locking/refcounts: Include fewer headers in <linux/refcount.h>
[linux/fpc-iii.git] / fs / btrfs / volumes.c
blobe034ad9e23b48b42826de6bed1a8f59d6e926a20
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/iocontext.h>
12 #include <linux/capability.h>
13 #include <linux/ratelimit.h>
14 #include <linux/kthread.h>
15 #include <linux/raid/pq.h>
16 #include <linux/semaphore.h>
17 #include <linux/uuid.h>
18 #include <linux/list_sort.h>
19 #include <asm/div64.h>
20 #include "ctree.h"
21 #include "extent_map.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "volumes.h"
26 #include "raid56.h"
27 #include "async-thread.h"
28 #include "check-integrity.h"
29 #include "rcu-string.h"
30 #include "math.h"
31 #include "dev-replace.h"
32 #include "sysfs.h"
34 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
35 [BTRFS_RAID_RAID10] = {
36 .sub_stripes = 2,
37 .dev_stripes = 1,
38 .devs_max = 0, /* 0 == as many as possible */
39 .devs_min = 4,
40 .tolerated_failures = 1,
41 .devs_increment = 2,
42 .ncopies = 2,
43 .raid_name = "raid10",
44 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
45 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
47 [BTRFS_RAID_RAID1] = {
48 .sub_stripes = 1,
49 .dev_stripes = 1,
50 .devs_max = 2,
51 .devs_min = 2,
52 .tolerated_failures = 1,
53 .devs_increment = 2,
54 .ncopies = 2,
55 .raid_name = "raid1",
56 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
57 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
59 [BTRFS_RAID_DUP] = {
60 .sub_stripes = 1,
61 .dev_stripes = 2,
62 .devs_max = 1,
63 .devs_min = 1,
64 .tolerated_failures = 0,
65 .devs_increment = 1,
66 .ncopies = 2,
67 .raid_name = "dup",
68 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
69 .mindev_error = 0,
71 [BTRFS_RAID_RAID0] = {
72 .sub_stripes = 1,
73 .dev_stripes = 1,
74 .devs_max = 0,
75 .devs_min = 2,
76 .tolerated_failures = 0,
77 .devs_increment = 1,
78 .ncopies = 1,
79 .raid_name = "raid0",
80 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
81 .mindev_error = 0,
83 [BTRFS_RAID_SINGLE] = {
84 .sub_stripes = 1,
85 .dev_stripes = 1,
86 .devs_max = 1,
87 .devs_min = 1,
88 .tolerated_failures = 0,
89 .devs_increment = 1,
90 .ncopies = 1,
91 .raid_name = "single",
92 .bg_flag = 0,
93 .mindev_error = 0,
95 [BTRFS_RAID_RAID5] = {
96 .sub_stripes = 1,
97 .dev_stripes = 1,
98 .devs_max = 0,
99 .devs_min = 2,
100 .tolerated_failures = 1,
101 .devs_increment = 1,
102 .ncopies = 2,
103 .raid_name = "raid5",
104 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
105 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
107 [BTRFS_RAID_RAID6] = {
108 .sub_stripes = 1,
109 .dev_stripes = 1,
110 .devs_max = 0,
111 .devs_min = 3,
112 .tolerated_failures = 2,
113 .devs_increment = 1,
114 .ncopies = 3,
115 .raid_name = "raid6",
116 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
117 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
121 const char *get_raid_name(enum btrfs_raid_types type)
123 if (type >= BTRFS_NR_RAID_TYPES)
124 return NULL;
126 return btrfs_raid_array[type].raid_name;
129 static int init_first_rw_device(struct btrfs_trans_handle *trans,
130 struct btrfs_fs_info *fs_info);
131 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
132 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
133 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
134 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
135 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
136 enum btrfs_map_op op,
137 u64 logical, u64 *length,
138 struct btrfs_bio **bbio_ret,
139 int mirror_num, int need_raid_map);
142 * Device locking
143 * ==============
145 * There are several mutexes that protect manipulation of devices and low-level
146 * structures like chunks but not block groups, extents or files
148 * uuid_mutex (global lock)
149 * ------------------------
150 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
151 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
152 * device) or requested by the device= mount option
154 * the mutex can be very coarse and can cover long-running operations
156 * protects: updates to fs_devices counters like missing devices, rw devices,
157 * seeding, structure cloning, openning/closing devices at mount/umount time
159 * global::fs_devs - add, remove, updates to the global list
161 * does not protect: manipulation of the fs_devices::devices list!
163 * btrfs_device::name - renames (write side), read is RCU
165 * fs_devices::device_list_mutex (per-fs, with RCU)
166 * ------------------------------------------------
167 * protects updates to fs_devices::devices, ie. adding and deleting
169 * simple list traversal with read-only actions can be done with RCU protection
171 * may be used to exclude some operations from running concurrently without any
172 * modifications to the list (see write_all_supers)
174 * balance_mutex
175 * -------------
176 * protects balance structures (status, state) and context accessed from
177 * several places (internally, ioctl)
179 * chunk_mutex
180 * -----------
181 * protects chunks, adding or removing during allocation, trim or when a new
182 * device is added/removed
184 * cleaner_mutex
185 * -------------
186 * a big lock that is held by the cleaner thread and prevents running subvolume
187 * cleaning together with relocation or delayed iputs
190 * Lock nesting
191 * ============
193 * uuid_mutex
194 * volume_mutex
195 * device_list_mutex
196 * chunk_mutex
197 * balance_mutex
200 * Exclusive operations, BTRFS_FS_EXCL_OP
201 * ======================================
203 * Maintains the exclusivity of the following operations that apply to the
204 * whole filesystem and cannot run in parallel.
206 * - Balance (*)
207 * - Device add
208 * - Device remove
209 * - Device replace (*)
210 * - Resize
212 * The device operations (as above) can be in one of the following states:
214 * - Running state
215 * - Paused state
216 * - Completed state
218 * Only device operations marked with (*) can go into the Paused state for the
219 * following reasons:
221 * - ioctl (only Balance can be Paused through ioctl)
222 * - filesystem remounted as read-only
223 * - filesystem unmounted and mounted as read-only
224 * - system power-cycle and filesystem mounted as read-only
225 * - filesystem or device errors leading to forced read-only
227 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
228 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
229 * A device operation in Paused or Running state can be canceled or resumed
230 * either by ioctl (Balance only) or when remounted as read-write.
231 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
232 * completed.
235 DEFINE_MUTEX(uuid_mutex);
236 static LIST_HEAD(fs_uuids);
237 struct list_head *btrfs_get_fs_uuids(void)
239 return &fs_uuids;
243 * alloc_fs_devices - allocate struct btrfs_fs_devices
244 * @fsid: if not NULL, copy the uuid to fs_devices::fsid
246 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
247 * The returned struct is not linked onto any lists and can be destroyed with
248 * kfree() right away.
250 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
252 struct btrfs_fs_devices *fs_devs;
254 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
255 if (!fs_devs)
256 return ERR_PTR(-ENOMEM);
258 mutex_init(&fs_devs->device_list_mutex);
260 INIT_LIST_HEAD(&fs_devs->devices);
261 INIT_LIST_HEAD(&fs_devs->resized_devices);
262 INIT_LIST_HEAD(&fs_devs->alloc_list);
263 INIT_LIST_HEAD(&fs_devs->fs_list);
264 if (fsid)
265 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
267 return fs_devs;
270 void btrfs_free_device(struct btrfs_device *device)
272 rcu_string_free(device->name);
273 bio_put(device->flush_bio);
274 kfree(device);
277 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
279 struct btrfs_device *device;
280 WARN_ON(fs_devices->opened);
281 while (!list_empty(&fs_devices->devices)) {
282 device = list_entry(fs_devices->devices.next,
283 struct btrfs_device, dev_list);
284 list_del(&device->dev_list);
285 btrfs_free_device(device);
287 kfree(fs_devices);
290 static void btrfs_kobject_uevent(struct block_device *bdev,
291 enum kobject_action action)
293 int ret;
295 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
296 if (ret)
297 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n",
298 action,
299 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
300 &disk_to_dev(bdev->bd_disk)->kobj);
303 void __exit btrfs_cleanup_fs_uuids(void)
305 struct btrfs_fs_devices *fs_devices;
307 while (!list_empty(&fs_uuids)) {
308 fs_devices = list_entry(fs_uuids.next,
309 struct btrfs_fs_devices, fs_list);
310 list_del(&fs_devices->fs_list);
311 free_fs_devices(fs_devices);
316 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
317 * Returned struct is not linked onto any lists and must be destroyed using
318 * btrfs_free_device.
320 static struct btrfs_device *__alloc_device(void)
322 struct btrfs_device *dev;
324 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
325 if (!dev)
326 return ERR_PTR(-ENOMEM);
329 * Preallocate a bio that's always going to be used for flushing device
330 * barriers and matches the device lifespan
332 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
333 if (!dev->flush_bio) {
334 kfree(dev);
335 return ERR_PTR(-ENOMEM);
338 INIT_LIST_HEAD(&dev->dev_list);
339 INIT_LIST_HEAD(&dev->dev_alloc_list);
340 INIT_LIST_HEAD(&dev->resized_list);
342 spin_lock_init(&dev->io_lock);
344 atomic_set(&dev->reada_in_flight, 0);
345 atomic_set(&dev->dev_stats_ccnt, 0);
346 btrfs_device_data_ordered_init(dev);
347 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
348 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
350 return dev;
354 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
355 * return NULL.
357 * If devid and uuid are both specified, the match must be exact, otherwise
358 * only devid is used.
360 static struct btrfs_device *find_device(struct btrfs_fs_devices *fs_devices,
361 u64 devid, const u8 *uuid)
363 struct btrfs_device *dev;
365 list_for_each_entry(dev, &fs_devices->devices, dev_list) {
366 if (dev->devid == devid &&
367 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
368 return dev;
371 return NULL;
374 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
376 struct btrfs_fs_devices *fs_devices;
378 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
379 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
380 return fs_devices;
382 return NULL;
385 static int
386 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
387 int flush, struct block_device **bdev,
388 struct buffer_head **bh)
390 int ret;
392 *bdev = blkdev_get_by_path(device_path, flags, holder);
394 if (IS_ERR(*bdev)) {
395 ret = PTR_ERR(*bdev);
396 goto error;
399 if (flush)
400 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
401 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
402 if (ret) {
403 blkdev_put(*bdev, flags);
404 goto error;
406 invalidate_bdev(*bdev);
407 *bh = btrfs_read_dev_super(*bdev);
408 if (IS_ERR(*bh)) {
409 ret = PTR_ERR(*bh);
410 blkdev_put(*bdev, flags);
411 goto error;
414 return 0;
416 error:
417 *bdev = NULL;
418 *bh = NULL;
419 return ret;
422 static void requeue_list(struct btrfs_pending_bios *pending_bios,
423 struct bio *head, struct bio *tail)
426 struct bio *old_head;
428 old_head = pending_bios->head;
429 pending_bios->head = head;
430 if (pending_bios->tail)
431 tail->bi_next = old_head;
432 else
433 pending_bios->tail = tail;
437 * we try to collect pending bios for a device so we don't get a large
438 * number of procs sending bios down to the same device. This greatly
439 * improves the schedulers ability to collect and merge the bios.
441 * But, it also turns into a long list of bios to process and that is sure
442 * to eventually make the worker thread block. The solution here is to
443 * make some progress and then put this work struct back at the end of
444 * the list if the block device is congested. This way, multiple devices
445 * can make progress from a single worker thread.
447 static noinline void run_scheduled_bios(struct btrfs_device *device)
449 struct btrfs_fs_info *fs_info = device->fs_info;
450 struct bio *pending;
451 struct backing_dev_info *bdi;
452 struct btrfs_pending_bios *pending_bios;
453 struct bio *tail;
454 struct bio *cur;
455 int again = 0;
456 unsigned long num_run;
457 unsigned long batch_run = 0;
458 unsigned long last_waited = 0;
459 int force_reg = 0;
460 int sync_pending = 0;
461 struct blk_plug plug;
464 * this function runs all the bios we've collected for
465 * a particular device. We don't want to wander off to
466 * another device without first sending all of these down.
467 * So, setup a plug here and finish it off before we return
469 blk_start_plug(&plug);
471 bdi = device->bdev->bd_bdi;
473 loop:
474 spin_lock(&device->io_lock);
476 loop_lock:
477 num_run = 0;
479 /* take all the bios off the list at once and process them
480 * later on (without the lock held). But, remember the
481 * tail and other pointers so the bios can be properly reinserted
482 * into the list if we hit congestion
484 if (!force_reg && device->pending_sync_bios.head) {
485 pending_bios = &device->pending_sync_bios;
486 force_reg = 1;
487 } else {
488 pending_bios = &device->pending_bios;
489 force_reg = 0;
492 pending = pending_bios->head;
493 tail = pending_bios->tail;
494 WARN_ON(pending && !tail);
497 * if pending was null this time around, no bios need processing
498 * at all and we can stop. Otherwise it'll loop back up again
499 * and do an additional check so no bios are missed.
501 * device->running_pending is used to synchronize with the
502 * schedule_bio code.
504 if (device->pending_sync_bios.head == NULL &&
505 device->pending_bios.head == NULL) {
506 again = 0;
507 device->running_pending = 0;
508 } else {
509 again = 1;
510 device->running_pending = 1;
513 pending_bios->head = NULL;
514 pending_bios->tail = NULL;
516 spin_unlock(&device->io_lock);
518 while (pending) {
520 rmb();
521 /* we want to work on both lists, but do more bios on the
522 * sync list than the regular list
524 if ((num_run > 32 &&
525 pending_bios != &device->pending_sync_bios &&
526 device->pending_sync_bios.head) ||
527 (num_run > 64 && pending_bios == &device->pending_sync_bios &&
528 device->pending_bios.head)) {
529 spin_lock(&device->io_lock);
530 requeue_list(pending_bios, pending, tail);
531 goto loop_lock;
534 cur = pending;
535 pending = pending->bi_next;
536 cur->bi_next = NULL;
538 BUG_ON(atomic_read(&cur->__bi_cnt) == 0);
541 * if we're doing the sync list, record that our
542 * plug has some sync requests on it
544 * If we're doing the regular list and there are
545 * sync requests sitting around, unplug before
546 * we add more
548 if (pending_bios == &device->pending_sync_bios) {
549 sync_pending = 1;
550 } else if (sync_pending) {
551 blk_finish_plug(&plug);
552 blk_start_plug(&plug);
553 sync_pending = 0;
556 btrfsic_submit_bio(cur);
557 num_run++;
558 batch_run++;
560 cond_resched();
563 * we made progress, there is more work to do and the bdi
564 * is now congested. Back off and let other work structs
565 * run instead
567 if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
568 fs_info->fs_devices->open_devices > 1) {
569 struct io_context *ioc;
571 ioc = current->io_context;
574 * the main goal here is that we don't want to
575 * block if we're going to be able to submit
576 * more requests without blocking.
578 * This code does two great things, it pokes into
579 * the elevator code from a filesystem _and_
580 * it makes assumptions about how batching works.
582 if (ioc && ioc->nr_batch_requests > 0 &&
583 time_before(jiffies, ioc->last_waited + HZ/50UL) &&
584 (last_waited == 0 ||
585 ioc->last_waited == last_waited)) {
587 * we want to go through our batch of
588 * requests and stop. So, we copy out
589 * the ioc->last_waited time and test
590 * against it before looping
592 last_waited = ioc->last_waited;
593 cond_resched();
594 continue;
596 spin_lock(&device->io_lock);
597 requeue_list(pending_bios, pending, tail);
598 device->running_pending = 1;
600 spin_unlock(&device->io_lock);
601 btrfs_queue_work(fs_info->submit_workers,
602 &device->work);
603 goto done;
607 cond_resched();
608 if (again)
609 goto loop;
611 spin_lock(&device->io_lock);
612 if (device->pending_bios.head || device->pending_sync_bios.head)
613 goto loop_lock;
614 spin_unlock(&device->io_lock);
616 done:
617 blk_finish_plug(&plug);
620 static void pending_bios_fn(struct btrfs_work *work)
622 struct btrfs_device *device;
624 device = container_of(work, struct btrfs_device, work);
625 run_scheduled_bios(device);
629 * Search and remove all stale (devices which are not mounted) devices.
630 * When both inputs are NULL, it will search and release all stale devices.
631 * path: Optional. When provided will it release all unmounted devices
632 * matching this path only.
633 * skip_dev: Optional. Will skip this device when searching for the stale
634 * devices.
636 static void btrfs_free_stale_devices(const char *path,
637 struct btrfs_device *skip_dev)
639 struct btrfs_fs_devices *fs_devs, *tmp_fs_devs;
640 struct btrfs_device *dev, *tmp_dev;
642 list_for_each_entry_safe(fs_devs, tmp_fs_devs, &fs_uuids, fs_list) {
644 if (fs_devs->opened)
645 continue;
647 list_for_each_entry_safe(dev, tmp_dev,
648 &fs_devs->devices, dev_list) {
649 int not_found = 0;
651 if (skip_dev && skip_dev == dev)
652 continue;
653 if (path && !dev->name)
654 continue;
656 rcu_read_lock();
657 if (path)
658 not_found = strcmp(rcu_str_deref(dev->name),
659 path);
660 rcu_read_unlock();
661 if (not_found)
662 continue;
664 /* delete the stale device */
665 if (fs_devs->num_devices == 1) {
666 btrfs_sysfs_remove_fsid(fs_devs);
667 list_del(&fs_devs->fs_list);
668 free_fs_devices(fs_devs);
669 break;
670 } else {
671 fs_devs->num_devices--;
672 list_del(&dev->dev_list);
673 btrfs_free_device(dev);
679 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
680 struct btrfs_device *device, fmode_t flags,
681 void *holder)
683 struct request_queue *q;
684 struct block_device *bdev;
685 struct buffer_head *bh;
686 struct btrfs_super_block *disk_super;
687 u64 devid;
688 int ret;
690 if (device->bdev)
691 return -EINVAL;
692 if (!device->name)
693 return -EINVAL;
695 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
696 &bdev, &bh);
697 if (ret)
698 return ret;
700 disk_super = (struct btrfs_super_block *)bh->b_data;
701 devid = btrfs_stack_device_id(&disk_super->dev_item);
702 if (devid != device->devid)
703 goto error_brelse;
705 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
706 goto error_brelse;
708 device->generation = btrfs_super_generation(disk_super);
710 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
711 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
712 fs_devices->seeding = 1;
713 } else {
714 if (bdev_read_only(bdev))
715 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
716 else
717 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
720 q = bdev_get_queue(bdev);
721 if (!blk_queue_nonrot(q))
722 fs_devices->rotating = 1;
724 device->bdev = bdev;
725 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
726 device->mode = flags;
728 fs_devices->open_devices++;
729 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
730 device->devid != BTRFS_DEV_REPLACE_DEVID) {
731 fs_devices->rw_devices++;
732 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
734 brelse(bh);
736 return 0;
738 error_brelse:
739 brelse(bh);
740 blkdev_put(bdev, flags);
742 return -EINVAL;
746 * Add new device to list of registered devices
748 * Returns:
749 * device pointer which was just added or updated when successful
750 * error pointer when failed
752 static noinline struct btrfs_device *device_list_add(const char *path,
753 struct btrfs_super_block *disk_super)
755 struct btrfs_device *device;
756 struct btrfs_fs_devices *fs_devices;
757 struct rcu_string *name;
758 u64 found_transid = btrfs_super_generation(disk_super);
759 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
761 fs_devices = find_fsid(disk_super->fsid);
762 if (!fs_devices) {
763 fs_devices = alloc_fs_devices(disk_super->fsid);
764 if (IS_ERR(fs_devices))
765 return ERR_CAST(fs_devices);
767 list_add(&fs_devices->fs_list, &fs_uuids);
769 device = NULL;
770 } else {
771 device = find_device(fs_devices, devid,
772 disk_super->dev_item.uuid);
775 if (!device) {
776 if (fs_devices->opened)
777 return ERR_PTR(-EBUSY);
779 device = btrfs_alloc_device(NULL, &devid,
780 disk_super->dev_item.uuid);
781 if (IS_ERR(device)) {
782 /* we can safely leave the fs_devices entry around */
783 return device;
786 name = rcu_string_strdup(path, GFP_NOFS);
787 if (!name) {
788 btrfs_free_device(device);
789 return ERR_PTR(-ENOMEM);
791 rcu_assign_pointer(device->name, name);
793 mutex_lock(&fs_devices->device_list_mutex);
794 list_add_rcu(&device->dev_list, &fs_devices->devices);
795 fs_devices->num_devices++;
796 mutex_unlock(&fs_devices->device_list_mutex);
798 device->fs_devices = fs_devices;
799 btrfs_free_stale_devices(path, device);
801 if (disk_super->label[0])
802 pr_info("BTRFS: device label %s devid %llu transid %llu %s\n",
803 disk_super->label, devid, found_transid, path);
804 else
805 pr_info("BTRFS: device fsid %pU devid %llu transid %llu %s\n",
806 disk_super->fsid, devid, found_transid, path);
808 } else if (!device->name || strcmp(device->name->str, path)) {
810 * When FS is already mounted.
811 * 1. If you are here and if the device->name is NULL that
812 * means this device was missing at time of FS mount.
813 * 2. If you are here and if the device->name is different
814 * from 'path' that means either
815 * a. The same device disappeared and reappeared with
816 * different name. or
817 * b. The missing-disk-which-was-replaced, has
818 * reappeared now.
820 * We must allow 1 and 2a above. But 2b would be a spurious
821 * and unintentional.
823 * Further in case of 1 and 2a above, the disk at 'path'
824 * would have missed some transaction when it was away and
825 * in case of 2a the stale bdev has to be updated as well.
826 * 2b must not be allowed at all time.
830 * For now, we do allow update to btrfs_fs_device through the
831 * btrfs dev scan cli after FS has been mounted. We're still
832 * tracking a problem where systems fail mount by subvolume id
833 * when we reject replacement on a mounted FS.
835 if (!fs_devices->opened && found_transid < device->generation) {
837 * That is if the FS is _not_ mounted and if you
838 * are here, that means there is more than one
839 * disk with same uuid and devid.We keep the one
840 * with larger generation number or the last-in if
841 * generation are equal.
843 return ERR_PTR(-EEXIST);
846 name = rcu_string_strdup(path, GFP_NOFS);
847 if (!name)
848 return ERR_PTR(-ENOMEM);
849 rcu_string_free(device->name);
850 rcu_assign_pointer(device->name, name);
851 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
852 fs_devices->missing_devices--;
853 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
858 * Unmount does not free the btrfs_device struct but would zero
859 * generation along with most of the other members. So just update
860 * it back. We need it to pick the disk with largest generation
861 * (as above).
863 if (!fs_devices->opened)
864 device->generation = found_transid;
866 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
868 return device;
871 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
873 struct btrfs_fs_devices *fs_devices;
874 struct btrfs_device *device;
875 struct btrfs_device *orig_dev;
877 fs_devices = alloc_fs_devices(orig->fsid);
878 if (IS_ERR(fs_devices))
879 return fs_devices;
881 mutex_lock(&orig->device_list_mutex);
882 fs_devices->total_devices = orig->total_devices;
884 /* We have held the volume lock, it is safe to get the devices. */
885 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
886 struct rcu_string *name;
888 device = btrfs_alloc_device(NULL, &orig_dev->devid,
889 orig_dev->uuid);
890 if (IS_ERR(device))
891 goto error;
894 * This is ok to do without rcu read locked because we hold the
895 * uuid mutex so nothing we touch in here is going to disappear.
897 if (orig_dev->name) {
898 name = rcu_string_strdup(orig_dev->name->str,
899 GFP_KERNEL);
900 if (!name) {
901 btrfs_free_device(device);
902 goto error;
904 rcu_assign_pointer(device->name, name);
907 list_add(&device->dev_list, &fs_devices->devices);
908 device->fs_devices = fs_devices;
909 fs_devices->num_devices++;
911 mutex_unlock(&orig->device_list_mutex);
912 return fs_devices;
913 error:
914 mutex_unlock(&orig->device_list_mutex);
915 free_fs_devices(fs_devices);
916 return ERR_PTR(-ENOMEM);
920 * After we have read the system tree and know devids belonging to
921 * this filesystem, remove the device which does not belong there.
923 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
925 struct btrfs_device *device, *next;
926 struct btrfs_device *latest_dev = NULL;
928 mutex_lock(&uuid_mutex);
929 again:
930 /* This is the initialized path, it is safe to release the devices. */
931 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
932 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
933 &device->dev_state)) {
934 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
935 &device->dev_state) &&
936 (!latest_dev ||
937 device->generation > latest_dev->generation)) {
938 latest_dev = device;
940 continue;
943 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
945 * In the first step, keep the device which has
946 * the correct fsid and the devid that is used
947 * for the dev_replace procedure.
948 * In the second step, the dev_replace state is
949 * read from the device tree and it is known
950 * whether the procedure is really active or
951 * not, which means whether this device is
952 * used or whether it should be removed.
