bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_gem.c
blob6ff5d655c20249b27926dea99b4243a8ed2f122a
1 /*
2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "i915_gemfs.h"
39 #include <linux/dma-fence-array.h>
40 #include <linux/kthread.h>
41 #include <linux/reservation.h>
42 #include <linux/shmem_fs.h>
43 #include <linux/slab.h>
44 #include <linux/stop_machine.h>
45 #include <linux/swap.h>
46 #include <linux/pci.h>
47 #include <linux/dma-buf.h>
49 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
51 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 if (obj->cache_dirty)
54 return false;
56 if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57 return true;
59 return obj->pin_global; /* currently in use by HW, keep flushed */
62 static int
63 insert_mappable_node(struct i915_ggtt *ggtt,
64 struct drm_mm_node *node, u32 size)
66 memset(node, 0, sizeof(*node));
67 return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
68 size, 0, I915_COLOR_UNEVICTABLE,
69 0, ggtt->mappable_end,
70 DRM_MM_INSERT_LOW);
73 static void
74 remove_mappable_node(struct drm_mm_node *node)
76 drm_mm_remove_node(node);
79 /* some bookkeeping */
80 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81 u64 size)
83 spin_lock(&dev_priv->mm.object_stat_lock);
84 dev_priv->mm.object_count++;
85 dev_priv->mm.object_memory += size;
86 spin_unlock(&dev_priv->mm.object_stat_lock);
89 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90 u64 size)
92 spin_lock(&dev_priv->mm.object_stat_lock);
93 dev_priv->mm.object_count--;
94 dev_priv->mm.object_memory -= size;
95 spin_unlock(&dev_priv->mm.object_stat_lock);
98 static int
99 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 int ret;
103 might_sleep();
106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107 * userspace. If it takes that long something really bad is going on and
108 * we should simply try to bail out and fail as gracefully as possible.
110 ret = wait_event_interruptible_timeout(error->reset_queue,
111 !i915_reset_backoff(error),
112 I915_RESET_TIMEOUT);
113 if (ret == 0) {
114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115 return -EIO;
116 } else if (ret < 0) {
117 return ret;
118 } else {
119 return 0;
123 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 struct drm_i915_private *dev_priv = to_i915(dev);
126 int ret;
128 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129 if (ret)
130 return ret;
132 ret = mutex_lock_interruptible(&dev->struct_mutex);
133 if (ret)
134 return ret;
136 return 0;
140 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141 struct drm_file *file)
143 struct drm_i915_private *dev_priv = to_i915(dev);
144 struct i915_ggtt *ggtt = &dev_priv->ggtt;
145 struct drm_i915_gem_get_aperture *args = data;
146 struct i915_vma *vma;
147 u64 pinned;
149 pinned = ggtt->base.reserved;
150 mutex_lock(&dev->struct_mutex);
151 list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152 if (i915_vma_is_pinned(vma))
153 pinned += vma->node.size;
154 list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155 if (i915_vma_is_pinned(vma))
156 pinned += vma->node.size;
157 mutex_unlock(&dev->struct_mutex);
159 args->aper_size = ggtt->base.total;
160 args->aper_available_size = args->aper_size - pinned;
162 return 0;
165 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
167 struct address_space *mapping = obj->base.filp->f_mapping;
168 drm_dma_handle_t *phys;
169 struct sg_table *st;
170 struct scatterlist *sg;
171 char *vaddr;
172 int i;
173 int err;
175 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
176 return -EINVAL;
178 /* Always aligning to the object size, allows a single allocation
179 * to handle all possible callers, and given typical object sizes,
180 * the alignment of the buddy allocation will naturally match.
182 phys = drm_pci_alloc(obj->base.dev,
183 roundup_pow_of_two(obj->base.size),
184 roundup_pow_of_two(obj->base.size));
185 if (!phys)
186 return -ENOMEM;
188 vaddr = phys->vaddr;
189 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190 struct page *page;
191 char *src;
193 page = shmem_read_mapping_page(mapping, i);
194 if (IS_ERR(page)) {
195 err = PTR_ERR(page);
196 goto err_phys;
199 src = kmap_atomic(page);
200 memcpy(vaddr, src, PAGE_SIZE);
201 drm_clflush_virt_range(vaddr, PAGE_SIZE);
202 kunmap_atomic(src);
204 put_page(page);
205 vaddr += PAGE_SIZE;
208 i915_gem_chipset_flush(to_i915(obj->base.dev));
210 st = kmalloc(sizeof(*st), GFP_KERNEL);
211 if (!st) {
212 err = -ENOMEM;
213 goto err_phys;
216 if (sg_alloc_table(st, 1, GFP_KERNEL)) {
217 kfree(st);
218 err = -ENOMEM;
219 goto err_phys;
222 sg = st->sgl;
223 sg->offset = 0;
224 sg->length = obj->base.size;
226 sg_dma_address(sg) = phys->busaddr;
227 sg_dma_len(sg) = obj->base.size;
229 obj->phys_handle = phys;
231 __i915_gem_object_set_pages(obj, st, sg->length);
233 return 0;
235 err_phys:
236 drm_pci_free(obj->base.dev, phys);
238 return err;
241 static void __start_cpu_write(struct drm_i915_gem_object *obj)
243 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
244 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
245 if (cpu_write_needs_clflush(obj))
246 obj->cache_dirty = true;
249 static void
250 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251 struct sg_table *pages,
252 bool needs_clflush)
254 GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
256 if (obj->mm.madv == I915_MADV_DONTNEED)
257 obj->mm.dirty = false;
259 if (needs_clflush &&
260 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261 !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262 drm_clflush_sg(pages);
264 __start_cpu_write(obj);
267 static void
268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
269 struct sg_table *pages)
271 __i915_gem_object_release_shmem(obj, pages, false);
273 if (obj->mm.dirty) {
274 struct address_space *mapping = obj->base.filp->f_mapping;
275 char *vaddr = obj->phys_handle->vaddr;
276 int i;
278 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
279 struct page *page;
280 char *dst;
282 page = shmem_read_mapping_page(mapping, i);
283 if (IS_ERR(page))
284 continue;
286 dst = kmap_atomic(page);
287 drm_clflush_virt_range(vaddr, PAGE_SIZE);
288 memcpy(dst, vaddr, PAGE_SIZE);
289 kunmap_atomic(dst);
291 set_page_dirty(page);
292 if (obj->mm.madv == I915_MADV_WILLNEED)
293 mark_page_accessed(page);
294 put_page(page);
295 vaddr += PAGE_SIZE;
297 obj->mm.dirty = false;
300 sg_free_table(pages);
301 kfree(pages);
303 drm_pci_free(obj->base.dev, obj->phys_handle);
306 static void
307 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
309 i915_gem_object_unpin_pages(obj);
312 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
313 .get_pages = i915_gem_object_get_pages_phys,
314 .put_pages = i915_gem_object_put_pages_phys,
315 .release = i915_gem_object_release_phys,
318 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
320 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
322 struct i915_vma *vma;
323 LIST_HEAD(still_in_list);
324 int ret;
326 lockdep_assert_held(&obj->base.dev->struct_mutex);
328 /* Closed vma are removed from the obj->vma_list - but they may
329 * still have an active binding on the object. To remove those we
330 * must wait for all rendering to complete to the object (as unbinding
331 * must anyway), and retire the requests.
333 ret = i915_gem_object_set_to_cpu_domain(obj, false);
334 if (ret)
335 return ret;
337 while ((vma = list_first_entry_or_null(&obj->vma_list,
338 struct i915_vma,
339 obj_link))) {
340 list_move_tail(&vma->obj_link, &still_in_list);
341 ret = i915_vma_unbind(vma);
342 if (ret)
343 break;
345 list_splice(&still_in_list, &obj->vma_list);
347 return ret;
350 static long
351 i915_gem_object_wait_fence(struct dma_fence *fence,
352 unsigned int flags,
353 long timeout,
354 struct intel_rps_client *rps_client)
356 struct drm_i915_gem_request *rq;
358 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
360 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
361 return timeout;
363 if (!dma_fence_is_i915(fence))
364 return dma_fence_wait_timeout(fence,
365 flags & I915_WAIT_INTERRUPTIBLE,
366 timeout);
368 rq = to_request(fence);
369 if (i915_gem_request_completed(rq))
370 goto out;
372 /* This client is about to stall waiting for the GPU. In many cases
373 * this is undesirable and limits the throughput of the system, as
374 * many clients cannot continue processing user input/output whilst
375 * blocked. RPS autotuning may take tens of milliseconds to respond
376 * to the GPU load and thus incurs additional latency for the client.
377 * We can circumvent that by promoting the GPU frequency to maximum
378 * before we wait. This makes the GPU throttle up much more quickly
379 * (good for benchmarks and user experience, e.g. window animations),
380 * but at a cost of spending more power processing the workload
381 * (bad for battery). Not all clients even want their results
382 * immediately and for them we should just let the GPU select its own
383 * frequency to maximise efficiency. To prevent a single client from
384 * forcing the clocks too high for the whole system, we only allow
385 * each client to waitboost once in a busy period.
387 if (rps_client) {
388 if (INTEL_GEN(rq->i915) >= 6)
389 gen6_rps_boost(rq, rps_client);
390 else
391 rps_client = NULL;
394 timeout = i915_wait_request(rq, flags, timeout);
396 out:
397 if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
398 i915_gem_request_retire_upto(rq);
400 return timeout;
403 static long
404 i915_gem_object_wait_reservation(struct reservation_object *resv,
405 unsigned int flags,
406 long timeout,
407 struct intel_rps_client *rps_client)
409 unsigned int seq = __read_seqcount_begin(&resv->seq);
410 struct dma_fence *excl;
411 bool prune_fences = false;
413 if (flags & I915_WAIT_ALL) {
414 struct dma_fence **shared;
415 unsigned int count, i;
416 int ret;
418 ret = reservation_object_get_fences_rcu(resv,
419 &excl, &count, &shared);
420 if (ret)
421 return ret;
423 for (i = 0; i < count; i++) {
424 timeout = i915_gem_object_wait_fence(shared[i],
425 flags, timeout,
426 rps_client);
427 if (timeout < 0)
428 break;
430 dma_fence_put(shared[i]);
433 for (; i < count; i++)
434 dma_fence_put(shared[i]);
435 kfree(shared);
438 * If both shared fences and an exclusive fence exist,
439 * then by construction the shared fences must be later
440 * than the exclusive fence. If we successfully wait for
441 * all the shared fences, we know that the exclusive fence
442 * must all be signaled. If all the shared fences are
443 * signaled, we can prune the array and recover the
444 * floating references on the fences/requests.
446 prune_fences = count && timeout >= 0;
447 } else {
448 excl = reservation_object_get_excl_rcu(resv);
451 if (excl && timeout >= 0)
452 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
453 rps_client);
455 dma_fence_put(excl);
458 * Opportunistically prune the fences iff we know they have *all* been
459 * signaled and that the reservation object has not been changed (i.e.
460 * no new fences have been added).
462 if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
463 if (reservation_object_trylock(resv)) {
464 if (!__read_seqcount_retry(&resv->seq, seq))
465 reservation_object_add_excl_fence(resv, NULL);
466 reservation_object_unlock(resv);
470 return timeout;
473 static void __fence_set_priority(struct dma_fence *fence, int prio)
475 struct drm_i915_gem_request *rq;
476 struct intel_engine_cs *engine;
478 if (dma_fence_is_signaled(fence) || !dma_fence_is_i915(fence))
479 return;
481 rq = to_request(fence);
482 engine = rq->engine;
483 if (!engine->schedule)
484 return;
486 engine->schedule(rq, prio);
489 static void fence_set_priority(struct dma_fence *fence, int prio)
491 /* Recurse once into a fence-array */
492 if (dma_fence_is_array(fence)) {
493 struct dma_fence_array *array = to_dma_fence_array(fence);
494 int i;
496 for (i = 0; i < array->num_fences; i++)
497 __fence_set_priority(array->fences[i], prio);
498 } else {
499 __fence_set_priority(fence, prio);
504 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
505 unsigned int flags,
506 int prio)
508 struct dma_fence *excl;
510 if (flags & I915_WAIT_ALL) {
511 struct dma_fence **shared;
512 unsigned int count, i;
513 int ret;
515 ret = reservation_object_get_fences_rcu(obj->resv,
516 &excl, &count, &shared);
517 if (ret)
518 return ret;
520 for (i = 0; i < count; i++) {
521 fence_set_priority(shared[i], prio);
522 dma_fence_put(shared[i]);
525 kfree(shared);
526 } else {
527 excl = reservation_object_get_excl_rcu(obj->resv);
530 if (excl) {
531 fence_set_priority(excl, prio);
532 dma_fence_put(excl);
534 return 0;
538 * Waits for rendering to the object to be completed
539 * @obj: i915 gem object
540 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
541 * @timeout: how long to wait
542 * @rps_client: client (user process) to charge for any waitboosting
545 i915_gem_object_wait(struct drm_i915_gem_object *obj,
546 unsigned int flags,
547 long timeout,
548 struct intel_rps_client *rps_client)
550 might_sleep();
551 #if IS_ENABLED(CONFIG_LOCKDEP)
552 GEM_BUG_ON(debug_locks &&
553 !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
554 !!(flags & I915_WAIT_LOCKED));
555 #endif
556 GEM_BUG_ON(timeout < 0);
558 timeout = i915_gem_object_wait_reservation(obj->resv,
559 flags, timeout,
560 rps_client);
561 return timeout < 0 ? timeout : 0;
564 static struct intel_rps_client *to_rps_client(struct drm_file *file)
566 struct drm_i915_file_private *fpriv = file->driver_priv;
568 return &fpriv->rps_client;
571 static int
572 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
573 struct drm_i915_gem_pwrite *args,
574 struct drm_file *file)
576 void *vaddr = obj->phys_handle->vaddr + args->offset;
577 char __user *user_data = u64_to_user_ptr(args->data_ptr);
579 /* We manually control the domain here and pretend that it
580 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
582 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
583 if (copy_from_user(vaddr, user_data, args->size))
584 return -EFAULT;
586 drm_clflush_virt_range(vaddr, args->size);
587 i915_gem_chipset_flush(to_i915(obj->base.dev));
589 intel_fb_obj_flush(obj, ORIGIN_CPU);
590 return 0;
593 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
595 return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
598 void i915_gem_object_free(struct drm_i915_gem_object *obj)
600 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
601 kmem_cache_free(dev_priv->objects, obj);
604 static int
605 i915_gem_create(struct drm_file *file,
606 struct drm_i915_private *dev_priv,
607 uint64_t size,
608 uint32_t *handle_p)
610 struct drm_i915_gem_object *obj;
611 int ret;
612 u32 handle;
614 size = roundup(size, PAGE_SIZE);
615 if (size == 0)
616 return -EINVAL;
618 /* Allocate the new object */
619 obj = i915_gem_object_create(dev_priv, size);
620 if (IS_ERR(obj))
621 return PTR_ERR(obj);
623 ret = drm_gem_handle_create(file, &obj->base, &handle);
624 /* drop reference from allocate - handle holds it now */
625 i915_gem_object_put(obj);
626 if (ret)
627 return ret;
629 *handle_p = handle;
630 return 0;
634 i915_gem_dumb_create(struct drm_file *file,
635 struct drm_device *dev,
636 struct drm_mode_create_dumb *args)
638 /* have to work out size/pitch and return them */
639 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
640 args->size = args->pitch * args->height;
641 return i915_gem_create(file, to_i915(dev),
642 args->size, &args->handle);
645 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
647 return !(obj->cache_level == I915_CACHE_NONE ||
648 obj->cache_level == I915_CACHE_WT);
652 * Creates a new mm object and returns a handle to it.
