locking/refcounts: Include fewer headers in <linux/refcount.h>
[linux/fpc-iii.git] / fs / userfaultfd.c
blob123bf7d516fc1f475cb89edb8aade4c2ad556f51
1 /*
2 * fs/userfaultfd.c
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35 enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
44 struct userfaultfd_ctx {
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
55 /* pseudo fd refcounting */
56 atomic_t refcount;
57 /* userfaultfd syscall flags */
58 unsigned int flags;
59 /* features requested from the userspace */
60 unsigned int features;
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* memory mappings are changing because of non-cooperative event */
66 bool mmap_changing;
67 /* mm with one ore more vmas attached to this userfaultfd_ctx */
68 struct mm_struct *mm;
71 struct userfaultfd_fork_ctx {
72 struct userfaultfd_ctx *orig;
73 struct userfaultfd_ctx *new;
74 struct list_head list;
77 struct userfaultfd_unmap_ctx {
78 struct userfaultfd_ctx *ctx;
79 unsigned long start;
80 unsigned long end;
81 struct list_head list;
84 struct userfaultfd_wait_queue {
85 struct uffd_msg msg;
86 wait_queue_entry_t wq;
87 struct userfaultfd_ctx *ctx;
88 bool waken;
91 struct userfaultfd_wake_range {
92 unsigned long start;
93 unsigned long len;
96 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
97 int wake_flags, void *key)
99 struct userfaultfd_wake_range *range = key;
100 int ret;
101 struct userfaultfd_wait_queue *uwq;
102 unsigned long start, len;
104 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
105 ret = 0;
106 /* len == 0 means wake all */
107 start = range->start;
108 len = range->len;
109 if (len && (start > uwq->msg.arg.pagefault.address ||
110 start + len <= uwq->msg.arg.pagefault.address))
111 goto out;
112 WRITE_ONCE(uwq->waken, true);
114 * The Program-Order guarantees provided by the scheduler
115 * ensure uwq->waken is visible before the task is woken.
117 ret = wake_up_state(wq->private, mode);
118 if (ret) {
120 * Wake only once, autoremove behavior.
122 * After the effect of list_del_init is visible to the other
123 * CPUs, the waitqueue may disappear from under us, see the
124 * !list_empty_careful() in handle_userfault().
126 * try_to_wake_up() has an implicit smp_mb(), and the
127 * wq->private is read before calling the extern function
128 * "wake_up_state" (which in turns calls try_to_wake_up).
130 list_del_init(&wq->entry);
132 out:
133 return ret;
137 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
138 * context.
139 * @ctx: [in] Pointer to the userfaultfd context.
141 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
143 if (!atomic_inc_not_zero(&ctx->refcount))
144 BUG();
148 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
149 * context.
150 * @ctx: [in] Pointer to userfaultfd context.
152 * The userfaultfd context reference must have been previously acquired either
153 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
155 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
157 if (atomic_dec_and_test(&ctx->refcount)) {
158 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
159 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
160 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
161 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
162 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
163 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
164 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
165 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
166 mmdrop(ctx->mm);
167 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
171 static inline void msg_init(struct uffd_msg *msg)
173 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
175 * Must use memset to zero out the paddings or kernel data is
176 * leaked to userland.
178 memset(msg, 0, sizeof(struct uffd_msg));
181 static inline struct uffd_msg userfault_msg(unsigned long address,
182 unsigned int flags,
183 unsigned long reason,
184 unsigned int features)
186 struct uffd_msg msg;
187 msg_init(&msg);
188 msg.event = UFFD_EVENT_PAGEFAULT;
189 msg.arg.pagefault.address = address;
190 if (flags & FAULT_FLAG_WRITE)
192 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
193 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
194 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
195 * was a read fault, otherwise if set it means it's
196 * a write fault.
198 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
199 if (reason & VM_UFFD_WP)
201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
203 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
204 * a missing fault, otherwise if set it means it's a
205 * write protect fault.
207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
208 if (features & UFFD_FEATURE_THREAD_ID)
209 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
210 return msg;
213 #ifdef CONFIG_HUGETLB_PAGE
215 * Same functionality as userfaultfd_must_wait below with modifications for
216 * hugepmd ranges.
218 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
219 struct vm_area_struct *vma,
220 unsigned long address,
221 unsigned long flags,
222 unsigned long reason)
224 struct mm_struct *mm = ctx->mm;
225 pte_t *pte;
226 bool ret = true;
228 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
230 pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
231 if (!pte)
232 goto out;
234 ret = false;
237 * Lockless access: we're in a wait_event so it's ok if it
238 * changes under us.
240 if (huge_pte_none(*pte))
241 ret = true;
242 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
243 ret = true;
244 out:
245 return ret;
247 #else
248 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
249 struct vm_area_struct *vma,
250 unsigned long address,
251 unsigned long flags,
252 unsigned long reason)
254 return false; /* should never get here */
256 #endif /* CONFIG_HUGETLB_PAGE */
259 * Verify the pagetables are still not ok after having reigstered into
260 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
261 * userfault that has already been resolved, if userfaultfd_read and
262 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
263 * threads.
265 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
266 unsigned long address,
267 unsigned long flags,
268 unsigned long reason)
270 struct mm_struct *mm = ctx->mm;
271 pgd_t *pgd;
272 p4d_t *p4d;
273 pud_t *pud;
274 pmd_t *pmd, _pmd;
275 pte_t *pte;
276 bool ret = true;
278 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
280 pgd = pgd_offset(mm, address);
281 if (!pgd_present(*pgd))
282 goto out;
283 p4d = p4d_offset(pgd, address);
284 if (!p4d_present(*p4d))
285 goto out;
286 pud = pud_offset(p4d, address);
287 if (!pud_present(*pud))
288 goto out;
289 pmd = pmd_offset(pud, address);
291 * READ_ONCE must function as a barrier with narrower scope
292 * and it must be equivalent to:
293 * _pmd = *pmd; barrier();
295 * This is to deal with the instability (as in
296 * pmd_trans_unstable) of the pmd.
298 _pmd = READ_ONCE(*pmd);
299 if (pmd_none(_pmd))
300 goto out;
302 ret = false;
303 if (!pmd_present(_pmd))
304 goto out;
306 if (pmd_trans_huge(_pmd))
307 goto out;
310 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
311 * and use the standard pte_offset_map() instead of parsing _pmd.
