locking/refcounts: Include fewer headers in <linux/refcount.h>
[linux/fpc-iii.git] / fs / f2fs / data.c
blob8f931d699287af894e0101f7aedd4f4f2ef75d72
1 /*
2 * fs/f2fs/data.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/cleancache.h>
23 #include <linux/sched/signal.h>
25 #include "f2fs.h"
26 #include "node.h"
27 #include "segment.h"
28 #include "trace.h"
29 #include <trace/events/f2fs.h>
31 #define NUM_PREALLOC_POST_READ_CTXS 128
33 static struct kmem_cache *bio_post_read_ctx_cache;
34 static mempool_t *bio_post_read_ctx_pool;
36 static bool __is_cp_guaranteed(struct page *page)
38 struct address_space *mapping = page->mapping;
39 struct inode *inode;
40 struct f2fs_sb_info *sbi;
42 if (!mapping)
43 return false;
45 inode = mapping->host;
46 sbi = F2FS_I_SB(inode);
48 if (inode->i_ino == F2FS_META_INO(sbi) ||
49 inode->i_ino == F2FS_NODE_INO(sbi) ||
50 S_ISDIR(inode->i_mode) ||
51 (S_ISREG(inode->i_mode) &&
52 is_inode_flag_set(inode, FI_ATOMIC_FILE)) ||
53 is_cold_data(page))
54 return true;
55 return false;
58 /* postprocessing steps for read bios */
59 enum bio_post_read_step {
60 STEP_INITIAL = 0,
61 STEP_DECRYPT,
64 struct bio_post_read_ctx {
65 struct bio *bio;
66 struct work_struct work;
67 unsigned int cur_step;
68 unsigned int enabled_steps;
71 static void __read_end_io(struct bio *bio)
73 struct page *page;
74 struct bio_vec *bv;
75 int i;
77 bio_for_each_segment_all(bv, bio, i) {
78 page = bv->bv_page;
80 /* PG_error was set if any post_read step failed */
81 if (bio->bi_status || PageError(page)) {
82 ClearPageUptodate(page);
83 SetPageError(page);
84 } else {
85 SetPageUptodate(page);
87 unlock_page(page);
89 if (bio->bi_private)
90 mempool_free(bio->bi_private, bio_post_read_ctx_pool);
91 bio_put(bio);
94 static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
96 static void decrypt_work(struct work_struct *work)
98 struct bio_post_read_ctx *ctx =
99 container_of(work, struct bio_post_read_ctx, work);
101 fscrypt_decrypt_bio(ctx->bio);
103 bio_post_read_processing(ctx);
106 static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
108 switch (++ctx->cur_step) {
109 case STEP_DECRYPT:
110 if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
111 INIT_WORK(&ctx->work, decrypt_work);
112 fscrypt_enqueue_decrypt_work(&ctx->work);
113 return;
115 ctx->cur_step++;
116 /* fall-through */
117 default:
118 __read_end_io(ctx->bio);
122 static bool f2fs_bio_post_read_required(struct bio *bio)
124 return bio->bi_private && !bio->bi_status;
127 static void f2fs_read_end_io(struct bio *bio)
129 #ifdef CONFIG_F2FS_FAULT_INJECTION
130 if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)), FAULT_IO)) {
131 f2fs_show_injection_info(FAULT_IO);
132 bio->bi_status = BLK_STS_IOERR;
134 #endif
136 if (f2fs_bio_post_read_required(bio)) {
137 struct bio_post_read_ctx *ctx = bio->bi_private;
139 ctx->cur_step = STEP_INITIAL;
140 bio_post_read_processing(ctx);
141 return;
144 __read_end_io(bio);
147 static void f2fs_write_end_io(struct bio *bio)
149 struct f2fs_sb_info *sbi = bio->bi_private;
150 struct bio_vec *bvec;
151 int i;
153 bio_for_each_segment_all(bvec, bio, i) {
154 struct page *page = bvec->bv_page;
155 enum count_type type = WB_DATA_TYPE(page);
157 if (IS_DUMMY_WRITTEN_PAGE(page)) {
158 set_page_private(page, (unsigned long)NULL);
159 ClearPagePrivate(page);
160 unlock_page(page);
161 mempool_free(page, sbi->write_io_dummy);
163 if (unlikely(bio->bi_status))
164 f2fs_stop_checkpoint(sbi, true);
165 continue;
168 fscrypt_pullback_bio_page(&page, true);
170 if (unlikely(bio->bi_status)) {
171 mapping_set_error(page->mapping, -EIO);
172 if (type == F2FS_WB_CP_DATA)
173 f2fs_stop_checkpoint(sbi, true);
176 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
177 page->index != nid_of_node(page));
179 dec_page_count(sbi, type);
180 clear_cold_data(page);
181 end_page_writeback(page);
183 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
184 wq_has_sleeper(&sbi->cp_wait))
185 wake_up(&sbi->cp_wait);
187 bio_put(bio);
191 * Return true, if pre_bio's bdev is same as its target device.
193 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
194 block_t blk_addr, struct bio *bio)
196 struct block_device *bdev = sbi->sb->s_bdev;
197 int i;
199 for (i = 0; i < sbi->s_ndevs; i++) {
200 if (FDEV(i).start_blk <= blk_addr &&
201 FDEV(i).end_blk >= blk_addr) {
202 blk_addr -= FDEV(i).start_blk;
203 bdev = FDEV(i).bdev;
204 break;
207 if (bio) {
208 bio_set_dev(bio, bdev);
209 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
211 return bdev;
214 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
216 int i;
218 for (i = 0; i < sbi->s_ndevs; i++)
219 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
220 return i;
221 return 0;
224 static bool __same_bdev(struct f2fs_sb_info *sbi,
225 block_t blk_addr, struct bio *bio)
227 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
228 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
232 * Low-level block read/write IO operations.
234 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
235 struct writeback_control *wbc,
236 int npages, bool is_read,
237 enum page_type type, enum temp_type temp)
239 struct bio *bio;
241 bio = f2fs_bio_alloc(sbi, npages, true);
243 f2fs_target_device(sbi, blk_addr, bio);
244 if (is_read) {
245 bio->bi_end_io = f2fs_read_end_io;
246 bio->bi_private = NULL;
247 } else {
248 bio->bi_end_io = f2fs_write_end_io;
249 bio->bi_private = sbi;
250 bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi, type, temp);
252 if (wbc)
253 wbc_init_bio(wbc, bio);
255 return bio;
258 static inline void __submit_bio(struct f2fs_sb_info *sbi,
259 struct bio *bio, enum page_type type)
261 if (!is_read_io(bio_op(bio))) {
262 unsigned int start;
264 if (type != DATA && type != NODE)
265 goto submit_io;
267 if (f2fs_sb_has_blkzoned(sbi->sb) && current->plug)
268 blk_finish_plug(current->plug);
270 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
271 start %= F2FS_IO_SIZE(sbi);
273 if (start == 0)
274 goto submit_io;
276 /* fill dummy pages */
277 for (; start < F2FS_IO_SIZE(sbi); start++) {
278 struct page *page =
279 mempool_alloc(sbi->write_io_dummy,
280 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
281 f2fs_bug_on(sbi, !page);
283 SetPagePrivate(page);
284 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
285 lock_page(page);
286 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
287 f2fs_bug_on(sbi, 1);
290 * In the NODE case, we lose next block address chain. So, we
291 * need to do checkpoint in f2fs_sync_file.
