bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / drivers / crypto / caam / qi.c
blobf9a44f485aac3341a4a15e67dab55a323841dbb5
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * CAAM/SEC 4.x QI transport/backend driver
4 * Queue Interface backend functionality
6 * Copyright 2013-2016 Freescale Semiconductor, Inc.
7 * Copyright 2016-2017 NXP
8 */
10 #include <linux/cpumask.h>
11 #include <linux/kthread.h>
12 #include <soc/fsl/qman.h>
14 #include "regs.h"
15 #include "qi.h"
16 #include "desc.h"
17 #include "intern.h"
18 #include "desc_constr.h"
20 #define PREHDR_RSLS_SHIFT 31
23 * Use a reasonable backlog of frames (per CPU) as congestion threshold,
24 * so that resources used by the in-flight buffers do not become a memory hog.
26 #define MAX_RSP_FQ_BACKLOG_PER_CPU 256
28 #define CAAM_QI_ENQUEUE_RETRIES 10000
30 #define CAAM_NAPI_WEIGHT 63
33 * caam_napi - struct holding CAAM NAPI-related params
34 * @irqtask: IRQ task for QI backend
35 * @p: QMan portal
37 struct caam_napi {
38 struct napi_struct irqtask;
39 struct qman_portal *p;
43 * caam_qi_pcpu_priv - percpu private data structure to main list of pending
44 * responses expected on each cpu.
45 * @caam_napi: CAAM NAPI params
46 * @net_dev: netdev used by NAPI
47 * @rsp_fq: response FQ from CAAM
49 struct caam_qi_pcpu_priv {
50 struct caam_napi caam_napi;
51 struct net_device net_dev;
52 struct qman_fq *rsp_fq;
53 } ____cacheline_aligned;
55 static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
56 static DEFINE_PER_CPU(int, last_cpu);
59 * caam_qi_priv - CAAM QI backend private params
60 * @cgr: QMan congestion group
61 * @qi_pdev: platform device for QI backend
63 struct caam_qi_priv {
64 struct qman_cgr cgr;
65 struct platform_device *qi_pdev;
68 static struct caam_qi_priv qipriv ____cacheline_aligned;
71 * This is written by only one core - the one that initialized the CGR - and
72 * read by multiple cores (all the others).
74 bool caam_congested __read_mostly;
75 EXPORT_SYMBOL(caam_congested);
77 #ifdef CONFIG_DEBUG_FS
79 * This is a counter for the number of times the congestion group (where all
80 * the request and response queueus are) reached congestion. Incremented
81 * each time the congestion callback is called with congested == true.
83 static u64 times_congested;
84 #endif
87 * CPU from where the module initialised. This is required because QMan driver
88 * requires CGRs to be removed from same CPU from where they were originally
89 * allocated.
91 static int mod_init_cpu;
94 * This is a a cache of buffers, from which the users of CAAM QI driver
95 * can allocate short (CAAM_QI_MEMCACHE_SIZE) buffers. It's faster than
96 * doing malloc on the hotpath.
97 * NOTE: A more elegant solution would be to have some headroom in the frames
98 * being processed. This could be added by the dpaa-ethernet driver.
99 * This would pose a problem for userspace application processing which
100 * cannot know of this limitation. So for now, this will work.
