1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/magic.h>
18 #include <linux/pipe_fs_i.h>
19 #include <linux/uio.h>
20 #include <linux/highmem.h>
21 #include <linux/pagemap.h>
22 #include <linux/audit.h>
23 #include <linux/syscalls.h>
24 #include <linux/fcntl.h>
25 #include <linux/memcontrol.h>
27 #include <linux/uaccess.h>
28 #include <asm/ioctls.h>
33 * The max size that a non-root user is allowed to grow the pipe. Can
34 * be set by root in /proc/sys/fs/pipe-max-size
36 unsigned int pipe_max_size
= 1048576;
38 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
39 * matches default values.
41 unsigned long pipe_user_pages_hard
;
42 unsigned long pipe_user_pages_soft
= PIPE_DEF_BUFFERS
* INR_OPEN_CUR
;
45 * We use a start+len construction, which provides full use of the
47 * -- Florian Coosmann (FGC)
49 * Reads with count = 0 should always return 0.
50 * -- Julian Bradfield 1999-06-07.
52 * FIFOs and Pipes now generate SIGIO for both readers and writers.
53 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
55 * pipe_read & write cleanup
56 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
59 static void pipe_lock_nested(struct pipe_inode_info
*pipe
, int subclass
)
62 mutex_lock_nested(&pipe
->mutex
, subclass
);
65 void pipe_lock(struct pipe_inode_info
*pipe
)
68 * pipe_lock() nests non-pipe inode locks (for writing to a file)
70 pipe_lock_nested(pipe
, I_MUTEX_PARENT
);
72 EXPORT_SYMBOL(pipe_lock
);
74 void pipe_unlock(struct pipe_inode_info
*pipe
)
77 mutex_unlock(&pipe
->mutex
);
79 EXPORT_SYMBOL(pipe_unlock
);
81 static inline void __pipe_lock(struct pipe_inode_info
*pipe
)
83 mutex_lock_nested(&pipe
->mutex
, I_MUTEX_PARENT
);
86 static inline void __pipe_unlock(struct pipe_inode_info
*pipe
)
88 mutex_unlock(&pipe
->mutex
);
91 void pipe_double_lock(struct pipe_inode_info
*pipe1
,
92 struct pipe_inode_info
*pipe2
)
94 BUG_ON(pipe1
== pipe2
);
97 pipe_lock_nested(pipe1
, I_MUTEX_PARENT
);
98 pipe_lock_nested(pipe2
, I_MUTEX_CHILD
);
100 pipe_lock_nested(pipe2
, I_MUTEX_PARENT
);
101 pipe_lock_nested(pipe1
, I_MUTEX_CHILD
);
105 /* Drop the inode semaphore and wait for a pipe event, atomically */
106 void pipe_wait(struct pipe_inode_info
*pipe
)
111 * Pipes are system-local resources, so sleeping on them
112 * is considered a noninteractive wait:
114 prepare_to_wait(&pipe
->wait
, &wait
, TASK_INTERRUPTIBLE
);
117 finish_wait(&pipe
->wait
, &wait
);
121 static void anon_pipe_buf_release(struct pipe_inode_info
*pipe
,
122 struct pipe_buffer
*buf
)
124 struct page
*page
= buf
->page
;
127 * If nobody else uses this page, and we don't already have a
128 * temporary page, let's keep track of it as a one-deep
129 * allocation cache. (Otherwise just release our reference to it)
131 if (page_count(page
) == 1 && !pipe
->tmp_page
)
132 pipe
->tmp_page
= page
;
137 static int anon_pipe_buf_steal(struct pipe_inode_info
*pipe
,
138 struct pipe_buffer
*buf
)
140 struct page
*page
= buf
->page
;
142 if (page_count(page
) == 1) {
143 if (memcg_kmem_enabled())
144 memcg_kmem_uncharge(page
, 0);
145 __SetPageLocked(page
);
152 * generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
153 * @pipe: the pipe that the buffer belongs to
154 * @buf: the buffer to attempt to steal
157 * This function attempts to steal the &struct page attached to
158 * @buf. If successful, this function returns 0 and returns with
159 * the page locked. The caller may then reuse the page for whatever
160 * he wishes; the typical use is insertion into a different file
163 int generic_pipe_buf_steal(struct pipe_inode_info
*pipe
,
164 struct pipe_buffer
*buf
)
166 struct page
*page
= buf
->page
;
169 * A reference of one is golden, that means that the owner of this
170 * page is the only one holding a reference to it. lock the page
173 if (page_count(page
) == 1) {
180 EXPORT_SYMBOL(generic_pipe_buf_steal
);
183 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
184 * @pipe: the pipe that the buffer belongs to
185 * @buf: the buffer to get a reference to
188 * This function grabs an extra reference to @buf. It's used in
189 * in the tee() system call, when we duplicate the buffers in one
192 void generic_pipe_buf_get(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
)
196 EXPORT_SYMBOL(generic_pipe_buf_get
);
199 * generic_pipe_buf_confirm - verify contents of the pipe buffer
200 * @info: the pipe that the buffer belongs to
201 * @buf: the buffer to confirm
204 * This function does nothing, because the generic pipe code uses
205 * pages that are always good when inserted into the pipe.