313 pte = pte_offset_map(pmd, address);
315 * Lockless access: we're in a wait_event so it's ok if it
316 * changes under us.
318 if (pte_none(*pte))
319 ret = true;
320 pte_unmap(pte);
322 out:
323 return ret;
327 * The locking rules involved in returning VM_FAULT_RETRY depending on
328 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
329 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
330 * recommendation in __lock_page_or_retry is not an understatement.
332 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
333 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
334 * not set.
336 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
337 * set, VM_FAULT_RETRY can still be returned if and only if there are
338 * fatal_signal_pending()s, and the mmap_sem must be released before
339 * returning it.
341 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
343 struct mm_struct *mm = vmf->vma->vm_mm;
344 struct userfaultfd_ctx *ctx;
345 struct userfaultfd_wait_queue uwq;
346 int ret;
347 bool must_wait, return_to_userland;
348 long blocking_state;
350 ret = VM_FAULT_SIGBUS;
353 * We don't do userfault handling for the final child pid update.
355 * We also don't do userfault handling during
356 * coredumping. hugetlbfs has the special
357 * follow_hugetlb_page() to skip missing pages in the
358 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
359 * the no_page_table() helper in follow_page_mask(), but the
360 * shmem_vm_ops->fault method is invoked even during
361 * coredumping without mmap_sem and it ends up here.
363 if (current->flags & (PF_EXITING|PF_DUMPCORE))
364 goto out;
367 * Coredumping runs without mmap_sem so we can only check that
368 * the mmap_sem is held, if PF_DUMPCORE was not set.
370 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
372 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
373 if (!ctx)
374 goto out;
376 BUG_ON(ctx->mm != mm);
378 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
379 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
381 if (ctx->features & UFFD_FEATURE_SIGBUS)
382 goto out;
385 * If it's already released don't get it. This avoids to loop
386 * in __get_user_pages if userfaultfd_release waits on the
387 * caller of handle_userfault to release the mmap_sem.
389 if (unlikely(READ_ONCE(ctx->released))) {
391 * Don't return VM_FAULT_SIGBUS in this case, so a non
392 * cooperative manager can close the uffd after the
393 * last UFFDIO_COPY, without risking to trigger an
394 * involuntary SIGBUS if the process was starting the
395 * userfaultfd while the userfaultfd was still armed
396 * (but after the last UFFDIO_COPY). If the uffd
397 * wasn't already closed when the userfault reached
398 * this point, that would normally be solved by
399 * userfaultfd_must_wait returning 'false'.
401 * If we were to return VM_FAULT_SIGBUS here, the non
402 * cooperative manager would be instead forced to
403 * always call UFFDIO_UNREGISTER before it can safely
404 * close the uffd.
406 ret = VM_FAULT_NOPAGE;
407 goto out;
411 * Check that we can return VM_FAULT_RETRY.
413 * NOTE: it should become possible to return VM_FAULT_RETRY
414 * even if FAULT_FLAG_TRIED is set without leading to gup()
415 * -EBUSY failures, if the userfaultfd is to be extended for
416 * VM_UFFD_WP tracking and we intend to arm the userfault
417 * without first stopping userland access to the memory. For
418 * VM_UFFD_MISSING userfaults this is enough for now.
420 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
422 * Validate the invariant that nowait must allow retry
423 * to be sure not to return SIGBUS erroneously on
424 * nowait invocations.
426 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
427 #ifdef CONFIG_DEBUG_VM
428 if (printk_ratelimit()) {
429 printk(KERN_WARNING
430 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
431 vmf->flags);
432 dump_stack();
434 #endif
435 goto out;
439 * Handle nowait, not much to do other than tell it to retry
440 * and wait.
442 ret = VM_FAULT_RETRY;
443 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
444 goto out;
446 /* take the reference before dropping the mmap_sem */
447 userfaultfd_ctx_get(ctx);
449 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
450 uwq.wq.private = current;
451 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
452 ctx->features);
453 uwq.ctx = ctx;
454 uwq.waken = false;
456 return_to_userland =
457 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
458 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
459 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
460 TASK_KILLABLE;
462 spin_lock(&ctx->fault_pending_wqh.lock);
464 * After the __add_wait_queue the uwq is visible to userland
465 * through poll/read().
467 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
469 * The smp_mb() after __set_current_state prevents the reads
470 * following the spin_unlock to happen before the list_add in
471 * __add_wait_queue.
473 set_current_state(blocking_state);
474 spin_unlock(&ctx->fault_pending_wqh.lock);
476 if (!is_vm_hugetlb_page(vmf->vma))
477 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
478 reason);
479 else
480 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
481 vmf->address,
482 vmf->flags, reason);
483 up_read(&mm->mmap_sem);
485 if (likely(must_wait && !READ_ONCE(ctx->released) &&
486 (return_to_userland ? !signal_pending(current) :
487 !fatal_signal_pending(current)))) {
488 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
489 schedule();
490 ret |= VM_FAULT_MAJOR;
493 * False wakeups can orginate even from rwsem before
494 * up_read() however userfaults will wait either for a
495 * targeted wakeup on the specific uwq waitqueue from
496 * wake_userfault() or for signals or for uffd
497 * release.
499 while (!READ_ONCE(uwq.waken)) {
501 * This needs the full smp_store_mb()
502 * guarantee as the state write must be
503 * visible to other CPUs before reading
504 * uwq.waken from other CPUs.
506 set_current_state(blocking_state);
507 if (READ_ONCE(uwq.waken) ||
508 READ_ONCE(ctx->released) ||
509 (return_to_userland ? signal_pending(current) :
510 fatal_signal_pending(current)))
511 break;
512 schedule();
516 __set_current_state(TASK_RUNNING);
518 if (return_to_userland) {
519 if (signal_pending(current) &&
520 !fatal_signal_pending(current)) {
522 * If we got a SIGSTOP or SIGCONT and this is
523 * a normal userland page fault, just let
524 * userland return so the signal will be
525 * handled and gdb debugging works. The page
526 * fault code immediately after we return from
527 * this function is going to release the
528 * mmap_sem and it's not depending on it
529 * (unlike gup would if we were not to return
530 * VM_FAULT_RETRY).
532 * If a fatal signal is pending we still take
533 * the streamlined VM_FAULT_RETRY failure path
534 * and there's no need to retake the mmap_sem
535 * in such case.