101 * NOTE: The memcache is SMP-safe. No need to handle spinlocks in-here
103 static struct kmem_cache *qi_cache;
105 int caam_qi_enqueue(struct device *qidev, struct caam_drv_req *req)
107 struct qm_fd fd;
108 dma_addr_t addr;
109 int ret;
110 int num_retries = 0;
112 qm_fd_clear_fd(&fd);
113 qm_fd_set_compound(&fd, qm_sg_entry_get_len(&req->fd_sgt[1]));
115 addr = dma_map_single(qidev, req->fd_sgt, sizeof(req->fd_sgt),
116 DMA_BIDIRECTIONAL);
117 if (dma_mapping_error(qidev, addr)) {
118 dev_err(qidev, "DMA mapping error for QI enqueue request\n");
119 return -EIO;
121 qm_fd_addr_set64(&fd, addr);
123 do {
124 ret = qman_enqueue(req->drv_ctx->req_fq, &fd);
125 if (likely(!ret))
126 return 0;
128 if (ret != -EBUSY)
129 break;
130 num_retries++;
131 } while (num_retries < CAAM_QI_ENQUEUE_RETRIES);
133 dev_err(qidev, "qman_enqueue failed: %d\n", ret);
135 return ret;
137 EXPORT_SYMBOL(caam_qi_enqueue);
139 static void caam_fq_ern_cb(struct qman_portal *qm, struct qman_fq *fq,
140 const union qm_mr_entry *msg)
142 const struct qm_fd *fd;
143 struct caam_drv_req *drv_req;
144 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
146 fd = &msg->ern.fd;
148 if (qm_fd_get_format(fd) != qm_fd_compound) {
149 dev_err(qidev, "Non-compound FD from CAAM\n");
150 return;
153 drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd));
154 if (!drv_req) {
155 dev_err(qidev,
156 "Can't find original request for CAAM response\n");
157 return;
160 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
161 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
163 drv_req->cbk(drv_req, -EIO);
166 static struct qman_fq *create_caam_req_fq(struct device *qidev,
167 struct qman_fq *rsp_fq,
168 dma_addr_t hwdesc,
169 int fq_sched_flag)
171 int ret;
172 struct qman_fq *req_fq;
173 struct qm_mcc_initfq opts;
175 req_fq = kzalloc(sizeof(*req_fq), GFP_ATOMIC);
176 if (!req_fq)
177 return ERR_PTR(-ENOMEM);
179 req_fq->cb.ern = caam_fq_ern_cb;
180 req_fq->cb.fqs = NULL;
182 ret = qman_create_fq(0, QMAN_FQ_FLAG_DYNAMIC_FQID |
183 QMAN_FQ_FLAG_TO_DCPORTAL, req_fq);
184 if (ret) {
185 dev_err(qidev, "Failed to create session req FQ\n");
186 goto create_req_fq_fail;
189 memset(&opts, 0, sizeof(opts));
190 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
191 QM_INITFQ_WE_CONTEXTB |
192 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
193 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
194 qm_fqd_set_destwq(&opts.fqd, qm_channel_caam, 2);
195 opts.fqd.context_b = cpu_to_be32(qman_fq_fqid(rsp_fq));
196 qm_fqd_context_a_set64(&opts.fqd, hwdesc);
197 opts.fqd.cgid = qipriv.cgr.cgrid;
199 ret = qman_init_fq(req_fq, fq_sched_flag, &opts);
200 if (ret) {
201 dev_err(qidev, "Failed to init session req FQ\n");
202 goto init_req_fq_fail;
205 dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
206 smp_processor_id());
207 return req_fq;
209 init_req_fq_fail:
210 qman_destroy_fq(req_fq);
211 create_req_fq_fail:
212 kfree(req_fq);
213 return ERR_PTR(ret);
216 static int empty_retired_fq(struct device *qidev, struct qman_fq *fq)
218 int ret;
220 ret = qman_volatile_dequeue(fq, QMAN_VOLATILE_FLAG_WAIT_INT |
221 QMAN_VOLATILE_FLAG_FINISH,
222 QM_VDQCR_PRECEDENCE_VDQCR |
223 QM_VDQCR_NUMFRAMES_TILLEMPTY);
