x86: Cleanup highmap after brk is concluded
[linux/fpc-iii.git] / drivers / scsi / scsi_lib.c
blobd78828ff92c1debf9b42e69f24ab853cbe040851
1 /*
2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
8 */
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/mempool.h>
16 #include <linux/slab.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
23 #include <scsi/scsi.h>
24 #include <scsi/scsi_cmnd.h>
25 #include <scsi/scsi_dbg.h>
26 #include <scsi/scsi_device.h>
27 #include <scsi/scsi_driver.h>
28 #include <scsi/scsi_eh.h>
29 #include <scsi/scsi_host.h>
31 #include "scsi_priv.h"
32 #include "scsi_logging.h"
35 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
36 #define SG_MEMPOOL_SIZE 2
38 struct scsi_host_sg_pool {
39 size_t size;
40 char *name;
41 struct kmem_cache *slab;
42 mempool_t *pool;
45 #define SP(x) { x, "sgpool-" __stringify(x) }
46 #if (SCSI_MAX_SG_SEGMENTS < 32)
47 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
48 #endif
49 static struct scsi_host_sg_pool scsi_sg_pools[] = {
50 SP(8),
51 SP(16),
52 #if (SCSI_MAX_SG_SEGMENTS > 32)
53 SP(32),
54 #if (SCSI_MAX_SG_SEGMENTS > 64)
55 SP(64),
56 #if (SCSI_MAX_SG_SEGMENTS > 128)
57 SP(128),
58 #if (SCSI_MAX_SG_SEGMENTS > 256)
59 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
60 #endif
61 #endif
62 #endif
63 #endif
64 SP(SCSI_MAX_SG_SEGMENTS)
66 #undef SP
68 struct kmem_cache *scsi_sdb_cache;
70 static void scsi_run_queue(struct request_queue *q);
73 * Function: scsi_unprep_request()
75 * Purpose: Remove all preparation done for a request, including its
76 * associated scsi_cmnd, so that it can be requeued.
78 * Arguments: req - request to unprepare
80 * Lock status: Assumed that no locks are held upon entry.
82 * Returns: Nothing.
84 static void scsi_unprep_request(struct request *req)
86 struct scsi_cmnd *cmd = req->special;
88 req->cmd_flags &= ~REQ_DONTPREP;
89 req->special = NULL;
91 scsi_put_command(cmd);
94 /**
95 * __scsi_queue_insert - private queue insertion
96 * @cmd: The SCSI command being requeued
97 * @reason: The reason for the requeue
98 * @unbusy: Whether the queue should be unbusied
100 * This is a private queue insertion. The public interface
101 * scsi_queue_insert() always assumes the queue should be unbusied
102 * because it's always called before the completion. This function is
103 * for a requeue after completion, which should only occur in this
104 * file.
106 static int __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
108 struct Scsi_Host *host = cmd->device->host;
109 struct scsi_device *device = cmd->device;
110 struct scsi_target *starget = scsi_target(device);
111 struct request_queue *q = device->request_queue;
112 unsigned long flags;
114 SCSI_LOG_MLQUEUE(1,
115 printk("Inserting command %p into mlqueue\n", cmd));
118 * Set the appropriate busy bit for the device/host.
120 * If the host/device isn't busy, assume that something actually
121 * completed, and that we should be able to queue a command now.
123 * Note that the prior mid-layer assumption that any host could
124 * always queue at least one command is now broken. The mid-layer
125 * will implement a user specifiable stall (see
126 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
127 * if a command is requeued with no other commands outstanding
128 * either for the device or for the host.
130 switch (reason) {
131 case SCSI_MLQUEUE_HOST_BUSY:
132 host->host_blocked = host->max_host_blocked;
133 break;
134 case SCSI_MLQUEUE_DEVICE_BUSY:
135 device->device_blocked = device->max_device_blocked;
136 break;
137 case SCSI_MLQUEUE_TARGET_BUSY:
138 starget->target_blocked = starget->max_target_blocked;
139 break;
143 * Decrement the counters, since these commands are no longer
144 * active on the host/device.
146 if (unbusy)
147 scsi_device_unbusy(device);
150 * Requeue this command. It will go before all other commands
151 * that are already in the queue.
153 * NOTE: there is magic here about the way the queue is plugged if
154 * we have no outstanding commands.
156 * Although we *don't* plug the queue, we call the request
157 * function. The SCSI request function detects the blocked condition
158 * and plugs the queue appropriately.
160 spin_lock_irqsave(q->queue_lock, flags);
161 blk_requeue_request(q, cmd->request);
162 spin_unlock_irqrestore(q->queue_lock, flags);
164 scsi_run_queue(q);
166 return 0;
170 * Function: scsi_queue_insert()
172 * Purpose: Insert a command in the midlevel queue.
174 * Arguments: cmd - command that we are adding to queue.
175 * reason - why we are inserting command to queue.
177 * Lock status: Assumed that lock is not held upon entry.
179 * Returns: Nothing.
181 * Notes: We do this for one of two cases. Either the host is busy
182 * and it cannot accept any more commands for the time being,
183 * or the device returned QUEUE_FULL and can accept no more
184 * commands.
185 * Notes: This could be called either from an interrupt context or a
186 * normal process context.
188 int scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
190 return __scsi_queue_insert(cmd, reason, 1);
193 * scsi_execute - insert request and wait for the result
194 * @sdev: scsi device
195 * @cmd: scsi command
196 * @data_direction: data direction
197 * @buffer: data buffer
198 * @bufflen: len of buffer
199 * @sense: optional sense buffer
200 * @timeout: request timeout in seconds
201 * @retries: number of times to retry request
202 * @flags: or into request flags;
203 * @resid: optional residual length
205 * returns the req->errors value which is the scsi_cmnd result
206 * field.
208 int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 int data_direction, void *buffer, unsigned bufflen,
210 unsigned char *sense, int timeout, int retries, int flags,
211 int *resid)
213 struct request *req;
214 int write = (data_direction == DMA_TO_DEVICE);
215 int ret = DRIVER_ERROR << 24;
217 req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
219 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
220 buffer, bufflen, __GFP_WAIT))
221 goto out;
223 req->cmd_len = COMMAND_SIZE(cmd[0]);
224 memcpy(req->cmd, cmd, req->cmd_len);
225 req->sense = sense;
226 req->sense_len = 0;
227 req->retries = retries;
228 req->timeout = timeout;
229 req->cmd_type = REQ_TYPE_BLOCK_PC;
230 req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
233 * head injection *required* here otherwise quiesce won't work
235 blk_execute_rq(req->q, NULL, req, 1);
238 * Some devices (USB mass-storage in particular) may transfer
239 * garbage data together with a residue indicating that the data
240 * is invalid. Prevent the garbage from being misinterpreted
241 * and prevent security leaks by zeroing out the excess data.
243 if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
244 memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
246 if (resid)
247 *resid = req->resid_len;
248 ret = req->errors;
249 out:
250 blk_put_request(req);
252 return ret;
254 EXPORT_SYMBOL(scsi_execute);
257 int scsi_execute_req(struct scsi_device *sdev, const unsigned char *cmd,
258 int data_direction, void *buffer, unsigned bufflen,
259 struct scsi_sense_hdr *sshdr, int timeout, int retries,
260 int *resid)
262 char *sense = NULL;
263 int result;
265 if (sshdr) {
266 sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
267 if (!sense)
268 return DRIVER_ERROR << 24;
270 result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
271 sense, timeout, retries, 0, resid);
272 if (sshdr)
273 scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
275 kfree(sense);
276 return result;
278 EXPORT_SYMBOL(scsi_execute_req);
281 * Function: scsi_init_cmd_errh()
283 * Purpose: Initialize cmd fields related to error handling.
285 * Arguments: cmd - command that is ready to be queued.
287 * Notes: This function has the job of initializing a number of
288 * fields related to error handling. Typically this will
289 * be called once for each command, as required.
291 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
293 cmd->serial_number = 0;
294 scsi_set_resid(cmd, 0);
295 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
296 if (cmd->cmd_len == 0)
297 cmd->cmd_len = scsi_command_size(cmd->cmnd);
300 void scsi_device_unbusy(struct scsi_device *sdev)
302 struct Scsi_Host *shost = sdev->host;
303 struct scsi_target *starget = scsi_target(sdev);
304 unsigned long flags;
306 spin_lock_irqsave(shost->host_lock, flags);
307 shost->host_busy--;
308 starget->target_busy--;
309 if (unlikely(scsi_host_in_recovery(shost) &&
310 (shost->host_failed || shost->host_eh_scheduled)))
311 scsi_eh_wakeup(shost);
312 spin_unlock(shost->host_lock);
313 spin_lock(sdev->request_queue->queue_lock);
314 sdev->device_busy--;
315 spin_unlock_irqrestore(sdev->request_queue->queue_lock, flags);
319 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
320 * and call blk_run_queue for all the scsi_devices on the target -
321 * including current_sdev first.
323 * Called with *no* scsi locks held.
