locking/refcounts: Include fewer headers in <linux/refcount.h>
[linux/fpc-iii.git] / fs / f2fs / file.c
blob6880c6f78d58d0670bf28863d53de0c1e6afb3b0
1 /*
2 * fs/f2fs/file.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
36 static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
38 struct inode *inode = file_inode(vmf->vma->vm_file);
39 vm_fault_t ret;
41 down_read(&F2FS_I(inode)->i_mmap_sem);
42 ret = filemap_fault(vmf);
43 up_read(&F2FS_I(inode)->i_mmap_sem);
45 return ret;
48 static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
50 struct page *page = vmf->page;
51 struct inode *inode = file_inode(vmf->vma->vm_file);
52 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 struct dnode_of_data dn;
54 int err;
56 if (unlikely(f2fs_cp_error(sbi))) {
57 err = -EIO;
58 goto err;
61 sb_start_pagefault(inode->i_sb);
63 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
65 /* block allocation */
66 f2fs_lock_op(sbi);
67 set_new_dnode(&dn, inode, NULL, NULL, 0);
68 err = f2fs_reserve_block(&dn, page->index);
69 if (err) {
70 f2fs_unlock_op(sbi);
71 goto out;
73 f2fs_put_dnode(&dn);
74 f2fs_unlock_op(sbi);
76 f2fs_balance_fs(sbi, dn.node_changed);
78 file_update_time(vmf->vma->vm_file);
79 down_read(&F2FS_I(inode)->i_mmap_sem);
80 lock_page(page);
81 if (unlikely(page->mapping != inode->i_mapping ||
82 page_offset(page) > i_size_read(inode) ||
83 !PageUptodate(page))) {
84 unlock_page(page);
85 err = -EFAULT;
86 goto out_sem;
90 * check to see if the page is mapped already (no holes)
92 if (PageMappedToDisk(page))
93 goto mapped;
95 /* page is wholly or partially inside EOF */
96 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
97 i_size_read(inode)) {
98 loff_t offset;
100 offset = i_size_read(inode) & ~PAGE_MASK;
101 zero_user_segment(page, offset, PAGE_SIZE);
103 set_page_dirty(page);
104 if (!PageUptodate(page))
105 SetPageUptodate(page);
107 f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
109 trace_f2fs_vm_page_mkwrite(page, DATA);
110 mapped:
111 /* fill the page */
112 f2fs_wait_on_page_writeback(page, DATA, false);
114 /* wait for GCed page writeback via META_MAPPING */
115 if (f2fs_post_read_required(inode))
116 f2fs_wait_on_block_writeback(sbi, dn.data_blkaddr);
118 out_sem:
119 up_read(&F2FS_I(inode)->i_mmap_sem);
120 out:
121 sb_end_pagefault(inode->i_sb);
122 f2fs_update_time(sbi, REQ_TIME);
123 err:
124 return block_page_mkwrite_return(err);
127 static const struct vm_operations_struct f2fs_file_vm_ops = {
128 .fault = f2fs_filemap_fault,
129 .map_pages = filemap_map_pages,
130 .page_mkwrite = f2fs_vm_page_mkwrite,
133 static int get_parent_ino(struct inode *inode, nid_t *pino)
135 struct dentry *dentry;
137 inode = igrab(inode);
138 dentry = d_find_any_alias(inode);
139 iput(inode);
140 if (!dentry)
141 return 0;
143 *pino = parent_ino(dentry);
144 dput(dentry);
145 return 1;
148 static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
150 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
151 enum cp_reason_type cp_reason = CP_NO_NEEDED;
153 if (!S_ISREG(inode->i_mode))
154 cp_reason = CP_NON_REGULAR;
155 else if (inode->i_nlink != 1)
156 cp_reason = CP_HARDLINK;
157 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
158 cp_reason = CP_SB_NEED_CP;
159 else if (file_wrong_pino(inode))
160 cp_reason = CP_WRONG_PINO;
161 else if (!f2fs_space_for_roll_forward(sbi))
162 cp_reason = CP_NO_SPC_ROLL;
163 else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
164 cp_reason = CP_NODE_NEED_CP;
165 else if (test_opt(sbi, FASTBOOT))
166 cp_reason = CP_FASTBOOT_MODE;
167 else if (F2FS_OPTION(sbi).active_logs == 2)
168 cp_reason = CP_SPEC_LOG_NUM;
169 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
170 f2fs_need_dentry_mark(sbi, inode->i_ino) &&
171 f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
172 TRANS_DIR_INO))
173 cp_reason = CP_RECOVER_DIR;
175 return cp_reason;
178 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
180 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
181 bool ret = false;
182 /* But we need to avoid that there are some inode updates */
183 if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
184 ret = true;
185 f2fs_put_page(i, 0);
186 return ret;
189 static void try_to_fix_pino(struct inode *inode)
191 struct f2fs_inode_info *fi = F2FS_I(inode);
192 nid_t pino;
194 down_write(&fi->i_sem);
195 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
196 get_parent_ino(inode, &pino)) {
197 f2fs_i_pino_write(inode, pino);
198 file_got_pino(inode);
200 up_write(&fi->i_sem);
203 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
204 int datasync, bool atomic)
206 struct inode *inode = file->f_mapping->host;
207 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
208 nid_t ino = inode->i_ino;
209 int ret = 0;
210 enum cp_reason_type cp_reason = 0;
211 struct writeback_control wbc = {
212 .sync_mode = WB_SYNC_ALL,
213 .nr_to_write = LONG_MAX,
214 .for_reclaim = 0,
217 if (unlikely(f2fs_readonly(inode->i_sb)))
218 return 0;
220 trace_f2fs_sync_file_enter(inode);
222 /* if fdatasync is triggered, let's do in-place-update */
223 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
224 set_inode_flag(inode, FI_NEED_IPU);
225 ret = file_write_and_wait_range(file, start, end);
226 clear_inode_flag(inode, FI_NEED_IPU);
228 if (ret) {
229 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
230 return ret;
233 /* if the inode is dirty, let's recover all the time */
234 if (!f2fs_skip_inode_update(inode, datasync)) {
235 f2fs_write_inode(inode, NULL);
236 goto go_write;
240 * if there is no written data, don't waste time to write recovery info.
242 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
243 !f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
245 /* it may call write_inode just prior to fsync */
246 if (need_inode_page_update(sbi, ino))
247 goto go_write;
249 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
250 f2fs_exist_written_data(sbi, ino, UPDATE_INO))
251 goto flush_out;
252 goto out;
254 go_write:
256 * Both of fdatasync() and fsync() are able to be recovered from
257 * sudden-power-off.
259 down_read(&F2FS_I(inode)->i_sem);
260 cp_reason = need_do_checkpoint(inode);
261 up_read(&F2FS_I(inode)->i_sem);
263 if (cp_reason) {
264 /* all the dirty node pages should be flushed for POR */
265 ret = f2fs_sync_fs(inode->i_sb, 1);
268 * We've secured consistency through sync_fs. Following pino
269 * will be used only for fsynced inodes after checkpoint.
271 try_to_fix_pino(inode);
272 clear_inode_flag(inode, FI_APPEND_WRITE);
273 clear_inode_flag(inode, FI_UPDATE_WRITE);
274 goto out;
276 sync_nodes:
277 atomic_inc(&sbi->wb_sync_req[NODE]);
278 ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic);
279 atomic_dec(&sbi->wb_sync_req[NODE]);
280 if (ret)
281 goto out;
283 /* if cp_error was enabled, we should avoid infinite loop */
284 if (unlikely(f2fs_cp_error(sbi))) {
285 ret = -EIO;
286 goto out;
289 if (f2fs_need_inode_block_update(sbi, ino)) {
290 f2fs_mark_inode_dirty_sync(inode, true);
291 f2fs_write_inode(inode, NULL);
292 goto sync_nodes;
296 * If it's atomic_write, it's just fine to keep write ordering. So
297 * here we don't need to wait for node write completion, since we use
298 * node chain which serializes node blocks. If one of node writes are
299 * reordered, we can see simply broken chain, resulting in stopping
300 * roll-forward recovery. It means we'll recover all or none node blocks
301 * given fsync mark.
