bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / drivers / block / pktcdvd.c
blobc61d20c9f3f8092f3aed69d859f137e7d67aef33
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
12 * Theory of operation:
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
45 *************************************************************************/
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <linux/backing-dev.h>
65 #include <scsi/scsi_cmnd.h>
66 #include <scsi/scsi_ioctl.h>
67 #include <scsi/scsi.h>
68 #include <linux/debugfs.h>
69 #include <linux/device.h>
71 #include <linux/uaccess.h>
73 #define DRIVER_NAME "pktcdvd"
75 #define pkt_err(pd, fmt, ...) \
76 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
77 #define pkt_notice(pd, fmt, ...) \
78 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
79 #define pkt_info(pd, fmt, ...) \
80 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
82 #define pkt_dbg(level, pd, fmt, ...) \
83 do { \
84 if (level == 2 && PACKET_DEBUG >= 2) \
85 pr_notice("%s: %s():" fmt, \
86 pd->name, __func__, ##__VA_ARGS__); \
87 else if (level == 1 && PACKET_DEBUG >= 1) \
88 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \
89 } while (0)
91 #define MAX_SPEED 0xffff
93 static DEFINE_MUTEX(pktcdvd_mutex);
94 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
95 static struct proc_dir_entry *pkt_proc;
96 static int pktdev_major;
97 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
98 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
99 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
100 static mempool_t *psd_pool;
101 static struct bio_set *pkt_bio_set;
103 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
104 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
106 /* forward declaration */
107 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
108 static int pkt_remove_dev(dev_t pkt_dev);
109 static int pkt_seq_show(struct seq_file *m, void *p);
111 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
113 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
117 * create and register a pktcdvd kernel object.
119 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
120 const char* name,
121 struct kobject* parent,
122 struct kobj_type* ktype)
124 struct pktcdvd_kobj *p;
125 int error;
127 p = kzalloc(sizeof(*p), GFP_KERNEL);
128 if (!p)
129 return NULL;
130 p->pd = pd;
131 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
132 if (error) {
133 kobject_put(&p->kobj);
134 return NULL;
136 kobject_uevent(&p->kobj, KOBJ_ADD);
137 return p;
140 * remove a pktcdvd kernel object.
142 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
144 if (p)
145 kobject_put(&p->kobj);
148 * default release function for pktcdvd kernel objects.
150 static void pkt_kobj_release(struct kobject *kobj)
152 kfree(to_pktcdvdkobj(kobj));
156 /**********************************************************
158 * sysfs interface for pktcdvd
159 * by (C) 2006 Thomas Maier <balagi@justmail.de>
161 **********************************************************/
163 #define DEF_ATTR(_obj,_name,_mode) \
164 static struct attribute _obj = { .name = _name, .mode = _mode }
166 /**********************************************************
167 /sys/class/pktcdvd/pktcdvd[0-7]/
168 stat/reset
169 stat/packets_started
170 stat/packets_finished
171 stat/kb_written
172 stat/kb_read
173 stat/kb_read_gather
174 write_queue/size
175 write_queue/congestion_off
176 write_queue/congestion_on
177 **********************************************************/
179 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
180 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
181 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
182 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
183 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
184 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
186 static struct attribute *kobj_pkt_attrs_stat[] = {
187 &kobj_pkt_attr_st1,
188 &kobj_pkt_attr_st2,
189 &kobj_pkt_attr_st3,
190 &kobj_pkt_attr_st4,
191 &kobj_pkt_attr_st5,
192 &kobj_pkt_attr_st6,
193 NULL
196 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
197 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
198 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
200 static struct attribute *kobj_pkt_attrs_wqueue[] = {
201 &kobj_pkt_attr_wq1,
202 &kobj_pkt_attr_wq2,
203 &kobj_pkt_attr_wq3,
204 NULL
207 static ssize_t kobj_pkt_show(struct kobject *kobj,
208 struct attribute *attr, char *data)
210 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
211 int n = 0;
212 int v;
213 if (strcmp(attr->name, "packets_started") == 0) {
214 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
216 } else if (strcmp(attr->name, "packets_finished") == 0) {
217 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
219 } else if (strcmp(attr->name, "kb_written") == 0) {
220 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
222 } else if (strcmp(attr->name, "kb_read") == 0) {
223 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
225 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
226 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
228 } else if (strcmp(attr->name, "size") == 0) {
229 spin_lock(&pd->lock);
230 v = pd->bio_queue_size;
231 spin_unlock(&pd->lock);
232 n = sprintf(data, "%d\n", v);
234 } else if (strcmp(attr->name, "congestion_off") == 0) {
235 spin_lock(&pd->lock);
236 v = pd->write_congestion_off;
237 spin_unlock(&pd->lock);
238 n = sprintf(data, "%d\n", v);
240 } else if (strcmp(attr->name, "congestion_on") == 0) {
241 spin_lock(&pd->lock);
242 v = pd->write_congestion_on;
243 spin_unlock(&pd->lock);
244 n = sprintf(data, "%d\n", v);
246 return n;
249 static void init_write_congestion_marks(int* lo, int* hi)
251 if (*hi > 0) {
252 *hi = max(*hi, 500);
253 *hi = min(*hi, 1000000);
254 if (*lo <= 0)
255 *lo = *hi - 100;
256 else {
257 *lo = min(*lo, *hi - 100);
258 *lo = max(*lo, 100);
260 } else {
261 *hi = -1;
262 *lo = -1;
266 static ssize_t kobj_pkt_store(struct kobject *kobj,
267 struct attribute *attr,
268 const char *data, size_t len)
270 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
271 int val;
273 if (strcmp(attr->name, "reset") == 0 && len > 0) {
274 pd->stats.pkt_started = 0;
275 pd->stats.pkt_ended = 0;
276 pd->stats.secs_w = 0;
277 pd->stats.secs_rg = 0;
278 pd->stats.secs_r = 0;
280 } else if (strcmp(attr->name, "congestion_off") == 0
281 && sscanf(data, "%d", &val) == 1) {
282 spin_lock(&pd->lock);
283 pd->write_congestion_off = val;
284 init_write_congestion_marks(&pd->write_congestion_off,
285 &pd->write_congestion_on);
286 spin_unlock(&pd->lock);
288 } else if (strcmp(attr->name, "congestion_on") == 0
289 && sscanf(data, "%d", &val) == 1) {
290 spin_lock(&pd->lock);
291 pd->write_congestion_on = val;
292 init_write_congestion_marks(&pd->write_congestion_off,
293 &pd->write_congestion_on);
294 spin_unlock(&pd->lock);
296 return len;
299 static const struct sysfs_ops kobj_pkt_ops = {
300 .show = kobj_pkt_show,
301 .store = kobj_pkt_store
303 static struct kobj_type kobj_pkt_type_stat = {
304 .release = pkt_kobj_release,
305 .sysfs_ops = &kobj_pkt_ops,
306 .default_attrs = kobj_pkt_attrs_stat
308 static struct kobj_type kobj_pkt_type_wqueue = {
309 .release = pkt_kobj_release,
310 .sysfs_ops = &kobj_pkt_ops,
311 .default_attrs = kobj_pkt_attrs_wqueue
314 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
316 if (class_pktcdvd) {
317 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
318 "%s", pd->name);
319 if (IS_ERR(pd->dev))
320 pd->dev = NULL;
322 if (pd->dev) {
323 pd->kobj_stat = pkt_kobj_create(pd, "stat",
324 &pd->dev->kobj,
325 &kobj_pkt_type_stat);
326 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
327 &pd->dev->kobj,
328 &kobj_pkt_type_wqueue);
332 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
334 pkt_kobj_remove(pd->kobj_stat);
335 pkt_kobj_remove(pd->kobj_wqueue);
336 if (class_pktcdvd)
337 device_unregister(pd->dev);
341 /********************************************************************
342 /sys/class/pktcdvd/
343 add map block device
344 remove unmap packet dev
345 device_map show mappings
346 *******************************************************************/
348 static void class_pktcdvd_release(struct class *cls)
350 kfree(cls);
353 static ssize_t device_map_show(struct class *c, struct class_attribute *attr,
354 char *data)
356 int n = 0;
357 int idx;
358 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
359 for (idx = 0; idx < MAX_WRITERS; idx++) {
360 struct pktcdvd_device *pd = pkt_devs[idx];
361 if (!pd)
362 continue;
363 n += sprintf(data+n, "%s %u:%u %u:%u\n",
364 pd->name,
365 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
366 MAJOR(pd->bdev->bd_dev),
367 MINOR(pd->bdev->bd_dev));
369 mutex_unlock(&ctl_mutex);
370 return n;
372 static CLASS_ATTR_RO(device_map);
374 static ssize_t add_store(struct class *c, struct class_attribute *attr,
375 const char *buf, size_t count)
377 unsigned int major, minor;
379 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
380 /* pkt_setup_dev() expects caller to hold reference to self */
381 if (!try_module_get(THIS_MODULE))
382 return -ENODEV;
384 pkt_setup_dev(MKDEV(major, minor), NULL);
386 module_put(THIS_MODULE);
388 return count;
391 return -EINVAL;
393 static CLASS_ATTR_WO(add);
395 static ssize_t remove_store(struct class *c, struct class_attribute *attr,
396 const char *buf, size_t count)
398 unsigned int major, minor;
399 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
400 pkt_remove_dev(MKDEV(major, minor));
401 return count;
403 return -EINVAL;
405 static CLASS_ATTR_WO(remove);
407 static struct attribute *class_pktcdvd_attrs[] = {
408 &class_attr_add.attr,
409 &class_attr_remove.attr,
410 &class_attr_device_map.attr,
411 NULL,
413 ATTRIBUTE_GROUPS(class_pktcdvd);
415 static int pkt_sysfs_init(void)
417 int ret = 0;
420 * create control files in sysfs
421 * /sys/class/pktcdvd/...