325 static void scsi_single_lun_run(struct scsi_device *current_sdev)
327 struct Scsi_Host *shost = current_sdev->host;
328 struct scsi_device *sdev, *tmp;
329 struct scsi_target *starget = scsi_target(current_sdev);
330 unsigned long flags;
332 spin_lock_irqsave(shost->host_lock, flags);
333 starget->starget_sdev_user = NULL;
334 spin_unlock_irqrestore(shost->host_lock, flags);
337 * Call blk_run_queue for all LUNs on the target, starting with
338 * current_sdev. We race with others (to set starget_sdev_user),
339 * but in most cases, we will be first. Ideally, each LU on the
340 * target would get some limited time or requests on the target.
342 blk_run_queue(current_sdev->request_queue);
344 spin_lock_irqsave(shost->host_lock, flags);
345 if (starget->starget_sdev_user)
346 goto out;
347 list_for_each_entry_safe(sdev, tmp, &starget->devices,
348 same_target_siblings) {
349 if (sdev == current_sdev)
350 continue;
351 if (scsi_device_get(sdev))
352 continue;
354 spin_unlock_irqrestore(shost->host_lock, flags);
355 blk_run_queue(sdev->request_queue);
356 spin_lock_irqsave(shost->host_lock, flags);
358 scsi_device_put(sdev);
360 out:
361 spin_unlock_irqrestore(shost->host_lock, flags);
364 static inline int scsi_device_is_busy(struct scsi_device *sdev)
366 if (sdev->device_busy >= sdev->queue_depth || sdev->device_blocked)
367 return 1;
369 return 0;
372 static inline int scsi_target_is_busy(struct scsi_target *starget)
374 return ((starget->can_queue > 0 &&
375 starget->target_busy >= starget->can_queue) ||
376 starget->target_blocked);
379 static inline int scsi_host_is_busy(struct Scsi_Host *shost)
381 if ((shost->can_queue > 0 && shost->host_busy >= shost->can_queue) ||
382 shost->host_blocked || shost->host_self_blocked)
383 return 1;
385 return 0;
389 * Function: scsi_run_queue()
391 * Purpose: Select a proper request queue to serve next
393 * Arguments: q - last request's queue
395 * Returns: Nothing
397 * Notes: The previous command was completely finished, start
398 * a new one if possible.
400 static void scsi_run_queue(struct request_queue *q)
402 struct scsi_device *sdev = q->queuedata;
403 struct Scsi_Host *shost = sdev->host;
404 LIST_HEAD(starved_list);
405 unsigned long flags;
407 if (scsi_target(sdev)->single_lun)
408 scsi_single_lun_run(sdev);
410 spin_lock_irqsave(shost->host_lock, flags);
411 list_splice_init(&shost->starved_list, &starved_list);
413 while (!list_empty(&starved_list)) {
414 int flagset;
417 * As long as shost is accepting commands and we have
418 * starved queues, call blk_run_queue. scsi_request_fn
419 * drops the queue_lock and can add us back to the
420 * starved_list.
422 * host_lock protects the starved_list and starved_entry.
423 * scsi_request_fn must get the host_lock before checking
424 * or modifying starved_list or starved_entry.
426 if (scsi_host_is_busy(shost))
427 break;
429 sdev = list_entry(starved_list.next,
430 struct scsi_device, starved_entry);
431 list_del_init(&sdev->starved_entry);
432 if (scsi_target_is_busy(scsi_target(sdev))) {
433 list_move_tail(&sdev->starved_entry,
434 &shost->starved_list);
435 continue;
438 spin_unlock(shost->host_lock);
440 spin_lock(sdev->request_queue->queue_lock);
441 flagset = test_bit(QUEUE_FLAG_REENTER, &q->queue_flags) &&
442 !test_bit(QUEUE_FLAG_REENTER,
443 &sdev->request_queue->queue_flags);
444 if (flagset)
445 queue_flag_set(QUEUE_FLAG_REENTER, sdev->request_queue);
446 __blk_run_queue(sdev->request_queue);
447 if (flagset)
448 queue_flag_clear(QUEUE_FLAG_REENTER, sdev->request_queue);
449 spin_unlock(sdev->request_queue->queue_lock);
451 spin_lock(shost->host_lock);
453 /* put any unprocessed entries back */
454 list_splice(&starved_list, &shost->starved_list);
455 spin_unlock_irqrestore(shost->host_lock, flags);
457 blk_run_queue(q);
461 * Function: scsi_requeue_command()
463 * Purpose: Handle post-processing of completed commands.
465 * Arguments: q - queue to operate on
466 * cmd - command that may need to be requeued.
468 * Returns: Nothing
470 * Notes: After command completion, there may be blocks left
471 * over which weren't finished by the previous command
472 * this can be for a number of reasons - the main one is
473 * I/O errors in the middle of the request, in which case
474 * we need to request the blocks that come after the bad
475 * sector.
476 * Notes: Upon return, cmd is a stale pointer.
478 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
480 struct request *req = cmd->request;
481 unsigned long flags;
483 spin_lock_irqsave(q->queue_lock, flags);
484 scsi_unprep_request(req);
485 blk_requeue_request(q, req);
486 spin_unlock_irqrestore(q->queue_lock, flags);
488 scsi_run_queue(q);
491 void scsi_next_command(struct scsi_cmnd *cmd)
493 struct scsi_device *sdev = cmd->device;
494 struct request_queue *q = sdev->request_queue;
496 /* need to hold a reference on the device before we let go of the cmd */
497 get_device(&sdev->sdev_gendev);
499 scsi_put_command(cmd);
500 scsi_run_queue(q);
502 /* ok to remove device now */
503 put_device(&sdev->sdev_gendev);
506 void scsi_run_host_queues(struct Scsi_Host *shost)
508 struct scsi_device *sdev;
510 shost_for_each_device(sdev, shost)
511 scsi_run_queue(sdev->request_queue);
514 static void __scsi_release_buffers(struct scsi_cmnd *, int);
517 * Function: scsi_end_request()
519 * Purpose: Post-processing of completed commands (usually invoked at end
520 * of upper level post-processing and scsi_io_completion).
522 * Arguments: cmd - command that is complete.
523 * error - 0 if I/O indicates success, < 0 for I/O error.
524 * bytes - number of bytes of completed I/O
525 * requeue - indicates whether we should requeue leftovers.
527 * Lock status: Assumed that lock is not held upon entry.
529 * Returns: cmd if requeue required, NULL otherwise.
531 * Notes: This is called for block device requests in order to
532 * mark some number of sectors as complete.
534 * We are guaranteeing that the request queue will be goosed
535 * at some point during this call.
536 * Notes: If cmd was requeued, upon return it will be a stale pointer.
538 static struct scsi_cmnd *scsi_end_request(struct scsi_cmnd *cmd, int error,
539 int bytes, int requeue)
541 struct request_queue *q = cmd->device->request_queue;
542 struct request *req = cmd->request;
545 * If there are blocks left over at the end, set up the command
546 * to queue the remainder of them.
548 if (blk_end_request(req, error, bytes)) {
549 /* kill remainder if no retrys */
550 if (error && scsi_noretry_cmd(cmd))
551 blk_end_request_all(req, error);
552 else {
553 if (requeue) {
555 * Bleah. Leftovers again. Stick the
556 * leftovers in the front of the
557 * queue, and goose the queue again.
559 scsi_release_buffers(cmd);
560 scsi_requeue_command(q, cmd);
561 cmd = NULL;
563 return cmd;
568 * This will goose the queue request function at the end, so we don't
569 * need to worry about launching another command.
571 __scsi_release_buffers(cmd, 0);
572 scsi_next_command(cmd);
573 return NULL;
576 static inline unsigned int scsi_sgtable_index(unsigned short nents)
578 unsigned int index;
580 BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
582 if (nents <= 8)
583 index = 0;
584 else
585 index = get_count_order(nents) - 3;
587 return index;
590 static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
592 struct scsi_host_sg_pool *sgp;
594 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
595 mempool_free(sgl, sgp->pool);
598 static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
600 struct scsi_host_sg_pool *sgp;
602 sgp = scsi_sg_pools + scsi_sgtable_index(nents);
603 return mempool_alloc(sgp->pool, gfp_mask);
606 static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents,
607 gfp_t gfp_mask)
609 int ret;
611 BUG_ON(!nents);
613 ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
614 gfp_mask, scsi_sg_alloc);
615 if (unlikely(ret))
616 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS,
617 scsi_sg_free);
619 return ret;
622 static void scsi_free_sgtable(struct scsi_data_buffer *sdb)
624 __sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, scsi_sg_free);
627 static void __scsi_release_buffers(struct scsi_cmnd *cmd, int do_bidi_check)
630 if (cmd->sdb.table.nents)
631 scsi_free_sgtable(&cmd->sdb);
633 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
635 if (do_bidi_check && scsi_bidi_cmnd(cmd)) {
636 struct scsi_data_buffer *bidi_sdb =
637 cmd->request->next_rq->special;
638 scsi_free_sgtable(bidi_sdb);
639 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
640 cmd->request->next_rq->special = NULL;
643 if (scsi_prot_sg_count(cmd))
644 scsi_free_sgtable(cmd->prot_sdb);
648 * Function: scsi_release_buffers()
650 * Purpose: Completion processing for block device I/O requests.