293 if (type == NODE)
294 set_sbi_flag(sbi, SBI_NEED_CP);
296 submit_io:
297 if (is_read_io(bio_op(bio)))
298 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
299 else
300 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
301 submit_bio(bio);
304 static void __submit_merged_bio(struct f2fs_bio_info *io)
306 struct f2fs_io_info *fio = &io->fio;
308 if (!io->bio)
309 return;
311 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
313 if (is_read_io(fio->op))
314 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
315 else
316 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
318 __submit_bio(io->sbi, io->bio, fio->type);
319 io->bio = NULL;
322 static bool __has_merged_page(struct f2fs_bio_info *io,
323 struct inode *inode, nid_t ino, pgoff_t idx)
325 struct bio_vec *bvec;
326 struct page *target;
327 int i;
329 if (!io->bio)
330 return false;
332 if (!inode && !ino)
333 return true;
335 bio_for_each_segment_all(bvec, io->bio, i) {
337 if (bvec->bv_page->mapping)
338 target = bvec->bv_page;
339 else
340 target = fscrypt_control_page(bvec->bv_page);
342 if (idx != target->index)
343 continue;
345 if (inode && inode == target->mapping->host)
346 return true;
347 if (ino && ino == ino_of_node(target))
348 return true;
351 return false;
354 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
355 nid_t ino, pgoff_t idx, enum page_type type)
357 enum page_type btype = PAGE_TYPE_OF_BIO(type);
358 enum temp_type temp;
359 struct f2fs_bio_info *io;
360 bool ret = false;
362 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
363 io = sbi->write_io[btype] + temp;
365 down_read(&io->io_rwsem);
366 ret = __has_merged_page(io, inode, ino, idx);
367 up_read(&io->io_rwsem);
369 /* TODO: use HOT temp only for meta pages now. */
370 if (ret || btype == META)
371 break;
373 return ret;
376 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
377 enum page_type type, enum temp_type temp)
379 enum page_type btype = PAGE_TYPE_OF_BIO(type);
380 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
382 down_write(&io->io_rwsem);
384 /* change META to META_FLUSH in the checkpoint procedure */
385 if (type >= META_FLUSH) {
386 io->fio.type = META_FLUSH;
387 io->fio.op = REQ_OP_WRITE;
388 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
389 if (!test_opt(sbi, NOBARRIER))
390 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
392 __submit_merged_bio(io);
393 up_write(&io->io_rwsem);
396 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
397 struct inode *inode, nid_t ino, pgoff_t idx,
398 enum page_type type, bool force)
400 enum temp_type temp;
402 if (!force && !has_merged_page(sbi, inode, ino, idx, type))
403 return;
405 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
407 __f2fs_submit_merged_write(sbi, type, temp);
409 /* TODO: use HOT temp only for meta pages now. */
410 if (type >= META)
411 break;
415 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
417 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
420 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
421 struct inode *inode, nid_t ino, pgoff_t idx,
422 enum page_type type)
424 __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
427 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
429 f2fs_submit_merged_write(sbi, DATA);
430 f2fs_submit_merged_write(sbi, NODE);
431 f2fs_submit_merged_write(sbi, META);
435 * Fill the locked page with data located in the block address.
436 * A caller needs to unlock the page on failure.
438 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
440 struct bio *bio;
441 struct page *page = fio->encrypted_page ?
442 fio->encrypted_page : fio->page;
444 verify_block_addr(fio, fio->new_blkaddr);
445 trace_f2fs_submit_page_bio(page, fio);
446 f2fs_trace_ios(fio, 0);
448 /* Allocate a new bio */
449 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, fio->io_wbc,
450 1, is_read_io(fio->op), fio->type, fio->temp);
452 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
453 bio_put(bio);
454 return -EFAULT;
456 bio_set_op_attrs(bio, fio->op, fio->op_flags);
458 __submit_bio(fio->sbi, bio, fio->type);
460 if (!is_read_io(fio->op))
461 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
462 return 0;
465 void f2fs_submit_page_write(struct f2fs_io_info *fio)
467 struct f2fs_sb_info *sbi = fio->sbi;
468 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
469 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
470 struct page *bio_page;
472 f2fs_bug_on(sbi, is_read_io(fio->op));
474 down_write(&io->io_rwsem);
475 next:
476 if (fio->in_list) {
477 spin_lock(&io->io_lock);
478 if (list_empty(&io->io_list)) {
479 spin_unlock(&io->io_lock);
480 goto out;
482 fio = list_first_entry(&io->io_list,
483 struct f2fs_io_info, list);
484 list_del(&fio->list);
485 spin_unlock(&io->io_lock);
488 if (is_valid_blkaddr(fio->old_blkaddr))
489 verify_block_addr(fio, fio->old_blkaddr);
490 verify_block_addr(fio, fio->new_blkaddr);
492 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
494 /* set submitted = true as a return value */
495 fio->submitted = true;
497 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
499 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
500 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
501 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
502 __submit_merged_bio(io);
503 alloc_new:
504 if (io->bio == NULL) {
505 if ((fio->type == DATA || fio->type == NODE) &&
506 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
507 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
508 fio->retry = true;
509 goto skip;
511 io->bio = __bio_alloc(sbi, fio->new_blkaddr, fio->io_wbc,
512 BIO_MAX_PAGES, false,
513 fio->type, fio->temp);
514 io->fio = *fio;
517 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
518 __submit_merged_bio(io);
519 goto alloc_new;
522 if (fio->io_wbc)
523 wbc_account_io(fio->io_wbc, bio_page, PAGE_SIZE);
525 io->last_block_in_bio = fio->new_blkaddr;
526 f2fs_trace_ios(fio, 0);
528 trace_f2fs_submit_page_write(fio->page, fio);
529 skip:
530 if (fio->in_list)
531 goto next;
532 out:
533 up_write(&io->io_rwsem);
536 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
537 unsigned nr_pages)
539 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
540 struct bio *bio;
541 struct bio_post_read_ctx *ctx;
542 unsigned int post_read_steps = 0;
544 bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
545 if (!bio)
546 return ERR_PTR(-ENOMEM);
547 f2fs_target_device(sbi, blkaddr, bio);
548 bio->bi_end_io = f2fs_read_end_io;
549 bio_set_op_attrs(bio, REQ_OP_READ, 0);
551 if (f2fs_encrypted_file(inode))
552 post_read_steps |= 1 << STEP_DECRYPT;
553 if (post_read_steps) {
554 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
555 if (!ctx) {
556 bio_put(bio);
557 return ERR_PTR(-ENOMEM);
559 ctx->bio = bio;
560 ctx->enabled_steps = post_read_steps;
561 bio->bi_private = ctx;
563 /* wait the page to be moved by cleaning */
564 f2fs_wait_on_block_writeback(sbi, blkaddr);
567 return bio;
570 /* This can handle encryption stuffs */
571 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
572 block_t blkaddr)
574 struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1);
576 if (IS_ERR(bio))
577 return PTR_ERR(bio);
579 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
580 bio_put(bio);
581 return -EFAULT;
583 __submit_bio(F2FS_I_SB(inode), bio, DATA);
584 return 0;
587 static void __set_data_blkaddr(struct dnode_of_data *dn)
589 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
590 __le32 *addr_array;
591 int base = 0;
593 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
594 base = get_extra_isize(dn->inode);
596 /* Get physical address of data block */
597 addr_array = blkaddr_in_node(rn);
598 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
602 * Lock ordering for the change of data block address:
603 * ->data_page
604 * ->node_page
605 * update block addresses in the node page
607 void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
609 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
610 __set_data_blkaddr(dn);
611 if (set_page_dirty(dn->node_page))
612 dn->node_changed = true;
615 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
617 dn->data_blkaddr = blkaddr;
618 f2fs_set_data_blkaddr(dn);
619 f2fs_update_extent_cache(dn);
622 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
623 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
625 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
626 int err;
628 if (!count)
629 return 0;
631 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
632 return -EPERM;
633 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
634 return err;
636 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
637 dn->ofs_in_node, count);
639 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
641 for (; count > 0; dn->ofs_in_node++) {
642 block_t blkaddr = datablock_addr(dn->inode,
643 dn->node_page, dn->ofs_in_node);
644 if (blkaddr == NULL_ADDR) {
645 dn->data_blkaddr = NEW_ADDR;
646 __set_data_blkaddr(dn);
647 count--;
651 if (set_page_dirty(dn->node_page))
652 dn->node_changed = true;
653 return 0;
656 /* Should keep dn->ofs_in_node unchanged */
657 int f2fs_reserve_new_block(struct dnode_of_data *dn)
659 unsigned int ofs_in_node = dn->ofs_in_node;
660 int ret;
662 ret = f2fs_reserve_new_blocks(dn, 1);
663 dn->ofs_in_node = ofs_in_node;
664 return ret;
667 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
669 bool need_put = dn->inode_page ? false : true;
670 int err;
672 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
673 if (err)
674 return err;
676 if (dn->data_blkaddr == NULL_ADDR)
677 err = f2fs_reserve_new_block(dn);
678 if (err || need_put)
679 f2fs_put_dnode(dn);
680 return err;
683 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
685 struct extent_info ei = {0,0,0};
686 struct inode *inode = dn->inode;
688 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
689 dn->data_blkaddr = ei.blk + index - ei.fofs;
690 return 0;
693 return f2fs_reserve_block(dn, index);
696 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
697 int op_flags, bool for_write)
699 struct address_space *mapping = inode->i_mapping;
700 struct dnode_of_data dn;
701 struct page *page;
702 struct extent_info ei = {0,0,0};
703 int err;
705 page = f2fs_grab_cache_page(mapping, index, for_write);
706 if (!page)
707 return ERR_PTR(-ENOMEM);
709 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
710 dn.data_blkaddr = ei.blk + index - ei.fofs;
711 goto got_it;
714 set_new_dnode(&dn, inode, NULL, NULL, 0);
715 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
716 if (err)
717 goto put_err;
718 f2fs_put_dnode(&dn);
720 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
721 err = -ENOENT;
722 goto put_err;
724 got_it:
725 if (PageUptodate(page)) {
726 unlock_page(page);
727 return page;
731 * A new dentry page is allocated but not able to be written, since its
732 * new inode page couldn't be allocated due to -ENOSPC.
733 * In such the case, its blkaddr can be remained as NEW_ADDR.
734 * see, f2fs_add_link -> f2fs_get_new_data_page ->
735 * f2fs_init_inode_metadata.