207 int generic_pipe_buf_confirm(struct pipe_inode_info
*info
,
208 struct pipe_buffer
*buf
)
212 EXPORT_SYMBOL(generic_pipe_buf_confirm
);
215 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
216 * @pipe: the pipe that the buffer belongs to
217 * @buf: the buffer to put a reference to
220 * This function releases a reference to @buf.
222 void generic_pipe_buf_release(struct pipe_inode_info
*pipe
,
223 struct pipe_buffer
*buf
)
227 EXPORT_SYMBOL(generic_pipe_buf_release
);
229 static const struct pipe_buf_operations anon_pipe_buf_ops
= {
231 .confirm
= generic_pipe_buf_confirm
,
232 .release
= anon_pipe_buf_release
,
233 .steal
= anon_pipe_buf_steal
,
234 .get
= generic_pipe_buf_get
,
237 static const struct pipe_buf_operations packet_pipe_buf_ops
= {
239 .confirm
= generic_pipe_buf_confirm
,
240 .release
= anon_pipe_buf_release
,
241 .steal
= anon_pipe_buf_steal
,
242 .get
= generic_pipe_buf_get
,
246 pipe_read(struct kiocb
*iocb
, struct iov_iter
*to
)
248 size_t total_len
= iov_iter_count(to
);
249 struct file
*filp
= iocb
->ki_filp
;
250 struct pipe_inode_info
*pipe
= filp
->private_data
;
254 /* Null read succeeds. */
255 if (unlikely(total_len
== 0))
262 int bufs
= pipe
->nrbufs
;
264 int curbuf
= pipe
->curbuf
;
265 struct pipe_buffer
*buf
= pipe
->bufs
+ curbuf
;
266 size_t chars
= buf
->len
;
270 if (chars
> total_len
)
273 error
= pipe_buf_confirm(pipe
, buf
);
280 written
= copy_page_to_iter(buf
->page
, buf
->offset
, chars
, to
);
281 if (unlikely(written
< chars
)) {
287 buf
->offset
+= chars
;
290 /* Was it a packet buffer? Clean up and exit */
291 if (buf
->flags
& PIPE_BUF_FLAG_PACKET
) {
297 pipe_buf_release(pipe
, buf
);
298 curbuf
= (curbuf
+ 1) & (pipe
->buffers
- 1);
299 pipe
->curbuf
= curbuf
;
300 pipe
->nrbufs
= --bufs
;
305 break; /* common path: read succeeded */
307 if (bufs
) /* More to do? */
311 if (!pipe
->waiting_writers
) {
312 /* syscall merging: Usually we must not sleep
313 * if O_NONBLOCK is set, or if we got some data.
314 * But if a writer sleeps in kernel space, then
315 * we can wait for that data without violating POSIX.