537 down_read(&mm->mmap_sem);
538 ret = VM_FAULT_NOPAGE;
543 * Here we race with the list_del; list_add in
544 * userfaultfd_ctx_read(), however because we don't ever run
545 * list_del_init() to refile across the two lists, the prev
546 * and next pointers will never point to self. list_add also
547 * would never let any of the two pointers to point to
548 * self. So list_empty_careful won't risk to see both pointers
549 * pointing to self at any time during the list refile. The
550 * only case where list_del_init() is called is the full
551 * removal in the wake function and there we don't re-list_add
552 * and it's fine not to block on the spinlock. The uwq on this
553 * kernel stack can be released after the list_del_init.
555 if (!list_empty_careful(&uwq.wq.entry)) {
556 spin_lock(&ctx->fault_pending_wqh.lock);
558 * No need of list_del_init(), the uwq on the stack
559 * will be freed shortly anyway.
561 list_del(&uwq.wq.entry);
562 spin_unlock(&ctx->fault_pending_wqh.lock);
566 * ctx may go away after this if the userfault pseudo fd is
567 * already released.
569 userfaultfd_ctx_put(ctx);
571 out:
572 return ret;
575 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
576 struct userfaultfd_wait_queue *ewq)
578 struct userfaultfd_ctx *release_new_ctx;
580 if (WARN_ON_ONCE(current->flags & PF_EXITING))
581 goto out;
583 ewq->ctx = ctx;
584 init_waitqueue_entry(&ewq->wq, current);
585 release_new_ctx = NULL;
587 spin_lock(&ctx->event_wqh.lock);
589 * After the __add_wait_queue the uwq is visible to userland
590 * through poll/read().
592 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
593 for (;;) {
594 set_current_state(TASK_KILLABLE);
595 if (ewq->msg.event == 0)
596 break;
597 if (READ_ONCE(ctx->released) ||
598 fatal_signal_pending(current)) {
600 * &ewq->wq may be queued in fork_event, but
601 * __remove_wait_queue ignores the head
602 * parameter. It would be a problem if it
603 * didn't.
605 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
606 if (ewq->msg.event == UFFD_EVENT_FORK) {
607 struct userfaultfd_ctx *new;
609 new = (struct userfaultfd_ctx *)
610 (unsigned long)
611 ewq->msg.arg.reserved.reserved1;
612 release_new_ctx = new;
614 break;
617 spin_unlock(&ctx->event_wqh.lock);
619 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
620 schedule();
622 spin_lock(&ctx->event_wqh.lock);
624 __set_current_state(TASK_RUNNING);
625 spin_unlock(&ctx->event_wqh.lock);
627 if (release_new_ctx) {
628 struct vm_area_struct *vma;
629 struct mm_struct *mm = release_new_ctx->mm;
631 /* the various vma->vm_userfaultfd_ctx still points to it */
632 down_write(&mm->mmap_sem);
633 for (vma = mm->mmap; vma; vma = vma->vm_next)
634 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx)
635 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
636 up_write(&mm->mmap_sem);
638 userfaultfd_ctx_put(release_new_ctx);
642 * ctx may go away after this if the userfault pseudo fd is
643 * already released.
645 out:
646 WRITE_ONCE(ctx->mmap_changing, false);
647 userfaultfd_ctx_put(ctx);
650 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
651 struct userfaultfd_wait_queue *ewq)
653 ewq->msg.event = 0;
654 wake_up_locked(&ctx->event_wqh);
655 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
658 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
660 struct userfaultfd_ctx *ctx = NULL, *octx;
661 struct userfaultfd_fork_ctx *fctx;
663 octx = vma->vm_userfaultfd_ctx.ctx;
664 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
665 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
666 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
667 return 0;
670 list_for_each_entry(fctx, fcs, list)
671 if (fctx->orig == octx) {
672 ctx = fctx->new;
673 break;
676 if (!ctx) {
677 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
678 if (!fctx)
679 return -ENOMEM;
681 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
682 if (!ctx) {
683 kfree(fctx);
684 return -ENOMEM;
687 atomic_set(&ctx->refcount, 1);
688 ctx->flags = octx->flags;
689 ctx->state = UFFD_STATE_RUNNING;
690 ctx->features = octx->features;
691 ctx->released = false;
692 ctx->mmap_changing = false;
693 ctx->mm = vma->vm_mm;
694 mmgrab(ctx->mm);
696 userfaultfd_ctx_get(octx);
697 WRITE_ONCE(octx->mmap_changing, true);
698 fctx->orig = octx;
699 fctx->new = ctx;
700 list_add_tail(&fctx->list, fcs);
703 vma->vm_userfaultfd_ctx.ctx = ctx;
704 return 0;
707 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
709 struct userfaultfd_ctx *ctx = fctx->orig;
710 struct userfaultfd_wait_queue ewq;
712 msg_init(&ewq.msg);
714 ewq.msg.event = UFFD_EVENT_FORK;
715 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
717 userfaultfd_event_wait_completion(ctx, &ewq);
720 void dup_userfaultfd_complete(struct list_head *fcs)
722 struct userfaultfd_fork_ctx *fctx, *n;
724 list_for_each_entry_safe(fctx, n, fcs, list) {
725 dup_fctx(fctx);
726 list_del(&fctx->list);
727 kfree(fctx);
731 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
732 struct vm_userfaultfd_ctx *vm_ctx)
734 struct userfaultfd_ctx *ctx;
736 ctx = vma->vm_userfaultfd_ctx.ctx;
737 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
738 vm_ctx->ctx = ctx;
739 userfaultfd_ctx_get(ctx);
740 WRITE_ONCE(ctx->mmap_changing, true);
744 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
745 unsigned long from, unsigned long to,
746 unsigned long len)
748 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
749 struct userfaultfd_wait_queue ewq;
751 if (!ctx)
752 return;
754 if (to & ~PAGE_MASK) {
755 userfaultfd_ctx_put(ctx);
756 return;
759 msg_init(&ewq.msg);
761 ewq.msg.event = UFFD_EVENT_REMAP;
762 ewq.msg.arg.remap.from = from;
763 ewq.msg.arg.remap.to = to;
764 ewq.msg.arg.remap.len = len;
766 userfaultfd_event_wait_completion(ctx, &ewq);
769 bool userfaultfd_remove(struct vm_area_struct *vma,
770 unsigned long start, unsigned long end)
772 struct mm_struct *mm = vma->vm_mm;
773 struct userfaultfd_ctx *ctx;
774 struct userfaultfd_wait_queue ewq;
776 ctx = vma->vm_userfaultfd_ctx.ctx;
777 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
778 return true;
780 userfaultfd_ctx_get(ctx);
781 WRITE_ONCE(ctx->mmap_changing, true);
782 up_read(&mm->mmap_sem);
784 msg_init(&ewq.msg);
786 ewq.msg.event = UFFD_EVENT_REMOVE;
787 ewq.msg.arg.remove.start = start;
788 ewq.msg.arg.remove.end = end;