423 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
424 if (!class_pktcdvd)
425 return -ENOMEM;
426 class_pktcdvd->name = DRIVER_NAME;
427 class_pktcdvd->owner = THIS_MODULE;
428 class_pktcdvd->class_release = class_pktcdvd_release;
429 class_pktcdvd->class_groups = class_pktcdvd_groups;
430 ret = class_register(class_pktcdvd);
431 if (ret) {
432 kfree(class_pktcdvd);
433 class_pktcdvd = NULL;
434 pr_err("failed to create class pktcdvd\n");
435 return ret;
437 return 0;
440 static void pkt_sysfs_cleanup(void)
442 if (class_pktcdvd)
443 class_destroy(class_pktcdvd);
444 class_pktcdvd = NULL;
447 /********************************************************************
448 entries in debugfs
450 /sys/kernel/debug/pktcdvd[0-7]/
451 info
453 *******************************************************************/
455 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
457 return pkt_seq_show(m, p);
460 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
462 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
465 static const struct file_operations debug_fops = {
466 .open = pkt_debugfs_fops_open,
467 .read = seq_read,
468 .llseek = seq_lseek,
469 .release = single_release,
470 .owner = THIS_MODULE,
473 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
475 if (!pkt_debugfs_root)
476 return;
477 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
478 if (!pd->dfs_d_root)
479 return;
481 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
482 pd->dfs_d_root, pd, &debug_fops);
485 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
487 if (!pkt_debugfs_root)
488 return;
489 debugfs_remove(pd->dfs_f_info);
490 debugfs_remove(pd->dfs_d_root);
491 pd->dfs_f_info = NULL;
492 pd->dfs_d_root = NULL;
495 static void pkt_debugfs_init(void)
497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
500 static void pkt_debugfs_cleanup(void)
502 debugfs_remove(pkt_debugfs_root);
503 pkt_debugfs_root = NULL;
506 /* ----------------------------------------------------------*/
509 static void pkt_bio_finished(struct pktcdvd_device *pd)
511 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
512 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
513 pkt_dbg(2, pd, "queue empty\n");
514 atomic_set(&pd->iosched.attention, 1);
515 wake_up(&pd->wqueue);
520 * Allocate a packet_data struct
522 static struct packet_data *pkt_alloc_packet_data(int frames)
524 int i;
525 struct packet_data *pkt;
527 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
528 if (!pkt)
529 goto no_pkt;
531 pkt->frames = frames;
532 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
533 if (!pkt->w_bio)
534 goto no_bio;
536 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
537 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
538 if (!pkt->pages[i])
539 goto no_page;
542 spin_lock_init(&pkt->lock);
543 bio_list_init(&pkt->orig_bios);
545 for (i = 0; i < frames; i++) {
546 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
547 if (!bio)
548 goto no_rd_bio;
550 pkt->r_bios[i] = bio;
553 return pkt;
555 no_rd_bio:
556 for (i = 0; i < frames; i++) {
557 struct bio *bio = pkt->r_bios[i];
558 if (bio)
559 bio_put(bio);
562 no_page:
563 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
564 if (pkt->pages[i])
565 __free_page(pkt->pages[i]);
566 bio_put(pkt->w_bio);
567 no_bio:
568 kfree(pkt);
569 no_pkt:
570 return NULL;
574 * Free a packet_data struct
576 static void pkt_free_packet_data(struct packet_data *pkt)
578 int i;
580 for (i = 0; i < pkt->frames; i++) {
581 struct bio *bio = pkt->r_bios[i];
582 if (bio)
583 bio_put(bio);
585 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
586 __free_page(pkt->pages[i]);
587 bio_put(pkt->w_bio);
588 kfree(pkt);
591 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
593 struct packet_data *pkt, *next;
595 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
597 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
598 pkt_free_packet_data(pkt);
600 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
603 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
605 struct packet_data *pkt;
607 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
609 while (nr_packets > 0) {
610 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
611 if (!pkt) {
612 pkt_shrink_pktlist(pd);
613 return 0;
615 pkt->id = nr_packets;
616 pkt->pd = pd;
617 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
618 nr_packets--;
620 return 1;
623 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
625 struct rb_node *n = rb_next(&node->rb_node);
626 if (!n)
627 return NULL;
628 return rb_entry(n, struct pkt_rb_node, rb_node);
631 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
633 rb_erase(&node->rb_node, &pd->bio_queue);
634 mempool_free(node, pd->rb_pool);
635 pd->bio_queue_size--;
636 BUG_ON(pd->bio_queue_size < 0);
640 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
642 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
644 struct rb_node *n = pd->bio_queue.rb_node;
645 struct rb_node *next;
646 struct pkt_rb_node *tmp;
648 if (!n) {
649 BUG_ON(pd->bio_queue_size > 0);
650 return NULL;
653 for (;;) {
654 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
655 if (s <= tmp->bio->bi_iter.bi_sector)
656 next = n->rb_left;
657 else
658 next = n->rb_right;
659 if (!next)
660 break;
661 n = next;
664 if (s > tmp->bio->bi_iter.bi_sector) {
665 tmp = pkt_rbtree_next(tmp);
666 if (!tmp)
667 return NULL;
669 BUG_ON(s > tmp->bio->bi_iter.bi_sector);
670 return tmp;
674 * Insert a node into the pd->bio_queue rb tree.
676 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
678 struct rb_node **p = &pd->bio_queue.rb_node;
679 struct rb_node *parent = NULL;
680 sector_t s = node->bio->bi_iter.bi_sector;
681 struct pkt_rb_node *tmp;
683 while (*p) {
684 parent = *p;
685 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
686 if (s < tmp->bio->bi_iter.bi_sector)
687 p = &(*p)->rb_left;
688 else
689 p = &(*p)->rb_right;
691 rb_link_node(&node->rb_node, parent, p);
692 rb_insert_color(&node->rb_node, &pd->bio_queue);
693 pd->bio_queue_size++;
697 * Send a packet_command to the underlying block device and
698 * wait for completion.
700 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
702 struct request_queue *q = bdev_get_queue(pd->bdev);
703 struct request *rq;
704 int ret = 0;
706 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
707 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, __GFP_RECLAIM);
708 if (IS_ERR(rq))
709 return PTR_ERR(rq);
711 if (cgc->buflen) {
712 ret = blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen,
713 __GFP_RECLAIM);
714 if (ret)
715 goto out;
718 scsi_req(rq)->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
719 memcpy(scsi_req(rq)->cmd, cgc->cmd, CDROM_PACKET_SIZE);
721 rq->timeout = 60*HZ;
722 if (cgc->quiet)
723 rq->rq_flags |= RQF_QUIET;
725 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
726 if (scsi_req(rq)->result)
727 ret = -EIO;
728 out:
729 blk_put_request(rq);
730 return ret;
733 static const char *sense_key_string(__u8 index)
735 static const char * const info[] = {
736 "No sense", "Recovered error", "Not ready",
737 "Medium error", "Hardware error", "Illegal request",
738 "Unit attention", "Data protect", "Blank check",
741 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
745 * A generic sense dump / resolve mechanism should be implemented across
746 * all ATAPI + SCSI devices.
748 static void pkt_dump_sense(struct pktcdvd_device *pd,
749 struct packet_command *cgc)
751 struct request_sense *sense = cgc->sense;
753 if (sense)
754 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
755 CDROM_PACKET_SIZE, cgc->cmd,
756 sense->sense_key, sense->asc, sense->ascq,
757 sense_key_string(sense->sense_key));
758 else
759 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
763 * flush the drive cache to media
765 static int pkt_flush_cache(struct pktcdvd_device *pd)
767 struct packet_command cgc;
769 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
770 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
771 cgc.quiet = 1;
774 * the IMMED bit -- we default to not setting it, although that
775 * would allow a much faster close, this is safer
777 #if 0
778 cgc.cmd[1] = 1 << 1;
779 #endif
780 return pkt_generic_packet(pd, &cgc);
784 * speed is given as the normal factor, e.g. 4 for 4x
786 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
787 unsigned write_speed, unsigned read_speed)
789 struct packet_command cgc;
790 struct request_sense sense;
791 int ret;
793 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
794 cgc.sense = &sense;
795 cgc.cmd[0] = GPCMD_SET_SPEED;
796 cgc.cmd[2] = (read_speed >> 8) & 0xff;
797 cgc.cmd[3] = read_speed & 0xff;
798 cgc.cmd[4] = (write_speed >> 8) & 0xff;
799 cgc.cmd[5] = write_speed & 0xff;
801 if ((ret = pkt_generic_packet(pd, &cgc)))
802 pkt_dump_sense(pd, &cgc);
804 return ret;
808 * Queue a bio for processing by the low-level CD device. Must be called
809 * from process context.
811 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
813 spin_lock(&pd->iosched.lock);
814 if (bio_data_dir(bio) == READ)
815 bio_list_add(&pd->iosched.read_queue, bio);
816 else
817 bio_list_add(&pd->iosched.write_queue, bio);
818 spin_unlock(&pd->iosched.lock);
820 atomic_set(&pd->iosched.attention, 1);
821 wake_up(&pd->wqueue);
825 * Process the queued read/write requests. This function handles special
826 * requirements for CDRW drives:
827 * - A cache flush command must be inserted before a read request if the
828 * previous request was a write.
