4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
24 #include <trace/events/f2fs.h>
26 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
28 static struct kmem_cache
*nat_entry_slab
;
29 static struct kmem_cache
*free_nid_slab
;
30 static struct kmem_cache
*nat_entry_set_slab
;
33 * Check whether the given nid is within node id range.
35 int f2fs_check_nid_range(struct f2fs_sb_info
*sbi
, nid_t nid
)
37 if (unlikely(nid
< F2FS_ROOT_INO(sbi
) || nid
>= NM_I(sbi
)->max_nid
)) {
38 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
39 f2fs_msg(sbi
->sb
, KERN_WARNING
,
40 "%s: out-of-range nid=%x, run fsck to fix.",
47 bool f2fs_available_free_memory(struct f2fs_sb_info
*sbi
, int type
)
49 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
51 unsigned long avail_ram
;
52 unsigned long mem_size
= 0;
57 /* only uses low memory */
58 avail_ram
= val
.totalram
- val
.totalhigh
;
61 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
63 if (type
== FREE_NIDS
) {
64 mem_size
= (nm_i
->nid_cnt
[FREE_NID
] *
65 sizeof(struct free_nid
)) >> PAGE_SHIFT
;
66 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
67 } else if (type
== NAT_ENTRIES
) {
68 mem_size
= (nm_i
->nat_cnt
* sizeof(struct nat_entry
)) >>
70 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
71 if (excess_cached_nats(sbi
))
73 } else if (type
== DIRTY_DENTS
) {
74 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
76 mem_size
= get_pages(sbi
, F2FS_DIRTY_DENTS
);
77 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
78 } else if (type
== INO_ENTRIES
) {
81 for (i
= 0; i
< MAX_INO_ENTRY
; i
++)
82 mem_size
+= sbi
->im
[i
].ino_num
*
83 sizeof(struct ino_entry
);
84 mem_size
>>= PAGE_SHIFT
;
85 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
86 } else if (type
== EXTENT_CACHE
) {
87 mem_size
= (atomic_read(&sbi
->total_ext_tree
) *
88 sizeof(struct extent_tree
) +
89 atomic_read(&sbi
->total_ext_node
) *
90 sizeof(struct extent_node
)) >> PAGE_SHIFT
;
91 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
92 } else if (type
== INMEM_PAGES
) {
93 /* it allows 20% / total_ram for inmemory pages */
94 mem_size
= get_pages(sbi
, F2FS_INMEM_PAGES
);
95 res
= mem_size
< (val
.totalram
/ 5);
97 if (!sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
103 static void clear_node_page_dirty(struct page
*page
)
105 if (PageDirty(page
)) {
106 f2fs_clear_radix_tree_dirty_tag(page
);
107 clear_page_dirty_for_io(page
);
108 dec_page_count(F2FS_P_SB(page
), F2FS_DIRTY_NODES
);
110 ClearPageUptodate(page
);
113 static struct page
*get_current_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
115 pgoff_t index
= current_nat_addr(sbi
, nid
);
116 return f2fs_get_meta_page(sbi
, index
);
119 static struct page
*get_next_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
121 struct page
*src_page
;
122 struct page
*dst_page
;
127 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
129 src_off
= current_nat_addr(sbi
, nid
);
130 dst_off
= next_nat_addr(sbi
, src_off
);
132 /* get current nat block page with lock */
133 src_page
= f2fs_get_meta_page(sbi
, src_off
);
134 dst_page
= f2fs_grab_meta_page(sbi
, dst_off
);
135 f2fs_bug_on(sbi
, PageDirty(src_page
));
137 src_addr
= page_address(src_page
);
138 dst_addr
= page_address(dst_page
);
139 memcpy(dst_addr
, src_addr
, PAGE_SIZE
);
140 set_page_dirty(dst_page
);
141 f2fs_put_page(src_page
, 1);
143 set_to_next_nat(nm_i
, nid
);
148 static struct nat_entry
*__alloc_nat_entry(nid_t nid
, bool no_fail
)
150 struct nat_entry
*new;
153 new = f2fs_kmem_cache_alloc(nat_entry_slab
, GFP_F2FS_ZERO
);
155 new = kmem_cache_alloc(nat_entry_slab
, GFP_F2FS_ZERO
);
157 nat_set_nid(new, nid
);
163 static void __free_nat_entry(struct nat_entry
*e
)
165 kmem_cache_free(nat_entry_slab
, e
);
168 /* must be locked by nat_tree_lock */
169 static struct nat_entry
*__init_nat_entry(struct f2fs_nm_info
*nm_i
,
170 struct nat_entry
*ne
, struct f2fs_nat_entry
*raw_ne
, bool no_fail
)
173 f2fs_radix_tree_insert(&nm_i
->nat_root
, nat_get_nid(ne
), ne
);
174 else if (radix_tree_insert(&nm_i
->nat_root
, nat_get_nid(ne
), ne
))
178 node_info_from_raw_nat(&ne
->ni
, raw_ne
);
179 list_add_tail(&ne
->list
, &nm_i
->nat_entries
);
184 static struct nat_entry
*__lookup_nat_cache(struct f2fs_nm_info
*nm_i
, nid_t n
)
186 return radix_tree_lookup(&nm_i
->nat_root
, n
);
189 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info
*nm_i
,
190 nid_t start
, unsigned int nr
, struct nat_entry
**ep
)
192 return radix_tree_gang_lookup(&nm_i
->nat_root
, (void **)ep
, start
, nr
);
195 static void __del_from_nat_cache(struct f2fs_nm_info
*nm_i
, struct nat_entry
*e
)
198 radix_tree_delete(&nm_i
->nat_root
, nat_get_nid(e
));
203 static struct nat_entry_set
*__grab_nat_entry_set(struct f2fs_nm_info
*nm_i
,
204 struct nat_entry
*ne
)
206 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
207 struct nat_entry_set
*head
;
209 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
211 head
= f2fs_kmem_cache_alloc(nat_entry_set_slab
, GFP_NOFS
);
213 INIT_LIST_HEAD(&head
->entry_list
);
214 INIT_LIST_HEAD(&head
->set_list
);
217 f2fs_radix_tree_insert(&nm_i
->nat_set_root
, set
, head
);
222 static void __set_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
223 struct nat_entry
*ne
)
225 struct nat_entry_set
*head
;
226 bool new_ne
= nat_get_blkaddr(ne
) == NEW_ADDR
;
229 head
= __grab_nat_entry_set(nm_i
, ne
);
232 * update entry_cnt in below condition:
233 * 1. update NEW_ADDR to valid block address;
234 * 2. update old block address to new one;
236 if (!new_ne
&& (get_nat_flag(ne
, IS_PREALLOC
) ||
237 !get_nat_flag(ne
, IS_DIRTY
)))
240 set_nat_flag(ne
, IS_PREALLOC
, new_ne
);
242 if (get_nat_flag(ne
, IS_DIRTY
))
245 nm_i
->dirty_nat_cnt
++;
246 set_nat_flag(ne
, IS_DIRTY
, true);
249 list_del_init(&ne
->list
);
251 list_move_tail(&ne
->list
, &head
->entry_list
);
254 static void __clear_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
255 struct nat_entry_set
*set
, struct nat_entry
*ne
)
257 list_move_tail(&ne
->list
, &nm_i
->nat_entries
);
258 set_nat_flag(ne
, IS_DIRTY
, false);
260 nm_i
->dirty_nat_cnt
--;
263 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info
*nm_i
,
264 nid_t start
, unsigned int nr
, struct nat_entry_set
**ep
)
266 return radix_tree_gang_lookup(&nm_i
->nat_set_root
, (void **)ep
,
270 int f2fs_need_dentry_mark(struct f2fs_sb_info
*sbi
, nid_t nid
)
272 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
276 down_read(&nm_i
->nat_tree_lock
);
277 e
= __lookup_nat_cache(nm_i
, nid
);
279 if (!get_nat_flag(e
, IS_CHECKPOINTED
) &&
280 !get_nat_flag(e
, HAS_FSYNCED_INODE
))
283 up_read(&nm_i
->nat_tree_lock
);
287 bool f2fs_is_checkpointed_node(struct f2fs_sb_info
*sbi
, nid_t nid
)
289 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
293 down_read(&nm_i
->nat_tree_lock
);
294 e
= __lookup_nat_cache(nm_i
, nid
);
295 if (e
&& !get_nat_flag(e
, IS_CHECKPOINTED
))
297 up_read(&nm_i
->nat_tree_lock
);
301 bool f2fs_need_inode_block_update(struct f2fs_sb_info
*sbi
, nid_t ino
)
303 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
305 bool need_update
= true;
307 down_read(&nm_i
->nat_tree_lock
);
308 e
= __lookup_nat_cache(nm_i
, ino
);
309 if (e
&& get_nat_flag(e
, HAS_LAST_FSYNC
) &&
310 (get_nat_flag(e
, IS_CHECKPOINTED
) ||
311 get_nat_flag(e
, HAS_FSYNCED_INODE
)))
313 up_read(&nm_i
->nat_tree_lock
);
317 /* must be locked by nat_tree_lock */
318 static void cache_nat_entry(struct f2fs_sb_info
*sbi
, nid_t nid
,
319 struct f2fs_nat_entry
*ne
)
321 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
322 struct nat_entry
*new, *e
;
324 new = __alloc_nat_entry(nid
, false);
328 down_write(&nm_i
->nat_tree_lock
);
329 e
= __lookup_nat_cache(nm_i
, nid
);
331 e
= __init_nat_entry(nm_i
, new, ne
, false);
333 f2fs_bug_on(sbi
, nat_get_ino(e
) != le32_to_cpu(ne
->ino
) ||
334 nat_get_blkaddr(e
) !=
335 le32_to_cpu(ne
->block_addr
) ||
336 nat_get_version(e
) != ne
->version
);
337 up_write(&nm_i
->nat_tree_lock
);
339 __free_nat_entry(new);
342 static void set_node_addr(struct f2fs_sb_info
*sbi
, struct node_info
*ni
,
343 block_t new_blkaddr
, bool fsync_done
)
345 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
347 struct nat_entry
*new = __alloc_nat_entry(ni
->nid
, true);
349 down_write(&nm_i
->nat_tree_lock
);
350 e
= __lookup_nat_cache(nm_i
, ni
->nid
);
352 e
= __init_nat_entry(nm_i
, new, NULL
, true);
353 copy_node_info(&e
->ni
, ni
);
354 f2fs_bug_on(sbi
, ni
->blk_addr
== NEW_ADDR
);
355 } else if (new_blkaddr
== NEW_ADDR
) {
357 * when nid is reallocated,
358 * previous nat entry can be remained in nat cache.
359 * So, reinitialize it with new information.