737 if (dn.data_blkaddr == NEW_ADDR) {
738 zero_user_segment(page, 0, PAGE_SIZE);
739 if (!PageUptodate(page))
740 SetPageUptodate(page);
741 unlock_page(page);
742 return page;
745 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
746 if (err)
747 goto put_err;
748 return page;
750 put_err:
751 f2fs_put_page(page, 1);
752 return ERR_PTR(err);
755 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
757 struct address_space *mapping = inode->i_mapping;
758 struct page *page;
760 page = find_get_page(mapping, index);
761 if (page && PageUptodate(page))
762 return page;
763 f2fs_put_page(page, 0);
765 page = f2fs_get_read_data_page(inode, index, 0, false);
766 if (IS_ERR(page))
767 return page;
769 if (PageUptodate(page))
770 return page;
772 wait_on_page_locked(page);
773 if (unlikely(!PageUptodate(page))) {
774 f2fs_put_page(page, 0);
775 return ERR_PTR(-EIO);
777 return page;
781 * If it tries to access a hole, return an error.
782 * Because, the callers, functions in dir.c and GC, should be able to know
783 * whether this page exists or not.
785 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
786 bool for_write)
788 struct address_space *mapping = inode->i_mapping;
789 struct page *page;
790 repeat:
791 page = f2fs_get_read_data_page(inode, index, 0, for_write);
792 if (IS_ERR(page))
793 return page;
795 /* wait for read completion */
796 lock_page(page);
797 if (unlikely(page->mapping != mapping)) {
798 f2fs_put_page(page, 1);
799 goto repeat;
801 if (unlikely(!PageUptodate(page))) {
802 f2fs_put_page(page, 1);
803 return ERR_PTR(-EIO);
805 return page;
809 * Caller ensures that this data page is never allocated.
810 * A new zero-filled data page is allocated in the page cache.
812 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
813 * f2fs_unlock_op().
814 * Note that, ipage is set only by make_empty_dir, and if any error occur,
815 * ipage should be released by this function.
817 struct page *f2fs_get_new_data_page(struct inode *inode,
818 struct page *ipage, pgoff_t index, bool new_i_size)
820 struct address_space *mapping = inode->i_mapping;
821 struct page *page;
822 struct dnode_of_data dn;
823 int err;
825 page = f2fs_grab_cache_page(mapping, index, true);
826 if (!page) {
828 * before exiting, we should make sure ipage will be released
829 * if any error occur.
831 f2fs_put_page(ipage, 1);
832 return ERR_PTR(-ENOMEM);
835 set_new_dnode(&dn, inode, ipage, NULL, 0);
836 err = f2fs_reserve_block(&dn, index);
837 if (err) {
838 f2fs_put_page(page, 1);
839 return ERR_PTR(err);
841 if (!ipage)
842 f2fs_put_dnode(&dn);
844 if (PageUptodate(page))
845 goto got_it;
847 if (dn.data_blkaddr == NEW_ADDR) {
848 zero_user_segment(page, 0, PAGE_SIZE);
849 if (!PageUptodate(page))
850 SetPageUptodate(page);
851 } else {
852 f2fs_put_page(page, 1);
854 /* if ipage exists, blkaddr should be NEW_ADDR */
855 f2fs_bug_on(F2FS_I_SB(inode), ipage);
856 page = f2fs_get_lock_data_page(inode, index, true);
857 if (IS_ERR(page))
858 return page;
860 got_it:
861 if (new_i_size && i_size_read(inode) <
862 ((loff_t)(index + 1) << PAGE_SHIFT))
863 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
864 return page;
867 static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
869 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
870 struct f2fs_summary sum;
871 struct node_info ni;
872 pgoff_t fofs;
873 blkcnt_t count = 1;
874 int err;
876 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
877 return -EPERM;
879 dn->data_blkaddr = datablock_addr(dn->inode,
880 dn->node_page, dn->ofs_in_node);
881 if (dn->data_blkaddr == NEW_ADDR)
882 goto alloc;
884 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
885 return err;
887 alloc:
888 f2fs_get_node_info(sbi, dn->nid, &ni);
889 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
891 f2fs_allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
892 &sum, seg_type, NULL, false);
893 f2fs_set_data_blkaddr(dn);
895 /* update i_size */
896 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
897 dn->ofs_in_node;
898 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
899 f2fs_i_size_write(dn->inode,
900 ((loff_t)(fofs + 1) << PAGE_SHIFT));
901 return 0;
904 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
906 struct inode *inode = file_inode(iocb->ki_filp);
907 struct f2fs_map_blocks map;
908 int flag;
909 int err = 0;
910 bool direct_io = iocb->ki_flags & IOCB_DIRECT;
912 /* convert inline data for Direct I/O*/
913 if (direct_io) {
914 err = f2fs_convert_inline_inode(inode);
915 if (err)
916 return err;
919 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
920 return 0;
922 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
923 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
924 if (map.m_len > map.m_lblk)
925 map.m_len -= map.m_lblk;
926 else
927 map.m_len = 0;
929 map.m_next_pgofs = NULL;
930 map.m_next_extent = NULL;
931 map.m_seg_type = NO_CHECK_TYPE;
933 if (direct_io) {
934 map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
935 flag = f2fs_force_buffered_io(inode, WRITE) ?
936 F2FS_GET_BLOCK_PRE_AIO :
937 F2FS_GET_BLOCK_PRE_DIO;
938 goto map_blocks;
940 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
941 err = f2fs_convert_inline_inode(inode);
942 if (err)
943 return err;
945 if (f2fs_has_inline_data(inode))
946 return err;
948 flag = F2FS_GET_BLOCK_PRE_AIO;
950 map_blocks:
951 err = f2fs_map_blocks(inode, &map, 1, flag);
952 if (map.m_len > 0 && err == -ENOSPC) {
953 if (!direct_io)
954 set_inode_flag(inode, FI_NO_PREALLOC);
955 err = 0;
957 return err;
960 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
962 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
963 if (lock)
964 down_read(&sbi->node_change);
965 else
966 up_read(&sbi->node_change);
967 } else {
968 if (lock)
969 f2fs_lock_op(sbi);
970 else
971 f2fs_unlock_op(sbi);
976 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
977 * f2fs_map_blocks structure.
978 * If original data blocks are allocated, then give them to blockdev.
979 * Otherwise,
980 * a. preallocate requested block addresses
981 * b. do not use extent cache for better performance
982 * c. give the block addresses to blockdev
984 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
985 int create, int flag)
987 unsigned int maxblocks = map->m_len;
988 struct dnode_of_data dn;
989 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
990 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
991 pgoff_t pgofs, end_offset, end;
992 int err = 0, ofs = 1;
993 unsigned int ofs_in_node, last_ofs_in_node;
994 blkcnt_t prealloc;
995 struct extent_info ei = {0,0,0};
996 block_t blkaddr;
997 unsigned int start_pgofs;
999 if (!maxblocks)
1000 return 0;
1002 map->m_len = 0;
1003 map->m_flags = 0;
1005 /* it only supports block size == page size */
1006 pgofs = (pgoff_t)map->m_lblk;
1007 end = pgofs + maxblocks;
1009 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1010 map->m_pblk = ei.blk + pgofs - ei.fofs;
1011 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1012 map->m_flags = F2FS_MAP_MAPPED;
1013 if (map->m_next_extent)
1014 *map->m_next_extent = pgofs + map->m_len;
1015 goto out;
1018 next_dnode:
1019 if (create)
1020 __do_map_lock(sbi, flag, true);
1022 /* When reading holes, we need its node page */
1023 set_new_dnode(&dn, inode, NULL, NULL, 0);
1024 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1025 if (err) {
1026 if (flag == F2FS_GET_BLOCK_BMAP)
1027 map->m_pblk = 0;
1028 if (err == -ENOENT) {
1029 err = 0;
1030 if (map->m_next_pgofs)
1031 *map->m_next_pgofs =
1032 f2fs_get_next_page_offset(&dn, pgofs);
1033 if (map->m_next_extent)
1034 *map->m_next_extent =
1035 f2fs_get_next_page_offset(&dn, pgofs);
1037 goto unlock_out;
1040 start_pgofs = pgofs;
1041 prealloc = 0;
1042 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1043 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1045 next_block:
1046 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1048 if (!is_valid_blkaddr(blkaddr)) {
1049 if (create) {
1050 if (unlikely(f2fs_cp_error(sbi))) {
1051 err = -EIO;
1052 goto sync_out;
1054 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1055 if (blkaddr == NULL_ADDR) {
1056 prealloc++;
1057 last_ofs_in_node = dn.ofs_in_node;
1059 } else {
1060 err = __allocate_data_block(&dn,
1061 map->m_seg_type);
1062 if (!err)
1063 set_inode_flag(inode, FI_APPEND_WRITE);
1065 if (err)
1066 goto sync_out;
1067 map->m_flags |= F2FS_MAP_NEW;
1068 blkaddr = dn.data_blkaddr;
1069 } else {
1070 if (flag == F2FS_GET_BLOCK_BMAP) {
1071 map->m_pblk = 0;
1072 goto sync_out;