829 * - Switching between reading and writing is slow, so don't do it more often
830 * than necessary.
831 * - Optimize for throughput at the expense of latency. This means that streaming
832 * writes will never be interrupted by a read, but if the drive has to seek
833 * before the next write, switch to reading instead if there are any pending
834 * read requests.
835 * - Set the read speed according to current usage pattern. When only reading
836 * from the device, it's best to use the highest possible read speed, but
837 * when switching often between reading and writing, it's better to have the
838 * same read and write speeds.
840 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
843 if (atomic_read(&pd->iosched.attention) == 0)
844 return;
845 atomic_set(&pd->iosched.attention, 0);
847 for (;;) {
848 struct bio *bio;
849 int reads_queued, writes_queued;
851 spin_lock(&pd->iosched.lock);
852 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
853 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
854 spin_unlock(&pd->iosched.lock);
856 if (!reads_queued && !writes_queued)
857 break;
859 if (pd->iosched.writing) {
860 int need_write_seek = 1;
861 spin_lock(&pd->iosched.lock);
862 bio = bio_list_peek(&pd->iosched.write_queue);
863 spin_unlock(&pd->iosched.lock);
864 if (bio && (bio->bi_iter.bi_sector ==
865 pd->iosched.last_write))
866 need_write_seek = 0;
867 if (need_write_seek && reads_queued) {
868 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
869 pkt_dbg(2, pd, "write, waiting\n");
870 break;
872 pkt_flush_cache(pd);
873 pd->iosched.writing = 0;
875 } else {
876 if (!reads_queued && writes_queued) {
877 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
878 pkt_dbg(2, pd, "read, waiting\n");
879 break;
881 pd->iosched.writing = 1;
885 spin_lock(&pd->iosched.lock);
886 if (pd->iosched.writing)
887 bio = bio_list_pop(&pd->iosched.write_queue);
888 else
889 bio = bio_list_pop(&pd->iosched.read_queue);
890 spin_unlock(&pd->iosched.lock);
892 if (!bio)
893 continue;
895 if (bio_data_dir(bio) == READ)
896 pd->iosched.successive_reads +=
897 bio->bi_iter.bi_size >> 10;
898 else {
899 pd->iosched.successive_reads = 0;
900 pd->iosched.last_write = bio_end_sector(bio);
902 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
903 if (pd->read_speed == pd->write_speed) {
904 pd->read_speed = MAX_SPEED;
905 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
907 } else {
908 if (pd->read_speed != pd->write_speed) {
909 pd->read_speed = pd->write_speed;
910 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
914 atomic_inc(&pd->cdrw.pending_bios);
915 generic_make_request(bio);
920 * Special care is needed if the underlying block device has a small
921 * max_phys_segments value.
923 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
925 if ((pd->settings.size << 9) / CD_FRAMESIZE
926 <= queue_max_segments(q)) {
928 * The cdrom device can handle one segment/frame
930 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
931 return 0;
932 } else if ((pd->settings.size << 9) / PAGE_SIZE
933 <= queue_max_segments(q)) {
935 * We can handle this case at the expense of some extra memory
936 * copies during write operations
938 set_bit(PACKET_MERGE_SEGS, &pd->flags);
939 return 0;
940 } else {
941 pkt_err(pd, "cdrom max_phys_segments too small\n");
942 return -EIO;
946 static void pkt_end_io_read(struct bio *bio)
948 struct packet_data *pkt = bio->bi_private;
949 struct pktcdvd_device *pd = pkt->pd;
950 BUG_ON(!pd);
952 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
953 bio, (unsigned long long)pkt->sector,
954 (unsigned long long)bio->bi_iter.bi_sector, bio->bi_status);
956 if (bio->bi_status)
957 atomic_inc(&pkt->io_errors);
958 if (atomic_dec_and_test(&pkt->io_wait)) {
959 atomic_inc(&pkt->run_sm);
960 wake_up(&pd->wqueue);
962 pkt_bio_finished(pd);
965 static void pkt_end_io_packet_write(struct bio *bio)
967 struct packet_data *pkt = bio->bi_private;
968 struct pktcdvd_device *pd = pkt->pd;
969 BUG_ON(!pd);
971 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, bio->bi_status);
973 pd->stats.pkt_ended++;
975 pkt_bio_finished(pd);
976 atomic_dec(&pkt->io_wait);
977 atomic_inc(&pkt->run_sm);
978 wake_up(&pd->wqueue);
982 * Schedule reads for the holes in a packet
984 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
986 int frames_read = 0;
987 struct bio *bio;
988 int f;
989 char written[PACKET_MAX_SIZE];
991 BUG_ON(bio_list_empty(&pkt->orig_bios));
993 atomic_set(&pkt->io_wait, 0);
994 atomic_set(&pkt->io_errors, 0);
997 * Figure out which frames we need to read before we can write.
999 memset(written, 0, sizeof(written));
1000 spin_lock(&pkt->lock);
1001 bio_list_for_each(bio, &pkt->orig_bios) {
1002 int first_frame = (bio->bi_iter.bi_sector - pkt->sector) /
1003 (CD_FRAMESIZE >> 9);
1004 int num_frames = bio->bi_iter.bi_size / CD_FRAMESIZE;
1005 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1006 BUG_ON(first_frame < 0);
1007 BUG_ON(first_frame + num_frames > pkt->frames);
1008 for (f = first_frame; f < first_frame + num_frames; f++)
1009 written[f] = 1;
1011 spin_unlock(&pkt->lock);
1013 if (pkt->cache_valid) {
1014 pkt_dbg(2, pd, "zone %llx cached\n",
1015 (unsigned long long)pkt->sector);
1016 goto out_account;
1020 * Schedule reads for missing parts of the packet.
1022 for (f = 0; f < pkt->frames; f++) {
1023 int p, offset;
1025 if (written[f])
1026 continue;
1028 bio = pkt->r_bios[f];
1029 bio_reset(bio);
1030 bio->bi_iter.bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1031 bio_set_dev(bio, pd->bdev);
1032 bio->bi_end_io = pkt_end_io_read;
1033 bio->bi_private = pkt;
1035 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1036 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1037 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1038 f, pkt->pages[p], offset);
1039 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1040 BUG();
1042 atomic_inc(&pkt->io_wait);
1043 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1044 pkt_queue_bio(pd, bio);
1045 frames_read++;
1048 out_account:
1049 pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1050 frames_read, (unsigned long long)pkt->sector);
1051 pd->stats.pkt_started++;
1052 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1056 * Find a packet matching zone, or the least recently used packet if
1057 * there is no match.
1059 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1061 struct packet_data *pkt;
1063 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1064 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1065 list_del_init(&pkt->list);
1066 if (pkt->sector != zone)
1067 pkt->cache_valid = 0;
1068 return pkt;
1071 BUG();
1072 return NULL;
1075 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1077 if (pkt->cache_valid) {
1078 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1079 } else {
1080 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1085 * recover a failed write, query for relocation if possible
1087 * returns 1 if recovery is possible, or 0 if not
1090 static int pkt_start_recovery(struct packet_data *pkt)
1093 * FIXME. We need help from the file system to implement
1094 * recovery handling.
1096 return 0;
1097 #if 0
1098 struct request *rq = pkt->rq;
1099 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1100 struct block_device *pkt_bdev;
1101 struct super_block *sb = NULL;
1102 unsigned long old_block, new_block;
1103 sector_t new_sector;
1105 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1106 if (pkt_bdev) {
1107 sb = get_super(pkt_bdev);
1108 bdput(pkt_bdev);
1111 if (!sb)
1112 return 0;
1114 if (!sb->s_op->relocate_blocks)
1115 goto out;
1117 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1118 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1119 goto out;
1121 new_sector = new_block * (CD_FRAMESIZE >> 9);
1122 pkt->sector = new_sector;
1124 bio_reset(pkt->bio);
1125 bio_set_dev(pkt->bio, pd->bdev);
1126 bio_set_op_attrs(pkt->bio, REQ_OP_WRITE, 0);
1127 pkt->bio->bi_iter.bi_sector = new_sector;
1128 pkt->bio->bi_iter.bi_size = pkt->frames * CD_FRAMESIZE;
1129 pkt->bio->bi_vcnt = pkt->frames;
1131 pkt->bio->bi_end_io = pkt_end_io_packet_write;
1132 pkt->bio->bi_private = pkt;
1134 drop_super(sb);
1135 return 1;
1137 out:
1138 drop_super(sb);
1139 return 0;
1140 #endif
1143 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1145 #if PACKET_DEBUG > 1
1146 static const char *state_name[] = {
1147 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1149 enum packet_data_state old_state = pkt->state;
1150 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1151 pkt->id, (unsigned long long)pkt->sector,
1152 state_name[old_state], state_name[state]);
1153 #endif
1154 pkt->state = state;
1158 * Scan the work queue to see if we can start a new packet.
1159 * returns non-zero if any work was done.
1161 static int pkt_handle_queue(struct pktcdvd_device *pd)
1163 struct packet_data *pkt, *p;
1164 struct bio *bio = NULL;
1165 sector_t zone = 0; /* Suppress gcc warning */
1166 struct pkt_rb_node *node, *first_node;
1167 struct rb_node *n;
1168 int wakeup;
1170 atomic_set(&pd->scan_queue, 0);
1172 if (list_empty(&pd->cdrw.pkt_free_list)) {
1173 pkt_dbg(2, pd, "no pkt\n");
1174 return 0;
1178 * Try to find a zone we are not already working on.