790 userfaultfd_event_wait_completion(ctx, &ewq);
792 return false;
795 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
796 unsigned long start, unsigned long end)
798 struct userfaultfd_unmap_ctx *unmap_ctx;
800 list_for_each_entry(unmap_ctx, unmaps, list)
801 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
802 unmap_ctx->end == end)
803 return true;
805 return false;
808 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
809 unsigned long start, unsigned long end,
810 struct list_head *unmaps)
812 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
813 struct userfaultfd_unmap_ctx *unmap_ctx;
814 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
816 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
817 has_unmap_ctx(ctx, unmaps, start, end))
818 continue;
820 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
821 if (!unmap_ctx)
822 return -ENOMEM;
824 userfaultfd_ctx_get(ctx);
825 WRITE_ONCE(ctx->mmap_changing, true);
826 unmap_ctx->ctx = ctx;
827 unmap_ctx->start = start;
828 unmap_ctx->end = end;
829 list_add_tail(&unmap_ctx->list, unmaps);
832 return 0;
835 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
837 struct userfaultfd_unmap_ctx *ctx, *n;
838 struct userfaultfd_wait_queue ewq;
840 list_for_each_entry_safe(ctx, n, uf, list) {
841 msg_init(&ewq.msg);
843 ewq.msg.event = UFFD_EVENT_UNMAP;
844 ewq.msg.arg.remove.start = ctx->start;
845 ewq.msg.arg.remove.end = ctx->end;
847 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
849 list_del(&ctx->list);
850 kfree(ctx);
854 static int userfaultfd_release(struct inode *inode, struct file *file)
856 struct userfaultfd_ctx *ctx = file->private_data;
857 struct mm_struct *mm = ctx->mm;
858 struct vm_area_struct *vma, *prev;
859 /* len == 0 means wake all */
860 struct userfaultfd_wake_range range = { .len = 0, };
861 unsigned long new_flags;
863 WRITE_ONCE(ctx->released, true);
865 if (!mmget_not_zero(mm))
866 goto wakeup;
869 * Flush page faults out of all CPUs. NOTE: all page faults
870 * must be retried without returning VM_FAULT_SIGBUS if
871 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
872 * changes while handle_userfault released the mmap_sem. So
873 * it's critical that released is set to true (above), before
874 * taking the mmap_sem for writing.
876 down_write(&mm->mmap_sem);
877 prev = NULL;
878 for (vma = mm->mmap; vma; vma = vma->vm_next) {
879 cond_resched();
880 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
881 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
882 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
883 prev = vma;
884 continue;
886 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
887 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
888 new_flags, vma->anon_vma,
889 vma->vm_file, vma->vm_pgoff,
890 vma_policy(vma),
891 NULL_VM_UFFD_CTX);
892 if (prev)
893 vma = prev;
894 else
895 prev = vma;
896 vma->vm_flags = new_flags;
897 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
899 up_write(&mm->mmap_sem);
900 mmput(mm);
901 wakeup:
903 * After no new page faults can wait on this fault_*wqh, flush
904 * the last page faults that may have been already waiting on
905 * the fault_*wqh.
907 spin_lock(&ctx->fault_pending_wqh.lock);
908 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
909 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
910 spin_unlock(&ctx->fault_pending_wqh.lock);
912 /* Flush pending events that may still wait on event_wqh */
913 wake_up_all(&ctx->event_wqh);
915 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
916 userfaultfd_ctx_put(ctx);
917 return 0;
920 /* fault_pending_wqh.lock must be hold by the caller */
921 static inline struct userfaultfd_wait_queue *find_userfault_in(
922 wait_queue_head_t *wqh)
924 wait_queue_entry_t *wq;
925 struct userfaultfd_wait_queue *uwq;
927 VM_BUG_ON(!spin_is_locked(&wqh->lock));
929 uwq = NULL;
930 if (!waitqueue_active(wqh))
931 goto out;
932 /* walk in reverse to provide FIFO behavior to read userfaults */
933 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
934 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
935 out:
936 return uwq;
939 static inline struct userfaultfd_wait_queue *find_userfault(
940 struct userfaultfd_ctx *ctx)
942 return find_userfault_in(&ctx->fault_pending_wqh);
945 static inline struct userfaultfd_wait_queue *find_userfault_evt(
946 struct userfaultfd_ctx *ctx)
948 return find_userfault_in(&ctx->event_wqh);
951 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
953 struct userfaultfd_ctx *ctx = file->private_data;
954 __poll_t ret;
956 poll_wait(file, &ctx->fd_wqh, wait);
958 switch (ctx->state) {
959 case UFFD_STATE_WAIT_API:
960 return EPOLLERR;
961 case UFFD_STATE_RUNNING:
963 * poll() never guarantees that read won't block.
964 * userfaults can be waken before they're read().
966 if (unlikely(!(file->f_flags & O_NONBLOCK)))
967 return EPOLLERR;
969 * lockless access to see if there are pending faults
970 * __pollwait last action is the add_wait_queue but
971 * the spin_unlock would allow the waitqueue_active to
972 * pass above the actual list_add inside
973 * add_wait_queue critical section. So use a full
974 * memory barrier to serialize the list_add write of
975 * add_wait_queue() with the waitqueue_active read
976 * below.
978 ret = 0;
979 smp_mb();
980 if (waitqueue_active(&ctx->fault_pending_wqh))
981 ret = EPOLLIN;
982 else if (waitqueue_active(&ctx->event_wqh))
983 ret = EPOLLIN;
985 return ret;
986 default:
987 WARN_ON_ONCE(1);
988 return EPOLLERR;
992 static const struct file_operations userfaultfd_fops;
994 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
995 struct userfaultfd_ctx *new,
996 struct uffd_msg *msg)
998 int fd;
1000 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1001 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1002 if (fd < 0)
1003 return fd;
1005 msg->arg.reserved.reserved1 = 0;
1006 msg->arg.fork.ufd = fd;
1007 return 0;
1010 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1011 struct uffd_msg *msg)
1013 ssize_t ret;
1014 DECLARE_WAITQUEUE(wait, current);
1015 struct userfaultfd_wait_queue *uwq;
1017 * Handling fork event requires sleeping operations, so
1018 * we drop the event_wqh lock, then do these ops, then
1019 * lock it back and wake up the waiter. While the lock is
1020 * dropped the ewq may go away so we keep track of it
1021 * carefully.