653 * @dev: drm device pointer
654 * @data: ioctl data blob
655 * @file: drm file pointer
658 i915_gem_create_ioctl(struct drm_device *dev, void *data,
659 struct drm_file *file)
661 struct drm_i915_private *dev_priv = to_i915(dev);
662 struct drm_i915_gem_create *args = data;
664 i915_gem_flush_free_objects(dev_priv);
666 return i915_gem_create(file, dev_priv,
667 args->size, &args->handle);
670 static inline enum fb_op_origin
671 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
673 return (domain == I915_GEM_DOMAIN_GTT ?
674 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
677 void i915_gem_flush_ggtt_writes(struct drm_i915_private *dev_priv)
680 * No actual flushing is required for the GTT write domain for reads
681 * from the GTT domain. Writes to it "immediately" go to main memory
682 * as far as we know, so there's no chipset flush. It also doesn't
683 * land in the GPU render cache.
685 * However, we do have to enforce the order so that all writes through
686 * the GTT land before any writes to the device, such as updates to
687 * the GATT itself.
689 * We also have to wait a bit for the writes to land from the GTT.
690 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
691 * timing. This issue has only been observed when switching quickly
692 * between GTT writes and CPU reads from inside the kernel on recent hw,
693 * and it appears to only affect discrete GTT blocks (i.e. on LLC
694 * system agents we cannot reproduce this behaviour, until Cannonlake
695 * that was!).
698 wmb();
700 intel_runtime_pm_get(dev_priv);
701 spin_lock_irq(&dev_priv->uncore.lock);
703 POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE));
705 spin_unlock_irq(&dev_priv->uncore.lock);
706 intel_runtime_pm_put(dev_priv);
709 static void
710 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
712 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
713 struct i915_vma *vma;
715 if (!(obj->base.write_domain & flush_domains))
716 return;
718 switch (obj->base.write_domain) {
719 case I915_GEM_DOMAIN_GTT:
720 i915_gem_flush_ggtt_writes(dev_priv);
722 intel_fb_obj_flush(obj,
723 fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
725 for_each_ggtt_vma(vma, obj) {
726 if (vma->iomap)
727 continue;
729 i915_vma_unset_ggtt_write(vma);
731 break;
733 case I915_GEM_DOMAIN_CPU:
734 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
735 break;
737 case I915_GEM_DOMAIN_RENDER:
738 if (gpu_write_needs_clflush(obj))
739 obj->cache_dirty = true;
740 break;
743 obj->base.write_domain = 0;
746 static inline int
747 __copy_to_user_swizzled(char __user *cpu_vaddr,
748 const char *gpu_vaddr, int gpu_offset,
749 int length)
751 int ret, cpu_offset = 0;
753 while (length > 0) {
754 int cacheline_end = ALIGN(gpu_offset + 1, 64);
755 int this_length = min(cacheline_end - gpu_offset, length);
756 int swizzled_gpu_offset = gpu_offset ^ 64;
758 ret = __copy_to_user(cpu_vaddr + cpu_offset,
759 gpu_vaddr + swizzled_gpu_offset,
760 this_length);
761 if (ret)
762 return ret + length;
764 cpu_offset += this_length;
765 gpu_offset += this_length;
766 length -= this_length;
769 return 0;
772 static inline int
773 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
774 const char __user *cpu_vaddr,
775 int length)
777 int ret, cpu_offset = 0;
779 while (length > 0) {
780 int cacheline_end = ALIGN(gpu_offset + 1, 64);
781 int this_length = min(cacheline_end - gpu_offset, length);
782 int swizzled_gpu_offset = gpu_offset ^ 64;
784 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
785 cpu_vaddr + cpu_offset,
786 this_length);
787 if (ret)
788 return ret + length;
790 cpu_offset += this_length;
791 gpu_offset += this_length;
792 length -= this_length;
795 return 0;
799 * Pins the specified object's pages and synchronizes the object with
800 * GPU accesses. Sets needs_clflush to non-zero if the caller should
801 * flush the object from the CPU cache.
803 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
804 unsigned int *needs_clflush)
806 int ret;
808 lockdep_assert_held(&obj->base.dev->struct_mutex);
810 *needs_clflush = 0;
811 if (!i915_gem_object_has_struct_page(obj))
812 return -ENODEV;
814 ret = i915_gem_object_wait(obj,
815 I915_WAIT_INTERRUPTIBLE |
816 I915_WAIT_LOCKED,
817 MAX_SCHEDULE_TIMEOUT,
818 NULL);
819 if (ret)
820 return ret;
822 ret = i915_gem_object_pin_pages(obj);
823 if (ret)
824 return ret;
826 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
827 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
828 ret = i915_gem_object_set_to_cpu_domain(obj, false);
829 if (ret)
830 goto err_unpin;
831 else
832 goto out;
835 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
837 /* If we're not in the cpu read domain, set ourself into the gtt
838 * read domain and manually flush cachelines (if required). This
839 * optimizes for the case when the gpu will dirty the data
840 * anyway again before the next pread happens.
842 if (!obj->cache_dirty &&
843 !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
844 *needs_clflush = CLFLUSH_BEFORE;
846 out:
847 /* return with the pages pinned */
848 return 0;
850 err_unpin:
851 i915_gem_object_unpin_pages(obj);
852 return ret;
855 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
856 unsigned int *needs_clflush)
858 int ret;
860 lockdep_assert_held(&obj->base.dev->struct_mutex);
862 *needs_clflush = 0;
863 if (!i915_gem_object_has_struct_page(obj))
864 return -ENODEV;
866 ret = i915_gem_object_wait(obj,
867 I915_WAIT_INTERRUPTIBLE |
868 I915_WAIT_LOCKED |
869 I915_WAIT_ALL,
870 MAX_SCHEDULE_TIMEOUT,
871 NULL);
872 if (ret)
873 return ret;
875 ret = i915_gem_object_pin_pages(obj);
876 if (ret)
877 return ret;
879 if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
880 !static_cpu_has(X86_FEATURE_CLFLUSH)) {
881 ret = i915_gem_object_set_to_cpu_domain(obj, true);
882 if (ret)
883 goto err_unpin;
884 else
885 goto out;
888 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
890 /* If we're not in the cpu write domain, set ourself into the
891 * gtt write domain and manually flush cachelines (as required).
892 * This optimizes for the case when the gpu will use the data
893 * right away and we therefore have to clflush anyway.
895 if (!obj->cache_dirty) {
896 *needs_clflush |= CLFLUSH_AFTER;
899 * Same trick applies to invalidate partially written
900 * cachelines read before writing.
902 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
903 *needs_clflush |= CLFLUSH_BEFORE;
906 out:
907 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
908 obj->mm.dirty = true;
909 /* return with the pages pinned */
910 return 0;
912 err_unpin:
913 i915_gem_object_unpin_pages(obj);
914 return ret;
917 static void
918 shmem_clflush_swizzled_range(char *addr, unsigned long length,
919 bool swizzled)
921 if (unlikely(swizzled)) {
922 unsigned long start = (unsigned long) addr;
923 unsigned long end = (unsigned long) addr + length;
925 /* For swizzling simply ensure that we always flush both
926 * channels. Lame, but simple and it works. Swizzled
927 * pwrite/pread is far from a hotpath - current userspace
928 * doesn't use it at all. */
929 start = round_down(start, 128);
930 end = round_up(end, 128);
932 drm_clflush_virt_range((void *)start, end - start);
933 } else {
934 drm_clflush_virt_range(addr, length);
939 /* Only difference to the fast-path function is that this can handle bit17
940 * and uses non-atomic copy and kmap functions. */
941 static int
942 shmem_pread_slow(struct page *page, int offset, int length,
943 char __user *user_data,
944 bool page_do_bit17_swizzling, bool needs_clflush)
946 char *vaddr;
947 int ret;
949 vaddr = kmap(page);
950 if (needs_clflush)
951 shmem_clflush_swizzled_range(vaddr + offset, length,
952 page_do_bit17_swizzling);
954 if (page_do_bit17_swizzling)
955 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
956 else
957 ret = __copy_to_user(user_data, vaddr + offset, length);
958 kunmap(page);
960 return ret ? - EFAULT : 0;
963 static int
964 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
965 bool page_do_bit17_swizzling, bool needs_clflush)
967 int ret;
969 ret = -ENODEV;
970 if (!page_do_bit17_swizzling) {
971 char *vaddr = kmap_atomic(page);
973 if (needs_clflush)
974 drm_clflush_virt_range(vaddr + offset, length);
975 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
976 kunmap_atomic(vaddr);
978 if (ret == 0)
979 return 0;
981 return shmem_pread_slow(page, offset, length, user_data,
982 page_do_bit17_swizzling, needs_clflush);
985 static int
986 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
987 struct drm_i915_gem_pread *args)
989 char __user *user_data;
990 u64 remain;
991 unsigned int obj_do_bit17_swizzling;
992 unsigned int needs_clflush;
993 unsigned int idx, offset;
994 int ret;
996 obj_do_bit17_swizzling = 0;
997 if (i915_gem_object_needs_bit17_swizzle(obj))
998 obj_do_bit17_swizzling = BIT(17);
1000 ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
1001 if (ret)
1002 return ret;
1004 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
1005 mutex_unlock(&obj->base.dev->struct_mutex);
1006 if (ret)
1007 return ret;
1009 remain = args->size;
1010 user_data = u64_to_user_ptr(args->data_ptr);
1011 offset = offset_in_page(args->offset);
1012 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1013 struct page *page = i915_gem_object_get_page(obj, idx);
1014 int length;
1016 length = remain;
1017 if (offset + length > PAGE_SIZE)
1018 length = PAGE_SIZE - offset;
1020 ret = shmem_pread(page, offset, length, user_data,
1021 page_to_phys(page) & obj_do_bit17_swizzling,
1022 needs_clflush);
1023 if (ret)
1024 break;
1026 remain -= length;
1027 user_data += length;
1028 offset = 0;
1031 i915_gem_obj_finish_shmem_access(obj);
1032 return ret;
1035 static inline bool
1036 gtt_user_read(struct io_mapping *mapping,
1037 loff_t base, int offset,
1038 char __user *user_data, int length)
1040 void __iomem *vaddr;
1041 unsigned long unwritten;
1043 /* We can use the cpu mem copy function because this is X86. */
1044 vaddr = io_mapping_map_atomic_wc(mapping, base);
1045 unwritten = __copy_to_user_inatomic(user_data,
1046 (void __force *)vaddr + offset,
1047 length);
1048 io_mapping_unmap_atomic(vaddr);
1049 if (unwritten) {
1050 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1051 unwritten = copy_to_user(user_data,
1052 (void __force *)vaddr + offset,
1053 length);
1054 io_mapping_unmap(vaddr);
1056 return unwritten;
1059 static int
1060 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1061 const struct drm_i915_gem_pread *args)
1063 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1064 struct i915_ggtt *ggtt = &i915->ggtt;
1065 struct drm_mm_node node;
1066 struct i915_vma *vma;
1067 void __user *user_data;
1068 u64 remain, offset;
1069 int ret;
1071 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1072 if (ret)
1073 return ret;
1075 intel_runtime_pm_get(i915);
1076 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1077 PIN_MAPPABLE |
1078 PIN_NONFAULT |
1079 PIN_NONBLOCK);
1080 if (!IS_ERR(vma)) {
1081 node.start = i915_ggtt_offset(vma);
1082 node.allocated = false;
1083 ret = i915_vma_put_fence(vma);
1084 if (ret) {
1085 i915_vma_unpin(vma);
1086 vma = ERR_PTR(ret);
1089 if (IS_ERR(vma)) {
1090 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1091 if (ret)
1092 goto out_unlock;
1093 GEM_BUG_ON(!node.allocated);
1096 ret = i915_gem_object_set_to_gtt_domain(obj, false);
1097 if (ret)
1098 goto out_unpin;
1100 mutex_unlock(&i915->drm.struct_mutex);
1102 user_data = u64_to_user_ptr(args->data_ptr);
1103 remain = args->size;
1104 offset = args->offset;
1106 while (remain > 0) {
1107 /* Operation in this page
1109 * page_base = page offset within aperture
1110 * page_offset = offset within page
1111 * page_length = bytes to copy for this page
1113 u32 page_base = node.start;
1114 unsigned page_offset = offset_in_page(offset);
1115 unsigned page_length = PAGE_SIZE - page_offset;
1116 page_length = remain < page_length ? remain : page_length;
1117 if (node.allocated) {
1118 wmb();
1119 ggtt->base.insert_page(&ggtt->base,
1120 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1121 node.start, I915_CACHE_NONE, 0);
1122 wmb();
1123 } else {
1124 page_base += offset & PAGE_MASK;
1127 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
1128 user_data, page_length)) {
1129 ret = -EFAULT;
1130 break;
1133 remain -= page_length;
1134 user_data += page_length;
1135 offset += page_length;
1138 mutex_lock(&i915->drm.struct_mutex);
1139 out_unpin:
1140 if (node.allocated) {
1141 wmb();
1142 ggtt->base.clear_range(&ggtt->base,
1143 node.start, node.size);
1144 remove_mappable_node(&node);
1145 } else {
1146 i915_vma_unpin(vma);
1148 out_unlock:
1149 intel_runtime_pm_put(i915);
1150 mutex_unlock(&i915->drm.struct_mutex);
1152 return ret;
1156 * Reads data from the object referenced by handle.
1157 * @dev: drm device pointer
1158 * @data: ioctl data blob
1159 * @file: drm file pointer
1161 * On error, the contents of *data are undefined.