1074 if (flag == F2FS_GET_BLOCK_PRECACHE)
1075 goto sync_out;
1076 if (flag == F2FS_GET_BLOCK_FIEMAP &&
1077 blkaddr == NULL_ADDR) {
1078 if (map->m_next_pgofs)
1079 *map->m_next_pgofs = pgofs + 1;
1080 goto sync_out;
1082 if (flag != F2FS_GET_BLOCK_FIEMAP) {
1083 /* for defragment case */
1084 if (map->m_next_pgofs)
1085 *map->m_next_pgofs = pgofs + 1;
1086 goto sync_out;
1091 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1092 goto skip;
1094 if (map->m_len == 0) {
1095 /* preallocated unwritten block should be mapped for fiemap. */
1096 if (blkaddr == NEW_ADDR)
1097 map->m_flags |= F2FS_MAP_UNWRITTEN;
1098 map->m_flags |= F2FS_MAP_MAPPED;
1100 map->m_pblk = blkaddr;
1101 map->m_len = 1;
1102 } else if ((map->m_pblk != NEW_ADDR &&
1103 blkaddr == (map->m_pblk + ofs)) ||
1104 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1105 flag == F2FS_GET_BLOCK_PRE_DIO) {
1106 ofs++;
1107 map->m_len++;
1108 } else {
1109 goto sync_out;
1112 skip:
1113 dn.ofs_in_node++;
1114 pgofs++;
1116 /* preallocate blocks in batch for one dnode page */
1117 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1118 (pgofs == end || dn.ofs_in_node == end_offset)) {
1120 dn.ofs_in_node = ofs_in_node;
1121 err = f2fs_reserve_new_blocks(&dn, prealloc);
1122 if (err)
1123 goto sync_out;
1125 map->m_len += dn.ofs_in_node - ofs_in_node;
1126 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1127 err = -ENOSPC;
1128 goto sync_out;
1130 dn.ofs_in_node = end_offset;
1133 if (pgofs >= end)
1134 goto sync_out;
1135 else if (dn.ofs_in_node < end_offset)
1136 goto next_block;
1138 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1139 if (map->m_flags & F2FS_MAP_MAPPED) {
1140 unsigned int ofs = start_pgofs - map->m_lblk;
1142 f2fs_update_extent_cache_range(&dn,
1143 start_pgofs, map->m_pblk + ofs,
1144 map->m_len - ofs);
1148 f2fs_put_dnode(&dn);
1150 if (create) {
1151 __do_map_lock(sbi, flag, false);
1152 f2fs_balance_fs(sbi, dn.node_changed);
1154 goto next_dnode;
1156 sync_out:
1157 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1158 if (map->m_flags & F2FS_MAP_MAPPED) {
1159 unsigned int ofs = start_pgofs - map->m_lblk;
1161 f2fs_update_extent_cache_range(&dn,
1162 start_pgofs, map->m_pblk + ofs,
1163 map->m_len - ofs);
1165 if (map->m_next_extent)
1166 *map->m_next_extent = pgofs + 1;
1168 f2fs_put_dnode(&dn);
1169 unlock_out:
1170 if (create) {
1171 __do_map_lock(sbi, flag, false);
1172 f2fs_balance_fs(sbi, dn.node_changed);
1174 out:
1175 trace_f2fs_map_blocks(inode, map, err);
1176 return err;
1179 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1181 struct f2fs_map_blocks map;
1182 block_t last_lblk;
1183 int err;
1185 if (pos + len > i_size_read(inode))
1186 return false;
1188 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1189 map.m_next_pgofs = NULL;
1190 map.m_next_extent = NULL;
1191 map.m_seg_type = NO_CHECK_TYPE;
1192 last_lblk = F2FS_BLK_ALIGN(pos + len);
1194 while (map.m_lblk < last_lblk) {
1195 map.m_len = last_lblk - map.m_lblk;
1196 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1197 if (err || map.m_len == 0)
1198 return false;
1199 map.m_lblk += map.m_len;
1201 return true;
1204 static int __get_data_block(struct inode *inode, sector_t iblock,
1205 struct buffer_head *bh, int create, int flag,
1206 pgoff_t *next_pgofs, int seg_type)
1208 struct f2fs_map_blocks map;
1209 int err;
1211 map.m_lblk = iblock;
1212 map.m_len = bh->b_size >> inode->i_blkbits;
1213 map.m_next_pgofs = next_pgofs;
1214 map.m_next_extent = NULL;
1215 map.m_seg_type = seg_type;
1217 err = f2fs_map_blocks(inode, &map, create, flag);
1218 if (!err) {
1219 map_bh(bh, inode->i_sb, map.m_pblk);
1220 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1221 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1223 return err;
1226 static int get_data_block(struct inode *inode, sector_t iblock,
1227 struct buffer_head *bh_result, int create, int flag,
1228 pgoff_t *next_pgofs)
1230 return __get_data_block(inode, iblock, bh_result, create,
1231 flag, next_pgofs,
1232 NO_CHECK_TYPE);
1235 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1236 struct buffer_head *bh_result, int create)
1238 return __get_data_block(inode, iblock, bh_result, create,
1239 F2FS_GET_BLOCK_DEFAULT, NULL,
1240 f2fs_rw_hint_to_seg_type(
1241 inode->i_write_hint));
1244 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1245 struct buffer_head *bh_result, int create)
1247 /* Block number less than F2FS MAX BLOCKS */
1248 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1249 return -EFBIG;
1251 return __get_data_block(inode, iblock, bh_result, create,
1252 F2FS_GET_BLOCK_BMAP, NULL,
1253 NO_CHECK_TYPE);
1256 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1258 return (offset >> inode->i_blkbits);
1261 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1263 return (blk << inode->i_blkbits);
1266 static int f2fs_xattr_fiemap(struct inode *inode,
1267 struct fiemap_extent_info *fieinfo)
1269 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1270 struct page *page;
1271 struct node_info ni;
1272 __u64 phys = 0, len;
1273 __u32 flags;
1274 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1275 int err = 0;
1277 if (f2fs_has_inline_xattr(inode)) {
1278 int offset;
1280 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1281 inode->i_ino, false);
1282 if (!page)
1283 return -ENOMEM;
1285 f2fs_get_node_info(sbi, inode->i_ino, &ni);
1287 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1288 offset = offsetof(struct f2fs_inode, i_addr) +
1289 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1290 get_inline_xattr_addrs(inode));
1292 phys += offset;
1293 len = inline_xattr_size(inode);
1295 f2fs_put_page(page, 1);
1297 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1299 if (!xnid)
1300 flags |= FIEMAP_EXTENT_LAST;
1302 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1303 if (err || err == 1)
1304 return err;
1307 if (xnid) {
1308 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1309 if (!page)
1310 return -ENOMEM;
1312 f2fs_get_node_info(sbi, xnid, &ni);
1314 phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1315 len = inode->i_sb->s_blocksize;
1317 f2fs_put_page(page, 1);
1319 flags = FIEMAP_EXTENT_LAST;
1322 if (phys)
1323 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1325 return (err < 0 ? err : 0);
1328 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1329 u64 start, u64 len)
1331 struct buffer_head map_bh;
1332 sector_t start_blk, last_blk;
1333 pgoff_t next_pgofs;
1334 u64 logical = 0, phys = 0, size = 0;
1335 u32 flags = 0;
1336 int ret = 0;
1338 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1339 ret = f2fs_precache_extents(inode);
1340 if (ret)
1341 return ret;
1344 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1345 if (ret)
1346 return ret;
1348 inode_lock(inode);
1350 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1351 ret = f2fs_xattr_fiemap(inode, fieinfo);
1352 goto out;
1355 if (f2fs_has_inline_data(inode)) {
1356 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1357 if (ret != -EAGAIN)
1358 goto out;
1361 if (logical_to_blk(inode, len) == 0)
1362 len = blk_to_logical(inode, 1);
1364 start_blk = logical_to_blk(inode, start);
1365 last_blk = logical_to_blk(inode, start + len - 1);
1367 next:
1368 memset(&map_bh, 0, sizeof(struct buffer_head));
1369 map_bh.b_size = len;
1371 ret = get_data_block(inode, start_blk, &map_bh, 0,
1372 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1373 if (ret)
1374 goto out;
1376 /* HOLE */
1377 if (!buffer_mapped(&map_bh)) {
1378 start_blk = next_pgofs;
1380 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1381 F2FS_I_SB(inode)->max_file_blocks))
1382 goto prep_next;
1384 flags |= FIEMAP_EXTENT_LAST;
1387 if (size) {
1388 if (f2fs_encrypted_inode(inode))
1389 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1391 ret = fiemap_fill_next_extent(fieinfo, logical,
1392 phys, size, flags);
1395 if (start_blk > last_blk || ret)
1396 goto out;
1398 logical = blk_to_logical(inode, start_blk);
1399 phys = blk_to_logical(inode, map_bh.b_blocknr);
1400 size = map_bh.b_size;
1401 flags = 0;
1402 if (buffer_unwritten(&map_bh))
1403 flags = FIEMAP_EXTENT_UNWRITTEN;
1405 start_blk += logical_to_blk(inode, size);
1407 prep_next:
1408 cond_resched();
1409 if (fatal_signal_pending(current))
1410 ret = -EINTR;
1411 else
1412 goto next;
1413 out:
1414 if (ret == 1)
1415 ret = 0;
1417 inode_unlock(inode);
1418 return ret;
1422 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1423 * Major change was from block_size == page_size in f2fs by default.
