_tail(&device
->resized_list
,
4556 &fs_info
->fs_devices
->resized_devices
);
4558 WARN_ON(diff
> old_total
);
4559 btrfs_set_super_total_bytes(super_copy
,
4560 round_down(old_total
- diff
, fs_info
->sectorsize
));
4561 mutex_unlock(&fs_info
->chunk_mutex
);
4563 /* Now btrfs_update_device() will change the on-disk size. */
4564 ret
= btrfs_update_device(trans
, device
);
4565 btrfs_end_transaction(trans
);
4567 btrfs_free_path(path
);
4569 mutex_lock(&fs_info
->chunk_mutex
);
4570 btrfs_device_set_total_bytes(device
, old_size
);
4571 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
4572 device
->fs_devices
->total_rw_bytes
+= diff
;
4573 atomic64_add(diff
, &fs_info
->free_chunk_space
);
4574 mutex_unlock(&fs_info
->chunk_mutex
);
4579 static int btrfs_add_system_chunk(struct btrfs_fs_info
*fs_info
,
4580 struct btrfs_key
*key
,
4581 struct btrfs_chunk
*chunk
, int item_size
)
4583 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4584 struct btrfs_disk_key disk_key
;
4588 mutex_lock(&fs_info
->chunk_mutex
);
4589 array_size
= btrfs_super_sys_array_size(super_copy
);
4590 if (array_size
+ item_size
+ sizeof(disk_key
)
4591 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4592 mutex_unlock(&fs_info
->chunk_mutex
);
4596 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4597 btrfs_cpu_key_to_disk(&disk_key
, key
);
4598 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4599 ptr
+= sizeof(disk_key
);
4600 memcpy(ptr
, chunk
, item_size
);
4601 item_size
+= sizeof(disk_key
);
4602 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4603 mutex_unlock(&fs_info
->chunk_mutex
);
4609 * sort the devices in descending order by max_avail, total_avail
4611 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4613 const struct btrfs_device_info
*di_a
= a
;
4614 const struct btrfs_device_info
*di_b
= b
;
4616 if (di_a
->max_avail
> di_b
->max_avail
)
4618 if (di_a
->max_avail
< di_b
->max_avail
)
4620 if (di_a
->total_avail
> di_b
->total_avail
)
4622 if (di_a
->total_avail
< di_b
->total_avail
)
4627 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4629 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4632 btrfs_set_fs_incompat(info
, RAID56
);
4635 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
4636 - sizeof(struct btrfs_chunk)) \
4637 / sizeof(struct btrfs_stripe) + 1)
4639 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4640 - 2 * sizeof(struct btrfs_disk_key) \
4641 - 2 * sizeof(struct btrfs_chunk)) \
4642 / sizeof(struct btrfs_stripe) + 1)
4644 static int __btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
4645 u64 start
, u64 type
)
4647 struct btrfs_fs_info
*info
= trans
->fs_info
;
4648 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
4649 struct btrfs_device
*device
;
4650 struct map_lookup
*map
= NULL
;
4651 struct extent_map_tree
*em_tree
;
4652 struct extent_map
*em
;
4653 struct btrfs_device_info
*devices_info
= NULL
;
4655 int num_stripes
; /* total number of stripes to allocate */
4656 int data_stripes
; /* number of stripes that count for
4658 int sub_stripes
; /* sub_stripes info for map */
4659 int dev_stripes
; /* stripes per dev */
4660 int devs_max
; /* max devs to use */
4661 int devs_min
; /* min devs needed */
4662 int devs_increment
; /* ndevs has to be a multiple of this */
4663 int ncopies
; /* how many copies to data has */
4665 u64 max_stripe_size
;
4674 BUG_ON(!alloc_profile_is_valid(type
, 0));
4676 if (list_empty(&fs_devices
->alloc_list
)) {
4677 if (btrfs_test_opt(info
, ENOSPC_DEBUG
))
4678 btrfs_debug(info
, "%s: no writable device", __func__
);
4682 index
= btrfs_bg_flags_to_raid_index(type
);
4684 sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4685 dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4686 devs_max
= btrfs_raid_array
[index
].devs_max
;
4687 devs_min
= btrfs_raid_array
[index
].devs_min
;
4688 devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4689 ncopies
= btrfs_raid_array
[index
].ncopies
;
4691 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4692 max_stripe_size
= SZ_1G
;
4693 max_chunk_size
= 10 * max_stripe_size
;
4695 devs_max
= BTRFS_MAX_DEVS(info
);
4696 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4697 /* for larger filesystems, use larger metadata chunks */
4698 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4699 max_stripe_size
= SZ_1G
;
4701 max_stripe_size
= SZ_256M
;
4702 max_chunk_size
= max_stripe_size
;
4704 devs_max
= BTRFS_MAX_DEVS(info
);
4705 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4706 max_stripe_size
= SZ_32M
;
4707 max_chunk_size
= 2 * max_stripe_size
;
4709 devs_max
= BTRFS_MAX_DEVS_SYS_CHUNK
;
4711 btrfs_err(info
, "invalid chunk type 0x%llx requested",
4716 /* we don't want a chunk larger than 10% of writeable space */
4717 max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4720 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
4726 * in the first pass through the devices list, we gather information
4727 * about the available holes on each device.
4730 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
4734 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4736 "BTRFS: read-only device in alloc_list\n");
4740 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
4741 &device
->dev_state
) ||
4742 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
4745 if (device
->total_bytes
> device
->bytes_used
)
4746 total_avail
= device
->total_bytes
- device
->bytes_used
;
4750 /* If there is no space on this device, skip it. */
4751 if (total_avail
== 0)
4754 ret
= find_free_dev_extent(trans
, device
,
4755 max_stripe_size
* dev_stripes
,
4756 &dev_offset
, &max_avail
);
4757 if (ret
&& ret
!= -ENOSPC
)
4761 max_avail
= max_stripe_size
* dev_stripes
;
4763 if (max_avail
< BTRFS_STRIPE_LEN
* dev_stripes
) {
4764 if (btrfs_test_opt(info
, ENOSPC_DEBUG
))
4766 "%s: devid %llu has no free space, have=%llu want=%u",
4767 __func__
, device
->devid
, max_avail
,
4768 BTRFS_STRIPE_LEN
* dev_stripes
);
4772 if (ndevs
== fs_devices
->rw_devices
) {
4773 WARN(1, "%s: found more than %llu devices\n",
4774 __func__
, fs_devices
->rw_devices
);
4777 devices_info
[ndevs
].dev_offset
= dev_offset
;
4778 devices_info
[ndevs
].max_avail
= max_avail
;
4779 devices_info
[ndevs
].total_avail
= total_avail
;
4780 devices_info
[ndevs
].dev
= device
;
4785 * now sort the devices by hole size / available space
4787 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4788 btrfs_cmp_device_info
, NULL
);
4790 /* round down to number of usable stripes */
4791 ndevs
= round_down(ndevs
, devs_increment
);
4793 if (ndevs
< devs_min
) {
4795 if (btrfs_test_opt(info
, ENOSPC_DEBUG
)) {
4797 "%s: not enough devices with free space: have=%d minimum required=%d",
4798 __func__
, ndevs
, devs_min
);
4803 ndevs
= min(ndevs
, devs_max
);
4806 * The primary goal is to maximize the number of stripes, so use as
4807 * many devices as possible, even if the stripes are not maximum sized.
4809 * The DUP profile stores more than one stripe per device, the
4810 * max_avail is the total size so we have to adjust.