954 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
955 &device->dev_state)) {
956 continue;
959 if (device->bdev) {
960 blkdev_put(device->bdev, device->mode);
961 device->bdev = NULL;
962 fs_devices->open_devices--;
964 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
965 list_del_init(&device->dev_alloc_list);
966 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
967 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
968 &device->dev_state))
969 fs_devices->rw_devices--;
971 list_del_init(&device->dev_list);
972 fs_devices->num_devices--;
973 btrfs_free_device(device);
976 if (fs_devices->seed) {
977 fs_devices = fs_devices->seed;
978 goto again;
981 fs_devices->latest_bdev = latest_dev->bdev;
983 mutex_unlock(&uuid_mutex);
986 static void free_device_rcu(struct rcu_head *head)
988 struct btrfs_device *device;
990 device = container_of(head, struct btrfs_device, rcu);
991 btrfs_free_device(device);
994 static void btrfs_close_bdev(struct btrfs_device *device)
996 if (!device->bdev)
997 return;
999 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1000 sync_blockdev(device->bdev);
1001 invalidate_bdev(device->bdev);
1004 blkdev_put(device->bdev, device->mode);
1007 static void btrfs_prepare_close_one_device(struct btrfs_device *device)
1009 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1010 struct btrfs_device *new_device;
1011 struct rcu_string *name;
1013 if (device->bdev)
1014 fs_devices->open_devices--;
1016 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1017 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1018 list_del_init(&device->dev_alloc_list);
1019 fs_devices->rw_devices--;
1022 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1023 fs_devices->missing_devices--;
1025 new_device = btrfs_alloc_device(NULL, &device->devid,
1026 device->uuid);
1027 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
1029 /* Safe because we are under uuid_mutex */
1030 if (device->name) {
1031 name = rcu_string_strdup(device->name->str, GFP_NOFS);
1032 BUG_ON(!name); /* -ENOMEM */
1033 rcu_assign_pointer(new_device->name, name);
1036 list_replace_rcu(&device->dev_list, &new_device->dev_list);
1037 new_device->fs_devices = device->fs_devices;
1040 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1042 struct btrfs_device *device, *tmp;
1043 struct list_head pending_put;
1045 INIT_LIST_HEAD(&pending_put);
1047 if (--fs_devices->opened > 0)
1048 return 0;
1050 mutex_lock(&fs_devices->device_list_mutex);
1051 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1052 btrfs_prepare_close_one_device(device);
1053 list_add(&device->dev_list, &pending_put);
1055 mutex_unlock(&fs_devices->device_list_mutex);
1058 * btrfs_show_devname() is using the device_list_mutex,
1059 * sometimes call to blkdev_put() leads vfs calling
1060 * into this func. So do put outside of device_list_mutex,
1061 * as of now.
1063 while (!list_empty(&pending_put)) {
1064 device = list_first_entry(&pending_put,
1065 struct btrfs_device, dev_list);
1066 list_del(&device->dev_list);
1067 btrfs_close_bdev(device);
1068 call_rcu(&device->rcu, free_device_rcu);
1071 WARN_ON(fs_devices->open_devices);
1072 WARN_ON(fs_devices->rw_devices);
1073 fs_devices->opened = 0;
1074 fs_devices->seeding = 0;
1076 return 0;
1079 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1081 struct btrfs_fs_devices *seed_devices = NULL;
1082 int ret;
1084 mutex_lock(&uuid_mutex);
1085 ret = close_fs_devices(fs_devices);
1086 if (!fs_devices->opened) {
1087 seed_devices = fs_devices->seed;
1088 fs_devices->seed = NULL;
1090 mutex_unlock(&uuid_mutex);
1092 while (seed_devices) {
1093 fs_devices = seed_devices;
1094 seed_devices = fs_devices->seed;
1095 close_fs_devices(fs_devices);
1096 free_fs_devices(fs_devices);
1098 return ret;
1101 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1102 fmode_t flags, void *holder)
1104 struct btrfs_device *device;
1105 struct btrfs_device *latest_dev = NULL;
1106 int ret = 0;
1108 flags |= FMODE_EXCL;
1110 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1111 /* Just open everything we can; ignore failures here */
1112 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1113 continue;
1115 if (!latest_dev ||
1116 device->generation > latest_dev->generation)
1117 latest_dev = device;
1119 if (fs_devices->open_devices == 0) {
1120 ret = -EINVAL;
1121 goto out;
1123 fs_devices->opened = 1;
1124 fs_devices->latest_bdev = latest_dev->bdev;
1125 fs_devices->total_rw_bytes = 0;
1126 out:
1127 return ret;
1130 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1132 struct btrfs_device *dev1, *dev2;
1134 dev1 = list_entry(a, struct btrfs_device, dev_list);
1135 dev2 = list_entry(b, struct btrfs_device, dev_list);
1137 if (dev1->devid < dev2->devid)
1138 return -1;
1139 else if (dev1->devid > dev2->devid)
1140 return 1;
1141 return 0;
1144 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1145 fmode_t flags, void *holder)
1147 int ret;
1149 mutex_lock(&fs_devices->device_list_mutex);
1150 if (fs_devices->opened) {
1151 fs_devices->opened++;
1152 ret = 0;
1153 } else {
1154 list_sort(NULL, &fs_devices->devices, devid_cmp);
1155 ret = open_fs_devices(fs_devices, flags, holder);
1157 mutex_unlock(&fs_devices->device_list_mutex);
1159 return ret;
1162 static void btrfs_release_disk_super(struct page *page)
1164 kunmap(page);
1165 put_page(page);
1168 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1169 struct page **page,
1170 struct btrfs_super_block **disk_super)
1172 void *p;
1173 pgoff_t index;
1175 /* make sure our super fits in the device */
1176 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1177 return 1;
1179 /* make sure our super fits in the page */
1180 if (sizeof(**disk_super) > PAGE_SIZE)
1181 return 1;
1183 /* make sure our super doesn't straddle pages on disk */
1184 index = bytenr >> PAGE_SHIFT;
1185 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1186 return 1;
1188 /* pull in the page with our super */
1189 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1190 index, GFP_KERNEL);
1192 if (IS_ERR_OR_NULL(*page))
1193 return 1;
1195 p = kmap(*page);
1197 /* align our pointer to the offset of the super block */
1198 *disk_super = p + (bytenr & ~PAGE_MASK);
1200 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1201 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1202 btrfs_release_disk_super(*page);
1203 return 1;
1206 if ((*disk_super)->label[0] &&
1207 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1208 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1210 return 0;
1214 * Look for a btrfs signature on a device. This may be called out of the mount path
1215 * and we are not allowed to call set_blocksize during the scan. The superblock
1216 * is read via pagecache
1218 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
1219 struct btrfs_fs_devices **fs_devices_ret)
1221 struct btrfs_super_block *disk_super;
1222 struct btrfs_device *device;
1223 struct block_device *bdev;
1224 struct page *page;
1225 int ret = 0;
1226 u64 bytenr;
1229 * we would like to check all the supers, but that would make
1230 * a btrfs mount succeed after a mkfs from a different FS.
1231 * So, we need to add a special mount option to scan for
1232 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1234 bytenr = btrfs_sb_offset(0);
1235 flags |= FMODE_EXCL;
1237 bdev = blkdev_get_by_path(path, flags, holder);
1238 if (IS_ERR(bdev))
1239 return PTR_ERR(bdev);
1241 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1242 ret = -EINVAL;
1243 goto error_bdev_put;
1246 mutex_lock(&uuid_mutex);
1247 device = device_list_add(path, disk_super);
1248 if (IS_ERR(device))
1249 ret = PTR_ERR(device);
1250 else
1251 *fs_devices_ret = device->fs_devices;
1252 mutex_unlock(&uuid_mutex);
1254 btrfs_release_disk_super(page);
1256 error_bdev_put:
1257 blkdev_put(bdev, flags);
1259 return ret;
1262 /* helper to account the used device space in the range */
1263 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
1264 u64 end, u64 *length)
1266 struct btrfs_key key;
1267 struct btrfs_root *root = device->fs_info->dev_root;
1268 struct btrfs_dev_extent *dev_extent;
1269 struct btrfs_path *path;
1270 u64 extent_end;
1271 int ret;
1272 int slot;
1273 struct extent_buffer *l;
1275 *length = 0;
1277 if (start >= device->total_bytes ||
1278 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1279 return 0;
1281 path = btrfs_alloc_path();
1282 if (!path)
1283 return -ENOMEM;
1284 path->reada = READA_FORWARD;
1286 key.objectid = device->devid;
1287 key.offset = start;
1288 key.type = BTRFS_DEV_EXTENT_KEY;
1290 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1291 if (ret < 0)
1292 goto out;
1293 if (ret > 0) {
1294 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1295 if (ret < 0)
1296 goto out;
1299 while (1) {
1300 l = path->nodes[0];
1301 slot = path->slots[0];
1302 if (slot >= btrfs_header_nritems(l)) {
1303 ret = btrfs_next_leaf(root, path);
1304 if (ret == 0)
1305 continue;
1306 if (ret < 0)
1307 goto out;
1309 break;
1311 btrfs_item_key_to_cpu(l, &key, slot);
1313 if (key.objectid < device->devid)
1314 goto next;
1316 if (key.objectid > device->devid)
1317 break;
1319 if (key.type != BTRFS_DEV_EXTENT_KEY)
1320 goto next;
1322 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1323 extent_end = key.offset + btrfs_dev_extent_length(l,
1324 dev_extent);
1325 if (key.offset <= start && extent_end > end) {
1326 *length = end - start + 1;
1327 break;
1328 } else if (key.offset <= start && extent_end > start)
1329 *length += extent_end - start;
1330 else if (key.offset > start && extent_end <= end)
1331 *length += extent_end - key.offset;
1332 else if (key.offset > start && key.offset <= end) {
1333 *length += end - key.offset + 1;
1334 break;
1335 } else if (key.offset > end)
1336 break;
1338 next:
1339 path->slots[0]++;
1341 ret = 0;
1342 out:
1343 btrfs_free_path(path);
1344 return ret;
1347 static int contains_pending_extent(struct btrfs_transaction *transaction,
1348 struct btrfs_device *device,
1349 u64 *start, u64 len)
1351 struct btrfs_fs_info *fs_info = device->fs_info;
1352 struct extent_map *em;
1353 struct list_head *search_list = &fs_info->pinned_chunks;
1354 int ret = 0;
1355 u64 physical_start = *start;
1357 if (transaction)
1358 search_list = &transaction->pending_chunks;
1359 again:
1360 list_for_each_entry(em, search_list, list) {
1361 struct map_lookup *map;
1362 int i;
1364 map = em->map_lookup;
1365 for (i = 0; i < map->num_stripes; i++) {
1366 u64 end;
1368 if (map->stripes[i].dev != device)
1369 continue;
1370 if (map->stripes[i].physical >= physical_start + len ||
1371 map->stripes[i].physical + em->orig_block_len <=
1372 physical_start)
1373 continue;
1375 * Make sure that while processing the pinned list we do
1376 * not override our *start with a lower value, because
1377 * we can have pinned chunks that fall within this
1378 * device hole and that have lower physical addresses
1379 * than the pending chunks we processed before. If we
1380 * do not take this special care we can end up getting
1381 * 2 pending chunks that start at the same physical
1382 * device offsets because the end offset of a pinned
1383 * chunk can be equal to the start offset of some
1384 * pending chunk.
1386 end = map->stripes[i].physical + em->orig_block_len;
1387 if (end > *start) {
1388 *start = end;
1389 ret = 1;
1393 if (search_list != &fs_info->pinned_chunks) {
1394 search_list = &fs_info->pinned_chunks;
1395 goto again;
1398 return ret;
1403 * find_free_dev_extent_start - find free space in the specified device
1404 * @device: the device which we search the free space in
1405 * @num_bytes: the size of the free space that we need
1406 * @search_start: the position from which to begin the search
1407 * @start: store the start of the free space.
1408 * @len: the size of the free space. that we find, or the size
1409 * of the max free space if we don't find suitable free space
1411 * this uses a pretty simple search, the expectation is that it is
1412 * called very infrequently and that a given device has a small number
1413 * of extents
1415 * @start is used to store the start of the free space if we find. But if we
1416 * don't find suitable free space, it will be used to store the start position
1417 * of the max free space.
1419 * @len is used to store the size of the free space that we find.
1420 * But if we don't find suitable free space, it is used to store the size of
1421 * the max free space.
1423 int find_free_dev_extent_start(struct btrfs_transaction *transaction,
1424 struct btrfs_device *device, u64 num_bytes,
1425 u64 search_start, u64 *start, u64 *len)
1427 struct btrfs_fs_info *fs_info = device->fs_info;
1428 struct btrfs_root *root = fs_info->dev_root;
1429 struct btrfs_key key;
1430 struct btrfs_dev_extent *dev_extent;
1431 struct btrfs_path *path;
1432 u64 hole_size;
1433 u64 max_hole_start;
1434 u64 max_hole_size;
1435 u64 extent_end;
1436 u64 search_end = device->total_bytes;
1437 int ret;
1438 int slot;
1439 struct extent_buffer *l;
1442 * We don't want to overwrite the superblock on the drive nor any area
1443 * used by the boot loader (grub for example), so we make sure to start
1444 * at an offset of at least 1MB.
1446 search_start = max_t(u64, search_start, SZ_1M);
1448 path = btrfs_alloc_path();
1449 if (!path)
1450 return -ENOMEM;
1452 max_hole_start = search_start;
1453 max_hole_size = 0;
1455 again:
1456 if (search_start >= search_end ||
1457 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1458 ret = -ENOSPC;
1459 goto out;
1462 path->reada = READA_FORWARD;
1463 path->search_commit_root = 1;
1464 path->skip_locking = 1;
1466 key.objectid = device->devid;
1467 key.offset = search_start;
1468 key.type = BTRFS_DEV_EXTENT_KEY;
1470 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1471 if (ret < 0)
1472 goto out;
1473 if (ret > 0) {
1474 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1475 if (ret < 0)
1476 goto out;
1479 while (1) {
1480 l = path->nodes[0];
1481 slot = path->slots[0];
1482 if (slot >= btrfs_header_nritems(l)) {
1483 ret = btrfs_next_leaf(root, path);
1484 if (ret == 0)
1485 continue;
1486 if (ret < 0)
1487 goto out;
1489 break;
1491 btrfs_item_key_to_cpu(l, &key, slot);
1493 if (key.objectid < device->devid)
1494 goto next;
1496 if (key.objectid > device->devid)
1497 break;
1499 if (key.type != BTRFS_DEV_EXTENT_KEY)
1500 goto next;
1502 if (key.offset > search_start) {
1503 hole_size = key.offset - search_start;
1506 * Have to check before we set max_hole_start, otherwise
1507 * we could end up sending back this offset anyway.
1509 if (contains_pending_extent(transaction, device,
1510 &search_start,
1511 hole_size)) {
1512 if (key.offset >= search_start) {
1513 hole_size = key.offset - search_start;
1514 } else {
1515 WARN_ON_ONCE(1);
1516 hole_size = 0;
1520 if (hole_size > max_hole_size) {
1521 max_hole_start = search_start;
1522 max_hole_size = hole_size;
1526 * If this free space is greater than which we need,
1527 * it must be the max free space that we have found
1528 * until now, so max_hole_start must point to the start
1529 * of this free space and the length of this free space
1530 * is stored in max_hole_size. Thus, we return
1531 * max_hole_start and max_hole_size and go back to the
1532 * caller.
1534 if (hole_size >= num_bytes) {
1535 ret = 0;
1536 goto out;
1540 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1541 extent_end = key.offset + btrfs_dev_extent_length(l,
1542 dev_extent);
1543 if (extent_end > search_start)
1544 search_start = extent_end;
1545 next:
1546 path->slots[0]++;
1547 cond_resched();
1551 * At this point, search_start should be the end of
1552 * allocated dev extents, and when shrinking the device,
1553 * search_end may be smaller than search_start.
1555 if (search_end > search_start) {
1556 hole_size = search_end - search_start;
1558 if (contains_pending_extent(transaction, device, &search_start,
1559 hole_size)) {
1560 btrfs_release_path(path);
1561 goto again;
1564 if (hole_size > max_hole_size) {
1565 max_hole_start = search_start;
1566 max_hole_size = hole_size;
1570 /* See above. */
1571 if (max_hole_size < num_bytes)
1572 ret = -ENOSPC;
1573 else
1574 ret = 0;
1576 out:
1577 btrfs_free_path(path);
1578 *start = max_hole_start;
1579 if (len)
1580 *len = max_hole_size;
1581 return ret;
1584 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1585 struct btrfs_device *device, u64 num_bytes,
1586 u64 *start, u64 *len)
1588 /* FIXME use last free of some kind */
1589 return find_free_dev_extent_start(trans->transaction, device,
1590 num_bytes, 0, start, len);
1593 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1594 struct btrfs_device *device,
1595 u64 start, u64 *dev_extent_len)
1597 struct btrfs_fs_info *fs_info = device->fs_info;
1598 struct btrfs_root *root = fs_info->dev_root;
1599 int ret;
1600 struct btrfs_path *path;
1601 struct btrfs_key key;
1602 struct btrfs_key found_key;
1603 struct extent_buffer *leaf = NULL;
1604 struct btrfs_dev_extent *extent = NULL;
1606 path = btrfs_alloc_path();
1607 if (!path)
1608 return -ENOMEM;
1610 key.objectid = device->devid;
1611 key.offset = start;
1612 key.type = BTRFS_DEV_EXTENT_KEY;
1613 again:
1614 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1615 if (ret > 0) {
1616 ret = btrfs_previous_item(root, path, key.objectid,
1617 BTRFS_DEV_EXTENT_KEY);
1618 if (ret)
1619 goto out;
1620 leaf = path->nodes[0];
1621 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1622 extent = btrfs_item_ptr(leaf, path->slots[0],
1623 struct btrfs_dev_extent);
1624 BUG_ON(found_key.offset > start || found_key.offset +
1625 btrfs_dev_extent_length(leaf, extent) < start);
1626 key = found_key;
1627 btrfs_release_path(path);
1628 goto again;
1629 } else if (ret == 0) {
1630 leaf = path->nodes[0];
1631 extent = btrfs_item_ptr(leaf, path->slots[0],
1632 struct btrfs_dev_extent);
1633 } else {
1634 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1635 goto out;
1638 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1640 ret = btrfs_del_item(trans, root, path);
1641 if (ret) {
1642 btrfs_handle_fs_error(fs_info, ret,
1643 "Failed to remove dev extent item");
1644 } else {
1645 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1647 out:
1648 btrfs_free_path(path);
1649 return ret;
1652 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1653 struct btrfs_device *device,
1654 u64 chunk_offset, u64 start, u64 num_bytes)
1656 int ret;
1657 struct btrfs_path *path;
1658 struct btrfs_fs_info *fs_info = device->fs_info;
1659 struct btrfs_root *root = fs_info->dev_root;
1660 struct btrfs_dev_extent *extent;
1661 struct extent_buffer *leaf;
1662 struct btrfs_key key;
1664 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1665 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1666 path = btrfs_alloc_path();
1667 if (!path)
1668 return -ENOMEM;
1670 key.objectid = device->devid;
1671 key.offset = start;
1672 key.type = BTRFS_DEV_EXTENT_KEY;
1673 ret = btrfs_insert_empty_item(trans, root, path, &key,
1674 sizeof(*extent));
1675 if (ret)
1676 goto out;
1678 leaf = path->nodes[0];
1679 extent = btrfs_item_ptr(leaf, path->slots[0],
1680 struct btrfs_dev_extent);
1681 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1682 BTRFS_CHUNK_TREE_OBJECTID);
1683 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1684 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1685 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1687 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1688 btrfs_mark_buffer_dirty(leaf);
1689 out:
1690 btrfs_free_path(path);
1691 return ret;
1694 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1696 struct extent_map_tree *em_tree;
1697 struct extent_map *em;
1698 struct rb_node *n;
1699 u64 ret = 0;
1701 em_tree = &fs_info->mapping_tree.map_tree;
1702 read_lock(&em_tree->lock);
1703 n = rb_last(&em_tree->map);
1704 if (n) {
1705 em = rb_entry(n, struct extent_map, rb_node);
1706 ret = em->start + em->len;
1708 read_unlock(&em_tree->lock);
1710 return ret;
1713 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1714 u64 *devid_ret)
1716 int ret;
1717 struct btrfs_key key;
1718 struct btrfs_key found_key;
1719 struct btrfs_path *path;
1721 path = btrfs_alloc_path();
1722 if (!path)
1723 return -ENOMEM;
1725 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1726 key.type = BTRFS_DEV_ITEM_KEY;
1727 key.offset = (u64)-1;
1729 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1730 if (ret < 0)
1731 goto error;
1733 BUG_ON(ret == 0); /* Corruption */
1735 ret = btrfs_previous_item(fs_info->chunk_root, path,
1736 BTRFS_DEV_ITEMS_OBJECTID,
1737 BTRFS_DEV_ITEM_KEY);
1738 if (ret) {
1739 *devid_ret = 1;
1740 } else {
1741 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1742 path->slots[0]);
1743 *devid_ret = found_key.offset + 1;
1745 ret = 0;
1746 error:
1747 btrfs_free_path(path);
1748 return ret;
1752 * the device information is stored in the chunk root
1753 * the btrfs_device struct should be fully filled in
1755 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1756 struct btrfs_fs_info *fs_info,
1757 struct btrfs_device *device)
1759 struct btrfs_root *root = fs_info->chunk_root;
1760 int ret;
1761 struct btrfs_path *path;
1762 struct btrfs_dev_item *dev_item;
1763 struct extent_buffer *leaf;
1764 struct btrfs_key key;
1765 unsigned long ptr;
1767 path = btrfs_alloc_path();
1768 if (!path)
1769 return -ENOMEM;
1771 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1772 key.type = BTRFS_DEV_ITEM_KEY;
1773 key.offset = device->devid;
1775 ret = btrfs_insert_empty_item(trans, root, path, &key,
1776 sizeof(*dev_item));
1777 if (ret)
1778 goto out;
1780 leaf = path->nodes[0];
1781 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1783 btrfs_set_device_id(leaf, dev_item, device->devid);
1784 btrfs_set_device_generation(leaf, dev_item, 0);
1785 btrfs_set_device_type(leaf, dev_item, device->type);
1786 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1787 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1788 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1789 btrfs_set_device_total_bytes(leaf, dev_item,
1790 btrfs_device_get_disk_total_bytes(device));
1791 btrfs_set_device_bytes_used(leaf, dev_item,
1792 btrfs_device_get_bytes_used(device));
1793 btrfs_set_device_group(leaf, dev_item, 0);
1794 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1795 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1796 btrfs_set_device_start_offset(leaf, dev_item, 0);
1798 ptr = btrfs_device_uuid(dev_item);
1799 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1800 ptr = btrfs_device_fsid(dev_item);
1801 write_extent_buffer(leaf, fs_info->fsid, ptr, BTRFS_FSID_SIZE);
1802 btrfs_mark_buffer_dirty(leaf);
1804 ret = 0;
1805 out:
1806 btrfs_free_path(path);
1807 return ret;
1811 * Function to update ctime/mtime for a given device path.
1812 * Mainly used for ctime/mtime based probe like libblkid.
1814 static void update_dev_time(const char *path_name)
1816 struct file *filp;
1818 filp = filp_open(path_name, O_RDWR, 0);
1819 if (IS_ERR(filp))
1820 return;
1821 file_update_time(filp);
1822 filp_close(filp, NULL);
1825 static int btrfs_rm_dev_item(struct btrfs_fs_info *fs_info,
1826 struct btrfs_device *device)
1828 struct btrfs_root *root = fs_info->chunk_root;
1829 int ret;
1830 struct btrfs_path *path;
1831 struct btrfs_key key;
1832 struct btrfs_trans_handle *trans;
1834 path = btrfs_alloc_path();
1835 if (!path)
1836 return -ENOMEM;
1838 trans = btrfs_start_transaction(root, 0);
1839 if (IS_ERR(trans)) {
1840 btrfs_free_path(path);
1841 return PTR_ERR(trans);
1843 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1844 key.type = BTRFS_DEV_ITEM_KEY;
1845 key.offset = device->devid;
1847 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1848 if (ret) {
1849 if (ret > 0)
1850 ret = -ENOENT;
1851 btrfs_abort_transaction(trans, ret);
1852 btrfs_end_transaction(trans);
1853 goto out;
1856 ret = btrfs_del_item(trans, root, path);
1857 if (ret) {
1858 btrfs_abort_transaction(trans, ret);
1859 btrfs_end_transaction(trans);
1862 out:
1863 btrfs_free_path(path);
1864 if (!ret)
1865 ret = btrfs_commit_transaction(trans);
1866 return ret;
1870 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1871 * filesystem. It's up to the caller to adjust that number regarding eg. device
1872 * replace.
1874 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1875 u64 num_devices)
1877 u64 all_avail;
1878 unsigned seq;
1879 int i;
1881 do {
1882 seq = read_seqbegin(&fs_info->profiles_lock);
1884 all_avail = fs_info->avail_data_alloc_bits |
1885 fs_info->avail_system_alloc_bits |
1886 fs_info->avail_metadata_alloc_bits;
1887 } while (read_seqretry(&fs_info->profiles_lock, seq));
1889 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1890 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1891 continue;
1893 if (num_devices < btrfs_raid_array[i].devs_min) {
1894 int ret = btrfs_raid_array[i].mindev_error;
1896 if (ret)
1897 return ret;
1901 return 0;
1904 static struct btrfs_device * btrfs_find_next_active_device(
1905 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1907 struct btrfs_device *next_device;
1909 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1910 if (next_device != device &&
1911 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1912 && next_device->bdev)
1913 return next_device;
1916 return NULL;
1920 * Helper function to check if the given device is part of s_bdev / latest_bdev
1921 * and replace it with the provided or the next active device, in the context
1922 * where this function called, there should be always be another device (or
1923 * this_dev) which is active.