319 if (filp
->f_flags
& O_NONBLOCK
) {
324 if (signal_pending(current
)) {
330 wake_up_interruptible_sync_poll(&pipe
->wait
, EPOLLOUT
| EPOLLWRNORM
);
331 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
337 /* Signal writers asynchronously that there is more room. */
339 wake_up_interruptible_sync_poll(&pipe
->wait
, EPOLLOUT
| EPOLLWRNORM
);
340 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
347 static inline int is_packetized(struct file
*file
)
349 return (file
->f_flags
& O_DIRECT
) != 0;
353 pipe_write(struct kiocb
*iocb
, struct iov_iter
*from
)
355 struct file
*filp
= iocb
->ki_filp
;
356 struct pipe_inode_info
*pipe
= filp
->private_data
;
359 size_t total_len
= iov_iter_count(from
);
362 /* Null write succeeds. */
363 if (unlikely(total_len
== 0))
368 if (!pipe
->readers
) {
369 send_sig(SIGPIPE
, current
, 0);
374 /* We try to merge small writes */
375 chars
= total_len
& (PAGE_SIZE
-1); /* size of the last buffer */
376 if (pipe
->nrbufs
&& chars
!= 0) {
377 int lastbuf
= (pipe
->curbuf
+ pipe
->nrbufs
- 1) &
379 struct pipe_buffer
*buf
= pipe
->bufs
+ lastbuf
;
380 int offset
= buf
->offset
+ buf
->len
;
382 if (buf
->ops
->can_merge
&& offset
+ chars
<= PAGE_SIZE
) {
383 ret
= pipe_buf_confirm(pipe
, buf
);
387 ret
= copy_page_from_iter(buf
->page
, offset
, chars
, from
);
388 if (unlikely(ret
< chars
)) {
394 if (!iov_iter_count(from
))
402 if (!pipe
->readers
) {
403 send_sig(SIGPIPE
, current
, 0);
409 if (bufs
< pipe
->buffers
) {
410 int newbuf
= (pipe
->curbuf
+ bufs
) & (pipe
->buffers
-1);
411 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
412 struct page
*page
= pipe
->tmp_page
;
416 page
= alloc_page(GFP_HIGHUSER
| __GFP_ACCOUNT
);
417 if (unlikely(!page
)) {
418 ret
= ret
? : -ENOMEM
;
421 pipe
->tmp_page
= page
;
423 /* Always wake up, even if the copy fails. Otherwise
424 * we lock up (O_NONBLOCK-)readers that sleep due to
426 * FIXME! Is this really true?
429 copied
= copy_page_from_iter(page
, 0, PAGE_SIZE
, from
);
430 if (unlikely(copied
< PAGE_SIZE
&& iov_iter_count(from
))) {
437 /* Insert it into the buffer array */
439 buf
->ops
= &anon_pipe_buf_ops
;
443 if (is_packetized(filp
)) {
444 buf
->ops
= &packet_pipe_buf_ops
;
445 buf
->flags
= PIPE_BUF_FLAG_PACKET
;
447 pipe
->nrbufs
= ++bufs
;
448 pipe
->tmp_page
= NULL
;
450 if (!iov_iter_count(from
))
453 if (bufs
< pipe
->buffers
)
455 if (filp
->f_flags
& O_NONBLOCK
) {
460 if (signal_pending(current
)) {
466 wake_up_interruptible_sync_poll(&pipe
->wait
, EPOLLIN
| EPOLLRDNORM
);
467 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
470 pipe
->waiting_writers
++;
472 pipe
->waiting_writers
--;
477 wake_up_interruptible_sync_poll(&pipe
->wait
, EPOLLIN
| EPOLLRDNORM
);
478 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
480 if (ret
> 0 && sb_start_write_trylock(file_inode(filp
)->i_sb
)) {
481 int err
= file_update_time(filp
);
484 sb_end_write(file_inode(filp
)->i_sb
);
489 static long pipe_ioctl(struct file
*filp
, unsigned int cmd
, unsigned long arg
)
491 struct pipe_inode_info
*pipe
= filp
->private_data
;
492 int count
, buf
, nrbufs
;
499 nrbufs
= pipe
->nrbufs
;
500 while (--nrbufs
>= 0) {
501 count
+= pipe
->bufs
[buf
].len
;
502 buf
= (buf
+1) & (pipe
->buffers
- 1);
506 return put_user(count
, (int __user
*)arg
);
512 static struct wait_queue_head
*
513 pipe_get_poll_head(struct file
*filp
, __poll_t events
)
515 struct pipe_inode_info
*pipe
= filp
->private_data
;
520 /* No kernel lock held - fine */
521 static __poll_t
pipe_poll_mask(struct file
*filp
, __poll_t events
)
523 struct pipe_inode_info
*pipe
= filp
->private_data
;
524 int nrbufs
= pipe
->nrbufs
;
527 /* Reading only -- no need for acquiring the semaphore. */
528 if (filp
->f_mode
& FMODE_READ
) {
529 mask
= (nrbufs
> 0) ? EPOLLIN
| EPOLLRDNORM
: 0;
530 if (!pipe
->writers
&& filp
->f_version
!= pipe
->w_counter
)
534 if (filp
->f_mode
& FMODE_WRITE
) {
535 mask
|= (nrbufs
< pipe
->buffers
) ? EPOLLOUT
| EPOLLWRNORM
: 0;
537 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
538 * behave exactly like pipes for poll().
