1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
47 #include <linux/aer.h>
51 #define DRV_VERSION "1.0.2-k2"
52 char e1000e_driver_name
[] = "e1000e";
53 const char e1000e_driver_version
[] = DRV_VERSION
;
55 static const struct e1000_info
*e1000_info_tbl
[] = {
56 [board_82571
] = &e1000_82571_info
,
57 [board_82572
] = &e1000_82572_info
,
58 [board_82573
] = &e1000_82573_info
,
59 [board_82574
] = &e1000_82574_info
,
60 [board_82583
] = &e1000_82583_info
,
61 [board_80003es2lan
] = &e1000_es2_info
,
62 [board_ich8lan
] = &e1000_ich8_info
,
63 [board_ich9lan
] = &e1000_ich9_info
,
64 [board_ich10lan
] = &e1000_ich10_info
,
65 [board_pchlan
] = &e1000_pch_info
,
70 * e1000_get_hw_dev_name - return device name string
71 * used by hardware layer to print debugging information
73 char *e1000e_get_hw_dev_name(struct e1000_hw
*hw
)
75 return hw
->adapter
->netdev
->name
;
80 * e1000_desc_unused - calculate if we have unused descriptors
82 static int e1000_desc_unused(struct e1000_ring
*ring
)
84 if (ring
->next_to_clean
> ring
->next_to_use
)
85 return ring
->next_to_clean
- ring
->next_to_use
- 1;
87 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
91 * e1000_receive_skb - helper function to handle Rx indications
92 * @adapter: board private structure
93 * @status: descriptor status field as written by hardware
94 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
95 * @skb: pointer to sk_buff to be indicated to stack
97 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
98 struct net_device
*netdev
,
100 u8 status
, __le16 vlan
)
102 skb
->protocol
= eth_type_trans(skb
, netdev
);
104 if (adapter
->vlgrp
&& (status
& E1000_RXD_STAT_VP
))
105 vlan_gro_receive(&adapter
->napi
, adapter
->vlgrp
,
106 le16_to_cpu(vlan
), skb
);
108 napi_gro_receive(&adapter
->napi
, skb
);
112 * e1000_rx_checksum - Receive Checksum Offload for 82543
113 * @adapter: board private structure
114 * @status_err: receive descriptor status and error fields
115 * @csum: receive descriptor csum field
116 * @sk_buff: socket buffer with received data
118 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
119 u32 csum
, struct sk_buff
*skb
)
121 u16 status
= (u16
)status_err
;
122 u8 errors
= (u8
)(status_err
>> 24);
123 skb
->ip_summed
= CHECKSUM_NONE
;
125 /* Ignore Checksum bit is set */
126 if (status
& E1000_RXD_STAT_IXSM
)
128 /* TCP/UDP checksum error bit is set */
129 if (errors
& E1000_RXD_ERR_TCPE
) {
130 /* let the stack verify checksum errors */
131 adapter
->hw_csum_err
++;
135 /* TCP/UDP Checksum has not been calculated */
136 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
139 /* It must be a TCP or UDP packet with a valid checksum */
140 if (status
& E1000_RXD_STAT_TCPCS
) {
141 /* TCP checksum is good */
142 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
145 * IP fragment with UDP payload
146 * Hardware complements the payload checksum, so we undo it
147 * and then put the value in host order for further stack use.
149 __sum16 sum
= (__force __sum16
)htons(csum
);
150 skb
->csum
= csum_unfold(~sum
);
151 skb
->ip_summed
= CHECKSUM_COMPLETE
;
153 adapter
->hw_csum_good
++;
157 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
158 * @adapter: address of board private structure
160 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
163 struct net_device
*netdev
= adapter
->netdev
;
164 struct pci_dev
*pdev
= adapter
->pdev
;
165 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
166 struct e1000_rx_desc
*rx_desc
;
167 struct e1000_buffer
*buffer_info
;
170 unsigned int bufsz
= adapter
->rx_buffer_len
+ NET_IP_ALIGN
;
172 i
= rx_ring
->next_to_use
;
173 buffer_info
= &rx_ring
->buffer_info
[i
];
175 while (cleaned_count
--) {
176 skb
= buffer_info
->skb
;
182 skb
= netdev_alloc_skb(netdev
, bufsz
);
184 /* Better luck next round */
185 adapter
->alloc_rx_buff_failed
++;
190 * Make buffer alignment 2 beyond a 16 byte boundary
191 * this will result in a 16 byte aligned IP header after
192 * the 14 byte MAC header is removed
194 skb_reserve(skb
, NET_IP_ALIGN
);
196 buffer_info
->skb
= skb
;
198 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
199 adapter
->rx_buffer_len
,
201 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
)) {
202 dev_err(&pdev
->dev
, "RX DMA map failed\n");
203 adapter
->rx_dma_failed
++;
207 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
208 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
211 if (i
== rx_ring
->count
)
213 buffer_info
= &rx_ring
->buffer_info
[i
];
216 if (rx_ring
->next_to_use
!= i
) {
217 rx_ring
->next_to_use
= i
;
219 i
= (rx_ring
->count
- 1);
222 * Force memory writes to complete before letting h/w
223 * know there are new descriptors to fetch. (Only
224 * applicable for weak-ordered memory model archs,
228 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
233 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
234 * @adapter: address of board private structure
236 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
239 struct net_device
*netdev
= adapter
->netdev
;
240 struct pci_dev
*pdev
= adapter
->pdev
;
241 union e1000_rx_desc_packet_split
*rx_desc
;
242 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
243 struct e1000_buffer
*buffer_info
;
244 struct e1000_ps_page
*ps_page
;
248 i
= rx_ring
->next_to_use
;
249 buffer_info
= &rx_ring
->buffer_info
[i
];
251 while (cleaned_count
--) {
252 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
254 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
255 ps_page
= &buffer_info
->ps_pages
[j
];
256 if (j
>= adapter
->rx_ps_pages
) {
257 /* all unused desc entries get hw null ptr */
258 rx_desc
->read
.buffer_addr
[j
+1] = ~cpu_to_le64(0);
261 if (!ps_page
->page
) {
262 ps_page
->page
= alloc_page(GFP_ATOMIC
);
263 if (!ps_page
->page
) {
264 adapter
->alloc_rx_buff_failed
++;
267 ps_page
->dma
= pci_map_page(pdev
,
271 if (pci_dma_mapping_error(pdev
, ps_page
->dma
)) {
272 dev_err(&adapter
->pdev
->dev
,
273 "RX DMA page map failed\n");
274 adapter
->rx_dma_failed
++;
279 * Refresh the desc even if buffer_addrs
280 * didn't change because each write-back
283 rx_desc
->read
.buffer_addr
[j
+1] =
284 cpu_to_le64(ps_page
->dma
);
287 skb
= netdev_alloc_skb(netdev
,
288 adapter
->rx_ps_bsize0
+ NET_IP_ALIGN
);
291 adapter
->alloc_rx_buff_failed
++;
296 * Make buffer alignment 2 beyond a 16 byte boundary
297 * this will result in a 16 byte aligned IP header after
298 * the 14 byte MAC header is removed
300 skb_reserve(skb
, NET_IP_ALIGN
);
302 buffer_info
->skb
= skb
;
303 buffer_info
->dma
= pci_map_single(pdev
, skb
->data
,
304 adapter
->rx_ps_bsize0
,
306 if (pci_dma_mapping_error(pdev
, buffer_info
->dma
)) {
307 dev_err(&pdev
->dev
, "RX DMA map failed\n");
308 adapter
->rx_dma_failed
++;
310 dev_kfree_skb_any(skb
);
311 buffer_info
->skb
= NULL
;
315 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
318 if (i
== rx_ring
->count
)
320 buffer_info
= &rx_ring
->buffer_info
[i
];
324 if (rx_ring
->next_to_use
!= i
) {
325 rx_ring
->next_to_use
= i
;
328 i
= (rx_ring
->count
- 1);
331 * Force memory writes to complete before letting h/w
332 * know there are new descriptors to fetch. (Only
333 * applicable for weak-ordered memory model archs,
338 * Hardware increments by 16 bytes, but packet split
339 * descriptors are 32 bytes...so we increment tail
342 writel(i
<<1, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
347 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
348 * @adapter: address of board private structure
349 * @cleaned_count: number of buffers to allocate this pass
352 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
355 struct net_device
*netdev
= adapter
->netdev
;
356 struct pci_dev
*pdev
= adapter
->pdev
;
357 struct e1000_rx_desc
*rx_desc
;
358 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
359 struct e1000_buffer
*buffer_info
;
362 unsigned int bufsz
= 256 -
363 16 /* for skb_reserve */ -
366 i
= rx_ring
->next_to_use
;
367 buffer_info
= &rx_ring
->buffer_info
[i
];
369 while (cleaned_count
--) {
370 skb
= buffer_info
->skb
;
376 skb
= netdev_alloc_skb(netdev
, bufsz
);
377 if (unlikely(!skb
)) {
378 /* Better luck next round */
379 adapter
->alloc_rx_buff_failed
++;
383 /* Make buffer alignment 2 beyond a 16 byte boundary
384 * this will result in a 16 byte aligned IP header after
385 * the 14 byte MAC header is removed
387 skb_reserve(skb
, NET_IP_ALIGN
);
389 buffer_info
->skb
= skb
;
391 /* allocate a new page if necessary */
392 if (!buffer_info
->page
) {
393 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
394 if (unlikely(!buffer_info
->page
)) {
395 adapter
->alloc_rx_buff_failed
++;
400 if (!buffer_info
->dma
)
401 buffer_info
->dma
= pci_map_page(pdev
,
402 buffer_info
->page
, 0,
406 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
407 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
409 if (unlikely(++i
== rx_ring
->count
))
411 buffer_info
= &rx_ring
->buffer_info
[i
];
414 if (likely(rx_ring
->next_to_use
!= i
)) {
415 rx_ring
->next_to_use
= i
;
416 if (unlikely(i
-- == 0))
417 i
= (rx_ring
->count
- 1);
419 /* Force memory writes to complete before letting h/w
420 * know there are new descriptors to fetch. (Only
421 * applicable for weak-ordered memory model archs,
424 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
429 * e1000_clean_rx_irq - Send received data up the network stack; legacy
430 * @adapter: board private structure
432 * the return value indicates whether actual cleaning was done, there
433 * is no guarantee that everything was cleaned
435 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
436 int *work_done
, int work_to_do
)
438 struct net_device
*netdev
= adapter
->netdev
;
439 struct pci_dev
*pdev
= adapter
->pdev
;
440 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
441 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
442 struct e1000_buffer
*buffer_info
, *next_buffer
;
445 int cleaned_count
= 0;
447 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
449 i
= rx_ring
->next_to_clean
;
450 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
451 buffer_info
= &rx_ring
->buffer_info
[i
];
453 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
457 if (*work_done
>= work_to_do
)
461 status
= rx_desc
->status
;
462 skb
= buffer_info
->skb
;
463 buffer_info
->skb
= NULL
;
465 prefetch(skb
->data
- NET_IP_ALIGN
);
468 if (i
== rx_ring
->count
)
470 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
473 next_buffer
= &rx_ring
->buffer_info
[i
];
477 pci_unmap_single(pdev
,
479 adapter
->rx_buffer_len
,
481 buffer_info
->dma
= 0;
483 length
= le16_to_cpu(rx_desc
->length
);
486 * !EOP means multiple descriptors were used to store a single
487 * packet, if that's the case we need to toss it. In fact, we
488 * need to toss every packet with the EOP bit clear and the
489 * next frame that _does_ have the EOP bit set, as it is by
490 * definition only a frame fragment
492 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
493 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
495 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
496 /* All receives must fit into a single buffer */
497 e_dbg("%s: Receive packet consumed multiple buffers\n",
500 buffer_info
->skb
= skb
;
501 if (status
& E1000_RXD_STAT_EOP
)
502 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
506 if (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
) {
508 buffer_info
->skb
= skb
;
512 /* adjust length to remove Ethernet CRC */
513 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
516 total_rx_bytes
+= length
;
520 * code added for copybreak, this should improve
521 * performance for small packets with large amounts
522 * of reassembly being done in the stack
524 if (length
< copybreak
) {
525 struct sk_buff
*new_skb
=
526 netdev_alloc_skb(netdev
, length
+ NET_IP_ALIGN
);
528 skb_reserve(new_skb
, NET_IP_ALIGN
);
529 skb_copy_to_linear_data_offset(new_skb
,
535 /* save the skb in buffer_info as good */
536 buffer_info
->skb
= skb
;
539 /* else just continue with the old one */
541 /* end copybreak code */
542 skb_put(skb
, length
);
544 /* Receive Checksum Offload */
545 e1000_rx_checksum(adapter
,
547 ((u32
)(rx_desc
->errors
) << 24),
548 le16_to_cpu(rx_desc
->csum
), skb
);
550 e1000_receive_skb(adapter
, netdev
, skb
,status
,rx_desc
->special
);
555 /* return some buffers to hardware, one at a time is too slow */
556 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
557 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
561 /* use prefetched values */
563 buffer_info
= next_buffer
;
565 rx_ring
->next_to_clean
= i
;
567 cleaned_count
= e1000_desc_unused(rx_ring
);
569 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
571 adapter
->total_rx_bytes
+= total_rx_bytes
;
572 adapter
->total_rx_packets
+= total_rx_packets
;
573 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
574 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
578 static void e1000_put_txbuf(struct e1000_adapter
*adapter
,
579 struct e1000_buffer
*buffer_info
)
581 buffer_info
->dma
= 0;
582 if (buffer_info
->skb
) {
583 skb_dma_unmap(&adapter
->pdev
->dev
, buffer_info
->skb
,
585 dev_kfree_skb_any(buffer_info
->skb
);
586 buffer_info
->skb
= NULL
;
588 buffer_info
->time_stamp
= 0;
591 static void e1000_print_tx_hang(struct e1000_adapter
*adapter
)
593 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
594 unsigned int i
= tx_ring
->next_to_clean
;
595 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
596 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
598 /* detected Tx unit hang */
599 e_err("Detected Tx Unit Hang:\n"
602 " next_to_use <%x>\n"
603 " next_to_clean <%x>\n"
604 "buffer_info[next_to_clean]:\n"
605 " time_stamp <%lx>\n"
606 " next_to_watch <%x>\n"
608 " next_to_watch.status <%x>\n",
609 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
610 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
611 tx_ring
->next_to_use
,
612 tx_ring
->next_to_clean
,
613 tx_ring
->buffer_info
[eop
].time_stamp
,
616 eop_desc
->upper
.fields
.status
);
620 * e1000_clean_tx_irq - Reclaim resources after transmit completes
621 * @adapter: board private structure
623 * the return value indicates whether actual cleaning was done, there
624 * is no guarantee that everything was cleaned
626 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
)
628 struct net_device
*netdev
= adapter
->netdev
;
629 struct e1000_hw
*hw
= &adapter
->hw
;
630 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
631 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
632 struct e1000_buffer
*buffer_info
;
634 unsigned int count
= 0;
635 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
637 i
= tx_ring
->next_to_clean
;
638 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
639 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
641 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
642 (count
< tx_ring
->count
)) {
643 bool cleaned
= false;
644 for (; !cleaned
; count
++) {
645 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
646 buffer_info
= &tx_ring
->buffer_info
[i
];
647 cleaned
= (i
== eop
);
650 struct sk_buff
*skb
= buffer_info
->skb
;
651 unsigned int segs
, bytecount
;
652 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
653 /* multiply data chunks by size of headers */
654 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
656 total_tx_packets
+= segs
;
657 total_tx_bytes
+= bytecount
;
660 e1000_put_txbuf(adapter
, buffer_info
);
661 tx_desc
->upper
.data
= 0;
664 if (i
== tx_ring
->count
)
668 if (i
== tx_ring
->next_to_use
)
670 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
671 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
674 tx_ring
->next_to_clean
= i
;
676 #define TX_WAKE_THRESHOLD 32
677 if (count
&& netif_carrier_ok(netdev
) &&
678 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
679 /* Make sure that anybody stopping the queue after this
680 * sees the new next_to_clean.