1925 void btrfs_assign_next_active_device(struct btrfs_fs_info *fs_info,
1926 struct btrfs_device *device, struct btrfs_device *this_dev)
1928 struct btrfs_device *next_device;
1930 if (this_dev)
1931 next_device = this_dev;
1932 else
1933 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1934 device);
1935 ASSERT(next_device);
1937 if (fs_info->sb->s_bdev &&
1938 (fs_info->sb->s_bdev == device->bdev))
1939 fs_info->sb->s_bdev = next_device->bdev;
1941 if (fs_info->fs_devices->latest_bdev == device->bdev)
1942 fs_info->fs_devices->latest_bdev = next_device->bdev;
1945 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1946 u64 devid)
1948 struct btrfs_device *device;
1949 struct btrfs_fs_devices *cur_devices;
1950 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1951 u64 num_devices;
1952 int ret = 0;
1954 mutex_lock(&uuid_mutex);
1956 num_devices = fs_devices->num_devices;
1957 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
1958 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1959 WARN_ON(num_devices < 1);
1960 num_devices--;
1962 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
1964 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1965 if (ret)
1966 goto out;
1968 ret = btrfs_find_device_by_devspec(fs_info, devid, device_path,
1969 &device);
1970 if (ret)
1971 goto out;
1973 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1974 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1975 goto out;
1978 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1979 fs_info->fs_devices->rw_devices == 1) {
1980 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1981 goto out;
1984 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1985 mutex_lock(&fs_info->chunk_mutex);
1986 list_del_init(&device->dev_alloc_list);
1987 device->fs_devices->rw_devices--;
1988 mutex_unlock(&fs_info->chunk_mutex);
1991 mutex_unlock(&uuid_mutex);
1992 ret = btrfs_shrink_device(device, 0);
1993 mutex_lock(&uuid_mutex);
1994 if (ret)
1995 goto error_undo;
1998 * TODO: the superblock still includes this device in its num_devices
1999 * counter although write_all_supers() is not locked out. This
2000 * could give a filesystem state which requires a degraded mount.
2002 ret = btrfs_rm_dev_item(fs_info, device);
2003 if (ret)
2004 goto error_undo;
2006 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2007 btrfs_scrub_cancel_dev(fs_info, device);
2010 * the device list mutex makes sure that we don't change
2011 * the device list while someone else is writing out all
2012 * the device supers. Whoever is writing all supers, should
2013 * lock the device list mutex before getting the number of
2014 * devices in the super block (super_copy). Conversely,
2015 * whoever updates the number of devices in the super block
2016 * (super_copy) should hold the device list mutex.
2020 * In normal cases the cur_devices == fs_devices. But in case
2021 * of deleting a seed device, the cur_devices should point to
2022 * its own fs_devices listed under the fs_devices->seed.
2024 cur_devices = device->fs_devices;
2025 mutex_lock(&fs_devices->device_list_mutex);
2026 list_del_rcu(&device->dev_list);
2028 cur_devices->num_devices--;
2029 cur_devices->total_devices--;
2031 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2032 cur_devices->missing_devices--;
2034 btrfs_assign_next_active_device(fs_info, device, NULL);
2036 if (device->bdev) {
2037 cur_devices->open_devices--;
2038 /* remove sysfs entry */
2039 btrfs_sysfs_rm_device_link(fs_devices, device);
2042 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2043 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2044 mutex_unlock(&fs_devices->device_list_mutex);
2047 * at this point, the device is zero sized and detached from
2048 * the devices list. All that's left is to zero out the old
2049 * supers and free the device.
2051 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2052 btrfs_scratch_superblocks(device->bdev, device->name->str);
2054 btrfs_close_bdev(device);
2055 call_rcu(&device->rcu, free_device_rcu);
2057 if (cur_devices->open_devices == 0) {
2058 while (fs_devices) {
2059 if (fs_devices->seed == cur_devices) {
2060 fs_devices->seed = cur_devices->seed;
2061 break;
2063 fs_devices = fs_devices->seed;
2065 cur_devices->seed = NULL;
2066 close_fs_devices(cur_devices);
2067 free_fs_devices(cur_devices);
2070 out:
2071 mutex_unlock(&uuid_mutex);
2072 return ret;
2074 error_undo:
2075 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2076 mutex_lock(&fs_info->chunk_mutex);
2077 list_add(&device->dev_alloc_list,
2078 &fs_devices->alloc_list);
2079 device->fs_devices->rw_devices++;
2080 mutex_unlock(&fs_info->chunk_mutex);
2082 goto out;
2085 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_fs_info *fs_info,
2086 struct btrfs_device *srcdev)
2088 struct btrfs_fs_devices *fs_devices;
2090 lockdep_assert_held(&fs_info->fs_devices->device_list_mutex);
2093 * in case of fs with no seed, srcdev->fs_devices will point
2094 * to fs_devices of fs_info. However when the dev being replaced is
2095 * a seed dev it will point to the seed's local fs_devices. In short
2096 * srcdev will have its correct fs_devices in both the cases.
2098 fs_devices = srcdev->fs_devices;
2100 list_del_rcu(&srcdev->dev_list);
2101 list_del(&srcdev->dev_alloc_list);
2102 fs_devices->num_devices--;
2103 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2104 fs_devices->missing_devices--;
2106 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2107 fs_devices->rw_devices--;
2109 if (srcdev->bdev)
2110 fs_devices->open_devices--;
2113 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_fs_info *fs_info,
2114 struct btrfs_device *srcdev)
2116 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2118 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2119 /* zero out the old super if it is writable */
2120 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2123 btrfs_close_bdev(srcdev);
2124 call_rcu(&srcdev->rcu, free_device_rcu);
2126 /* if this is no devs we rather delete the fs_devices */
2127 if (!fs_devices->num_devices) {
2128 struct btrfs_fs_devices *tmp_fs_devices;
2131 * On a mounted FS, num_devices can't be zero unless it's a
2132 * seed. In case of a seed device being replaced, the replace
2133 * target added to the sprout FS, so there will be no more
2134 * device left under the seed FS.
2136 ASSERT(fs_devices->seeding);
2138 tmp_fs_devices = fs_info->fs_devices;
2139 while (tmp_fs_devices) {
2140 if (tmp_fs_devices->seed == fs_devices) {
2141 tmp_fs_devices->seed = fs_devices->seed;
2142 break;
2144 tmp_fs_devices = tmp_fs_devices->seed;
2146 fs_devices->seed = NULL;
2147 close_fs_devices(fs_devices);
2148 free_fs_devices(fs_devices);
2152 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
2153 struct btrfs_device *tgtdev)
2155 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2157 WARN_ON(!tgtdev);
2158 mutex_lock(&fs_devices->device_list_mutex);
2160 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2162 if (tgtdev->bdev)
2163 fs_devices->open_devices--;
2165 fs_devices->num_devices--;
2167 btrfs_assign_next_active_device(fs_info, tgtdev, NULL);
2169 list_del_rcu(&tgtdev->dev_list);
2171 mutex_unlock(&fs_devices->device_list_mutex);
2174 * The update_dev_time() with in btrfs_scratch_superblocks()
2175 * may lead to a call to btrfs_show_devname() which will try
2176 * to hold device_list_mutex. And here this device
2177 * is already out of device list, so we don't have to hold
2178 * the device_list_mutex lock.
2180 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2182 btrfs_close_bdev(tgtdev);
2183 call_rcu(&tgtdev->rcu, free_device_rcu);
2186 static int btrfs_find_device_by_path(struct btrfs_fs_info *fs_info,
2187 const char *device_path,
2188 struct btrfs_device **device)
2190 int ret = 0;
2191 struct btrfs_super_block *disk_super;
2192 u64 devid;
2193 u8 *dev_uuid;
2194 struct block_device *bdev;
2195 struct buffer_head *bh;
2197 *device = NULL;
2198 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2199 fs_info->bdev_holder, 0, &bdev, &bh);
2200 if (ret)
2201 return ret;
2202 disk_super = (struct btrfs_super_block *)bh->b_data;
2203 devid = btrfs_stack_device_id(&disk_super->dev_item);
2204 dev_uuid = disk_super->dev_item.uuid;
2205 *device = btrfs_find_device(fs_info, devid, dev_uuid, disk_super->fsid);
2206 brelse(bh);
2207 if (!*device)
2208 ret = -ENOENT;
2209 blkdev_put(bdev, FMODE_READ);
2210 return ret;
2213 int btrfs_find_device_missing_or_by_path(struct btrfs_fs_info *fs_info,
2214 const char *device_path,
2215 struct btrfs_device **device)
2217 *device = NULL;
2218 if (strcmp(device_path, "missing") == 0) {
2219 struct list_head *devices;
2220 struct btrfs_device *tmp;
2222 devices = &fs_info->fs_devices->devices;
2223 list_for_each_entry(tmp, devices, dev_list) {
2224 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2225 &tmp->dev_state) && !tmp->bdev) {
2226 *device = tmp;
2227 break;
2231 if (!*device)
2232 return BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
2234 return 0;
2235 } else {
2236 return btrfs_find_device_by_path(fs_info, device_path, device);
2241 * Lookup a device given by device id, or the path if the id is 0.
2243 int btrfs_find_device_by_devspec(struct btrfs_fs_info *fs_info, u64 devid,
2244 const char *devpath,
2245 struct btrfs_device **device)
2247 int ret;
2249 if (devid) {
2250 ret = 0;
2251 *device = btrfs_find_device(fs_info, devid, NULL, NULL);
2252 if (!*device)
2253 ret = -ENOENT;
2254 } else {
2255 if (!devpath || !devpath[0])
2256 return -EINVAL;
2258 ret = btrfs_find_device_missing_or_by_path(fs_info, devpath,
2259 device);
2261 return ret;
2265 * does all the dirty work required for changing file system's UUID.
2267 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2269 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2270 struct btrfs_fs_devices *old_devices;
2271 struct btrfs_fs_devices *seed_devices;
2272 struct btrfs_super_block *disk_super = fs_info->super_copy;
2273 struct btrfs_device *device;
2274 u64 super_flags;
2276 lockdep_assert_held(&uuid_mutex);
2277 if (!fs_devices->seeding)
2278 return -EINVAL;
2280 seed_devices = alloc_fs_devices(NULL);
2281 if (IS_ERR(seed_devices))
2282 return PTR_ERR(seed_devices);
2284 old_devices = clone_fs_devices(fs_devices);
2285 if (IS_ERR(old_devices)) {
2286 kfree(seed_devices);
2287 return PTR_ERR(old_devices);
2290 list_add(&old_devices->fs_list, &fs_uuids);
2292 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2293 seed_devices->opened = 1;
2294 INIT_LIST_HEAD(&seed_devices->devices);
2295 INIT_LIST_HEAD(&seed_devices->alloc_list);
2296 mutex_init(&seed_devices->device_list_mutex);
2298 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2299 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2300 synchronize_rcu);
2301 list_for_each_entry(device, &seed_devices->devices, dev_list)
2302 device->fs_devices = seed_devices;
2304 mutex_lock(&fs_info->chunk_mutex);
2305 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2306 mutex_unlock(&fs_info->chunk_mutex);
2308 fs_devices->seeding = 0;
2309 fs_devices->num_devices = 0;
2310 fs_devices->open_devices = 0;
2311 fs_devices->missing_devices = 0;
2312 fs_devices->rotating = 0;
2313 fs_devices->seed = seed_devices;
2315 generate_random_uuid(fs_devices->fsid);
2316 memcpy(fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2317 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2318 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2320 super_flags = btrfs_super_flags(disk_super) &
2321 ~BTRFS_SUPER_FLAG_SEEDING;
2322 btrfs_set_super_flags(disk_super, super_flags);
2324 return 0;
2328 * Store the expected generation for seed devices in device items.
2330 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
2331 struct btrfs_fs_info *fs_info)
2333 struct btrfs_root *root = fs_info->chunk_root;
2334 struct btrfs_path *path;
2335 struct extent_buffer *leaf;
2336 struct btrfs_dev_item *dev_item;
2337 struct btrfs_device *device;
2338 struct btrfs_key key;
2339 u8 fs_uuid[BTRFS_FSID_SIZE];
2340 u8 dev_uuid[BTRFS_UUID_SIZE];
2341 u64 devid;
2342 int ret;
2344 path = btrfs_alloc_path();
2345 if (!path)
2346 return -ENOMEM;
2348 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2349 key.offset = 0;
2350 key.type = BTRFS_DEV_ITEM_KEY;
2352 while (1) {
2353 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2354 if (ret < 0)
2355 goto error;
2357 leaf = path->nodes[0];
2358 next_slot:
2359 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2360 ret = btrfs_next_leaf(root, path);
2361 if (ret > 0)
2362 break;
2363 if (ret < 0)
2364 goto error;
2365 leaf = path->nodes[0];
2366 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2367 btrfs_release_path(path);
2368 continue;
2371 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2372 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2373 key.type != BTRFS_DEV_ITEM_KEY)
2374 break;
2376 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2377 struct btrfs_dev_item);
2378 devid = btrfs_device_id(leaf, dev_item);
2379 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2380 BTRFS_UUID_SIZE);
2381 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2382 BTRFS_FSID_SIZE);
2383 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
2384 BUG_ON(!device); /* Logic error */
2386 if (device->fs_devices->seeding) {
2387 btrfs_set_device_generation(leaf, dev_item,
2388 device->generation);
2389 btrfs_mark_buffer_dirty(leaf);
2392 path->slots[0]++;
2393 goto next_slot;
2395 ret = 0;
2396 error:
2397 btrfs_free_path(path);
2398 return ret;
2401 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2403 struct btrfs_root *root = fs_info->dev_root;
2404 struct request_queue *q;
2405 struct btrfs_trans_handle *trans;
2406 struct btrfs_device *device;
2407 struct block_device *bdev;
2408 struct list_head *devices;
2409 struct super_block *sb = fs_info->sb;
2410 struct rcu_string *name;
2411 u64 tmp;
2412 int seeding_dev = 0;
2413 int ret = 0;
2414 bool unlocked = false;
2416 if (sb_rdonly(sb) && !fs_info->fs_devices->seeding)
2417 return -EROFS;
2419 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2420 fs_info->bdev_holder);
2421 if (IS_ERR(bdev))
2422 return PTR_ERR(bdev);
2424 if (fs_info->fs_devices->seeding) {
2425 seeding_dev = 1;
2426 down_write(&sb->s_umount);
2427 mutex_lock(&uuid_mutex);
2430 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2432 devices = &fs_info->fs_devices->devices;
2434 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2435 list_for_each_entry(device, devices, dev_list) {
2436 if (device->bdev == bdev) {
2437 ret = -EEXIST;
2438 mutex_unlock(
2439 &fs_info->fs_devices->device_list_mutex);
2440 goto error;
2443 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2445 device = btrfs_alloc_device(fs_info, NULL, NULL);
2446 if (IS_ERR(device)) {
2447 /* we can safely leave the fs_devices entry around */
2448 ret = PTR_ERR(device);
2449 goto error;
2452 name = rcu_string_strdup(device_path, GFP_KERNEL);
2453 if (!name) {
2454 ret = -ENOMEM;
2455 goto error_free_device;
2457 rcu_assign_pointer(device->name, name);
2459 trans = btrfs_start_transaction(root, 0);
2460 if (IS_ERR(trans)) {
2461 ret = PTR_ERR(trans);
2462 goto error_free_device;
2465 q = bdev_get_queue(bdev);
2466 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2467 device->generation = trans->transid;
2468 device->io_width = fs_info->sectorsize;
2469 device->io_align = fs_info->sectorsize;
2470 device->sector_size = fs_info->sectorsize;
2471 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2472 fs_info->sectorsize);
2473 device->disk_total_bytes = device->total_bytes;
2474 device->commit_total_bytes = device->total_bytes;
2475 device->fs_info = fs_info;
2476 device->bdev = bdev;
2477 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2478 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2479 device->mode = FMODE_EXCL;
2480 device->dev_stats_valid = 1;
2481 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2483 if (seeding_dev) {
2484 sb->s_flags &= ~SB_RDONLY;
2485 ret = btrfs_prepare_sprout(fs_info);
2486 if (ret) {
2487 btrfs_abort_transaction(trans, ret);
2488 goto error_trans;
2492 device->fs_devices = fs_info->fs_devices;
2494 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2495 mutex_lock(&fs_info->chunk_mutex);
2496 list_add_rcu(&device->dev_list, &fs_info->fs_devices->devices);
2497 list_add(&device->dev_alloc_list,
2498 &fs_info->fs_devices->alloc_list);
2499 fs_info->fs_devices->num_devices++;
2500 fs_info->fs_devices->open_devices++;
2501 fs_info->fs_devices->rw_devices++;
2502 fs_info->fs_devices->total_devices++;
2503 fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2505 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2507 if (!blk_queue_nonrot(q))
2508 fs_info->fs_devices->rotating = 1;
2510 tmp = btrfs_super_total_bytes(fs_info->super_copy);
2511 btrfs_set_super_total_bytes(fs_info->super_copy,
2512 round_down(tmp + device->total_bytes, fs_info->sectorsize));
2514 tmp = btrfs_super_num_devices(fs_info->super_copy);
2515 btrfs_set_super_num_devices(fs_info->super_copy, tmp + 1);
2517 /* add sysfs device entry */
2518 btrfs_sysfs_add_device_link(fs_info->fs_devices, device);
2521 * we've got more storage, clear any full flags on the space
2522 * infos
2524 btrfs_clear_space_info_full(fs_info);
2526 mutex_unlock(&fs_info->chunk_mutex);
2527 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2529 if (seeding_dev) {
2530 mutex_lock(&fs_info->chunk_mutex);
2531 ret = init_first_rw_device(trans, fs_info);
2532 mutex_unlock(&fs_info->chunk_mutex);
2533 if (ret) {
2534 btrfs_abort_transaction(trans, ret);
2535 goto error_sysfs;
2539 ret = btrfs_add_dev_item(trans, fs_info, device);
2540 if (ret) {
2541 btrfs_abort_transaction(trans, ret);
2542 goto error_sysfs;
2545 if (seeding_dev) {
2546 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE];
2548 ret = btrfs_finish_sprout(trans, fs_info);
2549 if (ret) {
2550 btrfs_abort_transaction(trans, ret);
2551 goto error_sysfs;
2554 /* Sprouting would change fsid of the mounted root,
2555 * so rename the fsid on the sysfs
2557 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU",
2558 fs_info->fsid);
2559 if (kobject_rename(&fs_info->fs_devices->fsid_kobj, fsid_buf))
2560 btrfs_warn(fs_info,
2561 "sysfs: failed to create fsid for sprout");
2564 ret = btrfs_commit_transaction(trans);
2566 if (seeding_dev) {
2567 mutex_unlock(&uuid_mutex);
2568 up_write(&sb->s_umount);
2569 unlocked = true;
2571 if (ret) /* transaction commit */
2572 return ret;
2574 ret = btrfs_relocate_sys_chunks(fs_info);
2575 if (ret < 0)
2576 btrfs_handle_fs_error(fs_info, ret,
2577 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2578 trans = btrfs_attach_transaction(root);
2579 if (IS_ERR(trans)) {
2580 if (PTR_ERR(trans) == -ENOENT)
2581 return 0;
2582 ret = PTR_ERR(trans);
2583 trans = NULL;
2584 goto error_sysfs;
2586 ret = btrfs_commit_transaction(trans);
2589 /* Update ctime/mtime for libblkid */
2590 update_dev_time(device_path);
2591 return ret;
2593 error_sysfs:
2594 btrfs_sysfs_rm_device_link(fs_info->fs_devices, device);
2595 error_trans:
2596 if (seeding_dev)
2597 sb->s_flags |= SB_RDONLY;
2598 if (trans)
2599 btrfs_end_transaction(trans);
2600 error_free_device:
2601 btrfs_free_device(device);
2602 error:
2603 blkdev_put(bdev, FMODE_EXCL);
2604 if (seeding_dev && !unlocked) {
2605 mutex_unlock(&uuid_mutex);
2606 up_write(&sb->s_umount);
2608 return ret;
2611 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2612 struct btrfs_device *device)
2614 int ret;
2615 struct btrfs_path *path;
2616 struct btrfs_root *root = device->fs_info->chunk_root;
2617 struct btrfs_dev_item *dev_item;
2618 struct extent_buffer *leaf;
2619 struct btrfs_key key;
2621 path = btrfs_alloc_path();
2622 if (!path)
2623 return -ENOMEM;
2625 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2626 key.type = BTRFS_DEV_ITEM_KEY;
2627 key.offset = device->devid;
2629 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2630 if (ret < 0)
2631 goto out;
2633 if (ret > 0) {
2634 ret = -ENOENT;
2635 goto out;
2638 leaf = path->nodes[0];
2639 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2641 btrfs_set_device_id(leaf, dev_item, device->devid);
2642 btrfs_set_device_type(leaf, dev_item, device->type);
2643 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2644 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2645 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2646 btrfs_set_device_total_bytes(leaf, dev_item,
2647 btrfs_device_get_disk_total_bytes(device));
2648 btrfs_set_device_bytes_used(leaf, dev_item,
2649 btrfs_device_get_bytes_used(device));
2650 btrfs_mark_buffer_dirty(leaf);
2652 out:
2653 btrfs_free_path(path);
2654 return ret;
2657 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2658 struct btrfs_device *device, u64 new_size)
2660 struct btrfs_fs_info *fs_info = device->fs_info;
2661 struct btrfs_super_block *super_copy = fs_info->super_copy;
2662 struct btrfs_fs_devices *fs_devices;
2663 u64 old_total;
2664 u64 diff;
2666 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2667 return -EACCES;
2669 new_size = round_down(new_size, fs_info->sectorsize);
2671 mutex_lock(&fs_info->chunk_mutex);
2672 old_total = btrfs_super_total_bytes(super_copy);
2673 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2675 if (new_size <= device->total_bytes ||
2676 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2677 mutex_unlock(&fs_info->chunk_mutex);
2678 return -EINVAL;
2681 fs_devices = fs_info->fs_devices;
2683 btrfs_set_super_total_bytes(super_copy,
2684 round_down(old_total + diff, fs_info->sectorsize));
2685 device->fs_devices->total_rw_bytes += diff;
2687 btrfs_device_set_total_bytes(device, new_size);
2688 btrfs_device_set_disk_total_bytes(device, new_size);
2689 btrfs_clear_space_info_full(device->fs_info);
2690 if (list_empty(&device->resized_list))
2691 list_add_tail(&device->resized_list,
2692 &fs_devices->resized_devices);
2693 mutex_unlock(&fs_info->chunk_mutex);
2695 return btrfs_update_device(trans, device);
2698 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2699 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2701 struct btrfs_root *root = fs_info->chunk_root;
2702 int ret;
2703 struct btrfs_path *path;
2704 struct btrfs_key key;
2706 path = btrfs_alloc_path();
2707 if (!path)
2708 return -ENOMEM;
2710 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2711 key.offset = chunk_offset;
2712 key.type = BTRFS_CHUNK_ITEM_KEY;
2714 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2715 if (ret < 0)
2716 goto out;
2717 else if (ret > 0) { /* Logic error or corruption */
2718 btrfs_handle_fs_error(fs_info, -ENOENT,
2719 "Failed lookup while freeing chunk.");
2720 ret = -ENOENT;
2721 goto out;
2724 ret = btrfs_del_item(trans, root, path);
2725 if (ret < 0)
2726 btrfs_handle_fs_error(fs_info, ret,
2727 "Failed to delete chunk item.");
2728 out:
2729 btrfs_free_path(path);
2730 return ret;
2733 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2735 struct btrfs_super_block *super_copy = fs_info->super_copy;
2736 struct btrfs_disk_key *disk_key;
2737 struct btrfs_chunk *chunk;
2738 u8 *ptr;
2739 int ret = 0;
2740 u32 num_stripes;
2741 u32 array_size;
2742 u32 len = 0;
2743 u32 cur;
2744 struct btrfs_key key;
2746 mutex_lock(&fs_info->chunk_mutex);
2747 array_size = btrfs_super_sys_array_size(super_copy);
2749 ptr = super_copy->sys_chunk_array;
2750 cur = 0;
2752 while (cur < array_size) {
2753 disk_key = (struct btrfs_disk_key *)ptr;
2754 btrfs_disk_key_to_cpu(&key, disk_key);
2756 len = sizeof(*disk_key);
2758 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2759 chunk = (struct btrfs_chunk *)(ptr + len);
2760 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2761 len += btrfs_chunk_item_size(num_stripes);
2762 } else {
2763 ret = -EIO;
2764 break;
2766 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2767 key.offset == chunk_offset) {
2768 memmove(ptr, ptr + len, array_size - (cur + len));
2769 array_size -= len;
2770 btrfs_set_super_sys_array_size(super_copy, array_size);
2771 } else {
2772 ptr += len;
2773 cur += len;
2776 mutex_unlock(&fs_info->chunk_mutex);
2777 return ret;
2780 static struct extent_map *get_chunk_map(struct btrfs_fs_info *fs_info,
2781 u64 logical, u64 length)
2783 struct extent_map_tree *em_tree;
2784 struct extent_map *em;
2786 em_tree = &fs_info->mapping_tree.map_tree;
2787 read_lock(&em_tree->lock);
2788 em = lookup_extent_mapping(em_tree, logical, length);
2789 read_unlock(&em_tree->lock);
2791 if (!em) {
2792 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2793 logical, length);
2794 return ERR_PTR(-EINVAL);
2797 if (em->start > logical || em->start + em->len < logical) {
2798 btrfs_crit(fs_info,
2799 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2800 logical, length, em->start, em->start + em->len);
2801 free_extent_map(em);
2802 return ERR_PTR(-EINVAL);
2805 /* callers are responsible for dropping em's ref. */
2806 return em;
2809 int btrfs_remove_chunk(struct btrfs_trans_handle *trans,
2810 struct btrfs_fs_info *fs_info, u64 chunk_offset)
2812 struct extent_map *em;
2813 struct map_lookup *map;
2814 u64 dev_extent_len = 0;
2815 int i, ret = 0;
2816 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2818 em = get_chunk_map(fs_info, chunk_offset, 1);
2819 if (IS_ERR(em)) {
2821 * This is a logic error, but we don't want to just rely on the
2822 * user having built with ASSERT enabled, so if ASSERT doesn't
2823 * do anything we still error out.