224 if (ret) {
225 dev_err(qidev, "Volatile dequeue fail for FQ: %u\n", fq->fqid);
226 return ret;
229 do {
230 struct qman_portal *p;
232 p = qman_get_affine_portal(smp_processor_id());
233 qman_p_poll_dqrr(p, 16);
234 } while (fq->flags & QMAN_FQ_STATE_NE);
236 return 0;
239 static int kill_fq(struct device *qidev, struct qman_fq *fq)
241 u32 flags;
242 int ret;
244 ret = qman_retire_fq(fq, &flags);
245 if (ret < 0) {
246 dev_err(qidev, "qman_retire_fq failed: %d\n", ret);
247 return ret;
250 if (!ret)
251 goto empty_fq;
253 /* Async FQ retirement condition */
254 if (ret == 1) {
255 /* Retry till FQ gets in retired state */
256 do {
257 msleep(20);
258 } while (fq->state != qman_fq_state_retired);
260 WARN_ON(fq->flags & QMAN_FQ_STATE_BLOCKOOS);
261 WARN_ON(fq->flags & QMAN_FQ_STATE_ORL);
264 empty_fq:
265 if (fq->flags & QMAN_FQ_STATE_NE) {
266 ret = empty_retired_fq(qidev, fq);
267 if (ret) {
268 dev_err(qidev, "empty_retired_fq fail for FQ: %u\n",
269 fq->fqid);
270 return ret;
274 ret = qman_oos_fq(fq);
275 if (ret)
276 dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
278 qman_destroy_fq(fq);
279 kfree(fq);
281 return ret;
284 static int empty_caam_fq(struct qman_fq *fq)
286 int ret;
287 struct qm_mcr_queryfq_np np;
289 /* Wait till the older CAAM FQ get empty */
290 do {
291 ret = qman_query_fq_np(fq, &np);
292 if (ret)
293 return ret;
295 if (!qm_mcr_np_get(&np, frm_cnt))
296 break;
298 msleep(20);
299 } while (1);
302 * Give extra time for pending jobs from this FQ in holding tanks
303 * to get processed
305 msleep(20);
306 return 0;
309 int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
311 int ret;
312 u32 num_words;
313 struct qman_fq *new_fq, *old_fq;
314 struct device *qidev = drv_ctx->qidev;
316 num_words = desc_len(sh_desc);
317 if (num_words > MAX_SDLEN) {
318 dev_err(qidev, "Invalid descriptor len: %d words\n", num_words);
319 return -EINVAL;
322 /* Note down older req FQ */
323 old_fq = drv_ctx->req_fq;
325 /* Create a new req FQ in parked state */
326 new_fq = create_caam_req_fq(drv_ctx->qidev, drv_ctx->rsp_fq,
327 drv_ctx->context_a, 0);
328 if (unlikely(IS_ERR_OR_NULL(new_fq))) {
329 dev_err(qidev, "FQ allocation for shdesc update failed\n");
330 return PTR_ERR(new_fq);
333 /* Hook up new FQ to context so that new requests keep queuing */
334 drv_ctx->req_fq = new_fq;
336 /* Empty and remove the older FQ */
337 ret = empty_caam_fq(old_fq);
338 if (ret) {
339 dev_err(qidev, "Old CAAM FQ empty failed: %d\n", ret);
341 /* We can revert to older FQ */
342 drv_ctx->req_fq = old_fq;
344 if (kill_fq(qidev, new_fq))
345 dev_warn(qidev, "New CAAM FQ kill failed\n");
347 return ret;
351 * Re-initialise pre-header. Set RSLS and SDLEN.
352 * Update the shared descriptor for driver context.
354 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
355 num_words);
356 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
357 dma_sync_single_for_device(qidev, drv_ctx->context_a,
358 sizeof(drv_ctx->sh_desc) +
359 sizeof(drv_ctx->prehdr),
360 DMA_BIDIRECTIONAL);
362 /* Put the new FQ in scheduled state */
363 ret = qman_schedule_fq(new_fq);
364 if (ret) {
365 dev_err(qidev, "Fail to sched new CAAM FQ, ecode = %d\n", ret);
368 * We can kill new FQ and revert to old FQ.