1425 static int f2fs_mpage_readpages(struct address_space *mapping,
1426 struct list_head *pages, struct page *page,
1427 unsigned nr_pages)
1429 struct bio *bio = NULL;
1430 sector_t last_block_in_bio = 0;
1431 struct inode *inode = mapping->host;
1432 const unsigned blkbits = inode->i_blkbits;
1433 const unsigned blocksize = 1 << blkbits;
1434 sector_t block_in_file;
1435 sector_t last_block;
1436 sector_t last_block_in_file;
1437 sector_t block_nr;
1438 struct f2fs_map_blocks map;
1440 map.m_pblk = 0;
1441 map.m_lblk = 0;
1442 map.m_len = 0;
1443 map.m_flags = 0;
1444 map.m_next_pgofs = NULL;
1445 map.m_next_extent = NULL;
1446 map.m_seg_type = NO_CHECK_TYPE;
1448 for (; nr_pages; nr_pages--) {
1449 if (pages) {
1450 page = list_last_entry(pages, struct page, lru);
1452 prefetchw(&page->flags);
1453 list_del(&page->lru);
1454 if (add_to_page_cache_lru(page, mapping,
1455 page->index,
1456 readahead_gfp_mask(mapping)))
1457 goto next_page;
1460 block_in_file = (sector_t)page->index;
1461 last_block = block_in_file + nr_pages;
1462 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1463 blkbits;
1464 if (last_block > last_block_in_file)
1465 last_block = last_block_in_file;
1468 * Map blocks using the previous result first.
1470 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1471 block_in_file > map.m_lblk &&
1472 block_in_file < (map.m_lblk + map.m_len))
1473 goto got_it;
1476 * Then do more f2fs_map_blocks() calls until we are
1477 * done with this page.
1479 map.m_flags = 0;
1481 if (block_in_file < last_block) {
1482 map.m_lblk = block_in_file;
1483 map.m_len = last_block - block_in_file;
1485 if (f2fs_map_blocks(inode, &map, 0,
1486 F2FS_GET_BLOCK_DEFAULT))
1487 goto set_error_page;
1489 got_it:
1490 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1491 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1492 SetPageMappedToDisk(page);
1494 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1495 SetPageUptodate(page);
1496 goto confused;
1498 } else {
1499 zero_user_segment(page, 0, PAGE_SIZE);
1500 if (!PageUptodate(page))
1501 SetPageUptodate(page);
1502 unlock_page(page);
1503 goto next_page;
1507 * This page will go to BIO. Do we need to send this
1508 * BIO off first?
1510 if (bio && (last_block_in_bio != block_nr - 1 ||
1511 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1512 submit_and_realloc:
1513 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1514 bio = NULL;
1516 if (bio == NULL) {
1517 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages);
1518 if (IS_ERR(bio)) {
1519 bio = NULL;
1520 goto set_error_page;
1524 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1525 goto submit_and_realloc;
1527 last_block_in_bio = block_nr;
1528 goto next_page;
1529 set_error_page:
1530 SetPageError(page);
1531 zero_user_segment(page, 0, PAGE_SIZE);
1532 unlock_page(page);
1533 goto next_page;
1534 confused:
1535 if (bio) {
1536 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1537 bio = NULL;
1539 unlock_page(page);
1540 next_page:
1541 if (pages)
1542 put_page(page);
1544 BUG_ON(pages && !list_empty(pages));
1545 if (bio)
1546 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1547 return 0;
1550 static int f2fs_read_data_page(struct file *file, struct page *page)
1552 struct inode *inode = page->mapping->host;
1553 int ret = -EAGAIN;
1555 trace_f2fs_readpage(page, DATA);
1557 /* If the file has inline data, try to read it directly */
1558 if (f2fs_has_inline_data(inode))
1559 ret = f2fs_read_inline_data(inode, page);
1560 if (ret == -EAGAIN)
1561 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1562 return ret;
1565 static int f2fs_read_data_pages(struct file *file,
1566 struct address_space *mapping,
1567 struct list_head *pages, unsigned nr_pages)
1569 struct inode *inode = mapping->host;
1570 struct page *page = list_last_entry(pages, struct page, lru);
1572 trace_f2fs_readpages(inode, page, nr_pages);
1574 /* If the file has inline data, skip readpages */
1575 if (f2fs_has_inline_data(inode))
1576 return 0;
1578 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1581 static int encrypt_one_page(struct f2fs_io_info *fio)
1583 struct inode *inode = fio->page->mapping->host;
1584 gfp_t gfp_flags = GFP_NOFS;
1586 if (!f2fs_encrypted_file(inode))
1587 return 0;
1589 /* wait for GCed page writeback via META_MAPPING */
1590 f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr);
1592 retry_encrypt:
1593 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1594 PAGE_SIZE, 0, fio->page->index, gfp_flags);
1595 if (!IS_ERR(fio->encrypted_page))
1596 return 0;
1598 /* flush pending IOs and wait for a while in the ENOMEM case */
1599 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1600 f2fs_flush_merged_writes(fio->sbi);
1601 congestion_wait(BLK_RW_ASYNC, HZ/50);
1602 gfp_flags |= __GFP_NOFAIL;
1603 goto retry_encrypt;
1605 return PTR_ERR(fio->encrypted_page);
1608 static inline bool check_inplace_update_policy(struct inode *inode,
1609 struct f2fs_io_info *fio)
1611 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1612 unsigned int policy = SM_I(sbi)->ipu_policy;
1614 if (policy & (0x1 << F2FS_IPU_FORCE))
1615 return true;
1616 if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1617 return true;
1618 if (policy & (0x1 << F2FS_IPU_UTIL) &&
1619 utilization(sbi) > SM_I(sbi)->min_ipu_util)
1620 return true;
1621 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1622 utilization(sbi) > SM_I(sbi)->min_ipu_util)
1623 return true;
1626 * IPU for rewrite async pages
1628 if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1629 fio && fio->op == REQ_OP_WRITE &&
1630 !(fio->op_flags & REQ_SYNC) &&
1631 !f2fs_encrypted_inode(inode))
1632 return true;
1634 /* this is only set during fdatasync */
1635 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1636 is_inode_flag_set(inode, FI_NEED_IPU))
1637 return true;
1639 return false;
1642 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1644 if (f2fs_is_pinned_file(inode))
1645 return true;
1647 /* if this is cold file, we should overwrite to avoid fragmentation */
1648 if (file_is_cold(inode))
1649 return true;
1651 return check_inplace_update_policy(inode, fio);
1654 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1656 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1658 if (test_opt(sbi, LFS))
1659 return true;
1660 if (S_ISDIR(inode->i_mode))
1661 return true;
1662 if (f2fs_is_atomic_file(inode))
1663 return true;
1664 if (fio) {
1665 if (is_cold_data(fio->page))
1666 return true;
1667 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1668 return true;
1670 return false;
1673 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1675 struct inode *inode = fio->page->mapping->host;
1677 if (f2fs_should_update_outplace(inode, fio))
1678 return false;
1680 return f2fs_should_update_inplace(inode, fio);
1683 int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1685 struct page *page = fio->page;
1686 struct inode *inode = page->mapping->host;
1687 struct dnode_of_data dn;
1688 struct extent_info ei = {0,0,0};
1689 bool ipu_force = false;
1690 int err = 0;
1692 set_new_dnode(&dn, inode, NULL, NULL, 0);
1693 if (need_inplace_update(fio) &&
1694 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1695 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1697 if (is_valid_blkaddr(fio->old_blkaddr)) {
1698 ipu_force = true;
1699 fio->need_lock = LOCK_DONE;
1700 goto got_it;
1704 /* Deadlock due to between page->lock and f2fs_lock_op */
1705 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1706 return -EAGAIN;
1708 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1709 if (err)
1710 goto out;
1712 fio->old_blkaddr = dn.data_blkaddr;
1714 /* This page is already truncated */
1715 if (fio->old_blkaddr == NULL_ADDR) {
1716 ClearPageUptodate(page);
1717 goto out_writepage;
1719 got_it:
1721 * If current allocation needs SSR,
1722 * it had better in-place writes for updated data.