1180 spin_lock(&pd->lock);
1181 first_node = pkt_rbtree_find(pd, pd->current_sector);
1182 if (!first_node) {
1183 n = rb_first(&pd->bio_queue);
1184 if (n)
1185 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1187 node = first_node;
1188 while (node) {
1189 bio = node->bio;
1190 zone = get_zone(bio->bi_iter.bi_sector, pd);
1191 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1192 if (p->sector == zone) {
1193 bio = NULL;
1194 goto try_next_bio;
1197 break;
1198 try_next_bio:
1199 node = pkt_rbtree_next(node);
1200 if (!node) {
1201 n = rb_first(&pd->bio_queue);
1202 if (n)
1203 node = rb_entry(n, struct pkt_rb_node, rb_node);
1205 if (node == first_node)
1206 node = NULL;
1208 spin_unlock(&pd->lock);
1209 if (!bio) {
1210 pkt_dbg(2, pd, "no bio\n");
1211 return 0;
1214 pkt = pkt_get_packet_data(pd, zone);
1216 pd->current_sector = zone + pd->settings.size;
1217 pkt->sector = zone;
1218 BUG_ON(pkt->frames != pd->settings.size >> 2);
1219 pkt->write_size = 0;
1222 * Scan work queue for bios in the same zone and link them
1223 * to this packet.
1225 spin_lock(&pd->lock);
1226 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1227 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1228 bio = node->bio;
1229 pkt_dbg(2, pd, "found zone=%llx\n", (unsigned long long)
1230 get_zone(bio->bi_iter.bi_sector, pd));
1231 if (get_zone(bio->bi_iter.bi_sector, pd) != zone)
1232 break;
1233 pkt_rbtree_erase(pd, node);
1234 spin_lock(&pkt->lock);
1235 bio_list_add(&pkt->orig_bios, bio);
1236 pkt->write_size += bio->bi_iter.bi_size / CD_FRAMESIZE;
1237 spin_unlock(&pkt->lock);
1239 /* check write congestion marks, and if bio_queue_size is
1240 below, wake up any waiters */
1241 wakeup = (pd->write_congestion_on > 0
1242 && pd->bio_queue_size <= pd->write_congestion_off);
1243 spin_unlock(&pd->lock);
1244 if (wakeup) {
1245 clear_bdi_congested(pd->disk->queue->backing_dev_info,
1246 BLK_RW_ASYNC);
1249 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1250 pkt_set_state(pkt, PACKET_WAITING_STATE);
1251 atomic_set(&pkt->run_sm, 1);
1253 spin_lock(&pd->cdrw.active_list_lock);
1254 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1255 spin_unlock(&pd->cdrw.active_list_lock);
1257 return 1;
1261 * Assemble a bio to write one packet and queue the bio for processing
1262 * by the underlying block device.
1264 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1266 int f;
1268 bio_reset(pkt->w_bio);
1269 pkt->w_bio->bi_iter.bi_sector = pkt->sector;
1270 bio_set_dev(pkt->w_bio, pd->bdev);
1271 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1272 pkt->w_bio->bi_private = pkt;
1274 /* XXX: locking? */
1275 for (f = 0; f < pkt->frames; f++) {
1276 struct page *page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1277 unsigned offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1279 if (!bio_add_page(pkt->w_bio, page, CD_FRAMESIZE, offset))
1280 BUG();
1282 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1285 * Fill-in bvec with data from orig_bios.
1287 spin_lock(&pkt->lock);
1288 bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1290 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1291 spin_unlock(&pkt->lock);
1293 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1294 pkt->write_size, (unsigned long long)pkt->sector);
1296 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames))
1297 pkt->cache_valid = 1;
1298 else
1299 pkt->cache_valid = 0;
1301 /* Start the write request */
1302 atomic_set(&pkt->io_wait, 1);
1303 bio_set_op_attrs(pkt->w_bio, REQ_OP_WRITE, 0);
1304 pkt_queue_bio(pd, pkt->w_bio);
1307 static void pkt_finish_packet(struct packet_data *pkt, blk_status_t status)
1309 struct bio *bio;
1311 if (status)
1312 pkt->cache_valid = 0;
1314 /* Finish all bios corresponding to this packet */
1315 while ((bio = bio_list_pop(&pkt->orig_bios))) {
1316 bio->bi_status = status;
1317 bio_endio(bio);
1321 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1323 pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1325 for (;;) {
1326 switch (pkt->state) {
1327 case PACKET_WAITING_STATE:
1328 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1329 return;
1331 pkt->sleep_time = 0;
1332 pkt_gather_data(pd, pkt);
1333 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1334 break;
1336 case PACKET_READ_WAIT_STATE:
1337 if (atomic_read(&pkt->io_wait) > 0)
1338 return;
1340 if (atomic_read(&pkt->io_errors) > 0) {
1341 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1342 } else {
1343 pkt_start_write(pd, pkt);
1345 break;
1347 case PACKET_WRITE_WAIT_STATE:
1348 if (atomic_read(&pkt->io_wait) > 0)
1349 return;
1351 if (!pkt->w_bio->bi_status) {
1352 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1353 } else {
1354 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1356 break;
1358 case PACKET_RECOVERY_STATE:
1359 if (pkt_start_recovery(pkt)) {
1360 pkt_start_write(pd, pkt);
1361 } else {
1362 pkt_dbg(2, pd, "No recovery possible\n");
1363 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1365 break;
1367 case PACKET_FINISHED_STATE:
1368 pkt_finish_packet(pkt, pkt->w_bio->bi_status);
1369 return;
1371 default:
1372 BUG();
1373 break;
1378 static void pkt_handle_packets(struct pktcdvd_device *pd)
1380 struct packet_data *pkt, *next;
1383 * Run state machine for active packets
1385 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1386 if (atomic_read(&pkt->run_sm) > 0) {
1387 atomic_set(&pkt->run_sm, 0);
1388 pkt_run_state_machine(pd, pkt);
1393 * Move no longer active packets to the free list
1395 spin_lock(&pd->cdrw.active_list_lock);
1396 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1397 if (pkt->state == PACKET_FINISHED_STATE) {
1398 list_del(&pkt->list);
1399 pkt_put_packet_data(pd, pkt);
1400 pkt_set_state(pkt, PACKET_IDLE_STATE);
1401 atomic_set(&pd->scan_queue, 1);
1404 spin_unlock(&pd->cdrw.active_list_lock);
1407 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1409 struct packet_data *pkt;
1410 int i;
1412 for (i = 0; i < PACKET_NUM_STATES; i++)
1413 states[i] = 0;
1415 spin_lock(&pd->cdrw.active_list_lock);
1416 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1417 states[pkt->state]++;
1419 spin_unlock(&pd->cdrw.active_list_lock);
1423 * kcdrwd is woken up when writes have been queued for one of our
1424 * registered devices
1426 static int kcdrwd(void *foobar)
1428 struct pktcdvd_device *pd = foobar;
1429 struct packet_data *pkt;
1430 long min_sleep_time, residue;
1432 set_user_nice(current, MIN_NICE);
1433 set_freezable();
1435 for (;;) {
1436 DECLARE_WAITQUEUE(wait, current);
1439 * Wait until there is something to do
1441 add_wait_queue(&pd->wqueue, &wait);
1442 for (;;) {
1443 set_current_state(TASK_INTERRUPTIBLE);
1445 /* Check if we need to run pkt_handle_queue */
1446 if (atomic_read(&pd->scan_queue) > 0)
1447 goto work_to_do;
1449 /* Check if we need to run the state machine for some packet */
1450 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1451 if (atomic_read(&pkt->run_sm) > 0)
1452 goto work_to_do;
1455 /* Check if we need to process the iosched queues */
1456 if (atomic_read(&pd->iosched.attention) != 0)
1457 goto work_to_do;
1459 /* Otherwise, go to sleep */
1460 if (PACKET_DEBUG > 1) {
1461 int states[PACKET_NUM_STATES];
1462 pkt_count_states(pd, states);
1463 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1464 states[0], states[1], states[2],
1465 states[3], states[4], states[5]);
1468 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1469 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1470 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1471 min_sleep_time = pkt->sleep_time;
1474 pkt_dbg(2, pd, "sleeping\n");
1475 residue = schedule_timeout(min_sleep_time);
1476 pkt_dbg(2, pd, "wake up\n");
1478 /* make swsusp happy with our thread */
1479 try_to_freeze();
1481 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1482 if (!pkt->sleep_time)
1483 continue;
1484 pkt->sleep_time -= min_sleep_time - residue;
1485 if (pkt->sleep_time <= 0) {
1486 pkt->sleep_time = 0;
1487 atomic_inc(&pkt->run_sm);
1491 if (kthread_should_stop())
1492 break;
1494 work_to_do:
1495 set_current_state(TASK_RUNNING);
1496 remove_wait_queue(&pd->wqueue, &wait);
1498 if (kthread_should_stop())
1499 break;
1502 * if pkt_handle_queue returns true, we can queue
1503 * another request.