652 * Arguments: cmd - command that we are bailing.
654 * Lock status: Assumed that no lock is held upon entry.
656 * Returns: Nothing
658 * Notes: In the event that an upper level driver rejects a
659 * command, we must release resources allocated during
660 * the __init_io() function. Primarily this would involve
661 * the scatter-gather table, and potentially any bounce
662 * buffers.
664 void scsi_release_buffers(struct scsi_cmnd *cmd)
666 __scsi_release_buffers(cmd, 1);
668 EXPORT_SYMBOL(scsi_release_buffers);
671 * Function: scsi_io_completion()
673 * Purpose: Completion processing for block device I/O requests.
675 * Arguments: cmd - command that is finished.
677 * Lock status: Assumed that no lock is held upon entry.
679 * Returns: Nothing
681 * Notes: This function is matched in terms of capabilities to
682 * the function that created the scatter-gather list.
683 * In other words, if there are no bounce buffers
684 * (the normal case for most drivers), we don't need
685 * the logic to deal with cleaning up afterwards.
687 * We must call scsi_end_request(). This will finish off
688 * the specified number of sectors. If we are done, the
689 * command block will be released and the queue function
690 * will be goosed. If we are not done then we have to
691 * figure out what to do next:
693 * a) We can call scsi_requeue_command(). The request
694 * will be unprepared and put back on the queue. Then
695 * a new command will be created for it. This should
696 * be used if we made forward progress, or if we want
697 * to switch from READ(10) to READ(6) for example.
699 * b) We can call scsi_queue_insert(). The request will
700 * be put back on the queue and retried using the same
701 * command as before, possibly after a delay.
703 * c) We can call blk_end_request() with -EIO to fail
704 * the remainder of the request.
706 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
708 int result = cmd->result;
709 struct request_queue *q = cmd->device->request_queue;
710 struct request *req = cmd->request;
711 int error = 0;
712 struct scsi_sense_hdr sshdr;
713 int sense_valid = 0;
714 int sense_deferred = 0;
715 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
716 ACTION_DELAYED_RETRY} action;
717 char *description = NULL;
719 if (result) {
720 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
721 if (sense_valid)
722 sense_deferred = scsi_sense_is_deferred(&sshdr);
725 if (blk_pc_request(req)) { /* SG_IO ioctl from block level */
726 req->errors = result;
727 if (result) {
728 if (sense_valid && req->sense) {
730 * SG_IO wants current and deferred errors
732 int len = 8 + cmd->sense_buffer[7];
734 if (len > SCSI_SENSE_BUFFERSIZE)
735 len = SCSI_SENSE_BUFFERSIZE;
736 memcpy(req->sense, cmd->sense_buffer, len);
737 req->sense_len = len;
739 if (!sense_deferred)
740 error = -EIO;
743 req->resid_len = scsi_get_resid(cmd);
745 if (scsi_bidi_cmnd(cmd)) {
747 * Bidi commands Must be complete as a whole,
748 * both sides at once.
750 req->next_rq->resid_len = scsi_in(cmd)->resid;
752 scsi_release_buffers(cmd);
753 blk_end_request_all(req, 0);
755 scsi_next_command(cmd);
756 return;
760 BUG_ON(blk_bidi_rq(req)); /* bidi not support for !blk_pc_request yet */
763 * Next deal with any sectors which we were able to correctly
764 * handle.
766 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
767 "%d bytes done.\n",
768 blk_rq_sectors(req), good_bytes));
771 * Recovered errors need reporting, but they're always treated
772 * as success, so fiddle the result code here. For BLOCK_PC
773 * we already took a copy of the original into rq->errors which
774 * is what gets returned to the user
776 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
777 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
778 * print since caller wants ATA registers. Only occurs on
779 * SCSI ATA PASS_THROUGH commands when CK_COND=1
781 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
783 else if (!(req->cmd_flags & REQ_QUIET))
784 scsi_print_sense("", cmd);
785 result = 0;
786 /* BLOCK_PC may have set error */
787 error = 0;
791 * A number of bytes were successfully read. If there
792 * are leftovers and there is some kind of error
793 * (result != 0), retry the rest.
795 if (scsi_end_request(cmd, error, good_bytes, result == 0) == NULL)
796 return;
798 error = -EIO;
800 if (host_byte(result) == DID_RESET) {
801 /* Third party bus reset or reset for error recovery
802 * reasons. Just retry the command and see what
803 * happens.
805 action = ACTION_RETRY;
806 } else if (sense_valid && !sense_deferred) {
807 switch (sshdr.sense_key) {
808 case UNIT_ATTENTION:
809 if (cmd->device->removable) {
810 /* Detected disc change. Set a bit
811 * and quietly refuse further access.
813 cmd->device->changed = 1;
814 description = "Media Changed";
815 action = ACTION_FAIL;
816 } else {
817 /* Must have been a power glitch, or a
818 * bus reset. Could not have been a
819 * media change, so we just retry the
820 * command and see what happens.
822 action = ACTION_RETRY;
824 break;
825 case ILLEGAL_REQUEST:
826 /* If we had an ILLEGAL REQUEST returned, then
827 * we may have performed an unsupported
828 * command. The only thing this should be
829 * would be a ten byte read where only a six
830 * byte read was supported. Also, on a system
831 * where READ CAPACITY failed, we may have
832 * read past the end of the disk.
834 if ((cmd->device->use_10_for_rw &&
835 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
836 (cmd->cmnd[0] == READ_10 ||
837 cmd->cmnd[0] == WRITE_10)) {
838 /* This will issue a new 6-byte command. */
839 cmd->device->use_10_for_rw = 0;
840 action = ACTION_REPREP;
841 } else if (sshdr.asc == 0x10) /* DIX */ {
842 description = "Host Data Integrity Failure";
843 action = ACTION_FAIL;
844 error = -EILSEQ;
845 } else
846 action = ACTION_FAIL;
847 break;
848 case ABORTED_COMMAND:
849 action = ACTION_FAIL;
850 if (sshdr.asc == 0x10) { /* DIF */
851 description = "Target Data Integrity Failure";
852 error = -EILSEQ;
854 break;
855 case NOT_READY:
856 /* If the device is in the process of becoming
857 * ready, or has a temporary blockage, retry.
859 if (sshdr.asc == 0x04) {
860 switch (sshdr.ascq) {
861 case 0x01: /* becoming ready */
862 case 0x04: /* format in progress */
863 case 0x05: /* rebuild in progress */
864 case 0x06: /* recalculation in progress */
865 case 0x07: /* operation in progress */
866 case 0x08: /* Long write in progress */
867 case 0x09: /* self test in progress */
868 action = ACTION_DELAYED_RETRY;
869 break;
870 default:
871 description = "Device not ready";
872 action = ACTION_FAIL;
873 break;
875 } else {
876 description = "Device not ready";
877 action = ACTION_FAIL;
879 break;
880 case VOLUME_OVERFLOW:
881 /* See SSC3rXX or current. */
882 action = ACTION_FAIL;
883 break;
884 default:
885 description = "Unhandled sense code";
886 action = ACTION_FAIL;
887 break;
889 } else {
890 description = "Unhandled error code";
891 action = ACTION_FAIL;
894 switch (action) {
895 case ACTION_FAIL:
896 /* Give up and fail the remainder of the request */
897 scsi_release_buffers(cmd);
898 if (!(req->cmd_flags & REQ_QUIET)) {
899 if (description)
900 scmd_printk(KERN_INFO, cmd, "%s\n",
901 description);
902 scsi_print_result(cmd);
903 if (driver_byte(result) & DRIVER_SENSE)
904 scsi_print_sense("", cmd);
905 scsi_print_command(cmd);
907 if (blk_end_request_err(req, -EIO))
908 scsi_requeue_command(q, cmd);
909 else
910 scsi_next_command(cmd);
911 break;
912 case ACTION_REPREP:
913 /* Unprep the request and put it back at the head of the queue.
914 * A new command will be prepared and issued.
916 scsi_release_buffers(cmd);
917 scsi_requeue_command(q, cmd);
918 break;
919 case ACTION_RETRY:
920 /* Retry the same command immediately */
921 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
922 break;
923 case ACTION_DELAYED_RETRY:
924 /* Retry the same command after a delay */
925 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
926 break;
930 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb,
931 gfp_t gfp_mask)
933 int count;
936 * If sg table allocation fails, requeue request later.
938 if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
939 gfp_mask))) {
940 return BLKPREP_DEFER;
943 req->buffer = NULL;
946 * Next, walk the list, and fill in the addresses and sizes of
947 * each segment.
949 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
950 BUG_ON(count > sdb->table.nents);
951 sdb->table.nents = count;
952 sdb->length = blk_rq_bytes(req);
953 return BLKPREP_OK;
957 * Function: scsi_init_io()
959 * Purpose: SCSI I/O initialize function.