1724 if (ipu_force || (is_valid_blkaddr(fio->old_blkaddr) &&
1725 need_inplace_update(fio))) {
1726 err = encrypt_one_page(fio);
1727 if (err)
1728 goto out_writepage;
1730 set_page_writeback(page);
1731 ClearPageError(page);
1732 f2fs_put_dnode(&dn);
1733 if (fio->need_lock == LOCK_REQ)
1734 f2fs_unlock_op(fio->sbi);
1735 err = f2fs_inplace_write_data(fio);
1736 trace_f2fs_do_write_data_page(fio->page, IPU);
1737 set_inode_flag(inode, FI_UPDATE_WRITE);
1738 return err;
1741 if (fio->need_lock == LOCK_RETRY) {
1742 if (!f2fs_trylock_op(fio->sbi)) {
1743 err = -EAGAIN;
1744 goto out_writepage;
1746 fio->need_lock = LOCK_REQ;
1749 err = encrypt_one_page(fio);
1750 if (err)
1751 goto out_writepage;
1753 set_page_writeback(page);
1754 ClearPageError(page);
1756 /* LFS mode write path */
1757 f2fs_outplace_write_data(&dn, fio);
1758 trace_f2fs_do_write_data_page(page, OPU);
1759 set_inode_flag(inode, FI_APPEND_WRITE);
1760 if (page->index == 0)
1761 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1762 out_writepage:
1763 f2fs_put_dnode(&dn);
1764 out:
1765 if (fio->need_lock == LOCK_REQ)
1766 f2fs_unlock_op(fio->sbi);
1767 return err;
1770 static int __write_data_page(struct page *page, bool *submitted,
1771 struct writeback_control *wbc,
1772 enum iostat_type io_type)
1774 struct inode *inode = page->mapping->host;
1775 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1776 loff_t i_size = i_size_read(inode);
1777 const pgoff_t end_index = ((unsigned long long) i_size)
1778 >> PAGE_SHIFT;
1779 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1780 unsigned offset = 0;
1781 bool need_balance_fs = false;
1782 int err = 0;
1783 struct f2fs_io_info fio = {
1784 .sbi = sbi,
1785 .ino = inode->i_ino,
1786 .type = DATA,
1787 .op = REQ_OP_WRITE,
1788 .op_flags = wbc_to_write_flags(wbc),
1789 .old_blkaddr = NULL_ADDR,
1790 .page = page,
1791 .encrypted_page = NULL,
1792 .submitted = false,
1793 .need_lock = LOCK_RETRY,
1794 .io_type = io_type,
1795 .io_wbc = wbc,
1798 trace_f2fs_writepage(page, DATA);
1800 /* we should bypass data pages to proceed the kworkder jobs */
1801 if (unlikely(f2fs_cp_error(sbi))) {
1802 mapping_set_error(page->mapping, -EIO);
1804 * don't drop any dirty dentry pages for keeping lastest
1805 * directory structure.
1807 if (S_ISDIR(inode->i_mode))
1808 goto redirty_out;
1809 goto out;
1812 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1813 goto redirty_out;
1815 if (page->index < end_index)
1816 goto write;
1819 * If the offset is out-of-range of file size,
1820 * this page does not have to be written to disk.
1822 offset = i_size & (PAGE_SIZE - 1);
1823 if ((page->index >= end_index + 1) || !offset)
1824 goto out;
1826 zero_user_segment(page, offset, PAGE_SIZE);
1827 write:
1828 if (f2fs_is_drop_cache(inode))
1829 goto out;
1830 /* we should not write 0'th page having journal header */
1831 if (f2fs_is_volatile_file(inode) && (!page->index ||
1832 (!wbc->for_reclaim &&
1833 f2fs_available_free_memory(sbi, BASE_CHECK))))
1834 goto redirty_out;
1836 /* Dentry blocks are controlled by checkpoint */
1837 if (S_ISDIR(inode->i_mode)) {
1838 fio.need_lock = LOCK_DONE;
1839 err = f2fs_do_write_data_page(&fio);
1840 goto done;
1843 if (!wbc->for_reclaim)
1844 need_balance_fs = true;
1845 else if (has_not_enough_free_secs(sbi, 0, 0))
1846 goto redirty_out;
1847 else
1848 set_inode_flag(inode, FI_HOT_DATA);
1850 err = -EAGAIN;
1851 if (f2fs_has_inline_data(inode)) {
1852 err = f2fs_write_inline_data(inode, page);
1853 if (!err)
1854 goto out;
1857 if (err == -EAGAIN) {
1858 err = f2fs_do_write_data_page(&fio);
1859 if (err == -EAGAIN) {
1860 fio.need_lock = LOCK_REQ;
1861 err = f2fs_do_write_data_page(&fio);
1865 if (err) {
1866 file_set_keep_isize(inode);
1867 } else {
1868 down_write(&F2FS_I(inode)->i_sem);
1869 if (F2FS_I(inode)->last_disk_size < psize)
1870 F2FS_I(inode)->last_disk_size = psize;
1871 up_write(&F2FS_I(inode)->i_sem);
1874 done:
1875 if (err && err != -ENOENT)
1876 goto redirty_out;
1878 out:
1879 inode_dec_dirty_pages(inode);
1880 if (err)
1881 ClearPageUptodate(page);
1883 if (wbc->for_reclaim) {
1884 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1885 clear_inode_flag(inode, FI_HOT_DATA);
1886 f2fs_remove_dirty_inode(inode);
1887 submitted = NULL;
1890 unlock_page(page);
1891 if (!S_ISDIR(inode->i_mode))
1892 f2fs_balance_fs(sbi, need_balance_fs);
1894 if (unlikely(f2fs_cp_error(sbi))) {
1895 f2fs_submit_merged_write(sbi, DATA);
1896 submitted = NULL;
1899 if (submitted)
1900 *submitted = fio.submitted;
1902 return 0;
1904 redirty_out:
1905 redirty_page_for_writepage(wbc, page);
1907 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
1908 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
1909 * file_write_and_wait_range() will see EIO error, which is critical
1910 * to return value of fsync() followed by atomic_write failure to user.
1912 if (!err || wbc->for_reclaim)
1913 return AOP_WRITEPAGE_ACTIVATE;
1914 unlock_page(page);
1915 return err;
1918 static int f2fs_write_data_page(struct page *page,
1919 struct writeback_control *wbc)
1921 return __write_data_page(page, NULL, wbc, FS_DATA_IO);
1925 * This function was copied from write_cche_pages from mm/page-writeback.c.
1926 * The major change is making write step of cold data page separately from
1927 * warm/hot data page.
1929 static int f2fs_write_cache_pages(struct address_space *mapping,
1930 struct writeback_control *wbc,
1931 enum iostat_type io_type)
1933 int ret = 0;
1934 int done = 0;
1935 struct pagevec pvec;
1936 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1937 int nr_pages;
1938 pgoff_t uninitialized_var(writeback_index);
1939 pgoff_t index;
1940 pgoff_t end; /* Inclusive */
1941 pgoff_t done_index;
1942 pgoff_t last_idx = ULONG_MAX;
1943 int cycled;
1944 int range_whole = 0;
1945 int tag;
1947 pagevec_init(&pvec);
1949 if (get_dirty_pages(mapping->host) <=
1950 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
1951 set_inode_flag(mapping->host, FI_HOT_DATA);
1952 else
1953 clear_inode_flag(mapping->host, FI_HOT_DATA);
1955 if (wbc->range_cyclic) {
1956 writeback_index = mapping->writeback_index; /* prev offset */
1957 index = writeback_index;
1958 if (index == 0)
1959 cycled = 1;
1960 else
1961 cycled = 0;
1962 end = -1;
1963 } else {
1964 index = wbc->range_start >> PAGE_SHIFT;
1965 end = wbc->range_end >> PAGE_SHIFT;
1966 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1967 range_whole = 1;
1968 cycled = 1; /* ignore range_cyclic tests */
1970 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1971 tag = PAGECACHE_TAG_TOWRITE;
1972 else
1973 tag = PAGECACHE_TAG_DIRTY;
1974 retry:
1975 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1976 tag_pages_for_writeback(mapping, index, end);
1977 done_index = index;
1978 while (!done && (index <= end)) {
1979 int i;
1981 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
1982 tag);
1983 if (nr_pages == 0)
1984 break;
1986 for (i = 0; i < nr_pages; i++) {
1987 struct page *page = pvec.pages[i];
1988 bool submitted = false;
1990 /* give a priority to WB_SYNC threads */
1991 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
1992 wbc->sync_mode == WB_SYNC_NONE) {
1993 done = 1;
1994 break;
1997 done_index = page->index;
1998 retry_write:
1999 lock_page(page);
2001 if (unlikely(page->mapping != mapping)) {
2002 continue_unlock:
2003 unlock_page(page);
2004 continue;
2007 if (!PageDirty(page)) {
2008 /* someone wrote it for us */
2009 goto continue_unlock;
2012 if (PageWriteback(page)) {
2013 if (wbc->sync_mode != WB_SYNC_NONE)
2014 f2fs_wait_on_page_writeback(page,
2015 DATA, true);
2016 else
2017 goto continue_unlock;
2020 BUG_ON(PageWriteback(page));
2021 if (!clear_page_dirty_for_io(page))
2022 goto continue_unlock;
2024 ret = __write_data_page(page, &submitted, wbc, io_type);
2025 if (unlikely(ret)) {
2027 * keep nr_to_write, since vfs uses this to
2028 * get # of written pages.