4812 stripe_size
= div_u64(devices_info
[ndevs
- 1].max_avail
, dev_stripes
);
4813 num_stripes
= ndevs
* dev_stripes
;
4816 * this will have to be fixed for RAID1 and RAID10 over
4819 data_stripes
= num_stripes
/ ncopies
;
4821 if (type
& BTRFS_BLOCK_GROUP_RAID5
)
4822 data_stripes
= num_stripes
- 1;
4824 if (type
& BTRFS_BLOCK_GROUP_RAID6
)
4825 data_stripes
= num_stripes
- 2;
4828 * Use the number of data stripes to figure out how big this chunk
4829 * is really going to be in terms of logical address space,
4830 * and compare that answer with the max chunk size
4832 if (stripe_size
* data_stripes
> max_chunk_size
) {
4833 stripe_size
= div_u64(max_chunk_size
, data_stripes
);
4835 /* bump the answer up to a 16MB boundary */
4836 stripe_size
= round_up(stripe_size
, SZ_16M
);
4839 * But don't go higher than the limits we found while searching
4842 stripe_size
= min(devices_info
[ndevs
- 1].max_avail
,
4846 /* align to BTRFS_STRIPE_LEN */
4847 stripe_size
= round_down(stripe_size
, BTRFS_STRIPE_LEN
);
4849 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
4854 map
->num_stripes
= num_stripes
;
4856 for (i
= 0; i
< ndevs
; ++i
) {
4857 for (j
= 0; j
< dev_stripes
; ++j
) {
4858 int s
= i
* dev_stripes
+ j
;
4859 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
4860 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
4864 map
->stripe_len
= BTRFS_STRIPE_LEN
;
4865 map
->io_align
= BTRFS_STRIPE_LEN
;
4866 map
->io_width
= BTRFS_STRIPE_LEN
;
4868 map
->sub_stripes
= sub_stripes
;
4870 num_bytes
= stripe_size
* data_stripes
;
4872 trace_btrfs_chunk_alloc(info
, map
, start
, num_bytes
);
4874 em
= alloc_extent_map();
4880 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
4881 em
->map_lookup
= map
;
4883 em
->len
= num_bytes
;
4884 em
->block_start
= 0;
4885 em
->block_len
= em
->len
;
4886 em
->orig_block_len
= stripe_size
;
4888 em_tree
= &info
->mapping_tree
.map_tree
;
4889 write_lock(&em_tree
->lock
);
4890 ret
= add_extent_mapping(em_tree
, em
, 0);
4892 write_unlock(&em_tree
->lock
);
4893 free_extent_map(em
);
4897 list_add_tail(&em
->list
, &trans
->transaction
->pending_chunks
);
4898 refcount_inc(&em
->refs
);
4899 write_unlock(&em_tree
->lock
);
4901 ret
= btrfs_make_block_group(trans
, info
, 0, type
, start
, num_bytes
);
4903 goto error_del_extent
;
4905 for (i
= 0; i
< map
->num_stripes
; i
++) {
4906 num_bytes
= map
->stripes
[i
].dev
->bytes_used
+ stripe_size
;
4907 btrfs_device_set_bytes_used(map
->stripes
[i
].dev
, num_bytes
);
4910 atomic64_sub(stripe_size
* map
->num_stripes
, &info
->free_chunk_space
);
4912 free_extent_map(em
);
4913 check_raid56_incompat_flag(info
, type
);
4915 kfree(devices_info
);
4919 write_lock(&em_tree
->lock
);
4920 remove_extent_mapping(em_tree
, em
);
4921 write_unlock(&em_tree
->lock
);
4923 /* One for our allocation */
4924 free_extent_map(em
);
4925 /* One for the tree reference */
4926 free_extent_map(em
);
4927 /* One for the pending_chunks list reference */
4928 free_extent_map(em
);
4930 kfree(devices_info
);
4934 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
4935 struct btrfs_fs_info
*fs_info
,
4936 u64 chunk_offset
, u64 chunk_size
)
4938 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
4939 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
4940 struct btrfs_key key
;
4941 struct btrfs_device
*device
;
4942 struct btrfs_chunk
*chunk
;
4943 struct btrfs_stripe
*stripe
;
4944 struct extent_map
*em
;
4945 struct map_lookup
*map
;
4952 em
= get_chunk_map(fs_info
, chunk_offset
, chunk_size
);
4956 map
= em
->map_lookup
;
4957 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
4958 stripe_size
= em
->orig_block_len
;
4960 chunk
= kzalloc(item_size
, GFP_NOFS
);
4967 * Take the device list mutex to prevent races with the final phase of
4968 * a device replace operation that replaces the device object associated
4969 * with the map's stripes, because the device object's id can change
4970 * at any time during that final phase of the device replace operation
4971 * (dev-replace.c:btrfs_dev_replace_finishing()).
4973 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
4974 for (i
= 0; i
< map
->num_stripes
; i
++) {
4975 device
= map
->stripes
[i
].dev
;
4976 dev_offset
= map
->stripes
[i
].physical
;
4978 ret
= btrfs_update_device(trans
, device
);
4981 ret
= btrfs_alloc_dev_extent(trans
, device
, chunk_offset
,
4982 dev_offset
, stripe_size
);
4987 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
4991 stripe
= &chunk
->stripe
;
4992 for (i
= 0; i
< map
->num_stripes
; i
++) {
4993 device
= map
->stripes
[i
].dev
;
4994 dev_offset
= map
->stripes
[i
].physical
;
4996 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
4997 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
4998 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
5001 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5003 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
5004 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
5005 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
5006 btrfs_set_stack_chunk_type(chunk
, map
->type
);
5007 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
5008 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
5009 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
5010 btrfs_set_stack_chunk_sector_size(chunk
, fs_info
->sectorsize
);
5011 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
5013 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
5014 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
5015 key
.offset
= chunk_offset
;
5017 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
5018 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
5020 * TODO: Cleanup of inserted chunk root in case of
5023 ret
= btrfs_add_system_chunk(fs_info
, &key
, chunk
, item_size
);
5028 free_extent_map(em
);
5033 * Chunk allocation falls into two parts. The first part does works
5034 * that make the new allocated chunk useable, but not do any operation
5035 * that modifies the chunk tree. The second part does the works that
5036 * require modifying the chunk tree. This division is important for the
5037 * bootstrap process of adding storage to a seed btrfs.
5039 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
,
5040 struct btrfs_fs_info
*fs_info
, u64 type
)
5044 lockdep_assert_held(&fs_info
->chunk_mutex
);
5045 chunk_offset
= find_next_chunk(fs_info
);
5046 return __btrfs_alloc_chunk(trans
, chunk_offset
, type
);
5049 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
,
5050 struct btrfs_fs_info
*fs_info
)
5053 u64 sys_chunk_offset
;
5057 chunk_offset
= find_next_chunk(fs_info
);
5058 alloc_profile
= btrfs_metadata_alloc_profile(fs_info
);
5059 ret
= __btrfs_alloc_chunk(trans
, chunk_offset
, alloc_profile
);
5063 sys_chunk_offset
= find_next_chunk(fs_info
);
5064 alloc_profile
= btrfs_system_alloc_profile(fs_info
);
5065 ret
= __btrfs_alloc_chunk(trans
, sys_chunk_offset
, alloc_profile
);
5069 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
5073 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5074 BTRFS_BLOCK_GROUP_RAID10
|
5075 BTRFS_BLOCK_GROUP_RAID5
|
5076 BTRFS_BLOCK_GROUP_DUP
)) {
5078 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
) {
5087 int btrfs_chunk_readonly(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
5089 struct extent_map
*em
;
5090 struct map_lookup
*map
;
5095 em
= get_chunk_map(fs_info
, chunk_offset
, 1);
5099 map
= em
->map_lookup
;
5100 for (i
= 0; i
< map
->num_stripes
; i
++) {
5101 if (test_bit(BTRFS_DEV_STATE_MISSING
,
5102 &map
->stripes
[i
].dev
->dev_state
)) {
5106 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
,
5107 &map
->stripes
[i
].dev
->dev_state
)) {
5114 * If the number of missing devices is larger than max errors,
5115 * we can not write the data into that chunk successfully, so
5118 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5121 free_extent_map(em
);
5125 void btrfs_mapping_init(struct btrfs_mapping_tree
*tree
)
5127 extent_map_tree_init(&tree
->map_tree
);
5130 void btrfs_mapping_tree_free(struct btrfs_mapping_tree
*tree
)
5132 struct extent_map
*em
;
5135 write_lock(&tree
->map_tree
.lock
);
5136 em
= lookup_extent_mapping(&tree
->map_tree
, 0, (u64
)-1);
5138 remove_extent_mapping(&tree
->map_tree
, em
);
5139 write_unlock(&tree
->map_tree
.lock
);
5143 free_extent_map(em
);
5144 /* once for the tree */
5145 free_extent_map(em
);
5149 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5151 struct extent_map
*em
;
5152 struct map_lookup
*map
;
5155 em
= get_chunk_map(fs_info
, logical
, len
);
5158 * We could return errors for these cases, but that could get
5159 * ugly and we'd probably do the same thing which is just not do
5160 * anything else and exit, so return 1 so the callers don't try
5161 * to use other copies.
5165 map
= em
->map_lookup
;
5166 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
))
5167 ret
= map
->num_stripes
;
5168 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5169 ret
= map
->sub_stripes
;
5170 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5172 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5174 * There could be two corrupted data stripes, we need
5175 * to loop retry in order to rebuild the correct data.
5177 * Fail a stripe at a time on every retry except the
5178 * stripe under reconstruction.