369 * Since the desc is already modified, it is success case
372 drv_ctx->req_fq = old_fq;
374 if (kill_fq(qidev, new_fq))
375 dev_warn(qidev, "New CAAM FQ kill failed\n");
376 } else if (kill_fq(qidev, old_fq)) {
377 dev_warn(qidev, "Old CAAM FQ kill failed\n");
380 return 0;
382 EXPORT_SYMBOL(caam_drv_ctx_update);
384 struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
385 int *cpu,
386 u32 *sh_desc)
388 size_t size;
389 u32 num_words;
390 dma_addr_t hwdesc;
391 struct caam_drv_ctx *drv_ctx;
392 const cpumask_t *cpus = qman_affine_cpus();
394 num_words = desc_len(sh_desc);
395 if (num_words > MAX_SDLEN) {
396 dev_err(qidev, "Invalid descriptor len: %d words\n",
397 num_words);
398 return ERR_PTR(-EINVAL);
401 drv_ctx = kzalloc(sizeof(*drv_ctx), GFP_ATOMIC);
402 if (!drv_ctx)
403 return ERR_PTR(-ENOMEM);
406 * Initialise pre-header - set RSLS and SDLEN - and shared descriptor
407 * and dma-map them.
409 drv_ctx->prehdr[0] = cpu_to_caam32((1 << PREHDR_RSLS_SHIFT) |
410 num_words);
411 memcpy(drv_ctx->sh_desc, sh_desc, desc_bytes(sh_desc));
412 size = sizeof(drv_ctx->prehdr) + sizeof(drv_ctx->sh_desc);
413 hwdesc = dma_map_single(qidev, drv_ctx->prehdr, size,
414 DMA_BIDIRECTIONAL);
415 if (dma_mapping_error(qidev, hwdesc)) {
416 dev_err(qidev, "DMA map error for preheader + shdesc\n");
417 kfree(drv_ctx);
418 return ERR_PTR(-ENOMEM);
420 drv_ctx->context_a = hwdesc;
422 /* If given CPU does not own the portal, choose another one that does */
423 if (!cpumask_test_cpu(*cpu, cpus)) {
424 int *pcpu = &get_cpu_var(last_cpu);
426 *pcpu = cpumask_next(*pcpu, cpus);
427 if (*pcpu >= nr_cpu_ids)
428 *pcpu = cpumask_first(cpus);
429 *cpu = *pcpu;
431 put_cpu_var(last_cpu);
433 drv_ctx->cpu = *cpu;
435 /* Find response FQ hooked with this CPU */
436 drv_ctx->rsp_fq = per_cpu(pcpu_qipriv.rsp_fq, drv_ctx->cpu);
438 /* Attach request FQ */
439 drv_ctx->req_fq = create_caam_req_fq(qidev, drv_ctx->rsp_fq, hwdesc,
440 QMAN_INITFQ_FLAG_SCHED);
441 if (unlikely(IS_ERR_OR_NULL(drv_ctx->req_fq))) {
442 dev_err(qidev, "create_caam_req_fq failed\n");
443 dma_unmap_single(qidev, hwdesc, size, DMA_BIDIRECTIONAL);
444 kfree(drv_ctx);
445 return ERR_PTR(-ENOMEM);
448 drv_ctx->qidev = qidev;
449 return drv_ctx;
451 EXPORT_SYMBOL(caam_drv_ctx_init);
453 void *qi_cache_alloc(gfp_t flags)
455 return kmem_cache_alloc(qi_cache, flags);
457 EXPORT_SYMBOL(qi_cache_alloc);
459 void qi_cache_free(void *obj)
461 kmem_cache_free(qi_cache, obj);
463 EXPORT_SYMBOL(qi_cache_free);
465 static int caam_qi_poll(struct napi_struct *napi, int budget)
467 struct caam_napi *np = container_of(napi, struct caam_napi, irqtask);
469 int cleaned = qman_p_poll_dqrr(np->p, budget);
471 if (cleaned < budget) {
472 napi_complete(napi);
473 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
476 return cleaned;
479 void caam_drv_ctx_rel(struct caam_drv_ctx *drv_ctx)
481 if (IS_ERR_OR_NULL(drv_ctx))
482 return;
484 /* Remove request FQ */
485 if (kill_fq(drv_ctx->qidev, drv_ctx->req_fq))
486 dev_err(drv_ctx->qidev, "Crypto session req FQ kill failed\n");
488 dma_unmap_single(drv_ctx->qidev, drv_ctx->context_a,
489 sizeof(drv_ctx->sh_desc) + sizeof(drv_ctx->prehdr),
490 DMA_BIDIRECTIONAL);
491 kfree(drv_ctx);