361 copy_node_info(&e
->ni
, ni
);
362 f2fs_bug_on(sbi
, ni
->blk_addr
!= NULL_ADDR
);
364 /* let's free early to reduce memory consumption */
366 __free_nat_entry(new);
369 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != ni
->blk_addr
);
370 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NULL_ADDR
&&
371 new_blkaddr
== NULL_ADDR
);
372 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NEW_ADDR
&&
373 new_blkaddr
== NEW_ADDR
);
374 f2fs_bug_on(sbi
, is_valid_blkaddr(nat_get_blkaddr(e
)) &&
375 new_blkaddr
== NEW_ADDR
);
377 /* increment version no as node is removed */
378 if (nat_get_blkaddr(e
) != NEW_ADDR
&& new_blkaddr
== NULL_ADDR
) {
379 unsigned char version
= nat_get_version(e
);
380 nat_set_version(e
, inc_node_version(version
));
384 nat_set_blkaddr(e
, new_blkaddr
);
385 if (!is_valid_blkaddr(new_blkaddr
))
386 set_nat_flag(e
, IS_CHECKPOINTED
, false);
387 __set_nat_cache_dirty(nm_i
, e
);
389 /* update fsync_mark if its inode nat entry is still alive */
390 if (ni
->nid
!= ni
->ino
)
391 e
= __lookup_nat_cache(nm_i
, ni
->ino
);
393 if (fsync_done
&& ni
->nid
== ni
->ino
)
394 set_nat_flag(e
, HAS_FSYNCED_INODE
, true);
395 set_nat_flag(e
, HAS_LAST_FSYNC
, fsync_done
);
397 up_write(&nm_i
->nat_tree_lock
);
400 int f2fs_try_to_free_nats(struct f2fs_sb_info
*sbi
, int nr_shrink
)
402 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
405 if (!down_write_trylock(&nm_i
->nat_tree_lock
))
408 while (nr_shrink
&& !list_empty(&nm_i
->nat_entries
)) {
409 struct nat_entry
*ne
;
410 ne
= list_first_entry(&nm_i
->nat_entries
,
411 struct nat_entry
, list
);
412 __del_from_nat_cache(nm_i
, ne
);
415 up_write(&nm_i
->nat_tree_lock
);
416 return nr
- nr_shrink
;
420 * This function always returns success
422 void f2fs_get_node_info(struct f2fs_sb_info
*sbi
, nid_t nid
,
423 struct node_info
*ni
)
425 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
426 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
427 struct f2fs_journal
*journal
= curseg
->journal
;
428 nid_t start_nid
= START_NID(nid
);
429 struct f2fs_nat_block
*nat_blk
;
430 struct page
*page
= NULL
;
431 struct f2fs_nat_entry ne
;
438 /* Check nat cache */
439 down_read(&nm_i
->nat_tree_lock
);
440 e
= __lookup_nat_cache(nm_i
, nid
);
442 ni
->ino
= nat_get_ino(e
);
443 ni
->blk_addr
= nat_get_blkaddr(e
);
444 ni
->version
= nat_get_version(e
);
445 up_read(&nm_i
->nat_tree_lock
);
449 memset(&ne
, 0, sizeof(struct f2fs_nat_entry
));
451 /* Check current segment summary */
452 down_read(&curseg
->journal_rwsem
);
453 i
= f2fs_lookup_journal_in_cursum(journal
, NAT_JOURNAL
, nid
, 0);
455 ne
= nat_in_journal(journal
, i
);
456 node_info_from_raw_nat(ni
, &ne
);
458 up_read(&curseg
->journal_rwsem
);
460 up_read(&nm_i
->nat_tree_lock
);
464 /* Fill node_info from nat page */
465 index
= current_nat_addr(sbi
, nid
);
466 up_read(&nm_i
->nat_tree_lock
);
468 page
= f2fs_get_meta_page(sbi
, index
);
469 nat_blk
= (struct f2fs_nat_block
*)page_address(page
);
470 ne
= nat_blk
->entries
[nid
- start_nid
];
471 node_info_from_raw_nat(ni
, &ne
);
472 f2fs_put_page(page
, 1);
474 /* cache nat entry */
475 cache_nat_entry(sbi
, nid
, &ne
);
479 * readahead MAX_RA_NODE number of node pages.
481 static void f2fs_ra_node_pages(struct page
*parent
, int start
, int n
)
483 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
484 struct blk_plug plug
;
488 blk_start_plug(&plug
);
490 /* Then, try readahead for siblings of the desired node */
492 end
= min(end
, NIDS_PER_BLOCK
);
493 for (i
= start
; i
< end
; i
++) {
494 nid
= get_nid(parent
, i
, false);
495 f2fs_ra_node_page(sbi
, nid
);
498 blk_finish_plug(&plug
);
501 pgoff_t
f2fs_get_next_page_offset(struct dnode_of_data
*dn
, pgoff_t pgofs
)
503 const long direct_index
= ADDRS_PER_INODE(dn
->inode
);
504 const long direct_blks
= ADDRS_PER_BLOCK
;
505 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
506 unsigned int skipped_unit
= ADDRS_PER_BLOCK
;
507 int cur_level
= dn
->cur_level
;
508 int max_level
= dn
->max_level
;
514 while (max_level
-- > cur_level
)
515 skipped_unit
*= NIDS_PER_BLOCK
;
517 switch (dn
->max_level
) {
519 base
+= 2 * indirect_blks
;
521 base
+= 2 * direct_blks
;
523 base
+= direct_index
;
526 f2fs_bug_on(F2FS_I_SB(dn
->inode
), 1);
529 return ((pgofs
- base
) / skipped_unit
+ 1) * skipped_unit
+ base
;
533 * The maximum depth is four.
534 * Offset[0] will have raw inode offset.
536 static int get_node_path(struct inode
*inode
, long block
,
537 int offset
[4], unsigned int noffset
[4])
539 const long direct_index
= ADDRS_PER_INODE(inode
);
540 const long direct_blks
= ADDRS_PER_BLOCK
;
541 const long dptrs_per_blk
= NIDS_PER_BLOCK
;
542 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
543 const long dindirect_blks
= indirect_blks
* NIDS_PER_BLOCK
;
549 if (block
< direct_index
) {
553 block
-= direct_index
;
554 if (block
< direct_blks
) {
555 offset
[n
++] = NODE_DIR1_BLOCK
;
561 block
-= direct_blks
;
562 if (block
< direct_blks
) {
563 offset
[n
++] = NODE_DIR2_BLOCK
;
569 block
-= direct_blks
;
570 if (block
< indirect_blks
) {
571 offset
[n
++] = NODE_IND1_BLOCK
;
573 offset
[n
++] = block
/ direct_blks
;
574 noffset
[n
] = 4 + offset
[n
- 1];
575 offset
[n
] = block
% direct_blks
;
579 block
-= indirect_blks
;
580 if (block
< indirect_blks
) {
581 offset
[n
++] = NODE_IND2_BLOCK
;
582 noffset
[n
] = 4 + dptrs_per_blk
;
583 offset
[n
++] = block
/ direct_blks
;
584 noffset
[n
] = 5 + dptrs_per_blk
+ offset
[n
- 1];
585 offset
[n
] = block
% direct_blks
;
589 block
-= indirect_blks
;
590 if (block
< dindirect_blks
) {
591 offset
[n
++] = NODE_DIND_BLOCK
;
592 noffset
[n
] = 5 + (dptrs_per_blk
* 2);
593 offset
[n
++] = block
/ indirect_blks
;
594 noffset
[n
] = 6 + (dptrs_per_blk
* 2) +
595 offset
[n
- 1] * (dptrs_per_blk
+ 1);
596 offset
[n
++] = (block
/ direct_blks
) % dptrs_per_blk
;
597 noffset
[n
] = 7 + (dptrs_per_blk
* 2) +
598 offset
[n
- 2] * (dptrs_per_blk
+ 1) +
600 offset
[n
] = block
% direct_blks
;
611 * Caller should call f2fs_put_dnode(dn).
612 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
613 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
614 * In the case of RDONLY_NODE, we don't need to care about mutex.