1164 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1165 struct drm_file *file)
1167 struct drm_i915_gem_pread *args = data;
1168 struct drm_i915_gem_object *obj;
1169 int ret;
1171 if (args->size == 0)
1172 return 0;
1174 if (!access_ok(VERIFY_WRITE,
1175 u64_to_user_ptr(args->data_ptr),
1176 args->size))
1177 return -EFAULT;
1179 obj = i915_gem_object_lookup(file, args->handle);
1180 if (!obj)
1181 return -ENOENT;
1183 /* Bounds check source. */
1184 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1185 ret = -EINVAL;
1186 goto out;
1189 trace_i915_gem_object_pread(obj, args->offset, args->size);
1191 ret = i915_gem_object_wait(obj,
1192 I915_WAIT_INTERRUPTIBLE,
1193 MAX_SCHEDULE_TIMEOUT,
1194 to_rps_client(file));
1195 if (ret)
1196 goto out;
1198 ret = i915_gem_object_pin_pages(obj);
1199 if (ret)
1200 goto out;
1202 ret = i915_gem_shmem_pread(obj, args);
1203 if (ret == -EFAULT || ret == -ENODEV)
1204 ret = i915_gem_gtt_pread(obj, args);
1206 i915_gem_object_unpin_pages(obj);
1207 out:
1208 i915_gem_object_put(obj);
1209 return ret;
1212 /* This is the fast write path which cannot handle
1213 * page faults in the source data
1216 static inline bool
1217 ggtt_write(struct io_mapping *mapping,
1218 loff_t base, int offset,
1219 char __user *user_data, int length)
1221 void __iomem *vaddr;
1222 unsigned long unwritten;
1224 /* We can use the cpu mem copy function because this is X86. */
1225 vaddr = io_mapping_map_atomic_wc(mapping, base);
1226 unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1227 user_data, length);
1228 io_mapping_unmap_atomic(vaddr);
1229 if (unwritten) {
1230 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1231 unwritten = copy_from_user((void __force *)vaddr + offset,
1232 user_data, length);
1233 io_mapping_unmap(vaddr);
1236 return unwritten;
1240 * This is the fast pwrite path, where we copy the data directly from the
1241 * user into the GTT, uncached.
1242 * @obj: i915 GEM object
1243 * @args: pwrite arguments structure
1245 static int
1246 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1247 const struct drm_i915_gem_pwrite *args)
1249 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1250 struct i915_ggtt *ggtt = &i915->ggtt;
1251 struct drm_mm_node node;
1252 struct i915_vma *vma;
1253 u64 remain, offset;
1254 void __user *user_data;
1255 int ret;
1257 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1258 if (ret)
1259 return ret;
1261 if (i915_gem_object_has_struct_page(obj)) {
1263 * Avoid waking the device up if we can fallback, as
1264 * waking/resuming is very slow (worst-case 10-100 ms
1265 * depending on PCI sleeps and our own resume time).
1266 * This easily dwarfs any performance advantage from
1267 * using the cache bypass of indirect GGTT access.
1269 if (!intel_runtime_pm_get_if_in_use(i915)) {
1270 ret = -EFAULT;
1271 goto out_unlock;
1273 } else {
1274 /* No backing pages, no fallback, we must force GGTT access */
1275 intel_runtime_pm_get(i915);
1278 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1279 PIN_MAPPABLE |
1280 PIN_NONFAULT |
1281 PIN_NONBLOCK);
1282 if (!IS_ERR(vma)) {
1283 node.start = i915_ggtt_offset(vma);
1284 node.allocated = false;
1285 ret = i915_vma_put_fence(vma);
1286 if (ret) {
1287 i915_vma_unpin(vma);
1288 vma = ERR_PTR(ret);
1291 if (IS_ERR(vma)) {
1292 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1293 if (ret)
1294 goto out_rpm;
1295 GEM_BUG_ON(!node.allocated);
1298 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1299 if (ret)
1300 goto out_unpin;
1302 mutex_unlock(&i915->drm.struct_mutex);
1304 intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1306 user_data = u64_to_user_ptr(args->data_ptr);
1307 offset = args->offset;
1308 remain = args->size;
1309 while (remain) {
1310 /* Operation in this page
1312 * page_base = page offset within aperture
1313 * page_offset = offset within page
1314 * page_length = bytes to copy for this page
1316 u32 page_base = node.start;
1317 unsigned int page_offset = offset_in_page(offset);
1318 unsigned int page_length = PAGE_SIZE - page_offset;
1319 page_length = remain < page_length ? remain : page_length;
1320 if (node.allocated) {
1321 wmb(); /* flush the write before we modify the GGTT */
1322 ggtt->base.insert_page(&ggtt->base,
1323 i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1324 node.start, I915_CACHE_NONE, 0);
1325 wmb(); /* flush modifications to the GGTT (insert_page) */
1326 } else {
1327 page_base += offset & PAGE_MASK;
1329 /* If we get a fault while copying data, then (presumably) our
1330 * source page isn't available. Return the error and we'll
1331 * retry in the slow path.
1332 * If the object is non-shmem backed, we retry again with the
1333 * path that handles page fault.
1335 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
1336 user_data, page_length)) {
1337 ret = -EFAULT;
1338 break;
1341 remain -= page_length;
1342 user_data += page_length;
1343 offset += page_length;
1345 intel_fb_obj_flush(obj, ORIGIN_CPU);
1347 mutex_lock(&i915->drm.struct_mutex);
1348 out_unpin:
1349 if (node.allocated) {
1350 wmb();
1351 ggtt->base.clear_range(&ggtt->base,
1352 node.start, node.size);
1353 remove_mappable_node(&node);
1354 } else {
1355 i915_vma_unpin(vma);
1357 out_rpm:
1358 intel_runtime_pm_put(i915);
1359 out_unlock:
1360 mutex_unlock(&i915->drm.struct_mutex);
1361 return ret;
1364 static int
1365 shmem_pwrite_slow(struct page *page, int offset, int length,
1366 char __user *user_data,
1367 bool page_do_bit17_swizzling,
1368 bool needs_clflush_before,
1369 bool needs_clflush_after)
1371 char *vaddr;
1372 int ret;
1374 vaddr = kmap(page);
1375 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1376 shmem_clflush_swizzled_range(vaddr + offset, length,
1377 page_do_bit17_swizzling);
1378 if (page_do_bit17_swizzling)
1379 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1380 length);
1381 else
1382 ret = __copy_from_user(vaddr + offset, user_data, length);
1383 if (needs_clflush_after)
1384 shmem_clflush_swizzled_range(vaddr + offset, length,
1385 page_do_bit17_swizzling);
1386 kunmap(page);
1388 return ret ? -EFAULT : 0;
1391 /* Per-page copy function for the shmem pwrite fastpath.
1392 * Flushes invalid cachelines before writing to the target if
1393 * needs_clflush_before is set and flushes out any written cachelines after
1394 * writing if needs_clflush is set.
1396 static int
1397 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1398 bool page_do_bit17_swizzling,
1399 bool needs_clflush_before,
1400 bool needs_clflush_after)
1402 int ret;
1404 ret = -ENODEV;
1405 if (!page_do_bit17_swizzling) {
1406 char *vaddr = kmap_atomic(page);
1408 if (needs_clflush_before)
1409 drm_clflush_virt_range(vaddr + offset, len);
1410 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1411 if (needs_clflush_after)
1412 drm_clflush_virt_range(vaddr + offset, len);
1414 kunmap_atomic(vaddr);
1416 if (ret == 0)
1417 return ret;
1419 return shmem_pwrite_slow(page, offset, len, user_data,
1420 page_do_bit17_swizzling,
1421 needs_clflush_before,
1422 needs_clflush_after);
1425 static int
1426 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1427 const struct drm_i915_gem_pwrite *args)
1429 struct drm_i915_private *i915 = to_i915(obj->base.dev);
1430 void __user *user_data;
1431 u64 remain;
1432 unsigned int obj_do_bit17_swizzling;
1433 unsigned int partial_cacheline_write;
1434 unsigned int needs_clflush;
1435 unsigned int offset, idx;
1436 int ret;
1438 ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1439 if (ret)
1440 return ret;
1442 ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1443 mutex_unlock(&i915->drm.struct_mutex);
1444 if (ret)
1445 return ret;
1447 obj_do_bit17_swizzling = 0;
1448 if (i915_gem_object_needs_bit17_swizzle(obj))
1449 obj_do_bit17_swizzling = BIT(17);
1451 /* If we don't overwrite a cacheline completely we need to be
1452 * careful to have up-to-date data by first clflushing. Don't
1453 * overcomplicate things and flush the entire patch.
1455 partial_cacheline_write = 0;
1456 if (needs_clflush & CLFLUSH_BEFORE)
1457 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1459 user_data = u64_to_user_ptr(args->data_ptr);
1460 remain = args->size;
1461 offset = offset_in_page(args->offset);
1462 for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1463 struct page *page = i915_gem_object_get_page(obj, idx);
1464 int length;
1466 length = remain;
1467 if (offset + length > PAGE_SIZE)
1468 length = PAGE_SIZE - offset;
1470 ret = shmem_pwrite(page, offset, length, user_data,
1471 page_to_phys(page) & obj_do_bit17_swizzling,
1472 (offset | length) & partial_cacheline_write,
1473 needs_clflush & CLFLUSH_AFTER);
1474 if (ret)
1475 break;
1477 remain -= length;
1478 user_data += length;
1479 offset = 0;
1482 intel_fb_obj_flush(obj, ORIGIN_CPU);
1483 i915_gem_obj_finish_shmem_access(obj);
1484 return ret;
1488 * Writes data to the object referenced by handle.
1489 * @dev: drm device
1490 * @data: ioctl data blob
1491 * @file: drm file
1493 * On error, the contents of the buffer that were to be modified are undefined.
1496 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1497 struct drm_file *file)
1499 struct drm_i915_gem_pwrite *args = data;
1500 struct drm_i915_gem_object *obj;
1501 int ret;
1503 if (args->size == 0)
1504 return 0;
1506 if (!access_ok(VERIFY_READ,
1507 u64_to_user_ptr(args->data_ptr),
1508 args->size))
1509 return -EFAULT;
1511 obj = i915_gem_object_lookup(file, args->handle);
1512 if (!obj)
1513 return -ENOENT;
1515 /* Bounds check destination. */
1516 if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1517 ret = -EINVAL;
1518 goto err;
1521 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1523 ret = -ENODEV;
1524 if (obj->ops->pwrite)
1525 ret = obj->ops->pwrite(obj, args);
1526 if (ret != -ENODEV)
1527 goto err;
1529 ret = i915_gem_object_wait(obj,
1530 I915_WAIT_INTERRUPTIBLE |
1531 I915_WAIT_ALL,
1532 MAX_SCHEDULE_TIMEOUT,
1533 to_rps_client(file));
1534 if (ret)
1535 goto err;
1537 ret = i915_gem_object_pin_pages(obj);
1538 if (ret)
1539 goto err;
1541 ret = -EFAULT;
1542 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1543 * it would end up going through the fenced access, and we'll get
1544 * different detiling behavior between reading and writing.
1545 * pread/pwrite currently are reading and writing from the CPU
1546 * perspective, requiring manual detiling by the client.
1548 if (!i915_gem_object_has_struct_page(obj) ||
1549 cpu_write_needs_clflush(obj))
1550 /* Note that the gtt paths might fail with non-page-backed user
1551 * pointers (e.g. gtt mappings when moving data between
1552 * textures). Fallback to the shmem path in that case.
1554 ret = i915_gem_gtt_pwrite_fast(obj, args);
1556 if (ret == -EFAULT || ret == -ENOSPC) {
1557 if (obj->phys_handle)
1558 ret = i915_gem_phys_pwrite(obj, args, file);
1559 else
1560 ret = i915_gem_shmem_pwrite(obj, args);
1563 i915_gem_object_unpin_pages(obj);
1564 err:
1565 i915_gem_object_put(obj);
1566 return ret;
1569 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1571 struct drm_i915_private *i915;
1572 struct list_head *list;
1573 struct i915_vma *vma;
1575 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1577 for_each_ggtt_vma(vma, obj) {
1578 if (i915_vma_is_active(vma))
1579 continue;
1581 if (!drm_mm_node_allocated(&vma->node))
1582 continue;
1584 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1587 i915 = to_i915(obj->base.dev);
1588 spin_lock(&i915->mm.obj_lock);
1589 list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1590 list_move_tail(&obj->mm.link, list);
1591 spin_unlock(&i915->mm.obj_lock);
1595 * Called when user space prepares to use an object with the CPU, either
1596 * through the mmap ioctl's mapping or a GTT mapping.
1597 * @dev: drm device
1598 * @data: ioctl data blob
1599 * @file: drm file
1602 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1603 struct drm_file *file)
1605 struct drm_i915_gem_set_domain *args = data;
1606 struct drm_i915_gem_object *obj;
1607 uint32_t read_domains = args->read_domains;
1608 uint32_t write_domain = args->write_domain;
1609 int err;
1611 /* Only handle setting domains to types used by the CPU. */
1612 if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1613 return -EINVAL;
1615 /* Having something in the write domain implies it's in the read
1616 * domain, and only that read domain. Enforce that in the request.
1618 if (write_domain != 0 && read_domains != write_domain)
1619 return -EINVAL;
1621 obj = i915_gem_object_lookup(file, args->handle);
1622 if (!obj)
1623 return -ENOENT;
1625 /* Try to flush the object off the GPU without holding the lock.
1626 * We will repeat the flush holding the lock in the normal manner
1627 * to catch cases where we are gazumped.
1629 err = i915_gem_object_wait(obj,
1630 I915_WAIT_INTERRUPTIBLE |
1631 (write_domain ? I915_WAIT_ALL : 0),
1632 MAX_SCHEDULE_TIMEOUT,
1633 to_rps_client(file));
1634 if (err)
1635 goto out;
1638 * Proxy objects do not control access to the backing storage, ergo
1639 * they cannot be used as a means to manipulate the cache domain
1640 * tracking for that backing storage. The proxy object is always
1641 * considered to be outside of any cache domain.
1643 if (i915_gem_object_is_proxy(obj)) {
1644 err = -ENXIO;
1645 goto out;
1649 * Flush and acquire obj->pages so that we are coherent through
1650 * direct access in memory with previous cached writes through
1651 * shmemfs and that our cache domain tracking remains valid.
1652 * For example, if the obj->filp was moved to swap without us
1653 * being notified and releasing the pages, we would mistakenly
1654 * continue to assume that the obj remained out of the CPU cached
1655 * domain.