493 EXPORT_SYMBOL(caam_drv_ctx_rel);
495 int caam_qi_shutdown(struct device *qidev)
497 int i, ret;
498 struct caam_qi_priv *priv = dev_get_drvdata(qidev);
499 const cpumask_t *cpus = qman_affine_cpus();
500 struct cpumask old_cpumask = current->cpus_allowed;
502 for_each_cpu(i, cpus) {
503 struct napi_struct *irqtask;
505 irqtask = &per_cpu_ptr(&pcpu_qipriv.caam_napi, i)->irqtask;
506 napi_disable(irqtask);
507 netif_napi_del(irqtask);
509 if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
510 dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
514 * QMan driver requires CGRs to be deleted from same CPU from where they
515 * were instantiated. Hence we get the module removal execute from the
516 * same CPU from where it was originally inserted.
518 set_cpus_allowed_ptr(current, get_cpu_mask(mod_init_cpu));
520 ret = qman_delete_cgr(&priv->cgr);
521 if (ret)
522 dev_err(qidev, "Deletion of CGR failed: %d\n", ret);
523 else
524 qman_release_cgrid(priv->cgr.cgrid);
526 kmem_cache_destroy(qi_cache);
528 /* Now that we're done with the CGRs, restore the cpus allowed mask */
529 set_cpus_allowed_ptr(current, &old_cpumask);
531 platform_device_unregister(priv->qi_pdev);
532 return ret;
535 static void cgr_cb(struct qman_portal *qm, struct qman_cgr *cgr, int congested)
537 caam_congested = congested;
539 if (congested) {
540 #ifdef CONFIG_DEBUG_FS
541 times_congested++;
542 #endif
543 pr_debug_ratelimited("CAAM entered congestion\n");
545 } else {
546 pr_debug_ratelimited("CAAM exited congestion\n");
550 static int caam_qi_napi_schedule(struct qman_portal *p, struct caam_napi *np)
553 * In case of threaded ISR, for RT kernels in_irq() does not return
554 * appropriate value, so use in_serving_softirq to distinguish between
555 * softirq and irq contexts.
557 if (unlikely(in_irq() || !in_serving_softirq())) {
558 /* Disable QMan IRQ source and invoke NAPI */
559 qman_p_irqsource_remove(p, QM_PIRQ_DQRI);
560 np->p = p;
561 napi_schedule(&np->irqtask);
562 return 1;
564 return 0;
567 static enum qman_cb_dqrr_result caam_rsp_fq_dqrr_cb(struct qman_portal *p,
568 struct qman_fq *rsp_fq,
569 const struct qm_dqrr_entry *dqrr)
571 struct caam_napi *caam_napi = raw_cpu_ptr(&pcpu_qipriv.caam_napi);
572 struct caam_drv_req *drv_req;
573 const struct qm_fd *fd;
574 struct device *qidev = &(raw_cpu_ptr(&pcpu_qipriv)->net_dev.dev);
575 u32 status;
577 if (caam_qi_napi_schedule(p, caam_napi))
578 return qman_cb_dqrr_stop;
580 fd = &dqrr->fd;
581 status = be32_to_cpu(fd->status);
582 if (unlikely(status))
583 dev_err(qidev, "Error: %#x in CAAM response FD\n", status);
585 if (unlikely(qm_fd_get_format(fd) != qm_fd_compound)) {
586 dev_err(qidev, "Non-compound FD from CAAM\n");
587 return qman_cb_dqrr_consume;
590 drv_req = (struct caam_drv_req *)phys_to_virt(qm_fd_addr_get64(fd));
591 if (unlikely(!drv_req)) {
592 dev_err(qidev,
593 "Can't find original request for caam response\n");
594 return qman_cb_dqrr_consume;
597 dma_unmap_single(drv_req->drv_ctx->qidev, qm_fd_addr(fd),
598 sizeof(drv_req->fd_sgt), DMA_BIDIRECTIONAL);
600 drv_req->cbk(drv_req, status);
601 return qman_cb_dqrr_consume;
604 static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
606 struct qm_mcc_initfq opts;
607 struct qman_fq *fq;