547 static void put_pipe_info(struct inode
*inode
, struct pipe_inode_info
*pipe
)
551 spin_lock(&inode
->i_lock
);
552 if (!--pipe
->files
) {
553 inode
->i_pipe
= NULL
;
556 spin_unlock(&inode
->i_lock
);
559 free_pipe_info(pipe
);
563 pipe_release(struct inode
*inode
, struct file
*file
)
565 struct pipe_inode_info
*pipe
= file
->private_data
;
568 if (file
->f_mode
& FMODE_READ
)
570 if (file
->f_mode
& FMODE_WRITE
)
573 if (pipe
->readers
|| pipe
->writers
) {
574 wake_up_interruptible_sync_poll(&pipe
->wait
, EPOLLIN
| EPOLLOUT
| EPOLLRDNORM
| EPOLLWRNORM
| EPOLLERR
| EPOLLHUP
);
575 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
576 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
580 put_pipe_info(inode
, pipe
);
585 pipe_fasync(int fd
, struct file
*filp
, int on
)
587 struct pipe_inode_info
*pipe
= filp
->private_data
;
591 if (filp
->f_mode
& FMODE_READ
)
592 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_readers
);
593 if ((filp
->f_mode
& FMODE_WRITE
) && retval
>= 0) {
594 retval
= fasync_helper(fd
, filp
, on
, &pipe
->fasync_writers
);
595 if (retval
< 0 && (filp
->f_mode
& FMODE_READ
))
596 /* this can happen only if on == T */
597 fasync_helper(-1, filp
, 0, &pipe
->fasync_readers
);
603 static unsigned long account_pipe_buffers(struct user_struct
*user
,
604 unsigned long old
, unsigned long new)
606 return atomic_long_add_return(new - old
, &user
->pipe_bufs
);
609 static bool too_many_pipe_buffers_soft(unsigned long user_bufs
)
611 unsigned long soft_limit
= READ_ONCE(pipe_user_pages_soft
);
613 return soft_limit
&& user_bufs
> soft_limit
;
616 static bool too_many_pipe_buffers_hard(unsigned long user_bufs
)
618 unsigned long hard_limit
= READ_ONCE(pipe_user_pages_hard
);
620 return hard_limit
&& user_bufs
> hard_limit
;
623 static bool is_unprivileged_user(void)
625 return !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
);
628 struct pipe_inode_info
*alloc_pipe_info(void)
630 struct pipe_inode_info
*pipe
;
631 unsigned long pipe_bufs
= PIPE_DEF_BUFFERS
;
632 struct user_struct
*user
= get_current_user();
633 unsigned long user_bufs
;
634 unsigned int max_size
= READ_ONCE(pipe_max_size
);
636 pipe
= kzalloc(sizeof(struct pipe_inode_info
), GFP_KERNEL_ACCOUNT
);
640 if (pipe_bufs
* PAGE_SIZE
> max_size
&& !capable(CAP_SYS_RESOURCE
))
641 pipe_bufs
= max_size
>> PAGE_SHIFT
;
643 user_bufs
= account_pipe_buffers(user
, 0, pipe_bufs
);
645 if (too_many_pipe_buffers_soft(user_bufs
) && is_unprivileged_user()) {
646 user_bufs
= account_pipe_buffers(user
, pipe_bufs
, 1);
650 if (too_many_pipe_buffers_hard(user_bufs
) && is_unprivileged_user())
651 goto out_revert_acct
;
653 pipe
->bufs
= kcalloc(pipe_bufs
, sizeof(struct pipe_buffer
),
657 init_waitqueue_head(&pipe
->wait
);
658 pipe
->r_counter
= pipe
->w_counter
= 1;
659 pipe
->buffers
= pipe_bufs
;
661 mutex_init(&pipe
->mutex
);
666 (void) account_pipe_buffers(user
, pipe_bufs
, 0);
673 void free_pipe_info(struct pipe_inode_info
*pipe
)
677 (void) account_pipe_buffers(pipe
->user
, pipe
->buffers
, 0);
678 free_uid(pipe
->user
);
679 for (i
= 0; i
< pipe
->buffers
; i
++) {
680 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
682 pipe_buf_release(pipe
, buf
);
685 __free_page(pipe
->tmp_page
);
690 static struct vfsmount
*pipe_mnt __read_mostly
;
693 * pipefs_dname() is called from d_path().