1023 LIST_HEAD(fork_event);
1024 struct userfaultfd_ctx *fork_nctx = NULL;
1026 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1027 spin_lock(&ctx->fd_wqh.lock);
1028 __add_wait_queue(&ctx->fd_wqh, &wait);
1029 for (;;) {
1030 set_current_state(TASK_INTERRUPTIBLE);
1031 spin_lock(&ctx->fault_pending_wqh.lock);
1032 uwq = find_userfault(ctx);
1033 if (uwq) {
1035 * Use a seqcount to repeat the lockless check
1036 * in wake_userfault() to avoid missing
1037 * wakeups because during the refile both
1038 * waitqueue could become empty if this is the
1039 * only userfault.
1041 write_seqcount_begin(&ctx->refile_seq);
1044 * The fault_pending_wqh.lock prevents the uwq
1045 * to disappear from under us.
1047 * Refile this userfault from
1048 * fault_pending_wqh to fault_wqh, it's not
1049 * pending anymore after we read it.
1051 * Use list_del() by hand (as
1052 * userfaultfd_wake_function also uses
1053 * list_del_init() by hand) to be sure nobody
1054 * changes __remove_wait_queue() to use
1055 * list_del_init() in turn breaking the
1056 * !list_empty_careful() check in
1057 * handle_userfault(). The uwq->wq.head list
1058 * must never be empty at any time during the
1059 * refile, or the waitqueue could disappear
1060 * from under us. The "wait_queue_head_t"
1061 * parameter of __remove_wait_queue() is unused
1062 * anyway.
1064 list_del(&uwq->wq.entry);
1065 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1067 write_seqcount_end(&ctx->refile_seq);
1069 /* careful to always initialize msg if ret == 0 */
1070 *msg = uwq->msg;
1071 spin_unlock(&ctx->fault_pending_wqh.lock);
1072 ret = 0;
1073 break;
1075 spin_unlock(&ctx->fault_pending_wqh.lock);
1077 spin_lock(&ctx->event_wqh.lock);
1078 uwq = find_userfault_evt(ctx);
1079 if (uwq) {
1080 *msg = uwq->msg;
1082 if (uwq->msg.event == UFFD_EVENT_FORK) {
1083 fork_nctx = (struct userfaultfd_ctx *)
1084 (unsigned long)
1085 uwq->msg.arg.reserved.reserved1;
1086 list_move(&uwq->wq.entry, &fork_event);
1088 * fork_nctx can be freed as soon as
1089 * we drop the lock, unless we take a
1090 * reference on it.
1092 userfaultfd_ctx_get(fork_nctx);
1093 spin_unlock(&ctx->event_wqh.lock);
1094 ret = 0;
1095 break;
1098 userfaultfd_event_complete(ctx, uwq);
1099 spin_unlock(&ctx->event_wqh.lock);
1100 ret = 0;
1101 break;
1103 spin_unlock(&ctx->event_wqh.lock);
1105 if (signal_pending(current)) {
1106 ret = -ERESTARTSYS;
1107 break;
1109 if (no_wait) {
1110 ret = -EAGAIN;
1111 break;
1113 spin_unlock(&ctx->fd_wqh.lock);
1114 schedule();
1115 spin_lock(&ctx->fd_wqh.lock);
1117 __remove_wait_queue(&ctx->fd_wqh, &wait);
1118 __set_current_state(TASK_RUNNING);
1119 spin_unlock(&ctx->fd_wqh.lock);
1121 if (!ret && msg->event == UFFD_EVENT_FORK) {
1122 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1123 spin_lock(&ctx->event_wqh.lock);
1124 if (!list_empty(&fork_event)) {
1126 * The fork thread didn't abort, so we can
1127 * drop the temporary refcount.
1129 userfaultfd_ctx_put(fork_nctx);
1131 uwq = list_first_entry(&fork_event,
1132 typeof(*uwq),
1133 wq.entry);
1135 * If fork_event list wasn't empty and in turn
1136 * the event wasn't already released by fork
1137 * (the event is allocated on fork kernel
1138 * stack), put the event back to its place in
1139 * the event_wq. fork_event head will be freed
1140 * as soon as we return so the event cannot
1141 * stay queued there no matter the current
1142 * "ret" value.
1144 list_del(&uwq->wq.entry);
1145 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1148 * Leave the event in the waitqueue and report
1149 * error to userland if we failed to resolve
1150 * the userfault fork.
1152 if (likely(!ret))
1153 userfaultfd_event_complete(ctx, uwq);
1154 } else {
1156 * Here the fork thread aborted and the
1157 * refcount from the fork thread on fork_nctx
1158 * has already been released. We still hold
1159 * the reference we took before releasing the
1160 * lock above. If resolve_userfault_fork
1161 * failed we've to drop it because the
1162 * fork_nctx has to be freed in such case. If
1163 * it succeeded we'll hold it because the new
1164 * uffd references it.
1166 if (ret)
1167 userfaultfd_ctx_put(fork_nctx);
1169 spin_unlock(&ctx->event_wqh.lock);
1172 return ret;
1175 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1176 size_t count, loff_t *ppos)
1178 struct userfaultfd_ctx *ctx = file->private_data;
1179 ssize_t _ret, ret = 0;
1180 struct uffd_msg msg;
1181 int no_wait = file->f_flags & O_NONBLOCK;
1183 if (ctx->state == UFFD_STATE_WAIT_API)
1184 return -EINVAL;
1186 for (;;) {
1187 if (count < sizeof(msg))
1188 return ret ? ret : -EINVAL;
1189 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1190 if (_ret < 0)
1191 return ret ? ret : _ret;
1192 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1193 return ret ? ret : -EFAULT;
1194 ret += sizeof(msg);
1195 buf += sizeof(msg);
1196 count -= sizeof(msg);
1198 * Allow to read more than one fault at time but only
1199 * block if waiting for the very first one.