1657 err = i915_gem_object_pin_pages(obj);
1658 if (err)
1659 goto out;
1661 err = i915_mutex_lock_interruptible(dev);
1662 if (err)
1663 goto out_unpin;
1665 if (read_domains & I915_GEM_DOMAIN_WC)
1666 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1667 else if (read_domains & I915_GEM_DOMAIN_GTT)
1668 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1669 else
1670 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1672 /* And bump the LRU for this access */
1673 i915_gem_object_bump_inactive_ggtt(obj);
1675 mutex_unlock(&dev->struct_mutex);
1677 if (write_domain != 0)
1678 intel_fb_obj_invalidate(obj,
1679 fb_write_origin(obj, write_domain));
1681 out_unpin:
1682 i915_gem_object_unpin_pages(obj);
1683 out:
1684 i915_gem_object_put(obj);
1685 return err;
1689 * Called when user space has done writes to this buffer
1690 * @dev: drm device
1691 * @data: ioctl data blob
1692 * @file: drm file
1695 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1696 struct drm_file *file)
1698 struct drm_i915_gem_sw_finish *args = data;
1699 struct drm_i915_gem_object *obj;
1701 obj = i915_gem_object_lookup(file, args->handle);
1702 if (!obj)
1703 return -ENOENT;
1706 * Proxy objects are barred from CPU access, so there is no
1707 * need to ban sw_finish as it is a nop.
1710 /* Pinned buffers may be scanout, so flush the cache */
1711 i915_gem_object_flush_if_display(obj);
1712 i915_gem_object_put(obj);
1714 return 0;
1718 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1719 * it is mapped to.
1720 * @dev: drm device
1721 * @data: ioctl data blob
1722 * @file: drm file
1724 * While the mapping holds a reference on the contents of the object, it doesn't
1725 * imply a ref on the object itself.
1727 * IMPORTANT:
1729 * DRM driver writers who look a this function as an example for how to do GEM
1730 * mmap support, please don't implement mmap support like here. The modern way
1731 * to implement DRM mmap support is with an mmap offset ioctl (like
1732 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1733 * That way debug tooling like valgrind will understand what's going on, hiding
1734 * the mmap call in a driver private ioctl will break that. The i915 driver only
1735 * does cpu mmaps this way because we didn't know better.
1738 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1739 struct drm_file *file)
1741 struct drm_i915_gem_mmap *args = data;
1742 struct drm_i915_gem_object *obj;
1743 unsigned long addr;
1745 if (args->flags & ~(I915_MMAP_WC))
1746 return -EINVAL;
1748 if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1749 return -ENODEV;
1751 obj = i915_gem_object_lookup(file, args->handle);
1752 if (!obj)
1753 return -ENOENT;
1755 /* prime objects have no backing filp to GEM mmap
1756 * pages from.
1758 if (!obj->base.filp) {
1759 i915_gem_object_put(obj);
1760 return -ENXIO;
1763 addr = vm_mmap(obj->base.filp, 0, args->size,
1764 PROT_READ | PROT_WRITE, MAP_SHARED,
1765 args->offset);
1766 if (args->flags & I915_MMAP_WC) {
1767 struct mm_struct *mm = current->mm;
1768 struct vm_area_struct *vma;
1770 if (down_write_killable(&mm->mmap_sem)) {
1771 i915_gem_object_put(obj);
1772 return -EINTR;
1774 vma = find_vma(mm, addr);
1775 if (vma)
1776 vma->vm_page_prot =
1777 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1778 else
1779 addr = -ENOMEM;
1780 up_write(&mm->mmap_sem);
1782 /* This may race, but that's ok, it only gets set */
1783 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1785 i915_gem_object_put(obj);
1786 if (IS_ERR((void *)addr))
1787 return addr;
1789 args->addr_ptr = (uint64_t) addr;
1791 return 0;
1794 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1796 return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1800 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1802 * A history of the GTT mmap interface:
1804 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1805 * aligned and suitable for fencing, and still fit into the available
1806 * mappable space left by the pinned display objects. A classic problem
1807 * we called the page-fault-of-doom where we would ping-pong between
1808 * two objects that could not fit inside the GTT and so the memcpy
1809 * would page one object in at the expense of the other between every
1810 * single byte.
1812 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1813 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1814 * object is too large for the available space (or simply too large
1815 * for the mappable aperture!), a view is created instead and faulted
1816 * into userspace. (This view is aligned and sized appropriately for
1817 * fenced access.)
1819 * 2 - Recognise WC as a separate cache domain so that we can flush the
1820 * delayed writes via GTT before performing direct access via WC.
1822 * Restrictions:
1824 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1825 * hangs on some architectures, corruption on others. An attempt to service
1826 * a GTT page fault from a snoopable object will generate a SIGBUS.
1828 * * the object must be able to fit into RAM (physical memory, though no
1829 * limited to the mappable aperture).
1832 * Caveats:
1834 * * a new GTT page fault will synchronize rendering from the GPU and flush
1835 * all data to system memory. Subsequent access will not be synchronized.
1837 * * all mappings are revoked on runtime device suspend.
1839 * * there are only 8, 16 or 32 fence registers to share between all users
1840 * (older machines require fence register for display and blitter access
1841 * as well). Contention of the fence registers will cause the previous users
1842 * to be unmapped and any new access will generate new page faults.
1844 * * running out of memory while servicing a fault may generate a SIGBUS,
1845 * rather than the expected SIGSEGV.
1847 int i915_gem_mmap_gtt_version(void)
1849 return 2;
1852 static inline struct i915_ggtt_view
1853 compute_partial_view(struct drm_i915_gem_object *obj,
1854 pgoff_t page_offset,
1855 unsigned int chunk)
1857 struct i915_ggtt_view view;
1859 if (i915_gem_object_is_tiled(obj))
1860 chunk = roundup(chunk, tile_row_pages(obj));
1862 view.type = I915_GGTT_VIEW_PARTIAL;
1863 view.partial.offset = rounddown(page_offset, chunk);
1864 view.partial.size =
1865 min_t(unsigned int, chunk,
1866 (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1868 /* If the partial covers the entire object, just create a normal VMA. */
1869 if (chunk >= obj->base.size >> PAGE_SHIFT)
1870 view.type = I915_GGTT_VIEW_NORMAL;
1872 return view;
1876 * i915_gem_fault - fault a page into the GTT
1877 * @vmf: fault info
1879 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1880 * from userspace. The fault handler takes care of binding the object to
1881 * the GTT (if needed), allocating and programming a fence register (again,
1882 * only if needed based on whether the old reg is still valid or the object
1883 * is tiled) and inserting a new PTE into the faulting process.
1885 * Note that the faulting process may involve evicting existing objects
1886 * from the GTT and/or fence registers to make room. So performance may
1887 * suffer if the GTT working set is large or there are few fence registers
1888 * left.
1890 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1891 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1893 int i915_gem_fault(struct vm_fault *vmf)
1895 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1896 struct vm_area_struct *area = vmf->vma;
1897 struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1898 struct drm_device *dev = obj->base.dev;
1899 struct drm_i915_private *dev_priv = to_i915(dev);
1900 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1901 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1902 struct i915_vma *vma;
1903 pgoff_t page_offset;
1904 unsigned int flags;
1905 int ret;
1907 /* We don't use vmf->pgoff since that has the fake offset */
1908 page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1910 trace_i915_gem_object_fault(obj, page_offset, true, write);
1912 /* Try to flush the object off the GPU first without holding the lock.
1913 * Upon acquiring the lock, we will perform our sanity checks and then
1914 * repeat the flush holding the lock in the normal manner to catch cases
1915 * where we are gazumped.
1917 ret = i915_gem_object_wait(obj,
1918 I915_WAIT_INTERRUPTIBLE,
1919 MAX_SCHEDULE_TIMEOUT,
1920 NULL);
1921 if (ret)
1922 goto err;
1924 ret = i915_gem_object_pin_pages(obj);
1925 if (ret)
1926 goto err;
1928 intel_runtime_pm_get(dev_priv);
1930 ret = i915_mutex_lock_interruptible(dev);
1931 if (ret)
1932 goto err_rpm;
1934 /* Access to snoopable pages through the GTT is incoherent. */
1935 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1936 ret = -EFAULT;
1937 goto err_unlock;
1940 /* If the object is smaller than a couple of partial vma, it is
1941 * not worth only creating a single partial vma - we may as well
1942 * clear enough space for the full object.
1944 flags = PIN_MAPPABLE;
1945 if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1946 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1948 /* Now pin it into the GTT as needed */
1949 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1950 if (IS_ERR(vma)) {
1951 /* Use a partial view if it is bigger than available space */
1952 struct i915_ggtt_view view =
1953 compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1955 /* Userspace is now writing through an untracked VMA, abandon
1956 * all hope that the hardware is able to track future writes.
1958 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1960 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1962 if (IS_ERR(vma)) {
1963 ret = PTR_ERR(vma);
1964 goto err_unlock;
1967 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1968 if (ret)
1969 goto err_unpin;
1971 ret = i915_vma_pin_fence(vma);
1972 if (ret)
1973 goto err_unpin;
1975 /* Finally, remap it using the new GTT offset */
1976 ret = remap_io_mapping(area,
1977 area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1978 (ggtt->gmadr.start + vma->node.start) >> PAGE_SHIFT,
1979 min_t(u64, vma->size, area->vm_end - area->vm_start),
1980 &ggtt->iomap);
1981 if (ret)
1982 goto err_fence;
1984 /* Mark as being mmapped into userspace for later revocation */
1985 assert_rpm_wakelock_held(dev_priv);
1986 if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1987 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1988 GEM_BUG_ON(!obj->userfault_count);
1990 i915_vma_set_ggtt_write(vma);
1992 err_fence:
1993 i915_vma_unpin_fence(vma);
1994 err_unpin:
1995 __i915_vma_unpin(vma);
1996 err_unlock:
1997 mutex_unlock(&dev->struct_mutex);
1998 err_rpm:
1999 intel_runtime_pm_put(dev_priv);
2000 i915_gem_object_unpin_pages(obj);
2001 err:
2002 switch (ret) {
2003 case -EIO:
2005 * We eat errors when the gpu is terminally wedged to avoid
2006 * userspace unduly crashing (gl has no provisions for mmaps to
2007 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2008 * and so needs to be reported.
2010 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2011 ret = VM_FAULT_SIGBUS;
2012 break;
2014 case -EAGAIN:
2016 * EAGAIN means the gpu is hung and we'll wait for the error
2017 * handler to reset everything when re-faulting in
2018 * i915_mutex_lock_interruptible.
2020 case 0:
2021 case -ERESTARTSYS:
2022 case -EINTR:
2023 case -EBUSY:
2025 * EBUSY is ok: this just means that another thread
2026 * already did the job.
2028 ret = VM_FAULT_NOPAGE;
2029 break;
2030 case -ENOMEM:
2031 ret = VM_FAULT_OOM;
2032 break;
2033 case -ENOSPC:
2034 case -EFAULT:
2035 ret = VM_FAULT_SIGBUS;
2036 break;
2037 default:
2038 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2039 ret = VM_FAULT_SIGBUS;
2040 break;
2042 return ret;
2045 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2047 struct i915_vma *vma;
2049 GEM_BUG_ON(!obj->userfault_count);
2051 obj->userfault_count = 0;
2052 list_del(&obj->userfault_link);
2053 drm_vma_node_unmap(&obj->base.vma_node,
2054 obj->base.dev->anon_inode->i_mapping);
2056 for_each_ggtt_vma(vma, obj)
2057 i915_vma_unset_userfault(vma);
2061 * i915_gem_release_mmap - remove physical page mappings
2062 * @obj: obj in question
2064 * Preserve the reservation of the mmapping with the DRM core code, but
2065 * relinquish ownership of the pages back to the system.
2067 * It is vital that we remove the page mapping if we have mapped a tiled
2068 * object through the GTT and then lose the fence register due to
2069 * resource pressure. Similarly if the object has been moved out of the
2070 * aperture, than pages mapped into userspace must be revoked. Removing the
2071 * mapping will then trigger a page fault on the next user access, allowing
2072 * fixup by i915_gem_fault().
2074 void
2075 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2077 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2079 /* Serialisation between user GTT access and our code depends upon
2080 * revoking the CPU's PTE whilst the mutex is held. The next user
2081 * pagefault then has to wait until we release the mutex.
2083 * Note that RPM complicates somewhat by adding an additional
2084 * requirement that operations to the GGTT be made holding the RPM
2085 * wakeref.
2087 lockdep_assert_held(&i915->drm.struct_mutex);
2088 intel_runtime_pm_get(i915);
2090 if (!obj->userfault_count)
2091 goto out;
2093 __i915_gem_object_release_mmap(obj);
2095 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2096 * memory transactions from userspace before we return. The TLB
2097 * flushing implied above by changing the PTE above *should* be
2098 * sufficient, an extra barrier here just provides us with a bit
2099 * of paranoid documentation about our requirement to serialise
2100 * memory writes before touching registers / GSM.
2102 wmb();
2104 out:
2105 intel_runtime_pm_put(i915);
2108 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2110 struct drm_i915_gem_object *obj, *on;
2111 int i;
2114 * Only called during RPM suspend. All users of the userfault_list
2115 * must be holding an RPM wakeref to ensure that this can not
2116 * run concurrently with themselves (and use the struct_mutex for
2117 * protection between themselves).
2120 list_for_each_entry_safe(obj, on,
2121 &dev_priv->mm.userfault_list, userfault_link)
2122 __i915_gem_object_release_mmap(obj);
2124 /* The fence will be lost when the device powers down. If any were
2125 * in use by hardware (i.e. they are pinned), we should not be powering
2126 * down! All other fences will be reacquired by the user upon waking.
2128 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2129 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2131 /* Ideally we want to assert that the fence register is not
2132 * live at this point (i.e. that no piece of code will be
2133 * trying to write through fence + GTT, as that both violates
2134 * our tracking of activity and associated locking/barriers,
2135 * but also is illegal given that the hw is powered down).
2137 * Previously we used reg->pin_count as a "liveness" indicator.
2138 * That is not sufficient, and we need a more fine-grained
2139 * tool if we want to have a sanity check here.
2142 if (!reg->vma)
2143 continue;
2145 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2146 reg->dirty = true;
2150 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2152 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2153 int err;
2155 err = drm_gem_create_mmap_offset(&obj->base);
2156 if (likely(!err))
2157 return 0;
2159 /* Attempt to reap some mmap space from dead objects */
2160 do {
2161 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2162 if (err)
2163 break;
2165 i915_gem_drain_freed_objects(dev_priv);
2166 err = drm_gem_create_mmap_offset(&obj->base);
2167 if (!err)
2168 break;
2170 } while (flush_delayed_work(&dev_priv->gt.retire_work));
2172 return err;
2175 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2177 drm_gem_free_mmap_offset(&obj->base);
2181 i915_gem_mmap_gtt(struct drm_file *file,
2182 struct drm_device *dev,
2183 uint32_t handle,
2184 uint64_t *offset)
2186 struct drm_i915_gem_object *obj;
2187 int ret;
2189 obj = i915_gem_object_lookup(file, handle);
2190 if (!obj)
2191 return -ENOENT;
2193 ret = i915_gem_object_create_mmap_offset(obj);
2194 if (ret == 0)
2195 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2197 i915_gem_object_put(obj);
2198 return ret;
2202 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2203 * @dev: DRM device
2204 * @data: GTT mapping ioctl data
2205 * @file: GEM object info
2207 * Simply returns the fake offset to userspace so it can mmap it.