695 static char *pipefs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
697 return dynamic_dname(dentry
, buffer
, buflen
, "pipe:[%lu]",
698 d_inode(dentry
)->i_ino
);
701 static const struct dentry_operations pipefs_dentry_operations
= {
702 .d_dname
= pipefs_dname
,
705 static struct inode
* get_pipe_inode(void)
707 struct inode
*inode
= new_inode_pseudo(pipe_mnt
->mnt_sb
);
708 struct pipe_inode_info
*pipe
;
713 inode
->i_ino
= get_next_ino();
715 pipe
= alloc_pipe_info();
719 inode
->i_pipe
= pipe
;
721 pipe
->readers
= pipe
->writers
= 1;
722 inode
->i_fop
= &pipefifo_fops
;
725 * Mark the inode dirty from the very beginning,
726 * that way it will never be moved to the dirty
727 * list because "mark_inode_dirty()" will think
728 * that it already _is_ on the dirty list.
730 inode
->i_state
= I_DIRTY
;
731 inode
->i_mode
= S_IFIFO
| S_IRUSR
| S_IWUSR
;
732 inode
->i_uid
= current_fsuid();
733 inode
->i_gid
= current_fsgid();
734 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
745 int create_pipe_files(struct file
**res
, int flags
)
748 struct inode
*inode
= get_pipe_inode();
756 path
.dentry
= d_alloc_pseudo(pipe_mnt
->mnt_sb
, &empty_name
);
759 path
.mnt
= mntget(pipe_mnt
);
761 d_instantiate(path
.dentry
, inode
);
763 f
= alloc_file(&path
, FMODE_WRITE
, &pipefifo_fops
);
769 f
->f_flags
= O_WRONLY
| (flags
& (O_NONBLOCK
| O_DIRECT
));
770 f
->private_data
= inode
->i_pipe
;
772 res
[0] = alloc_file(&path
, FMODE_READ
, &pipefifo_fops
);
773 if (IS_ERR(res
[0])) {
774 err
= PTR_ERR(res
[0]);
779 res
[0]->private_data
= inode
->i_pipe
;
780 res
[0]->f_flags
= O_RDONLY
| (flags
& O_NONBLOCK
);
787 free_pipe_info(inode
->i_pipe
);
792 free_pipe_info(inode
->i_pipe
);
797 static int __do_pipe_flags(int *fd
, struct file
**files
, int flags
)
802 if (flags
& ~(O_CLOEXEC
| O_NONBLOCK
| O_DIRECT
))
805 error
= create_pipe_files(files
, flags
);
809 error
= get_unused_fd_flags(flags
);
814 error
= get_unused_fd_flags(flags
);
819 audit_fd_pair(fdr
, fdw
);
832 int do_pipe_flags(int *fd
, int flags
)
834 struct file
*files
[2];
835 int error
= __do_pipe_flags(fd
, files
, flags
);
837 fd_install(fd
[0], files
[0]);
838 fd_install(fd
[1], files
[1]);
844 * sys_pipe() is the normal C calling standard for creating
845 * a pipe. It's not the way Unix traditionally does this, though.