1201 no_wait = O_NONBLOCK;
1205 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1206 struct userfaultfd_wake_range *range)
1208 spin_lock(&ctx->fault_pending_wqh.lock);
1209 /* wake all in the range and autoremove */
1210 if (waitqueue_active(&ctx->fault_pending_wqh))
1211 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1212 range);
1213 if (waitqueue_active(&ctx->fault_wqh))
1214 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1215 spin_unlock(&ctx->fault_pending_wqh.lock);
1218 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1219 struct userfaultfd_wake_range *range)
1221 unsigned seq;
1222 bool need_wakeup;
1225 * To be sure waitqueue_active() is not reordered by the CPU
1226 * before the pagetable update, use an explicit SMP memory
1227 * barrier here. PT lock release or up_read(mmap_sem) still
1228 * have release semantics that can allow the
1229 * waitqueue_active() to be reordered before the pte update.
1231 smp_mb();
1234 * Use waitqueue_active because it's very frequent to
1235 * change the address space atomically even if there are no
1236 * userfaults yet. So we take the spinlock only when we're
1237 * sure we've userfaults to wake.
1239 do {
1240 seq = read_seqcount_begin(&ctx->refile_seq);
1241 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1242 waitqueue_active(&ctx->fault_wqh);
1243 cond_resched();
1244 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1245 if (need_wakeup)
1246 __wake_userfault(ctx, range);
1249 static __always_inline int validate_range(struct mm_struct *mm,
1250 __u64 start, __u64 len)
1252 __u64 task_size = mm->task_size;
1254 if (start & ~PAGE_MASK)
1255 return -EINVAL;
1256 if (len & ~PAGE_MASK)
1257 return -EINVAL;
1258 if (!len)
1259 return -EINVAL;
1260 if (start < mmap_min_addr)
1261 return -EINVAL;
1262 if (start >= task_size)
1263 return -EINVAL;
1264 if (len > task_size - start)
1265 return -EINVAL;
1266 return 0;
1269 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1271 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1272 vma_is_shmem(vma);
1275 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1276 unsigned long arg)
1278 struct mm_struct *mm = ctx->mm;
1279 struct vm_area_struct *vma, *prev, *cur;
1280 int ret;
1281 struct uffdio_register uffdio_register;
1282 struct uffdio_register __user *user_uffdio_register;
1283 unsigned long vm_flags, new_flags;
1284 bool found;
1285 bool basic_ioctls;
1286 unsigned long start, end, vma_end;
1288 user_uffdio_register = (struct uffdio_register __user *) arg;
1290 ret = -EFAULT;
1291 if (copy_from_user(&uffdio_register, user_uffdio_register,
1292 sizeof(uffdio_register)-sizeof(__u64)))
1293 goto out;
1295 ret = -EINVAL;
1296 if (!uffdio_register.mode)
1297 goto out;
1298 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1299 UFFDIO_REGISTER_MODE_WP))
1300 goto out;
1301 vm_flags = 0;
1302 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1303 vm_flags |= VM_UFFD_MISSING;
1304 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1305 vm_flags |= VM_UFFD_WP;
1307 * FIXME: remove the below error constraint by
1308 * implementing the wprotect tracking mode.
1310 ret = -EINVAL;
1311 goto out;
1314 ret = validate_range(mm, uffdio_register.range.start,
1315 uffdio_register.range.len);
1316 if (ret)
1317 goto out;
1319 start = uffdio_register.range.start;
1320 end = start + uffdio_register.range.len;
1322 ret = -ENOMEM;
1323 if (!mmget_not_zero(mm))
1324 goto out;
1326 down_write(&mm->mmap_sem);
1327 vma = find_vma_prev(mm, start, &prev);
1328 if (!vma)
1329 goto out_unlock;
1331 /* check that there's at least one vma in the range */
1332 ret = -EINVAL;
1333 if (vma->vm_start >= end)
1334 goto out_unlock;
1337 * If the first vma contains huge pages, make sure start address
1338 * is aligned to huge page size.
1340 if (is_vm_hugetlb_page(vma)) {
1341 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1343 if (start & (vma_hpagesize - 1))
1344 goto out_unlock;
1348 * Search for not compatible vmas.
1350 found = false;
1351 basic_ioctls = false;
1352 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1353 cond_resched();
1355 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1356 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1358 /* check not compatible vmas */
1359 ret = -EINVAL;
1360 if (!vma_can_userfault(cur))
1361 goto out_unlock;
1363 * If this vma contains ending address, and huge pages
1364 * check alignment.
1366 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1367 end > cur->vm_start) {
1368 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1370 ret = -EINVAL;
1372 if (end & (vma_hpagesize - 1))
1373 goto out_unlock;
1377 * Check that this vma isn't already owned by a
1378 * different userfaultfd. We can't allow more than one
1379 * userfaultfd to own a single vma simultaneously or we
1380 * wouldn't know which one to deliver the userfaults to.
1382 ret = -EBUSY;
1383 if (cur->vm_userfaultfd_ctx.ctx &&
1384 cur->vm_userfaultfd_ctx.ctx != ctx)
1385 goto out_unlock;
1388 * Note vmas containing huge pages
1390 if (is_vm_hugetlb_page(cur))
1391 basic_ioctls = true;
1393 found = true;
1395 BUG_ON(!found);
1397 if (vma->vm_start < start)
1398 prev = vma;
1400 ret = 0;
1401 do {
1402 cond_resched();
1404 BUG_ON(!vma_can_userfault(vma));
1405 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1406 vma->vm_userfaultfd_ctx.ctx != ctx);
1409 * Nothing to do: this vma is already registered into this
1410 * userfaultfd and with the right tracking mode too.
1412 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1413 (vma->vm_flags & vm_flags) == vm_flags)
1414 goto skip;
1416 if (vma->vm_start > start)
1417 start = vma->vm_start;
1418 vma_end = min(end, vma->vm_end);
1420 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1421 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1422 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1423 vma_policy(vma),
1424 ((struct vm_userfaultfd_ctx){ ctx }));
1425 if (prev) {
1426 vma = prev;
1427 goto next;
1429 if (vma->vm_start < start) {
1430 ret = split_vma(mm, vma, start, 1);
1431 if (ret)
1432 break;
1434 if (vma->vm_end > end) {
1435 ret = split_vma(mm, vma, end, 0);
1436 if (ret)
1437 break;
1439 next:
1441 * In the vma_merge() successful mprotect-like case 8:
1442 * the next vma was merged into the current one and
1443 * the current one has not been updated yet.