2208 * The mmap call will end up in drm_gem_mmap(), which will set things
2209 * up so we can get faults in the handler above.
2211 * The fault handler will take care of binding the object into the GTT
2212 * (since it may have been evicted to make room for something), allocating
2213 * a fence register, and mapping the appropriate aperture address into
2214 * userspace.
2217 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2218 struct drm_file *file)
2220 struct drm_i915_gem_mmap_gtt *args = data;
2222 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2225 /* Immediately discard the backing storage */
2226 static void
2227 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2229 i915_gem_object_free_mmap_offset(obj);
2231 if (obj->base.filp == NULL)
2232 return;
2234 /* Our goal here is to return as much of the memory as
2235 * is possible back to the system as we are called from OOM.
2236 * To do this we must instruct the shmfs to drop all of its
2237 * backing pages, *now*.
2239 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2240 obj->mm.madv = __I915_MADV_PURGED;
2241 obj->mm.pages = ERR_PTR(-EFAULT);
2244 /* Try to discard unwanted pages */
2245 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2247 struct address_space *mapping;
2249 lockdep_assert_held(&obj->mm.lock);
2250 GEM_BUG_ON(i915_gem_object_has_pages(obj));
2252 switch (obj->mm.madv) {
2253 case I915_MADV_DONTNEED:
2254 i915_gem_object_truncate(obj);
2255 case __I915_MADV_PURGED:
2256 return;
2259 if (obj->base.filp == NULL)
2260 return;
2262 mapping = obj->base.filp->f_mapping,
2263 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2266 static void
2267 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2268 struct sg_table *pages)
2270 struct sgt_iter sgt_iter;
2271 struct page *page;
2273 __i915_gem_object_release_shmem(obj, pages, true);
2275 i915_gem_gtt_finish_pages(obj, pages);
2277 if (i915_gem_object_needs_bit17_swizzle(obj))
2278 i915_gem_object_save_bit_17_swizzle(obj, pages);
2280 for_each_sgt_page(page, sgt_iter, pages) {
2281 if (obj->mm.dirty)
2282 set_page_dirty(page);
2284 if (obj->mm.madv == I915_MADV_WILLNEED)
2285 mark_page_accessed(page);
2287 put_page(page);
2289 obj->mm.dirty = false;
2291 sg_free_table(pages);
2292 kfree(pages);
2295 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2297 struct radix_tree_iter iter;
2298 void __rcu **slot;
2300 rcu_read_lock();
2301 radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2302 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2303 rcu_read_unlock();
2306 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2307 enum i915_mm_subclass subclass)
2309 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2310 struct sg_table *pages;
2312 if (i915_gem_object_has_pinned_pages(obj))
2313 return;
2315 GEM_BUG_ON(obj->bind_count);
2316 if (!i915_gem_object_has_pages(obj))
2317 return;
2319 /* May be called by shrinker from within get_pages() (on another bo) */
2320 mutex_lock_nested(&obj->mm.lock, subclass);
2321 if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2322 goto unlock;
2324 /* ->put_pages might need to allocate memory for the bit17 swizzle
2325 * array, hence protect them from being reaped by removing them from gtt
2326 * lists early. */
2327 pages = fetch_and_zero(&obj->mm.pages);
2328 GEM_BUG_ON(!pages);
2330 spin_lock(&i915->mm.obj_lock);
2331 list_del(&obj->mm.link);
2332 spin_unlock(&i915->mm.obj_lock);
2334 if (obj->mm.mapping) {
2335 void *ptr;
2337 ptr = page_mask_bits(obj->mm.mapping);
2338 if (is_vmalloc_addr(ptr))
2339 vunmap(ptr);
2340 else
2341 kunmap(kmap_to_page(ptr));
2343 obj->mm.mapping = NULL;
2346 __i915_gem_object_reset_page_iter(obj);
2348 if (!IS_ERR(pages))
2349 obj->ops->put_pages(obj, pages);
2351 obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2353 unlock:
2354 mutex_unlock(&obj->mm.lock);
2357 static bool i915_sg_trim(struct sg_table *orig_st)
2359 struct sg_table new_st;
2360 struct scatterlist *sg, *new_sg;
2361 unsigned int i;
2363 if (orig_st->nents == orig_st->orig_nents)
2364 return false;
2366 if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2367 return false;
2369 new_sg = new_st.sgl;
2370 for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2371 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2372 /* called before being DMA mapped, no need to copy sg->dma_* */
2373 new_sg = sg_next(new_sg);
2375 GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2377 sg_free_table(orig_st);
2379 *orig_st = new_st;
2380 return true;
2383 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2385 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2386 const unsigned long page_count = obj->base.size / PAGE_SIZE;
2387 unsigned long i;
2388 struct address_space *mapping;
2389 struct sg_table *st;
2390 struct scatterlist *sg;
2391 struct sgt_iter sgt_iter;
2392 struct page *page;
2393 unsigned long last_pfn = 0; /* suppress gcc warning */
2394 unsigned int max_segment = i915_sg_segment_size();
2395 unsigned int sg_page_sizes;
2396 gfp_t noreclaim;
2397 int ret;
2399 /* Assert that the object is not currently in any GPU domain. As it
2400 * wasn't in the GTT, there shouldn't be any way it could have been in
2401 * a GPU cache
2403 GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2404 GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2406 st = kmalloc(sizeof(*st), GFP_KERNEL);
2407 if (st == NULL)
2408 return -ENOMEM;
2410 rebuild_st:
2411 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2412 kfree(st);
2413 return -ENOMEM;
2416 /* Get the list of pages out of our struct file. They'll be pinned
2417 * at this point until we release them.
2419 * Fail silently without starting the shrinker
2421 mapping = obj->base.filp->f_mapping;
2422 noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2423 noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2425 sg = st->sgl;
2426 st->nents = 0;
2427 sg_page_sizes = 0;
2428 for (i = 0; i < page_count; i++) {
2429 const unsigned int shrink[] = {
2430 I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2432 }, *s = shrink;
2433 gfp_t gfp = noreclaim;
2435 do {
2436 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2437 if (likely(!IS_ERR(page)))
2438 break;
2440 if (!*s) {
2441 ret = PTR_ERR(page);
2442 goto err_sg;
2445 i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2446 cond_resched();
2448 /* We've tried hard to allocate the memory by reaping
2449 * our own buffer, now let the real VM do its job and
2450 * go down in flames if truly OOM.
2452 * However, since graphics tend to be disposable,
2453 * defer the oom here by reporting the ENOMEM back
2454 * to userspace.
2456 if (!*s) {
2457 /* reclaim and warn, but no oom */
2458 gfp = mapping_gfp_mask(mapping);
2460 /* Our bo are always dirty and so we require
2461 * kswapd to reclaim our pages (direct reclaim
2462 * does not effectively begin pageout of our
2463 * buffers on its own). However, direct reclaim
2464 * only waits for kswapd when under allocation
2465 * congestion. So as a result __GFP_RECLAIM is
2466 * unreliable and fails to actually reclaim our
2467 * dirty pages -- unless you try over and over
2468 * again with !__GFP_NORETRY. However, we still
2469 * want to fail this allocation rather than
2470 * trigger the out-of-memory killer and for
2471 * this we want __GFP_RETRY_MAYFAIL.
2473 gfp |= __GFP_RETRY_MAYFAIL;
2475 } while (1);
2477 if (!i ||
2478 sg->length >= max_segment ||
2479 page_to_pfn(page) != last_pfn + 1) {
2480 if (i) {
2481 sg_page_sizes |= sg->length;
2482 sg = sg_next(sg);
2484 st->nents++;
2485 sg_set_page(sg, page, PAGE_SIZE, 0);
2486 } else {
2487 sg->length += PAGE_SIZE;
2489 last_pfn = page_to_pfn(page);
2491 /* Check that the i965g/gm workaround works. */
2492 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2494 if (sg) { /* loop terminated early; short sg table */
2495 sg_page_sizes |= sg->length;
2496 sg_mark_end(sg);
2499 /* Trim unused sg entries to avoid wasting memory. */
2500 i915_sg_trim(st);
2502 ret = i915_gem_gtt_prepare_pages(obj, st);
2503 if (ret) {
2504 /* DMA remapping failed? One possible cause is that
2505 * it could not reserve enough large entries, asking
2506 * for PAGE_SIZE chunks instead may be helpful.
2508 if (max_segment > PAGE_SIZE) {
2509 for_each_sgt_page(page, sgt_iter, st)
2510 put_page(page);
2511 sg_free_table(st);
2513 max_segment = PAGE_SIZE;
2514 goto rebuild_st;
2515 } else {
2516 dev_warn(&dev_priv->drm.pdev->dev,
2517 "Failed to DMA remap %lu pages\n",
2518 page_count);
2519 goto err_pages;
2523 if (i915_gem_object_needs_bit17_swizzle(obj))
2524 i915_gem_object_do_bit_17_swizzle(obj, st);
2526 __i915_gem_object_set_pages(obj, st, sg_page_sizes);
2528 return 0;
2530 err_sg:
2531 sg_mark_end(sg);
2532 err_pages:
2533 for_each_sgt_page(page, sgt_iter, st)
2534 put_page(page);
2535 sg_free_table(st);
2536 kfree(st);
2538 /* shmemfs first checks if there is enough memory to allocate the page
2539 * and reports ENOSPC should there be insufficient, along with the usual
2540 * ENOMEM for a genuine allocation failure.
2542 * We use ENOSPC in our driver to mean that we have run out of aperture
2543 * space and so want to translate the error from shmemfs back to our
2544 * usual understanding of ENOMEM.
2546 if (ret == -ENOSPC)
2547 ret = -ENOMEM;
2549 return ret;
2552 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2553 struct sg_table *pages,
2554 unsigned int sg_page_sizes)
2556 struct drm_i915_private *i915 = to_i915(obj->base.dev);
2557 unsigned long supported = INTEL_INFO(i915)->page_sizes;
2558 int i;
2560 lockdep_assert_held(&obj->mm.lock);
2562 obj->mm.get_page.sg_pos = pages->sgl;
2563 obj->mm.get_page.sg_idx = 0;
2565 obj->mm.pages = pages;
2567 if (i915_gem_object_is_tiled(obj) &&
2568 i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2569 GEM_BUG_ON(obj->mm.quirked);
2570 __i915_gem_object_pin_pages(obj);
2571 obj->mm.quirked = true;
2574 GEM_BUG_ON(!sg_page_sizes);
2575 obj->mm.page_sizes.phys = sg_page_sizes;
2578 * Calculate the supported page-sizes which fit into the given
2579 * sg_page_sizes. This will give us the page-sizes which we may be able
2580 * to use opportunistically when later inserting into the GTT. For
2581 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2582 * 64K or 4K pages, although in practice this will depend on a number of
2583 * other factors.
2585 obj->mm.page_sizes.sg = 0;
2586 for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2587 if (obj->mm.page_sizes.phys & ~0u << i)
2588 obj->mm.page_sizes.sg |= BIT(i);
2590 GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2592 spin_lock(&i915->mm.obj_lock);
2593 list_add(&obj->mm.link, &i915->mm.unbound_list);
2594 spin_unlock(&i915->mm.obj_lock);
2597 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2599 int err;
2601 if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2602 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2603 return -EFAULT;
2606 err = obj->ops->get_pages(obj);
2607 GEM_BUG_ON(!err && !i915_gem_object_has_pages(obj));
2609 return err;
2612 /* Ensure that the associated pages are gathered from the backing storage
2613 * and pinned into our object. i915_gem_object_pin_pages() may be called
2614 * multiple times before they are released by a single call to
2615 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2616 * either as a result of memory pressure (reaping pages under the shrinker)
2617 * or as the object is itself released.
2619 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2621 int err;
2623 err = mutex_lock_interruptible(&obj->mm.lock);
2624 if (err)
2625 return err;
2627 if (unlikely(!i915_gem_object_has_pages(obj))) {
2628 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2630 err = ____i915_gem_object_get_pages(obj);
2631 if (err)
2632 goto unlock;
2634 smp_mb__before_atomic();
2636 atomic_inc(&obj->mm.pages_pin_count);
2638 unlock:
2639 mutex_unlock(&obj->mm.lock);
2640 return err;
2643 /* The 'mapping' part of i915_gem_object_pin_map() below */
2644 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2645 enum i915_map_type type)
2647 unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2648 struct sg_table *sgt = obj->mm.pages;
2649 struct sgt_iter sgt_iter;
2650 struct page *page;
2651 struct page *stack_pages[32];
2652 struct page **pages = stack_pages;
2653 unsigned long i = 0;
2654 pgprot_t pgprot;
2655 void *addr;
2657 /* A single page can always be kmapped */
2658 if (n_pages == 1 && type == I915_MAP_WB)
2659 return kmap(sg_page(sgt->sgl));
2661 if (n_pages > ARRAY_SIZE(stack_pages)) {
2662 /* Too big for stack -- allocate temporary array instead */
2663 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2664 if (!pages)
2665 return NULL;
2668 for_each_sgt_page(page, sgt_iter, sgt)
2669 pages[i++] = page;
2671 /* Check that we have the expected number of pages */
2672 GEM_BUG_ON(i != n_pages);
2674 switch (type) {
2675 default:
2676 MISSING_CASE(type);
2677 /* fallthrough to use PAGE_KERNEL anyway */
2678 case I915_MAP_WB:
2679 pgprot = PAGE_KERNEL;
2680 break;
2681 case I915_MAP_WC:
2682 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2683 break;
2685 addr = vmap(pages, n_pages, 0, pgprot);
2687 if (pages != stack_pages)
2688 kvfree(pages);
2690 return addr;
2693 /* get, pin, and map the pages of the object into kernel space */
2694 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2695 enum i915_map_type type)
2697 enum i915_map_type has_type;
2698 bool pinned;
2699 void *ptr;
2700 int ret;
2702 if (unlikely(!i915_gem_object_has_struct_page(obj)))
2703 return ERR_PTR(-ENXIO);
2705 ret = mutex_lock_interruptible(&obj->mm.lock);
2706 if (ret)
2707 return ERR_PTR(ret);
2709 pinned = !(type & I915_MAP_OVERRIDE);
2710 type &= ~I915_MAP_OVERRIDE;
2712 if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2713 if (unlikely(!i915_gem_object_has_pages(obj))) {
2714 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2716 ret = ____i915_gem_object_get_pages(obj);
2717 if (ret)
2718 goto err_unlock;
2720 smp_mb__before_atomic();
2722 atomic_inc(&obj->mm.pages_pin_count);
2723 pinned = false;
2725 GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2727 ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2728 if (ptr && has_type != type) {
2729 if (pinned) {
2730 ret = -EBUSY;
2731 goto err_unpin;
2734 if (is_vmalloc_addr(ptr))
2735 vunmap(ptr);
2736 else
2737 kunmap(kmap_to_page(ptr));
2739 ptr = obj->mm.mapping = NULL;
2742 if (!ptr) {
2743 ptr = i915_gem_object_map(obj, type);
2744 if (!ptr) {
2745 ret = -ENOMEM;
2746 goto err_unpin;
2749 obj->mm.mapping = page_pack_bits(ptr, type);
2752 out_unlock:
2753 mutex_unlock(&obj->mm.lock);
2754 return ptr;
2756 err_unpin:
2757 atomic_dec(&obj->mm.pages_pin_count);
2758 err_unlock:
2759 ptr = ERR_PTR(ret);
2760 goto out_unlock;
2763 static int
2764 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2765 const struct drm_i915_gem_pwrite *arg)
2767 struct address_space *mapping = obj->base.filp->f_mapping;
2768 char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2769 u64 remain, offset;
2770 unsigned int pg;
2772 /* Before we instantiate/pin the backing store for our use, we
2773 * can prepopulate the shmemfs filp efficiently using a write into
2774 * the pagecache. We avoid the penalty of instantiating all the
2775 * pages, important if the user is just writing to a few and never
2776 * uses the object on the GPU, and using a direct write into shmemfs
2777 * allows it to avoid the cost of retrieving a page (either swapin
2778 * or clearing-before-use) before it is overwritten.