5180 ret
= map
->num_stripes
;
5183 free_extent_map(em
);
5185 btrfs_dev_replace_read_lock(&fs_info
->dev_replace
);
5186 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
) &&
5187 fs_info
->dev_replace
.tgtdev
)
5189 btrfs_dev_replace_read_unlock(&fs_info
->dev_replace
);
5194 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info
*fs_info
,
5197 struct extent_map
*em
;
5198 struct map_lookup
*map
;
5199 unsigned long len
= fs_info
->sectorsize
;
5201 em
= get_chunk_map(fs_info
, logical
, len
);
5203 if (!WARN_ON(IS_ERR(em
))) {
5204 map
= em
->map_lookup
;
5205 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5206 len
= map
->stripe_len
* nr_data_stripes(map
);
5207 free_extent_map(em
);
5212 int btrfs_is_parity_mirror(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5214 struct extent_map
*em
;
5215 struct map_lookup
*map
;
5218 em
= get_chunk_map(fs_info
, logical
, len
);
5220 if(!WARN_ON(IS_ERR(em
))) {
5221 map
= em
->map_lookup
;
5222 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5224 free_extent_map(em
);
5229 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5230 struct map_lookup
*map
, int first
,
5231 int dev_replace_is_ongoing
)
5235 int preferred_mirror
;
5237 struct btrfs_device
*srcdev
;
5240 (BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
)));
5242 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5243 num_stripes
= map
->sub_stripes
;
5245 num_stripes
= map
->num_stripes
;
5247 preferred_mirror
= first
+ current
->pid
% num_stripes
;
5249 if (dev_replace_is_ongoing
&&
5250 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5251 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5252 srcdev
= fs_info
->dev_replace
.srcdev
;
5257 * try to avoid the drive that is the source drive for a
5258 * dev-replace procedure, only choose it if no other non-missing
5259 * mirror is available
5261 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5262 if (map
->stripes
[preferred_mirror
].dev
->bdev
&&
5263 (tolerance
|| map
->stripes
[preferred_mirror
].dev
!= srcdev
))
5264 return preferred_mirror
;
5265 for (i
= first
; i
< first
+ num_stripes
; i
++) {
5266 if (map
->stripes
[i
].dev
->bdev
&&
5267 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5272 /* we couldn't find one that doesn't fail. Just return something
5273 * and the io error handling code will clean up eventually
5275 return preferred_mirror
;
5278 static inline int parity_smaller(u64 a
, u64 b
)
5283 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5284 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5286 struct btrfs_bio_stripe s
;
5293 for (i
= 0; i
< num_stripes
- 1; i
++) {
5294 if (parity_smaller(bbio
->raid_map
[i
],
5295 bbio
->raid_map
[i
+1])) {
5296 s
= bbio
->stripes
[i
];
5297 l
= bbio
->raid_map
[i
];
5298 bbio
->stripes
[i
] = bbio
->stripes
[i
+1];
5299 bbio
->raid_map
[i
] = bbio
->raid_map
[i
+1];
5300 bbio
->stripes
[i
+1] = s
;
5301 bbio
->raid_map
[i
+1] = l
;
5309 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5311 struct btrfs_bio
*bbio
= kzalloc(
5312 /* the size of the btrfs_bio */
5313 sizeof(struct btrfs_bio
) +
5314 /* plus the variable array for the stripes */
5315 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5316 /* plus the variable array for the tgt dev */
5317 sizeof(int) * (real_stripes
) +
5319 * plus the raid_map, which includes both the tgt dev
5322 sizeof(u64
) * (total_stripes
),
5323 GFP_NOFS
|__GFP_NOFAIL
);
5325 atomic_set(&bbio
->error
, 0);
5326 refcount_set(&bbio
->refs
, 1);
5331 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5333 WARN_ON(!refcount_read(&bbio
->refs
));
5334 refcount_inc(&bbio
->refs
);
5337 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5341 if (refcount_dec_and_test(&bbio
->refs
))
5345 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5347 * Please note that, discard won't be sent to target device of device
5350 static int __btrfs_map_block_for_discard(struct btrfs_fs_info
*fs_info
,
5351 u64 logical
, u64 length
,
5352 struct btrfs_bio
**bbio_ret
)
5354 struct extent_map
*em
;
5355 struct map_lookup
*map
;
5356 struct btrfs_bio
*bbio
;
5360 u64 stripe_end_offset
;
5367 u32 sub_stripes
= 0;
5368 u64 stripes_per_dev
= 0;
5369 u32 remaining_stripes
= 0;
5370 u32 last_stripe
= 0;
5374 /* discard always return a bbio */
5377 em
= get_chunk_map(fs_info
, logical
, length
);
5381 map
= em
->map_lookup
;
5382 /* we don't discard raid56 yet */
5383 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5388 offset
= logical
- em
->start
;
5389 length
= min_t(u64
, em
->len
- offset
, length
);
5391 stripe_len
= map
->stripe_len
;
5393 * stripe_nr counts the total number of stripes we have to stride
5394 * to get to this block
5396 stripe_nr
= div64_u64(offset
, stripe_len
);
5398 /* stripe_offset is the offset of this block in its stripe */
5399 stripe_offset
= offset
- stripe_nr
* stripe_len
;
5401 stripe_nr_end
= round_up(offset
+ length
, map
->stripe_len
);
5402 stripe_nr_end
= div64_u64(stripe_nr_end
, map
->stripe_len
);
5403 stripe_cnt
= stripe_nr_end
- stripe_nr
;
5404 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5407 * after this, stripe_nr is the number of stripes on this
5408 * device we have to walk to find the data, and stripe_index is
5409 * the number of our device in the stripe array
5413 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5414 BTRFS_BLOCK_GROUP_RAID10
)) {
5415 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5418 sub_stripes
= map
->sub_stripes
;
5420 factor
= map
->num_stripes
/ sub_stripes
;
5421 num_stripes
= min_t(u64
, map
->num_stripes
,
5422 sub_stripes
* stripe_cnt
);
5423 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5424 stripe_index
*= sub_stripes
;
5425 stripes_per_dev
= div_u64_rem(stripe_cnt
, factor
,
5426 &remaining_stripes
);
5427 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5428 last_stripe
*= sub_stripes
;
5429 } else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1
|
5430 BTRFS_BLOCK_GROUP_DUP
)) {
5431 num_stripes
= map
->num_stripes
;
5433 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5437 bbio
= alloc_btrfs_bio(num_stripes
, 0);
5443 for (i
= 0; i
< num_stripes
; i
++) {
5444 bbio
->stripes
[i
].physical
=
5445 map
->stripes
[stripe_index
].physical
+
5446 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5447 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5449 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5450 BTRFS_BLOCK_GROUP_RAID10
)) {
5451 bbio
->stripes
[i
].length
= stripes_per_dev
*
5454 if (i
/ sub_stripes
< remaining_stripes
)
5455 bbio
->stripes
[i
].length
+=
5459 * Special for the first stripe and
5462 * |-------|...|-------|
5466 if (i
< sub_stripes
)
5467 bbio
->stripes
[i
].length
-=
5470 if (stripe_index
>= last_stripe
&&
5471 stripe_index
<= (last_stripe
+
5473 bbio
->stripes
[i
].length
-=
5476 if (i
== sub_stripes
- 1)
5479 bbio
->stripes
[i
].length
= length
;
5483 if (stripe_index
== map
->num_stripes
) {
5490 bbio
->map_type
= map
->type
;
5491 bbio
->num_stripes
= num_stripes
;
5493 free_extent_map(em
);
5498 * In dev-replace case, for repair case (that's the only case where the mirror
5499 * is selected explicitly when calling btrfs_map_block), blocks left of the
5500 * left cursor can also be read from the target drive.
5502 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5504 * For READ, it also needs to be supported using the same mirror number.
5506 * If the requested block is not left of the left cursor, EIO is returned. This
5507 * can happen because btrfs_num_copies() returns one more in the dev-replace
5510 static int get_extra_mirror_from_replace(struct btrfs_fs_info
*fs_info
,
5511 u64 logical
, u64 length
,
5512 u64 srcdev_devid
, int *mirror_num
,
5515 struct btrfs_bio
*bbio
= NULL
;
5517 int index_srcdev
= 0;
5519 u64 physical_of_found
= 0;
5523 ret
= __btrfs_map_block(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
5524 logical
, &length
, &bbio
, 0, 0);
5526 ASSERT(bbio
== NULL
);
5530 num_stripes
= bbio
->num_stripes
;
5531 if (*mirror_num
> num_stripes
) {
5533 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5534 * that means that the requested area is not left of the left
5537 btrfs_put_bbio(bbio
);
5542 * process the rest of the function using the mirror_num of the source
5543 * drive. Therefore look it up first. At the end, patch the device
5544 * pointer to the one of the target drive.
5546 for (i
= 0; i
< num_stripes
; i
++) {
5547 if (bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5551 * In case of DUP, in order to keep it simple, only add the
5552 * mirror with the lowest physical address
5555 physical_of_found
<= bbio
->stripes
[i
].physical
)
5560 physical_of_found
= bbio
->stripes
[i
].physical
;
5563 btrfs_put_bbio(bbio
);
5569 *mirror_num
= index_srcdev
+ 1;
5570 *physical
= physical_of_found
;
5574 static void handle_ops_on_dev_replace(enum btrfs_map_op op
,
5575 struct btrfs_bio
**bbio_ret
,
5576 struct btrfs_dev_replace
*dev_replace
,
5577 int *num_stripes_ret
, int *max_errors_ret
)
5579 struct btrfs_bio
*bbio
= *bbio_ret
;
5580 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5581 int tgtdev_indexes
= 0;
5582 int num_stripes
= *num_stripes_ret
;
5583 int max_errors
= *max_errors_ret
;
5586 if (op
== BTRFS_MAP_WRITE
) {
5587 int index_where_to_add
;
5590 * duplicate the write operations while the dev replace
5591 * procedure is running. Since the copying of the old disk to
5592 * the new disk takes place at run time while the filesystem is
5593 * mounted writable, the regular write operations to the old
5594 * disk have to be duplicated to go to the new disk as well.
5596 * Note that device->missing is handled by the caller, and that
5597 * the write to the old disk is already set up in the stripes
5600 index_where_to_add
= num_stripes
;
5601 for (i
= 0; i
< num_stripes
; i
++) {
5602 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5603 /* write to new disk, too */
5604 struct btrfs_bio_stripe
*new =
5605 bbio
->stripes
+ index_where_to_add
;
5606 struct btrfs_bio_stripe
*old
=
5609 new->physical
= old
->physical
;
5610 new->length
= old
->length
;
5611 new->dev
= dev_replace
->tgtdev
;
5612 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5613 index_where_to_add
++;
5618 num_stripes
= index_where_to_add
;
5619 } else if (op
== BTRFS_MAP_GET_READ_MIRRORS
) {
5620 int index_srcdev
= 0;
5622 u64 physical_of_found
= 0;
5625 * During the dev-replace procedure, the target drive can also
5626 * be used to read data in case it is needed to repair a corrupt
5627 * block elsewhere. This is possible if the requested area is
5628 * left of the left cursor. In this area, the target drive is a
5629 * full copy of the source drive.