303 if (!atomic) {
304 ret = f2fs_wait_on_node_pages_writeback(sbi, ino);
305 if (ret)
306 goto out;
309 /* once recovery info is written, don't need to tack this */
310 f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
311 clear_inode_flag(inode, FI_APPEND_WRITE);
312 flush_out:
313 if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
314 ret = f2fs_issue_flush(sbi, inode->i_ino);
315 if (!ret) {
316 f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
317 clear_inode_flag(inode, FI_UPDATE_WRITE);
318 f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
320 f2fs_update_time(sbi, REQ_TIME);
321 out:
322 trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
323 f2fs_trace_ios(NULL, 1);
324 return ret;
327 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
329 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
330 return -EIO;
331 return f2fs_do_sync_file(file, start, end, datasync, false);
334 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
335 pgoff_t pgofs, int whence)
337 struct page *page;
338 int nr_pages;
340 if (whence != SEEK_DATA)
341 return 0;
343 /* find first dirty page index */
344 nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
345 1, &page);
346 if (!nr_pages)
347 return ULONG_MAX;
348 pgofs = page->index;
349 put_page(page);
350 return pgofs;
353 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
354 int whence)
356 switch (whence) {
357 case SEEK_DATA:
358 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
359 is_valid_blkaddr(blkaddr))
360 return true;
361 break;
362 case SEEK_HOLE:
363 if (blkaddr == NULL_ADDR)
364 return true;
365 break;
367 return false;
370 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
372 struct inode *inode = file->f_mapping->host;
373 loff_t maxbytes = inode->i_sb->s_maxbytes;
374 struct dnode_of_data dn;
375 pgoff_t pgofs, end_offset, dirty;
376 loff_t data_ofs = offset;
377 loff_t isize;
378 int err = 0;
380 inode_lock(inode);
382 isize = i_size_read(inode);
383 if (offset >= isize)
384 goto fail;
386 /* handle inline data case */
387 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
388 if (whence == SEEK_HOLE)
389 data_ofs = isize;
390 goto found;
393 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
395 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
397 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
398 set_new_dnode(&dn, inode, NULL, NULL, 0);
399 err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
400 if (err && err != -ENOENT) {
401 goto fail;
402 } else if (err == -ENOENT) {
403 /* direct node does not exists */
404 if (whence == SEEK_DATA) {
405 pgofs = f2fs_get_next_page_offset(&dn, pgofs);
406 continue;
407 } else {
408 goto found;
412 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
414 /* find data/hole in dnode block */
415 for (; dn.ofs_in_node < end_offset;
416 dn.ofs_in_node++, pgofs++,
417 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
418 block_t blkaddr;
420 blkaddr = datablock_addr(dn.inode,
421 dn.node_page, dn.ofs_in_node);
423 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
424 f2fs_put_dnode(&dn);
425 goto found;
428 f2fs_put_dnode(&dn);
431 if (whence == SEEK_DATA)
432 goto fail;
433 found:
434 if (whence == SEEK_HOLE && data_ofs > isize)
435 data_ofs = isize;
436 inode_unlock(inode);
437 return vfs_setpos(file, data_ofs, maxbytes);
438 fail:
439 inode_unlock(inode);
440 return -ENXIO;
443 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
445 struct inode *inode = file->f_mapping->host;
446 loff_t maxbytes = inode->i_sb->s_maxbytes;
448 switch (whence) {
449 case SEEK_SET:
450 case SEEK_CUR:
451 case SEEK_END:
452 return generic_file_llseek_size(file, offset, whence,
453 maxbytes, i_size_read(inode));
454 case SEEK_DATA:
455 case SEEK_HOLE:
456 if (offset < 0)
457 return -ENXIO;
458 return f2fs_seek_block(file, offset, whence);
461 return -EINVAL;
464 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
466 struct inode *inode = file_inode(file);
467 int err;
469 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
470 return -EIO;
472 /* we don't need to use inline_data strictly */
473 err = f2fs_convert_inline_inode(inode);
474 if (err)
475 return err;
477 file_accessed(file);
478 vma->vm_ops = &f2fs_file_vm_ops;
479 return 0;
482 static int f2fs_file_open(struct inode *inode, struct file *filp)
484 int err = fscrypt_file_open(inode, filp);
486 if (err)
487 return err;
489 filp->f_mode |= FMODE_NOWAIT;
491 return dquot_file_open(inode, filp);
494 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
496 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
497 struct f2fs_node *raw_node;
498 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
499 __le32 *addr;
500 int base = 0;
502 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
503 base = get_extra_isize(dn->inode);
505 raw_node = F2FS_NODE(dn->node_page);
506 addr = blkaddr_in_node(raw_node) + base + ofs;
508 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
509 block_t blkaddr = le32_to_cpu(*addr);
511 if (blkaddr == NULL_ADDR)
512 continue;
514 dn->data_blkaddr = NULL_ADDR;
515 f2fs_set_data_blkaddr(dn);
516 f2fs_invalidate_blocks(sbi, blkaddr);
517 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
518 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
519 nr_free++;
522 if (nr_free) {
523 pgoff_t fofs;
525 * once we invalidate valid blkaddr in range [ofs, ofs + count],
526 * we will invalidate all blkaddr in the whole range.
528 fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
529 dn->inode) + ofs;
530 f2fs_update_extent_cache_range(dn, fofs, 0, len);
531 dec_valid_block_count(sbi, dn->inode, nr_free);
533 dn->ofs_in_node = ofs;
535 f2fs_update_time(sbi, REQ_TIME);
536 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
537 dn->ofs_in_node, nr_free);
540 void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
542 f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
545 static int truncate_partial_data_page(struct inode *inode, u64 from,
546 bool cache_only)
548 loff_t offset = from & (PAGE_SIZE - 1);
549 pgoff_t index = from >> PAGE_SHIFT;
550 struct address_space *mapping = inode->i_mapping;
551 struct page *page;
553 if (!offset && !cache_only)
554 return 0;
556 if (cache_only) {
557 page = find_lock_page(mapping, index);
558 if (page && PageUptodate(page))
559 goto truncate_out;
560 f2fs_put_page(page, 1);
561 return 0;
564 page = f2fs_get_lock_data_page(inode, index, true);
565 if (IS_ERR(page))
566 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
567 truncate_out:
568 f2fs_wait_on_page_writeback(page, DATA, true);
569 zero_user(page, offset, PAGE_SIZE - offset);
571 /* An encrypted inode should have a key and truncate the last page. */
572 f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
573 if (!cache_only)
574 set_page_dirty(page);
575 f2fs_put_page(page, 1);
576 return 0;
579 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
581 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
582 struct dnode_of_data dn;
583 pgoff_t free_from;
584 int count = 0, err = 0;
585 struct page *ipage;
586 bool truncate_page = false;
588 trace_f2fs_truncate_blocks_enter(inode, from);
590 free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
592 if (free_from >= sbi->max_file_blocks)
593 goto free_partial;
595 if (lock)
596 f2fs_lock_op(sbi);
598 ipage = f2fs_get_node_page(sbi, inode->i_ino);
599 if (IS_ERR(ipage)) {
600 err = PTR_ERR(ipage);
601 goto out;
604 if (f2fs_has_inline_data(inode)) {
605 f2fs_truncate_inline_inode(inode, ipage, from);
606 f2fs_put_page(ipage, 1);
607 truncate_page = true;
608 goto out;
611 set_new_dnode(&dn, inode, ipage, NULL, 0);
612 err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
613 if (err) {
614 if (err == -ENOENT)
615 goto free_next;
616 goto out;
619 count = ADDRS_PER_PAGE(dn.node_page, inode);
621 count -= dn.ofs_in_node;
622 f2fs_bug_on(sbi, count < 0);
624 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
625 f2fs_truncate_data_blocks_range(&dn, count);
626 free_from += count;
629 f2fs_put_dnode(&dn);
630 free_next:
631 err = f2fs_truncate_inode_blocks(inode, free_from);
632 out:
633 if (lock)
634 f2fs_unlock_op(sbi);
635 free_partial:
636 /* lastly zero out the first data page */
637 if (!err)
638 err = truncate_partial_data_page(inode, from, truncate_page);
640 trace_f2fs_truncate_blocks_exit(inode, err);
641 return err;
644 int f2fs_truncate(struct inode *inode)
646 int err;
648 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
649 return -EIO;
651 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
652 S_ISLNK(inode->i_mode)))
653 return 0;
655 trace_f2fs_truncate(inode);
657 #ifdef CONFIG_F2FS_FAULT_INJECTION
658 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
659 f2fs_show_injection_info(FAULT_TRUNCATE);
660 return -EIO;
662 #endif
663 /* we should check inline_data size */
664 if (!f2fs_may_inline_data(inode)) {
665 err = f2fs_convert_inline_inode(inode);
666 if (err)
667 return err;
670 err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
671 if (err)
672 return err;
674 inode->i_mtime = inode->i_ctime = current_time(inode);
675 f2fs_mark_inode_dirty_sync(inode, false);
676 return 0;
679 int f2fs_getattr(const struct path *path, struct kstat *stat,
680 u32 request_mask, unsigned int query_flags)
682 struct inode *inode = d_inode(path->dentry);
683 struct f2fs_inode_info *fi = F2FS_I(inode);
684 struct f2fs_inode *ri;
685 unsigned int flags;
687 if (f2fs_has_extra_attr(inode) &&
688 f2fs_sb_has_inode_crtime(inode->i_sb) &&
689 F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
690 stat->result_mask |= STATX_BTIME;
691 stat->btime.tv_sec = fi->i_crtime.tv_sec;
692 stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
695 flags = fi->i_flags & F2FS_FL_USER_VISIBLE;
696 if (flags & F2FS_APPEND_FL)
697 stat->attributes |= STATX_ATTR_APPEND;
698 if (flags & F2FS_COMPR_FL)
699 stat->attributes |= STATX_ATTR_COMPRESSED;
700 if (f2fs_encrypted_inode(inode))
701 stat->attributes |= STATX_ATTR_ENCRYPTED;
702 if (flags & F2FS_IMMUTABLE_FL)
703 stat->attributes |= STATX_ATTR_IMMUTABLE;
704 if (flags & F2FS_NODUMP_FL)
705 stat->attributes |= STATX_ATTR_NODUMP;
707 stat->attributes_mask |= (STATX_ATTR_APPEND |
708 STATX_ATTR_COMPRESSED |
709 STATX_ATTR_ENCRYPTED |
710 STATX_ATTR_IMMUTABLE |
711 STATX_ATTR_NODUMP);
713 generic_fillattr(inode, stat);
715 /* we need to show initial sectors used for inline_data/dentries */
716 if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
717 f2fs_has_inline_dentry(inode))
718 stat->blocks += (stat->size + 511) >> 9;
720 return 0;
723 #ifdef CONFIG_F2FS_FS_POSIX_ACL
724 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
726 unsigned int ia_valid = attr->ia_valid;
728 if (ia_valid & ATTR_UID)
729 inode->i_uid = attr->ia_uid;
730 if (ia_valid & ATTR_GID)
731 inode->i_gid = attr->ia_gid;
732 if (ia_valid & ATTR_ATIME)
733 inode->i_atime = timespec64_trunc(attr->ia_atime,
734 inode->i_sb->s_time_gran);
735 if (ia_valid & ATTR_MTIME)
736 inode->i_mtime = timespec64_trunc(attr->ia_mtime,
737 inode->i_sb->s_time_gran);
738 if (ia_valid & ATTR_CTIME)
739 inode->i_ctime = timespec64_trunc(attr->ia_ctime,
740 inode->i_sb->s_time_gran);
741 if (ia_valid & ATTR_MODE) {
742 umode_t mode = attr->ia_mode;
744 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
745 mode &= ~S_ISGID;
746 set_acl_inode(inode, mode);
749 #else
750 #define __setattr_copy setattr_copy
751 #endif
753 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
755 struct inode *inode = d_inode(dentry);
756 int err;
757 bool size_changed = false;
759 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
760 return -EIO;
762 err = setattr_prepare(dentry, attr);
763 if (err)
764 return err;
766 err = fscrypt_prepare_setattr(dentry, attr);
767 if (err)
768 return err;
770 if (is_quota_modification(inode, attr)) {
771 err = dquot_initialize(inode);
772 if (err)
773 return err;
775 if ((attr->ia_valid & ATTR_UID &&
776 !uid_eq(attr->ia_uid, inode->i_uid)) ||
777 (attr->ia_valid & ATTR_GID &&
778 !gid_eq(attr->ia_gid, inode->i_gid))) {
779 err = dquot_transfer(inode, attr);
780 if (err)
781 return err;
784 if (attr->ia_valid & ATTR_SIZE) {
785 if (attr->ia_size <= i_size_read(inode)) {
786 down_write(&F2FS_I(inode)->i_mmap_sem);
787 truncate_setsize(inode, attr->ia_size);
788 err = f2fs_truncate(inode);
789 up_write(&F2FS_I(inode)->i_mmap_sem);
790 if (err)
791 return err;
792 } else {
794 * do not trim all blocks after i_size if target size is
795 * larger than i_size.