2780 if (i915_gem_object_has_pages(obj))
2781 return -ENODEV;
2783 if (obj->mm.madv != I915_MADV_WILLNEED)
2784 return -EFAULT;
2786 /* Before the pages are instantiated the object is treated as being
2787 * in the CPU domain. The pages will be clflushed as required before
2788 * use, and we can freely write into the pages directly. If userspace
2789 * races pwrite with any other operation; corruption will ensue -
2790 * that is userspace's prerogative!
2793 remain = arg->size;
2794 offset = arg->offset;
2795 pg = offset_in_page(offset);
2797 do {
2798 unsigned int len, unwritten;
2799 struct page *page;
2800 void *data, *vaddr;
2801 int err;
2803 len = PAGE_SIZE - pg;
2804 if (len > remain)
2805 len = remain;
2807 err = pagecache_write_begin(obj->base.filp, mapping,
2808 offset, len, 0,
2809 &page, &data);
2810 if (err < 0)
2811 return err;
2813 vaddr = kmap(page);
2814 unwritten = copy_from_user(vaddr + pg, user_data, len);
2815 kunmap(page);
2817 err = pagecache_write_end(obj->base.filp, mapping,
2818 offset, len, len - unwritten,
2819 page, data);
2820 if (err < 0)
2821 return err;
2823 if (unwritten)
2824 return -EFAULT;
2826 remain -= len;
2827 user_data += len;
2828 offset += len;
2829 pg = 0;
2830 } while (remain);
2832 return 0;
2835 static bool ban_context(const struct i915_gem_context *ctx,
2836 unsigned int score)
2838 return (i915_gem_context_is_bannable(ctx) &&
2839 score >= CONTEXT_SCORE_BAN_THRESHOLD);
2842 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2844 unsigned int score;
2845 bool banned;
2847 atomic_inc(&ctx->guilty_count);
2849 score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2850 banned = ban_context(ctx, score);
2851 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2852 ctx->name, score, yesno(banned));
2853 if (!banned)
2854 return;
2856 i915_gem_context_set_banned(ctx);
2857 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2858 atomic_inc(&ctx->file_priv->context_bans);
2859 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2860 ctx->name, atomic_read(&ctx->file_priv->context_bans));
2864 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2866 atomic_inc(&ctx->active_count);
2869 struct drm_i915_gem_request *
2870 i915_gem_find_active_request(struct intel_engine_cs *engine)
2872 struct drm_i915_gem_request *request, *active = NULL;
2873 unsigned long flags;
2875 /* We are called by the error capture and reset at a random
2876 * point in time. In particular, note that neither is crucially
2877 * ordered with an interrupt. After a hang, the GPU is dead and we
2878 * assume that no more writes can happen (we waited long enough for
2879 * all writes that were in transaction to be flushed) - adding an
2880 * extra delay for a recent interrupt is pointless. Hence, we do
2881 * not need an engine->irq_seqno_barrier() before the seqno reads.
2883 spin_lock_irqsave(&engine->timeline->lock, flags);
2884 list_for_each_entry(request, &engine->timeline->requests, link) {
2885 if (__i915_gem_request_completed(request,
2886 request->global_seqno))
2887 continue;
2889 GEM_BUG_ON(request->engine != engine);
2890 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2891 &request->fence.flags));
2893 active = request;
2894 break;
2896 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2898 return active;
2901 static bool engine_stalled(struct intel_engine_cs *engine)
2903 if (!engine->hangcheck.stalled)
2904 return false;
2906 /* Check for possible seqno movement after hang declaration */
2907 if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2908 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2909 return false;
2912 return true;
2916 * Ensure irq handler finishes, and not run again.
2917 * Also return the active request so that we only search for it once.
2919 struct drm_i915_gem_request *
2920 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2922 struct drm_i915_gem_request *request = NULL;
2925 * During the reset sequence, we must prevent the engine from
2926 * entering RC6. As the context state is undefined until we restart
2927 * the engine, if it does enter RC6 during the reset, the state
2928 * written to the powercontext is undefined and so we may lose
2929 * GPU state upon resume, i.e. fail to restart after a reset.
2931 intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2934 * Prevent the signaler thread from updating the request
2935 * state (by calling dma_fence_signal) as we are processing
2936 * the reset. The write from the GPU of the seqno is
2937 * asynchronous and the signaler thread may see a different
2938 * value to us and declare the request complete, even though
2939 * the reset routine have picked that request as the active
2940 * (incomplete) request. This conflict is not handled
2941 * gracefully!
2943 kthread_park(engine->breadcrumbs.signaler);
2946 * Prevent request submission to the hardware until we have
2947 * completed the reset in i915_gem_reset_finish(). If a request
2948 * is completed by one engine, it may then queue a request
2949 * to a second via its execlists->tasklet *just* as we are
2950 * calling engine->init_hw() and also writing the ELSP.
2951 * Turning off the execlists->tasklet until the reset is over
2952 * prevents the race.
2954 tasklet_kill(&engine->execlists.tasklet);
2955 tasklet_disable(&engine->execlists.tasklet);
2958 * We're using worker to queue preemption requests from the tasklet in
2959 * GuC submission mode.
2960 * Even though tasklet was disabled, we may still have a worker queued.
2961 * Let's make sure that all workers scheduled before disabling the
2962 * tasklet are completed before continuing with the reset.
2964 if (engine->i915->guc.preempt_wq)
2965 flush_workqueue(engine->i915->guc.preempt_wq);
2967 if (engine->irq_seqno_barrier)
2968 engine->irq_seqno_barrier(engine);
2970 request = i915_gem_find_active_request(engine);
2971 if (request && request->fence.error == -EIO)
2972 request = ERR_PTR(-EIO); /* Previous reset failed! */
2974 return request;
2977 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2979 struct intel_engine_cs *engine;
2980 struct drm_i915_gem_request *request;
2981 enum intel_engine_id id;
2982 int err = 0;
2984 for_each_engine(engine, dev_priv, id) {
2985 request = i915_gem_reset_prepare_engine(engine);
2986 if (IS_ERR(request)) {
2987 err = PTR_ERR(request);
2988 continue;
2991 engine->hangcheck.active_request = request;
2994 i915_gem_revoke_fences(dev_priv);
2996 return err;
2999 static void skip_request(struct drm_i915_gem_request *request)
3001 void *vaddr = request->ring->vaddr;
3002 u32 head;
3004 /* As this request likely depends on state from the lost
3005 * context, clear out all the user operations leaving the
3006 * breadcrumb at the end (so we get the fence notifications).
3008 head = request->head;
3009 if (request->postfix < head) {
3010 memset(vaddr + head, 0, request->ring->size - head);
3011 head = 0;
3013 memset(vaddr + head, 0, request->postfix - head);
3015 dma_fence_set_error(&request->fence, -EIO);
3018 static void engine_skip_context(struct drm_i915_gem_request *request)
3020 struct intel_engine_cs *engine = request->engine;
3021 struct i915_gem_context *hung_ctx = request->ctx;
3022 struct intel_timeline *timeline;
3023 unsigned long flags;
3025 timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
3027 spin_lock_irqsave(&engine->timeline->lock, flags);
3028 spin_lock(&timeline->lock);
3030 list_for_each_entry_continue(request, &engine->timeline->requests, link)
3031 if (request->ctx == hung_ctx)
3032 skip_request(request);
3034 list_for_each_entry(request, &timeline->requests, link)
3035 skip_request(request);
3037 spin_unlock(&timeline->lock);
3038 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3041 /* Returns the request if it was guilty of the hang */
3042 static struct drm_i915_gem_request *
3043 i915_gem_reset_request(struct intel_engine_cs *engine,
3044 struct drm_i915_gem_request *request)
3046 /* The guilty request will get skipped on a hung engine.
3048 * Users of client default contexts do not rely on logical
3049 * state preserved between batches so it is safe to execute
3050 * queued requests following the hang. Non default contexts
3051 * rely on preserved state, so skipping a batch loses the
3052 * evolution of the state and it needs to be considered corrupted.
3053 * Executing more queued batches on top of corrupted state is
3054 * risky. But we take the risk by trying to advance through
3055 * the queued requests in order to make the client behaviour
3056 * more predictable around resets, by not throwing away random
3057 * amount of batches it has prepared for execution. Sophisticated
3058 * clients can use gem_reset_stats_ioctl and dma fence status
3059 * (exported via sync_file info ioctl on explicit fences) to observe
3060 * when it loses the context state and should rebuild accordingly.
3062 * The context ban, and ultimately the client ban, mechanism are safety
3063 * valves if client submission ends up resulting in nothing more than
3064 * subsequent hangs.
3067 if (engine_stalled(engine)) {
3068 i915_gem_context_mark_guilty(request->ctx);
3069 skip_request(request);
3071 /* If this context is now banned, skip all pending requests. */
3072 if (i915_gem_context_is_banned(request->ctx))
3073 engine_skip_context(request);
3074 } else {
3076 * Since this is not the hung engine, it may have advanced
3077 * since the hang declaration. Double check by refinding
3078 * the active request at the time of the reset.
3080 request = i915_gem_find_active_request(engine);
3081 if (request) {
3082 i915_gem_context_mark_innocent(request->ctx);
3083 dma_fence_set_error(&request->fence, -EAGAIN);
3085 /* Rewind the engine to replay the incomplete rq */
3086 spin_lock_irq(&engine->timeline->lock);
3087 request = list_prev_entry(request, link);
3088 if (&request->link == &engine->timeline->requests)
3089 request = NULL;
3090 spin_unlock_irq(&engine->timeline->lock);
3094 return request;
3097 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3098 struct drm_i915_gem_request *request)
3101 * Make sure this write is visible before we re-enable the interrupt
3102 * handlers on another CPU, as tasklet_enable() resolves to just
3103 * a compiler barrier which is insufficient for our purpose here.
3105 smp_store_mb(engine->irq_posted, 0);
3107 if (request)
3108 request = i915_gem_reset_request(engine, request);
3110 if (request) {
3111 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3112 engine->name, request->global_seqno);
3115 /* Setup the CS to resume from the breadcrumb of the hung request */
3116 engine->reset_hw(engine, request);
3119 void i915_gem_reset(struct drm_i915_private *dev_priv)
3121 struct intel_engine_cs *engine;
3122 enum intel_engine_id id;
3124 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3126 i915_gem_retire_requests(dev_priv);
3128 for_each_engine(engine, dev_priv, id) {
3129 struct i915_gem_context *ctx;
3131 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3132 ctx = fetch_and_zero(&engine->last_retired_context);
3133 if (ctx)
3134 engine->context_unpin(engine, ctx);
3137 * Ostensibily, we always want a context loaded for powersaving,
3138 * so if the engine is idle after the reset, send a request
3139 * to load our scratch kernel_context.
3141 * More mysteriously, if we leave the engine idle after a reset,
3142 * the next userspace batch may hang, with what appears to be
3143 * an incoherent read by the CS (presumably stale TLB). An
3144 * empty request appears sufficient to paper over the glitch.
3146 if (list_empty(&engine->timeline->requests)) {
3147 struct drm_i915_gem_request *rq;
3149 rq = i915_gem_request_alloc(engine,
3150 dev_priv->kernel_context);
3151 if (!IS_ERR(rq))
3152 __i915_add_request(rq, false);
3156 i915_gem_restore_fences(dev_priv);
3158 if (dev_priv->gt.awake) {
3159 intel_sanitize_gt_powersave(dev_priv);
3160 intel_enable_gt_powersave(dev_priv);
3161 if (INTEL_GEN(dev_priv) >= 6)
3162 gen6_rps_busy(dev_priv);
3166 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3168 tasklet_enable(&engine->execlists.tasklet);
3169 kthread_unpark(engine->breadcrumbs.signaler);
3171 intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3174 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3176 struct intel_engine_cs *engine;
3177 enum intel_engine_id id;
3179 lockdep_assert_held(&dev_priv->drm.struct_mutex);
3181 for_each_engine(engine, dev_priv, id) {
3182 engine->hangcheck.active_request = NULL;
3183 i915_gem_reset_finish_engine(engine);
3187 static void nop_submit_request(struct drm_i915_gem_request *request)
3189 dma_fence_set_error(&request->fence, -EIO);
3191 i915_gem_request_submit(request);
3194 static void nop_complete_submit_request(struct drm_i915_gem_request *request)
3196 unsigned long flags;
3198 dma_fence_set_error(&request->fence, -EIO);
3200 spin_lock_irqsave(&request->engine->timeline->lock, flags);
3201 __i915_gem_request_submit(request);
3202 intel_engine_init_global_seqno(request->engine, request->global_seqno);
3203 spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3206 void i915_gem_set_wedged(struct drm_i915_private *i915)
3208 struct intel_engine_cs *engine;
3209 enum intel_engine_id id;
3212 * First, stop submission to hw, but do not yet complete requests by
3213 * rolling the global seqno forward (since this would complete requests
3214 * for which we haven't set the fence error to EIO yet).
3216 for_each_engine(engine, i915, id) {
3217 i915_gem_reset_prepare_engine(engine);
3218 engine->submit_request = nop_submit_request;
3222 * Make sure no one is running the old callback before we proceed with
3223 * cancelling requests and resetting the completion tracking. Otherwise
3224 * we might submit a request to the hardware which never completes.