1505 while (pkt_handle_queue(pd))
1509 * Handle packet state machine
1511 pkt_handle_packets(pd);
1514 * Handle iosched queues
1516 pkt_iosched_process_queue(pd);
1519 return 0;
1522 static void pkt_print_settings(struct pktcdvd_device *pd)
1524 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1525 pd->settings.fp ? "Fixed" : "Variable",
1526 pd->settings.size >> 2,
1527 pd->settings.block_mode == 8 ? '1' : '2');
1530 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1532 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1534 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1535 cgc->cmd[2] = page_code | (page_control << 6);
1536 cgc->cmd[7] = cgc->buflen >> 8;
1537 cgc->cmd[8] = cgc->buflen & 0xff;
1538 cgc->data_direction = CGC_DATA_READ;
1539 return pkt_generic_packet(pd, cgc);
1542 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1544 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1545 memset(cgc->buffer, 0, 2);
1546 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1547 cgc->cmd[1] = 0x10; /* PF */
1548 cgc->cmd[7] = cgc->buflen >> 8;
1549 cgc->cmd[8] = cgc->buflen & 0xff;
1550 cgc->data_direction = CGC_DATA_WRITE;
1551 return pkt_generic_packet(pd, cgc);
1554 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1556 struct packet_command cgc;
1557 int ret;
1559 /* set up command and get the disc info */
1560 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1561 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1562 cgc.cmd[8] = cgc.buflen = 2;
1563 cgc.quiet = 1;
1565 if ((ret = pkt_generic_packet(pd, &cgc)))
1566 return ret;
1568 /* not all drives have the same disc_info length, so requeue
1569 * packet with the length the drive tells us it can supply
1571 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1572 sizeof(di->disc_information_length);
1574 if (cgc.buflen > sizeof(disc_information))
1575 cgc.buflen = sizeof(disc_information);
1577 cgc.cmd[8] = cgc.buflen;
1578 return pkt_generic_packet(pd, &cgc);
1581 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1583 struct packet_command cgc;
1584 int ret;
1586 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1587 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1588 cgc.cmd[1] = type & 3;
1589 cgc.cmd[4] = (track & 0xff00) >> 8;
1590 cgc.cmd[5] = track & 0xff;
1591 cgc.cmd[8] = 8;
1592 cgc.quiet = 1;
1594 if ((ret = pkt_generic_packet(pd, &cgc)))
1595 return ret;
1597 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1598 sizeof(ti->track_information_length);
1600 if (cgc.buflen > sizeof(track_information))
1601 cgc.buflen = sizeof(track_information);
1603 cgc.cmd[8] = cgc.buflen;
1604 return pkt_generic_packet(pd, &cgc);
1607 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1608 long *last_written)
1610 disc_information di;
1611 track_information ti;
1612 __u32 last_track;
1613 int ret = -1;
1615 if ((ret = pkt_get_disc_info(pd, &di)))
1616 return ret;
1618 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1619 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1620 return ret;
1622 /* if this track is blank, try the previous. */
1623 if (ti.blank) {
1624 last_track--;
1625 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1626 return ret;
1629 /* if last recorded field is valid, return it. */
1630 if (ti.lra_v) {
1631 *last_written = be32_to_cpu(ti.last_rec_address);
1632 } else {
1633 /* make it up instead */
1634 *last_written = be32_to_cpu(ti.track_start) +
1635 be32_to_cpu(ti.track_size);
1636 if (ti.free_blocks)
1637 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1639 return 0;
1643 * write mode select package based on pd->settings
1645 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1647 struct packet_command cgc;
1648 struct request_sense sense;
1649 write_param_page *wp;
1650 char buffer[128];
1651 int ret, size;
1653 /* doesn't apply to DVD+RW or DVD-RAM */
1654 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1655 return 0;
1657 memset(buffer, 0, sizeof(buffer));
1658 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1659 cgc.sense = &sense;
1660 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1661 pkt_dump_sense(pd, &cgc);
1662 return ret;
1665 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1666 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1667 if (size > sizeof(buffer))
1668 size = sizeof(buffer);
1671 * now get it all
1673 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1674 cgc.sense = &sense;
1675 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1676 pkt_dump_sense(pd, &cgc);
1677 return ret;
1681 * write page is offset header + block descriptor length
1683 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1685 wp->fp = pd->settings.fp;
1686 wp->track_mode = pd->settings.track_mode;
1687 wp->write_type = pd->settings.write_type;
1688 wp->data_block_type = pd->settings.block_mode;
1690 wp->multi_session = 0;
1692 #ifdef PACKET_USE_LS
1693 wp->link_size = 7;
1694 wp->ls_v = 1;
1695 #endif
1697 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1698 wp->session_format = 0;
1699 wp->subhdr2 = 0x20;
1700 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1701 wp->session_format = 0x20;
1702 wp->subhdr2 = 8;
1703 #if 0
1704 wp->mcn[0] = 0x80;
1705 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1706 #endif
1707 } else {
1709 * paranoia
1711 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1712 return 1;
1714 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1716 cgc.buflen = cgc.cmd[8] = size;
1717 if ((ret = pkt_mode_select(pd, &cgc))) {
1718 pkt_dump_sense(pd, &cgc);
1719 return ret;
1722 pkt_print_settings(pd);
1723 return 0;
1727 * 1 -- we can write to this track, 0 -- we can't
1729 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1731 switch (pd->mmc3_profile) {
1732 case 0x1a: /* DVD+RW */
1733 case 0x12: /* DVD-RAM */
1734 /* The track is always writable on DVD+RW/DVD-RAM */
1735 return 1;
1736 default:
1737 break;
1740 if (!ti->packet || !ti->fp)
1741 return 0;
1744 * "good" settings as per Mt Fuji.
1746 if (ti->rt == 0 && ti->blank == 0)
1747 return 1;
1749 if (ti->rt == 0 && ti->blank == 1)
1750 return 1;
1752 if (ti->rt == 1 && ti->blank == 0)
1753 return 1;
1755 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1756 return 0;
1760 * 1 -- we can write to this disc, 0 -- we can't
1762 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1764 switch (pd->mmc3_profile) {
1765 case 0x0a: /* CD-RW */
1766 case 0xffff: /* MMC3 not supported */
1767 break;
1768 case 0x1a: /* DVD+RW */
1769 case 0x13: /* DVD-RW */
1770 case 0x12: /* DVD-RAM */
1771 return 1;
1772 default:
1773 pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1774 pd->mmc3_profile);
1775 return 0;
1779 * for disc type 0xff we should probably reserve a new track.
1780 * but i'm not sure, should we leave this to user apps? probably.
1782 if (di->disc_type == 0xff) {
1783 pkt_notice(pd, "unknown disc - no track?\n");
1784 return 0;
1787 if (di->disc_type != 0x20 && di->disc_type != 0) {
1788 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1789 return 0;
1792 if (di->erasable == 0) {
1793 pkt_notice(pd, "disc not erasable\n");
1794 return 0;
1797 if (di->border_status == PACKET_SESSION_RESERVED) {
1798 pkt_err(pd, "can't write to last track (reserved)\n");
1799 return 0;
1802 return 1;
1805 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1807 struct packet_command cgc;
1808 unsigned char buf[12];
1809 disc_information di;
1810 track_information ti;
1811 int ret, track;
1813 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1814 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1815 cgc.cmd[8] = 8;
1816 ret = pkt_generic_packet(pd, &cgc);
1817 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1819 memset(&di, 0, sizeof(disc_information));
1820 memset(&ti, 0, sizeof(track_information));
1822 if ((ret = pkt_get_disc_info(pd, &di))) {
1823 pkt_err(pd, "failed get_disc\n");
1824 return ret;
1827 if (!pkt_writable_disc(pd, &di))
1828 return -EROFS;
1830 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1832 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1833 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1834 pkt_err(pd, "failed get_track\n");
1835 return ret;
1838 if (!pkt_writable_track(pd, &ti)) {
1839 pkt_err(pd, "can't write to this track\n");
1840 return -EROFS;
1844 * we keep packet size in 512 byte units, makes it easier to
1845 * deal with request calculations.
1847 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1848 if (pd->settings.size == 0) {
1849 pkt_notice(pd, "detected zero packet size!\n");
1850 return -ENXIO;
1852 if (pd->settings.size > PACKET_MAX_SECTORS) {
1853 pkt_err(pd, "packet size is too big\n");
1854 return -EROFS;
1856 pd->settings.fp = ti.fp;
1857 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1859 if (ti.nwa_v) {
1860 pd->nwa = be32_to_cpu(ti.next_writable);
1861 set_bit(PACKET_NWA_VALID, &pd->flags);
1865 * in theory we could use lra on -RW media as well and just zero
1866 * blocks that haven't been written yet, but in practice that
1867 * is just a no-go. we'll use that for -R, naturally.