797 down_write(&F2FS_I(inode)->i_mmap_sem);
798 truncate_setsize(inode, attr->ia_size);
799 up_write(&F2FS_I(inode)->i_mmap_sem);
801 /* should convert inline inode here */
802 if (!f2fs_may_inline_data(inode)) {
803 err = f2fs_convert_inline_inode(inode);
804 if (err)
805 return err;
807 inode->i_mtime = inode->i_ctime = current_time(inode);
810 down_write(&F2FS_I(inode)->i_sem);
811 F2FS_I(inode)->last_disk_size = i_size_read(inode);
812 up_write(&F2FS_I(inode)->i_sem);
814 size_changed = true;
817 __setattr_copy(inode, attr);
819 if (attr->ia_valid & ATTR_MODE) {
820 err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
821 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
822 inode->i_mode = F2FS_I(inode)->i_acl_mode;
823 clear_inode_flag(inode, FI_ACL_MODE);
827 /* file size may changed here */
828 f2fs_mark_inode_dirty_sync(inode, size_changed);
830 /* inode change will produce dirty node pages flushed by checkpoint */
831 f2fs_balance_fs(F2FS_I_SB(inode), true);
833 return err;
836 const struct inode_operations f2fs_file_inode_operations = {
837 .getattr = f2fs_getattr,
838 .setattr = f2fs_setattr,
839 .get_acl = f2fs_get_acl,
840 .set_acl = f2fs_set_acl,
841 #ifdef CONFIG_F2FS_FS_XATTR
842 .listxattr = f2fs_listxattr,
843 #endif
844 .fiemap = f2fs_fiemap,
847 static int fill_zero(struct inode *inode, pgoff_t index,
848 loff_t start, loff_t len)
850 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
851 struct page *page;
853 if (!len)
854 return 0;
856 f2fs_balance_fs(sbi, true);
858 f2fs_lock_op(sbi);
859 page = f2fs_get_new_data_page(inode, NULL, index, false);
860 f2fs_unlock_op(sbi);
862 if (IS_ERR(page))
863 return PTR_ERR(page);
865 f2fs_wait_on_page_writeback(page, DATA, true);
866 zero_user(page, start, len);
867 set_page_dirty(page);
868 f2fs_put_page(page, 1);
869 return 0;
872 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
874 int err;
876 while (pg_start < pg_end) {
877 struct dnode_of_data dn;
878 pgoff_t end_offset, count;
880 set_new_dnode(&dn, inode, NULL, NULL, 0);
881 err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
882 if (err) {
883 if (err == -ENOENT) {
884 pg_start = f2fs_get_next_page_offset(&dn,
885 pg_start);
886 continue;
888 return err;
891 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
892 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
894 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
896 f2fs_truncate_data_blocks_range(&dn, count);
897 f2fs_put_dnode(&dn);
899 pg_start += count;
901 return 0;
904 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
906 pgoff_t pg_start, pg_end;
907 loff_t off_start, off_end;
908 int ret;
910 ret = f2fs_convert_inline_inode(inode);
911 if (ret)
912 return ret;
914 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
915 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
917 off_start = offset & (PAGE_SIZE - 1);
918 off_end = (offset + len) & (PAGE_SIZE - 1);
920 if (pg_start == pg_end) {
921 ret = fill_zero(inode, pg_start, off_start,
922 off_end - off_start);
923 if (ret)
924 return ret;
925 } else {
926 if (off_start) {
927 ret = fill_zero(inode, pg_start++, off_start,
928 PAGE_SIZE - off_start);
929 if (ret)
930 return ret;
932 if (off_end) {
933 ret = fill_zero(inode, pg_end, 0, off_end);
934 if (ret)
935 return ret;
938 if (pg_start < pg_end) {
939 struct address_space *mapping = inode->i_mapping;
940 loff_t blk_start, blk_end;
941 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
943 f2fs_balance_fs(sbi, true);
945 blk_start = (loff_t)pg_start << PAGE_SHIFT;
946 blk_end = (loff_t)pg_end << PAGE_SHIFT;
947 down_write(&F2FS_I(inode)->i_mmap_sem);
948 truncate_inode_pages_range(mapping, blk_start,
949 blk_end - 1);
951 f2fs_lock_op(sbi);
952 ret = f2fs_truncate_hole(inode, pg_start, pg_end);
953 f2fs_unlock_op(sbi);
954 up_write(&F2FS_I(inode)->i_mmap_sem);
958 return ret;
961 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
962 int *do_replace, pgoff_t off, pgoff_t len)
964 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
965 struct dnode_of_data dn;
966 int ret, done, i;
968 next_dnode:
969 set_new_dnode(&dn, inode, NULL, NULL, 0);
970 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
971 if (ret && ret != -ENOENT) {
972 return ret;
973 } else if (ret == -ENOENT) {
974 if (dn.max_level == 0)
975 return -ENOENT;
976 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
977 blkaddr += done;
978 do_replace += done;
979 goto next;
982 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
983 dn.ofs_in_node, len);
984 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
985 *blkaddr = datablock_addr(dn.inode,
986 dn.node_page, dn.ofs_in_node);
987 if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
989 if (test_opt(sbi, LFS)) {
990 f2fs_put_dnode(&dn);
991 return -ENOTSUPP;
994 /* do not invalidate this block address */
995 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
996 *do_replace = 1;
999 f2fs_put_dnode(&dn);
1000 next:
1001 len -= done;
1002 off += done;
1003 if (len)
1004 goto next_dnode;
1005 return 0;
1008 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1009 int *do_replace, pgoff_t off, int len)
1011 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1012 struct dnode_of_data dn;
1013 int ret, i;
1015 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1016 if (*do_replace == 0)
1017 continue;
1019 set_new_dnode(&dn, inode, NULL, NULL, 0);
1020 ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1021 if (ret) {
1022 dec_valid_block_count(sbi, inode, 1);
1023 f2fs_invalidate_blocks(sbi, *blkaddr);
1024 } else {
1025 f2fs_update_data_blkaddr(&dn, *blkaddr);
1027 f2fs_put_dnode(&dn);
1029 return 0;
1032 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1033 block_t *blkaddr, int *do_replace,
1034 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1036 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1037 pgoff_t i = 0;
1038 int ret;
1040 while (i < len) {
1041 if (blkaddr[i] == NULL_ADDR && !full) {
1042 i++;
1043 continue;
1046 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1047 struct dnode_of_data dn;
1048 struct node_info ni;
1049 size_t new_size;
1050 pgoff_t ilen;
1052 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1053 ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1054 if (ret)
1055 return ret;
1057 f2fs_get_node_info(sbi, dn.nid, &ni);
1058 ilen = min((pgoff_t)
1059 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1060 dn.ofs_in_node, len - i);
1061 do {
1062 dn.data_blkaddr = datablock_addr(dn.inode,
1063 dn.node_page, dn.ofs_in_node);
1064 f2fs_truncate_data_blocks_range(&dn, 1);
1066 if (do_replace[i]) {
1067 f2fs_i_blocks_write(src_inode,
1068 1, false, false);
1069 f2fs_i_blocks_write(dst_inode,
1070 1, true, false);
1071 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1072 blkaddr[i], ni.version, true, false);
1074 do_replace[i] = 0;
1076 dn.ofs_in_node++;
1077 i++;
1078 new_size = (dst + i) << PAGE_SHIFT;
1079 if (dst_inode->i_size < new_size)
1080 f2fs_i_size_write(dst_inode, new_size);
1081 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1083 f2fs_put_dnode(&dn);
1084 } else {
1085 struct page *psrc, *pdst;
1087 psrc = f2fs_get_lock_data_page(src_inode,
1088 src + i, true);
1089 if (IS_ERR(psrc))
1090 return PTR_ERR(psrc);
1091 pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1092 true);
1093 if (IS_ERR(pdst)) {
1094 f2fs_put_page(psrc, 1);
1095 return PTR_ERR(pdst);
1097 f2fs_copy_page(psrc, pdst);
1098 set_page_dirty(pdst);
1099 f2fs_put_page(pdst, 1);
1100 f2fs_put_page(psrc, 1);
1102 ret = f2fs_truncate_hole(src_inode,
1103 src + i, src + i + 1);
1104 if (ret)
1105 return ret;
1106 i++;
1109 return 0;
1112 static int __exchange_data_block(struct inode *src_inode,
1113 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1114 pgoff_t len, bool full)
1116 block_t *src_blkaddr;
1117 int *do_replace;
1118 pgoff_t olen;
1119 int ret;
1121 while (len) {
1122 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1124 src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1125 array_size(olen, sizeof(block_t)),
1126 GFP_KERNEL);
1127 if (!src_blkaddr)
1128 return -ENOMEM;
1130 do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1131 array_size(olen, sizeof(int)),
1132 GFP_KERNEL);
1133 if (!do_replace) {
1134 kvfree(src_blkaddr);
1135 return -ENOMEM;
1138 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1139 do_replace, src, olen);
1140 if (ret)
1141 goto roll_back;
1143 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1144 do_replace, src, dst, olen, full);
1145 if (ret)
1146 goto roll_back;
1148 src += olen;
1149 dst += olen;
1150 len -= olen;
1152 kvfree(src_blkaddr);
1153 kvfree(do_replace);
1155 return 0;
1157 roll_back:
1158 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1159 kvfree(src_blkaddr);
1160 kvfree(do_replace);
1161 return ret;
1164 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1166 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1167 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1168 int ret;
1170 f2fs_balance_fs(sbi, true);
1171 f2fs_lock_op(sbi);
1173 f2fs_drop_extent_tree(inode);
1175 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1176 f2fs_unlock_op(sbi);
1177 return ret;
1180 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1182 pgoff_t pg_start, pg_end;
1183 loff_t new_size;
1184 int ret;
1186 if (offset + len >= i_size_read(inode))
1187 return -EINVAL;
1189 /* collapse range should be aligned to block size of f2fs. */
1190 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1191 return -EINVAL;
1193 ret = f2fs_convert_inline_inode(inode);
1194 if (ret)
1195 return ret;
1197 pg_start = offset >> PAGE_SHIFT;
1198 pg_end = (offset + len) >> PAGE_SHIFT;
1200 /* avoid gc operation during block exchange */
1201 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1203 down_write(&F2FS_I(inode)->i_mmap_sem);
1204 /* write out all dirty pages from offset */
1205 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1206 if (ret)
1207 goto out_unlock;
1209 truncate_pagecache(inode, offset);
1211 ret = f2fs_do_collapse(inode, pg_start, pg_end);
1212 if (ret)
1213 goto out_unlock;
1215 /* write out all moved pages, if possible */
1216 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1217 truncate_pagecache(inode, offset);
1219 new_size = i_size_read(inode) - len;
1220 truncate_pagecache(inode, new_size);
1222 ret = f2fs_truncate_blocks(inode, new_size, true);
1223 if (!ret)
1224 f2fs_i_size_write(inode, new_size);
1225 out_unlock:
1226 up_write(&F2FS_I(inode)->i_mmap_sem);
1227 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1228 return ret;
1231 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1232 pgoff_t end)
1234 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1235 pgoff_t index = start;
1236 unsigned int ofs_in_node = dn->ofs_in_node;
1237 blkcnt_t count = 0;
1238 int ret;
1240 for (; index < end; index++, dn->ofs_in_node++) {
1241 if (datablock_addr(dn->inode, dn->node_page,
1242 dn->ofs_in_node) == NULL_ADDR)
1243 count++;
1246 dn->ofs_in_node = ofs_in_node;
1247 ret = f2fs_reserve_new_blocks(dn, count);
1248 if (ret)
1249 return ret;
1251 dn->ofs_in_node = ofs_in_node;
1252 for (index = start; index < end; index++, dn->ofs_in_node++) {
1253 dn->data_blkaddr = datablock_addr(dn->inode,
1254 dn->node_page, dn->ofs_in_node);
1256 * f2fs_reserve_new_blocks will not guarantee entire block
1257 * allocation.