684 if (netif_queue_stopped(netdev
) &&
685 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
686 netif_wake_queue(netdev
);
687 ++adapter
->restart_queue
;
691 if (adapter
->detect_tx_hung
) {
692 /* Detect a transmit hang in hardware, this serializes the
693 * check with the clearing of time_stamp and movement of i */
694 adapter
->detect_tx_hung
= 0;
695 if (tx_ring
->buffer_info
[i
].time_stamp
&&
696 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
697 + (adapter
->tx_timeout_factor
* HZ
))
698 && !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
699 e1000_print_tx_hang(adapter
);
700 netif_stop_queue(netdev
);
703 adapter
->total_tx_bytes
+= total_tx_bytes
;
704 adapter
->total_tx_packets
+= total_tx_packets
;
705 adapter
->net_stats
.tx_bytes
+= total_tx_bytes
;
706 adapter
->net_stats
.tx_packets
+= total_tx_packets
;
707 return (count
< tx_ring
->count
);
711 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
712 * @adapter: board private structure
714 * the return value indicates whether actual cleaning was done, there
715 * is no guarantee that everything was cleaned
717 static bool e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
718 int *work_done
, int work_to_do
)
720 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
721 struct net_device
*netdev
= adapter
->netdev
;
722 struct pci_dev
*pdev
= adapter
->pdev
;
723 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
724 struct e1000_buffer
*buffer_info
, *next_buffer
;
725 struct e1000_ps_page
*ps_page
;
729 int cleaned_count
= 0;
731 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
733 i
= rx_ring
->next_to_clean
;
734 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
735 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
736 buffer_info
= &rx_ring
->buffer_info
[i
];
738 while (staterr
& E1000_RXD_STAT_DD
) {
739 if (*work_done
>= work_to_do
)
742 skb
= buffer_info
->skb
;
744 /* in the packet split case this is header only */
745 prefetch(skb
->data
- NET_IP_ALIGN
);
748 if (i
== rx_ring
->count
)
750 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
753 next_buffer
= &rx_ring
->buffer_info
[i
];
757 pci_unmap_single(pdev
, buffer_info
->dma
,
758 adapter
->rx_ps_bsize0
,
760 buffer_info
->dma
= 0;
762 /* see !EOP comment in other rx routine */
763 if (!(staterr
& E1000_RXD_STAT_EOP
))
764 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
766 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
767 e_dbg("%s: Packet Split buffers didn't pick up the "
768 "full packet\n", netdev
->name
);
769 dev_kfree_skb_irq(skb
);
770 if (staterr
& E1000_RXD_STAT_EOP
)
771 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
775 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
776 dev_kfree_skb_irq(skb
);
780 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
783 e_dbg("%s: Last part of the packet spanning multiple "
784 "descriptors\n", netdev
->name
);
785 dev_kfree_skb_irq(skb
);
790 skb_put(skb
, length
);
794 * this looks ugly, but it seems compiler issues make it
795 * more efficient than reusing j
797 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
800 * page alloc/put takes too long and effects small packet
801 * throughput, so unsplit small packets and save the alloc/put
802 * only valid in softirq (napi) context to call kmap_*
804 if (l1
&& (l1
<= copybreak
) &&
805 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
808 ps_page
= &buffer_info
->ps_pages
[0];
811 * there is no documentation about how to call
812 * kmap_atomic, so we can't hold the mapping
815 pci_dma_sync_single_for_cpu(pdev
, ps_page
->dma
,
816 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
817 vaddr
= kmap_atomic(ps_page
->page
, KM_SKB_DATA_SOFTIRQ
);
818 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
819 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
820 pci_dma_sync_single_for_device(pdev
, ps_page
->dma
,
821 PAGE_SIZE
, PCI_DMA_FROMDEVICE
);
824 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
832 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
833 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
837 ps_page
= &buffer_info
->ps_pages
[j
];
838 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
841 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
842 ps_page
->page
= NULL
;
844 skb
->data_len
+= length
;
845 skb
->truesize
+= length
;
848 /* strip the ethernet crc, problem is we're using pages now so
849 * this whole operation can get a little cpu intensive
851 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
852 pskb_trim(skb
, skb
->len
- 4);
855 total_rx_bytes
+= skb
->len
;
858 e1000_rx_checksum(adapter
, staterr
, le16_to_cpu(
859 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
861 if (rx_desc
->wb
.upper
.header_status
&
862 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
863 adapter
->rx_hdr_split
++;
865 e1000_receive_skb(adapter
, netdev
, skb
,
866 staterr
, rx_desc
->wb
.middle
.vlan
);
869 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
870 buffer_info
->skb
= NULL
;
872 /* return some buffers to hardware, one at a time is too slow */
873 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
874 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
878 /* use prefetched values */
880 buffer_info
= next_buffer
;
882 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
884 rx_ring
->next_to_clean
= i
;
886 cleaned_count
= e1000_desc_unused(rx_ring
);
888 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
890 adapter
->total_rx_bytes
+= total_rx_bytes
;
891 adapter
->total_rx_packets
+= total_rx_packets
;
892 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
893 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
898 * e1000_consume_page - helper function
900 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
905 skb
->data_len
+= length
;
906 skb
->truesize
+= length
;
910 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
911 * @adapter: board private structure
913 * the return value indicates whether actual cleaning was done, there
914 * is no guarantee that everything was cleaned
917 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
918 int *work_done
, int work_to_do
)
920 struct net_device
*netdev
= adapter
->netdev
;
921 struct pci_dev
*pdev
= adapter
->pdev
;
922 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
923 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
924 struct e1000_buffer
*buffer_info
, *next_buffer
;
927 int cleaned_count
= 0;
928 bool cleaned
= false;
929 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
931 i
= rx_ring
->next_to_clean
;
932 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
933 buffer_info
= &rx_ring
->buffer_info
[i
];
935 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
939 if (*work_done
>= work_to_do
)
943 status
= rx_desc
->status
;
944 skb
= buffer_info
->skb
;
945 buffer_info
->skb
= NULL
;
948 if (i
== rx_ring
->count
)
950 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
953 next_buffer
= &rx_ring
->buffer_info
[i
];
957 pci_unmap_page(pdev
, buffer_info
->dma
, PAGE_SIZE
,
959 buffer_info
->dma
= 0;
961 length
= le16_to_cpu(rx_desc
->length
);
963 /* errors is only valid for DD + EOP descriptors */
964 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
965 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
966 /* recycle both page and skb */
967 buffer_info
->skb
= skb
;
968 /* an error means any chain goes out the window
970 if (rx_ring
->rx_skb_top
)
971 dev_kfree_skb(rx_ring
->rx_skb_top
);
972 rx_ring
->rx_skb_top
= NULL
;
976 #define rxtop rx_ring->rx_skb_top
977 if (!(status
& E1000_RXD_STAT_EOP
)) {
978 /* this descriptor is only the beginning (or middle) */
980 /* this is the beginning of a chain */
982 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
985 /* this is the middle of a chain */
986 skb_fill_page_desc(rxtop
,
987 skb_shinfo(rxtop
)->nr_frags
,
988 buffer_info
->page
, 0, length
);
989 /* re-use the skb, only consumed the page */
990 buffer_info
->skb
= skb
;
992 e1000_consume_page(buffer_info
, rxtop
, length
);
996 /* end of the chain */
997 skb_fill_page_desc(rxtop
,
998 skb_shinfo(rxtop
)->nr_frags
,
999 buffer_info
->page
, 0, length
);
1000 /* re-use the current skb, we only consumed the
1002 buffer_info
->skb
= skb
;
1005 e1000_consume_page(buffer_info
, skb
, length
);
1007 /* no chain, got EOP, this buf is the packet
1008 * copybreak to save the put_page/alloc_page */
1009 if (length
<= copybreak
&&
1010 skb_tailroom(skb
) >= length
) {
1012 vaddr
= kmap_atomic(buffer_info
->page
,
1013 KM_SKB_DATA_SOFTIRQ
);
1014 memcpy(skb_tail_pointer(skb
), vaddr
,
1016 kunmap_atomic(vaddr
,
1017 KM_SKB_DATA_SOFTIRQ
);
1018 /* re-use the page, so don't erase
1019 * buffer_info->page */
1020 skb_put(skb
, length
);
1022 skb_fill_page_desc(skb
, 0,
1023 buffer_info
->page
, 0,
1025 e1000_consume_page(buffer_info
, skb
,
1031 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1032 e1000_rx_checksum(adapter
,
1034 ((u32
)(rx_desc
->errors
) << 24),
1035 le16_to_cpu(rx_desc
->csum
), skb
);
1037 /* probably a little skewed due to removing CRC */
1038 total_rx_bytes
+= skb
->len
;
1041 /* eth type trans needs skb->data to point to something */
1042 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1043 e_err("pskb_may_pull failed.\n");
1048 e1000_receive_skb(adapter
, netdev
, skb
, status
,
1052 rx_desc
->status
= 0;
1054 /* return some buffers to hardware, one at a time is too slow */
1055 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1056 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1060 /* use prefetched values */
1062 buffer_info
= next_buffer
;
1064 rx_ring
->next_to_clean
= i
;
1066 cleaned_count
= e1000_desc_unused(rx_ring
);
1068 adapter
->alloc_rx_buf(adapter
, cleaned_count
);
1070 adapter
->total_rx_bytes
+= total_rx_bytes
;
1071 adapter
->total_rx_packets
+= total_rx_packets
;
1072 adapter
->net_stats
.rx_bytes
+= total_rx_bytes
;
1073 adapter
->net_stats
.rx_packets
+= total_rx_packets
;
1078 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1079 * @adapter: board private structure
1081 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
)
1083 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1084 struct e1000_buffer
*buffer_info
;
1085 struct e1000_ps_page
*ps_page
;
1086 struct pci_dev
*pdev
= adapter
->pdev
;
1089 /* Free all the Rx ring sk_buffs */
1090 for (i
= 0; i
< rx_ring
->count
; i
++) {
1091 buffer_info
= &rx_ring
->buffer_info
[i
];
1092 if (buffer_info
->dma
) {
1093 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1094 pci_unmap_single(pdev
, buffer_info
->dma
,
1095 adapter
->rx_buffer_len
,
1096 PCI_DMA_FROMDEVICE
);
1097 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1098 pci_unmap_page(pdev
, buffer_info
->dma
,
1100 PCI_DMA_FROMDEVICE
);
1101 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1102 pci_unmap_single(pdev
, buffer_info
->dma
,
1103 adapter
->rx_ps_bsize0
,
1104 PCI_DMA_FROMDEVICE
);
1105 buffer_info
->dma
= 0;
1108 if (buffer_info
->page
) {
1109 put_page(buffer_info
->page
);
1110 buffer_info
->page
= NULL
;
1113 if (buffer_info
->skb
) {
1114 dev_kfree_skb(buffer_info
->skb
);
1115 buffer_info
->skb
= NULL
;
1118 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1119 ps_page
= &buffer_info
->ps_pages
[j
];
1122 pci_unmap_page(pdev
, ps_page
->dma
, PAGE_SIZE
,
1123 PCI_DMA_FROMDEVICE
);
1125 put_page(ps_page
->page
);
1126 ps_page
->page
= NULL
;
1130 /* there also may be some cached data from a chained receive */
1131 if (rx_ring
->rx_skb_top
) {
1132 dev_kfree_skb(rx_ring
->rx_skb_top
);
1133 rx_ring
->rx_skb_top
= NULL
;
1136 /* Zero out the descriptor ring */
1137 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1139 rx_ring
->next_to_clean
= 0;
1140 rx_ring
->next_to_use
= 0;
1141 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1143 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1144 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1147 static void e1000e_downshift_workaround(struct work_struct
*work
)
1149 struct e1000_adapter
*adapter
= container_of(work
,
1150 struct e1000_adapter
, downshift_task
);
1152 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1156 * e1000_intr_msi - Interrupt Handler
1157 * @irq: interrupt number
1158 * @data: pointer to a network interface device structure
1160 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
1162 struct net_device
*netdev
= data
;
1163 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1164 struct e1000_hw
*hw
= &adapter
->hw
;
1165 u32 icr
= er32(ICR
);
1168 * read ICR disables interrupts using IAM
1171 if (icr
& E1000_ICR_LSC
) {
1172 hw
->mac
.get_link_status
= 1;
1174 * ICH8 workaround-- Call gig speed drop workaround on cable
1175 * disconnect (LSC) before accessing any PHY registers
1177 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1178 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1179 schedule_work(&adapter
->downshift_task
);
1182 * 80003ES2LAN workaround-- For packet buffer work-around on
1183 * link down event; disable receives here in the ISR and reset
1184 * adapter in watchdog
1186 if (netif_carrier_ok(netdev
) &&
1187 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1188 /* disable receives */
1189 u32 rctl
= er32(RCTL
);
1190 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1191 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1193 /* guard against interrupt when we're going down */
1194 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1195 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1198 if (napi_schedule_prep(&adapter
->napi
)) {
1199 adapter
->total_tx_bytes
= 0;
1200 adapter
->total_tx_packets
= 0;
1201 adapter
->total_rx_bytes
= 0;
1202 adapter
->total_rx_packets
= 0;
1203 __napi_schedule(&adapter
->napi
);
1210 * e1000_intr - Interrupt Handler
1211 * @irq: interrupt number
1212 * @data: pointer to a network interface device structure
1214 static irqreturn_t
e1000_intr(int irq
, void *data
)
1216 struct net_device
*netdev
= data
;
1217 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1218 struct e1000_hw
*hw
= &adapter
->hw
;
1219 u32 rctl
, icr
= er32(ICR
);
1222 return IRQ_NONE
; /* Not our interrupt */
1225 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1226 * not set, then the adapter didn't send an interrupt
1228 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1232 * Interrupt Auto-Mask...upon reading ICR,
1233 * interrupts are masked. No need for the
1237 if (icr
& E1000_ICR_LSC
) {
1238 hw
->mac
.get_link_status
= 1;
1240 * ICH8 workaround-- Call gig speed drop workaround on cable
1241 * disconnect (LSC) before accessing any PHY registers
1243 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1244 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1245 schedule_work(&adapter
->downshift_task
);
1248 * 80003ES2LAN workaround--
1249 * For packet buffer work-around on link down event;
1250 * disable receives here in the ISR and
1251 * reset adapter in watchdog
1253 if (netif_carrier_ok(netdev
) &&
1254 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1255 /* disable receives */
1257 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1258 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1260 /* guard against interrupt when we're going down */
1261 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1262 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1265 if (napi_schedule_prep(&adapter
->napi
)) {
1266 adapter
->total_tx_bytes
= 0;
1267 adapter
->total_tx_packets
= 0;
1268 adapter
->total_rx_bytes
= 0;
1269 adapter
->total_rx_packets
= 0;
1270 __napi_schedule(&adapter
->napi
);
1276 static irqreturn_t
e1000_msix_other(int irq
, void *data
)
1278 struct net_device
*netdev
= data
;
1279 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1280 struct e1000_hw
*hw
= &adapter
->hw
;
1281 u32 icr
= er32(ICR
);
1283 if (!(icr
& E1000_ICR_INT_ASSERTED
)) {
1284 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1285 ew32(IMS
, E1000_IMS_OTHER
);
1289 if (icr
& adapter
->eiac_mask
)
1290 ew32(ICS
, (icr
& adapter
->eiac_mask
));
1292 if (icr
& E1000_ICR_OTHER
) {
1293 if (!(icr
& E1000_ICR_LSC
))
1294 goto no_link_interrupt
;
1295 hw
->mac
.get_link_status
= 1;
1296 /* guard against interrupt when we're going down */
1297 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1298 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1302 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1303 ew32(IMS
, E1000_IMS_LSC
| E1000_IMS_OTHER
);
1309 static irqreturn_t
e1000_intr_msix_tx(int irq
, void *data
)
1311 struct net_device
*netdev
= data
;
1312 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1313 struct e1000_hw
*hw
= &adapter
->hw
;
1314 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1317 adapter
->total_tx_bytes
= 0;
1318 adapter
->total_tx_packets
= 0;
1320 if (!e1000_clean_tx_irq(adapter
))
1321 /* Ring was not completely cleaned, so fire another interrupt */
1322 ew32(ICS
, tx_ring
->ims_val
);
1327 static irqreturn_t
e1000_intr_msix_rx(int irq
, void *data
)
1329 struct net_device
*netdev
= data
;
1330 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1332 /* Write the ITR value calculated at the end of the
1333 * previous interrupt.
1335 if (adapter
->rx_ring
->set_itr
) {
1336 writel(1000000000 / (adapter
->rx_ring
->itr_val
* 256),
1337 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
1338 adapter
->rx_ring
->set_itr
= 0;
1341 if (napi_schedule_prep(&adapter
->napi
)) {
1342 adapter
->total_rx_bytes
= 0;
1343 adapter
->total_rx_packets
= 0;
1344 __napi_schedule(&adapter
->napi
);
1350 * e1000_configure_msix - Configure MSI-X hardware
1352 * e1000_configure_msix sets up the hardware to properly
1353 * generate MSI-X interrupts.
1355 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1357 struct e1000_hw
*hw
= &adapter
->hw
;
1358 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1359 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1361 u32 ctrl_ext
, ivar
= 0;
1363 adapter
->eiac_mask
= 0;
1365 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1366 if (hw
->mac
.type
== e1000_82574
) {
1367 u32 rfctl
= er32(RFCTL
);
1368 rfctl
|= E1000_RFCTL_ACK_DIS
;
1372 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1373 /* Configure Rx vector */
1374 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
1375 adapter
->eiac_mask
|= rx_ring
->ims_val
;
1376 if (rx_ring
->itr_val
)
1377 writel(1000000000 / (rx_ring
->itr_val
* 256),
1378 hw
->hw_addr
+ rx_ring
->itr_register
);
1380 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
1381 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
1383 /* Configure Tx vector */
1384 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
1386 if (tx_ring
->itr_val
)
1387 writel(1000000000 / (tx_ring
->itr_val
* 256),
1388 hw
->hw_addr
+ tx_ring
->itr_register
);
1390 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
1391 adapter
->eiac_mask
|= tx_ring
->ims_val
;
1392 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
1394 /* set vector for Other Causes, e.g. link changes */
1396 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
1397 if (rx_ring
->itr_val
)
1398 writel(1000000000 / (rx_ring
->itr_val
* 256),
1399 hw
->hw_addr
+ E1000_EITR_82574(vector
));
1401 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
1403 /* Cause Tx interrupts on every write back */
1408 /* enable MSI-X PBA support */
1409 ctrl_ext
= er32(CTRL_EXT
);
1410 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
;
1412 /* Auto-Mask Other interrupts upon ICR read */
1413 #define E1000_EIAC_MASK_82574 0x01F00000
1414 ew32(IAM
, ~E1000_EIAC_MASK_82574
| E1000_IMS_OTHER
);
1415 ctrl_ext
|= E1000_CTRL_EXT_EIAME
;
1416 ew32(CTRL_EXT
, ctrl_ext
);
1420 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
1422 if (adapter
->msix_entries
) {
1423 pci_disable_msix(adapter
->pdev
);
1424 kfree(adapter
->msix_entries
);
1425 adapter
->msix_entries
= NULL
;
1426 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1427 pci_disable_msi(adapter
->pdev
);
1428 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
1435 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1437 * Attempt to configure interrupts using the best available
1438 * capabilities of the hardware and kernel.