616 int f2fs_get_dnode_of_data(struct dnode_of_data
*dn
, pgoff_t index
, int mode
)
618 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
619 struct page
*npage
[4];
620 struct page
*parent
= NULL
;
622 unsigned int noffset
[4];
627 level
= get_node_path(dn
->inode
, index
, offset
, noffset
);
631 nids
[0] = dn
->inode
->i_ino
;
632 npage
[0] = dn
->inode_page
;
635 npage
[0] = f2fs_get_node_page(sbi
, nids
[0]);
636 if (IS_ERR(npage
[0]))
637 return PTR_ERR(npage
[0]);
640 /* if inline_data is set, should not report any block indices */
641 if (f2fs_has_inline_data(dn
->inode
) && index
) {
643 f2fs_put_page(npage
[0], 1);
649 nids
[1] = get_nid(parent
, offset
[0], true);
650 dn
->inode_page
= npage
[0];
651 dn
->inode_page_locked
= true;
653 /* get indirect or direct nodes */
654 for (i
= 1; i
<= level
; i
++) {
657 if (!nids
[i
] && mode
== ALLOC_NODE
) {
659 if (!f2fs_alloc_nid(sbi
, &(nids
[i
]))) {
665 npage
[i
] = f2fs_new_node_page(dn
, noffset
[i
]);
666 if (IS_ERR(npage
[i
])) {
667 f2fs_alloc_nid_failed(sbi
, nids
[i
]);
668 err
= PTR_ERR(npage
[i
]);
672 set_nid(parent
, offset
[i
- 1], nids
[i
], i
== 1);
673 f2fs_alloc_nid_done(sbi
, nids
[i
]);
675 } else if (mode
== LOOKUP_NODE_RA
&& i
== level
&& level
> 1) {
676 npage
[i
] = f2fs_get_node_page_ra(parent
, offset
[i
- 1]);
677 if (IS_ERR(npage
[i
])) {
678 err
= PTR_ERR(npage
[i
]);
684 dn
->inode_page_locked
= false;
687 f2fs_put_page(parent
, 1);
691 npage
[i
] = f2fs_get_node_page(sbi
, nids
[i
]);
692 if (IS_ERR(npage
[i
])) {
693 err
= PTR_ERR(npage
[i
]);
694 f2fs_put_page(npage
[0], 0);
700 nids
[i
+ 1] = get_nid(parent
, offset
[i
], false);
703 dn
->nid
= nids
[level
];
704 dn
->ofs_in_node
= offset
[level
];
705 dn
->node_page
= npage
[level
];
706 dn
->data_blkaddr
= datablock_addr(dn
->inode
,
707 dn
->node_page
, dn
->ofs_in_node
);
711 f2fs_put_page(parent
, 1);
713 f2fs_put_page(npage
[0], 0);
715 dn
->inode_page
= NULL
;
716 dn
->node_page
= NULL
;
717 if (err
== -ENOENT
) {
719 dn
->max_level
= level
;
720 dn
->ofs_in_node
= offset
[level
];
725 static void truncate_node(struct dnode_of_data
*dn
)
727 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
730 f2fs_get_node_info(sbi
, dn
->nid
, &ni
);
732 /* Deallocate node address */
733 f2fs_invalidate_blocks(sbi
, ni
.blk_addr
);
734 dec_valid_node_count(sbi
, dn
->inode
, dn
->nid
== dn
->inode
->i_ino
);
735 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
737 if (dn
->nid
== dn
->inode
->i_ino
) {
738 f2fs_remove_orphan_inode(sbi
, dn
->nid
);
739 dec_valid_inode_count(sbi
);
740 f2fs_inode_synced(dn
->inode
);
743 clear_node_page_dirty(dn
->node_page
);
744 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
746 f2fs_put_page(dn
->node_page
, 1);
748 invalidate_mapping_pages(NODE_MAPPING(sbi
),
749 dn
->node_page
->index
, dn
->node_page
->index
);
751 dn
->node_page
= NULL
;
752 trace_f2fs_truncate_node(dn
->inode
, dn
->nid
, ni
.blk_addr
);
755 static int truncate_dnode(struct dnode_of_data
*dn
)
762 /* get direct node */
763 page
= f2fs_get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
764 if (IS_ERR(page
) && PTR_ERR(page
) == -ENOENT
)
766 else if (IS_ERR(page
))
767 return PTR_ERR(page
);
769 /* Make dnode_of_data for parameter */
770 dn
->node_page
= page
;
772 f2fs_truncate_data_blocks(dn
);
777 static int truncate_nodes(struct dnode_of_data
*dn
, unsigned int nofs
,
780 struct dnode_of_data rdn
= *dn
;
782 struct f2fs_node
*rn
;
784 unsigned int child_nofs
;
789 return NIDS_PER_BLOCK
+ 1;
791 trace_f2fs_truncate_nodes_enter(dn
->inode
, dn
->nid
, dn
->data_blkaddr
);
793 page
= f2fs_get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
795 trace_f2fs_truncate_nodes_exit(dn
->inode
, PTR_ERR(page
));
796 return PTR_ERR(page
);
799 f2fs_ra_node_pages(page
, ofs
, NIDS_PER_BLOCK
);
801 rn
= F2FS_NODE(page
);
803 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++, freed
++) {
804 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
808 ret
= truncate_dnode(&rdn
);
811 if (set_nid(page
, i
, 0, false))
812 dn
->node_changed
= true;
815 child_nofs
= nofs
+ ofs
* (NIDS_PER_BLOCK
+ 1) + 1;
816 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++) {
817 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
818 if (child_nid
== 0) {
819 child_nofs
+= NIDS_PER_BLOCK
+ 1;
823 ret
= truncate_nodes(&rdn
, child_nofs
, 0, depth
- 1);
824 if (ret
== (NIDS_PER_BLOCK
+ 1)) {
825 if (set_nid(page
, i
, 0, false))
826 dn
->node_changed
= true;
828 } else if (ret
< 0 && ret
!= -ENOENT
) {
836 /* remove current indirect node */
837 dn
->node_page
= page
;
841 f2fs_put_page(page
, 1);
843 trace_f2fs_truncate_nodes_exit(dn
->inode
, freed
);
847 f2fs_put_page(page
, 1);
848 trace_f2fs_truncate_nodes_exit(dn
->inode
, ret
);
852 static int truncate_partial_nodes(struct dnode_of_data
*dn
,
853 struct f2fs_inode
*ri
, int *offset
, int depth
)
855 struct page
*pages
[2];
862 nid
[0] = le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
866 /* get indirect nodes in the path */
867 for (i
= 0; i
< idx
+ 1; i
++) {
868 /* reference count'll be increased */
869 pages
[i
] = f2fs_get_node_page(F2FS_I_SB(dn
->inode
), nid
[i
]);
870 if (IS_ERR(pages
[i
])) {
871 err
= PTR_ERR(pages
[i
]);
875 nid
[i
+ 1] = get_nid(pages
[i
], offset
[i
+ 1], false);
878 f2fs_ra_node_pages(pages
[idx
], offset
[idx
+ 1], NIDS_PER_BLOCK
);
880 /* free direct nodes linked to a partial indirect node */
881 for (i
= offset
[idx
+ 1]; i
< NIDS_PER_BLOCK
; i
++) {
882 child_nid
= get_nid(pages
[idx
], i
, false);
886 err
= truncate_dnode(dn
);
889 if (set_nid(pages
[idx
], i
, 0, false))
890 dn
->node_changed
= true;
893 if (offset
[idx
+ 1] == 0) {
894 dn
->node_page
= pages
[idx
];
898 f2fs_put_page(pages
[idx
], 1);
904 for (i
= idx
; i
>= 0; i
--)
905 f2fs_put_page(pages
[i
], 1);
907 trace_f2fs_truncate_partial_nodes(dn
->inode
, nid
, depth
, err
);
913 * All the block addresses of data and nodes should be nullified.
915 int f2fs_truncate_inode_blocks(struct inode
*inode
, pgoff_t from
)
917 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
918 int err
= 0, cont
= 1;
919 int level
, offset
[4], noffset
[4];
920 unsigned int nofs
= 0;
921 struct f2fs_inode
*ri
;
922 struct dnode_of_data dn
;
925 trace_f2fs_truncate_inode_blocks_enter(inode
, from
);
927 level
= get_node_path(inode
, from
, offset
, noffset
);
931 page
= f2fs_get_node_page(sbi
, inode
->i_ino
);
933 trace_f2fs_truncate_inode_blocks_exit(inode
, PTR_ERR(page
));
934 return PTR_ERR(page
);
937 set_new_dnode(&dn
, inode
, page
, NULL
, 0);
940 ri
= F2FS_INODE(page
);
948 if (!offset
[level
- 1])
950 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
951 if (err
< 0 && err
!= -ENOENT
)
953 nofs
+= 1 + NIDS_PER_BLOCK
;
956 nofs
= 5 + 2 * NIDS_PER_BLOCK
;
957 if (!offset
[level
- 1])
959 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
960 if (err
< 0 && err
!= -ENOENT
)
969 dn
.nid
= le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
971 case NODE_DIR1_BLOCK
:
972 case NODE_DIR2_BLOCK
:
973 err
= truncate_dnode(&dn
);
976 case NODE_IND1_BLOCK
:
977 case NODE_IND2_BLOCK
:
978 err
= truncate_nodes(&dn
, nofs
, offset
[1], 2);
981 case NODE_DIND_BLOCK
:
982 err
= truncate_nodes(&dn
, nofs
, offset
[1], 3);
989 if (err
< 0 && err
!= -ENOENT
)
991 if (offset
[1] == 0 &&
992 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]) {
994 BUG_ON(page
->mapping
!= NODE_MAPPING(sbi
));
995 f2fs_wait_on_page_writeback(page
, NODE
, true);
996 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
] = 0;
997 set_page_dirty(page
);
1005 f2fs_put_page(page
, 0);
1006 trace_f2fs_truncate_inode_blocks_exit(inode
, err
);
1007 return err
> 0 ? 0 : err
;
1010 /* caller must lock inode page */
1011 int f2fs_truncate_xattr_node(struct inode
*inode
)
1013 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1014 nid_t nid
= F2FS_I(inode
)->i_xattr_nid
;
1015 struct dnode_of_data dn
;
1021 npage
= f2fs_get_node_page(sbi
, nid
);
1023 return PTR_ERR(npage
);
1025 f2fs_i_xnid_write(inode
, 0);
1027 set_new_dnode(&dn
, inode
, NULL
, npage
, nid
);
1033 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1036 int f2fs_remove_inode_page(struct inode
*inode
)
1038 struct dnode_of_data dn
;
1041 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
1042 err
= f2fs_get_dnode_of_data(&dn
, 0, LOOKUP_NODE
);
1046 err
= f2fs_truncate_xattr_node(inode
);
1048 f2fs_put_dnode(&dn
);
1052 /* remove potential inline_data blocks */
1053 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1054 S_ISLNK(inode
->i_mode
))
1055 f2fs_truncate_data_blocks_range(&dn
, 1);
1057 /* 0 is possible, after f2fs_new_inode() has failed */
1058 f2fs_bug_on(F2FS_I_SB(inode
),
1059 inode
->i_blocks
!= 0 && inode
->i_blocks
!= 8);
1061 /* will put inode & node pages */
1066 struct page
*f2fs_new_inode_page(struct inode
*inode
)
1068 struct dnode_of_data dn
;
1070 /* allocate inode page for new inode */
1071 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
1073 /* caller should f2fs_put_page(page, 1); */
1074 return f2fs_new_node_page(&dn
, 0);
1077 struct page
*f2fs_new_node_page(struct dnode_of_data
*dn
, unsigned int ofs
)
1079 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
1080 struct node_info new_ni
;
1084 if (unlikely(is_inode_flag_set(dn
->inode
, FI_NO_ALLOC
)))
1085 return ERR_PTR(-EPERM
);
1087 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), dn
->nid
, false);
1089 return ERR_PTR(-ENOMEM
);
1091 if (unlikely((err
= inc_valid_node_count(sbi
, dn
->inode
, !ofs
))))
1094 #ifdef CONFIG_F2FS_CHECK_FS
1095 f2fs_get_node_info(sbi
, dn
->nid
, &new_ni
);
1096 f2fs_bug_on(sbi
, new_ni
.blk_addr
!= NULL_ADDR
);
1098 new_ni
.nid
= dn
->nid
;
1099 new_ni
.ino
= dn
->inode
->i_ino
;
1100 new_ni
.blk_addr
= NULL_ADDR
;
1103 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
1105 f2fs_wait_on_page_writeback(page
, NODE
, true);
1106 fill_node_footer(page
, dn
->nid
, dn
->inode
->i_ino
, ofs
, true);
1107 set_cold_node(page
, S_ISDIR(dn
->inode
->i_mode
));
1108 if (!PageUptodate(page
))
1109 SetPageUptodate(page
);
1110 if (set_page_dirty(page
))
1111 dn
->node_changed
= true;
1113 if (f2fs_has_xattr_block(ofs
))
1114 f2fs_i_xnid_write(dn
->inode
, dn
->nid
);
1117 inc_valid_inode_count(sbi
);
1121 clear_node_page_dirty(page
);
1122 f2fs_put_page(page
, 1);
1123 return ERR_PTR(err
);
1127 * Caller should do after getting the following values.