961 * Arguments: cmd - Command descriptor we wish to initialize
963 * Returns: 0 on success
964 * BLKPREP_DEFER if the failure is retryable
965 * BLKPREP_KILL if the failure is fatal
967 int scsi_init_io(struct scsi_cmnd *cmd, gfp_t gfp_mask)
969 int error = scsi_init_sgtable(cmd->request, &cmd->sdb, gfp_mask);
970 if (error)
971 goto err_exit;
973 if (blk_bidi_rq(cmd->request)) {
974 struct scsi_data_buffer *bidi_sdb = kmem_cache_zalloc(
975 scsi_sdb_cache, GFP_ATOMIC);
976 if (!bidi_sdb) {
977 error = BLKPREP_DEFER;
978 goto err_exit;
981 cmd->request->next_rq->special = bidi_sdb;
982 error = scsi_init_sgtable(cmd->request->next_rq, bidi_sdb,
983 GFP_ATOMIC);
984 if (error)
985 goto err_exit;
988 if (blk_integrity_rq(cmd->request)) {
989 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
990 int ivecs, count;
992 BUG_ON(prot_sdb == NULL);
993 ivecs = blk_rq_count_integrity_sg(cmd->request);
995 if (scsi_alloc_sgtable(prot_sdb, ivecs, gfp_mask)) {
996 error = BLKPREP_DEFER;
997 goto err_exit;
1000 count = blk_rq_map_integrity_sg(cmd->request,
1001 prot_sdb->table.sgl);
1002 BUG_ON(unlikely(count > ivecs));
1004 cmd->prot_sdb = prot_sdb;
1005 cmd->prot_sdb->table.nents = count;
1008 return BLKPREP_OK ;
1010 err_exit:
1011 scsi_release_buffers(cmd);
1012 if (error == BLKPREP_KILL)
1013 scsi_put_command(cmd);
1014 else /* BLKPREP_DEFER */
1015 scsi_unprep_request(cmd->request);
1017 return error;
1019 EXPORT_SYMBOL(scsi_init_io);
1021 static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1022 struct request *req)
1024 struct scsi_cmnd *cmd;
1026 if (!req->special) {
1027 cmd = scsi_get_command(sdev, GFP_ATOMIC);
1028 if (unlikely(!cmd))
1029 return NULL;
1030 req->special = cmd;
1031 } else {
1032 cmd = req->special;
1035 /* pull a tag out of the request if we have one */
1036 cmd->tag = req->tag;
1037 cmd->request = req;
1039 cmd->cmnd = req->cmd;
1041 return cmd;
1044 int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1046 struct scsi_cmnd *cmd;
1047 int ret = scsi_prep_state_check(sdev, req);
1049 if (ret != BLKPREP_OK)
1050 return ret;
1052 cmd = scsi_get_cmd_from_req(sdev, req);
1053 if (unlikely(!cmd))
1054 return BLKPREP_DEFER;
1057 * BLOCK_PC requests may transfer data, in which case they must
1058 * a bio attached to them. Or they might contain a SCSI command
1059 * that does not transfer data, in which case they may optionally
1060 * submit a request without an attached bio.
1062 if (req->bio) {
1063 int ret;
1065 BUG_ON(!req->nr_phys_segments);
1067 ret = scsi_init_io(cmd, GFP_ATOMIC);
1068 if (unlikely(ret))
1069 return ret;
1070 } else {
1071 BUG_ON(blk_rq_bytes(req));
1073 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1074 req->buffer = NULL;
1077 cmd->cmd_len = req->cmd_len;
1078 if (!blk_rq_bytes(req))
1079 cmd->sc_data_direction = DMA_NONE;
1080 else if (rq_data_dir(req) == WRITE)
1081 cmd->sc_data_direction = DMA_TO_DEVICE;
1082 else
1083 cmd->sc_data_direction = DMA_FROM_DEVICE;
1085 cmd->transfersize = blk_rq_bytes(req);
1086 cmd->allowed = req->retries;
1087 return BLKPREP_OK;
1089 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd);
1092 * Setup a REQ_TYPE_FS command. These are simple read/write request
1093 * from filesystems that still need to be translated to SCSI CDBs from
1094 * the ULD.
1096 int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1098 struct scsi_cmnd *cmd;
1099 int ret = scsi_prep_state_check(sdev, req);
1101 if (ret != BLKPREP_OK)
1102 return ret;
1104 if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1105 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1106 ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1107 if (ret != BLKPREP_OK)
1108 return ret;
1112 * Filesystem requests must transfer data.
1114 BUG_ON(!req->nr_phys_segments);
1116 cmd = scsi_get_cmd_from_req(sdev, req);
1117 if (unlikely(!cmd))
1118 return BLKPREP_DEFER;
1120 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1121 return scsi_init_io(cmd, GFP_ATOMIC);
1123 EXPORT_SYMBOL(scsi_setup_fs_cmnd);
1125 int scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1127 int ret = BLKPREP_OK;
1130 * If the device is not in running state we will reject some
1131 * or all commands.
1133 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1134 switch (sdev->sdev_state) {
1135 case SDEV_OFFLINE:
1137 * If the device is offline we refuse to process any
1138 * commands. The device must be brought online
1139 * before trying any recovery commands.
1141 sdev_printk(KERN_ERR, sdev,
1142 "rejecting I/O to offline device\n");
1143 ret = BLKPREP_KILL;
1144 break;
1145 case SDEV_DEL:
1147 * If the device is fully deleted, we refuse to
1148 * process any commands as well.
1150 sdev_printk(KERN_ERR, sdev,
1151 "rejecting I/O to dead device\n");
1152 ret = BLKPREP_KILL;
1153 break;
1154 case SDEV_QUIESCE:
1155 case SDEV_BLOCK:
1156 case SDEV_CREATED_BLOCK:
1158 * If the devices is blocked we defer normal commands.
1160 if (!(req->cmd_flags & REQ_PREEMPT))
1161 ret = BLKPREP_DEFER;
1162 break;
1163 default:
1165 * For any other not fully online state we only allow
1166 * special commands. In particular any user initiated
1167 * command is not allowed.
1169 if (!(req->cmd_flags & REQ_PREEMPT))
1170 ret = BLKPREP_KILL;
1171 break;
1174 return ret;
1176 EXPORT_SYMBOL(scsi_prep_state_check);
1178 int scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1180 struct scsi_device *sdev = q->queuedata;
1182 switch (ret) {
1183 case BLKPREP_KILL:
1184 req->errors = DID_NO_CONNECT << 16;
1185 /* release the command and kill it */
1186 if (req->special) {
1187 struct scsi_cmnd *cmd = req->special;
1188 scsi_release_buffers(cmd);
1189 scsi_put_command(cmd);
1190 req->special = NULL;
1192 break;
1193 case BLKPREP_DEFER:
1195 * If we defer, the blk_peek_request() returns NULL, but the
1196 * queue must be restarted, so we plug here if no returning
1197 * command will automatically do that.
1199 if (sdev->device_busy == 0)
1200 blk_plug_device(q);
1201 break;
1202 default:
1203 req->cmd_flags |= REQ_DONTPREP;
1206 return ret;
1208 EXPORT_SYMBOL(scsi_prep_return);
1210 int scsi_prep_fn(struct request_queue *q, struct request *req)
1212 struct scsi_device *sdev = q->queuedata;
1213 int ret = BLKPREP_KILL;
1215 if (req->cmd_type == REQ_TYPE_BLOCK_PC)
1216 ret = scsi_setup_blk_pc_cmnd(sdev, req);
1217 return scsi_prep_return(q, req, ret);
1219 EXPORT_SYMBOL(scsi_prep_fn);
1222 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1223 * return 0.
1225 * Called with the queue_lock held.
1227 static inline int scsi_dev_queue_ready(struct request_queue *q,
1228 struct scsi_device *sdev)
1230 if (sdev->device_busy == 0 && sdev->device_blocked) {
1232 * unblock after device_blocked iterates to zero
1234 if (--sdev->device_blocked == 0) {
1235 SCSI_LOG_MLQUEUE(3,
1236 sdev_printk(KERN_INFO, sdev,
1237 "unblocking device at zero depth\n"));
1238 } else {
1239 blk_plug_device(q);
1240 return 0;
1243 if (scsi_device_is_busy(sdev))
1244 return 0;
1246 return 1;
1251 * scsi_target_queue_ready: checks if there we can send commands to target
1252 * @sdev: scsi device on starget to check.
1254 * Called with the host lock held.
1256 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1257 struct scsi_device *sdev)
1259 struct scsi_target *starget = scsi_target(sdev);
1261 if (starget->single_lun) {
1262 if (starget->starget_sdev_user &&
1263 starget->starget_sdev_user != sdev)
1264 return 0;
1265 starget->starget_sdev_user = sdev;
1268 if (starget->target_busy == 0 && starget->target_blocked) {
1270 * unblock after target_blocked iterates to zero
1272 if (--starget->target_blocked == 0) {
1273 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1274 "unblocking target at zero depth\n"));
1275 } else
1276 return 0;
1279 if (scsi_target_is_busy(starget)) {
1280 if (list_empty(&sdev->starved_entry)) {
1281 list_add_tail(&sdev->starved_entry,
1282 &shost->starved_list);
1283 return 0;
1287 /* We're OK to process the command, so we can't be starved */
1288 if (!list_empty(&sdev->starved_entry))
1289 list_del_init(&sdev->starved_entry);
1290 return 1;
1294 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1295 * return 0. We must end up running the queue again whenever 0 is
1296 * returned, else IO can hang.