1445 vma->vm_flags = new_flags;
1446 vma->vm_userfaultfd_ctx.ctx = ctx;
1448 skip:
1449 prev = vma;
1450 start = vma->vm_end;
1451 vma = vma->vm_next;
1452 } while (vma && vma->vm_start < end);
1453 out_unlock:
1454 up_write(&mm->mmap_sem);
1455 mmput(mm);
1456 if (!ret) {
1458 * Now that we scanned all vmas we can already tell
1459 * userland which ioctls methods are guaranteed to
1460 * succeed on this range.
1462 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1463 UFFD_API_RANGE_IOCTLS,
1464 &user_uffdio_register->ioctls))
1465 ret = -EFAULT;
1467 out:
1468 return ret;
1471 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1472 unsigned long arg)
1474 struct mm_struct *mm = ctx->mm;
1475 struct vm_area_struct *vma, *prev, *cur;
1476 int ret;
1477 struct uffdio_range uffdio_unregister;
1478 unsigned long new_flags;
1479 bool found;
1480 unsigned long start, end, vma_end;
1481 const void __user *buf = (void __user *)arg;
1483 ret = -EFAULT;
1484 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1485 goto out;
1487 ret = validate_range(mm, uffdio_unregister.start,
1488 uffdio_unregister.len);
1489 if (ret)
1490 goto out;
1492 start = uffdio_unregister.start;
1493 end = start + uffdio_unregister.len;
1495 ret = -ENOMEM;
1496 if (!mmget_not_zero(mm))
1497 goto out;
1499 down_write(&mm->mmap_sem);
1500 vma = find_vma_prev(mm, start, &prev);
1501 if (!vma)
1502 goto out_unlock;
1504 /* check that there's at least one vma in the range */
1505 ret = -EINVAL;
1506 if (vma->vm_start >= end)
1507 goto out_unlock;
1510 * If the first vma contains huge pages, make sure start address
1511 * is aligned to huge page size.
1513 if (is_vm_hugetlb_page(vma)) {
1514 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1516 if (start & (vma_hpagesize - 1))
1517 goto out_unlock;
1521 * Search for not compatible vmas.
1523 found = false;
1524 ret = -EINVAL;
1525 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1526 cond_resched();
1528 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1529 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1532 * Check not compatible vmas, not strictly required
1533 * here as not compatible vmas cannot have an
1534 * userfaultfd_ctx registered on them, but this
1535 * provides for more strict behavior to notice
1536 * unregistration errors.
1538 if (!vma_can_userfault(cur))
1539 goto out_unlock;
1541 found = true;
1543 BUG_ON(!found);
1545 if (vma->vm_start < start)
1546 prev = vma;
1548 ret = 0;
1549 do {
1550 cond_resched();
1552 BUG_ON(!vma_can_userfault(vma));
1555 * Nothing to do: this vma is already registered into this
1556 * userfaultfd and with the right tracking mode too.
1558 if (!vma->vm_userfaultfd_ctx.ctx)
1559 goto skip;
1561 if (vma->vm_start > start)
1562 start = vma->vm_start;
1563 vma_end = min(end, vma->vm_end);
1565 if (userfaultfd_missing(vma)) {
1567 * Wake any concurrent pending userfault while
1568 * we unregister, so they will not hang
1569 * permanently and it avoids userland to call
1570 * UFFDIO_WAKE explicitly.
1572 struct userfaultfd_wake_range range;
1573 range.start = start;
1574 range.len = vma_end - start;
1575 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1578 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1579 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1580 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1581 vma_policy(vma),
1582 NULL_VM_UFFD_CTX);
1583 if (prev) {
1584 vma = prev;
1585 goto next;
1587 if (vma->vm_start < start) {
1588 ret = split_vma(mm, vma, start, 1);
1589 if (ret)
1590 break;
1592 if (vma->vm_end > end) {
1593 ret = split_vma(mm, vma, end, 0);
1594 if (ret)
1595 break;
1597 next:
1599 * In the vma_merge() successful mprotect-like case 8:
1600 * the next vma was merged into the current one and
1601 * the current one has not been updated yet.
1603 vma->vm_flags = new_flags;
1604 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1606 skip:
1607 prev = vma;
1608 start = vma->vm_end;
1609 vma = vma->vm_next;
1610 } while (vma && vma->vm_start < end);
1611 out_unlock:
1612 up_write(&mm->mmap_sem);
1613 mmput(mm);
1614 out:
1615 return ret;
1619 * userfaultfd_wake may be used in combination with the
1620 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1622 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1623 unsigned long arg)
1625 int ret;
1626 struct uffdio_range uffdio_wake;
1627 struct userfaultfd_wake_range range;
1628 const void __user *buf = (void __user *)arg;
1630 ret = -EFAULT;
1631 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1632 goto out;
1634 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1635 if (ret)
1636 goto out;
1638 range.start = uffdio_wake.start;
1639 range.len = uffdio_wake.len;
1642 * len == 0 means wake all and we don't want to wake all here,
1643 * so check it again to be sure.
1645 VM_BUG_ON(!range.len);
1647 wake_userfault(ctx, &range);
1648 ret = 0;
1650 out:
1651 return ret;
1654 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1655 unsigned long arg)
1657 __s64 ret;
1658 struct uffdio_copy uffdio_copy;
1659 struct uffdio_copy __user *user_uffdio_copy;
1660 struct userfaultfd_wake_range range;
1662 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1664 ret = -EAGAIN;
1665 if (READ_ONCE(ctx->mmap_changing))
1666 goto out;
1668 ret = -EFAULT;
1669 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1670 /* don't copy "copy" last field */
1671 sizeof(uffdio_copy)-sizeof(__s64)))
1672 goto out;
1674 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1675 if (ret)
1676 goto out;
1678 * double check for wraparound just in case. copy_from_user()
1679 * will later check uffdio_copy.src + uffdio_copy.len to fit
1680 * in the userland range.