1869 if (ti.lra_v) {
1870 pd->lra = be32_to_cpu(ti.last_rec_address);
1871 set_bit(PACKET_LRA_VALID, &pd->flags);
1872 } else {
1873 pd->lra = 0xffffffff;
1874 set_bit(PACKET_LRA_VALID, &pd->flags);
1878 * fine for now
1880 pd->settings.link_loss = 7;
1881 pd->settings.write_type = 0; /* packet */
1882 pd->settings.track_mode = ti.track_mode;
1885 * mode1 or mode2 disc
1887 switch (ti.data_mode) {
1888 case PACKET_MODE1:
1889 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1890 break;
1891 case PACKET_MODE2:
1892 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1893 break;
1894 default:
1895 pkt_err(pd, "unknown data mode\n");
1896 return -EROFS;
1898 return 0;
1902 * enable/disable write caching on drive
1904 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1905 int set)
1907 struct packet_command cgc;
1908 struct request_sense sense;
1909 unsigned char buf[64];
1910 int ret;
1912 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1913 cgc.sense = &sense;
1914 cgc.buflen = pd->mode_offset + 12;
1917 * caching mode page might not be there, so quiet this command
1919 cgc.quiet = 1;
1921 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1922 return ret;
1924 buf[pd->mode_offset + 10] |= (!!set << 2);
1926 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1927 ret = pkt_mode_select(pd, &cgc);
1928 if (ret) {
1929 pkt_err(pd, "write caching control failed\n");
1930 pkt_dump_sense(pd, &cgc);
1931 } else if (!ret && set)
1932 pkt_notice(pd, "enabled write caching\n");
1933 return ret;
1936 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1938 struct packet_command cgc;
1940 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1941 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1942 cgc.cmd[4] = lockflag ? 1 : 0;
1943 return pkt_generic_packet(pd, &cgc);
1947 * Returns drive maximum write speed
1949 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1950 unsigned *write_speed)
1952 struct packet_command cgc;
1953 struct request_sense sense;
1954 unsigned char buf[256+18];
1955 unsigned char *cap_buf;
1956 int ret, offset;
1958 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1959 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1960 cgc.sense = &sense;
1962 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1963 if (ret) {
1964 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1965 sizeof(struct mode_page_header);
1966 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1967 if (ret) {
1968 pkt_dump_sense(pd, &cgc);
1969 return ret;
1973 offset = 20; /* Obsoleted field, used by older drives */
1974 if (cap_buf[1] >= 28)
1975 offset = 28; /* Current write speed selected */
1976 if (cap_buf[1] >= 30) {
1977 /* If the drive reports at least one "Logical Unit Write
1978 * Speed Performance Descriptor Block", use the information
1979 * in the first block. (contains the highest speed)
1981 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
1982 if (num_spdb > 0)
1983 offset = 34;
1986 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
1987 return 0;
1990 /* These tables from cdrecord - I don't have orange book */
1991 /* standard speed CD-RW (1-4x) */
1992 static char clv_to_speed[16] = {
1993 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1994 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1996 /* high speed CD-RW (-10x) */
1997 static char hs_clv_to_speed[16] = {
1998 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
1999 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2001 /* ultra high speed CD-RW */
2002 static char us_clv_to_speed[16] = {
2003 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2004 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2008 * reads the maximum media speed from ATIP
2010 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2011 unsigned *speed)
2013 struct packet_command cgc;
2014 struct request_sense sense;
2015 unsigned char buf[64];
2016 unsigned int size, st, sp;
2017 int ret;
2019 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2020 cgc.sense = &sense;
2021 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2022 cgc.cmd[1] = 2;
2023 cgc.cmd[2] = 4; /* READ ATIP */
2024 cgc.cmd[8] = 2;
2025 ret = pkt_generic_packet(pd, &cgc);
2026 if (ret) {
2027 pkt_dump_sense(pd, &cgc);
2028 return ret;
2030 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2031 if (size > sizeof(buf))
2032 size = sizeof(buf);
2034 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2035 cgc.sense = &sense;
2036 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2037 cgc.cmd[1] = 2;
2038 cgc.cmd[2] = 4;
2039 cgc.cmd[8] = size;
2040 ret = pkt_generic_packet(pd, &cgc);
2041 if (ret) {
2042 pkt_dump_sense(pd, &cgc);
2043 return ret;
2046 if (!(buf[6] & 0x40)) {
2047 pkt_notice(pd, "disc type is not CD-RW\n");
2048 return 1;
2050 if (!(buf[6] & 0x4)) {
2051 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2052 return 1;
2055 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2057 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2059 /* Info from cdrecord */
2060 switch (st) {
2061 case 0: /* standard speed */
2062 *speed = clv_to_speed[sp];
2063 break;
2064 case 1: /* high speed */
2065 *speed = hs_clv_to_speed[sp];
2066 break;
2067 case 2: /* ultra high speed */
2068 *speed = us_clv_to_speed[sp];
2069 break;
2070 default:
2071 pkt_notice(pd, "unknown disc sub-type %d\n", st);
2072 return 1;
2074 if (*speed) {
2075 pkt_info(pd, "maximum media speed: %d\n", *speed);
2076 return 0;
2077 } else {
2078 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2079 return 1;
2083 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2085 struct packet_command cgc;
2086 struct request_sense sense;
2087 int ret;
2089 pkt_dbg(2, pd, "Performing OPC\n");
2091 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2092 cgc.sense = &sense;
2093 cgc.timeout = 60*HZ;
2094 cgc.cmd[0] = GPCMD_SEND_OPC;
2095 cgc.cmd[1] = 1;
2096 if ((ret = pkt_generic_packet(pd, &cgc)))
2097 pkt_dump_sense(pd, &cgc);
2098 return ret;
2101 static int pkt_open_write(struct pktcdvd_device *pd)
2103 int ret;
2104 unsigned int write_speed, media_write_speed, read_speed;
2106 if ((ret = pkt_probe_settings(pd))) {
2107 pkt_dbg(2, pd, "failed probe\n");
2108 return ret;
2111 if ((ret = pkt_set_write_settings(pd))) {
2112 pkt_dbg(1, pd, "failed saving write settings\n");
2113 return -EIO;
2116 pkt_write_caching(pd, USE_WCACHING);
2118 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2119 write_speed = 16 * 177;
2120 switch (pd->mmc3_profile) {
2121 case 0x13: /* DVD-RW */
2122 case 0x1a: /* DVD+RW */
2123 case 0x12: /* DVD-RAM */
2124 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2125 break;
2126 default:
2127 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2128 media_write_speed = 16;
2129 write_speed = min(write_speed, media_write_speed * 177);
2130 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2131 break;
2133 read_speed = write_speed;
2135 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2136 pkt_dbg(1, pd, "couldn't set write speed\n");
2137 return -EIO;
2139 pd->write_speed = write_speed;
2140 pd->read_speed = read_speed;
2142 if ((ret = pkt_perform_opc(pd))) {
2143 pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2146 return 0;
2150 * called at open time.
2152 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2154 int ret;
2155 long lba;
2156 struct request_queue *q;
2159 * We need to re-open the cdrom device without O_NONBLOCK to be able
2160 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2161 * so bdget() can't fail.
2163 bdget(pd->bdev->bd_dev);
2164 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2165 goto out;
2167 if ((ret = pkt_get_last_written(pd, &lba))) {
2168 pkt_err(pd, "pkt_get_last_written failed\n");
2169 goto out_putdev;
2172 set_capacity(pd->disk, lba << 2);
2173 set_capacity(pd->bdev->bd_disk, lba << 2);
2174 bd_set_size(pd->bdev, (loff_t)lba << 11);
2176 q = bdev_get_queue(pd->bdev);
2177 if (write) {
2178 if ((ret = pkt_open_write(pd)))
2179 goto out_putdev;
2181 * Some CDRW drives can not handle writes larger than one packet,
2182 * even if the size is a multiple of the packet size.
2184 spin_lock_irq(q->queue_lock);
2185 blk_queue_max_hw_sectors(q, pd->settings.size);
2186 spin_unlock_irq(q->queue_lock);
2187 set_bit(PACKET_WRITABLE, &pd->flags);
2188 } else {
2189 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2190 clear_bit(PACKET_WRITABLE, &pd->flags);
2193 if ((ret = pkt_set_segment_merging(pd, q)))
2194 goto out_putdev;
2196 if (write) {
2197 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2198 pkt_err(pd, "not enough memory for buffers\n");
2199 ret = -ENOMEM;
2200 goto out_putdev;
2202 pkt_info(pd, "%lukB available on disc\n", lba << 1);
2205 return 0;
2207 out_putdev:
2208 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2209 out:
2210 return ret;
2214 * called when the device is closed. makes sure that the device flushes
2215 * the internal cache before we close.
2217 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2219 if (flush && pkt_flush_cache(pd))
2220 pkt_dbg(1, pd, "not flushing cache\n");
2222 pkt_lock_door(pd, 0);
2224 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2225 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2227 pkt_shrink_pktlist(pd);
2230 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2232 if (dev_minor >= MAX_WRITERS)
2233 return NULL;
2234 return pkt_devs[dev_minor];
2237 static int pkt_open(struct block_device *bdev, fmode_t mode)
2239 struct pktcdvd_device *pd = NULL;
2240 int ret;
2242 mutex_lock(&pktcdvd_mutex);
2243 mutex_lock(&ctl_mutex);
2244 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2245 if (!pd) {
2246 ret = -ENODEV;
2247 goto out;
2249 BUG_ON(pd->refcnt < 0);
2251 pd->refcnt++;
2252 if (pd->refcnt > 1) {
2253 if ((mode & FMODE_WRITE) &&
2254 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2255 ret = -EBUSY;
2256 goto out_dec;
2258 } else {
2259 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2260 if (ret)
2261 goto out_dec;
2263 * needed here as well, since ext2 (among others) may change
2264 * the blocksize at mount time
2266 set_blocksize(bdev, CD_FRAMESIZE);
2269 mutex_unlock(&ctl_mutex);
2270 mutex_unlock(&pktcdvd_mutex);
2271 return 0;
2273 out_dec:
2274 pd->refcnt--;
2275 out:
2276 mutex_unlock(&ctl_mutex);
2277 mutex_unlock(&pktcdvd_mutex);
2278 return ret;
2281 static void pkt_close(struct gendisk *disk, fmode_t mode)
2283 struct pktcdvd_device *pd = disk->private_data;
2285 mutex_lock(&pktcdvd_mutex);
2286 mutex_lock(&ctl_mutex);
2287 pd->refcnt--;
2288 BUG_ON(pd->refcnt < 0);
2289 if (pd->refcnt == 0) {
2290 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2291 pkt_release_dev(pd, flush);
2293 mutex_unlock(&ctl_mutex);
2294 mutex_unlock(&pktcdvd_mutex);
2298 static void pkt_end_io_read_cloned(struct bio *bio)
2300 struct packet_stacked_data *psd = bio->bi_private;
2301 struct pktcdvd_device *pd = psd->pd;
2303 psd->bio->bi_status = bio->bi_status;
2304 bio_put(bio);
2305 bio_endio(psd->bio);
2306 mempool_free(psd, psd_pool);
2307 pkt_bio_finished(pd);
2310 static void pkt_make_request_read(struct pktcdvd_device *pd, struct bio *bio)
2312 struct bio *cloned_bio = bio_clone_fast(bio, GFP_NOIO, pkt_bio_set);
2313 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2315 psd->pd = pd;
2316 psd->bio = bio;
2317 bio_set_dev(cloned_bio, pd->bdev);
2318 cloned_bio->bi_private = psd;
2319 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2320 pd->stats.secs_r += bio_sectors(bio);
2321 pkt_queue_bio(pd, cloned_bio);
2324 static void pkt_make_request_write(struct request_queue *q, struct bio *bio)
2326 struct pktcdvd_device *pd = q->queuedata;
2327 sector_t zone;
2328 struct packet_data *pkt;
2329 int was_empty, blocked_bio;
2330 struct pkt_rb_node *node;
2332 zone = get_zone(bio->bi_iter.bi_sector, pd);
2335 * If we find a matching packet in state WAITING or READ_WAIT, we can
2336 * just append this bio to that packet.