1298 * Called with host_lock held.
1300 static inline int scsi_host_queue_ready(struct request_queue *q,
1301 struct Scsi_Host *shost,
1302 struct scsi_device *sdev)
1304 if (scsi_host_in_recovery(shost))
1305 return 0;
1306 if (shost->host_busy == 0 && shost->host_blocked) {
1308 * unblock after host_blocked iterates to zero
1310 if (--shost->host_blocked == 0) {
1311 SCSI_LOG_MLQUEUE(3,
1312 printk("scsi%d unblocking host at zero depth\n",
1313 shost->host_no));
1314 } else {
1315 return 0;
1318 if (scsi_host_is_busy(shost)) {
1319 if (list_empty(&sdev->starved_entry))
1320 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1321 return 0;
1324 /* We're OK to process the command, so we can't be starved */
1325 if (!list_empty(&sdev->starved_entry))
1326 list_del_init(&sdev->starved_entry);
1328 return 1;
1332 * Busy state exporting function for request stacking drivers.
1334 * For efficiency, no lock is taken to check the busy state of
1335 * shost/starget/sdev, since the returned value is not guaranteed and
1336 * may be changed after request stacking drivers call the function,
1337 * regardless of taking lock or not.
1339 * When scsi can't dispatch I/Os anymore and needs to kill I/Os
1340 * (e.g. !sdev), scsi needs to return 'not busy'.
1341 * Otherwise, request stacking drivers may hold requests forever.
1343 static int scsi_lld_busy(struct request_queue *q)
1345 struct scsi_device *sdev = q->queuedata;
1346 struct Scsi_Host *shost;
1347 struct scsi_target *starget;
1349 if (!sdev)
1350 return 0;
1352 shost = sdev->host;
1353 starget = scsi_target(sdev);
1355 if (scsi_host_in_recovery(shost) || scsi_host_is_busy(shost) ||
1356 scsi_target_is_busy(starget) || scsi_device_is_busy(sdev))
1357 return 1;
1359 return 0;
1363 * Kill a request for a dead device
1365 static void scsi_kill_request(struct request *req, struct request_queue *q)
1367 struct scsi_cmnd *cmd = req->special;
1368 struct scsi_device *sdev = cmd->device;
1369 struct scsi_target *starget = scsi_target(sdev);
1370 struct Scsi_Host *shost = sdev->host;
1372 blk_start_request(req);
1374 if (unlikely(cmd == NULL)) {
1375 printk(KERN_CRIT "impossible request in %s.\n",
1376 __func__);
1377 BUG();
1380 scsi_init_cmd_errh(cmd);
1381 cmd->result = DID_NO_CONNECT << 16;
1382 atomic_inc(&cmd->device->iorequest_cnt);
1385 * SCSI request completion path will do scsi_device_unbusy(),
1386 * bump busy counts. To bump the counters, we need to dance
1387 * with the locks as normal issue path does.
1389 sdev->device_busy++;
1390 spin_unlock(sdev->request_queue->queue_lock);
1391 spin_lock(shost->host_lock);
1392 shost->host_busy++;
1393 starget->target_busy++;
1394 spin_unlock(shost->host_lock);
1395 spin_lock(sdev->request_queue->queue_lock);
1397 blk_complete_request(req);
1400 static void scsi_softirq_done(struct request *rq)
1402 struct scsi_cmnd *cmd = rq->special;
1403 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1404 int disposition;
1406 INIT_LIST_HEAD(&cmd->eh_entry);
1409 * Set the serial numbers back to zero
1411 cmd->serial_number = 0;
1413 atomic_inc(&cmd->device->iodone_cnt);
1414 if (cmd->result)
1415 atomic_inc(&cmd->device->ioerr_cnt);
1417 disposition = scsi_decide_disposition(cmd);
1418 if (disposition != SUCCESS &&
1419 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1420 sdev_printk(KERN_ERR, cmd->device,
1421 "timing out command, waited %lus\n",
1422 wait_for/HZ);
1423 disposition = SUCCESS;
1426 scsi_log_completion(cmd, disposition);
1428 switch (disposition) {
1429 case SUCCESS:
1430 scsi_finish_command(cmd);
1431 break;
1432 case NEEDS_RETRY:
1433 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1434 break;
1435 case ADD_TO_MLQUEUE:
1436 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1437 break;
1438 default:
1439 if (!scsi_eh_scmd_add(cmd, 0))
1440 scsi_finish_command(cmd);
1445 * Function: scsi_request_fn()
1447 * Purpose: Main strategy routine for SCSI.
1449 * Arguments: q - Pointer to actual queue.
1451 * Returns: Nothing
1453 * Lock status: IO request lock assumed to be held when called.
1455 static void scsi_request_fn(struct request_queue *q)
1457 struct scsi_device *sdev = q->queuedata;
1458 struct Scsi_Host *shost;
1459 struct scsi_cmnd *cmd;
1460 struct request *req;
1462 if (!sdev) {
1463 printk("scsi: killing requests for dead queue\n");
1464 while ((req = blk_peek_request(q)) != NULL)
1465 scsi_kill_request(req, q);
1466 return;
1469 if(!get_device(&sdev->sdev_gendev))
1470 /* We must be tearing the block queue down already */
1471 return;
1474 * To start with, we keep looping until the queue is empty, or until
1475 * the host is no longer able to accept any more requests.
1477 shost = sdev->host;
1478 while (!blk_queue_plugged(q)) {
1479 int rtn;
1481 * get next queueable request. We do this early to make sure
1482 * that the request is fully prepared even if we cannot
1483 * accept it.
1485 req = blk_peek_request(q);
1486 if (!req || !scsi_dev_queue_ready(q, sdev))
1487 break;
1489 if (unlikely(!scsi_device_online(sdev))) {
1490 sdev_printk(KERN_ERR, sdev,
1491 "rejecting I/O to offline device\n");
1492 scsi_kill_request(req, q);
1493 continue;
1498 * Remove the request from the request list.
1500 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1501 blk_start_request(req);
1502 sdev->device_busy++;
1504 spin_unlock(q->queue_lock);
1505 cmd = req->special;
1506 if (unlikely(cmd == NULL)) {
1507 printk(KERN_CRIT "impossible request in %s.\n"
1508 "please mail a stack trace to "
1509 "linux-scsi@vger.kernel.org\n",
1510 __func__);
1511 blk_dump_rq_flags(req, "foo");
1512 BUG();
1514 spin_lock(shost->host_lock);
1517 * We hit this when the driver is using a host wide
1518 * tag map. For device level tag maps the queue_depth check
1519 * in the device ready fn would prevent us from trying
1520 * to allocate a tag. Since the map is a shared host resource
1521 * we add the dev to the starved list so it eventually gets
1522 * a run when a tag is freed.
1524 if (blk_queue_tagged(q) && !blk_rq_tagged(req)) {
1525 if (list_empty(&sdev->starved_entry))
1526 list_add_tail(&sdev->starved_entry,
1527 &shost->starved_list);
1528 goto not_ready;
1531 if (!scsi_target_queue_ready(shost, sdev))
1532 goto not_ready;
1534 if (!scsi_host_queue_ready(q, shost, sdev))
1535 goto not_ready;
1537 scsi_target(sdev)->target_busy++;
1538 shost->host_busy++;
1541 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1542 * take the lock again.
1544 spin_unlock_irq(shost->host_lock);
1547 * Finally, initialize any error handling parameters, and set up
1548 * the timers for timeouts.
1550 scsi_init_cmd_errh(cmd);
1553 * Dispatch the command to the low-level driver.
1555 rtn = scsi_dispatch_cmd(cmd);
1556 spin_lock_irq(q->queue_lock);
1557 if(rtn) {
1558 /* we're refusing the command; because of
1559 * the way locks get dropped, we need to
1560 * check here if plugging is required */
1561 if(sdev->device_busy == 0)
1562 blk_plug_device(q);
1564 break;
1568 goto out;
1570 not_ready:
1571 spin_unlock_irq(shost->host_lock);
1574 * lock q, handle tag, requeue req, and decrement device_busy. We
1575 * must return with queue_lock held.
1577 * Decrementing device_busy without checking it is OK, as all such
1578 * cases (host limits or settings) should run the queue at some
1579 * later time.