2030 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2031 unlock_page(page);
2032 ret = 0;
2033 continue;
2034 } else if (ret == -EAGAIN) {
2035 ret = 0;
2036 if (wbc->sync_mode == WB_SYNC_ALL) {
2037 cond_resched();
2038 congestion_wait(BLK_RW_ASYNC,
2039 HZ/50);
2040 goto retry_write;
2042 continue;
2044 done_index = page->index + 1;
2045 done = 1;
2046 break;
2047 } else if (submitted) {
2048 last_idx = page->index;
2051 if (--wbc->nr_to_write <= 0 &&
2052 wbc->sync_mode == WB_SYNC_NONE) {
2053 done = 1;
2054 break;
2057 pagevec_release(&pvec);
2058 cond_resched();
2061 if (!cycled && !done) {
2062 cycled = 1;
2063 index = 0;
2064 end = writeback_index - 1;
2065 goto retry;
2067 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2068 mapping->writeback_index = done_index;
2070 if (last_idx != ULONG_MAX)
2071 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2072 0, last_idx, DATA);
2074 return ret;
2077 static int __f2fs_write_data_pages(struct address_space *mapping,
2078 struct writeback_control *wbc,
2079 enum iostat_type io_type)
2081 struct inode *inode = mapping->host;
2082 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2083 struct blk_plug plug;
2084 int ret;
2086 /* deal with chardevs and other special file */
2087 if (!mapping->a_ops->writepage)
2088 return 0;
2090 /* skip writing if there is no dirty page in this inode */
2091 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2092 return 0;
2094 /* during POR, we don't need to trigger writepage at all. */
2095 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2096 goto skip_write;
2098 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
2099 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2100 f2fs_available_free_memory(sbi, DIRTY_DENTS))
2101 goto skip_write;
2103 /* skip writing during file defragment */
2104 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2105 goto skip_write;
2107 trace_f2fs_writepages(mapping->host, wbc, DATA);
2109 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2110 if (wbc->sync_mode == WB_SYNC_ALL)
2111 atomic_inc(&sbi->wb_sync_req[DATA]);
2112 else if (atomic_read(&sbi->wb_sync_req[DATA]))
2113 goto skip_write;
2115 blk_start_plug(&plug);
2116 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2117 blk_finish_plug(&plug);
2119 if (wbc->sync_mode == WB_SYNC_ALL)
2120 atomic_dec(&sbi->wb_sync_req[DATA]);
2122 * if some pages were truncated, we cannot guarantee its mapping->host
2123 * to detect pending bios.
2126 f2fs_remove_dirty_inode(inode);
2127 return ret;
2129 skip_write:
2130 wbc->pages_skipped += get_dirty_pages(inode);
2131 trace_f2fs_writepages(mapping->host, wbc, DATA);
2132 return 0;
2135 static int f2fs_write_data_pages(struct address_space *mapping,
2136 struct writeback_control *wbc)
2138 struct inode *inode = mapping->host;
2140 return __f2fs_write_data_pages(mapping, wbc,
2141 F2FS_I(inode)->cp_task == current ?
2142 FS_CP_DATA_IO : FS_DATA_IO);
2145 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2147 struct inode *inode = mapping->host;
2148 loff_t i_size = i_size_read(inode);
2150 if (to > i_size) {
2151 down_write(&F2FS_I(inode)->i_mmap_sem);
2152 truncate_pagecache(inode, i_size);
2153 f2fs_truncate_blocks(inode, i_size, true);
2154 up_write(&F2FS_I(inode)->i_mmap_sem);
2158 static int prepare_write_begin(struct f2fs_sb_info *sbi,
2159 struct page *page, loff_t pos, unsigned len,
2160 block_t *blk_addr, bool *node_changed)
2162 struct inode *inode = page->mapping->host;
2163 pgoff_t index = page->index;
2164 struct dnode_of_data dn;
2165 struct page *ipage;
2166 bool locked = false;
2167 struct extent_info ei = {0,0,0};
2168 int err = 0;
2171 * we already allocated all the blocks, so we don't need to get
2172 * the block addresses when there is no need to fill the page.
2174 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2175 !is_inode_flag_set(inode, FI_NO_PREALLOC))
2176 return 0;
2178 if (f2fs_has_inline_data(inode) ||
2179 (pos & PAGE_MASK) >= i_size_read(inode)) {
2180 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
2181 locked = true;
2183 restart:
2184 /* check inline_data */
2185 ipage = f2fs_get_node_page(sbi, inode->i_ino);
2186 if (IS_ERR(ipage)) {
2187 err = PTR_ERR(ipage);
2188 goto unlock_out;
2191 set_new_dnode(&dn, inode, ipage, ipage, 0);
2193 if (f2fs_has_inline_data(inode)) {
2194 if (pos + len <= MAX_INLINE_DATA(inode)) {
2195 f2fs_do_read_inline_data(page, ipage);
2196 set_inode_flag(inode, FI_DATA_EXIST);
2197 if (inode->i_nlink)
2198 set_inline_node(ipage);
2199 } else {
2200 err = f2fs_convert_inline_page(&dn, page);
2201 if (err)
2202 goto out;
2203 if (dn.data_blkaddr == NULL_ADDR)
2204 err = f2fs_get_block(&dn, index);
2206 } else if (locked) {
2207 err = f2fs_get_block(&dn, index);
2208 } else {
2209 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2210 dn.data_blkaddr = ei.blk + index - ei.fofs;
2211 } else {
2212 /* hole case */
2213 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2214 if (err || dn.data_blkaddr == NULL_ADDR) {
2215 f2fs_put_dnode(&dn);
2216 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2217 true);
2218 locked = true;
2219 goto restart;
2224 /* convert_inline_page can make node_changed */
2225 *blk_addr = dn.data_blkaddr;
2226 *node_changed = dn.node_changed;
2227 out:
2228 f2fs_put_dnode(&dn);
2229 unlock_out:
2230 if (locked)
2231 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
2232 return err;
2235 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2236 loff_t pos, unsigned len, unsigned flags,
2237 struct page **pagep, void **fsdata)
2239 struct inode *inode = mapping->host;
2240 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2241 struct page *page = NULL;
2242 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2243 bool need_balance = false, drop_atomic = false;
2244 block_t blkaddr = NULL_ADDR;
2245 int err = 0;
2247 trace_f2fs_write_begin(inode, pos, len, flags);
2249 if (f2fs_is_atomic_file(inode) &&
2250 !f2fs_available_free_memory(sbi, INMEM_PAGES)) {
2251 err = -ENOMEM;
2252 drop_atomic = true;
2253 goto fail;
2257 * We should check this at this moment to avoid deadlock on inode page
2258 * and #0 page. The locking rule for inline_data conversion should be:
2259 * lock_page(page #0) -> lock_page(inode_page)
2261 if (index != 0) {
2262 err = f2fs_convert_inline_inode(inode);
2263 if (err)
2264 goto fail;
2266 repeat:
2268 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2269 * wait_for_stable_page. Will wait that below with our IO control.
2271 page = f2fs_pagecache_get_page(mapping, index,
2272 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2273 if (!page) {
2274 err = -ENOMEM;
2275 goto fail;
2278 *pagep = page;
2280 err = prepare_write_begin(sbi, page, pos, len,
2281 &blkaddr, &need_balance);
2282 if (err)
2283 goto fail;
2285 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
2286 unlock_page(page);
2287 f2fs_balance_fs(sbi, true);
2288 lock_page(page);
2289 if (page->mapping != mapping) {
2290 /* The page got truncated from under us */
2291 f2fs_put_page(page, 1);
2292 goto repeat;
2296 f2fs_wait_on_page_writeback(page, DATA, false);
2298 /* wait for GCed page writeback via META_MAPPING */
2299 if (f2fs_post_read_required(inode))
2300 f2fs_wait_on_block_writeback(sbi, blkaddr);
2302 if (len == PAGE_SIZE || PageUptodate(page))
2303 return 0;
2305 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2306 zero_user_segment(page, len, PAGE_SIZE);
2307 return 0;
2310 if (blkaddr == NEW_ADDR) {
2311 zero_user_segment(page, 0, PAGE_SIZE);
2312 SetPageUptodate(page);
2313 } else {
2314 err = f2fs_submit_page_read(inode, page, blkaddr);
2315 if (err)
2316 goto fail;
2318 lock_page(page);
2319 if (unlikely(page->mapping != mapping)) {
2320 f2fs_put_page(page, 1);
2321 goto repeat;
2323 if (unlikely(!PageUptodate(page))) {
2324 err = -EIO;
2325 goto fail;
2328 return 0;
2330 fail:
2331 f2fs_put_page(page, 1);
2332 f2fs_write_failed(mapping, pos + len);
2333 if (drop_atomic)
2334 f2fs_drop_inmem_pages_all(sbi, false);
2335 return err;
2338 static int f2fs_write_end(struct file *file,
2339 struct address_space *mapping,
2340 loff_t pos, unsigned len, unsigned copied,
2341 struct page *page, void *fsdata)
2343 struct inode *inode = page->mapping->host;
2345 trace_f2fs_write_end(inode, pos, len, copied);
2348 * This should be come from len == PAGE_SIZE, and we expect copied
2349 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2350 * let generic_perform_write() try to copy data again through copied=0.