1259 if (dn->data_blkaddr == NULL_ADDR) {
1260 ret = -ENOSPC;
1261 break;
1263 if (dn->data_blkaddr != NEW_ADDR) {
1264 f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1265 dn->data_blkaddr = NEW_ADDR;
1266 f2fs_set_data_blkaddr(dn);
1270 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1272 return ret;
1275 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1276 int mode)
1278 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1279 struct address_space *mapping = inode->i_mapping;
1280 pgoff_t index, pg_start, pg_end;
1281 loff_t new_size = i_size_read(inode);
1282 loff_t off_start, off_end;
1283 int ret = 0;
1285 ret = inode_newsize_ok(inode, (len + offset));
1286 if (ret)
1287 return ret;
1289 ret = f2fs_convert_inline_inode(inode);
1290 if (ret)
1291 return ret;
1293 down_write(&F2FS_I(inode)->i_mmap_sem);
1294 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1295 if (ret)
1296 goto out_sem;
1298 truncate_pagecache_range(inode, offset, offset + len - 1);
1300 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1301 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1303 off_start = offset & (PAGE_SIZE - 1);
1304 off_end = (offset + len) & (PAGE_SIZE - 1);
1306 if (pg_start == pg_end) {
1307 ret = fill_zero(inode, pg_start, off_start,
1308 off_end - off_start);
1309 if (ret)
1310 goto out_sem;
1312 new_size = max_t(loff_t, new_size, offset + len);
1313 } else {
1314 if (off_start) {
1315 ret = fill_zero(inode, pg_start++, off_start,
1316 PAGE_SIZE - off_start);
1317 if (ret)
1318 goto out_sem;
1320 new_size = max_t(loff_t, new_size,
1321 (loff_t)pg_start << PAGE_SHIFT);
1324 for (index = pg_start; index < pg_end;) {
1325 struct dnode_of_data dn;
1326 unsigned int end_offset;
1327 pgoff_t end;
1329 f2fs_lock_op(sbi);
1331 set_new_dnode(&dn, inode, NULL, NULL, 0);
1332 ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1333 if (ret) {
1334 f2fs_unlock_op(sbi);
1335 goto out;
1338 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1339 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1341 ret = f2fs_do_zero_range(&dn, index, end);
1342 f2fs_put_dnode(&dn);
1343 f2fs_unlock_op(sbi);
1345 f2fs_balance_fs(sbi, dn.node_changed);
1347 if (ret)
1348 goto out;
1350 index = end;
1351 new_size = max_t(loff_t, new_size,
1352 (loff_t)index << PAGE_SHIFT);
1355 if (off_end) {
1356 ret = fill_zero(inode, pg_end, 0, off_end);
1357 if (ret)
1358 goto out;
1360 new_size = max_t(loff_t, new_size, offset + len);
1364 out:
1365 if (new_size > i_size_read(inode)) {
1366 if (mode & FALLOC_FL_KEEP_SIZE)
1367 file_set_keep_isize(inode);
1368 else
1369 f2fs_i_size_write(inode, new_size);
1371 out_sem:
1372 up_write(&F2FS_I(inode)->i_mmap_sem);
1374 return ret;
1377 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1379 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1380 pgoff_t nr, pg_start, pg_end, delta, idx;
1381 loff_t new_size;
1382 int ret = 0;
1384 new_size = i_size_read(inode) + len;
1385 ret = inode_newsize_ok(inode, new_size);
1386 if (ret)
1387 return ret;
1389 if (offset >= i_size_read(inode))
1390 return -EINVAL;
1392 /* insert range should be aligned to block size of f2fs. */
1393 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1394 return -EINVAL;
1396 ret = f2fs_convert_inline_inode(inode);
1397 if (ret)
1398 return ret;
1400 f2fs_balance_fs(sbi, true);
1402 /* avoid gc operation during block exchange */
1403 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1405 down_write(&F2FS_I(inode)->i_mmap_sem);
1406 ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1407 if (ret)
1408 goto out;
1410 /* write out all dirty pages from offset */
1411 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1412 if (ret)
1413 goto out;
1415 truncate_pagecache(inode, offset);
1417 pg_start = offset >> PAGE_SHIFT;
1418 pg_end = (offset + len) >> PAGE_SHIFT;
1419 delta = pg_end - pg_start;
1420 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1422 while (!ret && idx > pg_start) {
1423 nr = idx - pg_start;
1424 if (nr > delta)
1425 nr = delta;
1426 idx -= nr;
1428 f2fs_lock_op(sbi);
1429 f2fs_drop_extent_tree(inode);
1431 ret = __exchange_data_block(inode, inode, idx,
1432 idx + delta, nr, false);
1433 f2fs_unlock_op(sbi);
1436 /* write out all moved pages, if possible */
1437 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1438 truncate_pagecache(inode, offset);
1440 if (!ret)
1441 f2fs_i_size_write(inode, new_size);
1442 out:
1443 up_write(&F2FS_I(inode)->i_mmap_sem);
1444 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1445 return ret;
1448 static int expand_inode_data(struct inode *inode, loff_t offset,
1449 loff_t len, int mode)
1451 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1452 struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1453 .m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE };
1454 pgoff_t pg_end;
1455 loff_t new_size = i_size_read(inode);
1456 loff_t off_end;
1457 int err;
1459 err = inode_newsize_ok(inode, (len + offset));
1460 if (err)
1461 return err;
1463 err = f2fs_convert_inline_inode(inode);
1464 if (err)
1465 return err;
1467 f2fs_balance_fs(sbi, true);
1469 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1470 off_end = (offset + len) & (PAGE_SIZE - 1);
1472 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1473 map.m_len = pg_end - map.m_lblk;
1474 if (off_end)
1475 map.m_len++;
1477 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1478 if (err) {
1479 pgoff_t last_off;
1481 if (!map.m_len)
1482 return err;
1484 last_off = map.m_lblk + map.m_len - 1;
1486 /* update new size to the failed position */
1487 new_size = (last_off == pg_end) ? offset + len :
1488 (loff_t)(last_off + 1) << PAGE_SHIFT;
1489 } else {
1490 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1493 if (new_size > i_size_read(inode)) {
1494 if (mode & FALLOC_FL_KEEP_SIZE)
1495 file_set_keep_isize(inode);
1496 else
1497 f2fs_i_size_write(inode, new_size);
1500 return err;
1503 static long f2fs_fallocate(struct file *file, int mode,
1504 loff_t offset, loff_t len)
1506 struct inode *inode = file_inode(file);
1507 long ret = 0;
1509 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1510 return -EIO;
1512 /* f2fs only support ->fallocate for regular file */
1513 if (!S_ISREG(inode->i_mode))
1514 return -EINVAL;
1516 if (f2fs_encrypted_inode(inode) &&
1517 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1518 return -EOPNOTSUPP;
1520 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1521 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1522 FALLOC_FL_INSERT_RANGE))
1523 return -EOPNOTSUPP;
1525 inode_lock(inode);
1527 if (mode & FALLOC_FL_PUNCH_HOLE) {
1528 if (offset >= inode->i_size)
1529 goto out;
1531 ret = punch_hole(inode, offset, len);
1532 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1533 ret = f2fs_collapse_range(inode, offset, len);
1534 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1535 ret = f2fs_zero_range(inode, offset, len, mode);
1536 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1537 ret = f2fs_insert_range(inode, offset, len);
1538 } else {
1539 ret = expand_inode_data(inode, offset, len, mode);
1542 if (!ret) {
1543 inode->i_mtime = inode->i_ctime = current_time(inode);
1544 f2fs_mark_inode_dirty_sync(inode, false);
1545 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1548 out:
1549 inode_unlock(inode);
1551 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1552 return ret;
1555 static int f2fs_release_file(struct inode *inode, struct file *filp)
1558 * f2fs_relase_file is called at every close calls. So we should
1559 * not drop any inmemory pages by close called by other process.