5631 for (i
= 0; i
< num_stripes
; i
++) {
5632 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5634 * In case of DUP, in order to keep it simple,
5635 * only add the mirror with the lowest physical
5639 physical_of_found
<=
5640 bbio
->stripes
[i
].physical
)
5644 physical_of_found
= bbio
->stripes
[i
].physical
;
5648 struct btrfs_bio_stripe
*tgtdev_stripe
=
5649 bbio
->stripes
+ num_stripes
;
5651 tgtdev_stripe
->physical
= physical_of_found
;
5652 tgtdev_stripe
->length
=
5653 bbio
->stripes
[index_srcdev
].length
;
5654 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5655 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5662 *num_stripes_ret
= num_stripes
;
5663 *max_errors_ret
= max_errors
;
5664 bbio
->num_tgtdevs
= tgtdev_indexes
;
5668 static bool need_full_stripe(enum btrfs_map_op op
)
5670 return (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
);
5673 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
5674 enum btrfs_map_op op
,
5675 u64 logical
, u64
*length
,
5676 struct btrfs_bio
**bbio_ret
,
5677 int mirror_num
, int need_raid_map
)
5679 struct extent_map
*em
;
5680 struct map_lookup
*map
;
5690 int tgtdev_indexes
= 0;
5691 struct btrfs_bio
*bbio
= NULL
;
5692 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5693 int dev_replace_is_ongoing
= 0;
5694 int num_alloc_stripes
;
5695 int patch_the_first_stripe_for_dev_replace
= 0;
5696 u64 physical_to_patch_in_first_stripe
= 0;
5697 u64 raid56_full_stripe_start
= (u64
)-1;
5699 if (op
== BTRFS_MAP_DISCARD
)
5700 return __btrfs_map_block_for_discard(fs_info
, logical
,
5703 em
= get_chunk_map(fs_info
, logical
, *length
);
5707 map
= em
->map_lookup
;
5708 offset
= logical
- em
->start
;
5710 stripe_len
= map
->stripe_len
;
5713 * stripe_nr counts the total number of stripes we have to stride
5714 * to get to this block
5716 stripe_nr
= div64_u64(stripe_nr
, stripe_len
);
5718 stripe_offset
= stripe_nr
* stripe_len
;
5719 if (offset
< stripe_offset
) {
5721 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5722 stripe_offset
, offset
, em
->start
, logical
,
5724 free_extent_map(em
);
5728 /* stripe_offset is the offset of this block in its stripe*/
5729 stripe_offset
= offset
- stripe_offset
;
5731 /* if we're here for raid56, we need to know the stripe aligned start */
5732 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5733 unsigned long full_stripe_len
= stripe_len
* nr_data_stripes(map
);
5734 raid56_full_stripe_start
= offset
;
5736 /* allow a write of a full stripe, but make sure we don't
5737 * allow straddling of stripes
5739 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5741 raid56_full_stripe_start
*= full_stripe_len
;
5744 if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5746 /* For writes to RAID[56], allow a full stripeset across all disks.
5747 For other RAID types and for RAID[56] reads, just allow a single
5748 stripe (on a single disk). */
5749 if ((map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
5750 (op
== BTRFS_MAP_WRITE
)) {
5751 max_len
= stripe_len
* nr_data_stripes(map
) -
5752 (offset
- raid56_full_stripe_start
);
5754 /* we limit the length of each bio to what fits in a stripe */
5755 max_len
= stripe_len
- stripe_offset
;
5757 *length
= min_t(u64
, em
->len
- offset
, max_len
);
5759 *length
= em
->len
- offset
;
5762 /* This is for when we're called from btrfs_merge_bio_hook() and all
5763 it cares about is the length */
5767 btrfs_dev_replace_read_lock(dev_replace
);
5768 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
5769 if (!dev_replace_is_ongoing
)
5770 btrfs_dev_replace_read_unlock(dev_replace
);
5772 btrfs_dev_replace_set_lock_blocking(dev_replace
);
5774 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
5775 !need_full_stripe(op
) && dev_replace
->tgtdev
!= NULL
) {
5776 ret
= get_extra_mirror_from_replace(fs_info
, logical
, *length
,
5777 dev_replace
->srcdev
->devid
,
5779 &physical_to_patch_in_first_stripe
);
5783 patch_the_first_stripe_for_dev_replace
= 1;
5784 } else if (mirror_num
> map
->num_stripes
) {
5790 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
5791 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5793 if (!need_full_stripe(op
))
5795 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1
) {
5796 if (need_full_stripe(op
))
5797 num_stripes
= map
->num_stripes
;
5798 else if (mirror_num
)
5799 stripe_index
= mirror_num
- 1;
5801 stripe_index
= find_live_mirror(fs_info
, map
, 0,
5802 dev_replace_is_ongoing
);
5803 mirror_num
= stripe_index
+ 1;
5806 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
5807 if (need_full_stripe(op
)) {
5808 num_stripes
= map
->num_stripes
;
5809 } else if (mirror_num
) {
5810 stripe_index
= mirror_num
- 1;
5815 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
5816 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
5818 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5819 stripe_index
*= map
->sub_stripes
;
5821 if (need_full_stripe(op
))
5822 num_stripes
= map
->sub_stripes
;
5823 else if (mirror_num
)
5824 stripe_index
+= mirror_num
- 1;
5826 int old_stripe_index
= stripe_index
;
5827 stripe_index
= find_live_mirror(fs_info
, map
,
5829 dev_replace_is_ongoing
);
5830 mirror_num
= stripe_index
- old_stripe_index
+ 1;
5833 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5834 if (need_raid_map
&& (need_full_stripe(op
) || mirror_num
> 1)) {
5835 /* push stripe_nr back to the start of the full stripe */
5836 stripe_nr
= div64_u64(raid56_full_stripe_start
,
5837 stripe_len
* nr_data_stripes(map
));
5839 /* RAID[56] write or recovery. Return all stripes */
5840 num_stripes
= map
->num_stripes
;
5841 max_errors
= nr_parity_stripes(map
);
5843 *length
= map
->stripe_len
;
5848 * Mirror #0 or #1 means the original data block.
5849 * Mirror #2 is RAID5 parity block.
5850 * Mirror #3 is RAID6 Q block.
5852 stripe_nr
= div_u64_rem(stripe_nr
,
5853 nr_data_stripes(map
), &stripe_index
);
5855 stripe_index
= nr_data_stripes(map
) +
5858 /* We distribute the parity blocks across stripes */
5859 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
5861 if (!need_full_stripe(op
) && mirror_num
<= 1)
5866 * after this, stripe_nr is the number of stripes on this
5867 * device we have to walk to find the data, and stripe_index is
5868 * the number of our device in the stripe array
5870 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5872 mirror_num
= stripe_index
+ 1;
5874 if (stripe_index
>= map
->num_stripes
) {
5876 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5877 stripe_index
, map
->num_stripes
);
5882 num_alloc_stripes
= num_stripes
;
5883 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
) {
5884 if (op
== BTRFS_MAP_WRITE
)
5885 num_alloc_stripes
<<= 1;
5886 if (op
== BTRFS_MAP_GET_READ_MIRRORS
)
5887 num_alloc_stripes
++;
5888 tgtdev_indexes
= num_stripes
;
5891 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
5896 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
)
5897 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
5899 /* build raid_map */
5900 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&& need_raid_map
&&
5901 (need_full_stripe(op
) || mirror_num
> 1)) {
5905 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
5906 sizeof(struct btrfs_bio_stripe
) *
5908 sizeof(int) * tgtdev_indexes
);
5910 /* Work out the disk rotation on this stripe-set */
5911 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
5913 /* Fill in the logical address of each stripe */
5914 tmp
= stripe_nr
* nr_data_stripes(map
);
5915 for (i
= 0; i
< nr_data_stripes(map
); i
++)
5916 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
5917 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
5919 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
5920 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5921 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
5926 for (i
= 0; i
< num_stripes
; i
++) {
5927 bbio
->stripes
[i
].physical
=
5928 map
->stripes
[stripe_index
].physical
+
5930 stripe_nr
* map
->stripe_len
;
5931 bbio
->stripes
[i
].dev
=
5932 map
->stripes
[stripe_index
].dev
;
5936 if (need_full_stripe(op
))
5937 max_errors
= btrfs_chunk_max_errors(map
);
5940 sort_parity_stripes(bbio
, num_stripes
);
5942 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
&&
5943 need_full_stripe(op
)) {
5944 handle_ops_on_dev_replace(op
, &bbio
, dev_replace
, &num_stripes
,
5949 bbio
->map_type
= map
->type
;
5950 bbio
->num_stripes
= num_stripes
;
5951 bbio
->max_errors
= max_errors
;
5952 bbio
->mirror_num
= mirror_num
;
5955 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5956 * mirror_num == num_stripes + 1 && dev_replace target drive is
5957 * available as a mirror
5959 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
5960 WARN_ON(num_stripes
> 1);
5961 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
5962 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
5963 bbio
->mirror_num
= map
->num_stripes
+ 1;
5966 if (dev_replace_is_ongoing
) {
5967 btrfs_dev_replace_clear_lock_blocking(dev_replace
);
5968 btrfs_dev_replace_read_unlock(dev_replace
);
5970 free_extent_map(em
);
5974 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5975 u64 logical
, u64
*length
,
5976 struct btrfs_bio
**bbio_ret
, int mirror_num
)
5978 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
5982 /* For Scrub/replace */
5983 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5984 u64 logical
, u64
*length
,
5985 struct btrfs_bio
**bbio_ret
)
5987 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
, 0, 1);
5990 int btrfs_rmap_block(struct btrfs_fs_info
*fs_info
, u64 chunk_start
,
5991 u64 physical
, u64
**logical
, int *naddrs
, int *stripe_len
)
5993 struct extent_map
*em
;
5994 struct map_lookup
*map
;
6002 em
= get_chunk_map(fs_info
, chunk_start
, 1);
6006 map
= em
->map_lookup
;
6008 rmap_len
= map
->stripe_len
;
6010 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
6011 length
= div_u64(length
, map
->num_stripes
/ map
->sub_stripes
);
6012 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
6013 length
= div_u64(length
, map
->num_stripes
);
6014 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
6015 length
= div_u64(length
, nr_data_stripes(map
));
6016 rmap_len
= map
->stripe_len
* nr_data_stripes(map
);
6019 buf
= kcalloc(map
->num_stripes
, sizeof(u64
), GFP_NOFS
);
6020 BUG_ON(!buf
); /* -ENOMEM */
6022 for (i
= 0; i
< map
->num_stripes
; i
++) {
6023 if (map
->stripes
[i
].physical
> physical
||
6024 map
->stripes
[i
].physical
+ length
<= physical
)
6027 stripe_nr
= physical
- map
->stripes
[i
].physical
;
6028 stripe_nr
= div64_u64(stripe_nr
, map
->stripe_len
);
6030 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
6031 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
6032 stripe_nr
= div_u64(stripe_nr
, map
->sub_stripes
);
6033 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
6034 stripe_nr
= stripe_nr
* map
->num_stripes
+ i
;
6035 } /* else if RAID[56], multiply by nr_data_stripes().