1440 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
1446 switch (adapter
->int_mode
) {
1447 case E1000E_INT_MODE_MSIX
:
1448 if (adapter
->flags
& FLAG_HAS_MSIX
) {
1449 numvecs
= 3; /* RxQ0, TxQ0 and other */
1450 adapter
->msix_entries
= kcalloc(numvecs
,
1451 sizeof(struct msix_entry
),
1453 if (adapter
->msix_entries
) {
1454 for (i
= 0; i
< numvecs
; i
++)
1455 adapter
->msix_entries
[i
].entry
= i
;
1457 err
= pci_enable_msix(adapter
->pdev
,
1458 adapter
->msix_entries
,
1463 /* MSI-X failed, so fall through and try MSI */
1464 e_err("Failed to initialize MSI-X interrupts. "
1465 "Falling back to MSI interrupts.\n");
1466 e1000e_reset_interrupt_capability(adapter
);
1468 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1470 case E1000E_INT_MODE_MSI
:
1471 if (!pci_enable_msi(adapter
->pdev
)) {
1472 adapter
->flags
|= FLAG_MSI_ENABLED
;
1474 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1475 e_err("Failed to initialize MSI interrupts. Falling "
1476 "back to legacy interrupts.\n");
1479 case E1000E_INT_MODE_LEGACY
:
1480 /* Don't do anything; this is the system default */
1488 * e1000_request_msix - Initialize MSI-X interrupts
1490 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1493 static int e1000_request_msix(struct e1000_adapter
*adapter
)
1495 struct net_device
*netdev
= adapter
->netdev
;
1496 int err
= 0, vector
= 0;
1498 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1499 sprintf(adapter
->rx_ring
->name
, "%s-rx-0", netdev
->name
);
1501 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1502 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1503 &e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1507 adapter
->rx_ring
->itr_register
= E1000_EITR_82574(vector
);
1508 adapter
->rx_ring
->itr_val
= adapter
->itr
;
1511 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1512 sprintf(adapter
->tx_ring
->name
, "%s-tx-0", netdev
->name
);
1514 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1515 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1516 &e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1520 adapter
->tx_ring
->itr_register
= E1000_EITR_82574(vector
);
1521 adapter
->tx_ring
->itr_val
= adapter
->itr
;
1524 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1525 &e1000_msix_other
, 0, netdev
->name
, netdev
);
1529 e1000_configure_msix(adapter
);
1536 * e1000_request_irq - initialize interrupts
1538 * Attempts to configure interrupts using the best available
1539 * capabilities of the hardware and kernel.
1541 static int e1000_request_irq(struct e1000_adapter
*adapter
)
1543 struct net_device
*netdev
= adapter
->netdev
;
1546 if (adapter
->msix_entries
) {
1547 err
= e1000_request_msix(adapter
);
1550 /* fall back to MSI */
1551 e1000e_reset_interrupt_capability(adapter
);
1552 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1553 e1000e_set_interrupt_capability(adapter
);
1555 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1556 err
= request_irq(adapter
->pdev
->irq
, &e1000_intr_msi
, 0,
1557 netdev
->name
, netdev
);
1561 /* fall back to legacy interrupt */
1562 e1000e_reset_interrupt_capability(adapter
);
1563 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1566 err
= request_irq(adapter
->pdev
->irq
, &e1000_intr
, IRQF_SHARED
,
1567 netdev
->name
, netdev
);
1569 e_err("Unable to allocate interrupt, Error: %d\n", err
);
1574 static void e1000_free_irq(struct e1000_adapter
*adapter
)
1576 struct net_device
*netdev
= adapter
->netdev
;
1578 if (adapter
->msix_entries
) {
1581 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1584 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1587 /* Other Causes interrupt vector */
1588 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1592 free_irq(adapter
->pdev
->irq
, netdev
);
1596 * e1000_irq_disable - Mask off interrupt generation on the NIC
1598 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
1600 struct e1000_hw
*hw
= &adapter
->hw
;
1603 if (adapter
->msix_entries
)
1604 ew32(EIAC_82574
, 0);
1606 synchronize_irq(adapter
->pdev
->irq
);
1610 * e1000_irq_enable - Enable default interrupt generation settings
1612 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
1614 struct e1000_hw
*hw
= &adapter
->hw
;
1616 if (adapter
->msix_entries
) {
1617 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
1618 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_OTHER
| E1000_IMS_LSC
);
1620 ew32(IMS
, IMS_ENABLE_MASK
);
1626 * e1000_get_hw_control - get control of the h/w from f/w
1627 * @adapter: address of board private structure
1629 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1630 * For ASF and Pass Through versions of f/w this means that
1631 * the driver is loaded. For AMT version (only with 82573)
1632 * of the f/w this means that the network i/f is open.
1634 static void e1000_get_hw_control(struct e1000_adapter
*adapter
)
1636 struct e1000_hw
*hw
= &adapter
->hw
;
1640 /* Let firmware know the driver has taken over */
1641 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1643 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
1644 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1645 ctrl_ext
= er32(CTRL_EXT
);
1646 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
1651 * e1000_release_hw_control - release control of the h/w to f/w
1652 * @adapter: address of board private structure
1654 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1655 * For ASF and Pass Through versions of f/w this means that the
1656 * driver is no longer loaded. For AMT version (only with 82573) i
1657 * of the f/w this means that the network i/f is closed.
1660 static void e1000_release_hw_control(struct e1000_adapter
*adapter
)
1662 struct e1000_hw
*hw
= &adapter
->hw
;
1666 /* Let firmware taken over control of h/w */
1667 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
1669 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
1670 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
1671 ctrl_ext
= er32(CTRL_EXT
);
1672 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
1677 * @e1000_alloc_ring - allocate memory for a ring structure
1679 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
1680 struct e1000_ring
*ring
)
1682 struct pci_dev
*pdev
= adapter
->pdev
;
1684 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
1693 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1694 * @adapter: board private structure
1696 * Return 0 on success, negative on failure
1698 int e1000e_setup_tx_resources(struct e1000_adapter
*adapter
)
1700 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1701 int err
= -ENOMEM
, size
;
1703 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1704 tx_ring
->buffer_info
= vmalloc(size
);
1705 if (!tx_ring
->buffer_info
)
1707 memset(tx_ring
->buffer_info
, 0, size
);
1709 /* round up to nearest 4K */
1710 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
1711 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
1713 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
1717 tx_ring
->next_to_use
= 0;
1718 tx_ring
->next_to_clean
= 0;
1722 vfree(tx_ring
->buffer_info
);
1723 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1728 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1729 * @adapter: board private structure
1731 * Returns 0 on success, negative on failure
1733 int e1000e_setup_rx_resources(struct e1000_adapter
*adapter
)
1735 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1736 struct e1000_buffer
*buffer_info
;
1737 int i
, size
, desc_len
, err
= -ENOMEM
;
1739 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
1740 rx_ring
->buffer_info
= vmalloc(size
);
1741 if (!rx_ring
->buffer_info
)
1743 memset(rx_ring
->buffer_info
, 0, size
);
1745 for (i
= 0; i
< rx_ring
->count
; i
++) {
1746 buffer_info
= &rx_ring
->buffer_info
[i
];
1747 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
1748 sizeof(struct e1000_ps_page
),
1750 if (!buffer_info
->ps_pages
)
1754 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
1756 /* Round up to nearest 4K */
1757 rx_ring
->size
= rx_ring
->count
* desc_len
;
1758 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
1760 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
1764 rx_ring
->next_to_clean
= 0;
1765 rx_ring
->next_to_use
= 0;
1766 rx_ring
->rx_skb_top
= NULL
;
1771 for (i
= 0; i
< rx_ring
->count
; i
++) {
1772 buffer_info
= &rx_ring
->buffer_info
[i
];
1773 kfree(buffer_info
->ps_pages
);
1776 vfree(rx_ring
->buffer_info
);
1777 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1782 * e1000_clean_tx_ring - Free Tx Buffers
1783 * @adapter: board private structure
1785 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
)
1787 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1788 struct e1000_buffer
*buffer_info
;
1792 for (i
= 0; i
< tx_ring
->count
; i
++) {
1793 buffer_info
= &tx_ring
->buffer_info
[i
];
1794 e1000_put_txbuf(adapter
, buffer_info
);
1797 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1798 memset(tx_ring
->buffer_info
, 0, size
);
1800 memset(tx_ring
->desc
, 0, tx_ring
->size
);
1802 tx_ring
->next_to_use
= 0;
1803 tx_ring
->next_to_clean
= 0;
1805 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
1806 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
1810 * e1000e_free_tx_resources - Free Tx Resources per Queue
1811 * @adapter: board private structure
1813 * Free all transmit software resources
1815 void e1000e_free_tx_resources(struct e1000_adapter
*adapter
)
1817 struct pci_dev
*pdev
= adapter
->pdev
;
1818 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1820 e1000_clean_tx_ring(adapter
);
1822 vfree(tx_ring
->buffer_info
);
1823 tx_ring
->buffer_info
= NULL
;
1825 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1827 tx_ring
->desc
= NULL
;
1831 * e1000e_free_rx_resources - Free Rx Resources
1832 * @adapter: board private structure
1834 * Free all receive software resources
1837 void e1000e_free_rx_resources(struct e1000_adapter
*adapter
)
1839 struct pci_dev
*pdev
= adapter
->pdev
;
1840 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1843 e1000_clean_rx_ring(adapter
);
1845 for (i
= 0; i
< rx_ring
->count
; i
++) {
1846 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
1849 vfree(rx_ring
->buffer_info
);
1850 rx_ring
->buffer_info
= NULL
;
1852 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
1854 rx_ring
->desc
= NULL
;
1858 * e1000_update_itr - update the dynamic ITR value based on statistics
1859 * @adapter: pointer to adapter
1860 * @itr_setting: current adapter->itr
1861 * @packets: the number of packets during this measurement interval
1862 * @bytes: the number of bytes during this measurement interval
1864 * Stores a new ITR value based on packets and byte
1865 * counts during the last interrupt. The advantage of per interrupt
1866 * computation is faster updates and more accurate ITR for the current
1867 * traffic pattern. Constants in this function were computed
1868 * based on theoretical maximum wire speed and thresholds were set based
1869 * on testing data as well as attempting to minimize response time
1870 * while increasing bulk throughput. This functionality is controlled
1871 * by the InterruptThrottleRate module parameter.
1873 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
1874 u16 itr_setting
, int packets
,
1877 unsigned int retval
= itr_setting
;
1880 goto update_itr_done
;
1882 switch (itr_setting
) {
1883 case lowest_latency
:
1884 /* handle TSO and jumbo frames */
1885 if (bytes
/packets
> 8000)
1886 retval
= bulk_latency
;
1887 else if ((packets
< 5) && (bytes
> 512)) {
1888 retval
= low_latency
;
1891 case low_latency
: /* 50 usec aka 20000 ints/s */
1892 if (bytes
> 10000) {
1893 /* this if handles the TSO accounting */
1894 if (bytes
/packets
> 8000) {
1895 retval
= bulk_latency
;
1896 } else if ((packets
< 10) || ((bytes
/packets
) > 1200)) {
1897 retval
= bulk_latency
;
1898 } else if ((packets
> 35)) {
1899 retval
= lowest_latency
;
1901 } else if (bytes
/packets
> 2000) {
1902 retval
= bulk_latency
;
1903 } else if (packets
<= 2 && bytes
< 512) {
1904 retval
= lowest_latency
;
1907 case bulk_latency
: /* 250 usec aka 4000 ints/s */
1908 if (bytes
> 25000) {
1910 retval
= low_latency
;
1912 } else if (bytes
< 6000) {
1913 retval
= low_latency
;
1922 static void e1000_set_itr(struct e1000_adapter
*adapter
)
1924 struct e1000_hw
*hw
= &adapter
->hw
;
1926 u32 new_itr
= adapter
->itr
;
1928 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1929 if (adapter
->link_speed
!= SPEED_1000
) {
1935 adapter
->tx_itr
= e1000_update_itr(adapter
,
1937 adapter
->total_tx_packets
,
1938 adapter
->total_tx_bytes
);
1939 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1940 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
1941 adapter
->tx_itr
= low_latency
;
1943 adapter
->rx_itr
= e1000_update_itr(adapter
,
1945 adapter
->total_rx_packets
,
1946 adapter
->total_rx_bytes
);
1947 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1948 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
1949 adapter
->rx_itr
= low_latency
;
1951 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
1953 switch (current_itr
) {
1954 /* counts and packets in update_itr are dependent on these numbers */
1955 case lowest_latency
:
1959 new_itr
= 20000; /* aka hwitr = ~200 */
1969 if (new_itr
!= adapter
->itr
) {
1971 * this attempts to bias the interrupt rate towards Bulk
1972 * by adding intermediate steps when interrupt rate is
1975 new_itr
= new_itr
> adapter
->itr
?
1976 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
1978 adapter
->itr
= new_itr
;
1979 adapter
->rx_ring
->itr_val
= new_itr
;
1980 if (adapter
->msix_entries
)
1981 adapter
->rx_ring
->set_itr
= 1;
1983 ew32(ITR
, 1000000000 / (new_itr
* 256));
1988 * e1000_alloc_queues - Allocate memory for all rings
1989 * @adapter: board private structure to initialize
1991 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
1993 adapter
->tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
1994 if (!adapter
->tx_ring
)
1997 adapter
->rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
1998 if (!adapter
->rx_ring
)
2003 e_err("Unable to allocate memory for queues\n");
2004 kfree(adapter
->rx_ring
);
2005 kfree(adapter
->tx_ring
);
2010 * e1000_clean - NAPI Rx polling callback
2011 * @napi: struct associated with this polling callback
2012 * @budget: amount of packets driver is allowed to process this poll
2014 static int e1000_clean(struct napi_struct
*napi
, int budget
)
2016 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
2017 struct e1000_hw
*hw
= &adapter
->hw
;
2018 struct net_device
*poll_dev
= adapter
->netdev
;
2019 int tx_cleaned
= 1, work_done
= 0;
2021 adapter
= netdev_priv(poll_dev
);
2023 if (adapter
->msix_entries
&&
2024 !(adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2027 tx_cleaned
= e1000_clean_tx_irq(adapter
);
2030 adapter
->clean_rx(adapter
, &work_done
, budget
);
2035 /* If budget not fully consumed, exit the polling mode */
2036 if (work_done
< budget
) {
2037 if (adapter
->itr_setting
& 3)
2038 e1000_set_itr(adapter
);
2039 napi_complete(napi
);
2040 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2041 if (adapter
->msix_entries
)
2042 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2044 e1000_irq_enable(adapter
);
2051 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
2053 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2054 struct e1000_hw
*hw
= &adapter
->hw
;
2057 /* don't update vlan cookie if already programmed */
2058 if ((adapter
->hw
.mng_cookie
.status
&
2059 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2060 (vid
== adapter
->mng_vlan_id
))
2062 /* add VID to filter table */
2063 index
= (vid
>> 5) & 0x7F;
2064 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2065 vfta
|= (1 << (vid
& 0x1F));
2066 e1000e_write_vfta(hw
, index
, vfta
);
2069 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
2071 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2072 struct e1000_hw
*hw
= &adapter
->hw
;
2075 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2076 e1000_irq_disable(adapter
);
2077 vlan_group_set_device(adapter
->vlgrp
, vid
, NULL
);
2079 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2080 e1000_irq_enable(adapter
);
2082 if ((adapter
->hw
.mng_cookie
.status
&
2083 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2084 (vid
== adapter
->mng_vlan_id
)) {
2085 /* release control to f/w */
2086 e1000_release_hw_control(adapter
);
2090 /* remove VID from filter table */
2091 index
= (vid
>> 5) & 0x7F;
2092 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2093 vfta
&= ~(1 << (vid
& 0x1F));
2094 e1000e_write_vfta(hw
, index
, vfta
);
2097 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2099 struct net_device
*netdev
= adapter
->netdev
;
2100 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2101 u16 old_vid
= adapter
->mng_vlan_id
;
2103 if (!adapter
->vlgrp
)
2106 if (!vlan_group_get_device(adapter
->vlgrp
, vid
)) {
2107 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2108 if (adapter
->hw
.mng_cookie
.status
&
2109 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2110 e1000_vlan_rx_add_vid(netdev
, vid
);
2111 adapter
->mng_vlan_id
= vid
;
2114 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
2116 !vlan_group_get_device(adapter
->vlgrp
, old_vid
))
2117 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
2119 adapter
->mng_vlan_id
= vid
;
2124 static void e1000_vlan_rx_register(struct net_device
*netdev
,
2125 struct vlan_group
*grp
)
2127 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2128 struct e1000_hw
*hw
= &adapter
->hw
;
2131 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2132 e1000_irq_disable(adapter
);
2133 adapter
->vlgrp
= grp
;
2136 /* enable VLAN tag insert/strip */
2138 ctrl
|= E1000_CTRL_VME
;
2141 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2142 /* enable VLAN receive filtering */
2144 rctl
&= ~E1000_RCTL_CFIEN
;
2146 e1000_update_mng_vlan(adapter
);
2149 /* disable VLAN tag insert/strip */
2151 ctrl
&= ~E1000_CTRL_VME
;
2154 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2155 if (adapter
->mng_vlan_id
!=
2156 (u16
)E1000_MNG_VLAN_NONE
) {
2157 e1000_vlan_rx_kill_vid(netdev
,
2158 adapter
->mng_vlan_id
);
2159 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2164 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
2165 e1000_irq_enable(adapter
);
2168 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2172 e1000_vlan_rx_register(adapter
->netdev
, adapter
->vlgrp
);
2174 if (!adapter
->vlgrp
)
2177 for (vid
= 0; vid
< VLAN_GROUP_ARRAY_LEN
; vid
++) {
2178 if (!vlan_group_get_device(adapter
->vlgrp
, vid
))
2180 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
2184 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
2186 struct e1000_hw
*hw
= &adapter
->hw
;
2189 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2195 * enable receiving management packets to the host. this will probably
2196 * generate destination unreachable messages from the host OS, but
2197 * the packets will be handled on SMBUS
2199 manc
|= E1000_MANC_EN_MNG2HOST
;
2200 manc2h
= er32(MANC2H
);
2201 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2202 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2203 manc2h
|= E1000_MNG2HOST_PORT_623
;
2204 manc2h
|= E1000_MNG2HOST_PORT_664
;
2205 ew32(MANC2H
, manc2h
);
2210 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2211 * @adapter: board private structure
2213 * Configure the Tx unit of the MAC after a reset.