2825 ASSERT(0);
2826 return PTR_ERR(em);
2828 map = em->map_lookup;
2829 mutex_lock(&fs_info->chunk_mutex);
2830 check_system_chunk(trans, fs_info, map->type);
2831 mutex_unlock(&fs_info->chunk_mutex);
2834 * Take the device list mutex to prevent races with the final phase of
2835 * a device replace operation that replaces the device object associated
2836 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2838 mutex_lock(&fs_devices->device_list_mutex);
2839 for (i = 0; i < map->num_stripes; i++) {
2840 struct btrfs_device *device = map->stripes[i].dev;
2841 ret = btrfs_free_dev_extent(trans, device,
2842 map->stripes[i].physical,
2843 &dev_extent_len);
2844 if (ret) {
2845 mutex_unlock(&fs_devices->device_list_mutex);
2846 btrfs_abort_transaction(trans, ret);
2847 goto out;
2850 if (device->bytes_used > 0) {
2851 mutex_lock(&fs_info->chunk_mutex);
2852 btrfs_device_set_bytes_used(device,
2853 device->bytes_used - dev_extent_len);
2854 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2855 btrfs_clear_space_info_full(fs_info);
2856 mutex_unlock(&fs_info->chunk_mutex);
2859 if (map->stripes[i].dev) {
2860 ret = btrfs_update_device(trans, map->stripes[i].dev);
2861 if (ret) {
2862 mutex_unlock(&fs_devices->device_list_mutex);
2863 btrfs_abort_transaction(trans, ret);
2864 goto out;
2868 mutex_unlock(&fs_devices->device_list_mutex);
2870 ret = btrfs_free_chunk(trans, fs_info, chunk_offset);
2871 if (ret) {
2872 btrfs_abort_transaction(trans, ret);
2873 goto out;
2876 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2878 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2879 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2880 if (ret) {
2881 btrfs_abort_transaction(trans, ret);
2882 goto out;
2886 ret = btrfs_remove_block_group(trans, fs_info, chunk_offset, em);
2887 if (ret) {
2888 btrfs_abort_transaction(trans, ret);
2889 goto out;
2892 out:
2893 /* once for us */
2894 free_extent_map(em);
2895 return ret;
2898 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2900 struct btrfs_root *root = fs_info->chunk_root;
2901 struct btrfs_trans_handle *trans;
2902 int ret;
2905 * Prevent races with automatic removal of unused block groups.
2906 * After we relocate and before we remove the chunk with offset
2907 * chunk_offset, automatic removal of the block group can kick in,
2908 * resulting in a failure when calling btrfs_remove_chunk() below.
2910 * Make sure to acquire this mutex before doing a tree search (dev
2911 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2912 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2913 * we release the path used to search the chunk/dev tree and before
2914 * the current task acquires this mutex and calls us.
2916 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2918 ret = btrfs_can_relocate(fs_info, chunk_offset);
2919 if (ret)
2920 return -ENOSPC;
2922 /* step one, relocate all the extents inside this chunk */
2923 btrfs_scrub_pause(fs_info);
2924 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2925 btrfs_scrub_continue(fs_info);
2926 if (ret)
2927 return ret;
2930 * We add the kobjects here (and after forcing data chunk creation)
2931 * since relocation is the only place we'll create chunks of a new
2932 * type at runtime. The only place where we'll remove the last
2933 * chunk of a type is the call immediately below this one. Even
2934 * so, we're protected against races with the cleaner thread since
2935 * we're covered by the delete_unused_bgs_mutex.
2937 btrfs_add_raid_kobjects(fs_info);
2939 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2940 chunk_offset);
2941 if (IS_ERR(trans)) {
2942 ret = PTR_ERR(trans);
2943 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2944 return ret;
2948 * step two, delete the device extents and the
2949 * chunk tree entries
2951 ret = btrfs_remove_chunk(trans, fs_info, chunk_offset);
2952 btrfs_end_transaction(trans);
2953 return ret;
2956 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2958 struct btrfs_root *chunk_root = fs_info->chunk_root;
2959 struct btrfs_path *path;
2960 struct extent_buffer *leaf;
2961 struct btrfs_chunk *chunk;
2962 struct btrfs_key key;
2963 struct btrfs_key found_key;
2964 u64 chunk_type;
2965 bool retried = false;
2966 int failed = 0;
2967 int ret;
2969 path = btrfs_alloc_path();
2970 if (!path)
2971 return -ENOMEM;
2973 again:
2974 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2975 key.offset = (u64)-1;
2976 key.type = BTRFS_CHUNK_ITEM_KEY;
2978 while (1) {
2979 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2980 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2981 if (ret < 0) {
2982 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2983 goto error;
2985 BUG_ON(ret == 0); /* Corruption */
2987 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2988 key.type);
2989 if (ret)
2990 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2991 if (ret < 0)
2992 goto error;
2993 if (ret > 0)
2994 break;
2996 leaf = path->nodes[0];
2997 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2999 chunk = btrfs_item_ptr(leaf, path->slots[0],
3000 struct btrfs_chunk);
3001 chunk_type = btrfs_chunk_type(leaf, chunk);
3002 btrfs_release_path(path);
3004 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3005 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3006 if (ret == -ENOSPC)
3007 failed++;
3008 else
3009 BUG_ON(ret);
3011 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3013 if (found_key.offset == 0)
3014 break;
3015 key.offset = found_key.offset - 1;
3017 ret = 0;
3018 if (failed && !retried) {
3019 failed = 0;
3020 retried = true;
3021 goto again;
3022 } else if (WARN_ON(failed && retried)) {
3023 ret = -ENOSPC;
3025 error:
3026 btrfs_free_path(path);
3027 return ret;
3031 * return 1 : allocate a data chunk successfully,
3032 * return <0: errors during allocating a data chunk,
3033 * return 0 : no need to allocate a data chunk.
3035 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3036 u64 chunk_offset)
3038 struct btrfs_block_group_cache *cache;
3039 u64 bytes_used;
3040 u64 chunk_type;
3042 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3043 ASSERT(cache);
3044 chunk_type = cache->flags;
3045 btrfs_put_block_group(cache);
3047 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) {
3048 spin_lock(&fs_info->data_sinfo->lock);
3049 bytes_used = fs_info->data_sinfo->bytes_used;
3050 spin_unlock(&fs_info->data_sinfo->lock);
3052 if (!bytes_used) {
3053 struct btrfs_trans_handle *trans;
3054 int ret;
3056 trans = btrfs_join_transaction(fs_info->tree_root);
3057 if (IS_ERR(trans))
3058 return PTR_ERR(trans);
3060 ret = btrfs_force_chunk_alloc(trans, fs_info,
3061 BTRFS_BLOCK_GROUP_DATA);
3062 btrfs_end_transaction(trans);
3063 if (ret < 0)
3064 return ret;
3066 btrfs_add_raid_kobjects(fs_info);
3068 return 1;
3071 return 0;
3074 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3075 struct btrfs_balance_control *bctl)
3077 struct btrfs_root *root = fs_info->tree_root;
3078 struct btrfs_trans_handle *trans;
3079 struct btrfs_balance_item *item;
3080 struct btrfs_disk_balance_args disk_bargs;
3081 struct btrfs_path *path;
3082 struct extent_buffer *leaf;
3083 struct btrfs_key key;
3084 int ret, err;
3086 path = btrfs_alloc_path();
3087 if (!path)
3088 return -ENOMEM;
3090 trans = btrfs_start_transaction(root, 0);
3091 if (IS_ERR(trans)) {
3092 btrfs_free_path(path);
3093 return PTR_ERR(trans);
3096 key.objectid = BTRFS_BALANCE_OBJECTID;
3097 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3098 key.offset = 0;
3100 ret = btrfs_insert_empty_item(trans, root, path, &key,
3101 sizeof(*item));
3102 if (ret)
3103 goto out;
3105 leaf = path->nodes[0];
3106 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3108 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3110 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3111 btrfs_set_balance_data(leaf, item, &disk_bargs);
3112 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3113 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3114 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3115 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3117 btrfs_set_balance_flags(leaf, item, bctl->flags);
3119 btrfs_mark_buffer_dirty(leaf);
3120 out:
3121 btrfs_free_path(path);
3122 err = btrfs_commit_transaction(trans);
3123 if (err && !ret)
3124 ret = err;
3125 return ret;
3128 static int del_balance_item(struct btrfs_fs_info *fs_info)
3130 struct btrfs_root *root = fs_info->tree_root;
3131 struct btrfs_trans_handle *trans;
3132 struct btrfs_path *path;
3133 struct btrfs_key key;
3134 int ret, err;
3136 path = btrfs_alloc_path();
3137 if (!path)
3138 return -ENOMEM;
3140 trans = btrfs_start_transaction(root, 0);
3141 if (IS_ERR(trans)) {
3142 btrfs_free_path(path);
3143 return PTR_ERR(trans);
3146 key.objectid = BTRFS_BALANCE_OBJECTID;
3147 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3148 key.offset = 0;
3150 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3151 if (ret < 0)
3152 goto out;
3153 if (ret > 0) {
3154 ret = -ENOENT;
3155 goto out;
3158 ret = btrfs_del_item(trans, root, path);
3159 out:
3160 btrfs_free_path(path);
3161 err = btrfs_commit_transaction(trans);
3162 if (err && !ret)
3163 ret = err;
3164 return ret;
3168 * This is a heuristic used to reduce the number of chunks balanced on
3169 * resume after balance was interrupted.
3171 static void update_balance_args(struct btrfs_balance_control *bctl)
3174 * Turn on soft mode for chunk types that were being converted.
3176 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3177 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3178 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3179 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3180 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3181 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3184 * Turn on usage filter if is not already used. The idea is
3185 * that chunks that we have already balanced should be
3186 * reasonably full. Don't do it for chunks that are being
3187 * converted - that will keep us from relocating unconverted
3188 * (albeit full) chunks.
3190 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3191 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3192 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3193 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3194 bctl->data.usage = 90;
3196 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3197 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3198 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3199 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3200 bctl->sys.usage = 90;
3202 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3203 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3204 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3205 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3206 bctl->meta.usage = 90;
3211 * Clear the balance status in fs_info and delete the balance item from disk.
3213 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3215 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3216 int ret;
3218 BUG_ON(!fs_info->balance_ctl);
3220 spin_lock(&fs_info->balance_lock);
3221 fs_info->balance_ctl = NULL;
3222 spin_unlock(&fs_info->balance_lock);
3224 kfree(bctl);
3225 ret = del_balance_item(fs_info);
3226 if (ret)
3227 btrfs_handle_fs_error(fs_info, ret, NULL);
3231 * Balance filters. Return 1 if chunk should be filtered out
3232 * (should not be balanced).
3234 static int chunk_profiles_filter(u64 chunk_type,
3235 struct btrfs_balance_args *bargs)
3237 chunk_type = chunk_to_extended(chunk_type) &
3238 BTRFS_EXTENDED_PROFILE_MASK;
3240 if (bargs->profiles & chunk_type)
3241 return 0;
3243 return 1;
3246 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3247 struct btrfs_balance_args *bargs)
3249 struct btrfs_block_group_cache *cache;
3250 u64 chunk_used;
3251 u64 user_thresh_min;
3252 u64 user_thresh_max;
3253 int ret = 1;
3255 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3256 chunk_used = btrfs_block_group_used(&cache->item);
3258 if (bargs->usage_min == 0)
3259 user_thresh_min = 0;
3260 else
3261 user_thresh_min = div_factor_fine(cache->key.offset,
3262 bargs->usage_min);
3264 if (bargs->usage_max == 0)
3265 user_thresh_max = 1;
3266 else if (bargs->usage_max > 100)
3267 user_thresh_max = cache->key.offset;
3268 else
3269 user_thresh_max = div_factor_fine(cache->key.offset,
3270 bargs->usage_max);
3272 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3273 ret = 0;
3275 btrfs_put_block_group(cache);
3276 return ret;
3279 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3280 u64 chunk_offset, struct btrfs_balance_args *bargs)
3282 struct btrfs_block_group_cache *cache;
3283 u64 chunk_used, user_thresh;
3284 int ret = 1;
3286 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3287 chunk_used = btrfs_block_group_used(&cache->item);
3289 if (bargs->usage_min == 0)
3290 user_thresh = 1;
3291 else if (bargs->usage > 100)
3292 user_thresh = cache->key.offset;
3293 else
3294 user_thresh = div_factor_fine(cache->key.offset,
3295 bargs->usage);
3297 if (chunk_used < user_thresh)
3298 ret = 0;
3300 btrfs_put_block_group(cache);
3301 return ret;
3304 static int chunk_devid_filter(struct extent_buffer *leaf,
3305 struct btrfs_chunk *chunk,
3306 struct btrfs_balance_args *bargs)
3308 struct btrfs_stripe *stripe;
3309 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3310 int i;
3312 for (i = 0; i < num_stripes; i++) {
3313 stripe = btrfs_stripe_nr(chunk, i);
3314 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3315 return 0;
3318 return 1;
3321 /* [pstart, pend) */
3322 static int chunk_drange_filter(struct extent_buffer *leaf,
3323 struct btrfs_chunk *chunk,
3324 struct btrfs_balance_args *bargs)
3326 struct btrfs_stripe *stripe;
3327 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3328 u64 stripe_offset;
3329 u64 stripe_length;
3330 int factor;
3331 int i;
3333 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3334 return 0;
3336 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
3337 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
3338 factor = num_stripes / 2;
3339 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
3340 factor = num_stripes - 1;
3341 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
3342 factor = num_stripes - 2;
3343 } else {
3344 factor = num_stripes;
3347 for (i = 0; i < num_stripes; i++) {
3348 stripe = btrfs_stripe_nr(chunk, i);
3349 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3350 continue;
3352 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3353 stripe_length = btrfs_chunk_length(leaf, chunk);
3354 stripe_length = div_u64(stripe_length, factor);
3356 if (stripe_offset < bargs->pend &&
3357 stripe_offset + stripe_length > bargs->pstart)
3358 return 0;
3361 return 1;
3364 /* [vstart, vend) */
3365 static int chunk_vrange_filter(struct extent_buffer *leaf,
3366 struct btrfs_chunk *chunk,
3367 u64 chunk_offset,
3368 struct btrfs_balance_args *bargs)
3370 if (chunk_offset < bargs->vend &&
3371 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3372 /* at least part of the chunk is inside this vrange */
3373 return 0;
3375 return 1;
3378 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3379 struct btrfs_chunk *chunk,
3380 struct btrfs_balance_args *bargs)
3382 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3384 if (bargs->stripes_min <= num_stripes
3385 && num_stripes <= bargs->stripes_max)
3386 return 0;
3388 return 1;
3391 static int chunk_soft_convert_filter(u64 chunk_type,
3392 struct btrfs_balance_args *bargs)
3394 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3395 return 0;
3397 chunk_type = chunk_to_extended(chunk_type) &
3398 BTRFS_EXTENDED_PROFILE_MASK;
3400 if (bargs->target == chunk_type)
3401 return 1;
3403 return 0;
3406 static int should_balance_chunk(struct btrfs_fs_info *fs_info,
3407 struct extent_buffer *leaf,
3408 struct btrfs_chunk *chunk, u64 chunk_offset)
3410 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3411 struct btrfs_balance_args *bargs = NULL;
3412 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3414 /* type filter */
3415 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3416 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3417 return 0;
3420 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3421 bargs = &bctl->data;
3422 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3423 bargs = &bctl->sys;
3424 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3425 bargs = &bctl->meta;
3427 /* profiles filter */
3428 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3429 chunk_profiles_filter(chunk_type, bargs)) {
3430 return 0;
3433 /* usage filter */
3434 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3435 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3436 return 0;
3437 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3438 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3439 return 0;
3442 /* devid filter */
3443 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3444 chunk_devid_filter(leaf, chunk, bargs)) {
3445 return 0;
3448 /* drange filter, makes sense only with devid filter */
3449 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3450 chunk_drange_filter(leaf, chunk, bargs)) {
3451 return 0;
3454 /* vrange filter */
3455 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3456 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3457 return 0;
3460 /* stripes filter */
3461 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3462 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3463 return 0;
3466 /* soft profile changing mode */
3467 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3468 chunk_soft_convert_filter(chunk_type, bargs)) {
3469 return 0;
3473 * limited by count, must be the last filter
3475 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3476 if (bargs->limit == 0)
3477 return 0;
3478 else
3479 bargs->limit--;
3480 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3482 * Same logic as the 'limit' filter; the minimum cannot be
3483 * determined here because we do not have the global information
3484 * about the count of all chunks that satisfy the filters.
3486 if (bargs->limit_max == 0)
3487 return 0;
3488 else
3489 bargs->limit_max--;
3492 return 1;
3495 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3497 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3498 struct btrfs_root *chunk_root = fs_info->chunk_root;
3499 struct btrfs_root *dev_root = fs_info->dev_root;
3500 struct list_head *devices;
3501 struct btrfs_device *device;
3502 u64 old_size;
3503 u64 size_to_free;
3504 u64 chunk_type;
3505 struct btrfs_chunk *chunk;
3506 struct btrfs_path *path = NULL;
3507 struct btrfs_key key;
3508 struct btrfs_key found_key;
3509 struct btrfs_trans_handle *trans;
3510 struct extent_buffer *leaf;
3511 int slot;
3512 int ret;
3513 int enospc_errors = 0;
3514 bool counting = true;
3515 /* The single value limit and min/max limits use the same bytes in the */
3516 u64 limit_data = bctl->data.limit;
3517 u64 limit_meta = bctl->meta.limit;
3518 u64 limit_sys = bctl->sys.limit;
3519 u32 count_data = 0;
3520 u32 count_meta = 0;
3521 u32 count_sys = 0;
3522 int chunk_reserved = 0;
3524 /* step one make some room on all the devices */
3525 devices = &fs_info->fs_devices->devices;
3526 list_for_each_entry(device, devices, dev_list) {
3527 old_size = btrfs_device_get_total_bytes(device);
3528 size_to_free = div_factor(old_size, 1);
3529 size_to_free = min_t(u64, size_to_free, SZ_1M);
3530 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) ||
3531 btrfs_device_get_total_bytes(device) -
3532 btrfs_device_get_bytes_used(device) > size_to_free ||
3533 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
3534 continue;
3536 ret = btrfs_shrink_device(device, old_size - size_to_free);
3537 if (ret == -ENOSPC)
3538 break;
3539 if (ret) {
3540 /* btrfs_shrink_device never returns ret > 0 */
3541 WARN_ON(ret > 0);
3542 goto error;
3545 trans = btrfs_start_transaction(dev_root, 0);
3546 if (IS_ERR(trans)) {
3547 ret = PTR_ERR(trans);
3548 btrfs_info_in_rcu(fs_info,
3549 "resize: unable to start transaction after shrinking device %s (error %d), old size %llu, new size %llu",
3550 rcu_str_deref(device->name), ret,
3551 old_size, old_size - size_to_free);
3552 goto error;
3555 ret = btrfs_grow_device(trans, device, old_size);
3556 if (ret) {
3557 btrfs_end_transaction(trans);
3558 /* btrfs_grow_device never returns ret > 0 */
3559 WARN_ON(ret > 0);
3560 btrfs_info_in_rcu(fs_info,
3561 "resize: unable to grow device after shrinking device %s (error %d), old size %llu, new size %llu",
3562 rcu_str_deref(device->name), ret,
3563 old_size, old_size - size_to_free);
3564 goto error;
3567 btrfs_end_transaction(trans);
3570 /* step two, relocate all the chunks */
3571 path = btrfs_alloc_path();
3572 if (!path) {
3573 ret = -ENOMEM;
3574 goto error;
3577 /* zero out stat counters */
3578 spin_lock(&fs_info->balance_lock);
3579 memset(&bctl->stat, 0, sizeof(bctl->stat));
3580 spin_unlock(&fs_info->balance_lock);
3581 again:
3582 if (!counting) {
3584 * The single value limit and min/max limits use the same bytes
3585 * in the
3587 bctl->data.limit = limit_data;
3588 bctl->meta.limit = limit_meta;
3589 bctl->sys.limit = limit_sys;
3591 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3592 key.offset = (u64)-1;
3593 key.type = BTRFS_CHUNK_ITEM_KEY;
3595 while (1) {
3596 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3597 atomic_read(&fs_info->balance_cancel_req)) {
3598 ret = -ECANCELED;
3599 goto error;
3602 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3603 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3604 if (ret < 0) {
3605 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3606 goto error;
3610 * this shouldn't happen, it means the last relocate
3611 * failed
3613 if (ret == 0)
3614 BUG(); /* FIXME break ? */
3616 ret = btrfs_previous_item(chunk_root, path, 0,
3617 BTRFS_CHUNK_ITEM_KEY);
3618 if (ret) {
3619 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3620 ret = 0;
3621 break;
3624 leaf = path->nodes[0];
3625 slot = path->slots[0];
3626 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3628 if (found_key.objectid != key.objectid) {
3629 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3630 break;
3633 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3634 chunk_type = btrfs_chunk_type(leaf, chunk);
3636 if (!counting) {
3637 spin_lock(&fs_info->balance_lock);
3638 bctl->stat.considered++;
3639 spin_unlock(&fs_info->balance_lock);
3642 ret = should_balance_chunk(fs_info, leaf, chunk,
3643 found_key.offset);
3645 btrfs_release_path(path);
3646 if (!ret) {
3647 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3648 goto loop;
3651 if (counting) {
3652 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3653 spin_lock(&fs_info->balance_lock);
3654 bctl->stat.expected++;
3655 spin_unlock(&fs_info->balance_lock);
3657 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3658 count_data++;
3659 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3660 count_sys++;
3661 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3662 count_meta++;
3664 goto loop;
3668 * Apply limit_min filter, no need to check if the LIMITS
3669 * filter is used, limit_min is 0 by default
3671 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3672 count_data < bctl->data.limit_min)
3673 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3674 count_meta < bctl->meta.limit_min)
3675 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3676 count_sys < bctl->sys.limit_min)) {
3677 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3678 goto loop;
3681 if (!chunk_reserved) {
3683 * We may be relocating the only data chunk we have,
3684 * which could potentially end up with losing data's
3685 * raid profile, so lets allocate an empty one in
3686 * advance.
3688 ret = btrfs_may_alloc_data_chunk(fs_info,
3689 found_key.offset);
3690 if (ret < 0) {
3691 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3692 goto error;
3693 } else if (ret == 1) {
3694 chunk_reserved = 1;
3698 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3699 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3700 if (ret && ret != -ENOSPC)
3701 goto error;
3702 if (ret == -ENOSPC) {
3703 enospc_errors++;
3704 } else {
3705 spin_lock(&fs_info->balance_lock);
3706 bctl->stat.completed++;
3707 spin_unlock(&fs_info->balance_lock);
3709 loop:
3710 if (found_key.offset == 0)
3711 break;
3712 key.offset = found_key.offset - 1;
3715 if (counting) {
3716 btrfs_release_path(path);
3717 counting = false;
3718 goto again;
3720 error:
3721 btrfs_free_path(path);
3722 if (enospc_errors) {
3723 btrfs_info(fs_info, "%d enospc errors during balance",
3724 enospc_errors);
3725 if (!ret)
3726 ret = -ENOSPC;
3729 return ret;
3733 * alloc_profile_is_valid - see if a given profile is valid and reduced
3734 * @flags: profile to validate
3735 * @extended: if true @flags is treated as an extended profile
3737 static int alloc_profile_is_valid(u64 flags, int extended)
3739 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3740 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3742 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3744 /* 1) check that all other bits are zeroed */
3745 if (flags & ~mask)
3746 return 0;
3748 /* 2) see if profile is reduced */
3749 if (flags == 0)
3750 return !extended; /* "0" is valid for usual profiles */
3752 /* true if exactly one bit set */
3753 return (flags & (flags - 1)) == 0;
3756 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3758 /* cancel requested || normal exit path */
3759 return atomic_read(&fs_info->balance_cancel_req) ||
3760 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3761 atomic_read(&fs_info->balance_cancel_req) == 0);
3764 /* Non-zero return value signifies invalidity */
3765 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3766 u64 allowed)
3768 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3769 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3770 (bctl_arg->target & ~allowed)));
3774 * Should be called with balance mutexe held
3776 int btrfs_balance(struct btrfs_fs_info *fs_info,
3777 struct btrfs_balance_control *bctl,
3778 struct btrfs_ioctl_balance_args *bargs)
3780 u64 meta_target, data_target;
3781 u64 allowed;
3782 int mixed = 0;
3783 int ret;
3784 u64 num_devices;
3785 unsigned seq;
3787 if (btrfs_fs_closing(fs_info) ||
3788 atomic_read(&fs_info->balance_pause_req) ||
3789 atomic_read(&fs_info->balance_cancel_req)) {
3790 ret = -EINVAL;
3791 goto out;
3794 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3795 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3796 mixed = 1;
3799 * In case of mixed groups both data and meta should be picked,
3800 * and identical options should be given for both of them.