1561 if (!(filp->f_mode & FMODE_WRITE) ||
1562 atomic_read(&inode->i_writecount) != 1)
1563 return 0;
1565 /* some remained atomic pages should discarded */
1566 if (f2fs_is_atomic_file(inode))
1567 f2fs_drop_inmem_pages(inode);
1568 if (f2fs_is_volatile_file(inode)) {
1569 set_inode_flag(inode, FI_DROP_CACHE);
1570 filemap_fdatawrite(inode->i_mapping);
1571 clear_inode_flag(inode, FI_DROP_CACHE);
1572 clear_inode_flag(inode, FI_VOLATILE_FILE);
1573 stat_dec_volatile_write(inode);
1575 return 0;
1578 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1580 struct inode *inode = file_inode(file);
1583 * If the process doing a transaction is crashed, we should do
1584 * roll-back. Otherwise, other reader/write can see corrupted database
1585 * until all the writers close its file. Since this should be done
1586 * before dropping file lock, it needs to do in ->flush.
1588 if (f2fs_is_atomic_file(inode) &&
1589 F2FS_I(inode)->inmem_task == current)
1590 f2fs_drop_inmem_pages(inode);
1591 return 0;
1594 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1596 struct inode *inode = file_inode(filp);
1597 struct f2fs_inode_info *fi = F2FS_I(inode);
1598 unsigned int flags = fi->i_flags;
1600 if (file_is_encrypt(inode))
1601 flags |= F2FS_ENCRYPT_FL;
1602 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1603 flags |= F2FS_INLINE_DATA_FL;
1605 flags &= F2FS_FL_USER_VISIBLE;
1607 return put_user(flags, (int __user *)arg);
1610 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1612 struct f2fs_inode_info *fi = F2FS_I(inode);
1613 unsigned int oldflags;
1615 /* Is it quota file? Do not allow user to mess with it */
1616 if (IS_NOQUOTA(inode))
1617 return -EPERM;
1619 flags = f2fs_mask_flags(inode->i_mode, flags);
1621 oldflags = fi->i_flags;
1623 if ((flags ^ oldflags) & (F2FS_APPEND_FL | F2FS_IMMUTABLE_FL))
1624 if (!capable(CAP_LINUX_IMMUTABLE))
1625 return -EPERM;
1627 flags = flags & F2FS_FL_USER_MODIFIABLE;
1628 flags |= oldflags & ~F2FS_FL_USER_MODIFIABLE;
1629 fi->i_flags = flags;
1631 if (fi->i_flags & F2FS_PROJINHERIT_FL)
1632 set_inode_flag(inode, FI_PROJ_INHERIT);
1633 else
1634 clear_inode_flag(inode, FI_PROJ_INHERIT);
1636 inode->i_ctime = current_time(inode);
1637 f2fs_set_inode_flags(inode);
1638 f2fs_mark_inode_dirty_sync(inode, false);
1639 return 0;
1642 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1644 struct inode *inode = file_inode(filp);
1645 unsigned int flags;
1646 int ret;
1648 if (!inode_owner_or_capable(inode))
1649 return -EACCES;
1651 if (get_user(flags, (int __user *)arg))
1652 return -EFAULT;
1654 ret = mnt_want_write_file(filp);
1655 if (ret)
1656 return ret;
1658 inode_lock(inode);
1660 ret = __f2fs_ioc_setflags(inode, flags);
1662 inode_unlock(inode);
1663 mnt_drop_write_file(filp);
1664 return ret;
1667 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1669 struct inode *inode = file_inode(filp);
1671 return put_user(inode->i_generation, (int __user *)arg);
1674 static int f2fs_ioc_start_atomic_write(struct file *filp)
1676 struct inode *inode = file_inode(filp);
1677 int ret;
1679 if (!inode_owner_or_capable(inode))
1680 return -EACCES;
1682 if (!S_ISREG(inode->i_mode))
1683 return -EINVAL;
1685 ret = mnt_want_write_file(filp);
1686 if (ret)
1687 return ret;
1689 inode_lock(inode);
1691 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1693 if (f2fs_is_atomic_file(inode))
1694 goto out;
1696 ret = f2fs_convert_inline_inode(inode);
1697 if (ret)
1698 goto out;
1700 if (!get_dirty_pages(inode))
1701 goto skip_flush;
1703 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1704 "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1705 inode->i_ino, get_dirty_pages(inode));
1706 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1707 if (ret)
1708 goto out;
1709 skip_flush:
1710 set_inode_flag(inode, FI_ATOMIC_FILE);
1711 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1712 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1714 F2FS_I(inode)->inmem_task = current;
1715 stat_inc_atomic_write(inode);
1716 stat_update_max_atomic_write(inode);
1717 out:
1718 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1719 inode_unlock(inode);
1720 mnt_drop_write_file(filp);
1721 return ret;
1724 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1726 struct inode *inode = file_inode(filp);
1727 int ret;
1729 if (!inode_owner_or_capable(inode))
1730 return -EACCES;
1732 ret = mnt_want_write_file(filp);
1733 if (ret)
1734 return ret;
1736 inode_lock(inode);
1738 down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1740 if (f2fs_is_volatile_file(inode)) {
1741 ret = -EINVAL;
1742 goto err_out;
1745 if (f2fs_is_atomic_file(inode)) {
1746 ret = f2fs_commit_inmem_pages(inode);
1747 if (ret)
1748 goto err_out;
1750 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1751 if (!ret) {
1752 clear_inode_flag(inode, FI_ATOMIC_FILE);
1753 F2FS_I(inode)->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
1754 stat_dec_atomic_write(inode);
1756 } else {
1757 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1759 err_out:
1760 if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
1761 clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1762 ret = -EINVAL;
1764 up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1765 inode_unlock(inode);
1766 mnt_drop_write_file(filp);
1767 return ret;
1770 static int f2fs_ioc_start_volatile_write(struct file *filp)
1772 struct inode *inode = file_inode(filp);
1773 int ret;
1775 if (!inode_owner_or_capable(inode))
1776 return -EACCES;
1778 if (!S_ISREG(inode->i_mode))
1779 return -EINVAL;
1781 ret = mnt_want_write_file(filp);
1782 if (ret)
1783 return ret;
1785 inode_lock(inode);
1787 if (f2fs_is_volatile_file(inode))
1788 goto out;
1790 ret = f2fs_convert_inline_inode(inode);
1791 if (ret)
1792 goto out;
1794 stat_inc_volatile_write(inode);
1795 stat_update_max_volatile_write(inode);
1797 set_inode_flag(inode, FI_VOLATILE_FILE);
1798 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1799 out:
1800 inode_unlock(inode);
1801 mnt_drop_write_file(filp);
1802 return ret;
1805 static int f2fs_ioc_release_volatile_write(struct file *filp)
1807 struct inode *inode = file_inode(filp);
1808 int ret;
1810 if (!inode_owner_or_capable(inode))
1811 return -EACCES;
1813 ret = mnt_want_write_file(filp);
1814 if (ret)
1815 return ret;
1817 inode_lock(inode);
1819 if (!f2fs_is_volatile_file(inode))
1820 goto out;
1822 if (!f2fs_is_first_block_written(inode)) {
1823 ret = truncate_partial_data_page(inode, 0, true);
1824 goto out;
1827 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1828 out:
1829 inode_unlock(inode);
1830 mnt_drop_write_file(filp);
1831 return ret;
1834 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1836 struct inode *inode = file_inode(filp);
1837 int ret;
1839 if (!inode_owner_or_capable(inode))
1840 return -EACCES;
1842 ret = mnt_want_write_file(filp);
1843 if (ret)
1844 return ret;
1846 inode_lock(inode);
1848 if (f2fs_is_atomic_file(inode))
1849 f2fs_drop_inmem_pages(inode);
1850 if (f2fs_is_volatile_file(inode)) {
1851 clear_inode_flag(inode, FI_VOLATILE_FILE);
1852 stat_dec_volatile_write(inode);
1853 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1856 inode_unlock(inode);
1858 mnt_drop_write_file(filp);
1859 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1860 return ret;
1863 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1865 struct inode *inode = file_inode(filp);
1866 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1867 struct super_block *sb = sbi->sb;
1868 __u32 in;
1869 int ret;
1871 if (!capable(CAP_SYS_ADMIN))
1872 return -EPERM;
1874 if (get_user(in, (__u32 __user *)arg))
1875 return -EFAULT;
1877 if (in != F2FS_GOING_DOWN_FULLSYNC) {
1878 ret = mnt_want_write_file(filp);
1879 if (ret)
1880 return ret;
1883 switch (in) {
1884 case F2FS_GOING_DOWN_FULLSYNC:
1885 sb = freeze_bdev(sb->s_bdev);
1886 if (IS_ERR(sb)) {
1887 ret = PTR_ERR(sb);
1888 goto out;
1890 if (sb) {
1891 f2fs_stop_checkpoint(sbi, false);
1892 thaw_bdev(sb->s_bdev, sb);
1894 break;
1895 case F2FS_GOING_DOWN_METASYNC:
1896 /* do checkpoint only */
1897 ret = f2fs_sync_fs(sb, 1);
1898 if (ret)
1899 goto out;
1900 f2fs_stop_checkpoint(sbi, false);
1901 break;
1902 case F2FS_GOING_DOWN_NOSYNC:
1903 f2fs_stop_checkpoint(sbi, false);
1904 break;
1905 case F2FS_GOING_DOWN_METAFLUSH:
1906 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
1907 f2fs_stop_checkpoint(sbi, false);
1908 break;
1909 default:
1910 ret = -EINVAL;
1911 goto out;
1914 f2fs_stop_gc_thread(sbi);
1915 f2fs_stop_discard_thread(sbi);
1917 f2fs_drop_discard_cmd(sbi);
1918 clear_opt(sbi, DISCARD);
1920 f2fs_update_time(sbi, REQ_TIME);
1921 out:
1922 if (in != F2FS_GOING_DOWN_FULLSYNC)
1923 mnt_drop_write_file(filp);
1924 return ret;
1927 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1929 struct inode *inode = file_inode(filp);
1930 struct super_block *sb = inode->i_sb;
1931 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1932 struct fstrim_range range;
1933 int ret;
1935 if (!capable(CAP_SYS_ADMIN))
1936 return -EPERM;
1938 if (!blk_queue_discard(q))
1939 return -EOPNOTSUPP;
1941 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1942 sizeof(range)))
1943 return -EFAULT;
1945 ret = mnt_want_write_file(filp);
1946 if (ret)
1947 return ret;