1682 ret = -EINVAL;
1683 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1684 goto out;
1685 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1686 goto out;
1687 if (mmget_not_zero(ctx->mm)) {
1688 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1689 uffdio_copy.len, &ctx->mmap_changing);
1690 mmput(ctx->mm);
1691 } else {
1692 return -ESRCH;
1694 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1695 return -EFAULT;
1696 if (ret < 0)
1697 goto out;
1698 BUG_ON(!ret);
1699 /* len == 0 would wake all */
1700 range.len = ret;
1701 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1702 range.start = uffdio_copy.dst;
1703 wake_userfault(ctx, &range);
1705 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1706 out:
1707 return ret;
1710 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1711 unsigned long arg)
1713 __s64 ret;
1714 struct uffdio_zeropage uffdio_zeropage;
1715 struct uffdio_zeropage __user *user_uffdio_zeropage;
1716 struct userfaultfd_wake_range range;
1718 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1720 ret = -EAGAIN;
1721 if (READ_ONCE(ctx->mmap_changing))
1722 goto out;
1724 ret = -EFAULT;
1725 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1726 /* don't copy "zeropage" last field */
1727 sizeof(uffdio_zeropage)-sizeof(__s64)))
1728 goto out;
1730 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1731 uffdio_zeropage.range.len);
1732 if (ret)
1733 goto out;
1734 ret = -EINVAL;
1735 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1736 goto out;
1738 if (mmget_not_zero(ctx->mm)) {
1739 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1740 uffdio_zeropage.range.len,
1741 &ctx->mmap_changing);
1742 mmput(ctx->mm);
1743 } else {
1744 return -ESRCH;
1746 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1747 return -EFAULT;
1748 if (ret < 0)
1749 goto out;
1750 /* len == 0 would wake all */
1751 BUG_ON(!ret);
1752 range.len = ret;
1753 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1754 range.start = uffdio_zeropage.range.start;
1755 wake_userfault(ctx, &range);
1757 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1758 out:
1759 return ret;
1762 static inline unsigned int uffd_ctx_features(__u64 user_features)
1765 * For the current set of features the bits just coincide
1767 return (unsigned int)user_features;
1771 * userland asks for a certain API version and we return which bits
1772 * and ioctl commands are implemented in this kernel for such API
1773 * version or -EINVAL if unknown.
1775 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1776 unsigned long arg)
1778 struct uffdio_api uffdio_api;
1779 void __user *buf = (void __user *)arg;
1780 int ret;
1781 __u64 features;
1783 ret = -EINVAL;
1784 if (ctx->state != UFFD_STATE_WAIT_API)
1785 goto out;
1786 ret = -EFAULT;
1787 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1788 goto out;
1789 features = uffdio_api.features;
1790 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1791 memset(&uffdio_api, 0, sizeof(uffdio_api));
1792 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1793 goto out;
1794 ret = -EINVAL;
1795 goto out;
1797 /* report all available features and ioctls to userland */
1798 uffdio_api.features = UFFD_API_FEATURES;
1799 uffdio_api.ioctls = UFFD_API_IOCTLS;
1800 ret = -EFAULT;
1801 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1802 goto out;
1803 ctx->state = UFFD_STATE_RUNNING;
1804 /* only enable the requested features for this uffd context */
1805 ctx->features = uffd_ctx_features(features);
1806 ret = 0;
1807 out:
1808 return ret;
1811 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1812 unsigned long arg)
1814 int ret = -EINVAL;
1815 struct userfaultfd_ctx *ctx = file->private_data;
1817 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1818 return -EINVAL;
1820 switch(cmd) {
1821 case UFFDIO_API:
1822 ret = userfaultfd_api(ctx, arg);
1823 break;
1824 case UFFDIO_REGISTER:
1825 ret = userfaultfd_register(ctx, arg);
1826 break;
1827 case UFFDIO_UNREGISTER:
1828 ret = userfaultfd_unregister(ctx, arg);
1829 break;
1830 case UFFDIO_WAKE:
1831 ret = userfaultfd_wake(ctx, arg);
1832 break;
1833 case UFFDIO_COPY:
1834 ret = userfaultfd_copy(ctx, arg);
1835 break;
1836 case UFFDIO_ZEROPAGE:
1837 ret = userfaultfd_zeropage(ctx, arg);
1838 break;
1840 return ret;
1843 #ifdef CONFIG_PROC_FS
1844 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1846 struct userfaultfd_ctx *ctx = f->private_data;
1847 wait_queue_entry_t *wq;
1848 struct userfaultfd_wait_queue *uwq;
1849 unsigned long pending = 0, total = 0;
1851 spin_lock(&ctx->fault_pending_wqh.lock);
1852 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1853 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1854 pending++;
1855 total++;
1857 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1858 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1859 total++;
1861 spin_unlock(&ctx->fault_pending_wqh.lock);
1864 * If more protocols will be added, there will be all shown
1865 * separated by a space. Like this:
1866 * protocols: aa:... bb:...
1868 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1869 pending, total, UFFD_API, ctx->features,
1870 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1872 #endif
1874 static const struct file_operations userfaultfd_fops = {
1875 #ifdef CONFIG_PROC_FS
1876 .show_fdinfo = userfaultfd_show_fdinfo,
1877 #endif
1878 .release = userfaultfd_release,
1879 .poll = userfaultfd_poll,
1880 .read = userfaultfd_read,
1881 .unlocked_ioctl = userfaultfd_ioctl,
1882 .compat_ioctl = userfaultfd_ioctl,
1883 .llseek = noop_llseek,
1886 static void init_once_userfaultfd_ctx(void *mem)
1888 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1890 init_waitqueue_head(&ctx->fault_pending_wqh);
1891 init_waitqueue_head(&ctx->fault_wqh);
1892 init_waitqueue_head(&ctx->event_wqh);
1893 init_waitqueue_head(&ctx->fd_wqh);
1894 seqcount_init(&ctx->refile_seq);
1897 SYSCALL_DEFINE1(userfaultfd, int, flags)
1899 struct userfaultfd_ctx *ctx;
1900 int fd;
1902 BUG_ON(!current->mm);
1904 /* Check the UFFD_* constants for consistency. */
1905 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1906 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1908 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1909 return -EINVAL;
1911 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1912 if (!ctx)
1913 return -ENOMEM;
1915 atomic_set(&ctx->refcount, 1);
1916 ctx->flags = flags;
1917 ctx->features = 0;
1918 ctx->state = UFFD_STATE_WAIT_API;
1919 ctx->released = false;
1920 ctx->mmap_changing = false;
1921 ctx->mm = current->mm;
1922 /* prevent the mm struct to be freed */
1923 mmgrab(ctx->mm);
1925 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1926 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1927 if (fd < 0) {
1928 mmdrop(ctx->mm);
1929 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1931 return fd;
1934 static int __init userfaultfd_init(void)
1936 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1937 sizeof(struct userfaultfd_ctx),
1939 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1940 init_once_userfaultfd_ctx);
1941 return 0;
1943 __initcall(userfaultfd_init);