1581 spin_lock_irq(q->queue_lock);
1582 blk_requeue_request(q, req);
1583 sdev->device_busy--;
1584 if(sdev->device_busy == 0)
1585 blk_plug_device(q);
1586 out:
1587 /* must be careful here...if we trigger the ->remove() function
1588 * we cannot be holding the q lock */
1589 spin_unlock_irq(q->queue_lock);
1590 put_device(&sdev->sdev_gendev);
1591 spin_lock_irq(q->queue_lock);
1594 u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
1596 struct device *host_dev;
1597 u64 bounce_limit = 0xffffffff;
1599 if (shost->unchecked_isa_dma)
1600 return BLK_BOUNCE_ISA;
1602 * Platforms with virtual-DMA translation
1603 * hardware have no practical limit.
1605 if (!PCI_DMA_BUS_IS_PHYS)
1606 return BLK_BOUNCE_ANY;
1608 host_dev = scsi_get_device(shost);
1609 if (host_dev && host_dev->dma_mask)
1610 bounce_limit = *host_dev->dma_mask;
1612 return bounce_limit;
1614 EXPORT_SYMBOL(scsi_calculate_bounce_limit);
1616 struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
1617 request_fn_proc *request_fn)
1619 struct request_queue *q;
1620 struct device *dev = shost->shost_gendev.parent;
1622 q = blk_init_queue(request_fn, NULL);
1623 if (!q)
1624 return NULL;
1627 * this limit is imposed by hardware restrictions
1629 blk_queue_max_hw_segments(q, shost->sg_tablesize);
1630 blk_queue_max_phys_segments(q, SCSI_MAX_SG_CHAIN_SEGMENTS);
1632 blk_queue_max_sectors(q, shost->max_sectors);
1633 blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
1634 blk_queue_segment_boundary(q, shost->dma_boundary);
1635 dma_set_seg_boundary(dev, shost->dma_boundary);
1637 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
1639 if (!shost->use_clustering)
1640 q->limits.cluster = 0;
1643 * set a reasonable default alignment on word boundaries: the
1644 * host and device may alter it using
1645 * blk_queue_update_dma_alignment() later.
1647 blk_queue_dma_alignment(q, 0x03);
1649 return q;
1651 EXPORT_SYMBOL(__scsi_alloc_queue);
1653 struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
1655 struct request_queue *q;
1657 q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
1658 if (!q)
1659 return NULL;
1661 blk_queue_prep_rq(q, scsi_prep_fn);
1662 blk_queue_softirq_done(q, scsi_softirq_done);
1663 blk_queue_rq_timed_out(q, scsi_times_out);
1664 blk_queue_lld_busy(q, scsi_lld_busy);
1665 return q;
1668 void scsi_free_queue(struct request_queue *q)
1670 blk_cleanup_queue(q);
1674 * Function: scsi_block_requests()
1676 * Purpose: Utility function used by low-level drivers to prevent further
1677 * commands from being queued to the device.
1679 * Arguments: shost - Host in question
1681 * Returns: Nothing
1683 * Lock status: No locks are assumed held.
1685 * Notes: There is no timer nor any other means by which the requests
1686 * get unblocked other than the low-level driver calling
1687 * scsi_unblock_requests().
1689 void scsi_block_requests(struct Scsi_Host *shost)
1691 shost->host_self_blocked = 1;
1693 EXPORT_SYMBOL(scsi_block_requests);
1696 * Function: scsi_unblock_requests()
1698 * Purpose: Utility function used by low-level drivers to allow further
1699 * commands from being queued to the device.
1701 * Arguments: shost - Host in question
1703 * Returns: Nothing
1705 * Lock status: No locks are assumed held.
1707 * Notes: There is no timer nor any other means by which the requests
1708 * get unblocked other than the low-level driver calling
1709 * scsi_unblock_requests().
1711 * This is done as an API function so that changes to the
1712 * internals of the scsi mid-layer won't require wholesale
1713 * changes to drivers that use this feature.
1715 void scsi_unblock_requests(struct Scsi_Host *shost)
1717 shost->host_self_blocked = 0;
1718 scsi_run_host_queues(shost);
1720 EXPORT_SYMBOL(scsi_unblock_requests);
1722 int __init scsi_init_queue(void)
1724 int i;
1726 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
1727 sizeof(struct scsi_data_buffer),
1728 0, 0, NULL);
1729 if (!scsi_sdb_cache) {
1730 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
1731 return -ENOMEM;
1734 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1735 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1736 int size = sgp->size * sizeof(struct scatterlist);
1738 sgp->slab = kmem_cache_create(sgp->name, size, 0,
1739 SLAB_HWCACHE_ALIGN, NULL);
1740 if (!sgp->slab) {
1741 printk(KERN_ERR "SCSI: can't init sg slab %s\n",
1742 sgp->name);
1743 goto cleanup_sdb;
1746 sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
1747 sgp->slab);
1748 if (!sgp->pool) {
1749 printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
1750 sgp->name);
1751 goto cleanup_sdb;
1755 return 0;
1757 cleanup_sdb:
1758 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1759 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1760 if (sgp->pool)
1761 mempool_destroy(sgp->pool);
1762 if (sgp->slab)
1763 kmem_cache_destroy(sgp->slab);
1765 kmem_cache_destroy(scsi_sdb_cache);
1767 return -ENOMEM;
1770 void scsi_exit_queue(void)
1772 int i;
1774 kmem_cache_destroy(scsi_sdb_cache);
1776 for (i = 0; i < SG_MEMPOOL_NR; i++) {
1777 struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
1778 mempool_destroy(sgp->pool);
1779 kmem_cache_destroy(sgp->slab);
1784 * scsi_mode_select - issue a mode select
1785 * @sdev: SCSI device to be queried
1786 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1787 * @sp: Save page bit (0 == don't save, 1 == save)
1788 * @modepage: mode page being requested
1789 * @buffer: request buffer (may not be smaller than eight bytes)
1790 * @len: length of request buffer.
1791 * @timeout: command timeout
1792 * @retries: number of retries before failing
1793 * @data: returns a structure abstracting the mode header data
1794 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1795 * must be SCSI_SENSE_BUFFERSIZE big.
1797 * Returns zero if successful; negative error number or scsi
1798 * status on error
1802 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
1803 unsigned char *buffer, int len, int timeout, int retries,
1804 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1806 unsigned char cmd[10];
1807 unsigned char *real_buffer;
1808 int ret;
1810 memset(cmd, 0, sizeof(cmd));
1811 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
1813 if (sdev->use_10_for_ms) {
1814 if (len > 65535)
1815 return -EINVAL;
1816 real_buffer = kmalloc(8 + len, GFP_KERNEL);
1817 if (!real_buffer)
1818 return -ENOMEM;
1819 memcpy(real_buffer + 8, buffer, len);
1820 len += 8;
1821 real_buffer[0] = 0;
1822 real_buffer[1] = 0;
1823 real_buffer[2] = data->medium_type;
1824 real_buffer[3] = data->device_specific;
1825 real_buffer[4] = data->longlba ? 0x01 : 0;
1826 real_buffer[5] = 0;
1827 real_buffer[6] = data->block_descriptor_length >> 8;
1828 real_buffer[7] = data->block_descriptor_length;
1830 cmd[0] = MODE_SELECT_10;
1831 cmd[7] = len >> 8;
1832 cmd[8] = len;
1833 } else {
1834 if (len > 255 || data->block_descriptor_length > 255 ||
1835 data->longlba)
1836 return -EINVAL;
1838 real_buffer = kmalloc(4 + len, GFP_KERNEL);
1839 if (!real_buffer)
1840 return -ENOMEM;
1841 memcpy(real_buffer + 4, buffer, len);
1842 len += 4;
1843 real_buffer[0] = 0;
1844 real_buffer[1] = data->medium_type;
1845 real_buffer[2] = data->device_specific;
1846 real_buffer[3] = data->block_descriptor_length;
1849 cmd[0] = MODE_SELECT;
1850 cmd[4] = len;
1853 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
1854 sshdr, timeout, retries, NULL);
1855 kfree(real_buffer);
1856 return ret;
1858 EXPORT_SYMBOL_GPL(scsi_mode_select);
1861 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1862 * @sdev: SCSI device to be queried
1863 * @dbd: set if mode sense will allow block descriptors to be returned
1864 * @modepage: mode page being requested
1865 * @buffer: request buffer (may not be smaller than eight bytes)
1866 * @len: length of request buffer.
1867 * @timeout: command timeout
1868 * @retries: number of retries before failing
1869 * @data: returns a structure abstracting the mode header data
1870 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1871 * must be SCSI_SENSE_BUFFERSIZE big.
1873 * Returns zero if unsuccessful, or the header offset (either 4
1874 * or 8 depending on whether a six or ten byte command was
1875 * issued) if successful.