3226 synchronize_rcu();
3228 for_each_engine(engine, i915, id) {
3229 /* Mark all executing requests as skipped */
3230 engine->cancel_requests(engine);
3233 * Only once we've force-cancelled all in-flight requests can we
3234 * start to complete all requests.
3236 engine->submit_request = nop_complete_submit_request;
3240 * Make sure no request can slip through without getting completed by
3241 * either this call here to intel_engine_init_global_seqno, or the one
3242 * in nop_complete_submit_request.
3244 synchronize_rcu();
3246 for_each_engine(engine, i915, id) {
3247 unsigned long flags;
3249 /* Mark all pending requests as complete so that any concurrent
3250 * (lockless) lookup doesn't try and wait upon the request as we
3251 * reset it.
3253 spin_lock_irqsave(&engine->timeline->lock, flags);
3254 intel_engine_init_global_seqno(engine,
3255 intel_engine_last_submit(engine));
3256 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3258 i915_gem_reset_finish_engine(engine);
3261 set_bit(I915_WEDGED, &i915->gpu_error.flags);
3262 wake_up_all(&i915->gpu_error.reset_queue);
3265 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3267 struct i915_gem_timeline *tl;
3268 int i;
3270 lockdep_assert_held(&i915->drm.struct_mutex);
3271 if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3272 return true;
3274 /* Before unwedging, make sure that all pending operations
3275 * are flushed and errored out - we may have requests waiting upon
3276 * third party fences. We marked all inflight requests as EIO, and
3277 * every execbuf since returned EIO, for consistency we want all
3278 * the currently pending requests to also be marked as EIO, which
3279 * is done inside our nop_submit_request - and so we must wait.
3281 * No more can be submitted until we reset the wedged bit.
3283 list_for_each_entry(tl, &i915->gt.timelines, link) {
3284 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3285 struct drm_i915_gem_request *rq;
3287 rq = i915_gem_active_peek(&tl->engine[i].last_request,
3288 &i915->drm.struct_mutex);
3289 if (!rq)
3290 continue;
3292 /* We can't use our normal waiter as we want to
3293 * avoid recursively trying to handle the current
3294 * reset. The basic dma_fence_default_wait() installs
3295 * a callback for dma_fence_signal(), which is
3296 * triggered by our nop handler (indirectly, the
3297 * callback enables the signaler thread which is
3298 * woken by the nop_submit_request() advancing the seqno
3299 * and when the seqno passes the fence, the signaler
3300 * then signals the fence waking us up).
3302 if (dma_fence_default_wait(&rq->fence, true,
3303 MAX_SCHEDULE_TIMEOUT) < 0)
3304 return false;
3308 /* Undo nop_submit_request. We prevent all new i915 requests from
3309 * being queued (by disallowing execbuf whilst wedged) so having
3310 * waited for all active requests above, we know the system is idle
3311 * and do not have to worry about a thread being inside
3312 * engine->submit_request() as we swap over. So unlike installing
3313 * the nop_submit_request on reset, we can do this from normal
3314 * context and do not require stop_machine().
3316 intel_engines_reset_default_submission(i915);
3317 i915_gem_contexts_lost(i915);
3319 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3320 clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3322 return true;
3325 static void
3326 i915_gem_retire_work_handler(struct work_struct *work)
3328 struct drm_i915_private *dev_priv =
3329 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3330 struct drm_device *dev = &dev_priv->drm;
3332 /* Come back later if the device is busy... */
3333 if (mutex_trylock(&dev->struct_mutex)) {
3334 i915_gem_retire_requests(dev_priv);
3335 mutex_unlock(&dev->struct_mutex);
3339 * Keep the retire handler running until we are finally idle.
3340 * We do not need to do this test under locking as in the worst-case
3341 * we queue the retire worker once too often.
3343 if (READ_ONCE(dev_priv->gt.awake))
3344 queue_delayed_work(dev_priv->wq,
3345 &dev_priv->gt.retire_work,
3346 round_jiffies_up_relative(HZ));
3349 static inline bool
3350 new_requests_since_last_retire(const struct drm_i915_private *i915)
3352 return (READ_ONCE(i915->gt.active_requests) ||
3353 work_pending(&i915->gt.idle_work.work));
3356 static void
3357 i915_gem_idle_work_handler(struct work_struct *work)
3359 struct drm_i915_private *dev_priv =
3360 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3361 bool rearm_hangcheck;
3362 ktime_t end;
3364 if (!READ_ONCE(dev_priv->gt.awake))
3365 return;
3368 * Wait for last execlists context complete, but bail out in case a
3369 * new request is submitted.
3371 end = ktime_add_ms(ktime_get(), I915_IDLE_ENGINES_TIMEOUT);
3372 do {
3373 if (new_requests_since_last_retire(dev_priv))
3374 return;
3376 if (intel_engines_are_idle(dev_priv))
3377 break;
3379 usleep_range(100, 500);
3380 } while (ktime_before(ktime_get(), end));
3382 rearm_hangcheck =
3383 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3385 if (!mutex_trylock(&dev_priv->drm.struct_mutex)) {
3386 /* Currently busy, come back later */
3387 mod_delayed_work(dev_priv->wq,
3388 &dev_priv->gt.idle_work,
3389 msecs_to_jiffies(50));
3390 goto out_rearm;
3394 * New request retired after this work handler started, extend active
3395 * period until next instance of the work.
3397 if (new_requests_since_last_retire(dev_priv))
3398 goto out_unlock;
3401 * Be paranoid and flush a concurrent interrupt to make sure
3402 * we don't reactivate any irq tasklets after parking.
3404 * FIXME: Note that even though we have waited for execlists to be idle,
3405 * there may still be an in-flight interrupt even though the CSB
3406 * is now empty. synchronize_irq() makes sure that a residual interrupt
3407 * is completed before we continue, but it doesn't prevent the HW from
3408 * raising a spurious interrupt later. To complete the shield we should
3409 * coordinate disabling the CS irq with flushing the interrupts.
3411 synchronize_irq(dev_priv->drm.irq);
3413 intel_engines_park(dev_priv);
3414 i915_gem_timelines_park(dev_priv);
3416 i915_pmu_gt_parked(dev_priv);
3418 GEM_BUG_ON(!dev_priv->gt.awake);
3419 dev_priv->gt.awake = false;
3420 rearm_hangcheck = false;
3422 if (INTEL_GEN(dev_priv) >= 6)
3423 gen6_rps_idle(dev_priv);
3425 intel_display_power_put(dev_priv, POWER_DOMAIN_GT_IRQ);
3427 intel_runtime_pm_put(dev_priv);
3428 out_unlock:
3429 mutex_unlock(&dev_priv->drm.struct_mutex);
3431 out_rearm:
3432 if (rearm_hangcheck) {
3433 GEM_BUG_ON(!dev_priv->gt.awake);
3434 i915_queue_hangcheck(dev_priv);
3438 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3440 struct drm_i915_private *i915 = to_i915(gem->dev);
3441 struct drm_i915_gem_object *obj = to_intel_bo(gem);
3442 struct drm_i915_file_private *fpriv = file->driver_priv;
3443 struct i915_lut_handle *lut, *ln;
3445 mutex_lock(&i915->drm.struct_mutex);
3447 list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3448 struct i915_gem_context *ctx = lut->ctx;
3449 struct i915_vma *vma;
3451 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3452 if (ctx->file_priv != fpriv)
3453 continue;
3455 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3456 GEM_BUG_ON(vma->obj != obj);
3458 /* We allow the process to have multiple handles to the same
3459 * vma, in the same fd namespace, by virtue of flink/open.
3461 GEM_BUG_ON(!vma->open_count);
3462 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3463 i915_vma_close(vma);
3465 list_del(&lut->obj_link);
3466 list_del(&lut->ctx_link);
3468 kmem_cache_free(i915->luts, lut);
3469 __i915_gem_object_release_unless_active(obj);
3472 mutex_unlock(&i915->drm.struct_mutex);
3475 static unsigned long to_wait_timeout(s64 timeout_ns)
3477 if (timeout_ns < 0)
3478 return MAX_SCHEDULE_TIMEOUT;
3480 if (timeout_ns == 0)
3481 return 0;
3483 return nsecs_to_jiffies_timeout(timeout_ns);
3487 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3488 * @dev: drm device pointer
3489 * @data: ioctl data blob
3490 * @file: drm file pointer
3492 * Returns 0 if successful, else an error is returned with the remaining time in
3493 * the timeout parameter.
3494 * -ETIME: object is still busy after timeout
3495 * -ERESTARTSYS: signal interrupted the wait
3496 * -ENONENT: object doesn't exist
3497 * Also possible, but rare:
3498 * -EAGAIN: incomplete, restart syscall
3499 * -ENOMEM: damn
3500 * -ENODEV: Internal IRQ fail
3501 * -E?: The add request failed
3503 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3504 * non-zero timeout parameter the wait ioctl will wait for the given number of
3505 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3506 * without holding struct_mutex the object may become re-busied before this
3507 * function completes. A similar but shorter * race condition exists in the busy
3508 * ioctl
3511 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3513 struct drm_i915_gem_wait *args = data;
3514 struct drm_i915_gem_object *obj;
3515 ktime_t start;
3516 long ret;
3518 if (args->flags != 0)
3519 return -EINVAL;
3521 obj = i915_gem_object_lookup(file, args->bo_handle);
3522 if (!obj)
3523 return -ENOENT;
3525 start = ktime_get();
3527 ret = i915_gem_object_wait(obj,
3528 I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3529 to_wait_timeout(args->timeout_ns),
3530 to_rps_client(file));
3532 if (args->timeout_ns > 0) {
3533 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3534 if (args->timeout_ns < 0)
3535 args->timeout_ns = 0;
3538 * Apparently ktime isn't accurate enough and occasionally has a
3539 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3540 * things up to make the test happy. We allow up to 1 jiffy.
3542 * This is a regression from the timespec->ktime conversion.
3544 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3545 args->timeout_ns = 0;
3547 /* Asked to wait beyond the jiffie/scheduler precision? */
3548 if (ret == -ETIME && args->timeout_ns)
3549 ret = -EAGAIN;
3552 i915_gem_object_put(obj);
3553 return ret;
3556 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3558 int ret, i;
3560 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3561 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3562 if (ret)
3563 return ret;
3566 return 0;
3569 static int wait_for_engines(struct drm_i915_private *i915)
3571 if (wait_for(intel_engines_are_idle(i915), I915_IDLE_ENGINES_TIMEOUT)) {
3572 dev_err(i915->drm.dev,
3573 "Failed to idle engines, declaring wedged!\n");
3574 if (drm_debug & DRM_UT_DRIVER) {
3575 struct drm_printer p = drm_debug_printer(__func__);
3576 struct intel_engine_cs *engine;
3577 enum intel_engine_id id;
3579 for_each_engine(engine, i915, id)
3580 intel_engine_dump(engine, &p,
3581 "%s", engine->name);
3584 i915_gem_set_wedged(i915);
3585 return -EIO;
3588 return 0;
3591 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3593 int ret;
3595 /* If the device is asleep, we have no requests outstanding */
3596 if (!READ_ONCE(i915->gt.awake))
3597 return 0;
3599 if (flags & I915_WAIT_LOCKED) {
3600 struct i915_gem_timeline *tl;
3602 lockdep_assert_held(&i915->drm.struct_mutex);
3604 list_for_each_entry(tl, &i915->gt.timelines, link) {
3605 ret = wait_for_timeline(tl, flags);
3606 if (ret)
3607 return ret;
3609 i915_gem_retire_requests(i915);
3611 ret = wait_for_engines(i915);
3612 } else {
3613 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3616 return ret;
3619 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3622 * We manually flush the CPU domain so that we can override and
3623 * force the flush for the display, and perform it asyncrhonously.
3625 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3626 if (obj->cache_dirty)
3627 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3628 obj->base.write_domain = 0;
3631 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3633 if (!READ_ONCE(obj->pin_global))
3634 return;
3636 mutex_lock(&obj->base.dev->struct_mutex);
3637 __i915_gem_object_flush_for_display(obj);
3638 mutex_unlock(&obj->base.dev->struct_mutex);
3642 * Moves a single object to the WC read, and possibly write domain.
3643 * @obj: object to act on
3644 * @write: ask for write access or read only
3646 * This function returns when the move is complete, including waiting on
3647 * flushes to occur.
3650 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3652 int ret;
3654 lockdep_assert_held(&obj->base.dev->struct_mutex);
3656 ret = i915_gem_object_wait(obj,
3657 I915_WAIT_INTERRUPTIBLE |
3658 I915_WAIT_LOCKED |
3659 (write ? I915_WAIT_ALL : 0),
3660 MAX_SCHEDULE_TIMEOUT,
3661 NULL);
3662 if (ret)
3663 return ret;
3665 if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3666 return 0;
3668 /* Flush and acquire obj->pages so that we are coherent through
3669 * direct access in memory with previous cached writes through
3670 * shmemfs and that our cache domain tracking remains valid.
3671 * For example, if the obj->filp was moved to swap without us
3672 * being notified and releasing the pages, we would mistakenly
3673 * continue to assume that the obj remained out of the CPU cached
3674 * domain.
3676 ret = i915_gem_object_pin_pages(obj);
3677 if (ret)
3678 return ret;
3680 flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3682 /* Serialise direct access to this object with the barriers for
3683 * coherent writes from the GPU, by effectively invalidating the
3684 * WC domain upon first access.
3686 if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3687 mb();
3689 /* It should now be out of any other write domains, and we can update
3690 * the domain values for our changes.
3692 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3693 obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3694 if (write) {
3695 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3696 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3697 obj->mm.dirty = true;
3700 i915_gem_object_unpin_pages(obj);
3701 return 0;
3705 * Moves a single object to the GTT read, and possibly write domain.
3706 * @obj: object to act on
3707 * @write: ask for write access or read only
3709 * This function returns when the move is complete, including waiting on
3710 * flushes to occur.
3713 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3715 int ret;
3717 lockdep_assert_held(&obj->base.dev->struct_mutex);
3719 ret = i915_gem_object_wait(obj,
3720 I915_WAIT_INTERRUPTIBLE |
3721 I915_WAIT_LOCKED |
3722 (write ? I915_WAIT_ALL : 0),
3723 MAX_SCHEDULE_TIMEOUT,
3724 NULL);
3725 if (ret)
3726 return ret;
3728 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3729 return 0;
3731 /* Flush and acquire obj->pages so that we are coherent through
3732 * direct access in memory with previous cached writes through
3733 * shmemfs and that our cache domain tracking remains valid.
3734 * For example, if the obj->filp was moved to swap without us
3735 * being notified and releasing the pages, we would mistakenly
3736 * continue to assume that the obj remained out of the CPU cached
3737 * domain.