847 static int do_pipe2(int __user
*fildes
, int flags
)
849 struct file
*files
[2];
853 error
= __do_pipe_flags(fd
, files
, flags
);
855 if (unlikely(copy_to_user(fildes
, fd
, sizeof(fd
)))) {
858 put_unused_fd(fd
[0]);
859 put_unused_fd(fd
[1]);
862 fd_install(fd
[0], files
[0]);
863 fd_install(fd
[1], files
[1]);
869 SYSCALL_DEFINE2(pipe2
, int __user
*, fildes
, int, flags
)
871 return do_pipe2(fildes
, flags
);
874 SYSCALL_DEFINE1(pipe
, int __user
*, fildes
)
876 return do_pipe2(fildes
, 0);
879 static int wait_for_partner(struct pipe_inode_info
*pipe
, unsigned int *cnt
)
883 while (cur
== *cnt
) {
885 if (signal_pending(current
))
888 return cur
== *cnt
? -ERESTARTSYS
: 0;
891 static void wake_up_partner(struct pipe_inode_info
*pipe
)
893 wake_up_interruptible(&pipe
->wait
);
896 static int fifo_open(struct inode
*inode
, struct file
*filp
)
898 struct pipe_inode_info
*pipe
;
899 bool is_pipe
= inode
->i_sb
->s_magic
== PIPEFS_MAGIC
;
904 spin_lock(&inode
->i_lock
);
906 pipe
= inode
->i_pipe
;
908 spin_unlock(&inode
->i_lock
);
910 spin_unlock(&inode
->i_lock
);
911 pipe
= alloc_pipe_info();
915 spin_lock(&inode
->i_lock
);
916 if (unlikely(inode
->i_pipe
)) {
917 inode
->i_pipe
->files
++;
918 spin_unlock(&inode
->i_lock
);
919 free_pipe_info(pipe
);
920 pipe
= inode
->i_pipe
;
922 inode
->i_pipe
= pipe
;
923 spin_unlock(&inode
->i_lock
);
926 filp
->private_data
= pipe
;
927 /* OK, we have a pipe and it's pinned down */
931 /* We can only do regular read/write on fifos */
932 filp
->f_mode
&= (FMODE_READ
| FMODE_WRITE
);
934 switch (filp
->f_mode
) {
938 * POSIX.1 says that O_NONBLOCK means return with the FIFO
939 * opened, even when there is no process writing the FIFO.
942 if (pipe
->readers
++ == 0)
943 wake_up_partner(pipe
);
945 if (!is_pipe
&& !pipe
->writers
) {
946 if ((filp
->f_flags
& O_NONBLOCK
)) {
947 /* suppress EPOLLHUP until we have
949 filp
->f_version
= pipe
->w_counter
;
951 if (wait_for_partner(pipe
, &pipe
->w_counter
))
960 * POSIX.1 says that O_NONBLOCK means return -1 with
961 * errno=ENXIO when there is no process reading the FIFO.
964 if (!is_pipe
&& (filp
->f_flags
& O_NONBLOCK
) && !pipe
->readers
)
968 if (!pipe
->writers
++)
969 wake_up_partner(pipe
);
971 if (!is_pipe
&& !pipe
->readers
) {
972 if (wait_for_partner(pipe
, &pipe
->r_counter
))
977 case FMODE_READ
| FMODE_WRITE
:
980 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
981 * This implementation will NEVER block on a O_RDWR open, since
982 * the process can at least talk to itself.
989 if (pipe
->readers
== 1 || pipe
->writers
== 1)
990 wake_up_partner(pipe
);
1003 if (!--pipe
->readers
)
1004 wake_up_interruptible(&pipe
->wait
);
1009 if (!--pipe
->writers
)
1010 wake_up_interruptible(&pipe
->wait
);
1015 __pipe_unlock(pipe
);
1017 put_pipe_info(inode
, pipe
);
1021 const struct file_operations pipefifo_fops
= {
1023 .llseek
= no_llseek
,
1024 .read_iter
= pipe_read
,
1025 .write_iter
= pipe_write
,
1026 .get_poll_head
= pipe_get_poll_head
,
1027 .poll_mask
= pipe_poll_mask
,
1028 .unlocked_ioctl
= pipe_ioctl
,
1029 .release
= pipe_release
,
1030 .fasync
= pipe_fasync
,
1034 * Currently we rely on the pipe array holding a power-of-2 number
1035 * of pages. Returns 0 on error.
1037 unsigned int round_pipe_size(unsigned long size
)
1039 if (size
> (1U << 31))
1042 /* Minimum pipe size, as required by POSIX */
1043 if (size
< PAGE_SIZE
)
1046 return roundup_pow_of_two(size
);
1050 * Allocate a new array of pipe buffers and copy the info over. Returns the
1051 * pipe size if successful, or return -ERROR on error.