2338 spin_lock(&pd->cdrw.active_list_lock);
2339 blocked_bio = 0;
2340 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2341 if (pkt->sector == zone) {
2342 spin_lock(&pkt->lock);
2343 if ((pkt->state == PACKET_WAITING_STATE) ||
2344 (pkt->state == PACKET_READ_WAIT_STATE)) {
2345 bio_list_add(&pkt->orig_bios, bio);
2346 pkt->write_size +=
2347 bio->bi_iter.bi_size / CD_FRAMESIZE;
2348 if ((pkt->write_size >= pkt->frames) &&
2349 (pkt->state == PACKET_WAITING_STATE)) {
2350 atomic_inc(&pkt->run_sm);
2351 wake_up(&pd->wqueue);
2353 spin_unlock(&pkt->lock);
2354 spin_unlock(&pd->cdrw.active_list_lock);
2355 return;
2356 } else {
2357 blocked_bio = 1;
2359 spin_unlock(&pkt->lock);
2362 spin_unlock(&pd->cdrw.active_list_lock);
2365 * Test if there is enough room left in the bio work queue
2366 * (queue size >= congestion on mark).
2367 * If not, wait till the work queue size is below the congestion off mark.
2369 spin_lock(&pd->lock);
2370 if (pd->write_congestion_on > 0
2371 && pd->bio_queue_size >= pd->write_congestion_on) {
2372 set_bdi_congested(q->backing_dev_info, BLK_RW_ASYNC);
2373 do {
2374 spin_unlock(&pd->lock);
2375 congestion_wait(BLK_RW_ASYNC, HZ);
2376 spin_lock(&pd->lock);
2377 } while(pd->bio_queue_size > pd->write_congestion_off);
2379 spin_unlock(&pd->lock);
2382 * No matching packet found. Store the bio in the work queue.
2384 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2385 node->bio = bio;
2386 spin_lock(&pd->lock);
2387 BUG_ON(pd->bio_queue_size < 0);
2388 was_empty = (pd->bio_queue_size == 0);
2389 pkt_rbtree_insert(pd, node);
2390 spin_unlock(&pd->lock);
2393 * Wake up the worker thread.
2395 atomic_set(&pd->scan_queue, 1);
2396 if (was_empty) {
2397 /* This wake_up is required for correct operation */
2398 wake_up(&pd->wqueue);
2399 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2401 * This wake up is not required for correct operation,
2402 * but improves performance in some cases.
2404 wake_up(&pd->wqueue);
2408 static blk_qc_t pkt_make_request(struct request_queue *q, struct bio *bio)
2410 struct pktcdvd_device *pd;
2411 char b[BDEVNAME_SIZE];
2412 struct bio *split;
2414 blk_queue_split(q, &bio);
2416 pd = q->queuedata;
2417 if (!pd) {
2418 pr_err("%s incorrect request queue\n", bio_devname(bio, b));
2419 goto end_io;
2422 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2423 (unsigned long long)bio->bi_iter.bi_sector,
2424 (unsigned long long)bio_end_sector(bio));
2427 * Clone READ bios so we can have our own bi_end_io callback.
2429 if (bio_data_dir(bio) == READ) {
2430 pkt_make_request_read(pd, bio);
2431 return BLK_QC_T_NONE;
2434 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2435 pkt_notice(pd, "WRITE for ro device (%llu)\n",
2436 (unsigned long long)bio->bi_iter.bi_sector);
2437 goto end_io;
2440 if (!bio->bi_iter.bi_size || (bio->bi_iter.bi_size % CD_FRAMESIZE)) {
2441 pkt_err(pd, "wrong bio size\n");
2442 goto end_io;
2445 do {
2446 sector_t zone = get_zone(bio->bi_iter.bi_sector, pd);
2447 sector_t last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2449 if (last_zone != zone) {
2450 BUG_ON(last_zone != zone + pd->settings.size);
2452 split = bio_split(bio, last_zone -
2453 bio->bi_iter.bi_sector,
2454 GFP_NOIO, pkt_bio_set);
2455 bio_chain(split, bio);
2456 } else {
2457 split = bio;
2460 pkt_make_request_write(q, split);
2461 } while (split != bio);
2463 return BLK_QC_T_NONE;
2464 end_io:
2465 bio_io_error(bio);
2466 return BLK_QC_T_NONE;
2469 static void pkt_init_queue(struct pktcdvd_device *pd)
2471 struct request_queue *q = pd->disk->queue;
2473 blk_queue_make_request(q, pkt_make_request);
2474 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2475 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2476 q->queuedata = pd;
2479 static int pkt_seq_show(struct seq_file *m, void *p)
2481 struct pktcdvd_device *pd = m->private;
2482 char *msg;
2483 char bdev_buf[BDEVNAME_SIZE];
2484 int states[PACKET_NUM_STATES];
2486 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2487 bdevname(pd->bdev, bdev_buf));
2489 seq_printf(m, "\nSettings:\n");
2490 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2492 if (pd->settings.write_type == 0)
2493 msg = "Packet";
2494 else
2495 msg = "Unknown";
2496 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2498 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2499 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2501 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2503 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2504 msg = "Mode 1";
2505 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2506 msg = "Mode 2";
2507 else
2508 msg = "Unknown";
2509 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2511 seq_printf(m, "\nStatistics:\n");
2512 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2513 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2514 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2515 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2516 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2518 seq_printf(m, "\nMisc:\n");
2519 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2520 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2521 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2522 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2523 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2524 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2526 seq_printf(m, "\nQueue state:\n");
2527 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2528 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2529 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2531 pkt_count_states(pd, states);
2532 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2533 states[0], states[1], states[2], states[3], states[4], states[5]);
2535 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2536 pd->write_congestion_off,
2537 pd->write_congestion_on);
2538 return 0;
2541 static int pkt_seq_open(struct inode *inode, struct file *file)
2543 return single_open(file, pkt_seq_show, PDE_DATA(inode));
2546 static const struct file_operations pkt_proc_fops = {
2547 .open = pkt_seq_open,
2548 .read = seq_read,
2549 .llseek = seq_lseek,
2550 .release = single_release
2553 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2555 int i;
2556 int ret = 0;
2557 char b[BDEVNAME_SIZE];
2558 struct block_device *bdev;
2560 if (pd->pkt_dev == dev) {
2561 pkt_err(pd, "recursive setup not allowed\n");
2562 return -EBUSY;
2564 for (i = 0; i < MAX_WRITERS; i++) {
2565 struct pktcdvd_device *pd2 = pkt_devs[i];
2566 if (!pd2)
2567 continue;
2568 if (pd2->bdev->bd_dev == dev) {
2569 pkt_err(pd, "%s already setup\n",
2570 bdevname(pd2->bdev, b));
2571 return -EBUSY;
2573 if (pd2->pkt_dev == dev) {
2574 pkt_err(pd, "can't chain pktcdvd devices\n");
2575 return -EBUSY;
2579 bdev = bdget(dev);
2580 if (!bdev)
2581 return -ENOMEM;
2582 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2583 if (ret)
2584 return ret;
2585 if (!blk_queue_scsi_passthrough(bdev_get_queue(bdev))) {
2586 WARN_ONCE(true, "Attempt to register a non-SCSI queue\n");
2587 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2588 return -EINVAL;
2591 /* This is safe, since we have a reference from open(). */
2592 __module_get(THIS_MODULE);
2594 pd->bdev = bdev;
2595 set_blocksize(bdev, CD_FRAMESIZE);
2597 pkt_init_queue(pd);
2599 atomic_set(&pd->cdrw.pending_bios, 0);
2600 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2601 if (IS_ERR(pd->cdrw.thread)) {
2602 pkt_err(pd, "can't start kernel thread\n");
2603 ret = -ENOMEM;
2604 goto out_mem;
2607 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2608 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2609 return 0;
2611 out_mem:
2612 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2613 /* This is safe: open() is still holding a reference. */
2614 module_put(THIS_MODULE);
2615 return ret;
2618 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2620 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2621 int ret;
2623 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2624 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2626 mutex_lock(&pktcdvd_mutex);
2627 switch (cmd) {
2628 case CDROMEJECT:
2630 * The door gets locked when the device is opened, so we
2631 * have to unlock it or else the eject command fails.