6036 * Alternatively, just use rmap_len below instead of
6037 * map->stripe_len */
6039 bytenr
= chunk_start
+ stripe_nr
* rmap_len
;
6040 WARN_ON(nr
>= map
->num_stripes
);
6041 for (j
= 0; j
< nr
; j
++) {
6042 if (buf
[j
] == bytenr
)
6046 WARN_ON(nr
>= map
->num_stripes
);
6053 *stripe_len
= rmap_len
;
6055 free_extent_map(em
);
6059 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
6061 bio
->bi_private
= bbio
->private;
6062 bio
->bi_end_io
= bbio
->end_io
;
6065 btrfs_put_bbio(bbio
);
6068 static void btrfs_end_bio(struct bio
*bio
)
6070 struct btrfs_bio
*bbio
= bio
->bi_private
;
6071 int is_orig_bio
= 0;
6073 if (bio
->bi_status
) {
6074 atomic_inc(&bbio
->error
);
6075 if (bio
->bi_status
== BLK_STS_IOERR
||
6076 bio
->bi_status
== BLK_STS_TARGET
) {
6077 unsigned int stripe_index
=
6078 btrfs_io_bio(bio
)->stripe_index
;
6079 struct btrfs_device
*dev
;
6081 BUG_ON(stripe_index
>= bbio
->num_stripes
);
6082 dev
= bbio
->stripes
[stripe_index
].dev
;
6084 if (bio_op(bio
) == REQ_OP_WRITE
)
6085 btrfs_dev_stat_inc_and_print(dev
,
6086 BTRFS_DEV_STAT_WRITE_ERRS
);
6088 btrfs_dev_stat_inc_and_print(dev
,
6089 BTRFS_DEV_STAT_READ_ERRS
);
6090 if (bio
->bi_opf
& REQ_PREFLUSH
)
6091 btrfs_dev_stat_inc_and_print(dev
,
6092 BTRFS_DEV_STAT_FLUSH_ERRS
);
6097 if (bio
== bbio
->orig_bio
)
6100 btrfs_bio_counter_dec(bbio
->fs_info
);
6102 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6105 bio
= bbio
->orig_bio
;
6108 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6109 /* only send an error to the higher layers if it is
6110 * beyond the tolerance of the btrfs bio
6112 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
6113 bio
->bi_status
= BLK_STS_IOERR
;
6116 * this bio is actually up to date, we didn't
6117 * go over the max number of errors
6119 bio
->bi_status
= BLK_STS_OK
;
6122 btrfs_end_bbio(bbio
, bio
);
6123 } else if (!is_orig_bio
) {
6129 * see run_scheduled_bios for a description of why bios are collected for
6132 * This will add one bio to the pending list for a device and make sure
6133 * the work struct is scheduled.
6135 static noinline
void btrfs_schedule_bio(struct btrfs_device
*device
,
6138 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
6139 int should_queue
= 1;
6140 struct btrfs_pending_bios
*pending_bios
;
6142 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
) ||
6148 /* don't bother with additional async steps for reads, right now */
6149 if (bio_op(bio
) == REQ_OP_READ
) {
6150 btrfsic_submit_bio(bio
);
6154 WARN_ON(bio
->bi_next
);
6155 bio
->bi_next
= NULL
;
6157 spin_lock(&device
->io_lock
);
6158 if (op_is_sync(bio
->bi_opf
))
6159 pending_bios
= &device
->pending_sync_bios
;
6161 pending_bios
= &device
->pending_bios
;
6163 if (pending_bios
->tail
)
6164 pending_bios
->tail
->bi_next
= bio
;
6166 pending_bios
->tail
= bio
;
6167 if (!pending_bios
->head
)
6168 pending_bios
->head
= bio
;
6169 if (device
->running_pending
)
6172 spin_unlock(&device
->io_lock
);
6175 btrfs_queue_work(fs_info
->submit_workers
, &device
->work
);
6178 static void submit_stripe_bio(struct btrfs_bio
*bbio
, struct bio
*bio
,
6179 u64 physical
, int dev_nr
, int async
)
6181 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
6182 struct btrfs_fs_info
*fs_info
= bbio
->fs_info
;
6184 bio
->bi_private
= bbio
;
6185 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
6186 bio
->bi_end_io
= btrfs_end_bio
;
6187 bio
->bi_iter
.bi_sector
= physical
>> 9;
6190 struct rcu_string
*name
;
6193 name
= rcu_dereference(dev
->name
);
6194 btrfs_debug(fs_info
,
6195 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6196 bio_op(bio
), bio
->bi_opf
,
6197 (u64
)bio
->bi_iter
.bi_sector
,
6198 (u_long
)dev
->bdev
->bd_dev
, name
->str
, dev
->devid
,
6199 bio
->bi_iter
.bi_size
);
6203 bio_set_dev(bio
, dev
->bdev
);
6205 btrfs_bio_counter_inc_noblocked(fs_info
);
6208 btrfs_schedule_bio(dev
, bio
);
6210 btrfsic_submit_bio(bio
);
6213 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6215 atomic_inc(&bbio
->error
);
6216 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6217 /* Should be the original bio. */
6218 WARN_ON(bio
!= bbio
->orig_bio
);
6220 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6221 bio
->bi_iter
.bi_sector
= logical
>> 9;
6222 if (atomic_read(&bbio
->error
) > bbio
->max_errors
)
6223 bio
->bi_status
= BLK_STS_IOERR
;
6225 bio
->bi_status
= BLK_STS_OK
;
6226 btrfs_end_bbio(bbio
, bio
);
6230 blk_status_t
btrfs_map_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
6231 int mirror_num
, int async_submit
)
6233 struct btrfs_device
*dev
;
6234 struct bio
*first_bio
= bio
;
6235 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6241 struct btrfs_bio
*bbio
= NULL
;
6243 length
= bio
->bi_iter
.bi_size
;
6244 map_length
= length
;
6246 btrfs_bio_counter_inc_blocked(fs_info
);
6247 ret
= __btrfs_map_block(fs_info
, btrfs_op(bio
), logical
,
6248 &map_length
, &bbio
, mirror_num
, 1);
6250 btrfs_bio_counter_dec(fs_info
);
6251 return errno_to_blk_status(ret
);
6254 total_devs
= bbio
->num_stripes
;
6255 bbio
->orig_bio
= first_bio
;
6256 bbio
->private = first_bio
->bi_private
;
6257 bbio
->end_io
= first_bio
->bi_end_io
;
6258 bbio
->fs_info
= fs_info
;
6259 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6261 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6262 ((bio_op(bio
) == REQ_OP_WRITE
) || (mirror_num
> 1))) {
6263 /* In this case, map_length has been set to the length of
6264 a single stripe; not the whole write */
6265 if (bio_op(bio
) == REQ_OP_WRITE
) {
6266 ret
= raid56_parity_write(fs_info
, bio
, bbio
,
6269 ret
= raid56_parity_recover(fs_info
, bio
, bbio
,
6270 map_length
, mirror_num
, 1);
6273 btrfs_bio_counter_dec(fs_info
);
6274 return errno_to_blk_status(ret
);
6277 if (map_length
< length
) {
6279 "mapping failed logical %llu bio len %llu len %llu",
6280 logical
, length
, map_length
);
6284 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6285 dev
= bbio
->stripes
[dev_nr
].dev
;
6286 if (!dev
|| !dev
->bdev
||
6287 (bio_op(first_bio
) == REQ_OP_WRITE
&&
6288 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))) {
6289 bbio_error(bbio
, first_bio
, logical
);
6293 if (dev_nr
< total_devs
- 1)
6294 bio
= btrfs_bio_clone(first_bio
);
6298 submit_stripe_bio(bbio
, bio
, bbio
->stripes
[dev_nr
].physical
,
6299 dev_nr
, async_submit
);
6301 btrfs_bio_counter_dec(fs_info
);
6305 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_info
*fs_info
, u64 devid
,
6308 struct btrfs_device
*device
;
6309 struct btrfs_fs_devices
*cur_devices
;
6311 cur_devices
= fs_info
->fs_devices
;
6312 while (cur_devices
) {
6314 !memcmp(cur_devices
->fsid
, fsid
, BTRFS_FSID_SIZE
)) {
6315 device
= find_device(cur_devices
, devid
, uuid
);
6319 cur_devices
= cur_devices
->seed
;
6324 static struct btrfs_device
*add_missing_dev(struct btrfs_fs_devices
*fs_devices
,
6325 u64 devid
, u8
*dev_uuid
)
6327 struct btrfs_device
*device
;
6329 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6333 list_add(&device
->dev_list
, &fs_devices
->devices
);
6334 device
->fs_devices
= fs_devices
;
6335 fs_devices
->num_devices
++;
6337 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6338 fs_devices
->missing_devices
++;
6344 * btrfs_alloc_device - allocate struct btrfs_device
6345 * @fs_info: used only for generating a new devid, can be NULL if
6346 * devid is provided (i.e. @devid != NULL).