1949 range.minlen = max((unsigned int)range.minlen,
1950 q->limits.discard_granularity);
1951 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1952 mnt_drop_write_file(filp);
1953 if (ret < 0)
1954 return ret;
1956 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1957 sizeof(range)))
1958 return -EFAULT;
1959 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1960 return 0;
1963 static bool uuid_is_nonzero(__u8 u[16])
1965 int i;
1967 for (i = 0; i < 16; i++)
1968 if (u[i])
1969 return true;
1970 return false;
1973 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1975 struct inode *inode = file_inode(filp);
1977 if (!f2fs_sb_has_encrypt(inode->i_sb))
1978 return -EOPNOTSUPP;
1980 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1982 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1985 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1987 if (!f2fs_sb_has_encrypt(file_inode(filp)->i_sb))
1988 return -EOPNOTSUPP;
1989 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1992 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1994 struct inode *inode = file_inode(filp);
1995 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1996 int err;
1998 if (!f2fs_sb_has_encrypt(inode->i_sb))
1999 return -EOPNOTSUPP;
2001 err = mnt_want_write_file(filp);
2002 if (err)
2003 return err;
2005 down_write(&sbi->sb_lock);
2007 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2008 goto got_it;
2010 /* update superblock with uuid */
2011 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2013 err = f2fs_commit_super(sbi, false);
2014 if (err) {
2015 /* undo new data */
2016 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2017 goto out_err;
2019 got_it:
2020 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2021 16))
2022 err = -EFAULT;
2023 out_err:
2024 up_write(&sbi->sb_lock);
2025 mnt_drop_write_file(filp);
2026 return err;
2029 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2031 struct inode *inode = file_inode(filp);
2032 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2033 __u32 sync;
2034 int ret;
2036 if (!capable(CAP_SYS_ADMIN))
2037 return -EPERM;
2039 if (get_user(sync, (__u32 __user *)arg))
2040 return -EFAULT;
2042 if (f2fs_readonly(sbi->sb))
2043 return -EROFS;
2045 ret = mnt_want_write_file(filp);
2046 if (ret)
2047 return ret;
2049 if (!sync) {
2050 if (!mutex_trylock(&sbi->gc_mutex)) {
2051 ret = -EBUSY;
2052 goto out;
2054 } else {
2055 mutex_lock(&sbi->gc_mutex);
2058 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2059 out:
2060 mnt_drop_write_file(filp);
2061 return ret;
2064 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2066 struct inode *inode = file_inode(filp);
2067 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2068 struct f2fs_gc_range range;
2069 u64 end;
2070 int ret;
2072 if (!capable(CAP_SYS_ADMIN))
2073 return -EPERM;
2075 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2076 sizeof(range)))
2077 return -EFAULT;
2079 if (f2fs_readonly(sbi->sb))
2080 return -EROFS;
2082 end = range.start + range.len;
2083 if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi)) {
2084 return -EINVAL;
2087 ret = mnt_want_write_file(filp);
2088 if (ret)
2089 return ret;
2091 do_more:
2092 if (!range.sync) {
2093 if (!mutex_trylock(&sbi->gc_mutex)) {
2094 ret = -EBUSY;
2095 goto out;
2097 } else {
2098 mutex_lock(&sbi->gc_mutex);
2101 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2102 range.start += sbi->blocks_per_seg;
2103 if (range.start <= end)
2104 goto do_more;
2105 out:
2106 mnt_drop_write_file(filp);
2107 return ret;
2110 static int f2fs_ioc_f2fs_write_checkpoint(struct file *filp, unsigned long arg)
2112 struct inode *inode = file_inode(filp);
2113 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2114 int ret;
2116 if (!capable(CAP_SYS_ADMIN))
2117 return -EPERM;
2119 if (f2fs_readonly(sbi->sb))
2120 return -EROFS;
2122 ret = mnt_want_write_file(filp);
2123 if (ret)
2124 return ret;
2126 ret = f2fs_sync_fs(sbi->sb, 1);
2128 mnt_drop_write_file(filp);
2129 return ret;
2132 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2133 struct file *filp,
2134 struct f2fs_defragment *range)
2136 struct inode *inode = file_inode(filp);
2137 struct f2fs_map_blocks map = { .m_next_extent = NULL,
2138 .m_seg_type = NO_CHECK_TYPE };
2139 struct extent_info ei = {0, 0, 0};
2140 pgoff_t pg_start, pg_end, next_pgofs;
2141 unsigned int blk_per_seg = sbi->blocks_per_seg;
2142 unsigned int total = 0, sec_num;
2143 block_t blk_end = 0;
2144 bool fragmented = false;
2145 int err;
2147 /* if in-place-update policy is enabled, don't waste time here */
2148 if (f2fs_should_update_inplace(inode, NULL))
2149 return -EINVAL;
2151 pg_start = range->start >> PAGE_SHIFT;
2152 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2154 f2fs_balance_fs(sbi, true);
2156 inode_lock(inode);
2158 /* writeback all dirty pages in the range */
2159 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2160 range->start + range->len - 1);
2161 if (err)
2162 goto out;
2165 * lookup mapping info in extent cache, skip defragmenting if physical
2166 * block addresses are continuous.
2168 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2169 if (ei.fofs + ei.len >= pg_end)
2170 goto out;
2173 map.m_lblk = pg_start;
2174 map.m_next_pgofs = &next_pgofs;
2177 * lookup mapping info in dnode page cache, skip defragmenting if all
2178 * physical block addresses are continuous even if there are hole(s)
2179 * in logical blocks.
2181 while (map.m_lblk < pg_end) {
2182 map.m_len = pg_end - map.m_lblk;
2183 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2184 if (err)
2185 goto out;
2187 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2188 map.m_lblk = next_pgofs;
2189 continue;
2192 if (blk_end && blk_end != map.m_pblk)
2193 fragmented = true;
2195 /* record total count of block that we're going to move */
2196 total += map.m_len;
2198 blk_end = map.m_pblk + map.m_len;
2200 map.m_lblk += map.m_len;
2203 if (!fragmented)
2204 goto out;
2206 sec_num = (total + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2209 * make sure there are enough free section for LFS allocation, this can
2210 * avoid defragment running in SSR mode when free section are allocated
2211 * intensively
2213 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2214 err = -EAGAIN;
2215 goto out;
2218 map.m_lblk = pg_start;
2219 map.m_len = pg_end - pg_start;
2220 total = 0;
2222 while (map.m_lblk < pg_end) {
2223 pgoff_t idx;
2224 int cnt = 0;
2226 do_map:
2227 map.m_len = pg_end - map.m_lblk;
2228 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2229 if (err)
2230 goto clear_out;
2232 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2233 map.m_lblk = next_pgofs;
2234 continue;
2237 set_inode_flag(inode, FI_DO_DEFRAG);
2239 idx = map.m_lblk;
2240 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2241 struct page *page;
2243 page = f2fs_get_lock_data_page(inode, idx, true);
2244 if (IS_ERR(page)) {
2245 err = PTR_ERR(page);
2246 goto clear_out;
2249 set_page_dirty(page);
2250 f2fs_put_page(page, 1);
2252 idx++;
2253 cnt++;
2254 total++;
2257 map.m_lblk = idx;
2259 if (idx < pg_end && cnt < blk_per_seg)
2260 goto do_map;
2262 clear_inode_flag(inode, FI_DO_DEFRAG);
2264 err = filemap_fdatawrite(inode->i_mapping);
2265 if (err)
2266 goto out;
2268 clear_out:
2269 clear_inode_flag(inode, FI_DO_DEFRAG);
2270 out:
2271 inode_unlock(inode);
2272 if (!err)
2273 range->len = (u64)total << PAGE_SHIFT;
2274 return err;
2277 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2279 struct inode *inode = file_inode(filp);
2280 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2281 struct f2fs_defragment range;
2282 int err;
2284 if (!capable(CAP_SYS_ADMIN))
2285 return -EPERM;
2287 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2288 return -EINVAL;
2290 if (f2fs_readonly(sbi->sb))
2291 return -EROFS;
2293 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2294 sizeof(range)))
2295 return -EFAULT;
2297 /* verify alignment of offset & size */
2298 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2299 return -EINVAL;
2301 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2302 sbi->max_file_blocks))
2303 return -EINVAL;
2305 err = mnt_want_write_file(filp);
2306 if (err)
2307 return err;
2309 err = f2fs_defragment_range(sbi, filp, &range);
2310 mnt_drop_write_file(filp);
2312 f2fs_update_time(sbi, REQ_TIME);
2313 if (err < 0)
2314 return err;
2316 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2317 sizeof(range)))
2318 return -EFAULT;
2320 return 0;
2323 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2324 struct file *file_out, loff_t pos_out, size_t len)
2326 struct inode *src = file_inode(file_in);
2327 struct inode *dst = file_inode(file_out);
2328 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2329 size_t olen = len, dst_max_i_size = 0;
2330 size_t dst_osize;
2331 int ret;
2333 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2334 src->i_sb != dst->i_sb)
2335 return -EXDEV;
2337 if (unlikely(f2fs_readonly(src->i_sb)))
2338 return -EROFS;
2340 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2341 return -EINVAL;
2343 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2344 return -EOPNOTSUPP;
2346 if (src == dst) {
2347 if (pos_in == pos_out)
2348 return 0;