2352 if (!PageUptodate(page)) {
2353 if (unlikely(copied != len))
2354 copied = 0;
2355 else
2356 SetPageUptodate(page);
2358 if (!copied)
2359 goto unlock_out;
2361 set_page_dirty(page);
2363 if (pos + copied > i_size_read(inode))
2364 f2fs_i_size_write(inode, pos + copied);
2365 unlock_out:
2366 f2fs_put_page(page, 1);
2367 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2368 return copied;
2371 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2372 loff_t offset)
2374 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
2376 if (offset & blocksize_mask)
2377 return -EINVAL;
2379 if (iov_iter_alignment(iter) & blocksize_mask)
2380 return -EINVAL;
2382 return 0;
2385 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2387 struct address_space *mapping = iocb->ki_filp->f_mapping;
2388 struct inode *inode = mapping->host;
2389 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2390 size_t count = iov_iter_count(iter);
2391 loff_t offset = iocb->ki_pos;
2392 int rw = iov_iter_rw(iter);
2393 int err;
2394 enum rw_hint hint = iocb->ki_hint;
2395 int whint_mode = F2FS_OPTION(sbi).whint_mode;
2397 err = check_direct_IO(inode, iter, offset);
2398 if (err)
2399 return err;
2401 if (f2fs_force_buffered_io(inode, rw))
2402 return 0;
2404 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2406 if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2407 iocb->ki_hint = WRITE_LIFE_NOT_SET;
2409 if (!down_read_trylock(&F2FS_I(inode)->i_gc_rwsem[rw])) {
2410 if (iocb->ki_flags & IOCB_NOWAIT) {
2411 iocb->ki_hint = hint;
2412 err = -EAGAIN;
2413 goto out;
2415 down_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
2418 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2419 up_read(&F2FS_I(inode)->i_gc_rwsem[rw]);
2421 if (rw == WRITE) {
2422 if (whint_mode == WHINT_MODE_OFF)
2423 iocb->ki_hint = hint;
2424 if (err > 0) {
2425 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2426 err);
2427 set_inode_flag(inode, FI_UPDATE_WRITE);
2428 } else if (err < 0) {
2429 f2fs_write_failed(mapping, offset + count);
2433 out:
2434 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2436 return err;
2439 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2440 unsigned int length)
2442 struct inode *inode = page->mapping->host;
2443 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2445 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2446 (offset % PAGE_SIZE || length != PAGE_SIZE))
2447 return;
2449 if (PageDirty(page)) {
2450 if (inode->i_ino == F2FS_META_INO(sbi)) {
2451 dec_page_count(sbi, F2FS_DIRTY_META);
2452 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2453 dec_page_count(sbi, F2FS_DIRTY_NODES);
2454 } else {
2455 inode_dec_dirty_pages(inode);
2456 f2fs_remove_dirty_inode(inode);
2460 /* This is atomic written page, keep Private */
2461 if (IS_ATOMIC_WRITTEN_PAGE(page))
2462 return f2fs_drop_inmem_page(inode, page);
2464 set_page_private(page, 0);
2465 ClearPagePrivate(page);
2468 int f2fs_release_page(struct page *page, gfp_t wait)
2470 /* If this is dirty page, keep PagePrivate */
2471 if (PageDirty(page))
2472 return 0;
2474 /* This is atomic written page, keep Private */
2475 if (IS_ATOMIC_WRITTEN_PAGE(page))
2476 return 0;
2478 set_page_private(page, 0);
2479 ClearPagePrivate(page);
2480 return 1;
2483 static int f2fs_set_data_page_dirty(struct page *page)
2485 struct address_space *mapping = page->mapping;
2486 struct inode *inode = mapping->host;
2488 trace_f2fs_set_page_dirty(page, DATA);
2490 if (!PageUptodate(page))
2491 SetPageUptodate(page);
2493 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2494 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2495 f2fs_register_inmem_page(inode, page);
2496 return 1;
2499 * Previously, this page has been registered, we just
2500 * return here.
2502 return 0;
2505 if (!PageDirty(page)) {
2506 __set_page_dirty_nobuffers(page);
2507 f2fs_update_dirty_page(inode, page);
2508 return 1;
2510 return 0;
2513 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2515 struct inode *inode = mapping->host;
2517 if (f2fs_has_inline_data(inode))
2518 return 0;
2520 /* make sure allocating whole blocks */
2521 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2522 filemap_write_and_wait(mapping);
2524 return generic_block_bmap(mapping, block, get_data_block_bmap);
2527 #ifdef CONFIG_MIGRATION
2528 #include <linux/migrate.h>
2530 int f2fs_migrate_page(struct address_space *mapping,
2531 struct page *newpage, struct page *page, enum migrate_mode mode)
2533 int rc, extra_count;
2534 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2535 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2537 BUG_ON(PageWriteback(page));
2539 /* migrating an atomic written page is safe with the inmem_lock hold */
2540 if (atomic_written) {
2541 if (mode != MIGRATE_SYNC)
2542 return -EBUSY;
2543 if (!mutex_trylock(&fi->inmem_lock))
2544 return -EAGAIN;
2548 * A reference is expected if PagePrivate set when move mapping,
2549 * however F2FS breaks this for maintaining dirty page counts when
2550 * truncating pages. So here adjusting the 'extra_count' make it work.
2552 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2553 rc = migrate_page_move_mapping(mapping, newpage,
2554 page, NULL, mode, extra_count);
2555 if (rc != MIGRATEPAGE_SUCCESS) {
2556 if (atomic_written)
2557 mutex_unlock(&fi->inmem_lock);
2558 return rc;
2561 if (atomic_written) {
2562 struct inmem_pages *cur;
2563 list_for_each_entry(cur, &fi->inmem_pages, list)
2564 if (cur->page == page) {
2565 cur->page = newpage;
2566 break;
2568 mutex_unlock(&fi->inmem_lock);
2569 put_page(page);
2570 get_page(newpage);
2573 if (PagePrivate(page))
2574 SetPagePrivate(newpage);
2575 set_page_private(newpage, page_private(page));
2577 if (mode != MIGRATE_SYNC_NO_COPY)
2578 migrate_page_copy(newpage, page);
2579 else
2580 migrate_page_states(newpage, page);
2582 return MIGRATEPAGE_SUCCESS;
2584 #endif
2586 const struct address_space_operations f2fs_dblock_aops = {
2587 .readpage = f2fs_read_data_page,
2588 .readpages = f2fs_read_data_pages,
2589 .writepage = f2fs_write_data_page,
2590 .writepages = f2fs_write_data_pages,
2591 .write_begin = f2fs_write_begin,
2592 .write_end = f2fs_write_end,
2593 .set_page_dirty = f2fs_set_data_page_dirty,
2594 .invalidatepage = f2fs_invalidate_page,
2595 .releasepage = f2fs_release_page,
2596 .direct_IO = f2fs_direct_IO,
2597 .bmap = f2fs_bmap,
2598 #ifdef CONFIG_MIGRATION
2599 .migratepage = f2fs_migrate_page,
2600 #endif
2603 void f2fs_clear_radix_tree_dirty_tag(struct page *page)
2605 struct address_space *mapping = page_mapping(page);
2606 unsigned long flags;
2608 xa_lock_irqsave(&mapping->i_pages, flags);
2609 radix_tree_tag_clear(&mapping->i_pages, page_index(page),
2610 PAGECACHE_TAG_DIRTY);
2611 xa_unlock_irqrestore(&mapping->i_pages, flags);
2614 int __init f2fs_init_post_read_processing(void)
2616 bio_post_read_ctx_cache = KMEM_CACHE(bio_post_read_ctx, 0);
2617 if (!bio_post_read_ctx_cache)
2618 goto fail;
2619 bio_post_read_ctx_pool =
2620 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
2621 bio_post_read_ctx_cache);
2622 if (!bio_post_read_ctx_pool)
2623 goto fail_free_cache;
2624 return 0;
2626 fail_free_cache:
2627 kmem_cache_destroy(bio_post_read_ctx_cache);
2628 fail:
2629 return -ENOMEM;
2632 void __exit f2fs_destroy_post_read_processing(void)
2634 mempool_destroy(bio_post_read_ctx_pool);
2635 kmem_cache_destroy(bio_post_read_ctx_cache);