6347 * @devid: a pointer to devid for this device. If NULL a new devid
6349 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6352 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6353 * on error. Returned struct is not linked onto any lists and must be
6354 * destroyed with btrfs_free_device.
6356 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6360 struct btrfs_device
*dev
;
6363 if (WARN_ON(!devid
&& !fs_info
))
6364 return ERR_PTR(-EINVAL
);
6366 dev
= __alloc_device();
6375 ret
= find_next_devid(fs_info
, &tmp
);
6377 btrfs_free_device(dev
);
6378 return ERR_PTR(ret
);
6384 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6386 generate_random_uuid(dev
->uuid
);
6388 btrfs_init_work(&dev
->work
, btrfs_submit_helper
,
6389 pending_bios_fn
, NULL
, NULL
);
6394 /* Return -EIO if any error, otherwise return 0. */
6395 static int btrfs_check_chunk_valid(struct btrfs_fs_info
*fs_info
,
6396 struct extent_buffer
*leaf
,
6397 struct btrfs_chunk
*chunk
, u64 logical
)
6405 length
= btrfs_chunk_length(leaf
, chunk
);
6406 stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6407 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6408 sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6409 type
= btrfs_chunk_type(leaf
, chunk
);
6412 btrfs_err(fs_info
, "invalid chunk num_stripes: %u",
6416 if (!IS_ALIGNED(logical
, fs_info
->sectorsize
)) {
6417 btrfs_err(fs_info
, "invalid chunk logical %llu", logical
);
6420 if (btrfs_chunk_sector_size(leaf
, chunk
) != fs_info
->sectorsize
) {
6421 btrfs_err(fs_info
, "invalid chunk sectorsize %u",
6422 btrfs_chunk_sector_size(leaf
, chunk
));
6425 if (!length
|| !IS_ALIGNED(length
, fs_info
->sectorsize
)) {
6426 btrfs_err(fs_info
, "invalid chunk length %llu", length
);
6429 if (!is_power_of_2(stripe_len
) || stripe_len
!= BTRFS_STRIPE_LEN
) {
6430 btrfs_err(fs_info
, "invalid chunk stripe length: %llu",
6434 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK
| BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6436 btrfs_err(fs_info
, "unrecognized chunk type: %llu",
6437 ~(BTRFS_BLOCK_GROUP_TYPE_MASK
|
6438 BTRFS_BLOCK_GROUP_PROFILE_MASK
) &
6439 btrfs_chunk_type(leaf
, chunk
));
6442 if ((type
& BTRFS_BLOCK_GROUP_RAID10
&& sub_stripes
!= 2) ||
6443 (type
& BTRFS_BLOCK_GROUP_RAID1
&& num_stripes
< 1) ||
6444 (type
& BTRFS_BLOCK_GROUP_RAID5
&& num_stripes
< 2) ||
6445 (type
& BTRFS_BLOCK_GROUP_RAID6
&& num_stripes
< 3) ||
6446 (type
& BTRFS_BLOCK_GROUP_DUP
&& num_stripes
> 2) ||
6447 ((type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) == 0 &&
6448 num_stripes
!= 1)) {
6450 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6451 num_stripes
, sub_stripes
,
6452 type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
);
6459 static void btrfs_report_missing_device(struct btrfs_fs_info
*fs_info
,
6460 u64 devid
, u8
*uuid
, bool error
)
6463 btrfs_err_rl(fs_info
, "devid %llu uuid %pU is missing",
6466 btrfs_warn_rl(fs_info
, "devid %llu uuid %pU is missing",
6470 static int read_one_chunk(struct btrfs_fs_info
*fs_info
, struct btrfs_key
*key
,
6471 struct extent_buffer
*leaf
,
6472 struct btrfs_chunk
*chunk
)
6474 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
6475 struct map_lookup
*map
;
6476 struct extent_map
*em
;
6480 u8 uuid
[BTRFS_UUID_SIZE
];
6485 logical
= key
->offset
;
6486 length
= btrfs_chunk_length(leaf
, chunk
);
6487 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6489 ret
= btrfs_check_chunk_valid(fs_info
, leaf
, chunk
, logical
);
6493 read_lock(&map_tree
->map_tree
.lock
);
6494 em
= lookup_extent_mapping(&map_tree
->map_tree
, logical
, 1);
6495 read_unlock(&map_tree
->map_tree
.lock
);
6497 /* already mapped? */
6498 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6499 free_extent_map(em
);
6502 free_extent_map(em
);
6505 em
= alloc_extent_map();
6508 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6510 free_extent_map(em
);
6514 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6515 em
->map_lookup
= map
;
6516 em
->start
= logical
;
6519 em
->block_start
= 0;
6520 em
->block_len
= em
->len
;
6522 map
->num_stripes
= num_stripes
;
6523 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6524 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6525 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6526 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6527 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6528 for (i
= 0; i
< num_stripes
; i
++) {
6529 map
->stripes
[i
].physical
=
6530 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6531 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6532 read_extent_buffer(leaf
, uuid
, (unsigned long)
6533 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6535 map
->stripes
[i
].dev
= btrfs_find_device(fs_info
, devid
,
6537 if (!map
->stripes
[i
].dev
&&
6538 !btrfs_test_opt(fs_info
, DEGRADED
)) {
6539 free_extent_map(em
);
6540 btrfs_report_missing_device(fs_info
, devid
, uuid
, true);
6543 if (!map
->stripes
[i
].dev
) {
6544 map
->stripes
[i
].dev
=
6545 add_missing_dev(fs_info
->fs_devices
, devid
,
6547 if (IS_ERR(map
->stripes
[i
].dev
)) {
6548 free_extent_map(em
);
6550 "failed to init missing dev %llu: %ld",
6551 devid
, PTR_ERR(map
->stripes
[i
].dev
));
6552 return PTR_ERR(map
->stripes
[i
].dev
);
6554 btrfs_report_missing_device(fs_info
, devid
, uuid
, false);
6556 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
6557 &(map
->stripes
[i
].dev
->dev_state
));
6561 write_lock(&map_tree
->map_tree
.lock
);
6562 ret
= add_extent_mapping(&map_tree
->map_tree
, em
, 0);
6563 write_unlock(&map_tree
->map_tree
.lock
);
6564 BUG_ON(ret
); /* Tree corruption */
6565 free_extent_map(em
);
6570 static void fill_device_from_item(struct extent_buffer
*leaf
,
6571 struct btrfs_dev_item
*dev_item
,
6572 struct btrfs_device
*device
)
6576 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6577 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6578 device
->total_bytes
= device
->disk_total_bytes
;
6579 device
->commit_total_bytes
= device
->disk_total_bytes
;
6580 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6581 device
->commit_bytes_used
= device
->bytes_used
;
6582 device
->type
= btrfs_device_type(leaf
, dev_item
);
6583 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6584 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6585 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6586 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6587 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
6589 ptr
= btrfs_device_uuid(dev_item
);
6590 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6593 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_fs_info
*fs_info
,
6596 struct btrfs_fs_devices
*fs_devices
;
6599 lockdep_assert_held(&uuid_mutex
);
6602 fs_devices
= fs_info
->fs_devices
->seed
;
6603 while (fs_devices
) {
6604 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_FSID_SIZE
))
6607 fs_devices
= fs_devices
->seed
;
6610 fs_devices
= find_fsid(fsid
);
6612 if (!btrfs_test_opt(fs_info
, DEGRADED
))
6613 return ERR_PTR(-ENOENT
);
6615 fs_devices
= alloc_fs_devices(fsid
);
6616 if (IS_ERR(fs_devices
))
6619 fs_devices
->seeding
= 1;
6620 fs_devices
->opened
= 1;
6624 fs_devices
= clone_fs_devices(fs_devices
);
6625 if (IS_ERR(fs_devices
))
6628 ret
= open_fs_devices(fs_devices
, FMODE_READ
, fs_info
->bdev_holder
);
6630 free_fs_devices(fs_devices
);
6631 fs_devices
= ERR_PTR(ret
);
6635 if (!fs_devices
->seeding
) {
6636 close_fs_devices(fs_devices
);
6637 free_fs_devices(fs_devices
);
6638 fs_devices
= ERR_PTR(-EINVAL
);
6642 fs_devices
->seed
= fs_info
->fs_devices
->seed
;
6643 fs_info
->fs_devices
->seed
= fs_devices
;
6648 static int read_one_dev(struct btrfs_fs_info
*fs_info
,
6649 struct extent_buffer
*leaf
,
6650 struct btrfs_dev_item
*dev_item
)
6652 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6653 struct btrfs_device
*device
;
6656 u8 fs_uuid
[BTRFS_FSID_SIZE
];
6657 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6659 devid
= btrfs_device_id(leaf
, dev_item
);
6660 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6662 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6665 if (memcmp(fs_uuid
, fs_info
->fsid
, BTRFS_FSID_SIZE
)) {
6666 fs_devices
= open_seed_devices(fs_info
, fs_uuid
);
6667 if (IS_ERR(fs_devices
))
6668 return PTR_ERR(fs_devices
);
6671 device
= btrfs_find_device(fs_info
, devid
, dev_uuid
, fs_uuid
);
6673 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6674 btrfs_report_missing_device(fs_info
, devid
,
6679 device
= add_missing_dev(fs_devices
, devid
, dev_uuid
);
6680 if (IS_ERR(device
)) {
6682 "failed to add missing dev %llu: %ld",
6683 devid
, PTR_ERR(device
));
6684 return PTR_ERR(device
);
6686 btrfs_report_missing_device(fs_info
, devid
, dev_uuid
, false);
6688 if (!device
->bdev
) {
6689 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6690 btrfs_report_missing_device(fs_info
,
6691 devid
, dev_uuid
, true);
6694 btrfs_report_missing_device(fs_info
, devid
,
6698 if (!device
->bdev
&&
6699 !test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
6701 * this happens when a device that was properly setup
6702 * in the device info lists suddenly goes bad.