2215 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2217 struct e1000_hw
*hw
= &adapter
->hw
;
2218 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2220 u32 tdlen
, tctl
, tipg
, tarc
;
2223 /* Setup the HW Tx Head and Tail descriptor pointers */
2224 tdba
= tx_ring
->dma
;
2225 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2226 ew32(TDBAL
, (tdba
& DMA_BIT_MASK(32)));
2227 ew32(TDBAH
, (tdba
>> 32));
2231 tx_ring
->head
= E1000_TDH
;
2232 tx_ring
->tail
= E1000_TDT
;
2234 /* Set the default values for the Tx Inter Packet Gap timer */
2235 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
; /* 8 */
2236 ipgr1
= DEFAULT_82543_TIPG_IPGR1
; /* 8 */
2237 ipgr2
= DEFAULT_82543_TIPG_IPGR2
; /* 6 */
2239 if (adapter
->flags
& FLAG_TIPG_MEDIUM_FOR_80003ESLAN
)
2240 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
; /* 7 */
2242 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
2243 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
2246 /* Set the Tx Interrupt Delay register */
2247 ew32(TIDV
, adapter
->tx_int_delay
);
2248 /* Tx irq moderation */
2249 ew32(TADV
, adapter
->tx_abs_int_delay
);
2251 /* Program the Transmit Control Register */
2253 tctl
&= ~E1000_TCTL_CT
;
2254 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2255 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2257 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2258 tarc
= er32(TARC(0));
2260 * set the speed mode bit, we'll clear it if we're not at
2261 * gigabit link later
2263 #define SPEED_MODE_BIT (1 << 21)
2264 tarc
|= SPEED_MODE_BIT
;
2265 ew32(TARC(0), tarc
);
2268 /* errata: program both queues to unweighted RR */
2269 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2270 tarc
= er32(TARC(0));
2272 ew32(TARC(0), tarc
);
2273 tarc
= er32(TARC(1));
2275 ew32(TARC(1), tarc
);
2278 /* Setup Transmit Descriptor Settings for eop descriptor */
2279 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
2281 /* only set IDE if we are delaying interrupts using the timers */
2282 if (adapter
->tx_int_delay
)
2283 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
2285 /* enable Report Status bit */
2286 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
2290 e1000e_config_collision_dist(hw
);
2292 adapter
->tx_queue_len
= adapter
->netdev
->tx_queue_len
;
2296 * e1000_setup_rctl - configure the receive control registers
2297 * @adapter: Board private structure
2299 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2300 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2301 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
2303 struct e1000_hw
*hw
= &adapter
->hw
;
2308 /* Program MC offset vector base */
2310 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
2311 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
2312 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
2313 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
2315 /* Do not Store bad packets */
2316 rctl
&= ~E1000_RCTL_SBP
;
2318 /* Enable Long Packet receive */
2319 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
2320 rctl
&= ~E1000_RCTL_LPE
;
2322 rctl
|= E1000_RCTL_LPE
;
2324 /* Some systems expect that the CRC is included in SMBUS traffic. The
2325 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2326 * host memory when this is enabled
2328 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
2329 rctl
|= E1000_RCTL_SECRC
;
2331 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2332 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
2335 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
2337 phy_data
|= (1 << 2);
2338 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
2340 e1e_rphy(hw
, 22, &phy_data
);
2342 phy_data
|= (1 << 14);
2343 e1e_wphy(hw
, 0x10, 0x2823);
2344 e1e_wphy(hw
, 0x11, 0x0003);
2345 e1e_wphy(hw
, 22, phy_data
);
2348 /* Setup buffer sizes */
2349 rctl
&= ~E1000_RCTL_SZ_4096
;
2350 rctl
|= E1000_RCTL_BSEX
;
2351 switch (adapter
->rx_buffer_len
) {
2354 rctl
|= E1000_RCTL_SZ_2048
;
2355 rctl
&= ~E1000_RCTL_BSEX
;
2358 rctl
|= E1000_RCTL_SZ_4096
;
2361 rctl
|= E1000_RCTL_SZ_8192
;
2364 rctl
|= E1000_RCTL_SZ_16384
;
2369 * 82571 and greater support packet-split where the protocol
2370 * header is placed in skb->data and the packet data is
2371 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2372 * In the case of a non-split, skb->data is linearly filled,
2373 * followed by the page buffers. Therefore, skb->data is
2374 * sized to hold the largest protocol header.
2376 * allocations using alloc_page take too long for regular MTU
2377 * so only enable packet split for jumbo frames
2379 * Using pages when the page size is greater than 16k wastes
2380 * a lot of memory, since we allocate 3 pages at all times
2383 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
2384 if (!(adapter
->flags
& FLAG_IS_ICH
) && (pages
<= 3) &&
2385 (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
2386 adapter
->rx_ps_pages
= pages
;
2388 adapter
->rx_ps_pages
= 0;
2390 if (adapter
->rx_ps_pages
) {
2391 /* Configure extra packet-split registers */
2392 rfctl
= er32(RFCTL
);
2393 rfctl
|= E1000_RFCTL_EXTEN
;
2395 * disable packet split support for IPv6 extension headers,
2396 * because some malformed IPv6 headers can hang the Rx
2398 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
2399 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
2403 /* Enable Packet split descriptors */
2404 rctl
|= E1000_RCTL_DTYP_PS
;
2406 psrctl
|= adapter
->rx_ps_bsize0
>>
2407 E1000_PSRCTL_BSIZE0_SHIFT
;
2409 switch (adapter
->rx_ps_pages
) {
2411 psrctl
|= PAGE_SIZE
<<
2412 E1000_PSRCTL_BSIZE3_SHIFT
;
2414 psrctl
|= PAGE_SIZE
<<
2415 E1000_PSRCTL_BSIZE2_SHIFT
;
2417 psrctl
|= PAGE_SIZE
>>
2418 E1000_PSRCTL_BSIZE1_SHIFT
;
2422 ew32(PSRCTL
, psrctl
);
2426 /* just started the receive unit, no need to restart */
2427 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
2431 * e1000_configure_rx - Configure Receive Unit after Reset
2432 * @adapter: board private structure
2434 * Configure the Rx unit of the MAC after a reset.
2436 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
2438 struct e1000_hw
*hw
= &adapter
->hw
;
2439 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2441 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
2443 if (adapter
->rx_ps_pages
) {
2444 /* this is a 32 byte descriptor */
2445 rdlen
= rx_ring
->count
*
2446 sizeof(union e1000_rx_desc_packet_split
);
2447 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
2448 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
2449 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2450 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2451 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
2452 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
2454 rdlen
= rx_ring
->count
* sizeof(struct e1000_rx_desc
);
2455 adapter
->clean_rx
= e1000_clean_rx_irq
;
2456 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
2459 /* disable receives while setting up the descriptors */
2461 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2465 /* set the Receive Delay Timer Register */
2466 ew32(RDTR
, adapter
->rx_int_delay
);
2468 /* irq moderation */
2469 ew32(RADV
, adapter
->rx_abs_int_delay
);
2470 if (adapter
->itr_setting
!= 0)
2471 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
2473 ctrl_ext
= er32(CTRL_EXT
);
2474 /* Reset delay timers after every interrupt */
2475 ctrl_ext
|= E1000_CTRL_EXT_INT_TIMER_CLR
;
2476 /* Auto-Mask interrupts upon ICR access */
2477 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
2478 ew32(IAM
, 0xffffffff);
2479 ew32(CTRL_EXT
, ctrl_ext
);
2483 * Setup the HW Rx Head and Tail Descriptor Pointers and
2484 * the Base and Length of the Rx Descriptor Ring
2486 rdba
= rx_ring
->dma
;
2487 ew32(RDBAL
, (rdba
& DMA_BIT_MASK(32)));
2488 ew32(RDBAH
, (rdba
>> 32));
2492 rx_ring
->head
= E1000_RDH
;
2493 rx_ring
->tail
= E1000_RDT
;
2495 /* Enable Receive Checksum Offload for TCP and UDP */
2496 rxcsum
= er32(RXCSUM
);
2497 if (adapter
->flags
& FLAG_RX_CSUM_ENABLED
) {
2498 rxcsum
|= E1000_RXCSUM_TUOFL
;
2501 * IPv4 payload checksum for UDP fragments must be
2502 * used in conjunction with packet-split.
2504 if (adapter
->rx_ps_pages
)
2505 rxcsum
|= E1000_RXCSUM_IPPCSE
;
2507 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
2508 /* no need to clear IPPCSE as it defaults to 0 */
2510 ew32(RXCSUM
, rxcsum
);
2513 * Enable early receives on supported devices, only takes effect when
2514 * packet size is equal or larger than the specified value (in 8 byte
2515 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2517 if ((adapter
->flags
& FLAG_HAS_ERT
) &&
2518 (adapter
->netdev
->mtu
> ETH_DATA_LEN
)) {
2519 u32 rxdctl
= er32(RXDCTL(0));
2520 ew32(RXDCTL(0), rxdctl
| 0x3);
2521 ew32(ERT
, E1000_ERT_2048
| (1 << 13));
2523 * With jumbo frames and early-receive enabled, excessive
2524 * C4->C2 latencies result in dropped transactions.
2526 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY
,
2527 e1000e_driver_name
, 55);
2529 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY
,
2531 PM_QOS_DEFAULT_VALUE
);
2534 /* Enable Receives */
2539 * e1000_update_mc_addr_list - Update Multicast addresses
2540 * @hw: pointer to the HW structure
2541 * @mc_addr_list: array of multicast addresses to program
2542 * @mc_addr_count: number of multicast addresses to program
2543 * @rar_used_count: the first RAR register free to program
2544 * @rar_count: total number of supported Receive Address Registers
2546 * Updates the Receive Address Registers and Multicast Table Array.
2547 * The caller must have a packed mc_addr_list of multicast addresses.
2548 * The parameter rar_count will usually be hw->mac.rar_entry_count
2549 * unless there are workarounds that change this. Currently no func pointer
2550 * exists and all implementations are handled in the generic version of this
2553 static void e1000_update_mc_addr_list(struct e1000_hw
*hw
, u8
*mc_addr_list
,
2554 u32 mc_addr_count
, u32 rar_used_count
,
2557 hw
->mac
.ops
.update_mc_addr_list(hw
, mc_addr_list
, mc_addr_count
,
2558 rar_used_count
, rar_count
);
2562 * e1000_set_multi - Multicast and Promiscuous mode set
2563 * @netdev: network interface device structure
2565 * The set_multi entry point is called whenever the multicast address
2566 * list or the network interface flags are updated. This routine is
2567 * responsible for configuring the hardware for proper multicast,
2568 * promiscuous mode, and all-multi behavior.
2570 static void e1000_set_multi(struct net_device
*netdev
)
2572 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2573 struct e1000_hw
*hw
= &adapter
->hw
;
2574 struct e1000_mac_info
*mac
= &hw
->mac
;
2575 struct dev_mc_list
*mc_ptr
;
2580 /* Check for Promiscuous and All Multicast modes */
2584 if (netdev
->flags
& IFF_PROMISC
) {
2585 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2586 rctl
&= ~E1000_RCTL_VFE
;
2588 if (netdev
->flags
& IFF_ALLMULTI
) {
2589 rctl
|= E1000_RCTL_MPE
;
2590 rctl
&= ~E1000_RCTL_UPE
;
2592 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2594 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
2595 rctl
|= E1000_RCTL_VFE
;
2600 if (netdev
->mc_count
) {
2601 mta_list
= kmalloc(netdev
->mc_count
* 6, GFP_ATOMIC
);
2605 /* prepare a packed array of only addresses. */
2606 mc_ptr
= netdev
->mc_list
;
2608 for (i
= 0; i
< netdev
->mc_count
; i
++) {
2611 memcpy(mta_list
+ (i
*ETH_ALEN
), mc_ptr
->dmi_addr
,
2613 mc_ptr
= mc_ptr
->next
;
2616 e1000_update_mc_addr_list(hw
, mta_list
, i
, 1,
2617 mac
->rar_entry_count
);
2621 * if we're called from probe, we might not have
2622 * anything to do here, so clear out the list
2624 e1000_update_mc_addr_list(hw
, NULL
, 0, 1, mac
->rar_entry_count
);
2629 * e1000_configure - configure the hardware for Rx and Tx
2630 * @adapter: private board structure
2632 static void e1000_configure(struct e1000_adapter
*adapter
)
2634 e1000_set_multi(adapter
->netdev
);
2636 e1000_restore_vlan(adapter
);
2637 e1000_init_manageability(adapter
);
2639 e1000_configure_tx(adapter
);
2640 e1000_setup_rctl(adapter
);
2641 e1000_configure_rx(adapter
);
2642 adapter
->alloc_rx_buf(adapter
, e1000_desc_unused(adapter
->rx_ring
));
2646 * e1000e_power_up_phy - restore link in case the phy was powered down
2647 * @adapter: address of board private structure
2649 * The phy may be powered down to save power and turn off link when the
2650 * driver is unloaded and wake on lan is not enabled (among others)
2651 * *** this routine MUST be followed by a call to e1000e_reset ***
2653 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
2657 /* Just clear the power down bit to wake the phy back up */
2658 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
2660 * According to the manual, the phy will retain its
2661 * settings across a power-down/up cycle
2663 e1e_rphy(&adapter
->hw
, PHY_CONTROL
, &mii_reg
);
2664 mii_reg
&= ~MII_CR_POWER_DOWN
;
2665 e1e_wphy(&adapter
->hw
, PHY_CONTROL
, mii_reg
);
2668 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
2672 * e1000_power_down_phy - Power down the PHY
2674 * Power down the PHY so no link is implied when interface is down
2675 * The PHY cannot be powered down is management or WoL is active
2677 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
2679 struct e1000_hw
*hw
= &adapter
->hw
;
2682 /* WoL is enabled */
2686 /* non-copper PHY? */
2687 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
2690 /* reset is blocked because of a SoL/IDER session */
2691 if (e1000e_check_mng_mode(hw
) || e1000_check_reset_block(hw
))
2694 /* manageability (AMT) is enabled */
2695 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
2698 /* power down the PHY */
2699 e1e_rphy(hw
, PHY_CONTROL
, &mii_reg
);
2700 mii_reg
|= MII_CR_POWER_DOWN
;
2701 e1e_wphy(hw
, PHY_CONTROL
, mii_reg
);
2706 * e1000e_reset - bring the hardware into a known good state
2708 * This function boots the hardware and enables some settings that
2709 * require a configuration cycle of the hardware - those cannot be
2710 * set/changed during runtime. After reset the device needs to be
2711 * properly configured for Rx, Tx etc.
2713 void e1000e_reset(struct e1000_adapter
*adapter
)
2715 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
2716 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
2717 struct e1000_hw
*hw
= &adapter
->hw
;
2718 u32 tx_space
, min_tx_space
, min_rx_space
;
2719 u32 pba
= adapter
->pba
;
2722 /* reset Packet Buffer Allocation to default */
2725 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
2727 * To maintain wire speed transmits, the Tx FIFO should be
2728 * large enough to accommodate two full transmit packets,
2729 * rounded up to the next 1KB and expressed in KB. Likewise,
2730 * the Rx FIFO should be large enough to accommodate at least
2731 * one full receive packet and is similarly rounded up and
2735 /* upper 16 bits has Tx packet buffer allocation size in KB */
2736 tx_space
= pba
>> 16;
2737 /* lower 16 bits has Rx packet buffer allocation size in KB */
2740 * the Tx fifo also stores 16 bytes of information about the tx
2741 * but don't include ethernet FCS because hardware appends it
2743 min_tx_space
= (adapter
->max_frame_size
+
2744 sizeof(struct e1000_tx_desc
) -
2746 min_tx_space
= ALIGN(min_tx_space
, 1024);
2747 min_tx_space
>>= 10;
2748 /* software strips receive CRC, so leave room for it */
2749 min_rx_space
= adapter
->max_frame_size
;
2750 min_rx_space
= ALIGN(min_rx_space
, 1024);
2751 min_rx_space
>>= 10;
2754 * If current Tx allocation is less than the min Tx FIFO size,
2755 * and the min Tx FIFO size is less than the current Rx FIFO
2756 * allocation, take space away from current Rx allocation
2758 if ((tx_space
< min_tx_space
) &&
2759 ((min_tx_space
- tx_space
) < pba
)) {
2760 pba
-= min_tx_space
- tx_space
;
2763 * if short on Rx space, Rx wins and must trump tx
2764 * adjustment or use Early Receive if available
2766 if ((pba
< min_rx_space
) &&
2767 (!(adapter
->flags
& FLAG_HAS_ERT
)))
2768 /* ERT enabled in e1000_configure_rx */
2777 * flow control settings
2779 * The high water mark must be low enough to fit one full frame
2780 * (or the size used for early receive) above it in the Rx FIFO.