1053 static long pipe_set_size(struct pipe_inode_info
*pipe
, unsigned long arg
)
1055 struct pipe_buffer
*bufs
;
1056 unsigned int size
, nr_pages
;
1057 unsigned long user_bufs
;
1060 size
= round_pipe_size(arg
);
1061 nr_pages
= size
>> PAGE_SHIFT
;
1067 * If trying to increase the pipe capacity, check that an
1068 * unprivileged user is not trying to exceed various limits
1069 * (soft limit check here, hard limit check just below).
1070 * Decreasing the pipe capacity is always permitted, even
1071 * if the user is currently over a limit.
1073 if (nr_pages
> pipe
->buffers
&&
1074 size
> pipe_max_size
&& !capable(CAP_SYS_RESOURCE
))
1077 user_bufs
= account_pipe_buffers(pipe
->user
, pipe
->buffers
, nr_pages
);
1079 if (nr_pages
> pipe
->buffers
&&
1080 (too_many_pipe_buffers_hard(user_bufs
) ||
1081 too_many_pipe_buffers_soft(user_bufs
)) &&
1082 is_unprivileged_user()) {
1084 goto out_revert_acct
;
1088 * We can shrink the pipe, if arg >= pipe->nrbufs. Since we don't
1089 * expect a lot of shrink+grow operations, just free and allocate
1090 * again like we would do for growing. If the pipe currently
1091 * contains more buffers than arg, then return busy.
1093 if (nr_pages
< pipe
->nrbufs
) {
1095 goto out_revert_acct
;
1098 bufs
= kcalloc(nr_pages
, sizeof(*bufs
),
1099 GFP_KERNEL_ACCOUNT
| __GFP_NOWARN
);
1100 if (unlikely(!bufs
)) {
1102 goto out_revert_acct
;
1106 * The pipe array wraps around, so just start the new one at zero
1107 * and adjust the indexes.
1113 tail
= pipe
->curbuf
+ pipe
->nrbufs
;
1114 if (tail
< pipe
->buffers
)
1117 tail
&= (pipe
->buffers
- 1);
1119 head
= pipe
->nrbufs
- tail
;
1121 memcpy(bufs
, pipe
->bufs
+ pipe
->curbuf
, head
* sizeof(struct pipe_buffer
));
1123 memcpy(bufs
+ head
, pipe
->bufs
, tail
* sizeof(struct pipe_buffer
));
1129 pipe
->buffers
= nr_pages
;
1130 return nr_pages
* PAGE_SIZE
;
1133 (void) account_pipe_buffers(pipe
->user
, nr_pages
, pipe
->buffers
);
1138 * After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
1139 * location, so checking ->i_pipe is not enough to verify that this is a
1142 struct pipe_inode_info
*get_pipe_info(struct file
*file
)
1144 return file
->f_op
== &pipefifo_fops
? file
->private_data
: NULL
;
1147 long pipe_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1149 struct pipe_inode_info
*pipe
;
1152 pipe
= get_pipe_info(file
);
1160 ret
= pipe_set_size(pipe
, arg
);
1163 ret
= pipe
->buffers
* PAGE_SIZE
;
1170 __pipe_unlock(pipe
);
1174 static const struct super_operations pipefs_ops
= {
1175 .destroy_inode
= free_inode_nonrcu
,
1176 .statfs
= simple_statfs
,
1180 * pipefs should _never_ be mounted by userland - too much of security hassle,
1181 * no real gain from having the whole whorehouse mounted. So we don't need
1182 * any operations on the root directory. However, we need a non-trivial
1183 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1185 static struct dentry
*pipefs_mount(struct file_system_type
*fs_type
,
1186 int flags
, const char *dev_name
, void *data
)
1188 return mount_pseudo(fs_type
, "pipe:", &pipefs_ops
,
1189 &pipefs_dentry_operations
, PIPEFS_MAGIC
);
1192 static struct file_system_type pipe_fs_type
= {
1194 .mount
= pipefs_mount
,
1195 .kill_sb
= kill_anon_super
,
1198 static int __init
init_pipe_fs(void)
1200 int err
= register_filesystem(&pipe_fs_type
);
1203 pipe_mnt
= kern_mount(&pipe_fs_type
);
1204 if (IS_ERR(pipe_mnt
)) {
1205 err
= PTR_ERR(pipe_mnt
);
1206 unregister_filesystem(&pipe_fs_type
);
1212 fs_initcall(init_pipe_fs
);