1878 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
1879 unsigned char *buffer, int len, int timeout, int retries,
1880 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
1882 unsigned char cmd[12];
1883 int use_10_for_ms;
1884 int header_length;
1885 int result;
1886 struct scsi_sense_hdr my_sshdr;
1888 memset(data, 0, sizeof(*data));
1889 memset(&cmd[0], 0, 12);
1890 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
1891 cmd[2] = modepage;
1893 /* caller might not be interested in sense, but we need it */
1894 if (!sshdr)
1895 sshdr = &my_sshdr;
1897 retry:
1898 use_10_for_ms = sdev->use_10_for_ms;
1900 if (use_10_for_ms) {
1901 if (len < 8)
1902 len = 8;
1904 cmd[0] = MODE_SENSE_10;
1905 cmd[8] = len;
1906 header_length = 8;
1907 } else {
1908 if (len < 4)
1909 len = 4;
1911 cmd[0] = MODE_SENSE;
1912 cmd[4] = len;
1913 header_length = 4;
1916 memset(buffer, 0, len);
1918 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
1919 sshdr, timeout, retries, NULL);
1921 /* This code looks awful: what it's doing is making sure an
1922 * ILLEGAL REQUEST sense return identifies the actual command
1923 * byte as the problem. MODE_SENSE commands can return
1924 * ILLEGAL REQUEST if the code page isn't supported */
1926 if (use_10_for_ms && !scsi_status_is_good(result) &&
1927 (driver_byte(result) & DRIVER_SENSE)) {
1928 if (scsi_sense_valid(sshdr)) {
1929 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
1930 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
1932 * Invalid command operation code
1934 sdev->use_10_for_ms = 0;
1935 goto retry;
1940 if(scsi_status_is_good(result)) {
1941 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
1942 (modepage == 6 || modepage == 8))) {
1943 /* Initio breakage? */
1944 header_length = 0;
1945 data->length = 13;
1946 data->medium_type = 0;
1947 data->device_specific = 0;
1948 data->longlba = 0;
1949 data->block_descriptor_length = 0;
1950 } else if(use_10_for_ms) {
1951 data->length = buffer[0]*256 + buffer[1] + 2;
1952 data->medium_type = buffer[2];
1953 data->device_specific = buffer[3];
1954 data->longlba = buffer[4] & 0x01;
1955 data->block_descriptor_length = buffer[6]*256
1956 + buffer[7];
1957 } else {
1958 data->length = buffer[0] + 1;
1959 data->medium_type = buffer[1];
1960 data->device_specific = buffer[2];
1961 data->block_descriptor_length = buffer[3];
1963 data->header_length = header_length;
1966 return result;
1968 EXPORT_SYMBOL(scsi_mode_sense);
1971 * scsi_test_unit_ready - test if unit is ready
1972 * @sdev: scsi device to change the state of.
1973 * @timeout: command timeout
1974 * @retries: number of retries before failing
1975 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
1976 * returning sense. Make sure that this is cleared before passing
1977 * in.
1979 * Returns zero if unsuccessful or an error if TUR failed. For
1980 * removable media, a return of NOT_READY or UNIT_ATTENTION is
1981 * translated to success, with the ->changed flag updated.
1984 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
1985 struct scsi_sense_hdr *sshdr_external)
1987 char cmd[] = {
1988 TEST_UNIT_READY, 0, 0, 0, 0, 0,
1990 struct scsi_sense_hdr *sshdr;
1991 int result;
1993 if (!sshdr_external)
1994 sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
1995 else
1996 sshdr = sshdr_external;
1998 /* try to eat the UNIT_ATTENTION if there are enough retries */
1999 do {
2000 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2001 timeout, retries, NULL);
2002 if (sdev->removable && scsi_sense_valid(sshdr) &&
2003 sshdr->sense_key == UNIT_ATTENTION)
2004 sdev->changed = 1;
2005 } while (scsi_sense_valid(sshdr) &&
2006 sshdr->sense_key == UNIT_ATTENTION && --retries);
2008 if (!sshdr)
2009 /* could not allocate sense buffer, so can't process it */
2010 return result;
2012 if (sdev->removable && scsi_sense_valid(sshdr) &&
2013 (sshdr->sense_key == UNIT_ATTENTION ||
2014 sshdr->sense_key == NOT_READY)) {
2015 sdev->changed = 1;
2016 result = 0;
2018 if (!sshdr_external)
2019 kfree(sshdr);
2020 return result;
2022 EXPORT_SYMBOL(scsi_test_unit_ready);
2025 * scsi_device_set_state - Take the given device through the device state model.
2026 * @sdev: scsi device to change the state of.
2027 * @state: state to change to.
2029 * Returns zero if unsuccessful or an error if the requested
2030 * transition is illegal.
2033 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2035 enum scsi_device_state oldstate = sdev->sdev_state;
2037 if (state == oldstate)
2038 return 0;
2040 switch (state) {
2041 case SDEV_CREATED:
2042 switch (oldstate) {
2043 case SDEV_CREATED_BLOCK:
2044 break;
2045 default:
2046 goto illegal;
2048 break;
2050 case SDEV_RUNNING:
2051 switch (oldstate) {
2052 case SDEV_CREATED:
2053 case SDEV_OFFLINE:
2054 case SDEV_QUIESCE:
2055 case SDEV_BLOCK:
2056 break;
2057 default:
2058 goto illegal;
2060 break;
2062 case SDEV_QUIESCE:
2063 switch (oldstate) {
2064 case SDEV_RUNNING:
2065 case SDEV_OFFLINE:
2066 break;
2067 default:
2068 goto illegal;
2070 break;
2072 case SDEV_OFFLINE:
2073 switch (oldstate) {
2074 case SDEV_CREATED:
2075 case SDEV_RUNNING:
2076 case SDEV_QUIESCE:
2077 case SDEV_BLOCK:
2078 break;
2079 default:
2080 goto illegal;
2082 break;
2084 case SDEV_BLOCK:
2085 switch (oldstate) {
2086 case SDEV_RUNNING:
2087 case SDEV_CREATED_BLOCK:
2088 break;
2089 default:
2090 goto illegal;
2092 break;
2094 case SDEV_CREATED_BLOCK:
2095 switch (oldstate) {
2096 case SDEV_CREATED:
2097 break;
2098 default:
2099 goto illegal;
2101 break;
2103 case SDEV_CANCEL:
2104 switch (oldstate) {
2105 case SDEV_CREATED:
2106 case SDEV_RUNNING:
2107 case SDEV_QUIESCE:
2108 case SDEV_OFFLINE:
2109 case SDEV_BLOCK:
2110 break;
2111 default:
2112 goto illegal;
2114 break;
2116 case SDEV_DEL:
2117 switch (oldstate) {
2118 case SDEV_CREATED:
2119 case SDEV_RUNNING:
2120 case SDEV_OFFLINE:
2121 case SDEV_CANCEL:
2122 break;
2123 default:
2124 goto illegal;
2126 break;
2129 sdev->sdev_state = state;
2130 return 0;
2132 illegal:
2133 SCSI_LOG_ERROR_RECOVERY(1,
2134 sdev_printk(KERN_ERR, sdev,
2135 "Illegal state transition %s->%s\n",
2136 scsi_device_state_name(oldstate),
2137 scsi_device_state_name(state))
2139 return -EINVAL;
2141 EXPORT_SYMBOL(scsi_device_set_state);
2144 * sdev_evt_emit - emit a single SCSI device uevent
2145 * @sdev: associated SCSI device
2146 * @evt: event to emit
2148 * Send a single uevent (scsi_event) to the associated scsi_device.
2150 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2152 int idx = 0;
2153 char *envp[3];
2155 switch (evt->evt_type) {
2156 case SDEV_EVT_MEDIA_CHANGE:
2157 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2158 break;
2160 default:
2161 /* do nothing */
2162 break;
2165 envp[idx++] = NULL;
2167 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2171 * sdev_evt_thread - send a uevent for each scsi event
2172 * @work: work struct for scsi_device
2174 * Dispatch queued events to their associated scsi_device kobjects
2175 * as uevents.
2177 void scsi_evt_thread(struct work_struct *work)
2179 struct scsi_device *sdev;
2180 LIST_HEAD(event_list);
2182 sdev = container_of(work, struct scsi_device, event_work);
2184 while (1) {
2185 struct scsi_event *evt;
2186 struct list_head *this, *tmp;
2187 unsigned long flags;
2189 spin_lock_irqsave(&sdev->list_lock, flags);
2190 list_splice_init(&sdev->event_list, &event_list);
2191 spin_unlock_irqrestore(&sdev->list_lock, flags);
2193 if (list_empty(&event_list))
2194 break;
2196 list_for_each_safe(this, tmp, &event_list) {
2197 evt = list_entry(this, struct scsi_event, node);
2198 list_del(&evt->node);
2199 scsi_evt_emit(sdev, evt);
2200 kfree(evt);
2206 * sdev_evt_send - send asserted event to uevent thread
2207 * @sdev: scsi_device event occurred on
2208 * @evt: event to send
2210 * Assert scsi device event asynchronously.
2212 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2214 unsigned long flags;
2216 #if 0
2217 /* FIXME: currently this check eliminates all media change events
2218 * for polled devices. Need to update to discriminate between AN
2219 * and polled events */
2220 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2221 kfree(evt);
2222 return;
2224 #endif
2226 spin_lock_irqsave(&sdev->list_lock, flags);
2227 list_add_tail(&evt->node, &sdev->event_list);
2228 schedule_work(&sdev->event_work);
2229 spin_unlock_irqrestore(&sdev->list_lock, flags);
2231 EXPORT_SYMBOL_GPL(sdev_evt_send);
2234 * sdev_evt_alloc - allocate a new scsi event
2235 * @evt_type: type of event to allocate
2236 * @gfpflags: GFP flags for allocation
2238 * Allocates and returns a new scsi_event.