2781 * Set it to the lower of:
2782 * - 90% of the Rx FIFO size, and
2783 * - the full Rx FIFO size minus the early receive size (for parts
2784 * with ERT support assuming ERT set to E1000_ERT_2048), or
2785 * - the full Rx FIFO size minus one full frame
2787 if (hw
->mac
.type
== e1000_pchlan
) {
2789 * Workaround PCH LOM adapter hangs with certain network
2790 * loads. If hangs persist, try disabling Tx flow control.
2792 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
2793 fc
->high_water
= 0x3500;
2794 fc
->low_water
= 0x1500;
2796 fc
->high_water
= 0x5000;
2797 fc
->low_water
= 0x3000;
2800 if ((adapter
->flags
& FLAG_HAS_ERT
) &&
2801 (adapter
->netdev
->mtu
> ETH_DATA_LEN
))
2802 hwm
= min(((pba
<< 10) * 9 / 10),
2803 ((pba
<< 10) - (E1000_ERT_2048
<< 3)));
2805 hwm
= min(((pba
<< 10) * 9 / 10),
2806 ((pba
<< 10) - adapter
->max_frame_size
));
2808 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
2809 fc
->low_water
= fc
->high_water
- 8;
2812 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
2813 fc
->pause_time
= 0xFFFF;
2815 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
2817 fc
->current_mode
= fc
->requested_mode
;
2819 /* Allow time for pending master requests to run */
2820 mac
->ops
.reset_hw(hw
);
2823 * For parts with AMT enabled, let the firmware know
2824 * that the network interface is in control
2826 if (adapter
->flags
& FLAG_HAS_AMT
)
2827 e1000_get_hw_control(adapter
);
2830 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
)
2831 e1e_wphy(&adapter
->hw
, BM_WUC
, 0);
2833 if (mac
->ops
.init_hw(hw
))
2834 e_err("Hardware Error\n");
2836 /* additional part of the flow-control workaround above */
2837 if (hw
->mac
.type
== e1000_pchlan
)
2838 ew32(FCRTV_PCH
, 0x1000);
2840 e1000_update_mng_vlan(adapter
);
2842 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2843 ew32(VET
, ETH_P_8021Q
);
2845 e1000e_reset_adaptive(hw
);
2846 e1000_get_phy_info(hw
);
2848 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
2849 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
2852 * speed up time to link by disabling smart power down, ignore
2853 * the return value of this function because there is nothing
2854 * different we would do if it failed
2856 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
2857 phy_data
&= ~IGP02E1000_PM_SPD
;
2858 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
2862 int e1000e_up(struct e1000_adapter
*adapter
)
2864 struct e1000_hw
*hw
= &adapter
->hw
;
2866 /* hardware has been reset, we need to reload some things */
2867 e1000_configure(adapter
);
2869 clear_bit(__E1000_DOWN
, &adapter
->state
);
2871 napi_enable(&adapter
->napi
);
2872 if (adapter
->msix_entries
)
2873 e1000_configure_msix(adapter
);
2874 e1000_irq_enable(adapter
);
2876 netif_wake_queue(adapter
->netdev
);
2878 /* fire a link change interrupt to start the watchdog */
2879 ew32(ICS
, E1000_ICS_LSC
);
2883 void e1000e_down(struct e1000_adapter
*adapter
)
2885 struct net_device
*netdev
= adapter
->netdev
;
2886 struct e1000_hw
*hw
= &adapter
->hw
;
2890 * signal that we're down so the interrupt handler does not
2891 * reschedule our watchdog timer
2893 set_bit(__E1000_DOWN
, &adapter
->state
);
2895 /* disable receives in the hardware */
2897 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
2898 /* flush and sleep below */
2900 netif_stop_queue(netdev
);
2902 /* disable transmits in the hardware */
2904 tctl
&= ~E1000_TCTL_EN
;
2906 /* flush both disables and wait for them to finish */
2910 napi_disable(&adapter
->napi
);
2911 e1000_irq_disable(adapter
);
2913 del_timer_sync(&adapter
->watchdog_timer
);
2914 del_timer_sync(&adapter
->phy_info_timer
);
2916 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
2917 netif_carrier_off(netdev
);
2918 adapter
->link_speed
= 0;
2919 adapter
->link_duplex
= 0;
2921 if (!pci_channel_offline(adapter
->pdev
))
2922 e1000e_reset(adapter
);
2923 e1000_clean_tx_ring(adapter
);
2924 e1000_clean_rx_ring(adapter
);
2927 * TODO: for power management, we could drop the link and
2928 * pci_disable_device here.
2932 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
2935 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
2937 e1000e_down(adapter
);
2939 clear_bit(__E1000_RESETTING
, &adapter
->state
);
2943 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2944 * @adapter: board private structure to initialize
2946 * e1000_sw_init initializes the Adapter private data structure.
2947 * Fields are initialized based on PCI device information and
2948 * OS network device settings (MTU size).
2950 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
2952 struct net_device
*netdev
= adapter
->netdev
;
2954 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
2955 adapter
->rx_ps_bsize0
= 128;
2956 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2957 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
2959 e1000e_set_interrupt_capability(adapter
);
2961 if (e1000_alloc_queues(adapter
))
2964 /* Explicitly disable IRQ since the NIC can be in any state. */
2965 e1000_irq_disable(adapter
);
2967 set_bit(__E1000_DOWN
, &adapter
->state
);
2972 * e1000_intr_msi_test - Interrupt Handler
2973 * @irq: interrupt number
2974 * @data: pointer to a network interface device structure
2976 static irqreturn_t
e1000_intr_msi_test(int irq
, void *data
)
2978 struct net_device
*netdev
= data
;
2979 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2980 struct e1000_hw
*hw
= &adapter
->hw
;
2981 u32 icr
= er32(ICR
);
2983 e_dbg("%s: icr is %08X\n", netdev
->name
, icr
);
2984 if (icr
& E1000_ICR_RXSEQ
) {
2985 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
2993 * e1000_test_msi_interrupt - Returns 0 for successful test
2994 * @adapter: board private struct
2996 * code flow taken from tg3.c
2998 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
3000 struct net_device
*netdev
= adapter
->netdev
;
3001 struct e1000_hw
*hw
= &adapter
->hw
;
3004 /* poll_enable hasn't been called yet, so don't need disable */
3005 /* clear any pending events */
3008 /* free the real vector and request a test handler */
3009 e1000_free_irq(adapter
);
3010 e1000e_reset_interrupt_capability(adapter
);
3012 /* Assume that the test fails, if it succeeds then the test
3013 * MSI irq handler will unset this flag */
3014 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
3016 err
= pci_enable_msi(adapter
->pdev
);
3018 goto msi_test_failed
;
3020 err
= request_irq(adapter
->pdev
->irq
, &e1000_intr_msi_test
, 0,
3021 netdev
->name
, netdev
);
3023 pci_disable_msi(adapter
->pdev
);
3024 goto msi_test_failed
;
3029 e1000_irq_enable(adapter
);
3031 /* fire an unusual interrupt on the test handler */
3032 ew32(ICS
, E1000_ICS_RXSEQ
);
3036 e1000_irq_disable(adapter
);
3040 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
3041 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
3043 e_info("MSI interrupt test failed!\n");
3046 free_irq(adapter
->pdev
->irq
, netdev
);
3047 pci_disable_msi(adapter
->pdev
);
3050 goto msi_test_failed
;
3052 /* okay so the test worked, restore settings */
3053 e_dbg("%s: MSI interrupt test succeeded!\n", netdev
->name
);
3055 e1000e_set_interrupt_capability(adapter
);
3056 e1000_request_irq(adapter
);
3061 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3062 * @adapter: board private struct
3064 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3066 static int e1000_test_msi(struct e1000_adapter
*adapter
)
3071 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
3074 /* disable SERR in case the MSI write causes a master abort */
3075 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3076 if (pci_cmd
& PCI_COMMAND_SERR
)
3077 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
3078 pci_cmd
& ~PCI_COMMAND_SERR
);
3080 err
= e1000_test_msi_interrupt(adapter
);
3082 /* re-enable SERR */
3083 if (pci_cmd
& PCI_COMMAND_SERR
) {
3084 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3085 pci_cmd
|= PCI_COMMAND_SERR
;
3086 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
3093 /* EIO means MSI test failed */
3097 /* back to INTx mode */
3098 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3100 e1000_free_irq(adapter
);
3102 err
= e1000_request_irq(adapter
);
3108 * e1000_open - Called when a network interface is made active
3109 * @netdev: network interface device structure
3111 * Returns 0 on success, negative value on failure
3113 * The open entry point is called when a network interface is made
3114 * active by the system (IFF_UP). At this point all resources needed
3115 * for transmit and receive operations are allocated, the interrupt
3116 * handler is registered with the OS, the watchdog timer is started,
3117 * and the stack is notified that the interface is ready.
3119 static int e1000_open(struct net_device
*netdev
)
3121 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3122 struct e1000_hw
*hw
= &adapter
->hw
;
3125 /* disallow open during test */
3126 if (test_bit(__E1000_TESTING
, &adapter
->state
))
3129 netif_carrier_off(netdev
);
3131 /* allocate transmit descriptors */
3132 err
= e1000e_setup_tx_resources(adapter
);
3136 /* allocate receive descriptors */
3137 err
= e1000e_setup_rx_resources(adapter
);
3141 e1000e_power_up_phy(adapter
);
3143 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
3144 if ((adapter
->hw
.mng_cookie
.status
&
3145 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
3146 e1000_update_mng_vlan(adapter
);
3149 * If AMT is enabled, let the firmware know that the network
3150 * interface is now open
3152 if (adapter
->flags
& FLAG_HAS_AMT
)
3153 e1000_get_hw_control(adapter
);
3156 * before we allocate an interrupt, we must be ready to handle it.
3157 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3158 * as soon as we call pci_request_irq, so we have to setup our
3159 * clean_rx handler before we do so.
3161 e1000_configure(adapter
);
3163 err
= e1000_request_irq(adapter
);
3168 * Work around PCIe errata with MSI interrupts causing some chipsets to
3169 * ignore e1000e MSI messages, which means we need to test our MSI
3172 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
3173 err
= e1000_test_msi(adapter
);
3175 e_err("Interrupt allocation failed\n");
3180 /* From here on the code is the same as e1000e_up() */
3181 clear_bit(__E1000_DOWN
, &adapter
->state
);
3183 napi_enable(&adapter
->napi
);
3185 e1000_irq_enable(adapter
);
3187 netif_start_queue(netdev
);
3189 /* fire a link status change interrupt to start the watchdog */
3190 ew32(ICS
, E1000_ICS_LSC
);
3195 e1000_release_hw_control(adapter
);
3196 e1000_power_down_phy(adapter
);
3197 e1000e_free_rx_resources(adapter
);
3199 e1000e_free_tx_resources(adapter
);
3201 e1000e_reset(adapter
);
3207 * e1000_close - Disables a network interface
3208 * @netdev: network interface device structure
3210 * Returns 0, this is not allowed to fail
3212 * The close entry point is called when an interface is de-activated
3213 * by the OS. The hardware is still under the drivers control, but
3214 * needs to be disabled. A global MAC reset is issued to stop the
3215 * hardware, and all transmit and receive resources are freed.
3217 static int e1000_close(struct net_device
*netdev
)
3219 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3221 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
3222 e1000e_down(adapter
);
3223 e1000_power_down_phy(adapter
);
3224 e1000_free_irq(adapter
);
3226 e1000e_free_tx_resources(adapter
);
3227 e1000e_free_rx_resources(adapter
);
3230 * kill manageability vlan ID if supported, but not if a vlan with
3231 * the same ID is registered on the host OS (let 8021q kill it)
3233 if ((adapter
->hw
.mng_cookie
.status
&
3234 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
3236 vlan_group_get_device(adapter
->vlgrp
, adapter
->mng_vlan_id
)))
3237 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
3240 * If AMT is enabled, let the firmware know that the network
3241 * interface is now closed
3243 if (adapter
->flags
& FLAG_HAS_AMT
)
3244 e1000_release_hw_control(adapter
);
3249 * e1000_set_mac - Change the Ethernet Address of the NIC
3250 * @netdev: network interface device structure
3251 * @p: pointer to an address structure
3253 * Returns 0 on success, negative on failure
3255 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
3257 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3258 struct sockaddr
*addr
= p
;
3260 if (!is_valid_ether_addr(addr
->sa_data
))
3261 return -EADDRNOTAVAIL
;
3263 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
3264 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
3266 e1000e_rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
3268 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
3269 /* activate the work around */
3270 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
3273 * Hold a copy of the LAA in RAR[14] This is done so that
3274 * between the time RAR[0] gets clobbered and the time it
3275 * gets fixed (in e1000_watchdog), the actual LAA is in one
3276 * of the RARs and no incoming packets directed to this port
3277 * are dropped. Eventually the LAA will be in RAR[0] and
3280 e1000e_rar_set(&adapter
->hw
,
3281 adapter
->hw
.mac
.addr
,
3282 adapter
->hw
.mac
.rar_entry_count
- 1);
3289 * e1000e_update_phy_task - work thread to update phy
3290 * @work: pointer to our work struct
3292 * this worker thread exists because we must acquire a
3293 * semaphore to read the phy, which we could msleep while
3294 * waiting for it, and we can't msleep in a timer.
3296 static void e1000e_update_phy_task(struct work_struct
*work
)
3298 struct e1000_adapter
*adapter
= container_of(work
,
3299 struct e1000_adapter
, update_phy_task
);
3300 e1000_get_phy_info(&adapter
->hw
);
3304 * Need to wait a few seconds after link up to get diagnostic information from
3307 static void e1000_update_phy_info(unsigned long data
)
3309 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
3310 schedule_work(&adapter
->update_phy_task
);
3314 * e1000e_update_stats - Update the board statistics counters
3315 * @adapter: board private structure
3317 void e1000e_update_stats(struct e1000_adapter
*adapter
)
3319 struct e1000_hw
*hw
= &adapter
->hw
;
3320 struct pci_dev
*pdev
= adapter
->pdev
;
3324 * Prevent stats update while adapter is being reset, or if the pci
3325 * connection is down.
3327 if (adapter
->link_speed
== 0)
3329 if (pci_channel_offline(pdev
))
3332 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3333 adapter
->stats
.gprc
+= er32(GPRC
);
3334 adapter
->stats
.gorc
+= er32(GORCL
);
3335 er32(GORCH
); /* Clear gorc */
3336 adapter
->stats
.bprc
+= er32(BPRC
);
3337 adapter
->stats
.mprc
+= er32(MPRC
);
3338 adapter
->stats
.roc
+= er32(ROC
);
3340 adapter
->stats
.mpc
+= er32(MPC
);
3341 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3342 (hw
->phy
.type
== e1000_phy_82577
)) {
3343 e1e_rphy(hw
, HV_SCC_UPPER
, &phy_data
);
3344 e1e_rphy(hw
, HV_SCC_LOWER
, &phy_data
);
3345 adapter
->stats
.scc
+= phy_data
;
3347 e1e_rphy(hw
, HV_ECOL_UPPER
, &phy_data
);
3348 e1e_rphy(hw
, HV_ECOL_LOWER
, &phy_data
);
3349 adapter
->stats
.ecol
+= phy_data
;
3351 e1e_rphy(hw
, HV_MCC_UPPER
, &phy_data
);
3352 e1e_rphy(hw
, HV_MCC_LOWER
, &phy_data
);
3353 adapter
->stats
.mcc
+= phy_data
;
3355 e1e_rphy(hw
, HV_LATECOL_UPPER
, &phy_data
);
3356 e1e_rphy(hw
, HV_LATECOL_LOWER
, &phy_data
);
3357 adapter
->stats
.latecol
+= phy_data
;
3359 e1e_rphy(hw
, HV_DC_UPPER
, &phy_data
);
3360 e1e_rphy(hw
, HV_DC_LOWER
, &phy_data
);
3361 adapter
->stats
.dc
+= phy_data
;
3363 adapter
->stats
.scc
+= er32(SCC
);
3364 adapter
->stats
.ecol
+= er32(ECOL
);
3365 adapter
->stats
.mcc
+= er32(MCC
);
3366 adapter
->stats
.latecol
+= er32(LATECOL
);
3367 adapter
->stats
.dc
+= er32(DC
);
3369 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3370 adapter
->stats
.xontxc
+= er32(XONTXC
);
3371 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3372 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3373 adapter
->stats
.gptc
+= er32(GPTC
);
3374 adapter
->stats
.gotc
+= er32(GOTCL
);
3375 er32(GOTCH
); /* Clear gotc */
3376 adapter
->stats
.rnbc
+= er32(RNBC
);
3377 adapter
->stats
.ruc
+= er32(RUC
);
3379 adapter
->stats
.mptc
+= er32(MPTC
);
3380 adapter
->stats
.bptc
+= er32(BPTC
);
3382 /* used for adaptive IFS */
3384 hw
->mac
.tx_packet_delta
= er32(TPT
);
3385 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
3386 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3387 (hw
->phy
.type
== e1000_phy_82577
)) {
3388 e1e_rphy(hw
, HV_COLC_UPPER
, &phy_data
);
3389 e1e_rphy(hw
, HV_COLC_LOWER
, &phy_data
);
3390 hw
->mac
.collision_delta
= phy_data
;
3392 hw
->mac
.collision_delta
= er32(COLC
);
3394 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
3396 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3397 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3398 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3399 (hw
->phy
.type
== e1000_phy_82577
)) {
3400 e1e_rphy(hw
, HV_TNCRS_UPPER
, &phy_data
);
3401 e1e_rphy(hw
, HV_TNCRS_LOWER
, &phy_data
);
3402 adapter
->stats
.tncrs
+= phy_data
;
3404 if ((hw
->mac
.type
!= e1000_82574
) &&
3405 (hw
->mac
.type
!= e1000_82583
))
3406 adapter
->stats
.tncrs
+= er32(TNCRS
);
3408 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3409 adapter
->stats
.tsctc
+= er32(TSCTC
);
3410 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3412 /* Fill out the OS statistics structure */
3413 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
3414 adapter
->net_stats
.collisions
= adapter
->stats
.colc
;
3419 * RLEC on some newer hardware can be incorrect so build
3420 * our own version based on RUC and ROC
3422 adapter
->net_stats
.rx_errors
= adapter
->stats
.rxerrc
+
3423 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3424 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3425 adapter
->stats
.cexterr
;
3426 adapter
->net_stats
.rx_length_errors
= adapter
->stats
.ruc
+
3428 adapter
->net_stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3429 adapter
->net_stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3430 adapter
->net_stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3433 adapter
->net_stats
.tx_errors
= adapter
->stats
.ecol
+
3434 adapter
->stats
.latecol
;
3435 adapter
->net_stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3436 adapter
->net_stats
.tx_window_errors
= adapter
->stats
.latecol
;
3437 adapter
->net_stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3439 /* Tx Dropped needs to be maintained elsewhere */
3441 /* Management Stats */
3442 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3443 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3444 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3448 * e1000_phy_read_status - Update the PHY register status snapshot
3449 * @adapter: board private structure
3451 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
3453 struct e1000_hw
*hw
= &adapter
->hw
;
3454 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
3457 if ((er32(STATUS
) & E1000_STATUS_LU
) &&
3458 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
3459 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy
->bmcr
);
3460 ret_val
|= e1e_rphy(hw
, PHY_STATUS
, &phy
->bmsr
);
3461 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &phy
->advertise
);
3462 ret_val
|= e1e_rphy(hw
, PHY_LP_ABILITY
, &phy
->lpa
);
3463 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_EXP
, &phy
->expansion
);
3464 ret_val
|= e1e_rphy(hw
, PHY_1000T_CTRL
, &phy
->ctrl1000
);
3465 ret_val
|= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy
->stat1000
);
3466 ret_val
|= e1e_rphy(hw
, PHY_EXT_STATUS
, &phy
->estatus
);
3468 e_warn("Error reading PHY register\n");
3471 * Do not read PHY registers if link is not up
3472 * Set values to typical power-on defaults
3474 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
3475 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
3476 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
3478 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
3479 ADVERTISE_ALL
| ADVERTISE_CSMA
);
3481 phy
->expansion
= EXPANSION_ENABLENPAGE
;
3482 phy
->ctrl1000
= ADVERTISE_1000FULL
;
3484 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
3488 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
3490 struct e1000_hw
*hw
= &adapter
->hw
;
3491 u32 ctrl
= er32(CTRL
);
3493 /* Link status message must follow this format for user tools */
3494 printk(KERN_INFO
"e1000e: %s NIC Link is Up %d Mbps %s, "
3495 "Flow Control: %s\n",
3496 adapter
->netdev
->name
,
3497 adapter
->link_speed
,
3498 (adapter
->link_duplex
== FULL_DUPLEX
) ?