1128 * 0: f2fs_put_page(page, 0)
1129 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1131 static int read_node_page(struct page
*page
, int op_flags
)
1133 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1134 struct node_info ni
;
1135 struct f2fs_io_info fio
= {
1139 .op_flags
= op_flags
,
1141 .encrypted_page
= NULL
,
1144 if (PageUptodate(page
))
1147 f2fs_get_node_info(sbi
, page
->index
, &ni
);
1149 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1150 ClearPageUptodate(page
);
1154 fio
.new_blkaddr
= fio
.old_blkaddr
= ni
.blk_addr
;
1155 return f2fs_submit_page_bio(&fio
);
1159 * Readahead a node page
1161 void f2fs_ra_node_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
1168 if (f2fs_check_nid_range(sbi
, nid
))
1172 apage
= radix_tree_lookup(&NODE_MAPPING(sbi
)->i_pages
, nid
);
1177 apage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1181 err
= read_node_page(apage
, REQ_RAHEAD
);
1182 f2fs_put_page(apage
, err
? 1 : 0);
1185 static struct page
*__get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
,
1186 struct page
*parent
, int start
)
1192 return ERR_PTR(-ENOENT
);
1193 if (f2fs_check_nid_range(sbi
, nid
))
1194 return ERR_PTR(-EINVAL
);
1196 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1198 return ERR_PTR(-ENOMEM
);
1200 err
= read_node_page(page
, 0);
1202 f2fs_put_page(page
, 1);
1203 return ERR_PTR(err
);
1204 } else if (err
== LOCKED_PAGE
) {
1210 f2fs_ra_node_pages(parent
, start
+ 1, MAX_RA_NODE
);
1214 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1215 f2fs_put_page(page
, 1);
1219 if (unlikely(!PageUptodate(page
))) {
1224 if (!f2fs_inode_chksum_verify(sbi
, page
)) {
1229 if(unlikely(nid
!= nid_of_node(page
))) {
1230 f2fs_msg(sbi
->sb
, KERN_WARNING
, "inconsistent node block, "
1231 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1232 nid
, nid_of_node(page
), ino_of_node(page
),
1233 ofs_of_node(page
), cpver_of_node(page
),
1234 next_blkaddr_of_node(page
));
1237 ClearPageUptodate(page
);
1238 f2fs_put_page(page
, 1);
1239 return ERR_PTR(err
);
1244 struct page
*f2fs_get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
)
1246 return __get_node_page(sbi
, nid
, NULL
, 0);
1249 struct page
*f2fs_get_node_page_ra(struct page
*parent
, int start
)
1251 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
1252 nid_t nid
= get_nid(parent
, start
, false);
1254 return __get_node_page(sbi
, nid
, parent
, start
);
1257 static void flush_inline_data(struct f2fs_sb_info
*sbi
, nid_t ino
)
1259 struct inode
*inode
;
1263 /* should flush inline_data before evict_inode */
1264 inode
= ilookup(sbi
->sb
, ino
);
1268 page
= f2fs_pagecache_get_page(inode
->i_mapping
, 0,
1269 FGP_LOCK
|FGP_NOWAIT
, 0);
1273 if (!PageUptodate(page
))
1276 if (!PageDirty(page
))
1279 if (!clear_page_dirty_for_io(page
))
1282 ret
= f2fs_write_inline_data(inode
, page
);
1283 inode_dec_dirty_pages(inode
);
1284 f2fs_remove_dirty_inode(inode
);
1286 set_page_dirty(page
);
1288 f2fs_put_page(page
, 1);
1293 static struct page
*last_fsync_dnode(struct f2fs_sb_info
*sbi
, nid_t ino
)
1296 struct pagevec pvec
;
1297 struct page
*last_page
= NULL
;
1300 pagevec_init(&pvec
);
1303 while ((nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1304 PAGECACHE_TAG_DIRTY
))) {
1307 for (i
= 0; i
< nr_pages
; i
++) {
1308 struct page
*page
= pvec
.pages
[i
];
1310 if (unlikely(f2fs_cp_error(sbi
))) {
1311 f2fs_put_page(last_page
, 0);
1312 pagevec_release(&pvec
);
1313 return ERR_PTR(-EIO
);
1316 if (!IS_DNODE(page
) || !is_cold_node(page
))
1318 if (ino_of_node(page
) != ino
)
1323 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1328 if (ino_of_node(page
) != ino
)
1329 goto continue_unlock
;
1331 if (!PageDirty(page
)) {
1332 /* someone wrote it for us */
1333 goto continue_unlock
;
1337 f2fs_put_page(last_page
, 0);
1343 pagevec_release(&pvec
);
1349 static int __write_node_page(struct page
*page
, bool atomic
, bool *submitted
,
1350 struct writeback_control
*wbc
, bool do_balance
,
1351 enum iostat_type io_type
)
1353 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1355 struct node_info ni
;
1356 struct f2fs_io_info fio
= {
1358 .ino
= ino_of_node(page
),
1361 .op_flags
= wbc_to_write_flags(wbc
),
1363 .encrypted_page
= NULL
,
1369 trace_f2fs_writepage(page
, NODE
);
1371 if (unlikely(f2fs_cp_error(sbi
)))
1374 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1377 /* get old block addr of this node page */
1378 nid
= nid_of_node(page
);
1379 f2fs_bug_on(sbi
, page
->index
!= nid
);
1381 if (wbc
->for_reclaim
) {
1382 if (!down_read_trylock(&sbi
->node_write
))
1385 down_read(&sbi
->node_write
);
1388 f2fs_get_node_info(sbi
, nid
, &ni
);
1390 /* This page is already truncated */
1391 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1392 ClearPageUptodate(page
);
1393 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1394 up_read(&sbi
->node_write
);
1399 if (atomic
&& !test_opt(sbi
, NOBARRIER
))
1400 fio
.op_flags
|= REQ_PREFLUSH
| REQ_FUA
;
1402 set_page_writeback(page
);
1403 ClearPageError(page
);
1404 fio
.old_blkaddr
= ni
.blk_addr
;
1405 f2fs_do_write_node_page(nid
, &fio
);
1406 set_node_addr(sbi
, &ni
, fio
.new_blkaddr
, is_fsync_dnode(page
));
1407 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1408 up_read(&sbi
->node_write
);
1410 if (wbc
->for_reclaim
) {
1411 f2fs_submit_merged_write_cond(sbi
, page
->mapping
->host
, 0,
1418 if (unlikely(f2fs_cp_error(sbi
))) {
1419 f2fs_submit_merged_write(sbi
, NODE
);
1423 *submitted
= fio
.submitted
;
1426 f2fs_balance_fs(sbi
, false);
1430 redirty_page_for_writepage(wbc
, page
);
1431 return AOP_WRITEPAGE_ACTIVATE
;
1434 void f2fs_move_node_page(struct page
*node_page
, int gc_type
)
1436 if (gc_type
== FG_GC
) {
1437 struct writeback_control wbc
= {
1438 .sync_mode
= WB_SYNC_ALL
,
1443 set_page_dirty(node_page
);
1444 f2fs_wait_on_page_writeback(node_page
, NODE
, true);
1446 f2fs_bug_on(F2FS_P_SB(node_page
), PageWriteback(node_page
));
1447 if (!clear_page_dirty_for_io(node_page
))
1450 if (__write_node_page(node_page
, false, NULL
,
1451 &wbc
, false, FS_GC_NODE_IO
))
1452 unlock_page(node_page
);
1455 /* set page dirty and write it */
1456 if (!PageWriteback(node_page
))
1457 set_page_dirty(node_page
);
1460 unlock_page(node_page
);
1462 f2fs_put_page(node_page
, 0);
1465 static int f2fs_write_node_page(struct page
*page
,
1466 struct writeback_control
*wbc
)
1468 return __write_node_page(page
, false, NULL
, wbc
, false, FS_NODE_IO
);
1471 int f2fs_fsync_node_pages(struct f2fs_sb_info
*sbi
, struct inode
*inode
,
1472 struct writeback_control
*wbc
, bool atomic
)
1475 pgoff_t last_idx
= ULONG_MAX
;
1476 struct pagevec pvec
;
1478 struct page
*last_page
= NULL
;
1479 bool marked
= false;
1480 nid_t ino
= inode
->i_ino
;
1484 last_page
= last_fsync_dnode(sbi
, ino
);
1485 if (IS_ERR_OR_NULL(last_page
))
1486 return PTR_ERR_OR_ZERO(last_page
);
1489 pagevec_init(&pvec
);
1492 while ((nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1493 PAGECACHE_TAG_DIRTY
))) {
1496 for (i
= 0; i
< nr_pages
; i
++) {
1497 struct page
*page
= pvec
.pages
[i
];
1498 bool submitted
= false;
1500 if (unlikely(f2fs_cp_error(sbi
))) {
1501 f2fs_put_page(last_page
, 0);
1502 pagevec_release(&pvec
);
1507 if (!IS_DNODE(page
) || !is_cold_node(page
))
1509 if (ino_of_node(page
) != ino
)
1514 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1519 if (ino_of_node(page
) != ino
)
1520 goto continue_unlock
;
1522 if (!PageDirty(page
) && page
!= last_page
) {
1523 /* someone wrote it for us */
1524 goto continue_unlock
;
1527 f2fs_wait_on_page_writeback(page
, NODE
, true);
1528 BUG_ON(PageWriteback(page
));
1530 set_fsync_mark(page
, 0);
1531 set_dentry_mark(page
, 0);
1533 if (!atomic
|| page
== last_page
) {
1534 set_fsync_mark(page
, 1);
1535 if (IS_INODE(page
)) {
1536 if (is_inode_flag_set(inode
,
1538 f2fs_update_inode(inode
, page
);
1539 set_dentry_mark(page
,
1540 f2fs_need_dentry_mark(sbi
, ino
));
1542 /* may be written by other thread */
1543 if (!PageDirty(page
))
1544 set_page_dirty(page
);
1547 if (!clear_page_dirty_for_io(page
))
1548 goto continue_unlock
;
1550 ret
= __write_node_page(page
, atomic
&&
1552 &submitted
, wbc
, true,
1556 f2fs_put_page(last_page