2349 if (pos_out > pos_in && pos_out < pos_in + len)
2350 return -EINVAL;
2353 inode_lock(src);
2354 down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2355 if (src != dst) {
2356 ret = -EBUSY;
2357 if (!inode_trylock(dst))
2358 goto out;
2359 if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE])) {
2360 inode_unlock(dst);
2361 goto out;
2365 ret = -EINVAL;
2366 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2367 goto out_unlock;
2368 if (len == 0)
2369 olen = len = src->i_size - pos_in;
2370 if (pos_in + len == src->i_size)
2371 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2372 if (len == 0) {
2373 ret = 0;
2374 goto out_unlock;
2377 dst_osize = dst->i_size;
2378 if (pos_out + olen > dst->i_size)
2379 dst_max_i_size = pos_out + olen;
2381 /* verify the end result is block aligned */
2382 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2383 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2384 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2385 goto out_unlock;
2387 ret = f2fs_convert_inline_inode(src);
2388 if (ret)
2389 goto out_unlock;
2391 ret = f2fs_convert_inline_inode(dst);
2392 if (ret)
2393 goto out_unlock;
2395 /* write out all dirty pages from offset */
2396 ret = filemap_write_and_wait_range(src->i_mapping,
2397 pos_in, pos_in + len);
2398 if (ret)
2399 goto out_unlock;
2401 ret = filemap_write_and_wait_range(dst->i_mapping,
2402 pos_out, pos_out + len);
2403 if (ret)
2404 goto out_unlock;
2406 f2fs_balance_fs(sbi, true);
2407 f2fs_lock_op(sbi);
2408 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2409 pos_out >> F2FS_BLKSIZE_BITS,
2410 len >> F2FS_BLKSIZE_BITS, false);
2412 if (!ret) {
2413 if (dst_max_i_size)
2414 f2fs_i_size_write(dst, dst_max_i_size);
2415 else if (dst_osize != dst->i_size)
2416 f2fs_i_size_write(dst, dst_osize);
2418 f2fs_unlock_op(sbi);
2419 out_unlock:
2420 if (src != dst) {
2421 up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2422 inode_unlock(dst);
2424 out:
2425 up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2426 inode_unlock(src);
2427 return ret;
2430 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2432 struct f2fs_move_range range;
2433 struct fd dst;
2434 int err;
2436 if (!(filp->f_mode & FMODE_READ) ||
2437 !(filp->f_mode & FMODE_WRITE))
2438 return -EBADF;
2440 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2441 sizeof(range)))
2442 return -EFAULT;
2444 dst = fdget(range.dst_fd);
2445 if (!dst.file)
2446 return -EBADF;
2448 if (!(dst.file->f_mode & FMODE_WRITE)) {
2449 err = -EBADF;
2450 goto err_out;
2453 err = mnt_want_write_file(filp);
2454 if (err)
2455 goto err_out;
2457 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2458 range.pos_out, range.len);
2460 mnt_drop_write_file(filp);
2461 if (err)
2462 goto err_out;
2464 if (copy_to_user((struct f2fs_move_range __user *)arg,
2465 &range, sizeof(range)))
2466 err = -EFAULT;
2467 err_out:
2468 fdput(dst);
2469 return err;
2472 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2474 struct inode *inode = file_inode(filp);
2475 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2476 struct sit_info *sm = SIT_I(sbi);
2477 unsigned int start_segno = 0, end_segno = 0;
2478 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2479 struct f2fs_flush_device range;
2480 int ret;
2482 if (!capable(CAP_SYS_ADMIN))
2483 return -EPERM;
2485 if (f2fs_readonly(sbi->sb))
2486 return -EROFS;
2488 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2489 sizeof(range)))
2490 return -EFAULT;
2492 if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2493 sbi->segs_per_sec != 1) {
2494 f2fs_msg(sbi->sb, KERN_WARNING,
2495 "Can't flush %u in %d for segs_per_sec %u != 1\n",
2496 range.dev_num, sbi->s_ndevs,
2497 sbi->segs_per_sec);
2498 return -EINVAL;
2501 ret = mnt_want_write_file(filp);
2502 if (ret)
2503 return ret;
2505 if (range.dev_num != 0)
2506 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2507 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2509 start_segno = sm->last_victim[FLUSH_DEVICE];
2510 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2511 start_segno = dev_start_segno;
2512 end_segno = min(start_segno + range.segments, dev_end_segno);
2514 while (start_segno < end_segno) {
2515 if (!mutex_trylock(&sbi->gc_mutex)) {
2516 ret = -EBUSY;
2517 goto out;
2519 sm->last_victim[GC_CB] = end_segno + 1;
2520 sm->last_victim[GC_GREEDY] = end_segno + 1;
2521 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2522 ret = f2fs_gc(sbi, true, true, start_segno);
2523 if (ret == -EAGAIN)
2524 ret = 0;
2525 else if (ret < 0)
2526 break;
2527 start_segno++;
2529 out:
2530 mnt_drop_write_file(filp);
2531 return ret;
2534 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2536 struct inode *inode = file_inode(filp);
2537 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2539 /* Must validate to set it with SQLite behavior in Android. */
2540 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2542 return put_user(sb_feature, (u32 __user *)arg);
2545 #ifdef CONFIG_QUOTA
2546 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2548 struct inode *inode = file_inode(filp);
2549 struct f2fs_inode_info *fi = F2FS_I(inode);
2550 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2551 struct super_block *sb = sbi->sb;
2552 struct dquot *transfer_to[MAXQUOTAS] = {};
2553 struct page *ipage;
2554 kprojid_t kprojid;
2555 int err;
2557 if (!f2fs_sb_has_project_quota(sb)) {
2558 if (projid != F2FS_DEF_PROJID)
2559 return -EOPNOTSUPP;
2560 else
2561 return 0;
2564 if (!f2fs_has_extra_attr(inode))
2565 return -EOPNOTSUPP;
2567 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2569 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2570 return 0;
2572 err = mnt_want_write_file(filp);
2573 if (err)
2574 return err;
2576 err = -EPERM;
2577 inode_lock(inode);
2579 /* Is it quota file? Do not allow user to mess with it */
2580 if (IS_NOQUOTA(inode))
2581 goto out_unlock;
2583 ipage = f2fs_get_node_page(sbi, inode->i_ino);
2584 if (IS_ERR(ipage)) {
2585 err = PTR_ERR(ipage);
2586 goto out_unlock;
2589 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2590 i_projid)) {
2591 err = -EOVERFLOW;
2592 f2fs_put_page(ipage, 1);
2593 goto out_unlock;
2595 f2fs_put_page(ipage, 1);
2597 err = dquot_initialize(inode);
2598 if (err)
2599 goto out_unlock;
2601 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2602 if (!IS_ERR(transfer_to[PRJQUOTA])) {
2603 err = __dquot_transfer(inode, transfer_to);
2604 dqput(transfer_to[PRJQUOTA]);
2605 if (err)
2606 goto out_dirty;
2609 F2FS_I(inode)->i_projid = kprojid;
2610 inode->i_ctime = current_time(inode);
2611 out_dirty:
2612 f2fs_mark_inode_dirty_sync(inode, true);
2613 out_unlock:
2614 inode_unlock(inode);
2615 mnt_drop_write_file(filp);
2616 return err;
2618 #else
2619 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2621 if (projid != F2FS_DEF_PROJID)
2622 return -EOPNOTSUPP;
2623 return 0;
2625 #endif
2627 /* Transfer internal flags to xflags */
2628 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2630 __u32 xflags = 0;
2632 if (iflags & F2FS_SYNC_FL)
2633 xflags |= FS_XFLAG_SYNC;
2634 if (iflags & F2FS_IMMUTABLE_FL)
2635 xflags |= FS_XFLAG_IMMUTABLE;
2636 if (iflags & F2FS_APPEND_FL)
2637 xflags |= FS_XFLAG_APPEND;
2638 if (iflags & F2FS_NODUMP_FL)
2639 xflags |= FS_XFLAG_NODUMP;
2640 if (iflags & F2FS_NOATIME_FL)
2641 xflags |= FS_XFLAG_NOATIME;
2642 if (iflags & F2FS_PROJINHERIT_FL)
2643 xflags |= FS_XFLAG_PROJINHERIT;
2644 return xflags;
2647 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2648 FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2649 FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2651 /* Transfer xflags flags to internal */
2652 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2654 unsigned long iflags = 0;
2656 if (xflags & FS_XFLAG_SYNC)
2657 iflags |= F2FS_SYNC_FL;
2658 if (xflags & FS_XFLAG_IMMUTABLE)
2659 iflags |= F2FS_IMMUTABLE_FL;
2660 if (xflags & FS_XFLAG_APPEND)
2661 iflags |= F2FS_APPEND_FL;
2662 if (xflags & FS_XFLAG_NODUMP)
2663 iflags |= F2FS_NODUMP_FL;
2664 if (xflags & FS_XFLAG_NOATIME)
2665 iflags |= F2FS_NOATIME_FL;
2666 if (xflags & FS_XFLAG_PROJINHERIT)
2667 iflags |= F2FS_PROJINHERIT_FL;
2669 return iflags;
2672 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2674 struct inode *inode = file_inode(filp);
2675 struct f2fs_inode_info *fi = F2FS_I(inode);
2676 struct fsxattr fa;
2678 memset(&fa, 0, sizeof(struct fsxattr));
2679 fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2680 F2FS_FL_USER_VISIBLE);
2682 if (f2fs_sb_has_project_quota(inode->i_sb))
2683 fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2684 fi->i_projid);
2686 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2687 return -EFAULT;
2688 return 0;
2691 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2693 struct inode *inode = file_inode(filp);
2694 struct f2fs_inode_info *fi = F2FS_I(inode);
2695 struct fsxattr fa;
2696 unsigned int flags;
2697 int err;
2699 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2700 return -EFAULT;
2702 /* Make sure caller has proper permission */
2703 if (!inode_owner_or_capable(inode))
2704 return -EACCES;
2706 if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2707 return -EOPNOTSUPP;