3499 "Full Duplex" : "Half Duplex",
3500 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
)) ?
3502 ((ctrl
& E1000_CTRL_RFCE
) ? "RX" :
3503 ((ctrl
& E1000_CTRL_TFCE
) ? "TX" : "None" )));
3506 bool e1000_has_link(struct e1000_adapter
*adapter
)
3508 struct e1000_hw
*hw
= &adapter
->hw
;
3509 bool link_active
= 0;
3513 * get_link_status is set on LSC (link status) interrupt or
3514 * Rx sequence error interrupt. get_link_status will stay
3515 * false until the check_for_link establishes link
3516 * for copper adapters ONLY
3518 switch (hw
->phy
.media_type
) {
3519 case e1000_media_type_copper
:
3520 if (hw
->mac
.get_link_status
) {
3521 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3522 link_active
= !hw
->mac
.get_link_status
;
3527 case e1000_media_type_fiber
:
3528 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3529 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
3531 case e1000_media_type_internal_serdes
:
3532 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
3533 link_active
= adapter
->hw
.mac
.serdes_has_link
;
3536 case e1000_media_type_unknown
:
3540 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
3541 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
3542 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3543 e_info("Gigabit has been disabled, downgrading speed\n");
3549 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
3551 /* make sure the receive unit is started */
3552 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
3553 (adapter
->flags
& FLAG_RX_RESTART_NOW
)) {
3554 struct e1000_hw
*hw
= &adapter
->hw
;
3555 u32 rctl
= er32(RCTL
);
3556 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
3557 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
3562 * e1000_watchdog - Timer Call-back
3563 * @data: pointer to adapter cast into an unsigned long
3565 static void e1000_watchdog(unsigned long data
)
3567 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
3569 /* Do the rest outside of interrupt context */
3570 schedule_work(&adapter
->watchdog_task
);
3572 /* TODO: make this use queue_delayed_work() */
3575 static void e1000_watchdog_task(struct work_struct
*work
)
3577 struct e1000_adapter
*adapter
= container_of(work
,
3578 struct e1000_adapter
, watchdog_task
);
3579 struct net_device
*netdev
= adapter
->netdev
;
3580 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3581 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
3582 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3583 struct e1000_hw
*hw
= &adapter
->hw
;
3587 link
= e1000_has_link(adapter
);
3588 if ((netif_carrier_ok(netdev
)) && link
) {
3589 e1000e_enable_receives(adapter
);
3593 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
3594 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
3595 e1000_update_mng_vlan(adapter
);
3598 if (!netif_carrier_ok(netdev
)) {
3600 /* update snapshot of PHY registers on LSC */
3601 e1000_phy_read_status(adapter
);
3602 mac
->ops
.get_link_up_info(&adapter
->hw
,
3603 &adapter
->link_speed
,
3604 &adapter
->link_duplex
);
3605 e1000_print_link_info(adapter
);
3607 * On supported PHYs, check for duplex mismatch only
3608 * if link has autonegotiated at 10/100 half
3610 if ((hw
->phy
.type
== e1000_phy_igp_3
||
3611 hw
->phy
.type
== e1000_phy_bm
) &&
3612 (hw
->mac
.autoneg
== true) &&
3613 (adapter
->link_speed
== SPEED_10
||
3614 adapter
->link_speed
== SPEED_100
) &&
3615 (adapter
->link_duplex
== HALF_DUPLEX
)) {
3618 e1e_rphy(hw
, PHY_AUTONEG_EXP
, &autoneg_exp
);
3620 if (!(autoneg_exp
& NWAY_ER_LP_NWAY_CAPS
))
3621 e_info("Autonegotiated half duplex but"
3622 " link partner cannot autoneg. "
3623 " Try forcing full duplex if "
3624 "link gets many collisions.\n");
3628 * tweak tx_queue_len according to speed/duplex
3629 * and adjust the timeout factor
3631 netdev
->tx_queue_len
= adapter
->tx_queue_len
;
3632 adapter
->tx_timeout_factor
= 1;
3633 switch (adapter
->link_speed
) {
3636 netdev
->tx_queue_len
= 10;
3637 adapter
->tx_timeout_factor
= 16;
3641 netdev
->tx_queue_len
= 100;
3642 adapter
->tx_timeout_factor
= 10;
3647 * workaround: re-program speed mode bit after
3650 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
3653 tarc0
= er32(TARC(0));
3654 tarc0
&= ~SPEED_MODE_BIT
;
3655 ew32(TARC(0), tarc0
);
3659 * disable TSO for pcie and 10/100 speeds, to avoid
3660 * some hardware issues
3662 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
3663 switch (adapter
->link_speed
) {
3666 e_info("10/100 speed: disabling TSO\n");
3667 netdev
->features
&= ~NETIF_F_TSO
;
3668 netdev
->features
&= ~NETIF_F_TSO6
;
3671 netdev
->features
|= NETIF_F_TSO
;
3672 netdev
->features
|= NETIF_F_TSO6
;
3681 * enable transmits in the hardware, need to do this
3682 * after setting TARC(0)
3685 tctl
|= E1000_TCTL_EN
;
3689 * Perform any post-link-up configuration before
3690 * reporting link up.
3692 if (phy
->ops
.cfg_on_link_up
)
3693 phy
->ops
.cfg_on_link_up(hw
);
3695 netif_carrier_on(netdev
);
3697 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3698 mod_timer(&adapter
->phy_info_timer
,
3699 round_jiffies(jiffies
+ 2 * HZ
));
3702 if (netif_carrier_ok(netdev
)) {
3703 adapter
->link_speed
= 0;
3704 adapter
->link_duplex
= 0;
3705 /* Link status message must follow this format */
3706 printk(KERN_INFO
"e1000e: %s NIC Link is Down\n",
3707 adapter
->netdev
->name
);
3708 netif_carrier_off(netdev
);
3709 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3710 mod_timer(&adapter
->phy_info_timer
,
3711 round_jiffies(jiffies
+ 2 * HZ
));
3713 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
3714 schedule_work(&adapter
->reset_task
);
3719 e1000e_update_stats(adapter
);
3721 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
3722 adapter
->tpt_old
= adapter
->stats
.tpt
;
3723 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
3724 adapter
->colc_old
= adapter
->stats
.colc
;
3726 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
3727 adapter
->gorc_old
= adapter
->stats
.gorc
;
3728 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
3729 adapter
->gotc_old
= adapter
->stats
.gotc
;
3731 e1000e_update_adaptive(&adapter
->hw
);
3733 if (!netif_carrier_ok(netdev
)) {
3734 tx_pending
= (e1000_desc_unused(tx_ring
) + 1 <
3738 * We've lost link, so the controller stops DMA,
3739 * but we've got queued Tx work that's never going
3740 * to get done, so reset controller to flush Tx.
3741 * (Do the reset outside of interrupt context).
3743 adapter
->tx_timeout_count
++;
3744 schedule_work(&adapter
->reset_task
);
3745 /* return immediately since reset is imminent */
3750 /* Cause software interrupt to ensure Rx ring is cleaned */
3751 if (adapter
->msix_entries
)
3752 ew32(ICS
, adapter
->rx_ring
->ims_val
);
3754 ew32(ICS
, E1000_ICS_RXDMT0
);
3756 /* Force detection of hung controller every watchdog period */
3757 adapter
->detect_tx_hung
= 1;
3760 * With 82571 controllers, LAA may be overwritten due to controller
3761 * reset from the other port. Set the appropriate LAA in RAR[0]
3763 if (e1000e_get_laa_state_82571(hw
))
3764 e1000e_rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
3766 /* Reset the timer */
3767 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
3768 mod_timer(&adapter
->watchdog_timer
,
3769 round_jiffies(jiffies
+ 2 * HZ
));
3772 #define E1000_TX_FLAGS_CSUM 0x00000001
3773 #define E1000_TX_FLAGS_VLAN 0x00000002
3774 #define E1000_TX_FLAGS_TSO 0x00000004
3775 #define E1000_TX_FLAGS_IPV4 0x00000008
3776 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3777 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3779 static int e1000_tso(struct e1000_adapter
*adapter
,
3780 struct sk_buff
*skb
)
3782 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3783 struct e1000_context_desc
*context_desc
;
3784 struct e1000_buffer
*buffer_info
;
3787 u16 ipcse
= 0, tucse
, mss
;
3788 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
3791 if (skb_is_gso(skb
)) {
3792 if (skb_header_cloned(skb
)) {
3793 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
3798 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3799 mss
= skb_shinfo(skb
)->gso_size
;
3800 if (skb
->protocol
== htons(ETH_P_IP
)) {
3801 struct iphdr
*iph
= ip_hdr(skb
);
3804 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
3808 cmd_length
= E1000_TXD_CMD_IP
;
3809 ipcse
= skb_transport_offset(skb
) - 1;
3810 } else if (skb_shinfo(skb
)->gso_type
== SKB_GSO_TCPV6
) {
3811 ipv6_hdr(skb
)->payload_len
= 0;
3812 tcp_hdr(skb
)->check
=
3813 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
3814 &ipv6_hdr(skb
)->daddr
,
3818 ipcss
= skb_network_offset(skb
);
3819 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
3820 tucss
= skb_transport_offset(skb
);
3821 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
3824 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
3825 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
3827 i
= tx_ring
->next_to_use
;
3828 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
3829 buffer_info
= &tx_ring
->buffer_info
[i
];
3831 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
3832 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
3833 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
3834 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
3835 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
3836 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
3837 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
3838 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
3839 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
3841 buffer_info
->time_stamp
= jiffies
;
3842 buffer_info
->next_to_watch
= i
;
3845 if (i
== tx_ring
->count
)
3847 tx_ring
->next_to_use
= i
;
3855 static bool e1000_tx_csum(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
3857 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3858 struct e1000_context_desc
*context_desc
;
3859 struct e1000_buffer
*buffer_info
;
3862 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
3865 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
3868 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
))
3869 protocol
= vlan_eth_hdr(skb
)->h_vlan_encapsulated_proto
;
3871 protocol
= skb
->protocol
;
3874 case cpu_to_be16(ETH_P_IP
):
3875 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
3876 cmd_len
|= E1000_TXD_CMD_TCP
;
3878 case cpu_to_be16(ETH_P_IPV6
):
3879 /* XXX not handling all IPV6 headers */
3880 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
3881 cmd_len
|= E1000_TXD_CMD_TCP
;
3884 if (unlikely(net_ratelimit()))
3885 e_warn("checksum_partial proto=%x!\n",
3886 be16_to_cpu(protocol
));
3890 css
= skb_transport_offset(skb
);
3892 i
= tx_ring
->next_to_use
;
3893 buffer_info
= &tx_ring
->buffer_info
[i
];
3894 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
3896 context_desc
->lower_setup
.ip_config
= 0;
3897 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
3898 context_desc
->upper_setup
.tcp_fields
.tucso
=
3899 css
+ skb
->csum_offset
;
3900 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
3901 context_desc
->tcp_seg_setup
.data
= 0;
3902 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
3904 buffer_info
->time_stamp
= jiffies
;
3905 buffer_info
->next_to_watch
= i
;
3908 if (i
== tx_ring
->count
)
3910 tx_ring
->next_to_use
= i
;
3915 #define E1000_MAX_PER_TXD 8192
3916 #define E1000_MAX_TXD_PWR 12
3918 static int e1000_tx_map(struct e1000_adapter
*adapter
,
3919 struct sk_buff
*skb
, unsigned int first
,
3920 unsigned int max_per_txd
, unsigned int nr_frags
,
3923 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3924 struct e1000_buffer
*buffer_info
;
3925 unsigned int len
= skb_headlen(skb
);
3926 unsigned int offset
, size
, count
= 0, i
;
3930 i
= tx_ring
->next_to_use
;
3932 if (skb_dma_map(&adapter
->pdev
->dev
, skb
, DMA_TO_DEVICE
)) {
3933 dev_err(&adapter
->pdev
->dev
, "TX DMA map failed\n");
3934 adapter
->tx_dma_failed
++;
3938 map
= skb_shinfo(skb
)->dma_maps
;
3942 buffer_info
= &tx_ring
->buffer_info
[i
];
3943 size
= min(len
, max_per_txd
);
3945 buffer_info
->length
= size
;
3946 buffer_info
->time_stamp
= jiffies
;
3947 buffer_info
->next_to_watch
= i
;
3948 buffer_info
->dma
= skb_shinfo(skb
)->dma_head
+ offset
;
3956 if (i
== tx_ring
->count
)
3961 for (f
= 0; f
< nr_frags
; f
++) {
3962 struct skb_frag_struct
*frag
;
3964 frag
= &skb_shinfo(skb
)->frags
[f
];
3970 if (i
== tx_ring
->count
)
3973 buffer_info
= &tx_ring
->buffer_info
[i
];
3974 size
= min(len
, max_per_txd
);
3976 buffer_info
->length
= size
;
3977 buffer_info
->time_stamp
= jiffies
;
3978 buffer_info
->next_to_watch
= i
;
3979 buffer_info
->dma
= map
[f
] + offset
;
3987 tx_ring
->buffer_info
[i
].skb
= skb
;
3988 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
3993 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
3994 int tx_flags
, int count
)
3996 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
3997 struct e1000_tx_desc
*tx_desc
= NULL
;
3998 struct e1000_buffer
*buffer_info
;
3999 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
4002 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
4003 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
4005 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
4007 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
4008 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
4011 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
4012 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
4013 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
4016 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
4017 txd_lower
|= E1000_TXD_CMD_VLE
;
4018 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
4021 i
= tx_ring
->next_to_use
;
4024 buffer_info
= &tx_ring
->buffer_info
[i
];
4025 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
4026 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4027 tx_desc
->lower
.data
=
4028 cpu_to_le32(txd_lower
| buffer_info
->length
);
4029 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
4032 if (i
== tx_ring
->count
)
4036 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
4039 * Force memory writes to complete before letting h/w
4040 * know there are new descriptors to fetch. (Only
4041 * applicable for weak-ordered memory model archs,
4046 tx_ring
->next_to_use
= i
;
4047 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
4049 * we need this if more than one processor can write to our tail
4050 * at a time, it synchronizes IO on IA64/Altix systems
4055 #define MINIMUM_DHCP_PACKET_SIZE 282
4056 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
4057 struct sk_buff
*skb
)
4059 struct e1000_hw
*hw
= &adapter
->hw
;
4062 if (vlan_tx_tag_present(skb
)) {
4063 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
)
4064 && (adapter
->hw
.mng_cookie
.status
&
4065 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
4069 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
4072 if (((struct ethhdr
*) skb
->data
)->h_proto
!= htons(ETH_P_IP
))
4076 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+14);
4079 if (ip
->protocol
!= IPPROTO_UDP
)
4082 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
4083 if (ntohs(udp
->dest
) != 67)
4086 offset
= (u8
*)udp
+ 8 - skb
->data
;
4087 length
= skb
->len
- offset
;
4088 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
4094 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4096 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4098 netif_stop_queue(netdev
);
4100 * Herbert's original patch had:
4101 * smp_mb__after_netif_stop_queue();
4102 * but since that doesn't exist yet, just open code it.