3802 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3803 if (mixed && (bctl->flags & allowed)) {
3804 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3805 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3806 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3807 btrfs_err(fs_info,
3808 "balance: mixed groups data and metadata options must be the same");
3809 ret = -EINVAL;
3810 goto out;
3814 num_devices = fs_info->fs_devices->num_devices;
3815 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3816 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3817 BUG_ON(num_devices < 1);
3818 num_devices--;
3820 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3821 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE | BTRFS_BLOCK_GROUP_DUP;
3822 if (num_devices > 1)
3823 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3824 if (num_devices > 2)
3825 allowed |= BTRFS_BLOCK_GROUP_RAID5;
3826 if (num_devices > 3)
3827 allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3828 BTRFS_BLOCK_GROUP_RAID6);
3829 if (validate_convert_profile(&bctl->data, allowed)) {
3830 int index = btrfs_bg_flags_to_raid_index(bctl->data.target);
3832 btrfs_err(fs_info,
3833 "balance: invalid convert data profile %s",
3834 get_raid_name(index));
3835 ret = -EINVAL;
3836 goto out;
3838 if (validate_convert_profile(&bctl->meta, allowed)) {
3839 int index = btrfs_bg_flags_to_raid_index(bctl->meta.target);
3841 btrfs_err(fs_info,
3842 "balance: invalid convert metadata profile %s",
3843 get_raid_name(index));
3844 ret = -EINVAL;
3845 goto out;
3847 if (validate_convert_profile(&bctl->sys, allowed)) {
3848 int index = btrfs_bg_flags_to_raid_index(bctl->sys.target);
3850 btrfs_err(fs_info,
3851 "balance: invalid convert system profile %s",
3852 get_raid_name(index));
3853 ret = -EINVAL;
3854 goto out;
3857 /* allow to reduce meta or sys integrity only if force set */
3858 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3859 BTRFS_BLOCK_GROUP_RAID10 |
3860 BTRFS_BLOCK_GROUP_RAID5 |
3861 BTRFS_BLOCK_GROUP_RAID6;
3862 do {
3863 seq = read_seqbegin(&fs_info->profiles_lock);
3865 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3866 (fs_info->avail_system_alloc_bits & allowed) &&
3867 !(bctl->sys.target & allowed)) ||
3868 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3869 (fs_info->avail_metadata_alloc_bits & allowed) &&
3870 !(bctl->meta.target & allowed))) {
3871 if (bctl->flags & BTRFS_BALANCE_FORCE) {
3872 btrfs_info(fs_info,
3873 "balance: force reducing metadata integrity");
3874 } else {
3875 btrfs_err(fs_info,
3876 "balance: reduces metadata integrity, use --force if you want this");
3877 ret = -EINVAL;
3878 goto out;
3881 } while (read_seqretry(&fs_info->profiles_lock, seq));
3883 /* if we're not converting, the target field is uninitialized */
3884 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3885 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3886 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3887 bctl->data.target : fs_info->avail_data_alloc_bits;
3888 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
3889 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
3890 int meta_index = btrfs_bg_flags_to_raid_index(meta_target);
3891 int data_index = btrfs_bg_flags_to_raid_index(data_target);
3893 btrfs_warn(fs_info,
3894 "balance: metadata profile %s has lower redundancy than data profile %s",
3895 get_raid_name(meta_index), get_raid_name(data_index));
3898 ret = insert_balance_item(fs_info, bctl);
3899 if (ret && ret != -EEXIST)
3900 goto out;
3902 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3903 BUG_ON(ret == -EEXIST);
3904 BUG_ON(fs_info->balance_ctl);
3905 spin_lock(&fs_info->balance_lock);
3906 fs_info->balance_ctl = bctl;
3907 spin_unlock(&fs_info->balance_lock);
3908 } else {
3909 BUG_ON(ret != -EEXIST);
3910 spin_lock(&fs_info->balance_lock);
3911 update_balance_args(bctl);
3912 spin_unlock(&fs_info->balance_lock);
3915 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
3916 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3917 mutex_unlock(&fs_info->balance_mutex);
3919 ret = __btrfs_balance(fs_info);
3921 mutex_lock(&fs_info->balance_mutex);
3922 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
3924 if (bargs) {
3925 memset(bargs, 0, sizeof(*bargs));
3926 btrfs_update_ioctl_balance_args(fs_info, bargs);
3929 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3930 balance_need_close(fs_info)) {
3931 reset_balance_state(fs_info);
3932 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3935 wake_up(&fs_info->balance_wait_q);
3937 return ret;
3938 out:
3939 if (bctl->flags & BTRFS_BALANCE_RESUME)
3940 reset_balance_state(fs_info);
3941 else
3942 kfree(bctl);
3943 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
3945 return ret;
3948 static int balance_kthread(void *data)
3950 struct btrfs_fs_info *fs_info = data;
3951 int ret = 0;
3953 mutex_lock(&fs_info->balance_mutex);
3954 if (fs_info->balance_ctl) {
3955 btrfs_info(fs_info, "balance: resuming");
3956 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
3958 mutex_unlock(&fs_info->balance_mutex);
3960 return ret;
3963 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3965 struct task_struct *tsk;
3967 mutex_lock(&fs_info->balance_mutex);
3968 if (!fs_info->balance_ctl) {
3969 mutex_unlock(&fs_info->balance_mutex);
3970 return 0;
3972 mutex_unlock(&fs_info->balance_mutex);
3974 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
3975 btrfs_info(fs_info, "balance: resume skipped");
3976 return 0;
3980 * A ro->rw remount sequence should continue with the paused balance
3981 * regardless of who pauses it, system or the user as of now, so set
3982 * the resume flag.
3984 spin_lock(&fs_info->balance_lock);
3985 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
3986 spin_unlock(&fs_info->balance_lock);
3988 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3989 return PTR_ERR_OR_ZERO(tsk);
3992 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3994 struct btrfs_balance_control *bctl;
3995 struct btrfs_balance_item *item;
3996 struct btrfs_disk_balance_args disk_bargs;
3997 struct btrfs_path *path;
3998 struct extent_buffer *leaf;
3999 struct btrfs_key key;
4000 int ret;
4002 path = btrfs_alloc_path();
4003 if (!path)
4004 return -ENOMEM;
4006 key.objectid = BTRFS_BALANCE_OBJECTID;
4007 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4008 key.offset = 0;
4010 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4011 if (ret < 0)
4012 goto out;
4013 if (ret > 0) { /* ret = -ENOENT; */
4014 ret = 0;
4015 goto out;
4018 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4019 if (!bctl) {
4020 ret = -ENOMEM;
4021 goto out;
4024 leaf = path->nodes[0];
4025 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4027 bctl->flags = btrfs_balance_flags(leaf, item);
4028 bctl->flags |= BTRFS_BALANCE_RESUME;
4030 btrfs_balance_data(leaf, item, &disk_bargs);
4031 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4032 btrfs_balance_meta(leaf, item, &disk_bargs);
4033 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4034 btrfs_balance_sys(leaf, item, &disk_bargs);
4035 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4038 * This should never happen, as the paused balance state is recovered
4039 * during mount without any chance of other exclusive ops to collide.
4041 * This gives the exclusive op status to balance and keeps in paused
4042 * state until user intervention (cancel or umount). If the ownership
4043 * cannot be assigned, show a message but do not fail. The balance
4044 * is in a paused state and must have fs_info::balance_ctl properly
4045 * set up.
4047 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4048 btrfs_warn(fs_info,
4049 "balance: cannot set exclusive op status, resume manually");
4051 mutex_lock(&fs_info->balance_mutex);
4052 BUG_ON(fs_info->balance_ctl);
4053 spin_lock(&fs_info->balance_lock);
4054 fs_info->balance_ctl = bctl;
4055 spin_unlock(&fs_info->balance_lock);
4056 mutex_unlock(&fs_info->balance_mutex);
4057 out:
4058 btrfs_free_path(path);
4059 return ret;
4062 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4064 int ret = 0;
4066 mutex_lock(&fs_info->balance_mutex);
4067 if (!fs_info->balance_ctl) {
4068 mutex_unlock(&fs_info->balance_mutex);
4069 return -ENOTCONN;
4072 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4073 atomic_inc(&fs_info->balance_pause_req);
4074 mutex_unlock(&fs_info->balance_mutex);
4076 wait_event(fs_info->balance_wait_q,
4077 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4079 mutex_lock(&fs_info->balance_mutex);
4080 /* we are good with balance_ctl ripped off from under us */
4081 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4082 atomic_dec(&fs_info->balance_pause_req);
4083 } else {
4084 ret = -ENOTCONN;
4087 mutex_unlock(&fs_info->balance_mutex);
4088 return ret;
4091 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4093 mutex_lock(&fs_info->balance_mutex);
4094 if (!fs_info->balance_ctl) {
4095 mutex_unlock(&fs_info->balance_mutex);
4096 return -ENOTCONN;
4100 * A paused balance with the item stored on disk can be resumed at
4101 * mount time if the mount is read-write. Otherwise it's still paused
4102 * and we must not allow cancelling as it deletes the item.
4104 if (sb_rdonly(fs_info->sb)) {
4105 mutex_unlock(&fs_info->balance_mutex);
4106 return -EROFS;
4109 atomic_inc(&fs_info->balance_cancel_req);
4111 * if we are running just wait and return, balance item is
4112 * deleted in btrfs_balance in this case
4114 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4115 mutex_unlock(&fs_info->balance_mutex);
4116 wait_event(fs_info->balance_wait_q,
4117 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4118 mutex_lock(&fs_info->balance_mutex);
4119 } else {
4120 mutex_unlock(&fs_info->balance_mutex);
4122 * Lock released to allow other waiters to continue, we'll
4123 * reexamine the status again.
4125 mutex_lock(&fs_info->balance_mutex);
4127 if (fs_info->balance_ctl) {
4128 reset_balance_state(fs_info);
4129 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4130 btrfs_info(fs_info, "balance: canceled");
4134 BUG_ON(fs_info->balance_ctl ||
4135 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4136 atomic_dec(&fs_info->balance_cancel_req);
4137 mutex_unlock(&fs_info->balance_mutex);
4138 return 0;
4141 static int btrfs_uuid_scan_kthread(void *data)
4143 struct btrfs_fs_info *fs_info = data;
4144 struct btrfs_root *root = fs_info->tree_root;
4145 struct btrfs_key key;
4146 struct btrfs_path *path = NULL;
4147 int ret = 0;
4148 struct extent_buffer *eb;
4149 int slot;
4150 struct btrfs_root_item root_item;
4151 u32 item_size;
4152 struct btrfs_trans_handle *trans = NULL;
4154 path = btrfs_alloc_path();
4155 if (!path) {
4156 ret = -ENOMEM;
4157 goto out;
4160 key.objectid = 0;
4161 key.type = BTRFS_ROOT_ITEM_KEY;
4162 key.offset = 0;
4164 while (1) {
4165 ret = btrfs_search_forward(root, &key, path,
4166 BTRFS_OLDEST_GENERATION);
4167 if (ret) {
4168 if (ret > 0)
4169 ret = 0;
4170 break;
4173 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4174 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4175 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4176 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4177 goto skip;
4179 eb = path->nodes[0];
4180 slot = path->slots[0];
4181 item_size = btrfs_item_size_nr(eb, slot);
4182 if (item_size < sizeof(root_item))
4183 goto skip;
4185 read_extent_buffer(eb, &root_item,
4186 btrfs_item_ptr_offset(eb, slot),
4187 (int)sizeof(root_item));
4188 if (btrfs_root_refs(&root_item) == 0)
4189 goto skip;
4191 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4192 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4193 if (trans)
4194 goto update_tree;
4196 btrfs_release_path(path);
4198 * 1 - subvol uuid item
4199 * 1 - received_subvol uuid item
4201 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4202 if (IS_ERR(trans)) {
4203 ret = PTR_ERR(trans);
4204 break;
4206 continue;
4207 } else {
4208 goto skip;
4210 update_tree:
4211 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4212 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4213 BTRFS_UUID_KEY_SUBVOL,
4214 key.objectid);
4215 if (ret < 0) {
4216 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4217 ret);
4218 break;
4222 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4223 ret = btrfs_uuid_tree_add(trans,
4224 root_item.received_uuid,
4225 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4226 key.objectid);
4227 if (ret < 0) {
4228 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4229 ret);
4230 break;
4234 skip:
4235 if (trans) {
4236 ret = btrfs_end_transaction(trans);
4237 trans = NULL;
4238 if (ret)
4239 break;
4242 btrfs_release_path(path);
4243 if (key.offset < (u64)-1) {
4244 key.offset++;
4245 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4246 key.offset = 0;
4247 key.type = BTRFS_ROOT_ITEM_KEY;
4248 } else if (key.objectid < (u64)-1) {
4249 key.offset = 0;
4250 key.type = BTRFS_ROOT_ITEM_KEY;
4251 key.objectid++;
4252 } else {
4253 break;
4255 cond_resched();
4258 out:
4259 btrfs_free_path(path);
4260 if (trans && !IS_ERR(trans))
4261 btrfs_end_transaction(trans);
4262 if (ret)
4263 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4264 else
4265 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4266 up(&fs_info->uuid_tree_rescan_sem);
4267 return 0;
4271 * Callback for btrfs_uuid_tree_iterate().
4272 * returns:
4273 * 0 check succeeded, the entry is not outdated.
4274 * < 0 if an error occurred.
4275 * > 0 if the check failed, which means the caller shall remove the entry.
4277 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4278 u8 *uuid, u8 type, u64 subid)
4280 struct btrfs_key key;
4281 int ret = 0;
4282 struct btrfs_root *subvol_root;
4284 if (type != BTRFS_UUID_KEY_SUBVOL &&
4285 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4286 goto out;
4288 key.objectid = subid;
4289 key.type = BTRFS_ROOT_ITEM_KEY;
4290 key.offset = (u64)-1;
4291 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4292 if (IS_ERR(subvol_root)) {
4293 ret = PTR_ERR(subvol_root);
4294 if (ret == -ENOENT)
4295 ret = 1;
4296 goto out;
4299 switch (type) {
4300 case BTRFS_UUID_KEY_SUBVOL:
4301 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4302 ret = 1;
4303 break;
4304 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4305 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4306 BTRFS_UUID_SIZE))
4307 ret = 1;
4308 break;
4311 out:
4312 return ret;
4315 static int btrfs_uuid_rescan_kthread(void *data)
4317 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4318 int ret;
4321 * 1st step is to iterate through the existing UUID tree and
4322 * to delete all entries that contain outdated data.
4323 * 2nd step is to add all missing entries to the UUID tree.
4325 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4326 if (ret < 0) {
4327 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4328 up(&fs_info->uuid_tree_rescan_sem);
4329 return ret;
4331 return btrfs_uuid_scan_kthread(data);
4334 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4336 struct btrfs_trans_handle *trans;
4337 struct btrfs_root *tree_root = fs_info->tree_root;
4338 struct btrfs_root *uuid_root;
4339 struct task_struct *task;
4340 int ret;
4343 * 1 - root node
4344 * 1 - root item
4346 trans = btrfs_start_transaction(tree_root, 2);
4347 if (IS_ERR(trans))
4348 return PTR_ERR(trans);
4350 uuid_root = btrfs_create_tree(trans, fs_info,
4351 BTRFS_UUID_TREE_OBJECTID);
4352 if (IS_ERR(uuid_root)) {
4353 ret = PTR_ERR(uuid_root);
4354 btrfs_abort_transaction(trans, ret);
4355 btrfs_end_transaction(trans);
4356 return ret;
4359 fs_info->uuid_root = uuid_root;
4361 ret = btrfs_commit_transaction(trans);
4362 if (ret)
4363 return ret;
4365 down(&fs_info->uuid_tree_rescan_sem);
4366 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4367 if (IS_ERR(task)) {
4368 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4369 btrfs_warn(fs_info, "failed to start uuid_scan task");
4370 up(&fs_info->uuid_tree_rescan_sem);
4371 return PTR_ERR(task);
4374 return 0;
4377 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4379 struct task_struct *task;
4381 down(&fs_info->uuid_tree_rescan_sem);
4382 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4383 if (IS_ERR(task)) {
4384 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4385 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4386 up(&fs_info->uuid_tree_rescan_sem);
4387 return PTR_ERR(task);
4390 return 0;
4394 * shrinking a device means finding all of the device extents past
4395 * the new size, and then following the back refs to the chunks.
4396 * The chunk relocation code actually frees the device extent
4398 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4400 struct btrfs_fs_info *fs_info = device->fs_info;
4401 struct btrfs_root *root = fs_info->dev_root;
4402 struct btrfs_trans_handle *trans;
4403 struct btrfs_dev_extent *dev_extent = NULL;
4404 struct btrfs_path *path;
4405 u64 length;
4406 u64 chunk_offset;
4407 int ret;
4408 int slot;
4409 int failed = 0;
4410 bool retried = false;
4411 bool checked_pending_chunks = false;
4412 struct extent_buffer *l;
4413 struct btrfs_key key;
4414 struct btrfs_super_block *super_copy = fs_info->super_copy;
4415 u64 old_total = btrfs_super_total_bytes(super_copy);
4416 u64 old_size = btrfs_device_get_total_bytes(device);
4417 u64 diff;
4419 new_size = round_down(new_size, fs_info->sectorsize);
4420 diff = round_down(old_size - new_size, fs_info->sectorsize);
4422 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4423 return -EINVAL;
4425 path = btrfs_alloc_path();
4426 if (!path)
4427 return -ENOMEM;
4429 path->reada = READA_BACK;
4431 mutex_lock(&fs_info->chunk_mutex);
4433 btrfs_device_set_total_bytes(device, new_size);
4434 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4435 device->fs_devices->total_rw_bytes -= diff;
4436 atomic64_sub(diff, &fs_info->free_chunk_space);
4438 mutex_unlock(&fs_info->chunk_mutex);
4440 again:
4441 key.objectid = device->devid;
4442 key.offset = (u64)-1;
4443 key.type = BTRFS_DEV_EXTENT_KEY;
4445 do {
4446 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4447 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4448 if (ret < 0) {
4449 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4450 goto done;
4453 ret = btrfs_previous_item(root, path, 0, key.type);
4454 if (ret)
4455 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4456 if (ret < 0)
4457 goto done;
4458 if (ret) {
4459 ret = 0;
4460 btrfs_release_path(path);
4461 break;
4464 l = path->nodes[0];
4465 slot = path->slots[0];
4466 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4468 if (key.objectid != device->devid) {
4469 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4470 btrfs_release_path(path);
4471 break;
4474 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4475 length = btrfs_dev_extent_length(l, dev_extent);
4477 if (key.offset + length <= new_size) {
4478 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4479 btrfs_release_path(path);
4480 break;
4483 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4484 btrfs_release_path(path);
4487 * We may be relocating the only data chunk we have,
4488 * which could potentially end up with losing data's
4489 * raid profile, so lets allocate an empty one in
4490 * advance.
4492 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4493 if (ret < 0) {
4494 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4495 goto done;
4498 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4499 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4500 if (ret && ret != -ENOSPC)
4501 goto done;
4502 if (ret == -ENOSPC)
4503 failed++;
4504 } while (key.offset-- > 0);
4506 if (failed && !retried) {
4507 failed = 0;
4508 retried = true;
4509 goto again;
4510 } else if (failed && retried) {
4511 ret = -ENOSPC;
4512 goto done;
4515 /* Shrinking succeeded, else we would be at "done". */
4516 trans = btrfs_start_transaction(root, 0);
4517 if (IS_ERR(trans)) {
4518 ret = PTR_ERR(trans);
4519 goto done;
4522 mutex_lock(&fs_info->chunk_mutex);
4525 * We checked in the above loop all device extents that were already in
4526 * the device tree. However before we have updated the device's
4527 * total_bytes to the new size, we might have had chunk allocations that
4528 * have not complete yet (new block groups attached to transaction
4529 * handles), and therefore their device extents were not yet in the
4530 * device tree and we missed them in the loop above. So if we have any
4531 * pending chunk using a device extent that overlaps the device range
4532 * that we can not use anymore, commit the current transaction and
4533 * repeat the search on the device tree - this way we guarantee we will
4534 * not have chunks using device extents that end beyond 'new_size'.
4536 if (!checked_pending_chunks) {
4537 u64 start = new_size;
4538 u64 len = old_size - new_size;
4540 if (contains_pending_extent(trans->transaction, device,
4541 &start, len)) {
4542 mutex_unlock(&fs_info->chunk_mutex);
4543 checked_pending_chunks = true;
4544 failed = 0;
4545 retried = false;
4546 ret = btrfs_commit_transaction(trans);
4547 if (ret)
4548 goto done;
4549 goto again;
4553 btrfs_device_set_disk_total_bytes(device, new_size);
4554 if (list_empty(&device->resized_list))
4555 list_add_tail(&device->resized_list,
4556 &fs_info->fs_devices->resized_devices);
4558 WARN_ON(diff > old_total);
4559 btrfs_set_super_total_bytes(super_copy,
4560 round_down(old_total - diff, fs_info->sectorsize));
4561 mutex_unlock(&fs_info->chunk_mutex);
4563 /* Now btrfs_update_device() will change the on-disk size. */
4564 ret = btrfs_update_device(trans, device);
4565 btrfs_end_transaction(trans);
4566 done:
4567 btrfs_free_path(path);
4568 if (ret) {
4569 mutex_lock(&fs_info->chunk_mutex);
4570 btrfs_device_set_total_bytes(device, old_size);
4571 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4572 device->fs_devices->total_rw_bytes += diff;
4573 atomic64_add(diff, &fs_info->free_chunk_space);
4574 mutex_unlock(&fs_info->chunk_mutex);
4576 return ret;
4579 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4580 struct btrfs_key *key,
4581 struct btrfs_chunk *chunk, int item_size)
4583 struct btrfs_super_block *super_copy = fs_info->super_copy;
4584 struct btrfs_disk_key disk_key;
4585 u32 array_size;
4586 u8 *ptr;
4588 mutex_lock(&fs_info->chunk_mutex);
4589 array_size = btrfs_super_sys_array_size(super_copy);
4590 if (array_size + item_size + sizeof(disk_key)
4591 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4592 mutex_unlock(&fs_info->chunk_mutex);
4593 return -EFBIG;
4596 ptr = super_copy->sys_chunk_array + array_size;
4597 btrfs_cpu_key_to_disk(&disk_key, key);
4598 memcpy(ptr, &disk_key, sizeof(disk_key));
4599 ptr += sizeof(disk_key);
4600 memcpy(ptr, chunk, item_size);
4601 item_size += sizeof(disk_key);
4602 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4603 mutex_unlock(&fs_info->chunk_mutex);
4605 return 0;
4609 * sort the devices in descending order by max_avail, total_avail
4611 static int btrfs_cmp_device_info(const void *a, const void *b)
4613 const struct btrfs_device_info *di_a = a;
4614 const struct btrfs_device_info *di_b = b;
4616 if (di_a->max_avail > di_b->max_avail)
4617 return -1;
4618 if (di_a->max_avail < di_b->max_avail)
4619 return 1;
4620 if (di_a->total_avail > di_b->total_avail)
4621 return -1;
4622 if (di_a->total_avail < di_b->total_avail)
4623 return 1;
4624 return 0;
4627 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4629 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4630 return;
4632 btrfs_set_fs_incompat(info, RAID56);
4635 #define BTRFS_MAX_DEVS(info) ((BTRFS_MAX_ITEM_SIZE(info) \
4636 - sizeof(struct btrfs_chunk)) \
4637 / sizeof(struct btrfs_stripe) + 1)
4639 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \
4640 - 2 * sizeof(struct btrfs_disk_key) \
4641 - 2 * sizeof(struct btrfs_chunk)) \
4642 / sizeof(struct btrfs_stripe) + 1)
4644 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4645 u64 start, u64 type)
4647 struct btrfs_fs_info *info = trans->fs_info;
4648 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4649 struct btrfs_device *device;
4650 struct map_lookup *map = NULL;
4651 struct extent_map_tree *em_tree;
4652 struct extent_map *em;
4653 struct btrfs_device_info *devices_info = NULL;
4654 u64 total_avail;
4655 int num_stripes; /* total number of stripes to allocate */
4656 int data_stripes; /* number of stripes that count for
4657 block group size */
4658 int sub_stripes; /* sub_stripes info for map */
4659 int dev_stripes; /* stripes per dev */
4660 int devs_max; /* max devs to use */
4661 int devs_min; /* min devs needed */
4662 int devs_increment; /* ndevs has to be a multiple of this */
4663 int ncopies; /* how many copies to data has */
4664 int ret;
4665 u64 max_stripe_size;
4666 u64 max_chunk_size;
4667 u64 stripe_size;
4668 u64 num_bytes;
4669 int ndevs;
4670 int i;
4671 int j;
4672 int index;
4674 BUG_ON(!alloc_profile_is_valid(type, 0));
4676 if (list_empty(&fs_devices->alloc_list)) {
4677 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4678 btrfs_debug(info, "%s: no writable device", __func__);
4679 return -ENOSPC;
4682 index = btrfs_bg_flags_to_raid_index(type);
4684 sub_stripes = btrfs_raid_array[index].sub_stripes;
4685 dev_stripes = btrfs_raid_array[index].dev_stripes;
4686 devs_max = btrfs_raid_array[index].devs_max;
4687 devs_min = btrfs_raid_array[index].devs_min;
4688 devs_increment = btrfs_raid_array[index].devs_increment;
4689 ncopies = btrfs_raid_array[index].ncopies;
4691 if (type & BTRFS_BLOCK_GROUP_DATA) {
4692 max_stripe_size = SZ_1G;
4693 max_chunk_size = 10 * max_stripe_size;
4694 if (!devs_max)
4695 devs_max = BTRFS_MAX_DEVS(info);
4696 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4697 /* for larger filesystems, use larger metadata chunks */
4698 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4699 max_stripe_size = SZ_1G;
4700 else
4701 max_stripe_size = SZ_256M;
4702 max_chunk_size = max_stripe_size;
4703 if (!devs_max)
4704 devs_max = BTRFS_MAX_DEVS(info);
4705 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4706 max_stripe_size = SZ_32M;
4707 max_chunk_size = 2 * max_stripe_size;
4708 if (!devs_max)
4709 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK;
4710 } else {
4711 btrfs_err(info, "invalid chunk type 0x%llx requested",
4712 type);
4713 BUG_ON(1);
4716 /* we don't want a chunk larger than 10% of writeable space */
4717 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4718 max_chunk_size);
4720 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4721 GFP_NOFS);
4722 if (!devices_info)
4723 return -ENOMEM;
4726 * in the first pass through the devices list, we gather information
4727 * about the available holes on each device.