2633 if (pd->refcnt == 1)
2634 pkt_lock_door(pd, 0);
2635 /* fallthru */
2637 * forward selected CDROM ioctls to CD-ROM, for UDF
2639 case CDROMMULTISESSION:
2640 case CDROMREADTOCENTRY:
2641 case CDROM_LAST_WRITTEN:
2642 case CDROM_SEND_PACKET:
2643 case SCSI_IOCTL_SEND_COMMAND:
2644 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2645 break;
2647 default:
2648 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2649 ret = -ENOTTY;
2651 mutex_unlock(&pktcdvd_mutex);
2653 return ret;
2656 static unsigned int pkt_check_events(struct gendisk *disk,
2657 unsigned int clearing)
2659 struct pktcdvd_device *pd = disk->private_data;
2660 struct gendisk *attached_disk;
2662 if (!pd)
2663 return 0;
2664 if (!pd->bdev)
2665 return 0;
2666 attached_disk = pd->bdev->bd_disk;
2667 if (!attached_disk || !attached_disk->fops->check_events)
2668 return 0;
2669 return attached_disk->fops->check_events(attached_disk, clearing);
2672 static const struct block_device_operations pktcdvd_ops = {
2673 .owner = THIS_MODULE,
2674 .open = pkt_open,
2675 .release = pkt_close,
2676 .ioctl = pkt_ioctl,
2677 .check_events = pkt_check_events,
2680 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2682 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2686 * Set up mapping from pktcdvd device to CD-ROM device.
2688 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2690 int idx;
2691 int ret = -ENOMEM;
2692 struct pktcdvd_device *pd;
2693 struct gendisk *disk;
2695 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2697 for (idx = 0; idx < MAX_WRITERS; idx++)
2698 if (!pkt_devs[idx])
2699 break;
2700 if (idx == MAX_WRITERS) {
2701 pr_err("max %d writers supported\n", MAX_WRITERS);
2702 ret = -EBUSY;
2703 goto out_mutex;
2706 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2707 if (!pd)
2708 goto out_mutex;
2710 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2711 sizeof(struct pkt_rb_node));
2712 if (!pd->rb_pool)
2713 goto out_mem;
2715 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2716 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2717 spin_lock_init(&pd->cdrw.active_list_lock);
2719 spin_lock_init(&pd->lock);
2720 spin_lock_init(&pd->iosched.lock);
2721 bio_list_init(&pd->iosched.read_queue);
2722 bio_list_init(&pd->iosched.write_queue);
2723 sprintf(pd->name, DRIVER_NAME"%d", idx);
2724 init_waitqueue_head(&pd->wqueue);
2725 pd->bio_queue = RB_ROOT;
2727 pd->write_congestion_on = write_congestion_on;
2728 pd->write_congestion_off = write_congestion_off;
2730 disk = alloc_disk(1);
2731 if (!disk)
2732 goto out_mem;
2733 pd->disk = disk;
2734 disk->major = pktdev_major;
2735 disk->first_minor = idx;
2736 disk->fops = &pktcdvd_ops;
2737 disk->flags = GENHD_FL_REMOVABLE;
2738 strcpy(disk->disk_name, pd->name);
2739 disk->devnode = pktcdvd_devnode;
2740 disk->private_data = pd;
2741 disk->queue = blk_alloc_queue(GFP_KERNEL);
2742 if (!disk->queue)
2743 goto out_mem2;
2745 pd->pkt_dev = MKDEV(pktdev_major, idx);
2746 ret = pkt_new_dev(pd, dev);
2747 if (ret)
2748 goto out_mem2;
2750 /* inherit events of the host device */
2751 disk->events = pd->bdev->bd_disk->events;
2752 disk->async_events = pd->bdev->bd_disk->async_events;
2754 add_disk(disk);
2756 pkt_sysfs_dev_new(pd);
2757 pkt_debugfs_dev_new(pd);
2759 pkt_devs[idx] = pd;
2760 if (pkt_dev)
2761 *pkt_dev = pd->pkt_dev;
2763 mutex_unlock(&ctl_mutex);
2764 return 0;
2766 out_mem2:
2767 put_disk(disk);
2768 out_mem:
2769 mempool_destroy(pd->rb_pool);
2770 kfree(pd);
2771 out_mutex:
2772 mutex_unlock(&ctl_mutex);
2773 pr_err("setup of pktcdvd device failed\n");
2774 return ret;
2778 * Tear down mapping from pktcdvd device to CD-ROM device.
2780 static int pkt_remove_dev(dev_t pkt_dev)
2782 struct pktcdvd_device *pd;
2783 int idx;
2784 int ret = 0;
2786 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2788 for (idx = 0; idx < MAX_WRITERS; idx++) {
2789 pd = pkt_devs[idx];
2790 if (pd && (pd->pkt_dev == pkt_dev))
2791 break;
2793 if (idx == MAX_WRITERS) {
2794 pr_debug("dev not setup\n");
2795 ret = -ENXIO;
2796 goto out;
2799 if (pd->refcnt > 0) {
2800 ret = -EBUSY;
2801 goto out;
2803 if (!IS_ERR(pd->cdrw.thread))
2804 kthread_stop(pd->cdrw.thread);
2806 pkt_devs[idx] = NULL;
2808 pkt_debugfs_dev_remove(pd);
2809 pkt_sysfs_dev_remove(pd);
2811 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2813 remove_proc_entry(pd->name, pkt_proc);
2814 pkt_dbg(1, pd, "writer unmapped\n");
2816 del_gendisk(pd->disk);
2817 blk_cleanup_queue(pd->disk->queue);
2818 put_disk(pd->disk);
2820 mempool_destroy(pd->rb_pool);
2821 kfree(pd);
2823 /* This is safe: open() is still holding a reference. */
2824 module_put(THIS_MODULE);
2826 out:
2827 mutex_unlock(&ctl_mutex);
2828 return ret;
2831 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2833 struct pktcdvd_device *pd;
2835 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2837 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2838 if (pd) {
2839 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2840 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2841 } else {
2842 ctrl_cmd->dev = 0;
2843 ctrl_cmd->pkt_dev = 0;
2845 ctrl_cmd->num_devices = MAX_WRITERS;
2847 mutex_unlock(&ctl_mutex);
2850 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2852 void __user *argp = (void __user *)arg;
2853 struct pkt_ctrl_command ctrl_cmd;
2854 int ret = 0;
2855 dev_t pkt_dev = 0;
2857 if (cmd != PACKET_CTRL_CMD)
2858 return -ENOTTY;
2860 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2861 return -EFAULT;
2863 switch (ctrl_cmd.command) {
2864 case PKT_CTRL_CMD_SETUP:
2865 if (!capable(CAP_SYS_ADMIN))
2866 return -EPERM;
2867 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2868 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2869 break;
2870 case PKT_CTRL_CMD_TEARDOWN:
2871 if (!capable(CAP_SYS_ADMIN))
2872 return -EPERM;
2873 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2874 break;
2875 case PKT_CTRL_CMD_STATUS:
2876 pkt_get_status(&ctrl_cmd);
2877 break;
2878 default:
2879 return -ENOTTY;
2882 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2883 return -EFAULT;
2884 return ret;
2887 #ifdef CONFIG_COMPAT
2888 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2890 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2892 #endif
2894 static const struct file_operations pkt_ctl_fops = {
2895 .open = nonseekable_open,
2896 .unlocked_ioctl = pkt_ctl_ioctl,
2897 #ifdef CONFIG_COMPAT
2898 .compat_ioctl = pkt_ctl_compat_ioctl,
2899 #endif
2900 .owner = THIS_MODULE,
2901 .llseek = no_llseek,
2904 static struct miscdevice pkt_misc = {
2905 .minor = MISC_DYNAMIC_MINOR,
2906 .name = DRIVER_NAME,
2907 .nodename = "pktcdvd/control",
2908 .fops = &pkt_ctl_fops
2911 static int __init pkt_init(void)
2913 int ret;
2915 mutex_init(&ctl_mutex);
2917 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2918 sizeof(struct packet_stacked_data));
2919 if (!psd_pool)
2920 return -ENOMEM;
2921 pkt_bio_set = bioset_create(BIO_POOL_SIZE, 0, 0);
2922 if (!pkt_bio_set) {
2923 mempool_destroy(psd_pool);
2924 return -ENOMEM;
2927 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2928 if (ret < 0) {
2929 pr_err("unable to register block device\n");
2930 goto out2;
2932 if (!pktdev_major)
2933 pktdev_major = ret;
2935 ret = pkt_sysfs_init();
2936 if (ret)
2937 goto out;
2939 pkt_debugfs_init();
2941 ret = misc_register(&pkt_misc);
2942 if (ret) {
2943 pr_err("unable to register misc device\n");
2944 goto out_misc;
2947 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2949 return 0;
2951 out_misc:
2952 pkt_debugfs_cleanup();
2953 pkt_sysfs_cleanup();
2954 out:
2955 unregister_blkdev(pktdev_major, DRIVER_NAME);
2956 out2:
2957 mempool_destroy(psd_pool);
2958 bioset_free(pkt_bio_set);
2959 return ret;
2962 static void __exit pkt_exit(void)
2964 remove_proc_entry("driver/"DRIVER_NAME, NULL);
2965 misc_deregister(&pkt_misc);
2967 pkt_debugfs_cleanup();
2968 pkt_sysfs_cleanup();
2970 unregister_blkdev(pktdev_major, DRIVER_NAME);
2971 mempool_destroy(psd_pool);
2972 bioset_free(pkt_bio_set);
2975 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
2976 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
2977 MODULE_LICENSE("GPL");
2979 module_init(pkt_init);
2980 module_exit(pkt_exit);