6703 * device->bdev is NULL, and so we have to set
6704 * device->missing to one here
6706 device
->fs_devices
->missing_devices
++;
6707 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6710 /* Move the device to its own fs_devices */
6711 if (device
->fs_devices
!= fs_devices
) {
6712 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING
,
6713 &device
->dev_state
));
6715 list_move(&device
->dev_list
, &fs_devices
->devices
);
6716 device
->fs_devices
->num_devices
--;
6717 fs_devices
->num_devices
++;
6719 device
->fs_devices
->missing_devices
--;
6720 fs_devices
->missing_devices
++;
6722 device
->fs_devices
= fs_devices
;
6726 if (device
->fs_devices
!= fs_info
->fs_devices
) {
6727 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
));
6728 if (device
->generation
!=
6729 btrfs_device_generation(leaf
, dev_item
))
6733 fill_device_from_item(leaf
, dev_item
, device
);
6734 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
6735 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
6736 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
6737 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6738 atomic64_add(device
->total_bytes
- device
->bytes_used
,
6739 &fs_info
->free_chunk_space
);
6745 int btrfs_read_sys_array(struct btrfs_fs_info
*fs_info
)
6747 struct btrfs_root
*root
= fs_info
->tree_root
;
6748 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
6749 struct extent_buffer
*sb
;
6750 struct btrfs_disk_key
*disk_key
;
6751 struct btrfs_chunk
*chunk
;
6753 unsigned long sb_array_offset
;
6760 struct btrfs_key key
;
6762 ASSERT(BTRFS_SUPER_INFO_SIZE
<= fs_info
->nodesize
);
6764 * This will create extent buffer of nodesize, superblock size is
6765 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6766 * overallocate but we can keep it as-is, only the first page is used.
6768 sb
= btrfs_find_create_tree_block(fs_info
, BTRFS_SUPER_INFO_OFFSET
);
6771 set_extent_buffer_uptodate(sb
);
6772 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6774 * The sb extent buffer is artificial and just used to read the system array.
6775 * set_extent_buffer_uptodate() call does not properly mark all it's
6776 * pages up-to-date when the page is larger: extent does not cover the
6777 * whole page and consequently check_page_uptodate does not find all
6778 * the page's extents up-to-date (the hole beyond sb),
6779 * write_extent_buffer then triggers a WARN_ON.
6781 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6782 * but sb spans only this function. Add an explicit SetPageUptodate call
6783 * to silence the warning eg. on PowerPC 64.
6785 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6786 SetPageUptodate(sb
->pages
[0]);
6788 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6789 array_size
= btrfs_super_sys_array_size(super_copy
);
6791 array_ptr
= super_copy
->sys_chunk_array
;
6792 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6795 while (cur_offset
< array_size
) {
6796 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6797 len
= sizeof(*disk_key
);
6798 if (cur_offset
+ len
> array_size
)
6799 goto out_short_read
;
6801 btrfs_disk_key_to_cpu(&key
, disk_key
);
6804 sb_array_offset
+= len
;
6807 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6808 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6810 * At least one btrfs_chunk with one stripe must be
6811 * present, exact stripe count check comes afterwards
6813 len
= btrfs_chunk_item_size(1);
6814 if (cur_offset
+ len
> array_size
)
6815 goto out_short_read
;
6817 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6820 "invalid number of stripes %u in sys_array at offset %u",
6821 num_stripes
, cur_offset
);
6826 type
= btrfs_chunk_type(sb
, chunk
);
6827 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) == 0) {
6829 "invalid chunk type %llu in sys_array at offset %u",
6835 len
= btrfs_chunk_item_size(num_stripes
);
6836 if (cur_offset
+ len
> array_size
)
6837 goto out_short_read
;
6839 ret
= read_one_chunk(fs_info
, &key
, sb
, chunk
);
6844 "unexpected item type %u in sys_array at offset %u",
6845 (u32
)key
.type
, cur_offset
);
6850 sb_array_offset
+= len
;
6853 clear_extent_buffer_uptodate(sb
);
6854 free_extent_buffer_stale(sb
);
6858 btrfs_err(fs_info
, "sys_array too short to read %u bytes at offset %u",
6860 clear_extent_buffer_uptodate(sb
);
6861 free_extent_buffer_stale(sb
);
6866 * Check if all chunks in the fs are OK for read-write degraded mount
6868 * If the @failing_dev is specified, it's accounted as missing.
6870 * Return true if all chunks meet the minimal RW mount requirements.
6871 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6873 bool btrfs_check_rw_degradable(struct btrfs_fs_info
*fs_info
,
6874 struct btrfs_device
*failing_dev
)
6876 struct btrfs_mapping_tree
*map_tree
= &fs_info
->mapping_tree
;
6877 struct extent_map
*em
;
6881 read_lock(&map_tree
->map_tree
.lock
);
6882 em
= lookup_extent_mapping(&map_tree
->map_tree
, 0, (u64
)-1);
6883 read_unlock(&map_tree
->map_tree
.lock
);
6884 /* No chunk at all? Return false anyway */
6890 struct map_lookup
*map
;
6895 map
= em
->map_lookup
;
6897 btrfs_get_num_tolerated_disk_barrier_failures(
6899 for (i
= 0; i
< map
->num_stripes
; i
++) {
6900 struct btrfs_device
*dev
= map
->stripes
[i
].dev
;
6902 if (!dev
|| !dev
->bdev
||
6903 test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
) ||
6904 dev
->last_flush_error
)
6906 else if (failing_dev
&& failing_dev
== dev
)
6909 if (missing
> max_tolerated
) {
6912 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6913 em
->start
, missing
, max_tolerated
);
6914 free_extent_map(em
);
6918 next_start
= extent_map_end(em
);
6919 free_extent_map(em
);
6921 read_lock(&map_tree
->map_tree
.lock
);
6922 em
= lookup_extent_mapping(&map_tree
->map_tree
, next_start
,
6923 (u64
)(-1) - next_start
);
6924 read_unlock(&map_tree
->map_tree
.lock
);
6930 int btrfs_read_chunk_tree(struct btrfs_fs_info
*fs_info
)
6932 struct btrfs_root
*root
= fs_info
->chunk_root
;
6933 struct btrfs_path
*path
;
6934 struct extent_buffer
*leaf
;
6935 struct btrfs_key key
;
6936 struct btrfs_key found_key
;
6941 path
= btrfs_alloc_path();
6946 * uuid_mutex is needed only if we are mounting a sprout FS
6947 * otherwise we don't need it.
6949 mutex_lock(&uuid_mutex
);
6950 mutex_lock(&fs_info
->chunk_mutex
);
6953 * Read all device items, and then all the chunk items. All
6954 * device items are found before any chunk item (their object id
6955 * is smaller than the lowest possible object id for a chunk
6956 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6958 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
6961 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6965 leaf
= path
->nodes
[0];
6966 slot
= path
->slots
[0];
6967 if (slot
>= btrfs_header_nritems(leaf
)) {
6968 ret
= btrfs_next_leaf(root
, path
);
6975 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6976 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
6977 struct btrfs_dev_item
*dev_item
;
6978 dev_item
= btrfs_item_ptr(leaf
, slot
,
6979 struct btrfs_dev_item
);
6980 ret
= read_one_dev(fs_info
, leaf
, dev_item
);
6984 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
6985 struct btrfs_chunk
*chunk
;
6986 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
6987 ret
= read_one_chunk(fs_info
, &found_key
, leaf
, chunk
);
6995 * After loading chunk tree, we've got all device information,
6996 * do another round of validation checks.