, 0);
1558 } else if (submitted
) {
1559 last_idx
= page
->index
;
1562 if (page
== last_page
) {
1563 f2fs_put_page(page
, 0);
1568 pagevec_release(&pvec
);
1574 if (!ret
&& atomic
&& !marked
) {
1575 f2fs_msg(sbi
->sb
, KERN_DEBUG
,
1576 "Retry to write fsync mark: ino=%u, idx=%lx",
1577 ino
, last_page
->index
);
1578 lock_page(last_page
);
1579 f2fs_wait_on_page_writeback(last_page
, NODE
, true);
1580 set_page_dirty(last_page
);
1581 unlock_page(last_page
);
1585 if (last_idx
!= ULONG_MAX
)
1586 f2fs_submit_merged_write_cond(sbi
, NULL
, ino
, last_idx
, NODE
);
1587 return ret
? -EIO
: 0;
1590 int f2fs_sync_node_pages(struct f2fs_sb_info
*sbi
,
1591 struct writeback_control
*wbc
,
1592 bool do_balance
, enum iostat_type io_type
)
1595 struct pagevec pvec
;
1599 int nr_pages
, done
= 0;
1601 pagevec_init(&pvec
);
1606 while (!done
&& (nr_pages
= pagevec_lookup_tag(&pvec
,
1607 NODE_MAPPING(sbi
), &index
, PAGECACHE_TAG_DIRTY
))) {
1610 for (i
= 0; i
< nr_pages
; i
++) {
1611 struct page
*page
= pvec
.pages
[i
];
1612 bool submitted
= false;
1614 /* give a priority to WB_SYNC threads */
1615 if (atomic_read(&sbi
->wb_sync_req
[NODE
]) &&
1616 wbc
->sync_mode
== WB_SYNC_NONE
) {
1622 * flushing sequence with step:
1627 if (step
== 0 && IS_DNODE(page
))
1629 if (step
== 1 && (!IS_DNODE(page
) ||
1630 is_cold_node(page
)))
1632 if (step
== 2 && (!IS_DNODE(page
) ||
1633 !is_cold_node(page
)))
1636 if (!trylock_page(page
))
1639 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1645 if (!PageDirty(page
)) {
1646 /* someone wrote it for us */
1647 goto continue_unlock
;
1650 /* flush inline_data */
1651 if (is_inline_node(page
)) {
1652 clear_inline_node(page
);
1654 flush_inline_data(sbi
, ino_of_node(page
));
1658 f2fs_wait_on_page_writeback(page
, NODE
, true);
1660 BUG_ON(PageWriteback(page
));
1661 if (!clear_page_dirty_for_io(page
))
1662 goto continue_unlock
;
1664 set_fsync_mark(page
, 0);
1665 set_dentry_mark(page
, 0);
1667 ret
= __write_node_page(page
, false, &submitted
,
1668 wbc
, do_balance
, io_type
);
1674 if (--wbc
->nr_to_write
== 0)
1677 pagevec_release(&pvec
);
1680 if (wbc
->nr_to_write
== 0) {
1692 f2fs_submit_merged_write(sbi
, NODE
);
1694 if (unlikely(f2fs_cp_error(sbi
)))
1699 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info
*sbi
, nid_t ino
)
1702 struct pagevec pvec
;
1706 pagevec_init(&pvec
);
1708 while ((nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1709 PAGECACHE_TAG_WRITEBACK
))) {
1712 for (i
= 0; i
< nr_pages
; i
++) {
1713 struct page
*page
= pvec
.pages
[i
];
1715 if (ino
&& ino_of_node(page
) == ino
) {
1716 f2fs_wait_on_page_writeback(page
, NODE
, true);
1717 if (TestClearPageError(page
))
1721 pagevec_release(&pvec
);
1725 ret2
= filemap_check_errors(NODE_MAPPING(sbi
));
1731 static int f2fs_write_node_pages(struct address_space
*mapping
,
1732 struct writeback_control
*wbc
)
1734 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
1735 struct blk_plug plug
;
1738 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1741 /* balancing f2fs's metadata in background */
1742 f2fs_balance_fs_bg(sbi
);
1744 /* collect a number of dirty node pages and write together */
1745 if (get_pages(sbi
, F2FS_DIRTY_NODES
) < nr_pages_to_skip(sbi
, NODE
))
1748 if (wbc
->sync_mode
== WB_SYNC_ALL
)
1749 atomic_inc(&sbi
->wb_sync_req
[NODE
]);
1750 else if (atomic_read(&sbi
->wb_sync_req
[NODE
]))
1753 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1755 diff
= nr_pages_to_write(sbi
, NODE
, wbc
);
1756 blk_start_plug(&plug
);
1757 f2fs_sync_node_pages(sbi
, wbc
, true, FS_NODE_IO
);
1758 blk_finish_plug(&plug
);
1759 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- diff
);
1761 if (wbc
->sync_mode
== WB_SYNC_ALL
)
1762 atomic_dec(&sbi
->wb_sync_req
[NODE
]);
1766 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_NODES
);
1767 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1771 static int f2fs_set_node_page_dirty(struct page
*page
)
1773 trace_f2fs_set_page_dirty(page
, NODE
);
1775 if (!PageUptodate(page
))
1776 SetPageUptodate(page
);
1777 if (!PageDirty(page
)) {
1778 __set_page_dirty_nobuffers(page
);
1779 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_NODES
);
1780 SetPagePrivate(page
);
1781 f2fs_trace_pid(page
);
1788 * Structure of the f2fs node operations
1790 const struct address_space_operations f2fs_node_aops
= {
1791 .writepage
= f2fs_write_node_page
,
1792 .writepages
= f2fs_write_node_pages
,
1793 .set_page_dirty
= f2fs_set_node_page_dirty
,
1794 .invalidatepage
= f2fs_invalidate_page
,
1795 .releasepage
= f2fs_release_page
,
1796 #ifdef CONFIG_MIGRATION
1797 .migratepage
= f2fs_migrate_page
,
1801 static struct free_nid
*__lookup_free_nid_list(struct f2fs_nm_info
*nm_i
,
1804 return radix_tree_lookup(&nm_i
->free_nid_root
, n
);
1807 static int __insert_free_nid(struct f2fs_sb_info
*sbi
,
1808 struct free_nid
*i
, enum nid_state state
)
1810 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1812 int err
= radix_tree_insert(&nm_i
->free_nid_root
, i
->nid
, i
);
1816 f2fs_bug_on(sbi
, state
!= i
->state
);
1817 nm_i
->nid_cnt
[state
]++;
1818 if (state
== FREE_NID
)
1819 list_add_tail(&i
->list
, &nm_i
->free_nid_list
);
1823 static void __remove_free_nid(struct f2fs_sb_info
*sbi
,
1824 struct free_nid
*i
, enum nid_state state
)
1826 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1828 f2fs_bug_on(sbi
, state
!= i
->state
);
1829 nm_i
->nid_cnt
[state
]--;
1830 if (state
== FREE_NID
)
1832 radix_tree_delete(&nm_i
->free_nid_root
, i
->nid
);
1835 static void __move_free_nid(struct f2fs_sb_info
*sbi
, struct free_nid
*i
,
1836 enum nid_state org_state
, enum nid_state dst_state
)
1838 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1840 f2fs_bug_on(sbi
, org_state
!= i
->state
);
1841 i
->state
= dst_state
;
1842 nm_i
->nid_cnt
[org_state
]--;
1843 nm_i
->nid_cnt
[dst_state
]++;
1845 switch (dst_state
) {
1850 list_add_tail(&i
->list
, &nm_i
->free_nid_list
);
1857 static void update_free_nid_bitmap(struct f2fs_sb_info
*sbi
, nid_t nid
,
1858 bool set
, bool build
)
1860 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1861 unsigned int nat_ofs
= NAT_BLOCK_OFFSET(nid
);
1862 unsigned int nid_ofs
= nid
- START_NID(nid
);
1864 if (!test_bit_le(nat_ofs
, nm_i
->nat_block_bitmap
))
1868 if (test_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]))
1870 __set_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]);
1871 nm_i
->free_nid_count
[nat_ofs
]++;
1873 if (!test_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]))
1875 __clear_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]);
1877 nm_i
->free_nid_count
[nat_ofs
]--;
1881 /* return if the nid is recognized as free */
1882 static bool add_free_nid(struct f2fs_sb_info
*sbi
,
1883 nid_t nid
, bool build
, bool update
)
1885 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1886 struct free_nid
*i
, *e
;
1887 struct nat_entry
*ne
;
1891 /* 0 nid should not be used */
1892 if (unlikely(nid
== 0))
1895 i
= f2fs_kmem_cache_alloc(free_nid_slab
, GFP_NOFS
);
1897 i
->state
= FREE_NID
;
1899 radix_tree_preload(GFP_NOFS
| __GFP_NOFAIL
);
1901 spin_lock(&nm_i
->nid_list_lock
);
1909 * - __insert_nid_to_list(PREALLOC_NID)
1910 * - f2fs_balance_fs_bg
1911 * - f2fs_build_free_nids
1912 * - __f2fs_build_free_nids
1915 * - __lookup_nat_cache
1917 * - f2fs_init_inode_metadata
1918 * - f2fs_new_inode_page
1919 * - f2fs_new_node_page
1921 * - f2fs_alloc_nid_done
1922 * - __remove_nid_from_list(PREALLOC_NID)
1923 * - __insert_nid_to_list(FREE_NID)
1925 ne
= __lookup_nat_cache(nm_i
, nid
);
1926 if (ne
&& (!get_nat_flag(ne
, IS_CHECKPOINTED
) ||
1927 nat_get_blkaddr(ne
) != NULL_ADDR
))
1930 e
= __lookup_free_nid_list(nm_i
, nid
);
1932 if (e
->state
== FREE_NID
)
1938 err
= __insert_free_nid(sbi
, i
, FREE_NID
);
1941 update_free_nid_bitmap(sbi
, nid
, ret
, build
);
1943 nm_i
->available_nids
++;
1945 spin_unlock(&nm_i
->nid_list_lock
);
1946 radix_tree_preload_end();
1949 kmem_cache_free(free_nid_slab
, i
);
1953 static void remove_free_nid(struct f2fs_sb_info
*sbi
, nid_t nid
)
1955 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1957 bool need_free
= false;
1959 spin_lock(&nm_i
->nid_list_lock