4107 * We need to check again in a case another CPU has just
4108 * made room available.
4110 if (e1000_desc_unused(adapter
->tx_ring
) < size
)
4114 netif_start_queue(netdev
);
4115 ++adapter
->restart_queue
;
4119 static int e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4121 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4123 if (e1000_desc_unused(adapter
->tx_ring
) >= size
)
4125 return __e1000_maybe_stop_tx(netdev
, size
);
4128 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4129 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
4130 struct net_device
*netdev
)
4132 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4133 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4135 unsigned int max_per_txd
= E1000_MAX_PER_TXD
;
4136 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
4137 unsigned int tx_flags
= 0;
4138 unsigned int len
= skb
->len
- skb
->data_len
;
4139 unsigned int nr_frags
;
4145 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
4146 dev_kfree_skb_any(skb
);
4147 return NETDEV_TX_OK
;
4150 if (skb
->len
<= 0) {
4151 dev_kfree_skb_any(skb
);
4152 return NETDEV_TX_OK
;
4155 mss
= skb_shinfo(skb
)->gso_size
;
4157 * The controller does a simple calculation to
4158 * make sure there is enough room in the FIFO before
4159 * initiating the DMA for each buffer. The calc is:
4160 * 4 = ceil(buffer len/mss). To make sure we don't
4161 * overrun the FIFO, adjust the max buffer len if mss
4166 max_per_txd
= min(mss
<< 2, max_per_txd
);
4167 max_txd_pwr
= fls(max_per_txd
) - 1;
4170 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4171 * points to just header, pull a few bytes of payload from
4172 * frags into skb->data
4174 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
4176 * we do this workaround for ES2LAN, but it is un-necessary,
4177 * avoiding it could save a lot of cycles
4179 if (skb
->data_len
&& (hdr_len
== len
)) {
4180 unsigned int pull_size
;
4182 pull_size
= min((unsigned int)4, skb
->data_len
);
4183 if (!__pskb_pull_tail(skb
, pull_size
)) {
4184 e_err("__pskb_pull_tail failed.\n");
4185 dev_kfree_skb_any(skb
);
4186 return NETDEV_TX_OK
;
4188 len
= skb
->len
- skb
->data_len
;
4192 /* reserve a descriptor for the offload context */
4193 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
4197 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
4199 nr_frags
= skb_shinfo(skb
)->nr_frags
;
4200 for (f
= 0; f
< nr_frags
; f
++)
4201 count
+= TXD_USE_COUNT(skb_shinfo(skb
)->frags
[f
].size
,
4204 if (adapter
->hw
.mac
.tx_pkt_filtering
)
4205 e1000_transfer_dhcp_info(adapter
, skb
);
4208 * need: count + 2 desc gap to keep tail from touching
4209 * head, otherwise try next time
4211 if (e1000_maybe_stop_tx(netdev
, count
+ 2))
4212 return NETDEV_TX_BUSY
;
4214 if (adapter
->vlgrp
&& vlan_tx_tag_present(skb
)) {
4215 tx_flags
|= E1000_TX_FLAGS_VLAN
;
4216 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
4219 first
= tx_ring
->next_to_use
;
4221 tso
= e1000_tso(adapter
, skb
);
4223 dev_kfree_skb_any(skb
);
4224 return NETDEV_TX_OK
;
4228 tx_flags
|= E1000_TX_FLAGS_TSO
;
4229 else if (e1000_tx_csum(adapter
, skb
))
4230 tx_flags
|= E1000_TX_FLAGS_CSUM
;
4233 * Old method was to assume IPv4 packet by default if TSO was enabled.
4234 * 82571 hardware supports TSO capabilities for IPv6 as well...
4235 * no longer assume, we must.
4237 if (skb
->protocol
== htons(ETH_P_IP
))
4238 tx_flags
|= E1000_TX_FLAGS_IPV4
;
4240 /* if count is 0 then mapping error has occured */
4241 count
= e1000_tx_map(adapter
, skb
, first
, max_per_txd
, nr_frags
, mss
);
4243 e1000_tx_queue(adapter
, tx_flags
, count
);
4244 /* Make sure there is space in the ring for the next send. */
4245 e1000_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 2);
4248 dev_kfree_skb_any(skb
);
4249 tx_ring
->buffer_info
[first
].time_stamp
= 0;
4250 tx_ring
->next_to_use
= first
;
4253 return NETDEV_TX_OK
;
4257 * e1000_tx_timeout - Respond to a Tx Hang
4258 * @netdev: network interface device structure
4260 static void e1000_tx_timeout(struct net_device
*netdev
)
4262 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4264 /* Do the reset outside of interrupt context */
4265 adapter
->tx_timeout_count
++;
4266 schedule_work(&adapter
->reset_task
);
4269 static void e1000_reset_task(struct work_struct
*work
)
4271 struct e1000_adapter
*adapter
;
4272 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
4274 e1000e_reinit_locked(adapter
);
4278 * e1000_get_stats - Get System Network Statistics
4279 * @netdev: network interface device structure
4281 * Returns the address of the device statistics structure.
4282 * The statistics are actually updated from the timer callback.
4284 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
4286 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4288 /* only return the current stats */
4289 return &adapter
->net_stats
;
4293 * e1000_change_mtu - Change the Maximum Transfer Unit
4294 * @netdev: network interface device structure
4295 * @new_mtu: new value for maximum frame size
4297 * Returns 0 on success, negative on failure
4299 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
4301 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4302 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
4304 /* Jumbo frame support */
4305 if ((max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
4306 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
4307 e_err("Jumbo Frames not supported.\n");
4311 /* Supported frame sizes */
4312 if ((new_mtu
< ETH_ZLEN
+ ETH_FCS_LEN
+ VLAN_HLEN
) ||
4313 (max_frame
> adapter
->max_hw_frame_size
)) {
4314 e_err("Unsupported MTU setting\n");
4318 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
4320 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
4321 adapter
->max_frame_size
= max_frame
;
4322 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
4323 netdev
->mtu
= new_mtu
;
4324 if (netif_running(netdev
))
4325 e1000e_down(adapter
);
4328 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4329 * means we reserve 2 more, this pushes us to allocate from the next
4331 * i.e. RXBUFFER_2048 --> size-4096 slab
4332 * However with the new *_jumbo_rx* routines, jumbo receives will use
4336 if (max_frame
<= 2048)
4337 adapter
->rx_buffer_len
= 2048;
4339 adapter
->rx_buffer_len
= 4096;
4341 /* adjust allocation if LPE protects us, and we aren't using SBP */
4342 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
4343 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
4344 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
4347 if (netif_running(netdev
))
4350 e1000e_reset(adapter
);
4352 clear_bit(__E1000_RESETTING
, &adapter
->state
);
4357 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4360 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4361 struct mii_ioctl_data
*data
= if_mii(ifr
);
4363 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
4368 data
->phy_id
= adapter
->hw
.phy
.addr
;
4371 switch (data
->reg_num
& 0x1F) {
4373 data
->val_out
= adapter
->phy_regs
.bmcr
;
4376 data
->val_out
= adapter
->phy_regs
.bmsr
;
4379 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
4382 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
4385 data
->val_out
= adapter
->phy_regs
.advertise
;
4388 data
->val_out
= adapter
->phy_regs
.lpa
;
4391 data
->val_out
= adapter
->phy_regs
.expansion
;
4394 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
4397 data
->val_out
= adapter
->phy_regs
.stat1000
;
4400 data
->val_out
= adapter
->phy_regs
.estatus
;
4413 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4419 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4425 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
4427 struct e1000_hw
*hw
= &adapter
->hw
;
4432 /* copy MAC RARs to PHY RARs */
4433 for (i
= 0; i
< adapter
->hw
.mac
.rar_entry_count
; i
++) {
4434 mac_reg
= er32(RAL(i
));
4435 e1e_wphy(hw
, BM_RAR_L(i
), (u16
)(mac_reg
& 0xFFFF));
4436 e1e_wphy(hw
, BM_RAR_M(i
), (u16
)((mac_reg
>> 16) & 0xFFFF));
4437 mac_reg
= er32(RAH(i
));
4438 e1e_wphy(hw
, BM_RAR_H(i
), (u16
)(mac_reg
& 0xFFFF));
4439 e1e_wphy(hw
, BM_RAR_CTRL(i
), (u16
)((mac_reg
>> 16) & 0xFFFF));
4442 /* copy MAC MTA to PHY MTA */
4443 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
4444 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
4445 e1e_wphy(hw
, BM_MTA(i
), (u16
)(mac_reg
& 0xFFFF));
4446 e1e_wphy(hw
, BM_MTA(i
) + 1, (u16
)((mac_reg
>> 16) & 0xFFFF));
4449 /* configure PHY Rx Control register */
4450 e1e_rphy(&adapter
->hw
, BM_RCTL
, &phy_reg
);
4451 mac_reg
= er32(RCTL
);
4452 if (mac_reg
& E1000_RCTL_UPE
)
4453 phy_reg
|= BM_RCTL_UPE
;
4454 if (mac_reg
& E1000_RCTL_MPE
)
4455 phy_reg
|= BM_RCTL_MPE
;
4456 phy_reg
&= ~(BM_RCTL_MO_MASK
);
4457 if (mac_reg
& E1000_RCTL_MO_3
)
4458 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
4459 << BM_RCTL_MO_SHIFT
);
4460 if (mac_reg
& E1000_RCTL_BAM
)
4461 phy_reg
|= BM_RCTL_BAM
;
4462 if (mac_reg
& E1000_RCTL_PMCF
)
4463 phy_reg
|= BM_RCTL_PMCF
;
4464 mac_reg
= er32(CTRL
);
4465 if (mac_reg
& E1000_CTRL_RFCE
)
4466 phy_reg
|= BM_RCTL_RFCE
;
4467 e1e_wphy(&adapter
->hw
, BM_RCTL
, phy_reg
);
4469 /* enable PHY wakeup in MAC register */
4471 ew32(WUC
, E1000_WUC_PHY_WAKE
| E1000_WUC_PME_EN
);
4473 /* configure and enable PHY wakeup in PHY registers */
4474 e1e_wphy(&adapter
->hw
, BM_WUFC
, wufc
);
4475 e1e_wphy(&adapter
->hw
, BM_WUC
, E1000_WUC_PME_EN
);
4477 /* activate PHY wakeup */
4478 retval
= hw
->phy
.ops
.acquire_phy(hw
);
4480 e_err("Could not acquire PHY\n");
4483 e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
4484 (BM_WUC_ENABLE_PAGE
<< IGP_PAGE_SHIFT
));
4485 retval
= e1000e_read_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, &phy_reg
);
4487 e_err("Could not read PHY page 769\n");
4490 phy_reg
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
4491 retval
= e1000e_write_phy_reg_mdic(hw
, BM_WUC_ENABLE_REG
, phy_reg
);
4493 e_err("Could not set PHY Host Wakeup bit\n");
4495 hw
->phy
.ops
.release_phy(hw
);
4500 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
4502 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4503 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4504 struct e1000_hw
*hw
= &adapter
->hw
;
4505 u32 ctrl
, ctrl_ext
, rctl
, status
;
4506 u32 wufc
= adapter
->wol
;
4509 netif_device_detach(netdev
);
4511 if (netif_running(netdev
)) {
4512 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
4513 e1000e_down(adapter
);
4514 e1000_free_irq(adapter
);
4516 e1000e_reset_interrupt_capability(adapter
);
4518 retval
= pci_save_state(pdev
);
4522 status
= er32(STATUS
);
4523 if (status
& E1000_STATUS_LU
)
4524 wufc
&= ~E1000_WUFC_LNKC
;
4527 e1000_setup_rctl(adapter
);
4528 e1000_set_multi(netdev
);
4530 /* turn on all-multi mode if wake on multicast is enabled */
4531 if (wufc
& E1000_WUFC_MC
) {
4533 rctl
|= E1000_RCTL_MPE
;
4538 /* advertise wake from D3Cold */
4539 #define E1000_CTRL_ADVD3WUC 0x00100000
4540 /* phy power management enable */
4541 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4542 ctrl
|= E1000_CTRL_ADVD3WUC
;
4543 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
4544 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
4547 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
4548 adapter
->hw
.phy
.media_type
==
4549 e1000_media_type_internal_serdes
) {
4550 /* keep the laser running in D3 */
4551 ctrl_ext
= er32(CTRL_EXT
);
4552 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4553 ew32(CTRL_EXT
, ctrl_ext
);
4556 if (adapter
->flags
& FLAG_IS_ICH
)
4557 e1000e_disable_gig_wol_ich8lan(&adapter
->hw
);
4559 /* Allow time for pending master requests to run */
4560 e1000e_disable_pcie_master(&adapter
->hw
);
4562 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
4563 /* enable wakeup by the PHY */
4564 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
4568 /* enable wakeup by the MAC */
4570 ew32(WUC
, E1000_WUC_PME_EN
);
4577 *enable_wake
= !!wufc
;
4579 /* make sure adapter isn't asleep if manageability is enabled */
4580 if ((adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
4581 (hw
->mac
.ops
.check_mng_mode(hw
)))
4582 *enable_wake
= true;
4584 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
4585 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
4588 * Release control of h/w to f/w. If f/w is AMT enabled, this
4589 * would have already happened in close and is redundant.
4591 e1000_release_hw_control(adapter
);
4593 pci_disable_device(pdev
);
4598 static void e1000_power_off(struct pci_dev
*pdev
, bool sleep
, bool wake
)
4600 if (sleep
&& wake
) {
4601 pci_prepare_to_sleep(pdev
);
4605 pci_wake_from_d3(pdev
, wake
);
4606 pci_set_power_state(pdev
, PCI_D3hot
);
4609 static void e1000_complete_shutdown(struct pci_dev
*pdev
, bool sleep
,
4612 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4613 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4616 * The pci-e switch on some quad port adapters will report a
4617 * correctable error when the MAC transitions from D0 to D3. To
4618 * prevent this we need to mask off the correctable errors on the
4619 * downstream port of the pci-e switch.
4621 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
4622 struct pci_dev
*us_dev
= pdev
->bus
->self
;
4623 int pos
= pci_find_capability(us_dev
, PCI_CAP_ID_EXP
);
4626 pci_read_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, &devctl
);
4627 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
,
4628 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
4630 e1000_power_off(pdev
, sleep
, wake
);
4632 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, devctl
);
4634 e1000_power_off(pdev
, sleep
, wake
);
4638 static void e1000e_disable_l1aspm(struct pci_dev
*pdev
)
4644 * 82573 workaround - disable L1 ASPM on mobile chipsets
4646 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4647 * resulting in lost data or garbage information on the pci-e link
4648 * level. This could result in (false) bad EEPROM checksum errors,
4649 * long ping times (up to 2s) or even a system freeze/hang.
4651 * Unfortunately this feature saves about 1W power consumption when
4654 pos
= pci_find_capability(pdev
, PCI_CAP_ID_EXP
);
4655 pci_read_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, &val
);
4657 dev_warn(&pdev
->dev
, "Disabling L1 ASPM\n");
4659 pci_write_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, val
);
4664 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4669 retval
= __e1000_shutdown(pdev
, &wake
);
4671 e1000_complete_shutdown(pdev
, true, wake
);
4676 static int e1000_resume(struct pci_dev
*pdev
)
4678 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4679 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4680 struct e1000_hw
*hw
= &adapter
->hw
;
4683 pci_set_power_state(pdev
, PCI_D0
);
4684 pci_restore_state(pdev
);
4685 e1000e_disable_l1aspm(pdev
);
4687 err
= pci_enable_device_mem(pdev
);
4690 "Cannot enable PCI device from suspend\n");
4694 pci_set_master(pdev
);
4696 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4697 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4699 e1000e_set_interrupt_capability(adapter
);
4700 if (netif_running(netdev
)) {
4701 err
= e1000_request_irq(adapter
);
4706 e1000e_power_up_phy(adapter
);
4708 /* report the system wakeup cause from S3/S4 */
4709 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
4712 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
4714 e_info("PHY Wakeup cause - %s\n",
4715 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
4716 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
4717 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
4718 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
4719 phy_data
& E1000_WUS_LNKC
? "Link Status "
4720 " Change" : "other");
4722 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
4724 u32 wus
= er32(WUS
);
4726 e_info("MAC Wakeup cause - %s\n",
4727 wus
& E1000_WUS_EX
? "Unicast Packet" :
4728 wus
& E1000_WUS_MC
? "Multicast Packet" :
4729 wus
& E1000_WUS_BC
? "Broadcast Packet" :
4730 wus
& E1000_WUS_MAG
? "Magic Packet" :
4731 wus
& E1000_WUS_LNKC
? "Link Status Change" :
4737 e1000e_reset(adapter
);
4739 e1000_init_manageability(adapter
);
4741 if (netif_running(netdev
))
4744 netif_device_attach(netdev
);
4747 * If the controller has AMT, do not set DRV_LOAD until the interface
4748 * is up. For all other cases, let the f/w know that the h/w is now
4749 * under the control of the driver.
4751 if (!(adapter
->flags
& FLAG_HAS_AMT
))
4752 e1000_get_hw_control(adapter
);
4758 static void e1000_shutdown(struct pci_dev
*pdev
)
4762 __e1000_shutdown(pdev
, &wake
);
4764 if (system_state
== SYSTEM_POWER_OFF
)
4765 e1000_complete_shutdown(pdev
, false, wake
);
4768 #ifdef CONFIG_NET_POLL_CONTROLLER
4770 * Polling 'interrupt' - used by things like netconsole to send skbs
4771 * without having to re-enable interrupts. It's not called while
4772 * the interrupt routine is executing.