2709 flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2710 if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2711 return -EOPNOTSUPP;
2713 err = mnt_want_write_file(filp);
2714 if (err)
2715 return err;
2717 inode_lock(inode);
2718 flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2719 (flags & F2FS_FL_XFLAG_VISIBLE);
2720 err = __f2fs_ioc_setflags(inode, flags);
2721 inode_unlock(inode);
2722 mnt_drop_write_file(filp);
2723 if (err)
2724 return err;
2726 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2727 if (err)
2728 return err;
2730 return 0;
2733 int f2fs_pin_file_control(struct inode *inode, bool inc)
2735 struct f2fs_inode_info *fi = F2FS_I(inode);
2736 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2738 /* Use i_gc_failures for normal file as a risk signal. */
2739 if (inc)
2740 f2fs_i_gc_failures_write(inode,
2741 fi->i_gc_failures[GC_FAILURE_PIN] + 1);
2743 if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
2744 f2fs_msg(sbi->sb, KERN_WARNING,
2745 "%s: Enable GC = ino %lx after %x GC trials\n",
2746 __func__, inode->i_ino,
2747 fi->i_gc_failures[GC_FAILURE_PIN]);
2748 clear_inode_flag(inode, FI_PIN_FILE);
2749 return -EAGAIN;
2751 return 0;
2754 static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
2756 struct inode *inode = file_inode(filp);
2757 __u32 pin;
2758 int ret = 0;
2760 if (!inode_owner_or_capable(inode))
2761 return -EACCES;
2763 if (get_user(pin, (__u32 __user *)arg))
2764 return -EFAULT;
2766 if (!S_ISREG(inode->i_mode))
2767 return -EINVAL;
2769 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
2770 return -EROFS;
2772 ret = mnt_want_write_file(filp);
2773 if (ret)
2774 return ret;
2776 inode_lock(inode);
2778 if (f2fs_should_update_outplace(inode, NULL)) {
2779 ret = -EINVAL;
2780 goto out;
2783 if (!pin) {
2784 clear_inode_flag(inode, FI_PIN_FILE);
2785 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = 1;
2786 goto done;
2789 if (f2fs_pin_file_control(inode, false)) {
2790 ret = -EAGAIN;
2791 goto out;
2793 ret = f2fs_convert_inline_inode(inode);
2794 if (ret)
2795 goto out;
2797 set_inode_flag(inode, FI_PIN_FILE);
2798 ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
2799 done:
2800 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2801 out:
2802 inode_unlock(inode);
2803 mnt_drop_write_file(filp);
2804 return ret;
2807 static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
2809 struct inode *inode = file_inode(filp);
2810 __u32 pin = 0;
2812 if (is_inode_flag_set(inode, FI_PIN_FILE))
2813 pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
2814 return put_user(pin, (u32 __user *)arg);
2817 int f2fs_precache_extents(struct inode *inode)
2819 struct f2fs_inode_info *fi = F2FS_I(inode);
2820 struct f2fs_map_blocks map;
2821 pgoff_t m_next_extent;
2822 loff_t end;
2823 int err;
2825 if (is_inode_flag_set(inode, FI_NO_EXTENT))
2826 return -EOPNOTSUPP;
2828 map.m_lblk = 0;
2829 map.m_next_pgofs = NULL;
2830 map.m_next_extent = &m_next_extent;
2831 map.m_seg_type = NO_CHECK_TYPE;
2832 end = F2FS_I_SB(inode)->max_file_blocks;
2834 while (map.m_lblk < end) {
2835 map.m_len = end - map.m_lblk;
2837 down_write(&fi->i_gc_rwsem[WRITE]);
2838 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
2839 up_write(&fi->i_gc_rwsem[WRITE]);
2840 if (err)
2841 return err;
2843 map.m_lblk = m_next_extent;
2846 return err;
2849 static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
2851 return f2fs_precache_extents(file_inode(filp));
2854 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2856 if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
2857 return -EIO;
2859 switch (cmd) {
2860 case F2FS_IOC_GETFLAGS:
2861 return f2fs_ioc_getflags(filp, arg);
2862 case F2FS_IOC_SETFLAGS:
2863 return f2fs_ioc_setflags(filp, arg);
2864 case F2FS_IOC_GETVERSION:
2865 return f2fs_ioc_getversion(filp, arg);
2866 case F2FS_IOC_START_ATOMIC_WRITE:
2867 return f2fs_ioc_start_atomic_write(filp);
2868 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2869 return f2fs_ioc_commit_atomic_write(filp);
2870 case F2FS_IOC_START_VOLATILE_WRITE:
2871 return f2fs_ioc_start_volatile_write(filp);
2872 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2873 return f2fs_ioc_release_volatile_write(filp);
2874 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2875 return f2fs_ioc_abort_volatile_write(filp);
2876 case F2FS_IOC_SHUTDOWN:
2877 return f2fs_ioc_shutdown(filp, arg);
2878 case FITRIM:
2879 return f2fs_ioc_fitrim(filp, arg);
2880 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2881 return f2fs_ioc_set_encryption_policy(filp, arg);
2882 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2883 return f2fs_ioc_get_encryption_policy(filp, arg);
2884 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2885 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2886 case F2FS_IOC_GARBAGE_COLLECT:
2887 return f2fs_ioc_gc(filp, arg);
2888 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2889 return f2fs_ioc_gc_range(filp, arg);
2890 case F2FS_IOC_WRITE_CHECKPOINT:
2891 return f2fs_ioc_f2fs_write_checkpoint(filp, arg);
2892 case F2FS_IOC_DEFRAGMENT:
2893 return f2fs_ioc_defragment(filp, arg);
2894 case F2FS_IOC_MOVE_RANGE:
2895 return f2fs_ioc_move_range(filp, arg);
2896 case F2FS_IOC_FLUSH_DEVICE:
2897 return f2fs_ioc_flush_device(filp, arg);
2898 case F2FS_IOC_GET_FEATURES:
2899 return f2fs_ioc_get_features(filp, arg);
2900 case F2FS_IOC_FSGETXATTR:
2901 return f2fs_ioc_fsgetxattr(filp, arg);
2902 case F2FS_IOC_FSSETXATTR:
2903 return f2fs_ioc_fssetxattr(filp, arg);
2904 case F2FS_IOC_GET_PIN_FILE:
2905 return f2fs_ioc_get_pin_file(filp, arg);
2906 case F2FS_IOC_SET_PIN_FILE:
2907 return f2fs_ioc_set_pin_file(filp, arg);
2908 case F2FS_IOC_PRECACHE_EXTENTS:
2909 return f2fs_ioc_precache_extents(filp, arg);
2910 default:
2911 return -ENOTTY;
2915 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2917 struct file *file = iocb->ki_filp;
2918 struct inode *inode = file_inode(file);
2919 ssize_t ret;
2921 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2922 return -EIO;
2924 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2925 return -EINVAL;
2927 if (!inode_trylock(inode)) {
2928 if (iocb->ki_flags & IOCB_NOWAIT)
2929 return -EAGAIN;
2930 inode_lock(inode);
2933 ret = generic_write_checks(iocb, from);
2934 if (ret > 0) {
2935 bool preallocated = false;
2936 size_t target_size = 0;
2937 int err;
2939 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2940 set_inode_flag(inode, FI_NO_PREALLOC);
2942 if ((iocb->ki_flags & IOCB_NOWAIT) &&
2943 (iocb->ki_flags & IOCB_DIRECT)) {
2944 if (!f2fs_overwrite_io(inode, iocb->ki_pos,
2945 iov_iter_count(from)) ||
2946 f2fs_has_inline_data(inode) ||
2947 f2fs_force_buffered_io(inode, WRITE)) {
2948 clear_inode_flag(inode,
2949 FI_NO_PREALLOC);
2950 inode_unlock(inode);
2951 return -EAGAIN;
2954 } else {
2955 preallocated = true;
2956 target_size = iocb->ki_pos + iov_iter_count(from);
2958 err = f2fs_preallocate_blocks(iocb, from);
2959 if (err) {
2960 clear_inode_flag(inode, FI_NO_PREALLOC);
2961 inode_unlock(inode);
2962 return err;
2965 ret = __generic_file_write_iter(iocb, from);
2966 clear_inode_flag(inode, FI_NO_PREALLOC);
2968 /* if we couldn't write data, we should deallocate blocks. */
2969 if (preallocated && i_size_read(inode) < target_size)
2970 f2fs_truncate(inode);
2972 if (ret > 0)
2973 f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
2975 inode_unlock(inode);
2977 if (ret > 0)
2978 ret = generic_write_sync(iocb, ret);
2979 return ret;
2982 #ifdef CONFIG_COMPAT
2983 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2985 switch (cmd) {
2986 case F2FS_IOC32_GETFLAGS:
2987 cmd = F2FS_IOC_GETFLAGS;
2988 break;
2989 case F2FS_IOC32_SETFLAGS:
2990 cmd = F2FS_IOC_SETFLAGS;
2991 break;
2992 case F2FS_IOC32_GETVERSION:
2993 cmd = F2FS_IOC_GETVERSION;
2994 break;
2995 case F2FS_IOC_START_ATOMIC_WRITE:
2996 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2997 case F2FS_IOC_START_VOLATILE_WRITE:
2998 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2999 case F2FS_IOC_ABORT_VOLATILE_WRITE:
3000 case F2FS_IOC_SHUTDOWN:
3001 case F2FS_IOC_SET_ENCRYPTION_POLICY:
3002 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3003 case F2FS_IOC_GET_ENCRYPTION_POLICY:
3004 case F2FS_IOC_GARBAGE_COLLECT:
3005 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3006 case F2FS_IOC_WRITE_CHECKPOINT:
3007 case F2FS_IOC_DEFRAGMENT:
3008 case F2FS_IOC_MOVE_RANGE:
3009 case F2FS_IOC_FLUSH_DEVICE:
3010 case F2FS_IOC_GET_FEATURES:
3011 case F2FS_IOC_FSGETXATTR:
3012 case F2FS_IOC_FSSETXATTR:
3013 case F2FS_IOC_GET_PIN_FILE:
3014 case F2FS_IOC_SET_PIN_FILE:
3015 case F2FS_IOC_PRECACHE_EXTENTS:
3016 break;
3017 default:
3018 return -ENOIOCTLCMD;
3020 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
3022 #endif
3024 const struct file_operations f2fs_file_operations = {
3025 .llseek = f2fs_llseek,
3026 .read_iter = generic_file_read_iter,
3027 .write_iter = f2fs_file_write_iter,
3028 .open = f2fs_file_open,
3029 .release = f2fs_release_file,
3030 .mmap = f2fs_file_mmap,
3031 .flush = f2fs_file_flush,
3032 .fsync = f2fs_sync_file,
3033 .fallocate = f2fs_fallocate,
3034 .unlocked_ioctl = f2fs_ioctl,
3035 #ifdef CONFIG_COMPAT
3036 .compat_ioctl = f2fs_compat_ioctl,
3037 #endif
3038 .splice_read = generic_file_splice_read,
3039 .splice_write = iter_file_splice_write,