4729 ndevs = 0;
4730 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4731 u64 max_avail;
4732 u64 dev_offset;
4734 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4735 WARN(1, KERN_ERR
4736 "BTRFS: read-only device in alloc_list\n");
4737 continue;
4740 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4741 &device->dev_state) ||
4742 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4743 continue;
4745 if (device->total_bytes > device->bytes_used)
4746 total_avail = device->total_bytes - device->bytes_used;
4747 else
4748 total_avail = 0;
4750 /* If there is no space on this device, skip it. */
4751 if (total_avail == 0)
4752 continue;
4754 ret = find_free_dev_extent(trans, device,
4755 max_stripe_size * dev_stripes,
4756 &dev_offset, &max_avail);
4757 if (ret && ret != -ENOSPC)
4758 goto error;
4760 if (ret == 0)
4761 max_avail = max_stripe_size * dev_stripes;
4763 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4764 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4765 btrfs_debug(info,
4766 "%s: devid %llu has no free space, have=%llu want=%u",
4767 __func__, device->devid, max_avail,
4768 BTRFS_STRIPE_LEN * dev_stripes);
4769 continue;
4772 if (ndevs == fs_devices->rw_devices) {
4773 WARN(1, "%s: found more than %llu devices\n",
4774 __func__, fs_devices->rw_devices);
4775 break;
4777 devices_info[ndevs].dev_offset = dev_offset;
4778 devices_info[ndevs].max_avail = max_avail;
4779 devices_info[ndevs].total_avail = total_avail;
4780 devices_info[ndevs].dev = device;
4781 ++ndevs;
4785 * now sort the devices by hole size / available space
4787 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4788 btrfs_cmp_device_info, NULL);
4790 /* round down to number of usable stripes */
4791 ndevs = round_down(ndevs, devs_increment);
4793 if (ndevs < devs_min) {
4794 ret = -ENOSPC;
4795 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4796 btrfs_debug(info,
4797 "%s: not enough devices with free space: have=%d minimum required=%d",
4798 __func__, ndevs, devs_min);
4800 goto error;
4803 ndevs = min(ndevs, devs_max);
4806 * The primary goal is to maximize the number of stripes, so use as
4807 * many devices as possible, even if the stripes are not maximum sized.
4809 * The DUP profile stores more than one stripe per device, the
4810 * max_avail is the total size so we have to adjust.
4812 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4813 num_stripes = ndevs * dev_stripes;
4816 * this will have to be fixed for RAID1 and RAID10 over
4817 * more drives
4819 data_stripes = num_stripes / ncopies;
4821 if (type & BTRFS_BLOCK_GROUP_RAID5)
4822 data_stripes = num_stripes - 1;
4824 if (type & BTRFS_BLOCK_GROUP_RAID6)
4825 data_stripes = num_stripes - 2;
4828 * Use the number of data stripes to figure out how big this chunk
4829 * is really going to be in terms of logical address space,
4830 * and compare that answer with the max chunk size
4832 if (stripe_size * data_stripes > max_chunk_size) {
4833 stripe_size = div_u64(max_chunk_size, data_stripes);
4835 /* bump the answer up to a 16MB boundary */
4836 stripe_size = round_up(stripe_size, SZ_16M);
4839 * But don't go higher than the limits we found while searching
4840 * for free extents
4842 stripe_size = min(devices_info[ndevs - 1].max_avail,
4843 stripe_size);
4846 /* align to BTRFS_STRIPE_LEN */
4847 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4849 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4850 if (!map) {
4851 ret = -ENOMEM;
4852 goto error;
4854 map->num_stripes = num_stripes;
4856 for (i = 0; i < ndevs; ++i) {
4857 for (j = 0; j < dev_stripes; ++j) {
4858 int s = i * dev_stripes + j;
4859 map->stripes[s].dev = devices_info[i].dev;
4860 map->stripes[s].physical = devices_info[i].dev_offset +
4861 j * stripe_size;
4864 map->stripe_len = BTRFS_STRIPE_LEN;
4865 map->io_align = BTRFS_STRIPE_LEN;
4866 map->io_width = BTRFS_STRIPE_LEN;
4867 map->type = type;
4868 map->sub_stripes = sub_stripes;
4870 num_bytes = stripe_size * data_stripes;
4872 trace_btrfs_chunk_alloc(info, map, start, num_bytes);
4874 em = alloc_extent_map();
4875 if (!em) {
4876 kfree(map);
4877 ret = -ENOMEM;
4878 goto error;
4880 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
4881 em->map_lookup = map;
4882 em->start = start;
4883 em->len = num_bytes;
4884 em->block_start = 0;
4885 em->block_len = em->len;
4886 em->orig_block_len = stripe_size;
4888 em_tree = &info->mapping_tree.map_tree;
4889 write_lock(&em_tree->lock);
4890 ret = add_extent_mapping(em_tree, em, 0);
4891 if (ret) {
4892 write_unlock(&em_tree->lock);
4893 free_extent_map(em);
4894 goto error;
4897 list_add_tail(&em->list, &trans->transaction->pending_chunks);
4898 refcount_inc(&em->refs);
4899 write_unlock(&em_tree->lock);
4901 ret = btrfs_make_block_group(trans, info, 0, type, start, num_bytes);
4902 if (ret)
4903 goto error_del_extent;
4905 for (i = 0; i < map->num_stripes; i++) {
4906 num_bytes = map->stripes[i].dev->bytes_used + stripe_size;
4907 btrfs_device_set_bytes_used(map->stripes[i].dev, num_bytes);
4910 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
4912 free_extent_map(em);
4913 check_raid56_incompat_flag(info, type);
4915 kfree(devices_info);
4916 return 0;
4918 error_del_extent:
4919 write_lock(&em_tree->lock);
4920 remove_extent_mapping(em_tree, em);
4921 write_unlock(&em_tree->lock);
4923 /* One for our allocation */
4924 free_extent_map(em);
4925 /* One for the tree reference */
4926 free_extent_map(em);
4927 /* One for the pending_chunks list reference */
4928 free_extent_map(em);
4929 error:
4930 kfree(devices_info);
4931 return ret;
4934 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4935 struct btrfs_fs_info *fs_info,
4936 u64 chunk_offset, u64 chunk_size)
4938 struct btrfs_root *extent_root = fs_info->extent_root;
4939 struct btrfs_root *chunk_root = fs_info->chunk_root;
4940 struct btrfs_key key;
4941 struct btrfs_device *device;
4942 struct btrfs_chunk *chunk;
4943 struct btrfs_stripe *stripe;
4944 struct extent_map *em;
4945 struct map_lookup *map;
4946 size_t item_size;
4947 u64 dev_offset;
4948 u64 stripe_size;
4949 int i = 0;
4950 int ret = 0;
4952 em = get_chunk_map(fs_info, chunk_offset, chunk_size);
4953 if (IS_ERR(em))
4954 return PTR_ERR(em);
4956 map = em->map_lookup;
4957 item_size = btrfs_chunk_item_size(map->num_stripes);
4958 stripe_size = em->orig_block_len;
4960 chunk = kzalloc(item_size, GFP_NOFS);
4961 if (!chunk) {
4962 ret = -ENOMEM;
4963 goto out;
4967 * Take the device list mutex to prevent races with the final phase of
4968 * a device replace operation that replaces the device object associated
4969 * with the map's stripes, because the device object's id can change
4970 * at any time during that final phase of the device replace operation
4971 * (dev-replace.c:btrfs_dev_replace_finishing()).
4973 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4974 for (i = 0; i < map->num_stripes; i++) {
4975 device = map->stripes[i].dev;
4976 dev_offset = map->stripes[i].physical;
4978 ret = btrfs_update_device(trans, device);
4979 if (ret)
4980 break;
4981 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
4982 dev_offset, stripe_size);
4983 if (ret)
4984 break;
4986 if (ret) {
4987 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4988 goto out;
4991 stripe = &chunk->stripe;
4992 for (i = 0; i < map->num_stripes; i++) {
4993 device = map->stripes[i].dev;
4994 dev_offset = map->stripes[i].physical;
4996 btrfs_set_stack_stripe_devid(stripe, device->devid);
4997 btrfs_set_stack_stripe_offset(stripe, dev_offset);
4998 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4999 stripe++;
5001 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5003 btrfs_set_stack_chunk_length(chunk, chunk_size);
5004 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5005 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5006 btrfs_set_stack_chunk_type(chunk, map->type);
5007 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5008 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5009 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5010 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5011 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5013 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5014 key.type = BTRFS_CHUNK_ITEM_KEY;
5015 key.offset = chunk_offset;
5017 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5018 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5020 * TODO: Cleanup of inserted chunk root in case of
5021 * failure.
5023 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5026 out:
5027 kfree(chunk);
5028 free_extent_map(em);
5029 return ret;
5033 * Chunk allocation falls into two parts. The first part does works
5034 * that make the new allocated chunk useable, but not do any operation
5035 * that modifies the chunk tree. The second part does the works that
5036 * require modifying the chunk tree. This division is important for the
5037 * bootstrap process of adding storage to a seed btrfs.
5039 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
5040 struct btrfs_fs_info *fs_info, u64 type)
5042 u64 chunk_offset;
5044 lockdep_assert_held(&fs_info->chunk_mutex);
5045 chunk_offset = find_next_chunk(fs_info);
5046 return __btrfs_alloc_chunk(trans, chunk_offset, type);
5049 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
5050 struct btrfs_fs_info *fs_info)
5052 u64 chunk_offset;
5053 u64 sys_chunk_offset;
5054 u64 alloc_profile;
5055 int ret;
5057 chunk_offset = find_next_chunk(fs_info);
5058 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5059 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5060 if (ret)
5061 return ret;
5063 sys_chunk_offset = find_next_chunk(fs_info);
5064 alloc_profile = btrfs_system_alloc_profile(fs_info);
5065 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5066 return ret;
5069 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5071 int max_errors;
5073 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5074 BTRFS_BLOCK_GROUP_RAID10 |
5075 BTRFS_BLOCK_GROUP_RAID5 |
5076 BTRFS_BLOCK_GROUP_DUP)) {
5077 max_errors = 1;
5078 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5079 max_errors = 2;
5080 } else {
5081 max_errors = 0;
5084 return max_errors;
5087 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5089 struct extent_map *em;
5090 struct map_lookup *map;
5091 int readonly = 0;
5092 int miss_ndevs = 0;
5093 int i;
5095 em = get_chunk_map(fs_info, chunk_offset, 1);
5096 if (IS_ERR(em))
5097 return 1;
5099 map = em->map_lookup;
5100 for (i = 0; i < map->num_stripes; i++) {
5101 if (test_bit(BTRFS_DEV_STATE_MISSING,
5102 &map->stripes[i].dev->dev_state)) {
5103 miss_ndevs++;
5104 continue;
5106 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5107 &map->stripes[i].dev->dev_state)) {
5108 readonly = 1;
5109 goto end;
5114 * If the number of missing devices is larger than max errors,
5115 * we can not write the data into that chunk successfully, so
5116 * set it readonly.
5118 if (miss_ndevs > btrfs_chunk_max_errors(map))
5119 readonly = 1;
5120 end:
5121 free_extent_map(em);
5122 return readonly;
5125 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
5127 extent_map_tree_init(&tree->map_tree);
5130 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
5132 struct extent_map *em;
5134 while (1) {
5135 write_lock(&tree->map_tree.lock);
5136 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
5137 if (em)
5138 remove_extent_mapping(&tree->map_tree, em);
5139 write_unlock(&tree->map_tree.lock);
5140 if (!em)
5141 break;
5142 /* once for us */
5143 free_extent_map(em);
5144 /* once for the tree */
5145 free_extent_map(em);
5149 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5151 struct extent_map *em;
5152 struct map_lookup *map;
5153 int ret;
5155 em = get_chunk_map(fs_info, logical, len);
5156 if (IS_ERR(em))
5158 * We could return errors for these cases, but that could get
5159 * ugly and we'd probably do the same thing which is just not do
5160 * anything else and exit, so return 1 so the callers don't try
5161 * to use other copies.
5163 return 1;
5165 map = em->map_lookup;
5166 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
5167 ret = map->num_stripes;
5168 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5169 ret = map->sub_stripes;
5170 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5171 ret = 2;
5172 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5174 * There could be two corrupted data stripes, we need
5175 * to loop retry in order to rebuild the correct data.
5177 * Fail a stripe at a time on every retry except the
5178 * stripe under reconstruction.
5180 ret = map->num_stripes;
5181 else
5182 ret = 1;
5183 free_extent_map(em);
5185 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
5186 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5187 fs_info->dev_replace.tgtdev)
5188 ret++;
5189 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
5191 return ret;
5194 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5195 u64 logical)
5197 struct extent_map *em;
5198 struct map_lookup *map;
5199 unsigned long len = fs_info->sectorsize;
5201 em = get_chunk_map(fs_info, logical, len);
5203 if (!WARN_ON(IS_ERR(em))) {
5204 map = em->map_lookup;
5205 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5206 len = map->stripe_len * nr_data_stripes(map);
5207 free_extent_map(em);
5209 return len;
5212 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5214 struct extent_map *em;
5215 struct map_lookup *map;
5216 int ret = 0;
5218 em = get_chunk_map(fs_info, logical, len);
5220 if(!WARN_ON(IS_ERR(em))) {
5221 map = em->map_lookup;
5222 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5223 ret = 1;
5224 free_extent_map(em);
5226 return ret;
5229 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5230 struct map_lookup *map, int first,
5231 int dev_replace_is_ongoing)
5233 int i;
5234 int num_stripes;
5235 int preferred_mirror;
5236 int tolerance;
5237 struct btrfs_device *srcdev;
5239 ASSERT((map->type &
5240 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)));
5242 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5243 num_stripes = map->sub_stripes;
5244 else
5245 num_stripes = map->num_stripes;
5247 preferred_mirror = first + current->pid % num_stripes;
5249 if (dev_replace_is_ongoing &&
5250 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5251 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5252 srcdev = fs_info->dev_replace.srcdev;
5253 else
5254 srcdev = NULL;
5257 * try to avoid the drive that is the source drive for a
5258 * dev-replace procedure, only choose it if no other non-missing
5259 * mirror is available
5261 for (tolerance = 0; tolerance < 2; tolerance++) {
5262 if (map->stripes[preferred_mirror].dev->bdev &&
5263 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5264 return preferred_mirror;
5265 for (i = first; i < first + num_stripes; i++) {
5266 if (map->stripes[i].dev->bdev &&
5267 (tolerance || map->stripes[i].dev != srcdev))
5268 return i;
5272 /* we couldn't find one that doesn't fail. Just return something
5273 * and the io error handling code will clean up eventually
5275 return preferred_mirror;
5278 static inline int parity_smaller(u64 a, u64 b)
5280 return a > b;
5283 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5284 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5286 struct btrfs_bio_stripe s;
5287 int i;
5288 u64 l;
5289 int again = 1;
5291 while (again) {
5292 again = 0;
5293 for (i = 0; i < num_stripes - 1; i++) {
5294 if (parity_smaller(bbio->raid_map[i],
5295 bbio->raid_map[i+1])) {
5296 s = bbio->stripes[i];
5297 l = bbio->raid_map[i];
5298 bbio->stripes[i] = bbio->stripes[i+1];
5299 bbio->raid_map[i] = bbio->raid_map[i+1];
5300 bbio->stripes[i+1] = s;
5301 bbio->raid_map[i+1] = l;
5303 again = 1;
5309 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5311 struct btrfs_bio *bbio = kzalloc(
5312 /* the size of the btrfs_bio */
5313 sizeof(struct btrfs_bio) +
5314 /* plus the variable array for the stripes */
5315 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5316 /* plus the variable array for the tgt dev */
5317 sizeof(int) * (real_stripes) +
5319 * plus the raid_map, which includes both the tgt dev
5320 * and the stripes
5322 sizeof(u64) * (total_stripes),
5323 GFP_NOFS|__GFP_NOFAIL);
5325 atomic_set(&bbio->error, 0);
5326 refcount_set(&bbio->refs, 1);
5328 return bbio;
5331 void btrfs_get_bbio(struct btrfs_bio *bbio)
5333 WARN_ON(!refcount_read(&bbio->refs));
5334 refcount_inc(&bbio->refs);
5337 void btrfs_put_bbio(struct btrfs_bio *bbio)
5339 if (!bbio)
5340 return;
5341 if (refcount_dec_and_test(&bbio->refs))
5342 kfree(bbio);
5345 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5347 * Please note that, discard won't be sent to target device of device
5348 * replace.
5350 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5351 u64 logical, u64 length,
5352 struct btrfs_bio **bbio_ret)
5354 struct extent_map *em;
5355 struct map_lookup *map;
5356 struct btrfs_bio *bbio;
5357 u64 offset;
5358 u64 stripe_nr;
5359 u64 stripe_nr_end;
5360 u64 stripe_end_offset;
5361 u64 stripe_cnt;
5362 u64 stripe_len;
5363 u64 stripe_offset;
5364 u64 num_stripes;
5365 u32 stripe_index;
5366 u32 factor = 0;
5367 u32 sub_stripes = 0;
5368 u64 stripes_per_dev = 0;
5369 u32 remaining_stripes = 0;
5370 u32 last_stripe = 0;
5371 int ret = 0;
5372 int i;
5374 /* discard always return a bbio */
5375 ASSERT(bbio_ret);
5377 em = get_chunk_map(fs_info, logical, length);
5378 if (IS_ERR(em))
5379 return PTR_ERR(em);
5381 map = em->map_lookup;
5382 /* we don't discard raid56 yet */
5383 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5384 ret = -EOPNOTSUPP;
5385 goto out;
5388 offset = logical - em->start;
5389 length = min_t(u64, em->len - offset, length);
5391 stripe_len = map->stripe_len;
5393 * stripe_nr counts the total number of stripes we have to stride
5394 * to get to this block
5396 stripe_nr = div64_u64(offset, stripe_len);
5398 /* stripe_offset is the offset of this block in its stripe */
5399 stripe_offset = offset - stripe_nr * stripe_len;
5401 stripe_nr_end = round_up(offset + length, map->stripe_len);
5402 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5403 stripe_cnt = stripe_nr_end - stripe_nr;
5404 stripe_end_offset = stripe_nr_end * map->stripe_len -
5405 (offset + length);
5407 * after this, stripe_nr is the number of stripes on this
5408 * device we have to walk to find the data, and stripe_index is
5409 * the number of our device in the stripe array
5411 num_stripes = 1;
5412 stripe_index = 0;
5413 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5414 BTRFS_BLOCK_GROUP_RAID10)) {
5415 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5416 sub_stripes = 1;
5417 else
5418 sub_stripes = map->sub_stripes;
5420 factor = map->num_stripes / sub_stripes;
5421 num_stripes = min_t(u64, map->num_stripes,
5422 sub_stripes * stripe_cnt);
5423 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5424 stripe_index *= sub_stripes;
5425 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5426 &remaining_stripes);
5427 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5428 last_stripe *= sub_stripes;
5429 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5430 BTRFS_BLOCK_GROUP_DUP)) {
5431 num_stripes = map->num_stripes;
5432 } else {
5433 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5434 &stripe_index);
5437 bbio = alloc_btrfs_bio(num_stripes, 0);
5438 if (!bbio) {
5439 ret = -ENOMEM;
5440 goto out;
5443 for (i = 0; i < num_stripes; i++) {
5444 bbio->stripes[i].physical =
5445 map->stripes[stripe_index].physical +
5446 stripe_offset + stripe_nr * map->stripe_len;
5447 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5449 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5450 BTRFS_BLOCK_GROUP_RAID10)) {
5451 bbio->stripes[i].length = stripes_per_dev *
5452 map->stripe_len;
5454 if (i / sub_stripes < remaining_stripes)
5455 bbio->stripes[i].length +=
5456 map->stripe_len;
5459 * Special for the first stripe and
5460 * the last stripe:
5462 * |-------|...|-------|
5463 * |----------|
5464 * off end_off
5466 if (i < sub_stripes)
5467 bbio->stripes[i].length -=
5468 stripe_offset;
5470 if (stripe_index >= last_stripe &&
5471 stripe_index <= (last_stripe +
5472 sub_stripes - 1))
5473 bbio->stripes[i].length -=
5474 stripe_end_offset;
5476 if (i == sub_stripes - 1)
5477 stripe_offset = 0;
5478 } else {
5479 bbio->stripes[i].length = length;
5482 stripe_index++;
5483 if (stripe_index == map->num_stripes) {
5484 stripe_index = 0;
5485 stripe_nr++;
5489 *bbio_ret = bbio;
5490 bbio->map_type = map->type;
5491 bbio->num_stripes = num_stripes;
5492 out:
5493 free_extent_map(em);
5494 return ret;
5498 * In dev-replace case, for repair case (that's the only case where the mirror
5499 * is selected explicitly when calling btrfs_map_block), blocks left of the
5500 * left cursor can also be read from the target drive.
5502 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5503 * array of stripes.
5504 * For READ, it also needs to be supported using the same mirror number.
5506 * If the requested block is not left of the left cursor, EIO is returned. This
5507 * can happen because btrfs_num_copies() returns one more in the dev-replace
5508 * case.
5510 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5511 u64 logical, u64 length,
5512 u64 srcdev_devid, int *mirror_num,
5513 u64 *physical)
5515 struct btrfs_bio *bbio = NULL;
5516 int num_stripes;
5517 int index_srcdev = 0;
5518 int found = 0;
5519 u64 physical_of_found = 0;
5520 int i;
5521 int ret = 0;
5523 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5524 logical, &length, &bbio, 0, 0);
5525 if (ret) {
5526 ASSERT(bbio == NULL);
5527 return ret;
5530 num_stripes = bbio->num_stripes;
5531 if (*mirror_num > num_stripes) {
5533 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5534 * that means that the requested area is not left of the left
5535 * cursor
5537 btrfs_put_bbio(bbio);
5538 return -EIO;
5542 * process the rest of the function using the mirror_num of the source
5543 * drive. Therefore look it up first. At the end, patch the device
5544 * pointer to the one of the target drive.
5546 for (i = 0; i < num_stripes; i++) {
5547 if (bbio->stripes[i].dev->devid != srcdev_devid)
5548 continue;
5551 * In case of DUP, in order to keep it simple, only add the
5552 * mirror with the lowest physical address
5554 if (found &&
5555 physical_of_found <= bbio->stripes[i].physical)
5556 continue;
5558 index_srcdev = i;
5559 found = 1;
5560 physical_of_found = bbio->stripes[i].physical;
5563 btrfs_put_bbio(bbio);
5565 ASSERT(found);
5566 if (!found)
5567 return -EIO;
5569 *mirror_num = index_srcdev + 1;
5570 *physical = physical_of_found;
5571 return ret;
5574 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5575 struct btrfs_bio **bbio_ret,
5576 struct btrfs_dev_replace *dev_replace,
5577 int *num_stripes_ret, int *max_errors_ret)
5579 struct btrfs_bio *bbio = *bbio_ret;
5580 u64 srcdev_devid = dev_replace->srcdev->devid;
5581 int tgtdev_indexes = 0;
5582 int num_stripes = *num_stripes_ret;
5583 int max_errors = *max_errors_ret;
5584 int i;
5586 if (op == BTRFS_MAP_WRITE) {
5587 int index_where_to_add;
5590 * duplicate the write operations while the dev replace
5591 * procedure is running. Since the copying of the old disk to
5592 * the new disk takes place at run time while the filesystem is
5593 * mounted writable, the regular write operations to the old
5594 * disk have to be duplicated to go to the new disk as well.
5596 * Note that device->missing is handled by the caller, and that
5597 * the write to the old disk is already set up in the stripes
5598 * array.
5600 index_where_to_add = num_stripes;
5601 for (i = 0; i < num_stripes; i++) {
5602 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5603 /* write to new disk, too */
5604 struct btrfs_bio_stripe *new =
5605 bbio->stripes + index_where_to_add;
5606 struct btrfs_bio_stripe *old =
5607 bbio->stripes + i;
5609 new->physical = old->physical;
5610 new->length = old->length;
5611 new->dev = dev_replace->tgtdev;
5612 bbio->tgtdev_map[i] = index_where_to_add;
5613 index_where_to_add++;
5614 max_errors++;
5615 tgtdev_indexes++;
5618 num_stripes = index_where_to_add;
5619 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5620 int index_srcdev = 0;
5621 int found = 0;
5622 u64 physical_of_found = 0;
5625 * During the dev-replace procedure, the target drive can also
5626 * be used to read data in case it is needed to repair a corrupt
5627 * block elsewhere. This is possible if the requested area is
5628 * left of the left cursor. In this area, the target drive is a
5629 * full copy of the source drive.