608 int ret;
610 fq = kzalloc(sizeof(*fq), GFP_KERNEL | GFP_DMA);
611 if (!fq)
612 return -ENOMEM;
614 fq->cb.dqrr = caam_rsp_fq_dqrr_cb;
616 ret = qman_create_fq(0, QMAN_FQ_FLAG_NO_ENQUEUE |
617 QMAN_FQ_FLAG_DYNAMIC_FQID, fq);
618 if (ret) {
619 dev_err(qidev, "Rsp FQ create failed\n");
620 kfree(fq);
621 return -ENODEV;
624 memset(&opts, 0, sizeof(opts));
625 opts.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL | QM_INITFQ_WE_DESTWQ |
626 QM_INITFQ_WE_CONTEXTB |
627 QM_INITFQ_WE_CONTEXTA | QM_INITFQ_WE_CGID);
628 opts.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_CTXASTASHING |
629 QM_FQCTRL_CPCSTASH | QM_FQCTRL_CGE);
630 qm_fqd_set_destwq(&opts.fqd, qman_affine_channel(cpu), 3);
631 opts.fqd.cgid = qipriv.cgr.cgrid;
632 opts.fqd.context_a.stashing.exclusive = QM_STASHING_EXCL_CTX |
633 QM_STASHING_EXCL_DATA;
634 qm_fqd_set_stashing(&opts.fqd, 0, 1, 1);
636 ret = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &opts);
637 if (ret) {
638 dev_err(qidev, "Rsp FQ init failed\n");
639 kfree(fq);
640 return -ENODEV;
643 per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
645 dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
646 return 0;
649 static int init_cgr(struct device *qidev)
651 int ret;
652 struct qm_mcc_initcgr opts;
653 const u64 cpus = *(u64 *)qman_affine_cpus();
654 const int num_cpus = hweight64(cpus);
655 const u64 val = num_cpus * MAX_RSP_FQ_BACKLOG_PER_CPU;
657 ret = qman_alloc_cgrid(&qipriv.cgr.cgrid);
658 if (ret) {
659 dev_err(qidev, "CGR alloc failed for rsp FQs: %d\n", ret);
660 return ret;
663 qipriv.cgr.cb = cgr_cb;
664 memset(&opts, 0, sizeof(opts));
665 opts.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES |
666 QM_CGR_WE_MODE);
667 opts.cgr.cscn_en = QM_CGR_EN;
668 opts.cgr.mode = QMAN_CGR_MODE_FRAME;
669 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, val, 1);
671 ret = qman_create_cgr(&qipriv.cgr, QMAN_CGR_FLAG_USE_INIT, &opts);
672 if (ret) {
673 dev_err(qidev, "Error %d creating CAAM CGRID: %u\n", ret,
674 qipriv.cgr.cgrid);
675 return ret;
678 dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
679 return 0;
682 static int alloc_rsp_fqs(struct device *qidev)
684 int ret, i;
685 const cpumask_t *cpus = qman_affine_cpus();
687 /*Now create response FQs*/
688 for_each_cpu(i, cpus) {
689 ret = alloc_rsp_fq_cpu(qidev, i);
690 if (ret) {
691 dev_err(qidev, "CAAM rsp FQ alloc failed, cpu: %u", i);
692 return ret;
696 return 0;
699 static void free_rsp_fqs(void)
701 int i;
702 const cpumask_t *cpus = qman_affine_cpus();
704 for_each_cpu(i, cpus)
705 kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
708 int caam_qi_init(struct platform_device *caam_pdev)
710 int err, i;
711 struct platform_device *qi_pdev;
712 struct device *ctrldev = &caam_pdev->dev, *qidev;
713 struct caam_drv_private *ctrlpriv;
714 const cpumask_t *cpus = qman_affine_cpus();
715 struct cpumask old_cpumask = current->cpus_allowed;
716 static struct platform_device_info qi_pdev_info = {
717 .name = "caam_qi",
718 .id = PLATFORM_DEVID_NONE
722 * QMAN requires CGRs to be removed from same CPU+portal from where it
723 * was originally allocated. Hence we need to note down the
724 * initialisation CPU and use the same CPU for module exit.