4774 static void e1000_netpoll(struct net_device
*netdev
)
4776 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4778 disable_irq(adapter
->pdev
->irq
);
4779 e1000_intr(adapter
->pdev
->irq
, netdev
);
4781 enable_irq(adapter
->pdev
->irq
);
4786 * e1000_io_error_detected - called when PCI error is detected
4787 * @pdev: Pointer to PCI device
4788 * @state: The current pci connection state
4790 * This function is called after a PCI bus error affecting
4791 * this device has been detected.
4793 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4794 pci_channel_state_t state
)
4796 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4797 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4799 netif_device_detach(netdev
);
4801 if (state
== pci_channel_io_perm_failure
)
4802 return PCI_ERS_RESULT_DISCONNECT
;
4804 if (netif_running(netdev
))
4805 e1000e_down(adapter
);
4806 pci_disable_device(pdev
);
4808 /* Request a slot slot reset. */
4809 return PCI_ERS_RESULT_NEED_RESET
;
4813 * e1000_io_slot_reset - called after the pci bus has been reset.
4814 * @pdev: Pointer to PCI device
4816 * Restart the card from scratch, as if from a cold-boot. Implementation
4817 * resembles the first-half of the e1000_resume routine.
4819 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4821 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4822 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4823 struct e1000_hw
*hw
= &adapter
->hw
;
4825 pci_ers_result_t result
;
4827 e1000e_disable_l1aspm(pdev
);
4828 err
= pci_enable_device_mem(pdev
);
4831 "Cannot re-enable PCI device after reset.\n");
4832 result
= PCI_ERS_RESULT_DISCONNECT
;
4834 pci_set_master(pdev
);
4835 pci_restore_state(pdev
);
4837 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4838 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4840 e1000e_reset(adapter
);
4842 result
= PCI_ERS_RESULT_RECOVERED
;
4845 pci_cleanup_aer_uncorrect_error_status(pdev
);
4851 * e1000_io_resume - called when traffic can start flowing again.
4852 * @pdev: Pointer to PCI device
4854 * This callback is called when the error recovery driver tells us that
4855 * its OK to resume normal operation. Implementation resembles the
4856 * second-half of the e1000_resume routine.
4858 static void e1000_io_resume(struct pci_dev
*pdev
)
4860 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4861 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4863 e1000_init_manageability(adapter
);
4865 if (netif_running(netdev
)) {
4866 if (e1000e_up(adapter
)) {
4868 "can't bring device back up after reset\n");
4873 netif_device_attach(netdev
);
4876 * If the controller has AMT, do not set DRV_LOAD until the interface
4877 * is up. For all other cases, let the f/w know that the h/w is now
4878 * under the control of the driver.
4880 if (!(adapter
->flags
& FLAG_HAS_AMT
))
4881 e1000_get_hw_control(adapter
);
4885 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
4887 struct e1000_hw
*hw
= &adapter
->hw
;
4888 struct net_device
*netdev
= adapter
->netdev
;
4891 /* print bus type/speed/width info */
4892 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4894 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
4898 e_info("Intel(R) PRO/%s Network Connection\n",
4899 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
4900 e1000e_read_pba_num(hw
, &pba_num
);
4901 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4902 hw
->mac
.type
, hw
->phy
.type
, (pba_num
>> 8), (pba_num
& 0xff));
4905 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
4907 struct e1000_hw
*hw
= &adapter
->hw
;
4911 if (hw
->mac
.type
!= e1000_82573
)
4914 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
4915 if (!ret_val
&& (!(le16_to_cpu(buf
) & (1 << 0)))) {
4916 /* Deep Smart Power Down (DSPD) */
4917 dev_warn(&adapter
->pdev
->dev
,
4918 "Warning: detected DSPD enabled in EEPROM\n");
4921 ret_val
= e1000_read_nvm(hw
, NVM_INIT_3GIO_3
, 1, &buf
);
4922 if (!ret_val
&& (le16_to_cpu(buf
) & (3 << 2))) {
4924 dev_warn(&adapter
->pdev
->dev
,
4925 "Warning: detected ASPM enabled in EEPROM\n");
4929 static const struct net_device_ops e1000e_netdev_ops
= {
4930 .ndo_open
= e1000_open
,
4931 .ndo_stop
= e1000_close
,
4932 .ndo_start_xmit
= e1000_xmit_frame
,
4933 .ndo_get_stats
= e1000_get_stats
,
4934 .ndo_set_multicast_list
= e1000_set_multi
,
4935 .ndo_set_mac_address
= e1000_set_mac
,
4936 .ndo_change_mtu
= e1000_change_mtu
,
4937 .ndo_do_ioctl
= e1000_ioctl
,
4938 .ndo_tx_timeout
= e1000_tx_timeout
,
4939 .ndo_validate_addr
= eth_validate_addr
,
4941 .ndo_vlan_rx_register
= e1000_vlan_rx_register
,
4942 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
4943 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
4944 #ifdef CONFIG_NET_POLL_CONTROLLER
4945 .ndo_poll_controller
= e1000_netpoll
,
4950 * e1000_probe - Device Initialization Routine
4951 * @pdev: PCI device information struct
4952 * @ent: entry in e1000_pci_tbl
4954 * Returns 0 on success, negative on failure
4956 * e1000_probe initializes an adapter identified by a pci_dev structure.
4957 * The OS initialization, configuring of the adapter private structure,
4958 * and a hardware reset occur.
4960 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
4961 const struct pci_device_id
*ent
)
4963 struct net_device
*netdev
;
4964 struct e1000_adapter
*adapter
;
4965 struct e1000_hw
*hw
;
4966 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
4967 resource_size_t mmio_start
, mmio_len
;
4968 resource_size_t flash_start
, flash_len
;
4970 static int cards_found
;
4971 int i
, err
, pci_using_dac
;
4972 u16 eeprom_data
= 0;
4973 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
4975 e1000e_disable_l1aspm(pdev
);
4977 err
= pci_enable_device_mem(pdev
);
4982 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
4984 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
4988 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
4990 err
= pci_set_consistent_dma_mask(pdev
,
4993 dev_err(&pdev
->dev
, "No usable DMA "
4994 "configuration, aborting\n");
5000 err
= pci_request_selected_regions_exclusive(pdev
,
5001 pci_select_bars(pdev
, IORESOURCE_MEM
),
5002 e1000e_driver_name
);
5006 /* AER (Advanced Error Reporting) hooks */
5007 pci_enable_pcie_error_reporting(pdev
);
5009 pci_set_master(pdev
);
5010 /* PCI config space info */
5011 err
= pci_save_state(pdev
);
5013 goto err_alloc_etherdev
;
5016 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
5018 goto err_alloc_etherdev
;
5020 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
5022 pci_set_drvdata(pdev
, netdev
);
5023 adapter
= netdev_priv(netdev
);
5025 adapter
->netdev
= netdev
;
5026 adapter
->pdev
= pdev
;
5028 adapter
->pba
= ei
->pba
;
5029 adapter
->flags
= ei
->flags
;
5030 adapter
->flags2
= ei
->flags2
;
5031 adapter
->hw
.adapter
= adapter
;
5032 adapter
->hw
.mac
.type
= ei
->mac
;
5033 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
5034 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
5036 mmio_start
= pci_resource_start(pdev
, 0);
5037 mmio_len
= pci_resource_len(pdev
, 0);
5040 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
5041 if (!adapter
->hw
.hw_addr
)
5044 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
5045 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
5046 flash_start
= pci_resource_start(pdev
, 1);
5047 flash_len
= pci_resource_len(pdev
, 1);
5048 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
5049 if (!adapter
->hw
.flash_address
)
5053 /* construct the net_device struct */
5054 netdev
->netdev_ops
= &e1000e_netdev_ops
;
5055 e1000e_set_ethtool_ops(netdev
);
5056 netdev
->watchdog_timeo
= 5 * HZ
;
5057 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
5058 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
5060 netdev
->mem_start
= mmio_start
;
5061 netdev
->mem_end
= mmio_start
+ mmio_len
;
5063 adapter
->bd_number
= cards_found
++;
5065 e1000e_check_options(adapter
);
5067 /* setup adapter struct */
5068 err
= e1000_sw_init(adapter
);
5074 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
5075 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
5076 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
5078 err
= ei
->get_variants(adapter
);
5082 if ((adapter
->flags
& FLAG_IS_ICH
) &&
5083 (adapter
->flags
& FLAG_READ_ONLY_NVM
))
5084 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
5086 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
5088 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
5090 /* Copper options */
5091 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
5092 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
5093 adapter
->hw
.phy
.disable_polarity_correction
= 0;
5094 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
5097 if (e1000_check_reset_block(&adapter
->hw
))
5098 e_info("PHY reset is blocked due to SOL/IDER session.\n");
5100 netdev
->features
= NETIF_F_SG
|
5102 NETIF_F_HW_VLAN_TX
|
5105 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
5106 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
5108 netdev
->features
|= NETIF_F_TSO
;
5109 netdev
->features
|= NETIF_F_TSO6
;
5111 netdev
->vlan_features
|= NETIF_F_TSO
;
5112 netdev
->vlan_features
|= NETIF_F_TSO6
;
5113 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
5114 netdev
->vlan_features
|= NETIF_F_SG
;
5117 netdev
->features
|= NETIF_F_HIGHDMA
;
5119 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
5120 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
5123 * before reading the NVM, reset the controller to
5124 * put the device in a known good starting state
5126 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
5129 * systems with ASPM and others may see the checksum fail on the first
5130 * attempt. Let's give it a few tries
5133 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
5136 e_err("The NVM Checksum Is Not Valid\n");
5142 e1000_eeprom_checks(adapter
);
5144 /* copy the MAC address out of the NVM */
5145 if (e1000e_read_mac_addr(&adapter
->hw
))
5146 e_err("NVM Read Error while reading MAC address\n");
5148 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
5149 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
5151 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
5152 e_err("Invalid MAC Address: %pM\n", netdev
->perm_addr
);
5157 init_timer(&adapter
->watchdog_timer
);
5158 adapter
->watchdog_timer
.function
= &e1000_watchdog
;
5159 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
5161 init_timer(&adapter
->phy_info_timer
);
5162 adapter
->phy_info_timer
.function
= &e1000_update_phy_info
;
5163 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
5165 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
5166 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
5167 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
5168 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
5170 /* Initialize link parameters. User can change them with ethtool */
5171 adapter
->hw
.mac
.autoneg
= 1;
5172 adapter
->fc_autoneg
= 1;
5173 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
5174 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
5175 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
5177 /* ring size defaults */
5178 adapter
->rx_ring
->count
= 256;
5179 adapter
->tx_ring
->count
= 256;
5182 * Initial Wake on LAN setting - If APM wake is enabled in
5183 * the EEPROM, enable the ACPI Magic Packet filter
5185 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
5186 /* APME bit in EEPROM is mapped to WUC.APME */
5187 eeprom_data
= er32(WUC
);
5188 eeprom_apme_mask
= E1000_WUC_APME
;
5189 if ((hw
->mac
.type
> e1000_ich10lan
) &&
5190 (eeprom_data
& E1000_WUC_PHY_WAKE
))
5191 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
5192 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
5193 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
5194 (adapter
->hw
.bus
.func
== 1))
5195 e1000_read_nvm(&adapter
->hw
,
5196 NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
5198 e1000_read_nvm(&adapter
->hw
,
5199 NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
5202 /* fetch WoL from EEPROM */
5203 if (eeprom_data
& eeprom_apme_mask
)
5204 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
5207 * now that we have the eeprom settings, apply the special cases
5208 * where the eeprom may be wrong or the board simply won't support
5209 * wake on lan on a particular port
5211 if (!(adapter
->flags
& FLAG_HAS_WOL
))
5212 adapter
->eeprom_wol
= 0;
5214 /* initialize the wol settings based on the eeprom settings */
5215 adapter
->wol
= adapter
->eeprom_wol
;
5216 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
5218 /* save off EEPROM version number */
5219 e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
5221 /* reset the hardware with the new settings */
5222 e1000e_reset(adapter
);
5225 * If the controller has AMT, do not set DRV_LOAD until the interface
5226 * is up. For all other cases, let the f/w know that the h/w is now
5227 * under the control of the driver.
5229 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5230 e1000_get_hw_control(adapter
);
5232 strcpy(netdev
->name
, "eth%d");
5233 err
= register_netdev(netdev
);
5237 /* carrier off reporting is important to ethtool even BEFORE open */
5238 netif_carrier_off(netdev
);
5240 e1000_print_device_info(adapter
);
5245 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5246 e1000_release_hw_control(adapter
);
5248 if (!e1000_check_reset_block(&adapter
->hw
))
5249 e1000_phy_hw_reset(&adapter
->hw
);
5252 kfree(adapter
->tx_ring
);
5253 kfree(adapter
->rx_ring
);
5255 if (adapter
->hw
.flash_address
)
5256 iounmap(adapter
->hw
.flash_address
);
5257 e1000e_reset_interrupt_capability(adapter
);
5259 iounmap(adapter
->hw
.hw_addr
);
5261 free_netdev(netdev
);
5263 pci_release_selected_regions(pdev
,
5264 pci_select_bars(pdev
, IORESOURCE_MEM
));
5267 pci_disable_device(pdev
);
5272 * e1000_remove - Device Removal Routine
5273 * @pdev: PCI device information struct
5275 * e1000_remove is called by the PCI subsystem to alert the driver
5276 * that it should release a PCI device. The could be caused by a
5277 * Hot-Plug event, or because the driver is going to be removed from
5280 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
5282 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5283 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5286 * flush_scheduled work may reschedule our watchdog task, so
5287 * explicitly disable watchdog tasks from being rescheduled
5289 set_bit(__E1000_DOWN
, &adapter
->state
);
5290 del_timer_sync(&adapter
->watchdog_timer
);
5291 del_timer_sync(&adapter
->phy_info_timer
);
5293 flush_scheduled_work();
5296 * Release control of h/w to f/w. If f/w is AMT enabled, this
5297 * would have already happened in close and is redundant.
5299 e1000_release_hw_control(adapter
);
5301 unregister_netdev(netdev
);
5303 if (!e1000_check_reset_block(&adapter
->hw
))
5304 e1000_phy_hw_reset(&adapter
->hw
);
5306 e1000e_reset_interrupt_capability(adapter
);
5307 kfree(adapter
->tx_ring
);
5308 kfree(adapter
->rx_ring
);
5310 iounmap(adapter
->hw
.hw_addr
);
5311 if (adapter
->hw
.flash_address
)
5312 iounmap(adapter
->hw
.flash_address
);
5313 pci_release_selected_regions(pdev
,
5314 pci_select_bars(pdev
, IORESOURCE_MEM
));
5316 free_netdev(netdev
);
5319 pci_disable_pcie_error_reporting(pdev
);
5321 pci_disable_device(pdev
);
5324 /* PCI Error Recovery (ERS) */
5325 static struct pci_error_handlers e1000_err_handler
= {
5326 .error_detected
= e1000_io_error_detected
,
5327 .slot_reset
= e1000_io_slot_reset
,
5328 .resume
= e1000_io_resume
,
5331 static struct pci_device_id e1000_pci_tbl
[] = {
5332 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
5333 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
5334 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
5335 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
), board_82571
},
5336 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
5337 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
5338 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
5339 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
5340 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
5342 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
5343 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
5344 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
5345 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
5347 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
5348 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
5349 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
5351 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
5352 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
5353 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
5355 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
5356 board_80003es2lan
},
5357 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
5358 board_80003es2lan
},
5359 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
5360 board_80003es2lan
},
5361 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
5362 board_80003es2lan
},
5364 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
5365 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
5366 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
5367 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
5368 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
5369 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
5370 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
5371 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
5373 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
5374 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
5375 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
5376 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
5377 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
5378 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
5379 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
5380 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
5381 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
5383 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
5384 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
5385 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
5387 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
5388 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
5390 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
5391 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
5392 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
5393 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
5395 { } /* terminate list */
5397 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
5399 /* PCI Device API Driver */
5400 static struct pci_driver e1000_driver
= {
5401 .name
= e1000e_driver_name
,
5402 .id_table
= e1000_pci_tbl
,
5403 .probe
= e1000_probe
,
5404 .remove
= __devexit_p(e1000_remove
),
5406 /* Power Management Hooks */
5407 .suspend
= e1000_suspend
,
5408 .resume
= e1000_resume
,
5410 .shutdown
= e1000_shutdown
,
5411 .err_handler
= &e1000_err_handler
5415 * e1000_init_module - Driver Registration Routine
5417 * e1000_init_module is the first routine called when the driver is
5418 * loaded. All it does is register with the PCI subsystem.
5420 static int __init
e1000_init_module(void)
5423 printk(KERN_INFO
"%s: Intel(R) PRO/1000 Network Driver - %s\n",
5424 e1000e_driver_name
, e1000e_driver_version
);
5425 printk(KERN_INFO
"%s: Copyright (c) 1999-2008 Intel Corporation.\n",
5426 e1000e_driver_name
);
5427 ret
= pci_register_driver(&e1000_driver
);
5428 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY
, e1000e_driver_name
,
5429 PM_QOS_DEFAULT_VALUE
);
5433 module_init(e1000_init_module
);
5436 * e1000_exit_module - Driver Exit Cleanup Routine
5438 * e1000_exit_module is called just before the driver is removed
5441 static void __exit
e1000_exit_module(void)
5443 pci_unregister_driver(&e1000_driver
);
5444 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY
, e1000e_driver_name
);
5446 module_exit(e1000_exit_module
);
5449 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5450 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5451 MODULE_LICENSE("GPL");
5452 MODULE_VERSION(DRV_VERSION
);