5631 for (i = 0; i < num_stripes; i++) {
5632 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5634 * In case of DUP, in order to keep it simple,
5635 * only add the mirror with the lowest physical
5636 * address
5638 if (found &&
5639 physical_of_found <=
5640 bbio->stripes[i].physical)
5641 continue;
5642 index_srcdev = i;
5643 found = 1;
5644 physical_of_found = bbio->stripes[i].physical;
5647 if (found) {
5648 struct btrfs_bio_stripe *tgtdev_stripe =
5649 bbio->stripes + num_stripes;
5651 tgtdev_stripe->physical = physical_of_found;
5652 tgtdev_stripe->length =
5653 bbio->stripes[index_srcdev].length;
5654 tgtdev_stripe->dev = dev_replace->tgtdev;
5655 bbio->tgtdev_map[index_srcdev] = num_stripes;
5657 tgtdev_indexes++;
5658 num_stripes++;
5662 *num_stripes_ret = num_stripes;
5663 *max_errors_ret = max_errors;
5664 bbio->num_tgtdevs = tgtdev_indexes;
5665 *bbio_ret = bbio;
5668 static bool need_full_stripe(enum btrfs_map_op op)
5670 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5673 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5674 enum btrfs_map_op op,
5675 u64 logical, u64 *length,
5676 struct btrfs_bio **bbio_ret,
5677 int mirror_num, int need_raid_map)
5679 struct extent_map *em;
5680 struct map_lookup *map;
5681 u64 offset;
5682 u64 stripe_offset;
5683 u64 stripe_nr;
5684 u64 stripe_len;
5685 u32 stripe_index;
5686 int i;
5687 int ret = 0;
5688 int num_stripes;
5689 int max_errors = 0;
5690 int tgtdev_indexes = 0;
5691 struct btrfs_bio *bbio = NULL;
5692 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5693 int dev_replace_is_ongoing = 0;
5694 int num_alloc_stripes;
5695 int patch_the_first_stripe_for_dev_replace = 0;
5696 u64 physical_to_patch_in_first_stripe = 0;
5697 u64 raid56_full_stripe_start = (u64)-1;
5699 if (op == BTRFS_MAP_DISCARD)
5700 return __btrfs_map_block_for_discard(fs_info, logical,
5701 *length, bbio_ret);
5703 em = get_chunk_map(fs_info, logical, *length);
5704 if (IS_ERR(em))
5705 return PTR_ERR(em);
5707 map = em->map_lookup;
5708 offset = logical - em->start;
5710 stripe_len = map->stripe_len;
5711 stripe_nr = offset;
5713 * stripe_nr counts the total number of stripes we have to stride
5714 * to get to this block
5716 stripe_nr = div64_u64(stripe_nr, stripe_len);
5718 stripe_offset = stripe_nr * stripe_len;
5719 if (offset < stripe_offset) {
5720 btrfs_crit(fs_info,
5721 "stripe math has gone wrong, stripe_offset=%llu, offset=%llu, start=%llu, logical=%llu, stripe_len=%llu",
5722 stripe_offset, offset, em->start, logical,
5723 stripe_len);
5724 free_extent_map(em);
5725 return -EINVAL;
5728 /* stripe_offset is the offset of this block in its stripe*/
5729 stripe_offset = offset - stripe_offset;
5731 /* if we're here for raid56, we need to know the stripe aligned start */
5732 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5733 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
5734 raid56_full_stripe_start = offset;
5736 /* allow a write of a full stripe, but make sure we don't
5737 * allow straddling of stripes
5739 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5740 full_stripe_len);
5741 raid56_full_stripe_start *= full_stripe_len;
5744 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5745 u64 max_len;
5746 /* For writes to RAID[56], allow a full stripeset across all disks.
5747 For other RAID types and for RAID[56] reads, just allow a single
5748 stripe (on a single disk). */
5749 if ((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
5750 (op == BTRFS_MAP_WRITE)) {
5751 max_len = stripe_len * nr_data_stripes(map) -
5752 (offset - raid56_full_stripe_start);
5753 } else {
5754 /* we limit the length of each bio to what fits in a stripe */
5755 max_len = stripe_len - stripe_offset;
5757 *length = min_t(u64, em->len - offset, max_len);
5758 } else {
5759 *length = em->len - offset;
5762 /* This is for when we're called from btrfs_merge_bio_hook() and all
5763 it cares about is the length */
5764 if (!bbio_ret)
5765 goto out;
5767 btrfs_dev_replace_read_lock(dev_replace);
5768 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5769 if (!dev_replace_is_ongoing)
5770 btrfs_dev_replace_read_unlock(dev_replace);
5771 else
5772 btrfs_dev_replace_set_lock_blocking(dev_replace);
5774 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5775 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5776 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5777 dev_replace->srcdev->devid,
5778 &mirror_num,
5779 &physical_to_patch_in_first_stripe);
5780 if (ret)
5781 goto out;
5782 else
5783 patch_the_first_stripe_for_dev_replace = 1;
5784 } else if (mirror_num > map->num_stripes) {
5785 mirror_num = 0;
5788 num_stripes = 1;
5789 stripe_index = 0;
5790 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5791 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5792 &stripe_index);
5793 if (!need_full_stripe(op))
5794 mirror_num = 1;
5795 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
5796 if (need_full_stripe(op))
5797 num_stripes = map->num_stripes;
5798 else if (mirror_num)
5799 stripe_index = mirror_num - 1;
5800 else {
5801 stripe_index = find_live_mirror(fs_info, map, 0,
5802 dev_replace_is_ongoing);
5803 mirror_num = stripe_index + 1;
5806 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5807 if (need_full_stripe(op)) {
5808 num_stripes = map->num_stripes;
5809 } else if (mirror_num) {
5810 stripe_index = mirror_num - 1;
5811 } else {
5812 mirror_num = 1;
5815 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5816 u32 factor = map->num_stripes / map->sub_stripes;
5818 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5819 stripe_index *= map->sub_stripes;
5821 if (need_full_stripe(op))
5822 num_stripes = map->sub_stripes;
5823 else if (mirror_num)
5824 stripe_index += mirror_num - 1;
5825 else {
5826 int old_stripe_index = stripe_index;
5827 stripe_index = find_live_mirror(fs_info, map,
5828 stripe_index,
5829 dev_replace_is_ongoing);
5830 mirror_num = stripe_index - old_stripe_index + 1;
5833 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5834 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
5835 /* push stripe_nr back to the start of the full stripe */
5836 stripe_nr = div64_u64(raid56_full_stripe_start,
5837 stripe_len * nr_data_stripes(map));
5839 /* RAID[56] write or recovery. Return all stripes */
5840 num_stripes = map->num_stripes;
5841 max_errors = nr_parity_stripes(map);
5843 *length = map->stripe_len;
5844 stripe_index = 0;
5845 stripe_offset = 0;
5846 } else {
5848 * Mirror #0 or #1 means the original data block.
5849 * Mirror #2 is RAID5 parity block.
5850 * Mirror #3 is RAID6 Q block.
5852 stripe_nr = div_u64_rem(stripe_nr,
5853 nr_data_stripes(map), &stripe_index);
5854 if (mirror_num > 1)
5855 stripe_index = nr_data_stripes(map) +
5856 mirror_num - 2;
5858 /* We distribute the parity blocks across stripes */
5859 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
5860 &stripe_index);
5861 if (!need_full_stripe(op) && mirror_num <= 1)
5862 mirror_num = 1;
5864 } else {
5866 * after this, stripe_nr is the number of stripes on this
5867 * device we have to walk to find the data, and stripe_index is
5868 * the number of our device in the stripe array
5870 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5871 &stripe_index);
5872 mirror_num = stripe_index + 1;
5874 if (stripe_index >= map->num_stripes) {
5875 btrfs_crit(fs_info,
5876 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
5877 stripe_index, map->num_stripes);
5878 ret = -EINVAL;
5879 goto out;
5882 num_alloc_stripes = num_stripes;
5883 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
5884 if (op == BTRFS_MAP_WRITE)
5885 num_alloc_stripes <<= 1;
5886 if (op == BTRFS_MAP_GET_READ_MIRRORS)
5887 num_alloc_stripes++;
5888 tgtdev_indexes = num_stripes;
5891 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
5892 if (!bbio) {
5893 ret = -ENOMEM;
5894 goto out;
5896 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
5897 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
5899 /* build raid_map */
5900 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
5901 (need_full_stripe(op) || mirror_num > 1)) {
5902 u64 tmp;
5903 unsigned rot;
5905 bbio->raid_map = (u64 *)((void *)bbio->stripes +
5906 sizeof(struct btrfs_bio_stripe) *
5907 num_alloc_stripes +
5908 sizeof(int) * tgtdev_indexes);
5910 /* Work out the disk rotation on this stripe-set */
5911 div_u64_rem(stripe_nr, num_stripes, &rot);
5913 /* Fill in the logical address of each stripe */
5914 tmp = stripe_nr * nr_data_stripes(map);
5915 for (i = 0; i < nr_data_stripes(map); i++)
5916 bbio->raid_map[(i+rot) % num_stripes] =
5917 em->start + (tmp + i) * map->stripe_len;
5919 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
5920 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5921 bbio->raid_map[(i+rot+1) % num_stripes] =
5922 RAID6_Q_STRIPE;
5926 for (i = 0; i < num_stripes; i++) {
5927 bbio->stripes[i].physical =
5928 map->stripes[stripe_index].physical +
5929 stripe_offset +
5930 stripe_nr * map->stripe_len;
5931 bbio->stripes[i].dev =
5932 map->stripes[stripe_index].dev;
5933 stripe_index++;
5936 if (need_full_stripe(op))
5937 max_errors = btrfs_chunk_max_errors(map);
5939 if (bbio->raid_map)
5940 sort_parity_stripes(bbio, num_stripes);
5942 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
5943 need_full_stripe(op)) {
5944 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
5945 &max_errors);
5948 *bbio_ret = bbio;
5949 bbio->map_type = map->type;
5950 bbio->num_stripes = num_stripes;
5951 bbio->max_errors = max_errors;
5952 bbio->mirror_num = mirror_num;
5955 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5956 * mirror_num == num_stripes + 1 && dev_replace target drive is
5957 * available as a mirror
5959 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5960 WARN_ON(num_stripes > 1);
5961 bbio->stripes[0].dev = dev_replace->tgtdev;
5962 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5963 bbio->mirror_num = map->num_stripes + 1;
5965 out:
5966 if (dev_replace_is_ongoing) {
5967 btrfs_dev_replace_clear_lock_blocking(dev_replace);
5968 btrfs_dev_replace_read_unlock(dev_replace);
5970 free_extent_map(em);
5971 return ret;
5974 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5975 u64 logical, u64 *length,
5976 struct btrfs_bio **bbio_ret, int mirror_num)
5978 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
5979 mirror_num, 0);
5982 /* For Scrub/replace */
5983 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5984 u64 logical, u64 *length,
5985 struct btrfs_bio **bbio_ret)
5987 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
5990 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
5991 u64 physical, u64 **logical, int *naddrs, int *stripe_len)
5993 struct extent_map *em;
5994 struct map_lookup *map;
5995 u64 *buf;
5996 u64 bytenr;
5997 u64 length;
5998 u64 stripe_nr;
5999 u64 rmap_len;
6000 int i, j, nr = 0;
6002 em = get_chunk_map(fs_info, chunk_start, 1);
6003 if (IS_ERR(em))
6004 return -EIO;
6006 map = em->map_lookup;
6007 length = em->len;
6008 rmap_len = map->stripe_len;
6010 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
6011 length = div_u64(length, map->num_stripes / map->sub_stripes);
6012 else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
6013 length = div_u64(length, map->num_stripes);
6014 else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6015 length = div_u64(length, nr_data_stripes(map));
6016 rmap_len = map->stripe_len * nr_data_stripes(map);
6019 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
6020 BUG_ON(!buf); /* -ENOMEM */
6022 for (i = 0; i < map->num_stripes; i++) {
6023 if (map->stripes[i].physical > physical ||
6024 map->stripes[i].physical + length <= physical)
6025 continue;
6027 stripe_nr = physical - map->stripes[i].physical;
6028 stripe_nr = div64_u64(stripe_nr, map->stripe_len);
6030 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
6031 stripe_nr = stripe_nr * map->num_stripes + i;
6032 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
6033 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
6034 stripe_nr = stripe_nr * map->num_stripes + i;
6035 } /* else if RAID[56], multiply by nr_data_stripes().
6036 * Alternatively, just use rmap_len below instead of
6037 * map->stripe_len */
6039 bytenr = chunk_start + stripe_nr * rmap_len;
6040 WARN_ON(nr >= map->num_stripes);
6041 for (j = 0; j < nr; j++) {
6042 if (buf[j] == bytenr)
6043 break;
6045 if (j == nr) {
6046 WARN_ON(nr >= map->num_stripes);
6047 buf[nr++] = bytenr;
6051 *logical = buf;
6052 *naddrs = nr;
6053 *stripe_len = rmap_len;
6055 free_extent_map(em);
6056 return 0;
6059 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6061 bio->bi_private = bbio->private;
6062 bio->bi_end_io = bbio->end_io;
6063 bio_endio(bio);
6065 btrfs_put_bbio(bbio);
6068 static void btrfs_end_bio(struct bio *bio)
6070 struct btrfs_bio *bbio = bio->bi_private;
6071 int is_orig_bio = 0;
6073 if (bio->bi_status) {
6074 atomic_inc(&bbio->error);
6075 if (bio->bi_status == BLK_STS_IOERR ||
6076 bio->bi_status == BLK_STS_TARGET) {
6077 unsigned int stripe_index =
6078 btrfs_io_bio(bio)->stripe_index;
6079 struct btrfs_device *dev;
6081 BUG_ON(stripe_index >= bbio->num_stripes);
6082 dev = bbio->stripes[stripe_index].dev;
6083 if (dev->bdev) {
6084 if (bio_op(bio) == REQ_OP_WRITE)
6085 btrfs_dev_stat_inc_and_print(dev,
6086 BTRFS_DEV_STAT_WRITE_ERRS);
6087 else
6088 btrfs_dev_stat_inc_and_print(dev,
6089 BTRFS_DEV_STAT_READ_ERRS);
6090 if (bio->bi_opf & REQ_PREFLUSH)
6091 btrfs_dev_stat_inc_and_print(dev,
6092 BTRFS_DEV_STAT_FLUSH_ERRS);
6097 if (bio == bbio->orig_bio)
6098 is_orig_bio = 1;
6100 btrfs_bio_counter_dec(bbio->fs_info);
6102 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6103 if (!is_orig_bio) {
6104 bio_put(bio);
6105 bio = bbio->orig_bio;
6108 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6109 /* only send an error to the higher layers if it is
6110 * beyond the tolerance of the btrfs bio
6112 if (atomic_read(&bbio->error) > bbio->max_errors) {
6113 bio->bi_status = BLK_STS_IOERR;
6114 } else {
6116 * this bio is actually up to date, we didn't
6117 * go over the max number of errors
6119 bio->bi_status = BLK_STS_OK;
6122 btrfs_end_bbio(bbio, bio);
6123 } else if (!is_orig_bio) {
6124 bio_put(bio);
6129 * see run_scheduled_bios for a description of why bios are collected for
6130 * async submit.
6132 * This will add one bio to the pending list for a device and make sure
6133 * the work struct is scheduled.
6135 static noinline void btrfs_schedule_bio(struct btrfs_device *device,
6136 struct bio *bio)
6138 struct btrfs_fs_info *fs_info = device->fs_info;
6139 int should_queue = 1;
6140 struct btrfs_pending_bios *pending_bios;
6142 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state) ||
6143 !device->bdev) {
6144 bio_io_error(bio);
6145 return;
6148 /* don't bother with additional async steps for reads, right now */
6149 if (bio_op(bio) == REQ_OP_READ) {
6150 btrfsic_submit_bio(bio);
6151 return;
6154 WARN_ON(bio->bi_next);
6155 bio->bi_next = NULL;
6157 spin_lock(&device->io_lock);
6158 if (op_is_sync(bio->bi_opf))
6159 pending_bios = &device->pending_sync_bios;
6160 else
6161 pending_bios = &device->pending_bios;
6163 if (pending_bios->tail)
6164 pending_bios->tail->bi_next = bio;
6166 pending_bios->tail = bio;
6167 if (!pending_bios->head)
6168 pending_bios->head = bio;
6169 if (device->running_pending)
6170 should_queue = 0;
6172 spin_unlock(&device->io_lock);
6174 if (should_queue)
6175 btrfs_queue_work(fs_info->submit_workers, &device->work);
6178 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6179 u64 physical, int dev_nr, int async)
6181 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6182 struct btrfs_fs_info *fs_info = bbio->fs_info;
6184 bio->bi_private = bbio;
6185 btrfs_io_bio(bio)->stripe_index = dev_nr;
6186 bio->bi_end_io = btrfs_end_bio;
6187 bio->bi_iter.bi_sector = physical >> 9;
6188 #ifdef DEBUG
6190 struct rcu_string *name;
6192 rcu_read_lock();
6193 name = rcu_dereference(dev->name);
6194 btrfs_debug(fs_info,
6195 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6196 bio_op(bio), bio->bi_opf,
6197 (u64)bio->bi_iter.bi_sector,
6198 (u_long)dev->bdev->bd_dev, name->str, dev->devid,
6199 bio->bi_iter.bi_size);
6200 rcu_read_unlock();
6202 #endif
6203 bio_set_dev(bio, dev->bdev);
6205 btrfs_bio_counter_inc_noblocked(fs_info);
6207 if (async)
6208 btrfs_schedule_bio(dev, bio);
6209 else
6210 btrfsic_submit_bio(bio);
6213 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6215 atomic_inc(&bbio->error);
6216 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6217 /* Should be the original bio. */
6218 WARN_ON(bio != bbio->orig_bio);
6220 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6221 bio->bi_iter.bi_sector = logical >> 9;
6222 if (atomic_read(&bbio->error) > bbio->max_errors)
6223 bio->bi_status = BLK_STS_IOERR;
6224 else
6225 bio->bi_status = BLK_STS_OK;
6226 btrfs_end_bbio(bbio, bio);
6230 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6231 int mirror_num, int async_submit)
6233 struct btrfs_device *dev;
6234 struct bio *first_bio = bio;
6235 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6236 u64 length = 0;
6237 u64 map_length;
6238 int ret;
6239 int dev_nr;
6240 int total_devs;
6241 struct btrfs_bio *bbio = NULL;
6243 length = bio->bi_iter.bi_size;
6244 map_length = length;
6246 btrfs_bio_counter_inc_blocked(fs_info);
6247 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6248 &map_length, &bbio, mirror_num, 1);
6249 if (ret) {
6250 btrfs_bio_counter_dec(fs_info);
6251 return errno_to_blk_status(ret);
6254 total_devs = bbio->num_stripes;
6255 bbio->orig_bio = first_bio;
6256 bbio->private = first_bio->bi_private;
6257 bbio->end_io = first_bio->bi_end_io;
6258 bbio->fs_info = fs_info;
6259 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6261 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6262 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6263 /* In this case, map_length has been set to the length of
6264 a single stripe; not the whole write */
6265 if (bio_op(bio) == REQ_OP_WRITE) {
6266 ret = raid56_parity_write(fs_info, bio, bbio,
6267 map_length);
6268 } else {
6269 ret = raid56_parity_recover(fs_info, bio, bbio,
6270 map_length, mirror_num, 1);
6273 btrfs_bio_counter_dec(fs_info);
6274 return errno_to_blk_status(ret);
6277 if (map_length < length) {
6278 btrfs_crit(fs_info,
6279 "mapping failed logical %llu bio len %llu len %llu",
6280 logical, length, map_length);
6281 BUG();
6284 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6285 dev = bbio->stripes[dev_nr].dev;
6286 if (!dev || !dev->bdev ||
6287 (bio_op(first_bio) == REQ_OP_WRITE &&
6288 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6289 bbio_error(bbio, first_bio, logical);
6290 continue;
6293 if (dev_nr < total_devs - 1)
6294 bio = btrfs_bio_clone(first_bio);
6295 else
6296 bio = first_bio;
6298 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6299 dev_nr, async_submit);
6301 btrfs_bio_counter_dec(fs_info);
6302 return BLK_STS_OK;
6305 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
6306 u8 *uuid, u8 *fsid)
6308 struct btrfs_device *device;
6309 struct btrfs_fs_devices *cur_devices;
6311 cur_devices = fs_info->fs_devices;
6312 while (cur_devices) {
6313 if (!fsid ||
6314 !memcmp(cur_devices->fsid, fsid, BTRFS_FSID_SIZE)) {
6315 device = find_device(cur_devices, devid, uuid);
6316 if (device)
6317 return device;
6319 cur_devices = cur_devices->seed;
6321 return NULL;
6324 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6325 u64 devid, u8 *dev_uuid)
6327 struct btrfs_device *device;
6329 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6330 if (IS_ERR(device))
6331 return device;
6333 list_add(&device->dev_list, &fs_devices->devices);
6334 device->fs_devices = fs_devices;
6335 fs_devices->num_devices++;
6337 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6338 fs_devices->missing_devices++;
6340 return device;
6344 * btrfs_alloc_device - allocate struct btrfs_device
6345 * @fs_info: used only for generating a new devid, can be NULL if
6346 * devid is provided (i.e. @devid != NULL).
6347 * @devid: a pointer to devid for this device. If NULL a new devid
6348 * is generated.
6349 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6350 * is generated.
6352 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6353 * on error. Returned struct is not linked onto any lists and must be
6354 * destroyed with btrfs_free_device.