725 * We select the first CPU to from the list of portal owning CPUs.
726 * Then we pin module init to this CPU.
728 mod_init_cpu = cpumask_first(cpus);
729 set_cpus_allowed_ptr(current, get_cpu_mask(mod_init_cpu));
731 qi_pdev_info.parent = ctrldev;
732 qi_pdev_info.dma_mask = dma_get_mask(ctrldev);
733 qi_pdev = platform_device_register_full(&qi_pdev_info);
734 if (IS_ERR(qi_pdev))
735 return PTR_ERR(qi_pdev);
736 set_dma_ops(&qi_pdev->dev, get_dma_ops(ctrldev));
738 ctrlpriv = dev_get_drvdata(ctrldev);
739 qidev = &qi_pdev->dev;
741 qipriv.qi_pdev = qi_pdev;
742 dev_set_drvdata(qidev, &qipriv);
744 /* Initialize the congestion detection */
745 err = init_cgr(qidev);
746 if (err) {
747 dev_err(qidev, "CGR initialization failed: %d\n", err);
748 platform_device_unregister(qi_pdev);
749 return err;
752 /* Initialise response FQs */
753 err = alloc_rsp_fqs(qidev);
754 if (err) {
755 dev_err(qidev, "Can't allocate CAAM response FQs: %d\n", err);
756 free_rsp_fqs();
757 platform_device_unregister(qi_pdev);
758 return err;
762 * Enable the NAPI contexts on each of the core which has an affine
763 * portal.
765 for_each_cpu(i, cpus) {
766 struct caam_qi_pcpu_priv *priv = per_cpu_ptr(&pcpu_qipriv, i);
767 struct caam_napi *caam_napi = &priv->caam_napi;
768 struct napi_struct *irqtask = &caam_napi->irqtask;
769 struct net_device *net_dev = &priv->net_dev;
771 net_dev->dev = *qidev;
772 INIT_LIST_HEAD(&net_dev->napi_list);
774 netif_napi_add(net_dev, irqtask, caam_qi_poll,
775 CAAM_NAPI_WEIGHT);
777 napi_enable(irqtask);
780 /* Hook up QI device to parent controlling caam device */
781 ctrlpriv->qidev = qidev;
783 qi_cache = kmem_cache_create("caamqicache", CAAM_QI_MEMCACHE_SIZE, 0,
784 SLAB_CACHE_DMA, NULL);
785 if (!qi_cache) {
786 dev_err(qidev, "Can't allocate CAAM cache\n");
787 free_rsp_fqs();
788 platform_device_unregister(qi_pdev);
789 return -ENOMEM;
792 /* Done with the CGRs; restore the cpus allowed mask */
793 set_cpus_allowed_ptr(current, &old_cpumask);
794 #ifdef CONFIG_DEBUG_FS
795 debugfs_create_file("qi_congested", 0444, ctrlpriv->ctl,
796 &times_congested, &caam_fops_u64_ro);
797 #endif
798 dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
799 return 0;