6998 if (total_dev
!= fs_info
->fs_devices
->total_devices
) {
7000 "super_num_devices %llu mismatch with num_devices %llu found here",
7001 btrfs_super_num_devices(fs_info
->super_copy
),
7006 if (btrfs_super_total_bytes(fs_info
->super_copy
) <
7007 fs_info
->fs_devices
->total_rw_bytes
) {
7009 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7010 btrfs_super_total_bytes(fs_info
->super_copy
),
7011 fs_info
->fs_devices
->total_rw_bytes
);
7017 mutex_unlock(&fs_info
->chunk_mutex
);
7018 mutex_unlock(&uuid_mutex
);
7020 btrfs_free_path(path
);
7024 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
7026 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7027 struct btrfs_device
*device
;
7029 while (fs_devices
) {
7030 mutex_lock(&fs_devices
->device_list_mutex
);
7031 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
7032 device
->fs_info
= fs_info
;
7033 mutex_unlock(&fs_devices
->device_list_mutex
);
7035 fs_devices
= fs_devices
->seed
;
7039 static void __btrfs_reset_dev_stats(struct btrfs_device
*dev
)
7043 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7044 btrfs_dev_stat_reset(dev
, i
);
7047 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
7049 struct btrfs_key key
;
7050 struct btrfs_key found_key
;
7051 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7052 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7053 struct extent_buffer
*eb
;
7056 struct btrfs_device
*device
;
7057 struct btrfs_path
*path
= NULL
;
7060 path
= btrfs_alloc_path();
7066 mutex_lock(&fs_devices
->device_list_mutex
);
7067 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7069 struct btrfs_dev_stats_item
*ptr
;
7071 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7072 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7073 key
.offset
= device
->devid
;
7074 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
7076 __btrfs_reset_dev_stats(device
);
7077 device
->dev_stats_valid
= 1;
7078 btrfs_release_path(path
);
7081 slot
= path
->slots
[0];
7082 eb
= path
->nodes
[0];
7083 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
7084 item_size
= btrfs_item_size_nr(eb
, slot
);
7086 ptr
= btrfs_item_ptr(eb
, slot
,
7087 struct btrfs_dev_stats_item
);
7089 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7090 if (item_size
>= (1 + i
) * sizeof(__le64
))
7091 btrfs_dev_stat_set(device
, i
,
7092 btrfs_dev_stats_value(eb
, ptr
, i
));
7094 btrfs_dev_stat_reset(device
, i
);
7097 device
->dev_stats_valid
= 1;
7098 btrfs_dev_stat_print_on_load(device
);
7099 btrfs_release_path(path
);
7101 mutex_unlock(&fs_devices
->device_list_mutex
);
7104 btrfs_free_path(path
);
7105 return ret
< 0 ? ret
: 0;
7108 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
7109 struct btrfs_fs_info
*fs_info
,
7110 struct btrfs_device
*device
)
7112 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7113 struct btrfs_path
*path
;
7114 struct btrfs_key key
;
7115 struct extent_buffer
*eb
;
7116 struct btrfs_dev_stats_item
*ptr
;
7120 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7121 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7122 key
.offset
= device
->devid
;
7124 path
= btrfs_alloc_path();
7127 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
7129 btrfs_warn_in_rcu(fs_info
,
7130 "error %d while searching for dev_stats item for device %s",
7131 ret
, rcu_str_deref(device
->name
));
7136 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
7137 /* need to delete old one and insert a new one */
7138 ret
= btrfs_del_item(trans
, dev_root
, path
);
7140 btrfs_warn_in_rcu(fs_info
,
7141 "delete too small dev_stats item for device %s failed %d",
7142 rcu_str_deref(device
->name
), ret
);
7149 /* need to insert a new item */
7150 btrfs_release_path(path
);
7151 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
7152 &key
, sizeof(*ptr
));
7154 btrfs_warn_in_rcu(fs_info
,
7155 "insert dev_stats item for device %s failed %d",
7156 rcu_str_deref(device
->name
), ret
);
7161 eb
= path
->nodes
[0];
7162 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
7163 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7164 btrfs_set_dev_stats_value(eb
, ptr
, i
,
7165 btrfs_dev_stat_read(device
, i
));
7166 btrfs_mark_buffer_dirty(eb
);
7169 btrfs_free_path(path
);
7174 * called from commit_transaction. Writes all changed device stats to disk.
7176 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
,
7177 struct btrfs_fs_info
*fs_info
)
7179 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7180 struct btrfs_device
*device
;
7184 mutex_lock(&fs_devices
->device_list_mutex
);
7185 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7186 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
7187 if (!device
->dev_stats_valid
|| stats_cnt
== 0)
7192 * There is a LOAD-LOAD control dependency between the value of
7193 * dev_stats_ccnt and updating the on-disk values which requires
7194 * reading the in-memory counters. Such control dependencies
7195 * require explicit read memory barriers.
7197 * This memory barriers pairs with smp_mb__before_atomic in
7198 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7199 * barrier implied by atomic_xchg in
7200 * btrfs_dev_stats_read_and_reset
7204 ret
= update_dev_stat_item(trans
, fs_info
, device
);
7206 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
7208 mutex_unlock(&fs_devices
->device_list_mutex
);
7213 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
7215 btrfs_dev_stat_inc(dev
, index
);
7216 btrfs_dev_stat_print_on_error(dev
);
7219 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
7221 if (!dev
->dev_stats_valid
)
7223 btrfs_err_rl_in_rcu(dev
->fs_info
,
7224 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7225 rcu_str_deref(dev
->name
),
7226 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7227 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7228 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7229 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7230 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7233 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
7237 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7238 if (btrfs_dev_stat_read(dev
, i
) != 0)
7240 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
7241 return; /* all values == 0, suppress message */
7243 btrfs_info_in_rcu(dev
->fs_info
,
7244 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7245 rcu_str_deref(dev
->name
),
7246 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7247 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7248 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7249 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7250 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7253 int btrfs_get_dev_stats(struct btrfs_fs_info
*fs_info
,
7254 struct btrfs_ioctl_get_dev_stats
*stats
)
7256 struct btrfs_device
*dev
;
7257 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7260 mutex_lock(&fs_devices
->device_list_mutex
);
7261 dev
= btrfs_find_device(fs_info
, stats
->devid
, NULL
, NULL
);
7262 mutex_unlock(&fs_devices
->device_list_mutex
);
7265 btrfs_warn(fs_info
, "get dev_stats failed, device not found");
7267 } else if (!dev
->dev_stats_valid
) {
7268 btrfs_warn(fs_info
, "get dev_stats failed, not yet valid");
7270 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
7271 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7272 if (stats
->nr_items
> i
)
7274 btrfs_dev_stat_read_and_reset(dev
, i
);
7276 btrfs_dev_stat_reset(dev
, i
);
7279 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7280 if (stats
->nr_items
> i
)
7281 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
7283 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
7284 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
7288 void btrfs_scratch_superblocks(struct block_device
*bdev
, const char *device_path
)
7290 struct buffer_head
*bh
;
7291 struct btrfs_super_block
*disk_super
;
7297 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
;
7300 if (btrfs_read_dev_one_super(bdev
, copy_num
, &bh
))
7303 disk_super
= (struct btrfs_super_block
*)bh
->b_data
;
7305 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
7306 set_buffer_dirty(bh
);
7307 sync_dirty_buffer(bh
);
7311 /* Notify udev that device has changed */
7312 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
7314 /* Update ctime/mtime for device path for libblkid */
7315 update_dev_time(device_path
);
7319 * Update the size of all devices, which is used for writing out the
7322 void btrfs_update_commit_device_size(struct btrfs_fs_info
*fs_info
)
7324 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7325 struct btrfs_device
*curr
, *next
;
7327 if (list_empty(&fs_devices
->resized_devices
))
7330 mutex_lock(&fs_devices
->device_list_mutex
);
7331 mutex_lock(&fs_info
->chunk_mutex
);
7332 list_for_each_entry_safe(curr
, next
, &fs_devices
->resized_devices
,
7334 list_del_init(&curr
->resized_list
);
7335 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7337 mutex_unlock(&fs_info
->chunk_mutex
);
7338 mutex_unlock(&fs_devices
->device_list_mutex
);
7341 /* Must be invoked during the transaction commit */
7342 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction
*trans
)
7344 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
7345 struct extent_map
*em
;
7346 struct map_lookup
*map
;
7347 struct btrfs_device
*dev
;
7350 if (list_empty(&trans
->pending_chunks
))
7353 /* In order to kick the device replace finish process */
7354 mutex_lock(&fs_info
->chunk_mutex
);
7355 list_for_each_entry(em
, &trans
->pending_chunks
, list
) {
7356 map
= em
->map_lookup
;
7358 for (i
= 0; i
< map
->num_stripes
; i
++) {
7359 dev
= map
->stripes
[i
].dev
;
7360 dev
->commit_bytes_used
= dev
->bytes_used
;
7363 mutex_unlock(&fs_info
->chunk_mutex
);
7366 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7368 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7369 while (fs_devices
) {
7370 fs_devices
->fs_info
= fs_info
;
7371 fs_devices
= fs_devices
->seed
;
7375 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7377 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7378 while (fs_devices
) {
7379 fs_devices
->fs_info
= NULL
;
7380 fs_devices
= fs_devices
->seed
;