6356 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6357 const u64 *devid,
6358 const u8 *uuid)
6360 struct btrfs_device *dev;
6361 u64 tmp;
6363 if (WARN_ON(!devid && !fs_info))
6364 return ERR_PTR(-EINVAL);
6366 dev = __alloc_device();
6367 if (IS_ERR(dev))
6368 return dev;
6370 if (devid)
6371 tmp = *devid;
6372 else {
6373 int ret;
6375 ret = find_next_devid(fs_info, &tmp);
6376 if (ret) {
6377 btrfs_free_device(dev);
6378 return ERR_PTR(ret);
6381 dev->devid = tmp;
6383 if (uuid)
6384 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6385 else
6386 generate_random_uuid(dev->uuid);
6388 btrfs_init_work(&dev->work, btrfs_submit_helper,
6389 pending_bios_fn, NULL, NULL);
6391 return dev;
6394 /* Return -EIO if any error, otherwise return 0. */
6395 static int btrfs_check_chunk_valid(struct btrfs_fs_info *fs_info,
6396 struct extent_buffer *leaf,
6397 struct btrfs_chunk *chunk, u64 logical)
6399 u64 length;
6400 u64 stripe_len;
6401 u16 num_stripes;
6402 u16 sub_stripes;
6403 u64 type;
6405 length = btrfs_chunk_length(leaf, chunk);
6406 stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6407 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6408 sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6409 type = btrfs_chunk_type(leaf, chunk);
6411 if (!num_stripes) {
6412 btrfs_err(fs_info, "invalid chunk num_stripes: %u",
6413 num_stripes);
6414 return -EIO;
6416 if (!IS_ALIGNED(logical, fs_info->sectorsize)) {
6417 btrfs_err(fs_info, "invalid chunk logical %llu", logical);
6418 return -EIO;
6420 if (btrfs_chunk_sector_size(leaf, chunk) != fs_info->sectorsize) {
6421 btrfs_err(fs_info, "invalid chunk sectorsize %u",
6422 btrfs_chunk_sector_size(leaf, chunk));
6423 return -EIO;
6425 if (!length || !IS_ALIGNED(length, fs_info->sectorsize)) {
6426 btrfs_err(fs_info, "invalid chunk length %llu", length);
6427 return -EIO;
6429 if (!is_power_of_2(stripe_len) || stripe_len != BTRFS_STRIPE_LEN) {
6430 btrfs_err(fs_info, "invalid chunk stripe length: %llu",
6431 stripe_len);
6432 return -EIO;
6434 if (~(BTRFS_BLOCK_GROUP_TYPE_MASK | BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6435 type) {
6436 btrfs_err(fs_info, "unrecognized chunk type: %llu",
6437 ~(BTRFS_BLOCK_GROUP_TYPE_MASK |
6438 BTRFS_BLOCK_GROUP_PROFILE_MASK) &
6439 btrfs_chunk_type(leaf, chunk));
6440 return -EIO;
6442 if ((type & BTRFS_BLOCK_GROUP_RAID10 && sub_stripes != 2) ||
6443 (type & BTRFS_BLOCK_GROUP_RAID1 && num_stripes < 1) ||
6444 (type & BTRFS_BLOCK_GROUP_RAID5 && num_stripes < 2) ||
6445 (type & BTRFS_BLOCK_GROUP_RAID6 && num_stripes < 3) ||
6446 (type & BTRFS_BLOCK_GROUP_DUP && num_stripes > 2) ||
6447 ((type & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 &&
6448 num_stripes != 1)) {
6449 btrfs_err(fs_info,
6450 "invalid num_stripes:sub_stripes %u:%u for profile %llu",
6451 num_stripes, sub_stripes,
6452 type & BTRFS_BLOCK_GROUP_PROFILE_MASK);
6453 return -EIO;
6456 return 0;
6459 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6460 u64 devid, u8 *uuid, bool error)
6462 if (error)
6463 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6464 devid, uuid);
6465 else
6466 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6467 devid, uuid);
6470 static int read_one_chunk(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
6471 struct extent_buffer *leaf,
6472 struct btrfs_chunk *chunk)
6474 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6475 struct map_lookup *map;
6476 struct extent_map *em;
6477 u64 logical;
6478 u64 length;
6479 u64 devid;
6480 u8 uuid[BTRFS_UUID_SIZE];
6481 int num_stripes;
6482 int ret;
6483 int i;
6485 logical = key->offset;
6486 length = btrfs_chunk_length(leaf, chunk);
6487 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6489 ret = btrfs_check_chunk_valid(fs_info, leaf, chunk, logical);
6490 if (ret)
6491 return ret;
6493 read_lock(&map_tree->map_tree.lock);
6494 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
6495 read_unlock(&map_tree->map_tree.lock);
6497 /* already mapped? */
6498 if (em && em->start <= logical && em->start + em->len > logical) {
6499 free_extent_map(em);
6500 return 0;
6501 } else if (em) {
6502 free_extent_map(em);
6505 em = alloc_extent_map();
6506 if (!em)
6507 return -ENOMEM;
6508 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6509 if (!map) {
6510 free_extent_map(em);
6511 return -ENOMEM;
6514 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6515 em->map_lookup = map;
6516 em->start = logical;
6517 em->len = length;
6518 em->orig_start = 0;
6519 em->block_start = 0;
6520 em->block_len = em->len;
6522 map->num_stripes = num_stripes;
6523 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6524 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6525 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6526 map->type = btrfs_chunk_type(leaf, chunk);
6527 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6528 for (i = 0; i < num_stripes; i++) {
6529 map->stripes[i].physical =
6530 btrfs_stripe_offset_nr(leaf, chunk, i);
6531 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6532 read_extent_buffer(leaf, uuid, (unsigned long)
6533 btrfs_stripe_dev_uuid_nr(chunk, i),
6534 BTRFS_UUID_SIZE);
6535 map->stripes[i].dev = btrfs_find_device(fs_info, devid,
6536 uuid, NULL);
6537 if (!map->stripes[i].dev &&
6538 !btrfs_test_opt(fs_info, DEGRADED)) {
6539 free_extent_map(em);
6540 btrfs_report_missing_device(fs_info, devid, uuid, true);
6541 return -ENOENT;
6543 if (!map->stripes[i].dev) {
6544 map->stripes[i].dev =
6545 add_missing_dev(fs_info->fs_devices, devid,
6546 uuid);
6547 if (IS_ERR(map->stripes[i].dev)) {
6548 free_extent_map(em);
6549 btrfs_err(fs_info,
6550 "failed to init missing dev %llu: %ld",
6551 devid, PTR_ERR(map->stripes[i].dev));
6552 return PTR_ERR(map->stripes[i].dev);
6554 btrfs_report_missing_device(fs_info, devid, uuid, false);
6556 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6557 &(map->stripes[i].dev->dev_state));
6561 write_lock(&map_tree->map_tree.lock);
6562 ret = add_extent_mapping(&map_tree->map_tree, em, 0);
6563 write_unlock(&map_tree->map_tree.lock);
6564 BUG_ON(ret); /* Tree corruption */
6565 free_extent_map(em);
6567 return 0;
6570 static void fill_device_from_item(struct extent_buffer *leaf,
6571 struct btrfs_dev_item *dev_item,
6572 struct btrfs_device *device)
6574 unsigned long ptr;
6576 device->devid = btrfs_device_id(leaf, dev_item);
6577 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6578 device->total_bytes = device->disk_total_bytes;
6579 device->commit_total_bytes = device->disk_total_bytes;
6580 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6581 device->commit_bytes_used = device->bytes_used;
6582 device->type = btrfs_device_type(leaf, dev_item);
6583 device->io_align = btrfs_device_io_align(leaf, dev_item);
6584 device->io_width = btrfs_device_io_width(leaf, dev_item);
6585 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6586 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6587 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6589 ptr = btrfs_device_uuid(dev_item);
6590 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6593 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6594 u8 *fsid)
6596 struct btrfs_fs_devices *fs_devices;
6597 int ret;
6599 lockdep_assert_held(&uuid_mutex);
6600 ASSERT(fsid);
6602 fs_devices = fs_info->fs_devices->seed;
6603 while (fs_devices) {
6604 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6605 return fs_devices;
6607 fs_devices = fs_devices->seed;
6610 fs_devices = find_fsid(fsid);
6611 if (!fs_devices) {
6612 if (!btrfs_test_opt(fs_info, DEGRADED))
6613 return ERR_PTR(-ENOENT);
6615 fs_devices = alloc_fs_devices(fsid);
6616 if (IS_ERR(fs_devices))
6617 return fs_devices;
6619 fs_devices->seeding = 1;
6620 fs_devices->opened = 1;
6621 return fs_devices;
6624 fs_devices = clone_fs_devices(fs_devices);
6625 if (IS_ERR(fs_devices))
6626 return fs_devices;
6628 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6629 if (ret) {
6630 free_fs_devices(fs_devices);
6631 fs_devices = ERR_PTR(ret);
6632 goto out;
6635 if (!fs_devices->seeding) {
6636 close_fs_devices(fs_devices);
6637 free_fs_devices(fs_devices);
6638 fs_devices = ERR_PTR(-EINVAL);
6639 goto out;
6642 fs_devices->seed = fs_info->fs_devices->seed;
6643 fs_info->fs_devices->seed = fs_devices;
6644 out:
6645 return fs_devices;
6648 static int read_one_dev(struct btrfs_fs_info *fs_info,
6649 struct extent_buffer *leaf,
6650 struct btrfs_dev_item *dev_item)
6652 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6653 struct btrfs_device *device;
6654 u64 devid;
6655 int ret;
6656 u8 fs_uuid[BTRFS_FSID_SIZE];
6657 u8 dev_uuid[BTRFS_UUID_SIZE];
6659 devid = btrfs_device_id(leaf, dev_item);
6660 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6661 BTRFS_UUID_SIZE);
6662 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6663 BTRFS_FSID_SIZE);
6665 if (memcmp(fs_uuid, fs_info->fsid, BTRFS_FSID_SIZE)) {
6666 fs_devices = open_seed_devices(fs_info, fs_uuid);
6667 if (IS_ERR(fs_devices))
6668 return PTR_ERR(fs_devices);
6671 device = btrfs_find_device(fs_info, devid, dev_uuid, fs_uuid);
6672 if (!device) {
6673 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6674 btrfs_report_missing_device(fs_info, devid,
6675 dev_uuid, true);
6676 return -ENOENT;
6679 device = add_missing_dev(fs_devices, devid, dev_uuid);
6680 if (IS_ERR(device)) {
6681 btrfs_err(fs_info,
6682 "failed to add missing dev %llu: %ld",
6683 devid, PTR_ERR(device));
6684 return PTR_ERR(device);
6686 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6687 } else {
6688 if (!device->bdev) {
6689 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6690 btrfs_report_missing_device(fs_info,
6691 devid, dev_uuid, true);
6692 return -ENOENT;
6694 btrfs_report_missing_device(fs_info, devid,
6695 dev_uuid, false);
6698 if (!device->bdev &&
6699 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6701 * this happens when a device that was properly setup
6702 * in the device info lists suddenly goes bad.
6703 * device->bdev is NULL, and so we have to set
6704 * device->missing to one here
6706 device->fs_devices->missing_devices++;
6707 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6710 /* Move the device to its own fs_devices */
6711 if (device->fs_devices != fs_devices) {
6712 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6713 &device->dev_state));
6715 list_move(&device->dev_list, &fs_devices->devices);
6716 device->fs_devices->num_devices--;
6717 fs_devices->num_devices++;
6719 device->fs_devices->missing_devices--;
6720 fs_devices->missing_devices++;
6722 device->fs_devices = fs_devices;
6726 if (device->fs_devices != fs_info->fs_devices) {
6727 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6728 if (device->generation !=
6729 btrfs_device_generation(leaf, dev_item))
6730 return -EINVAL;
6733 fill_device_from_item(leaf, dev_item, device);
6734 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6735 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6736 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6737 device->fs_devices->total_rw_bytes += device->total_bytes;
6738 atomic64_add(device->total_bytes - device->bytes_used,
6739 &fs_info->free_chunk_space);
6741 ret = 0;
6742 return ret;
6745 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6747 struct btrfs_root *root = fs_info->tree_root;
6748 struct btrfs_super_block *super_copy = fs_info->super_copy;
6749 struct extent_buffer *sb;
6750 struct btrfs_disk_key *disk_key;
6751 struct btrfs_chunk *chunk;
6752 u8 *array_ptr;
6753 unsigned long sb_array_offset;
6754 int ret = 0;
6755 u32 num_stripes;
6756 u32 array_size;
6757 u32 len = 0;
6758 u32 cur_offset;
6759 u64 type;
6760 struct btrfs_key key;
6762 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6764 * This will create extent buffer of nodesize, superblock size is
6765 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6766 * overallocate but we can keep it as-is, only the first page is used.
6768 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6769 if (IS_ERR(sb))
6770 return PTR_ERR(sb);
6771 set_extent_buffer_uptodate(sb);
6772 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6774 * The sb extent buffer is artificial and just used to read the system array.
6775 * set_extent_buffer_uptodate() call does not properly mark all it's
6776 * pages up-to-date when the page is larger: extent does not cover the
6777 * whole page and consequently check_page_uptodate does not find all
6778 * the page's extents up-to-date (the hole beyond sb),
6779 * write_extent_buffer then triggers a WARN_ON.
6781 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6782 * but sb spans only this function. Add an explicit SetPageUptodate call
6783 * to silence the warning eg. on PowerPC 64.
6785 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6786 SetPageUptodate(sb->pages[0]);
6788 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6789 array_size = btrfs_super_sys_array_size(super_copy);
6791 array_ptr = super_copy->sys_chunk_array;
6792 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6793 cur_offset = 0;
6795 while (cur_offset < array_size) {
6796 disk_key = (struct btrfs_disk_key *)array_ptr;
6797 len = sizeof(*disk_key);
6798 if (cur_offset + len > array_size)
6799 goto out_short_read;
6801 btrfs_disk_key_to_cpu(&key, disk_key);
6803 array_ptr += len;
6804 sb_array_offset += len;
6805 cur_offset += len;
6807 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
6808 chunk = (struct btrfs_chunk *)sb_array_offset;
6810 * At least one btrfs_chunk with one stripe must be
6811 * present, exact stripe count check comes afterwards
6813 len = btrfs_chunk_item_size(1);
6814 if (cur_offset + len > array_size)
6815 goto out_short_read;
6817 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6818 if (!num_stripes) {
6819 btrfs_err(fs_info,
6820 "invalid number of stripes %u in sys_array at offset %u",
6821 num_stripes, cur_offset);
6822 ret = -EIO;
6823 break;
6826 type = btrfs_chunk_type(sb, chunk);
6827 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6828 btrfs_err(fs_info,
6829 "invalid chunk type %llu in sys_array at offset %u",
6830 type, cur_offset);
6831 ret = -EIO;
6832 break;
6835 len = btrfs_chunk_item_size(num_stripes);
6836 if (cur_offset + len > array_size)
6837 goto out_short_read;
6839 ret = read_one_chunk(fs_info, &key, sb, chunk);
6840 if (ret)
6841 break;
6842 } else {
6843 btrfs_err(fs_info,
6844 "unexpected item type %u in sys_array at offset %u",
6845 (u32)key.type, cur_offset);
6846 ret = -EIO;
6847 break;
6849 array_ptr += len;
6850 sb_array_offset += len;
6851 cur_offset += len;
6853 clear_extent_buffer_uptodate(sb);
6854 free_extent_buffer_stale(sb);
6855 return ret;
6857 out_short_read:
6858 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6859 len, cur_offset);
6860 clear_extent_buffer_uptodate(sb);
6861 free_extent_buffer_stale(sb);
6862 return -EIO;
6866 * Check if all chunks in the fs are OK for read-write degraded mount
6868 * If the @failing_dev is specified, it's accounted as missing.
6870 * Return true if all chunks meet the minimal RW mount requirements.
6871 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6873 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6874 struct btrfs_device *failing_dev)
6876 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
6877 struct extent_map *em;
6878 u64 next_start = 0;
6879 bool ret = true;
6881 read_lock(&map_tree->map_tree.lock);
6882 em = lookup_extent_mapping(&map_tree->map_tree, 0, (u64)-1);
6883 read_unlock(&map_tree->map_tree.lock);
6884 /* No chunk at all? Return false anyway */
6885 if (!em) {
6886 ret = false;
6887 goto out;
6889 while (em) {
6890 struct map_lookup *map;
6891 int missing = 0;
6892 int max_tolerated;
6893 int i;
6895 map = em->map_lookup;
6896 max_tolerated =
6897 btrfs_get_num_tolerated_disk_barrier_failures(
6898 map->type);
6899 for (i = 0; i < map->num_stripes; i++) {
6900 struct btrfs_device *dev = map->stripes[i].dev;
6902 if (!dev || !dev->bdev ||
6903 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6904 dev->last_flush_error)
6905 missing++;
6906 else if (failing_dev && failing_dev == dev)
6907 missing++;
6909 if (missing > max_tolerated) {
6910 if (!failing_dev)
6911 btrfs_warn(fs_info,
6912 "chunk %llu missing %d devices, max tolerance is %d for writeable mount",
6913 em->start, missing, max_tolerated);
6914 free_extent_map(em);
6915 ret = false;
6916 goto out;
6918 next_start = extent_map_end(em);
6919 free_extent_map(em);
6921 read_lock(&map_tree->map_tree.lock);
6922 em = lookup_extent_mapping(&map_tree->map_tree, next_start,
6923 (u64)(-1) - next_start);
6924 read_unlock(&map_tree->map_tree.lock);
6926 out:
6927 return ret;
6930 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6932 struct btrfs_root *root = fs_info->chunk_root;
6933 struct btrfs_path *path;
6934 struct extent_buffer *leaf;
6935 struct btrfs_key key;
6936 struct btrfs_key found_key;
6937 int ret;
6938 int slot;
6939 u64 total_dev = 0;
6941 path = btrfs_alloc_path();
6942 if (!path)
6943 return -ENOMEM;
6946 * uuid_mutex is needed only if we are mounting a sprout FS
6947 * otherwise we don't need it.
6949 mutex_lock(&uuid_mutex);
6950 mutex_lock(&fs_info->chunk_mutex);
6953 * Read all device items, and then all the chunk items. All
6954 * device items are found before any chunk item (their object id
6955 * is smaller than the lowest possible object id for a chunk
6956 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6958 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6959 key.offset = 0;
6960 key.type = 0;
6961 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6962 if (ret < 0)
6963 goto error;
6964 while (1) {
6965 leaf = path->nodes[0];
6966 slot = path->slots[0];
6967 if (slot >= btrfs_header_nritems(leaf)) {
6968 ret = btrfs_next_leaf(root, path);
6969 if (ret == 0)
6970 continue;
6971 if (ret < 0)
6972 goto error;
6973 break;
6975 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6976 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6977 struct btrfs_dev_item *dev_item;
6978 dev_item = btrfs_item_ptr(leaf, slot,
6979 struct btrfs_dev_item);
6980 ret = read_one_dev(fs_info, leaf, dev_item);
6981 if (ret)
6982 goto error;
6983 total_dev++;
6984 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6985 struct btrfs_chunk *chunk;
6986 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6987 ret = read_one_chunk(fs_info, &found_key, leaf, chunk);
6988 if (ret)
6989 goto error;
6991 path->slots[0]++;
6995 * After loading chunk tree, we've got all device information,
6996 * do another round of validation checks.
6998 if (total_dev != fs_info->fs_devices->total_devices) {
6999 btrfs_err(fs_info,
7000 "super_num_devices %llu mismatch with num_devices %llu found here",
7001 btrfs_super_num_devices(fs_info->super_copy),
7002 total_dev);
7003 ret = -EINVAL;
7004 goto error;
7006 if (btrfs_super_total_bytes(fs_info->super_copy) <
7007 fs_info->fs_devices->total_rw_bytes) {
7008 btrfs_err(fs_info,
7009 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7010 btrfs_super_total_bytes(fs_info->super_copy),
7011 fs_info->fs_devices->total_rw_bytes);
7012 ret = -EINVAL;
7013 goto error;
7015 ret = 0;
7016 error:
7017 mutex_unlock(&fs_info->chunk_mutex);
7018 mutex_unlock(&uuid_mutex);
7020 btrfs_free_path(path);
7021 return ret;
7024 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7026 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7027 struct btrfs_device *device;
7029 while (fs_devices) {
7030 mutex_lock(&fs_devices->device_list_mutex);
7031 list_for_each_entry(device, &fs_devices->devices, dev_list)
7032 device->fs_info = fs_info;
7033 mutex_unlock(&fs_devices->device_list_mutex);
7035 fs_devices = fs_devices->seed;
7039 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
7041 int i;
7043 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7044 btrfs_dev_stat_reset(dev, i);
7047 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7049 struct btrfs_key key;
7050 struct btrfs_key found_key;
7051 struct btrfs_root *dev_root = fs_info->dev_root;
7052 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7053 struct extent_buffer *eb;
7054 int slot;
7055 int ret = 0;
7056 struct btrfs_device *device;
7057 struct btrfs_path *path = NULL;
7058 int i;
7060 path = btrfs_alloc_path();
7061 if (!path) {
7062 ret = -ENOMEM;
7063 goto out;
7066 mutex_lock(&fs_devices->device_list_mutex);
7067 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7068 int item_size;
7069 struct btrfs_dev_stats_item *ptr;
7071 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7072 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7073 key.offset = device->devid;
7074 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7075 if (ret) {
7076 __btrfs_reset_dev_stats(device);
7077 device->dev_stats_valid = 1;
7078 btrfs_release_path(path);
7079 continue;
7081 slot = path->slots[0];
7082 eb = path->nodes[0];
7083 btrfs_item_key_to_cpu(eb, &found_key, slot);
7084 item_size = btrfs_item_size_nr(eb, slot);
7086 ptr = btrfs_item_ptr(eb, slot,
7087 struct btrfs_dev_stats_item);
7089 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7090 if (item_size >= (1 + i) * sizeof(__le64))
7091 btrfs_dev_stat_set(device, i,
7092 btrfs_dev_stats_value(eb, ptr, i));
7093 else
7094 btrfs_dev_stat_reset(device, i);
7097 device->dev_stats_valid = 1;
7098 btrfs_dev_stat_print_on_load(device);
7099 btrfs_release_path(path);
7101 mutex_unlock(&fs_devices->device_list_mutex);
7103 out:
7104 btrfs_free_path(path);
7105 return ret < 0 ? ret : 0;
7108 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7109 struct btrfs_fs_info *fs_info,
7110 struct btrfs_device *device)
7112 struct btrfs_root *dev_root = fs_info->dev_root;
7113 struct btrfs_path *path;
7114 struct btrfs_key key;
7115 struct extent_buffer *eb;
7116 struct btrfs_dev_stats_item *ptr;
7117 int ret;
7118 int i;
7120 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7121 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7122 key.offset = device->devid;
7124 path = btrfs_alloc_path();
7125 if (!path)
7126 return -ENOMEM;
7127 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7128 if (ret < 0) {
7129 btrfs_warn_in_rcu(fs_info,
7130 "error %d while searching for dev_stats item for device %s",
7131 ret, rcu_str_deref(device->name));
7132 goto out;
7135 if (ret == 0 &&
7136 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7137 /* need to delete old one and insert a new one */
7138 ret = btrfs_del_item(trans, dev_root, path);
7139 if (ret != 0) {
7140 btrfs_warn_in_rcu(fs_info,
7141 "delete too small dev_stats item for device %s failed %d",
7142 rcu_str_deref(device->name), ret);
7143 goto out;
7145 ret = 1;
7148 if (ret == 1) {
7149 /* need to insert a new item */
7150 btrfs_release_path(path);
7151 ret = btrfs_insert_empty_item(trans, dev_root, path,
7152 &key, sizeof(*ptr));
7153 if (ret < 0) {
7154 btrfs_warn_in_rcu(fs_info,
7155 "insert dev_stats item for device %s failed %d",
7156 rcu_str_deref(device->name), ret);
7157 goto out;
7161 eb = path->nodes[0];
7162 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7163 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7164 btrfs_set_dev_stats_value(eb, ptr, i,
7165 btrfs_dev_stat_read(device, i));
7166 btrfs_mark_buffer_dirty(eb);
7168 out:
7169 btrfs_free_path(path);
7170 return ret;
7174 * called from commit_transaction. Writes all changed device stats to disk.
7176 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
7177 struct btrfs_fs_info *fs_info)
7179 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7180 struct btrfs_device *device;
7181 int stats_cnt;
7182 int ret = 0;
7184 mutex_lock(&fs_devices->device_list_mutex);
7185 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7186 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7187 if (!device->dev_stats_valid || stats_cnt == 0)
7188 continue;
7192 * There is a LOAD-LOAD control dependency between the value of
7193 * dev_stats_ccnt and updating the on-disk values which requires
7194 * reading the in-memory counters. Such control dependencies
7195 * require explicit read memory barriers.
7197 * This memory barriers pairs with smp_mb__before_atomic in
7198 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7199 * barrier implied by atomic_xchg in
7200 * btrfs_dev_stats_read_and_reset
7202 smp_rmb();
7204 ret = update_dev_stat_item(trans, fs_info, device);
7205 if (!ret)
7206 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7208 mutex_unlock(&fs_devices->device_list_mutex);
7210 return ret;
7213 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7215 btrfs_dev_stat_inc(dev, index);
7216 btrfs_dev_stat_print_on_error(dev);
7219 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7221 if (!dev->dev_stats_valid)
7222 return;
7223 btrfs_err_rl_in_rcu(dev->fs_info,
7224 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7225 rcu_str_deref(dev->name),
7226 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7227 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7228 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7229 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7230 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7233 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7235 int i;
7237 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7238 if (btrfs_dev_stat_read(dev, i) != 0)
7239 break;
7240 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7241 return; /* all values == 0, suppress message */
7243 btrfs_info_in_rcu(dev->fs_info,
7244 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7245 rcu_str_deref(dev->name),
7246 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7247 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7248 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7249 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7250 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7253 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7254 struct btrfs_ioctl_get_dev_stats *stats)
7256 struct btrfs_device *dev;
7257 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7258 int i;
7260 mutex_lock(&fs_devices->device_list_mutex);
7261 dev = btrfs_find_device(fs_info, stats->devid, NULL, NULL);
7262 mutex_unlock(&fs_devices->device_list_mutex);
7264 if (!dev) {
7265 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7266 return -ENODEV;
7267 } else if (!dev->dev_stats_valid) {
7268 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7269 return -ENODEV;
7270 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7271 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7272 if (stats->nr_items > i)
7273 stats->values[i] =
7274 btrfs_dev_stat_read_and_reset(dev, i);
7275 else
7276 btrfs_dev_stat_reset(dev, i);
7278 } else {
7279 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7280 if (stats->nr_items > i)
7281 stats->values[i] = btrfs_dev_stat_read(dev, i);
7283 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7284 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7285 return 0;
7288 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7290 struct buffer_head *bh;
7291 struct btrfs_super_block *disk_super;
7292 int copy_num;
7294 if (!bdev)
7295 return;
7297 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7298 copy_num++) {
7300 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7301 continue;
7303 disk_super = (struct btrfs_super_block *)bh->b_data;
7305 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7306 set_buffer_dirty(bh);
7307 sync_dirty_buffer(bh);
7308 brelse(bh);
7311 /* Notify udev that device has changed */
7312 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7314 /* Update ctime/mtime for device path for libblkid */
7315 update_dev_time(device_path);
7319 * Update the size of all devices, which is used for writing out the
7320 * super blocks.
7322 void btrfs_update_commit_device_size(struct btrfs_fs_info *fs_info)
7324 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7325 struct btrfs_device *curr, *next;
7327 if (list_empty(&fs_devices->resized_devices))
7328 return;
7330 mutex_lock(&fs_devices->device_list_mutex);
7331 mutex_lock(&fs_info->chunk_mutex);
7332 list_for_each_entry_safe(curr, next, &fs_devices->resized_devices,
7333 resized_list) {
7334 list_del_init(&curr->resized_list);
7335 curr->commit_total_bytes = curr->disk_total_bytes;
7337 mutex_unlock(&fs_info->chunk_mutex);
7338 mutex_unlock(&fs_devices->device_list_mutex);
7341 /* Must be invoked during the transaction commit */
7342 void btrfs_update_commit_device_bytes_used(struct btrfs_transaction *trans)
7344 struct btrfs_fs_info *fs_info = trans->fs_info;
7345 struct extent_map *em;
7346 struct map_lookup *map;
7347 struct btrfs_device *dev;
7348 int i;
7350 if (list_empty(&trans->pending_chunks))
7351 return;
7353 /* In order to kick the device replace finish process */
7354 mutex_lock(&fs_info->chunk_mutex);
7355 list_for_each_entry(em, &trans->pending_chunks, list) {
7356 map = em->map_lookup;
7358 for (i = 0; i < map->num_stripes; i++) {
7359 dev = map->stripes[i].dev;
7360 dev->commit_bytes_used = dev->bytes_used;
7363 mutex_unlock(&fs_info->chunk_mutex);
7366 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7368 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7369 while (fs_devices) {
7370 fs_devices->fs_info = fs_info;
7371 fs_devices = fs_devices->seed;
7375 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7377 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7378 while (fs_devices) {
7379 fs_devices->fs_info = NULL;
7380 fs_devices = fs_devices->seed;