2240 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2241 gfp_t gfpflags)
2243 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2244 if (!evt)
2245 return NULL;
2247 evt->evt_type = evt_type;
2248 INIT_LIST_HEAD(&evt->node);
2250 /* evt_type-specific initialization, if any */
2251 switch (evt_type) {
2252 case SDEV_EVT_MEDIA_CHANGE:
2253 default:
2254 /* do nothing */
2255 break;
2258 return evt;
2260 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2263 * sdev_evt_send_simple - send asserted event to uevent thread
2264 * @sdev: scsi_device event occurred on
2265 * @evt_type: type of event to send
2266 * @gfpflags: GFP flags for allocation
2268 * Assert scsi device event asynchronously, given an event type.
2270 void sdev_evt_send_simple(struct scsi_device *sdev,
2271 enum scsi_device_event evt_type, gfp_t gfpflags)
2273 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2274 if (!evt) {
2275 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2276 evt_type);
2277 return;
2280 sdev_evt_send(sdev, evt);
2282 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2285 * scsi_device_quiesce - Block user issued commands.
2286 * @sdev: scsi device to quiesce.
2288 * This works by trying to transition to the SDEV_QUIESCE state
2289 * (which must be a legal transition). When the device is in this
2290 * state, only special requests will be accepted, all others will
2291 * be deferred. Since special requests may also be requeued requests,
2292 * a successful return doesn't guarantee the device will be
2293 * totally quiescent.
2295 * Must be called with user context, may sleep.
2297 * Returns zero if unsuccessful or an error if not.
2300 scsi_device_quiesce(struct scsi_device *sdev)
2302 int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2303 if (err)
2304 return err;
2306 scsi_run_queue(sdev->request_queue);
2307 while (sdev->device_busy) {
2308 msleep_interruptible(200);
2309 scsi_run_queue(sdev->request_queue);
2311 return 0;
2313 EXPORT_SYMBOL(scsi_device_quiesce);
2316 * scsi_device_resume - Restart user issued commands to a quiesced device.
2317 * @sdev: scsi device to resume.
2319 * Moves the device from quiesced back to running and restarts the
2320 * queues.
2322 * Must be called with user context, may sleep.
2324 void
2325 scsi_device_resume(struct scsi_device *sdev)
2327 if(scsi_device_set_state(sdev, SDEV_RUNNING))
2328 return;
2329 scsi_run_queue(sdev->request_queue);
2331 EXPORT_SYMBOL(scsi_device_resume);
2333 static void
2334 device_quiesce_fn(struct scsi_device *sdev, void *data)
2336 scsi_device_quiesce(sdev);
2339 void
2340 scsi_target_quiesce(struct scsi_target *starget)
2342 starget_for_each_device(starget, NULL, device_quiesce_fn);
2344 EXPORT_SYMBOL(scsi_target_quiesce);
2346 static void
2347 device_resume_fn(struct scsi_device *sdev, void *data)
2349 scsi_device_resume(sdev);
2352 void
2353 scsi_target_resume(struct scsi_target *starget)
2355 starget_for_each_device(starget, NULL, device_resume_fn);
2357 EXPORT_SYMBOL(scsi_target_resume);
2360 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2361 * @sdev: device to block
2363 * Block request made by scsi lld's to temporarily stop all
2364 * scsi commands on the specified device. Called from interrupt
2365 * or normal process context.
2367 * Returns zero if successful or error if not
2369 * Notes:
2370 * This routine transitions the device to the SDEV_BLOCK state
2371 * (which must be a legal transition). When the device is in this
2372 * state, all commands are deferred until the scsi lld reenables
2373 * the device with scsi_device_unblock or device_block_tmo fires.
2374 * This routine assumes the host_lock is held on entry.
2377 scsi_internal_device_block(struct scsi_device *sdev)
2379 struct request_queue *q = sdev->request_queue;
2380 unsigned long flags;
2381 int err = 0;
2383 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2384 if (err) {
2385 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2387 if (err)
2388 return err;
2392 * The device has transitioned to SDEV_BLOCK. Stop the
2393 * block layer from calling the midlayer with this device's
2394 * request queue.
2396 spin_lock_irqsave(q->queue_lock, flags);
2397 blk_stop_queue(q);
2398 spin_unlock_irqrestore(q->queue_lock, flags);
2400 return 0;
2402 EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2405 * scsi_internal_device_unblock - resume a device after a block request
2406 * @sdev: device to resume
2408 * Called by scsi lld's or the midlayer to restart the device queue
2409 * for the previously suspended scsi device. Called from interrupt or
2410 * normal process context.
2412 * Returns zero if successful or error if not.
2414 * Notes:
2415 * This routine transitions the device to the SDEV_RUNNING state
2416 * (which must be a legal transition) allowing the midlayer to
2417 * goose the queue for this device. This routine assumes the
2418 * host_lock is held upon entry.
2421 scsi_internal_device_unblock(struct scsi_device *sdev)
2423 struct request_queue *q = sdev->request_queue;
2424 unsigned long flags;
2427 * Try to transition the scsi device to SDEV_RUNNING
2428 * and goose the device queue if successful.
2430 if (sdev->sdev_state == SDEV_BLOCK)
2431 sdev->sdev_state = SDEV_RUNNING;
2432 else if (sdev->sdev_state == SDEV_CREATED_BLOCK)
2433 sdev->sdev_state = SDEV_CREATED;
2434 else if (sdev->sdev_state != SDEV_CANCEL &&
2435 sdev->sdev_state != SDEV_OFFLINE)
2436 return -EINVAL;
2438 spin_lock_irqsave(q->queue_lock, flags);
2439 blk_start_queue(q);
2440 spin_unlock_irqrestore(q->queue_lock, flags);
2442 return 0;
2444 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
2446 static void
2447 device_block(struct scsi_device *sdev, void *data)
2449 scsi_internal_device_block(sdev);
2452 static int
2453 target_block(struct device *dev, void *data)
2455 if (scsi_is_target_device(dev))
2456 starget_for_each_device(to_scsi_target(dev), NULL,
2457 device_block);
2458 return 0;
2461 void
2462 scsi_target_block(struct device *dev)
2464 if (scsi_is_target_device(dev))
2465 starget_for_each_device(to_scsi_target(dev), NULL,
2466 device_block);
2467 else
2468 device_for_each_child(dev, NULL, target_block);
2470 EXPORT_SYMBOL_GPL(scsi_target_block);
2472 static void
2473 device_unblock(struct scsi_device *sdev, void *data)
2475 scsi_internal_device_unblock(sdev);
2478 static int
2479 target_unblock(struct device *dev, void *data)
2481 if (scsi_is_target_device(dev))
2482 starget_for_each_device(to_scsi_target(dev), NULL,
2483 device_unblock);
2484 return 0;
2487 void
2488 scsi_target_unblock(struct device *dev)
2490 if (scsi_is_target_device(dev))
2491 starget_for_each_device(to_scsi_target(dev), NULL,
2492 device_unblock);
2493 else
2494 device_for_each_child(dev, NULL, target_unblock);
2496 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2499 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2500 * @sgl: scatter-gather list
2501 * @sg_count: number of segments in sg
2502 * @offset: offset in bytes into sg, on return offset into the mapped area
2503 * @len: bytes to map, on return number of bytes mapped
2505 * Returns virtual address of the start of the mapped page
2507 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2508 size_t *offset, size_t *len)
2510 int i;
2511 size_t sg_len = 0, len_complete = 0;
2512 struct scatterlist *sg;
2513 struct page *page;
2515 WARN_ON(!irqs_disabled());
2517 for_each_sg(sgl, sg, sg_count, i) {
2518 len_complete = sg_len; /* Complete sg-entries */
2519 sg_len += sg->length;
2520 if (sg_len > *offset)
2521 break;
2524 if (unlikely(i == sg_count)) {
2525 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2526 "elements %d\n",
2527 __func__, sg_len, *offset, sg_count);
2528 WARN_ON(1);
2529 return NULL;
2532 /* Offset starting from the beginning of first page in this sg-entry */
2533 *offset = *offset - len_complete + sg->offset;
2535 /* Assumption: contiguous pages can be accessed as "page + i" */
2536 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2537 *offset &= ~PAGE_MASK;
2539 /* Bytes in this sg-entry from *offset to the end of the page */
2540 sg_len = PAGE_SIZE - *offset;
2541 if (*len > sg_len)
2542 *len = sg_len;
2544 return kmap_atomic(page, KM_BIO_SRC_IRQ);
2546 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2549 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2550 * @virt: virtual address to be unmapped
2552 void scsi_kunmap_atomic_sg(void *virt)
2554 kunmap_atomic(virt, KM_BIO_SRC_IRQ);
2556 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);