);
1960 i
= __lookup_free_nid_list(nm_i
, nid
);
1961 if (i
&& i
->state
== FREE_NID
) {
1962 __remove_free_nid(sbi
, i
, FREE_NID
);
1965 spin_unlock(&nm_i
->nid_list_lock
);
1968 kmem_cache_free(free_nid_slab
, i
);
1971 static void scan_nat_page(struct f2fs_sb_info
*sbi
,
1972 struct page
*nat_page
, nid_t start_nid
)
1974 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1975 struct f2fs_nat_block
*nat_blk
= page_address(nat_page
);
1977 unsigned int nat_ofs
= NAT_BLOCK_OFFSET(start_nid
);
1980 __set_bit_le(nat_ofs
, nm_i
->nat_block_bitmap
);
1982 i
= start_nid
% NAT_ENTRY_PER_BLOCK
;
1984 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++, start_nid
++) {
1985 if (unlikely(start_nid
>= nm_i
->max_nid
))
1988 blk_addr
= le32_to_cpu(nat_blk
->entries
[i
].block_addr
);
1989 f2fs_bug_on(sbi
, blk_addr
== NEW_ADDR
);
1990 if (blk_addr
== NULL_ADDR
) {
1991 add_free_nid(sbi
, start_nid
, true, true);
1993 spin_lock(&NM_I(sbi
)->nid_list_lock
);
1994 update_free_nid_bitmap(sbi
, start_nid
, false, true);
1995 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2000 static void scan_curseg_cache(struct f2fs_sb_info
*sbi
)
2002 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2003 struct f2fs_journal
*journal
= curseg
->journal
;
2006 down_read(&curseg
->journal_rwsem
);
2007 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
2011 addr
= le32_to_cpu(nat_in_journal(journal
, i
).block_addr
);
2012 nid
= le32_to_cpu(nid_in_journal(journal
, i
));
2013 if (addr
== NULL_ADDR
)
2014 add_free_nid(sbi
, nid
, true, false);
2016 remove_free_nid(sbi
, nid
);
2018 up_read(&curseg
->journal_rwsem
);
2021 static void scan_free_nid_bits(struct f2fs_sb_info
*sbi
)
2023 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2024 unsigned int i
, idx
;
2027 down_read(&nm_i
->nat_tree_lock
);
2029 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
2030 if (!test_bit_le(i
, nm_i
->nat_block_bitmap
))
2032 if (!nm_i
->free_nid_count
[i
])
2034 for (idx
= 0; idx
< NAT_ENTRY_PER_BLOCK
; idx
++) {
2035 idx
= find_next_bit_le(nm_i
->free_nid_bitmap
[i
],
2036 NAT_ENTRY_PER_BLOCK
, idx
);
2037 if (idx
>= NAT_ENTRY_PER_BLOCK
)
2040 nid
= i
* NAT_ENTRY_PER_BLOCK
+ idx
;
2041 add_free_nid(sbi
, nid
, true, false);
2043 if (nm_i
->nid_cnt
[FREE_NID
] >= MAX_FREE_NIDS
)
2048 scan_curseg_cache(sbi
);
2050 up_read(&nm_i
->nat_tree_lock
);
2053 static void __f2fs_build_free_nids(struct f2fs_sb_info
*sbi
,
2054 bool sync
, bool mount
)
2056 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2058 nid_t nid
= nm_i
->next_scan_nid
;
2060 if (unlikely(nid
>= nm_i
->max_nid
))
2063 /* Enough entries */
2064 if (nm_i
->nid_cnt
[FREE_NID
] >= NAT_ENTRY_PER_BLOCK
)
2067 if (!sync
&& !f2fs_available_free_memory(sbi
, FREE_NIDS
))
2071 /* try to find free nids in free_nid_bitmap */
2072 scan_free_nid_bits(sbi
);
2074 if (nm_i
->nid_cnt
[FREE_NID
] >= NAT_ENTRY_PER_BLOCK
)
2078 /* readahead nat pages to be scanned */
2079 f2fs_ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nid
), FREE_NID_PAGES
,
2082 down_read(&nm_i
->nat_tree_lock
);
2085 if (!test_bit_le(NAT_BLOCK_OFFSET(nid
),
2086 nm_i
->nat_block_bitmap
)) {
2087 struct page
*page
= get_current_nat_page(sbi
, nid
);
2089 scan_nat_page(sbi
, page
, nid
);
2090 f2fs_put_page(page
, 1);
2093 nid
+= (NAT_ENTRY_PER_BLOCK
- (nid
% NAT_ENTRY_PER_BLOCK
));
2094 if (unlikely(nid
>= nm_i
->max_nid
))
2097 if (++i
>= FREE_NID_PAGES
)
2101 /* go to the next free nat pages to find free nids abundantly */
2102 nm_i
->next_scan_nid
= nid
;
2104 /* find free nids from current sum_pages */
2105 scan_curseg_cache(sbi
);
2107 up_read(&nm_i
->nat_tree_lock
);
2109 f2fs_ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nm_i
->next_scan_nid
),
2110 nm_i
->ra_nid_pages
, META_NAT
, false);
2113 void f2fs_build_free_nids(struct f2fs_sb_info
*sbi
, bool sync
, bool mount
)
2115 mutex_lock(&NM_I(sbi
)->build_lock
);
2116 __f2fs_build_free_nids(sbi
, sync
, mount
);
2117 mutex_unlock(&NM_I(sbi
)->build_lock
);
2121 * If this function returns success, caller can obtain a new nid
2122 * from second parameter of this function.
2123 * The returned nid could be used ino as well as nid when inode is created.
2125 bool f2fs_alloc_nid(struct f2fs_sb_info
*sbi
, nid_t
*nid
)
2127 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2128 struct free_nid
*i
= NULL
;
2130 #ifdef CONFIG_F2FS_FAULT_INJECTION
2131 if (time_to_inject(sbi
, FAULT_ALLOC_NID
)) {
2132 f2fs_show_injection_info(FAULT_ALLOC_NID
);
2136 spin_lock(&nm_i
->nid_list_lock
);
2138 if (unlikely(nm_i
->available_nids
== 0)) {
2139 spin_unlock(&nm_i
->nid_list_lock
);
2143 /* We should not use stale free nids created by f2fs_build_free_nids */
2144 if (nm_i
->nid_cnt
[FREE_NID
] && !on_f2fs_build_free_nids(nm_i
)) {
2145 f2fs_bug_on(sbi
, list_empty(&nm_i
->free_nid_list
));
2146 i
= list_first_entry(&nm_i
->free_nid_list
,
2147 struct free_nid
, list
);
2150 __move_free_nid(sbi
, i
, FREE_NID
, PREALLOC_NID
);
2151 nm_i
->available_nids
--;
2153 update_free_nid_bitmap(sbi
, *nid
, false, false);
2155 spin_unlock(&nm_i
->nid_list_lock
);
2158 spin_unlock(&nm_i
->nid_list_lock
);
2160 /* Let's scan nat pages and its caches to get free nids */
2161 f2fs_build_free_nids(sbi
, true, false);
2166 * f2fs_alloc_nid() should be called prior to this function.
2168 void f2fs_alloc_nid_done(struct f2fs_sb_info
*sbi
, nid_t nid
)
2170 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2173 spin_lock(&nm_i
->nid_list_lock
);
2174 i
= __lookup_free_nid_list(nm_i
, nid
);
2175 f2fs_bug_on(sbi
, !i
);
2176 __remove_free_nid(sbi
, i
, PREALLOC_NID
);
2177 spin_unlock(&nm_i
->nid_list_lock
);
2179 kmem_cache_free(free_nid_slab
, i
);
2183 * f2fs_alloc_nid() should be called prior to this function.
2185 void f2fs_alloc_nid_failed(struct f2fs_sb_info
*sbi
, nid_t nid
)
2187 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2189 bool need_free
= false;
2194 spin_lock(&nm_i
->nid_list_lock
);
2195 i
= __lookup_free_nid_list(nm_i
, nid
);
2196 f2fs_bug_on(sbi
, !i
);
2198 if (!f2fs_available_free_memory(sbi
, FREE_NIDS
)) {
2199 __remove_free_nid(sbi
, i
, PREALLOC_NID
);
2202 __move_free_nid(sbi
, i
, PREALLOC_NID
, FREE_NID
);
2205 nm_i
->available_nids
++;
2207 update_free_nid_bitmap(sbi
, nid
, true, false);
2209 spin_unlock(&nm_i
->nid_list_lock
);
2212 kmem_cache_free(free_nid_slab
, i
);
2215 int f2fs_try_to_free_nids(struct f2fs_sb_info
*sbi
, int nr_shrink
)
2217 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2218 struct free_nid
*i
, *next
;
2221 if (nm_i
->nid_cnt
[FREE_NID
] <= MAX_FREE_NIDS
)
2224 if (!mutex_trylock(&nm_i
->build_lock
))
2227 spin_lock(&nm_i
->nid_list_lock
);
2228 list_for_each_entry_safe(i
, next
, &nm_i
->free_nid_list
, list
) {
2229 if (nr_shrink
<= 0 ||
2230 nm_i
->nid_cnt
[FREE_NID
] <= MAX_FREE_NIDS
)
2233 __remove_free_nid(sbi
, i
, FREE_NID
);
2234 kmem_cache_free(free_nid_slab
, i
);
2237 spin_unlock(&nm_i
->nid_list_lock
);
2238 mutex_unlock(&nm_i
->build_lock
);
2240 return nr
- nr_shrink
;
2243 void f2fs_recover_inline_xattr(struct inode
*inode
, struct page
*page
)
2245 void *src_addr
, *dst_addr
;
2248 struct f2fs_inode
*ri
;
2250 ipage
= f2fs_get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
2251 f2fs_bug_on(F2FS_I_SB(inode
), IS_ERR(ipage
));
2253 ri
= F2FS_INODE(page
);
2254 if (ri
->i_inline
& F2FS_INLINE_XATTR
) {
2255 set_inode_flag(inode
, FI_INLINE_XATTR
);
2257 clear_inode_flag(inode
, FI_INLINE_XATTR
);
2261 dst_addr
= inline_xattr_addr(inode
, ipage
);
2262 src_addr
= inline_xattr_addr(inode
, page
);
2263 inline_size
= inline_xattr_size(inode
);
2265 f2fs_wait_on_page_writeback(ipage
, NODE
, true);
2266 memcpy(dst_addr
, src_addr
, inline_size
);
2268 f2fs_update_inode(inode
, ipage
);
2269 f2fs_put_page(ipage
, 1);
2272 int f2fs_recover_xattr_data(struct inode
*inode
, struct page
*page
)
2274 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2275 nid_t prev_xnid
= F2FS_I(inode
)->i_xattr_nid
;
2277 struct dnode_of_data dn
;
2278 struct node_info ni
;
2284 /* 1: invalidate the previous xattr nid */
2285 f2fs_get_node_info(sbi
, prev_xnid
, &ni
);
2286 f2fs_invalidate_blocks(sbi
, ni
.blk_addr
);
2287 dec_valid_node_count(sbi
, inode
, false);
2288 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
2291 /* 2: update xattr nid in inode */
2292 if (!f2fs_alloc_nid(sbi
, &new_xnid
))
2295 set_new_dnode(&dn
, inode
, NULL
, NULL
, new_xnid
);
2296 xpage
= f2fs_new_node_page(&dn
, XATTR_NODE_OFFSET
);
2297 if (IS_ERR(xpage
)) {
2298 f2fs_alloc_nid_failed(sbi
, new_xnid
);
2299 return PTR_ERR(xpage
);
2302 f2fs_alloc_nid_done(sbi
, new_xnid
);
2303 f2fs_update_inode_page(inode
);
2305 /* 3: update and set xattr node page dirty */
2306 memcpy(F2FS_NODE(xpage
), F2FS_NODE(page
), VALID_XATTR_BLOCK_SIZE
);
2308 set_page_dirty(xpage
);
2309 f2fs_put_page(xpage
, 1);
2314 int f2fs_recover_inode_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
2316 struct f2fs_inode
*src
, *dst
;
2317 nid_t ino
= ino_of_node(page
);
2318 struct node_info old_ni
, new_ni
;
2321 f2fs_get_node_info(sbi
, ino
, &old_ni
);
2323 if (unlikely(old_ni
.blk_addr
!= NULL_ADDR
))
2326 ipage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), ino
, false);
2328 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
2332 /* Should not use this inode from free nid list */
2333 remove_free_nid(sbi
, ino
);
2335 if (!PageUptodate(ipage
))
2336 SetPageUptodate(ipage
);
2337 fill_node_footer(ipage
, ino
, ino
, 0, true);
2338 set_cold_node(page
, false);
2340 src
= F2FS_INODE(page
);
2341 dst
= F2FS_INODE(ipage
);
2343 memcpy(dst
, src
, (unsigned long)&src
->i_ext
- (unsigned long)src
);
2345 dst
->i_blocks
= cpu_to_le64(1);
2346 dst
->i_links
= cpu_to_le32(1);
2347 dst
->i_xattr_nid
= 0;
2348 dst
->i_inline
= src
->i_inline
& (F2FS_INLINE_XATTR
| F2FS_EXTRA_ATTR
);
2349 if (dst
->i_inline
& F2FS_EXTRA_ATTR
) {
2350 dst
->i_extra_isize
= src
->i_extra_isize
;
2352 if (f2fs_sb_has_flexible_inline_xattr(sbi
->sb
) &&
2353 F2FS_FITS_IN_INODE(src
, le16_to_cpu(src
->i_extra_isize
),
2354 i_inline_xattr_size
))
2355 dst
->i_inline_xattr_size
= src
->i_inline_xattr_size
;
2357 if (f2fs_sb_has_project_quota(sbi
->sb
) &&
2358 F2FS_FITS_IN_INODE(src
, le16_to_cpu(src
->i_extra_isize
),
2360 dst
->i_projid
= src
->i_projid
;
2366 if (unlikely(inc_valid_node_count(sbi
, NULL
, true)))
2368 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
2369 inc_valid_inode_count(sbi
);
2370 set_page_dirty(ipage
);
2371 f2fs_put_page(ipage
, 1);
2375 void f2fs_restore_node_summary(struct f2fs_sb_info
*sbi
,
2376 unsigned int segno
, struct f2fs_summary_block
*sum
)
2378 struct f2fs_node
*rn
;
2379 struct f2fs_summary
*sum_entry
;
2381 int i
, idx
, last_offset
, nrpages
;
2383 /* scan the node segment */
2384 last_offset
= sbi
->blocks_per_seg
;
2385 addr
= START_BLOCK(sbi
, segno
);
2386 sum_entry
= &sum
->entries
[0];
2388 for (i
= 0; i
< last_offset
; i
+= nrpages
, addr
+= nrpages
) {
2389 nrpages
= min(last_offset
- i
, BIO_MAX_PAGES
);
2391 /* readahead node pages */
2392 f2fs_ra_meta_pages(sbi
, addr
, nrpages
, META_POR
, true);
2394 for (idx
= addr
; idx
< addr
+ nrpages
; idx
++) {
2395 struct page
*page
= f2fs_get_tmp_page(sbi
, idx
);
2397 rn
= F2FS_NODE(page
);
2398 sum_entry
->nid
= rn
->footer
.nid
;
2399 sum_entry
->version
= 0;
2400 sum_entry
->ofs_in_node
= 0;
2402 f2fs_put_page(page
, 1);
2405 invalidate_mapping_pages(META_MAPPING(sbi
), addr
,
2410 static void remove_nats_in_journal(struct f2fs_sb_info
*sbi
)
2412 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2413 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2414 struct f2fs_journal
*journal
= curseg
->journal
;
2417 down_write(&curseg
->journal_rwsem
);
2418 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
2419 struct nat_entry
*ne
;
2420 struct f2fs_nat_entry raw_ne
;
2421 nid_t nid
= le32_to_cpu(nid_in_journal(journal
, i
));
2423 raw_ne
= nat_in_journal(journal
, i
);
2425 ne
= __lookup_nat_cache(nm_i
, nid
);
2427 ne
= __alloc_nat_entry(nid
, true);
2428 __init_nat_entry(nm_i
, ne
, &raw_ne
, true);
2432 * if a free nat in journal has not been used after last
2433 * checkpoint, we should remove it from available nids,
2434 * since later we will add it again.
2436 if (!get_nat_flag(ne
, IS_DIRTY
) &&
2437 le32_to_cpu(raw_ne
.block_addr
) == NULL_ADDR
) {
2438 spin_lock(&nm_i
->nid_list_lock
);
2439 nm_i
->available_nids
--;
2440 spin_unlock(&nm_i
->nid_list_lock
);
2443 __set_nat_cache_dirty(nm_i
, ne
);
2445 update_nats_in_cursum(journal
, -i
);
2446 up_write(&curseg
->journal_rwsem
);
2449 static void __adjust_nat_entry_set(struct nat_entry_set
*nes
,
2450 struct list_head
*head
, int max
)
2452 struct nat_entry_set
*cur
;
2454 if (nes
->entry_cnt
>= max
)
2457 list_for_each_entry(cur
, head
, set_list
) {
2458 if (cur
->entry_cnt
>= nes
->entry_cnt
) {
2459 list_add(&nes
->set_list
, cur
->set_list
.prev
);
2464 list_add_tail(&nes
->set_list
, head
);
2467 static void __update_nat_bits(struct f2fs_sb_info
*sbi
, nid_t start_nid
,
2470 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2471 unsigned int nat_index
= start_nid
/ NAT_ENTRY_PER_BLOCK
;
2472 struct f2fs_nat_block
*nat_blk
= page_address(page
);
2476 if (!enabled_nat_bits(sbi
, NULL
))
2479 if (nat_index
== 0) {
2483 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++) {
2484 if (nat_blk
->entries
[i
].block_addr
!= NULL_ADDR
)
2488 __set_bit_le(nat_index
, nm_i
->empty_nat_bits
);
2489 __clear_bit_le(nat_index
, nm_i
->full_nat_bits
);
2493 __clear_bit_le(nat_index
, nm_i
->empty_nat_bits
);
2494 if (valid
== NAT_ENTRY_PER_BLOCK
)
2495 __set_bit_le(nat_index
, nm_i
->full_nat_bits
);
2497 __clear_bit_le(nat_index
, nm_i
->full_nat_bits
);
2500 static void __flush_nat_entry_set(struct f2fs_sb_info
*sbi
,
2501 struct nat_entry_set
*set
, struct cp_control
*cpc
)
2503 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2504 struct f2fs_journal
*journal
= curseg
->journal
;
2505 nid_t start_nid
= set
->set
* NAT_ENTRY_PER_BLOCK
;
2506 bool to_journal
= true;
2507 struct f2fs_nat_block
*nat_blk
;
2508 struct nat_entry
*ne
, *cur
;
2509 struct page
*page
= NULL
;
2512 * there are two steps to flush nat entries:
2513 * #1, flush nat entries to journal in current hot data summary block.
2514 * #2, flush nat entries to nat page.
2516 if (enabled_nat_bits(sbi
, cpc
) ||
2517 !__has_cursum_space(journal
, set
->entry_cnt
, NAT_JOURNAL
))
2521 down_write(&curseg
->journal_rwsem
);
2523 page
= get_next_nat_page(sbi
, start_nid
);
2524 nat_blk
= page_address(page
);
2525 f2fs_bug_on(sbi
, !nat_blk
);
2528 /* flush dirty nats in nat entry set */
2529 list_for_each_entry_safe(ne
, cur
, &set
->entry_list
, list
) {
2530 struct f2fs_nat_entry
*raw_ne
;
2531 nid_t nid
= nat_get_nid(ne
);
2534 f2fs_bug_on(sbi
, nat_get_blkaddr(ne
) == NEW_ADDR
);
2537 offset
= f2fs_lookup_journal_in_cursum(journal
,
2538 NAT_JOURNAL
, nid
, 1);
2539 f2fs_bug_on(sbi
, offset
< 0);
2540 raw_ne
= &nat_in_journal(journal
, offset
);
2541 nid_in_journal(journal
, offset
) = cpu_to_le32(nid
);
2543 raw_ne
= &nat_blk
->entries
[nid
- start_nid
];
2545 raw_nat_from_node_info(raw_ne
, &ne
->ni
);
2547 __clear_nat_cache_dirty(NM_I(sbi
), set
, ne
);
2548 if (nat_get_blkaddr(ne
) == NULL_ADDR
) {
2549 add_free_nid(sbi
, nid
, false, true);
2551 spin_lock(&NM_I(sbi
)->nid_list_lock
);
2552 update_free_nid_bitmap(sbi
, nid
, false, false);
2553 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2558 up_write(&curseg
->journal_rwsem
);
2560 __update_nat_bits(sbi
, start_nid
, page
);
2561 f2fs_put_page(page
, 1);
2564 /* Allow dirty nats by node block allocation in write_begin */
2565 if (!set
->entry_cnt
) {
2566 radix_tree_delete(&NM_I(sbi
)->nat_set_root
, set
->set
);
2567 kmem_cache_free(nat_entry_set_slab
, set
);
2572 * This function is called during the checkpointing process.
2574 void f2fs_flush_nat_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
2576 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2577 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2578 struct f2fs_journal
*journal
= curseg
->journal
;
2579 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2580 struct nat_entry_set
*set
, *tmp
;
2585 if (!nm_i
->dirty_nat_cnt
)
2588 down_write(&nm_i
->nat_tree_lock
);
2591 * if there are no enough space in journal to store dirty nat
2592 * entries, remove all entries from journal and merge them
2593 * into nat entry set.
2595 if (enabled_nat_bits(sbi
, cpc
) ||
2596 !__has_cursum_space(journal
, nm_i
->dirty_nat_cnt
, NAT_JOURNAL
))
2597 remove_nats_in_journal(sbi
);
2599 while ((found
= __gang_lookup_nat_set(nm_i
,
2600 set_idx
, SETVEC_SIZE
, setvec
))) {
2602 set_idx
= setvec
[found
- 1]->set
+ 1;
2603 for (idx
= 0; idx
< found
; idx
++)
2604 __adjust_nat_entry_set(setvec
[idx
], &sets
,
2605 MAX_NAT_JENTRIES(journal
));
2608 /* flush dirty nats in nat entry set */
2609 list_for_each_entry_safe(set
, tmp
, &sets
, set_list
)
2610 __flush_nat_entry_set(sbi
, set
, cpc
);
2612 up_write(&nm_i
->nat_tree_lock
);
2613 /* Allow dirty nats by node block allocation in write_begin */
2616 static int __get_nat_bitmaps(struct f2fs_sb_info
*sbi
)
2618 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2619 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2620 unsigned int nat_bits_bytes
= nm_i
->nat_blocks
/ BITS_PER_BYTE
;
2622 __u64 cp_ver
= cur_cp_version(ckpt
);
2623 block_t nat_bits_addr
;
2625 if (!enabled_nat_bits(sbi
, NULL
))
2628 nm_i
->nat_bits_blocks
= F2FS_BLK_ALIGN((nat_bits_bytes
<< 1) + 8);
2629 nm_i
->nat_bits
= f2fs_kzalloc(sbi
,
2630 nm_i
->nat_bits_blocks
<< F2FS_BLKSIZE_BITS
, GFP_KERNEL
);
2631 if (!nm_i
->nat_bits
)
2634 nat_bits_addr
= __start_cp_addr(sbi
) + sbi
->blocks_per_seg
-
2635 nm_i
->nat_bits_blocks
;
2636 for (i
= 0; i
< nm_i
->nat_bits_blocks
; i
++) {
2637 struct page
*page
= f2fs_get_meta_page(sbi
, nat_bits_addr
++);
2639 memcpy(nm_i
->nat_bits
+ (i
<< F2FS_BLKSIZE_BITS
),
2640 page_address(page
), F2FS_BLKSIZE
);
2641 f2fs_put_page(page
, 1);
2644 cp_ver
|= (cur_cp_crc(ckpt
) << 32);
2645 if (cpu_to_le64(cp_ver
) != *(__le64
*)nm_i
->nat_bits
) {
2646 disable_nat_bits(sbi
, true);
2650 nm_i
->full_nat_bits
= nm_i
->nat_bits
+ 8;
2651 nm_i
->empty_nat_bits
= nm_i
->full_nat_bits
+ nat_bits_bytes
;
2653 f2fs_msg(sbi
->sb
, KERN_NOTICE
, "Found nat_bits in checkpoint");
2657 static inline void load_free_nid_bitmap(struct f2fs_sb_info
*sbi
)
2659 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2661 nid_t nid
, last_nid
;
2663 if (!enabled_nat_bits(sbi
, NULL
))
2666 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
2667 i
= find_next_bit_le(nm_i
->empty_nat_bits
, nm_i
->nat_blocks
, i
);
2668 if (i
>= nm_i
->nat_blocks
)
2671 __set_bit_le(i
, nm_i
->nat_block_bitmap
);
2673 nid
= i
* NAT_ENTRY_PER_BLOCK
;
2674 last_nid
= nid
+ NAT_ENTRY_PER_BLOCK
;
2676 spin_lock(&NM_I(sbi
)->nid_list_lock
);
2677 for (; nid
< last_nid
; nid
++)
2678 update_free_nid_bitmap(sbi
, nid
, true, true);
2679 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2682 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
2683 i
= find_next_bit_le(nm_i
->full_nat_bits
, nm_i
->nat_blocks
, i
);
2684 if (i
>= nm_i
->nat_blocks
)
2687 __set_bit_le(i
, nm_i
->nat_block_bitmap
);
2691 static int init_node_manager(struct f2fs_sb_info
*sbi
)
2693 struct f2fs_super_block
*sb_raw
= F2FS_RAW_SUPER(sbi
);
2694 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2695 unsigned char *version_bitmap
;
2696 unsigned int nat_segs
;
2699 nm_i
->nat_blkaddr
= le32_to_cpu(sb_raw
->nat_blkaddr
);
2701 /* segment_count_nat includes pair segment so divide to 2. */
2702 nat_segs
= le32_to_cpu(sb_raw
->segment_count_nat
) >> 1;
2703 nm_i
->nat_blocks
= nat_segs
<< le32_to_cpu(sb_raw
->log_blocks_per_seg
);
2704 nm_i
->max_nid
= NAT_ENTRY_PER_BLOCK
* nm_i
->nat_blocks
;
2706 /* not used nids: 0, node, meta, (and root counted as valid node) */
2707 nm_i
->available_nids
= nm_i
->max_nid
- sbi
->total_valid_node_count
-
2708 sbi
->nquota_files
- F2FS_RESERVED_NODE_NUM
;
2709 nm_i
->nid_cnt
[FREE_NID
] = 0;
2710 nm_i
->nid_cnt
[PREALLOC_NID
] = 0;
2712 nm_i
->ram_thresh
= DEF_RAM_THRESHOLD
;
2713 nm_i
->ra_nid_pages
= DEF_RA_NID_PAGES
;
2714 nm_i
->dirty_nats_ratio
= DEF_DIRTY_NAT_RATIO_THRESHOLD
;
2716 INIT_RADIX_TREE(&nm_i
->free_nid_root
, GFP_ATOMIC
);
2717 INIT_LIST_HEAD(&nm_i
->free_nid_list
);
2718 INIT_RADIX_TREE(&nm_i
->nat_root
, GFP_NOIO
);
2719 INIT_RADIX_TREE(&nm_i
->nat_set_root
, GFP_NOIO
);
2720 INIT_LIST_HEAD(&nm_i
->nat_entries
);
2722 mutex_init(&nm_i
->build_lock
);
2723 spin_lock_init(&nm_i
->nid_list_lock
);
2724 init_rwsem(&nm_i
->nat_tree_lock
);
2726 nm_i
->next_scan_nid
= le32_to_cpu(sbi
->ckpt
->next_free_nid
);
2727 nm_i
->bitmap_size
= __bitmap_size(sbi
, NAT_BITMAP
);
2728 version_bitmap
= __bitmap_ptr(sbi
, NAT_BITMAP
);
2729 if (!version_bitmap
)
2732 nm_i
->nat_bitmap
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
2734 if (!nm_i
->nat_bitmap
)
2737 err
= __get_nat_bitmaps(sbi
);
2741 #ifdef CONFIG_F2FS_CHECK_FS
2742 nm_i
->nat_bitmap_mir
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
2744 if (!nm_i
->nat_bitmap_mir
)
2751 static int init_free_nid_cache(struct f2fs_sb_info
*sbi
)
2753 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2756 nm_i
->free_nid_bitmap
=
2757 f2fs_kzalloc(sbi
, array_size(sizeof(unsigned char *),
2760 if (!nm_i
->free_nid_bitmap
)
2763 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
2764 nm_i
->free_nid_bitmap
[i
] = f2fs_kvzalloc(sbi
,
2765 NAT_ENTRY_BITMAP_SIZE_ALIGNED
, GFP_KERNEL
);
2766 if (!nm_i
->free_nid_bitmap
)
2770 nm_i
->nat_block_bitmap
= f2fs_kvzalloc(sbi
, nm_i
->nat_blocks
/ 8,
2772 if (!nm_i
->nat_block_bitmap
)
2775 nm_i
->free_nid_count
=
2776 f2fs_kvzalloc(sbi
, array_size(sizeof(unsigned short),
2779 if (!nm_i
->free_nid_count
)
2784 int f2fs_build_node_manager(struct f2fs_sb_info
*sbi
)
2788 sbi
->nm_info
= f2fs_kzalloc(sbi
, sizeof(struct f2fs_nm_info
),
2793 err
= init_node_manager(sbi
);
2797 err
= init_free_nid_cache(sbi
);
2801 /* load free nid status from nat_bits table */
2802 load_free_nid_bitmap(sbi
);
2804 f2fs_build_free_nids(sbi
, true, true);
2808 void f2fs_destroy_node_manager(struct f2fs_sb_info
*sbi
)
2810 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2811 struct free_nid
*i
, *next_i
;
2812 struct nat_entry
*natvec
[NATVEC_SIZE
];
2813 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2820 /* destroy free nid list */
2821 spin_lock(&nm_i
->nid_list_lock
);
2822 list_for_each_entry_safe(i
, next_i
, &nm_i
->free_nid_list
, list
) {
2823 __remove_free_nid(sbi
, i
, FREE_NID
);
2824 spin_unlock(&nm_i
->nid_list_lock
);
2825 kmem_cache_free(free_nid_slab
, i
);
2826 spin_lock(&nm_i
->nid_list_lock
);
2828 f2fs_bug_on(sbi
, nm_i
->nid_cnt
[FREE_NID
]);
2829 f2fs_bug_on(sbi
, nm_i
->nid_cnt
[PREALLOC_NID
]);
2830 f2fs_bug_on(sbi
, !list_empty(&nm_i
->free_nid_list
));
2831 spin_unlock(&nm_i
->nid_list_lock
);
2833 /* destroy nat cache */
2834 down_write(&nm_i
->nat_tree_lock
);
2835 while ((found
= __gang_lookup_nat_cache(nm_i
,
2836 nid
, NATVEC_SIZE
, natvec
))) {
2839 nid
= nat_get_nid(natvec
[found
- 1]) + 1;
2840 for (idx
= 0; idx
< found
; idx
++)
2841 __del_from_nat_cache(nm_i
, natvec
[idx
]);
2843 f2fs_bug_on(sbi
, nm_i
->nat_cnt
);
2845 /* destroy nat set cache */
2847 while ((found
= __gang_lookup_nat_set(nm_i
,
2848 nid
, SETVEC_SIZE
, setvec
))) {
2851 nid
= setvec
[found
- 1]->set
+ 1;
2852 for (idx
= 0; idx
< found
; idx
++) {
2853 /* entry_cnt is not zero, when cp_error was occurred */
2854 f2fs_bug_on(sbi
, !list_empty(&setvec
[idx
]->entry_list
));
2855 radix_tree_delete(&nm_i
->nat_set_root
, setvec
[idx
]->set
);
2856 kmem_cache_free(nat_entry_set_slab
, setvec
[idx
]);
2859 up_write(&nm_i
->nat_tree_lock
);
2861 kvfree(nm_i
->nat_block_bitmap
);
2862 if (nm_i
->free_nid_bitmap
) {
2865 for (i
= 0; i
< nm_i
->nat_blocks
; i
++)
2866 kvfree(nm_i
->free_nid_bitmap
[i
]);
2867 kfree(nm_i
->free_nid_bitmap
);
2869 kvfree(nm_i
->free_nid_count
);
2871 kfree(nm_i
->nat_bitmap
);
2872 kfree(nm_i
->nat_bits
);
2873 #ifdef CONFIG_F2FS_CHECK_FS
2874 kfree(nm_i
->nat_bitmap_mir
);
2876 sbi
->nm_info
= NULL
;
2880 int __init
f2fs_create_node_manager_caches(void)
2882 nat_entry_slab
= f2fs_kmem_cache_create("nat_entry",
2883 sizeof(struct nat_entry
));
2884 if (!nat_entry_slab
)
2887 free_nid_slab
= f2fs_kmem_cache_create("free_nid",
2888 sizeof(struct free_nid
));
2890 goto destroy_nat_entry
;
2892 nat_entry_set_slab
= f2fs_kmem_cache_create("nat_entry_set",
2893 sizeof(struct nat_entry_set
));
2894 if (!nat_entry_set_slab
)
2895 goto destroy_free_nid
;
2899 kmem_cache_destroy(free_nid_slab
);
2901 kmem_cache_destroy(nat_entry_slab
);
2906 void f2fs_destroy_node_manager_caches(void)
2908 kmem_cache_destroy(nat_entry_set_slab
);
2909 kmem_cache_destroy(free_nid_slab
);
2910 kmem_cache_destroy(nat_entry_slab
);