3739 ret = i915_gem_object_pin_pages(obj);
3740 if (ret)
3741 return ret;
3743 flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3745 /* Serialise direct access to this object with the barriers for
3746 * coherent writes from the GPU, by effectively invalidating the
3747 * GTT domain upon first access.
3749 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3750 mb();
3752 /* It should now be out of any other write domains, and we can update
3753 * the domain values for our changes.
3755 GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3756 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3757 if (write) {
3758 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3759 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3760 obj->mm.dirty = true;
3763 i915_gem_object_unpin_pages(obj);
3764 return 0;
3768 * Changes the cache-level of an object across all VMA.
3769 * @obj: object to act on
3770 * @cache_level: new cache level to set for the object
3772 * After this function returns, the object will be in the new cache-level
3773 * across all GTT and the contents of the backing storage will be coherent,
3774 * with respect to the new cache-level. In order to keep the backing storage
3775 * coherent for all users, we only allow a single cache level to be set
3776 * globally on the object and prevent it from being changed whilst the
3777 * hardware is reading from the object. That is if the object is currently
3778 * on the scanout it will be set to uncached (or equivalent display
3779 * cache coherency) and all non-MOCS GPU access will also be uncached so
3780 * that all direct access to the scanout remains coherent.
3782 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3783 enum i915_cache_level cache_level)
3785 struct i915_vma *vma;
3786 int ret;
3788 lockdep_assert_held(&obj->base.dev->struct_mutex);
3790 if (obj->cache_level == cache_level)
3791 return 0;
3793 /* Inspect the list of currently bound VMA and unbind any that would
3794 * be invalid given the new cache-level. This is principally to
3795 * catch the issue of the CS prefetch crossing page boundaries and
3796 * reading an invalid PTE on older architectures.
3798 restart:
3799 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3800 if (!drm_mm_node_allocated(&vma->node))
3801 continue;
3803 if (i915_vma_is_pinned(vma)) {
3804 DRM_DEBUG("can not change the cache level of pinned objects\n");
3805 return -EBUSY;
3808 if (!i915_vma_is_closed(vma) &&
3809 i915_gem_valid_gtt_space(vma, cache_level))
3810 continue;
3812 ret = i915_vma_unbind(vma);
3813 if (ret)
3814 return ret;
3816 /* As unbinding may affect other elements in the
3817 * obj->vma_list (due to side-effects from retiring
3818 * an active vma), play safe and restart the iterator.
3820 goto restart;
3823 /* We can reuse the existing drm_mm nodes but need to change the
3824 * cache-level on the PTE. We could simply unbind them all and
3825 * rebind with the correct cache-level on next use. However since
3826 * we already have a valid slot, dma mapping, pages etc, we may as
3827 * rewrite the PTE in the belief that doing so tramples upon less
3828 * state and so involves less work.
3830 if (obj->bind_count) {
3831 /* Before we change the PTE, the GPU must not be accessing it.
3832 * If we wait upon the object, we know that all the bound
3833 * VMA are no longer active.
3835 ret = i915_gem_object_wait(obj,
3836 I915_WAIT_INTERRUPTIBLE |
3837 I915_WAIT_LOCKED |
3838 I915_WAIT_ALL,
3839 MAX_SCHEDULE_TIMEOUT,
3840 NULL);
3841 if (ret)
3842 return ret;
3844 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3845 cache_level != I915_CACHE_NONE) {
3846 /* Access to snoopable pages through the GTT is
3847 * incoherent and on some machines causes a hard
3848 * lockup. Relinquish the CPU mmaping to force
3849 * userspace to refault in the pages and we can
3850 * then double check if the GTT mapping is still
3851 * valid for that pointer access.
3853 i915_gem_release_mmap(obj);
3855 /* As we no longer need a fence for GTT access,
3856 * we can relinquish it now (and so prevent having
3857 * to steal a fence from someone else on the next
3858 * fence request). Note GPU activity would have
3859 * dropped the fence as all snoopable access is
3860 * supposed to be linear.
3862 for_each_ggtt_vma(vma, obj) {
3863 ret = i915_vma_put_fence(vma);
3864 if (ret)
3865 return ret;
3867 } else {
3868 /* We either have incoherent backing store and
3869 * so no GTT access or the architecture is fully
3870 * coherent. In such cases, existing GTT mmaps
3871 * ignore the cache bit in the PTE and we can
3872 * rewrite it without confusing the GPU or having
3873 * to force userspace to fault back in its mmaps.
3877 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3878 if (!drm_mm_node_allocated(&vma->node))
3879 continue;
3881 ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3882 if (ret)
3883 return ret;
3887 list_for_each_entry(vma, &obj->vma_list, obj_link)
3888 vma->node.color = cache_level;
3889 i915_gem_object_set_cache_coherency(obj, cache_level);
3890 obj->cache_dirty = true; /* Always invalidate stale cachelines */
3892 return 0;
3895 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3896 struct drm_file *file)
3898 struct drm_i915_gem_caching *args = data;
3899 struct drm_i915_gem_object *obj;
3900 int err = 0;
3902 rcu_read_lock();
3903 obj = i915_gem_object_lookup_rcu(file, args->handle);
3904 if (!obj) {
3905 err = -ENOENT;
3906 goto out;
3909 switch (obj->cache_level) {
3910 case I915_CACHE_LLC:
3911 case I915_CACHE_L3_LLC:
3912 args->caching = I915_CACHING_CACHED;
3913 break;
3915 case I915_CACHE_WT:
3916 args->caching = I915_CACHING_DISPLAY;
3917 break;
3919 default:
3920 args->caching = I915_CACHING_NONE;
3921 break;
3923 out:
3924 rcu_read_unlock();
3925 return err;
3928 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3929 struct drm_file *file)
3931 struct drm_i915_private *i915 = to_i915(dev);
3932 struct drm_i915_gem_caching *args = data;
3933 struct drm_i915_gem_object *obj;
3934 enum i915_cache_level level;
3935 int ret = 0;
3937 switch (args->caching) {
3938 case I915_CACHING_NONE:
3939 level = I915_CACHE_NONE;
3940 break;
3941 case I915_CACHING_CACHED:
3943 * Due to a HW issue on BXT A stepping, GPU stores via a
3944 * snooped mapping may leave stale data in a corresponding CPU
3945 * cacheline, whereas normally such cachelines would get
3946 * invalidated.
3948 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3949 return -ENODEV;
3951 level = I915_CACHE_LLC;
3952 break;
3953 case I915_CACHING_DISPLAY:
3954 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3955 break;
3956 default:
3957 return -EINVAL;
3960 obj = i915_gem_object_lookup(file, args->handle);
3961 if (!obj)
3962 return -ENOENT;
3965 * The caching mode of proxy object is handled by its generator, and
3966 * not allowed to be changed by userspace.
3968 if (i915_gem_object_is_proxy(obj)) {
3969 ret = -ENXIO;
3970 goto out;
3973 if (obj->cache_level == level)
3974 goto out;
3976 ret = i915_gem_object_wait(obj,
3977 I915_WAIT_INTERRUPTIBLE,
3978 MAX_SCHEDULE_TIMEOUT,
3979 to_rps_client(file));
3980 if (ret)
3981 goto out;
3983 ret = i915_mutex_lock_interruptible(dev);
3984 if (ret)
3985 goto out;
3987 ret = i915_gem_object_set_cache_level(obj, level);
3988 mutex_unlock(&dev->struct_mutex);
3990 out:
3991 i915_gem_object_put(obj);
3992 return ret;
3996 * Prepare buffer for display plane (scanout, cursors, etc).
3997 * Can be called from an uninterruptible phase (modesetting) and allows
3998 * any flushes to be pipelined (for pageflips).
4000 struct i915_vma *
4001 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4002 u32 alignment,
4003 const struct i915_ggtt_view *view)
4005 struct i915_vma *vma;
4006 int ret;
4008 lockdep_assert_held(&obj->base.dev->struct_mutex);
4010 /* Mark the global pin early so that we account for the
4011 * display coherency whilst setting up the cache domains.
4013 obj->pin_global++;
4015 /* The display engine is not coherent with the LLC cache on gen6. As
4016 * a result, we make sure that the pinning that is about to occur is
4017 * done with uncached PTEs. This is lowest common denominator for all
4018 * chipsets.
4020 * However for gen6+, we could do better by using the GFDT bit instead
4021 * of uncaching, which would allow us to flush all the LLC-cached data
4022 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4024 ret = i915_gem_object_set_cache_level(obj,
4025 HAS_WT(to_i915(obj->base.dev)) ?
4026 I915_CACHE_WT : I915_CACHE_NONE);
4027 if (ret) {
4028 vma = ERR_PTR(ret);
4029 goto err_unpin_global;
4032 /* As the user may map the buffer once pinned in the display plane
4033 * (e.g. libkms for the bootup splash), we have to ensure that we
4034 * always use map_and_fenceable for all scanout buffers. However,
4035 * it may simply be too big to fit into mappable, in which case
4036 * put it anyway and hope that userspace can cope (but always first
4037 * try to preserve the existing ABI).
4039 vma = ERR_PTR(-ENOSPC);
4040 if (!view || view->type == I915_GGTT_VIEW_NORMAL)
4041 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
4042 PIN_MAPPABLE | PIN_NONBLOCK);
4043 if (IS_ERR(vma)) {
4044 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4045 unsigned int flags;
4047 /* Valleyview is definitely limited to scanning out the first
4048 * 512MiB. Lets presume this behaviour was inherited from the
4049 * g4x display engine and that all earlier gen are similarly
4050 * limited. Testing suggests that it is a little more
4051 * complicated than this. For example, Cherryview appears quite
4052 * happy to scanout from anywhere within its global aperture.
4054 flags = 0;
4055 if (HAS_GMCH_DISPLAY(i915))
4056 flags = PIN_MAPPABLE;
4057 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
4059 if (IS_ERR(vma))
4060 goto err_unpin_global;
4062 vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
4064 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
4065 __i915_gem_object_flush_for_display(obj);
4066 intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
4068 /* It should now be out of any other write domains, and we can update
4069 * the domain values for our changes.
4071 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4073 return vma;
4075 err_unpin_global:
4076 obj->pin_global--;
4077 return vma;
4080 void
4081 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
4083 lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
4085 if (WARN_ON(vma->obj->pin_global == 0))
4086 return;
4088 if (--vma->obj->pin_global == 0)
4089 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
4091 /* Bump the LRU to try and avoid premature eviction whilst flipping */
4092 i915_gem_object_bump_inactive_ggtt(vma->obj);
4094 i915_vma_unpin(vma);
4098 * Moves a single object to the CPU read, and possibly write domain.
4099 * @obj: object to act on
4100 * @write: requesting write or read-only access
4102 * This function returns when the move is complete, including waiting on
4103 * flushes to occur.
4106 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4108 int ret;
4110 lockdep_assert_held(&obj->base.dev->struct_mutex);
4112 ret = i915_gem_object_wait(obj,
4113 I915_WAIT_INTERRUPTIBLE |
4114 I915_WAIT_LOCKED |
4115 (write ? I915_WAIT_ALL : 0),
4116 MAX_SCHEDULE_TIMEOUT,
4117 NULL);
4118 if (ret)
4119 return ret;
4121 flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4123 /* Flush the CPU cache if it's still invalid. */
4124 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4125 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4126 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4129 /* It should now be out of any other write domains, and we can update
4130 * the domain values for our changes.
4132 GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
4134 /* If we're writing through the CPU, then the GPU read domains will
4135 * need to be invalidated at next use.
4137 if (write)
4138 __start_cpu_write(obj);
4140 return 0;
4143 /* Throttle our rendering by waiting until the ring has completed our requests
4144 * emitted over 20 msec ago.
4146 * Note that if we were to use the current jiffies each time around the loop,
4147 * we wouldn't escape the function with any frames outstanding if the time to
4148 * render a frame was over 20ms.
4150 * This should get us reasonable parallelism between CPU and GPU but also
4151 * relatively low latency when blocking on a particular request to finish.
4153 static int
4154 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4156 struct drm_i915_private *dev_priv = to_i915(dev);
4157 struct drm_i915_file_private *file_priv = file->driver_priv;
4158 unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4159 struct drm_i915_gem_request *request, *target = NULL;
4160 long ret;
4162 /* ABI: return -EIO if already wedged */
4163 if (i915_terminally_wedged(&dev_priv->gpu_error))
4164 return -EIO;
4166 spin_lock(&file_priv->mm.lock);
4167 list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4168 if (time_after_eq(request->emitted_jiffies, recent_enough))
4169 break;
4171 if (target) {
4172 list_del(&target->client_link);
4173 target->file_priv = NULL;
4176 target = request;
4178 if (target)
4179 i915_gem_request_get(target);
4180 spin_unlock(&file_priv->mm.lock);
4182 if (target == NULL)
4183 return 0;
4185 ret = i915_wait_request(target,
4186 I915_WAIT_INTERRUPTIBLE,
4187 MAX_SCHEDULE_TIMEOUT);
4188 i915_gem_request_put(target);
4190 return ret < 0 ? ret : 0;
4193 struct i915_vma *
4194 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4195 const struct i915_ggtt_view *view,
4196 u64 size,
4197 u64 alignment,
4198 u64 flags)
4200 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4201 struct i915_address_space *vm = &dev_priv->ggtt.base;
4202 struct i915_vma *vma;
4203 int ret;
4205 lockdep_assert_held(&obj->base.dev->struct_mutex);
4207 if (!view && flags & PIN_MAPPABLE) {
4208 /* If the required space is larger than the available
4209 * aperture, we will not able to find a slot for the
4210 * object and unbinding the object now will be in
4211 * vain. Worse, doing so may cause us to ping-pong
4212 * the object in and out of the Global GTT and
4213 * waste a lot of cycles under the mutex.
4215 if (obj->base.size > dev_priv->ggtt.mappable_end)
4216 return ERR_PTR(-E2BIG);
4218 /* If NONBLOCK is set the caller is optimistically
4219 * trying to cache the full object within the mappable
4220 * aperture, and *must* have a fallback in place for
4221 * situations where we cannot bind the object. We
4222 * can be a little more lax here and use the fallback
4223 * more often to avoid costly migrations of ourselves
4224 * and other objects within the aperture.
4226 * Half-the-aperture is used as a simple heuristic.
4227 * More interesting would to do search for a free
4228 * block prior to making the commitment to unbind.
4229 * That caters for the self-harm case, and with a
4230 * little more heuristics (e.g. NOFAULT, NOEVICT)
4231 * we could try to minimise harm to others.
4233 if (flags & PIN_NONBLOCK &&
4234 obj->base.size > dev_priv->ggtt.mappable_end / 2)
4235 return ERR_PTR(-ENOSPC);
4238 vma = i915_vma_instance(obj, vm, view);
4239 if (unlikely(IS_ERR(vma)))
4240 return vma;
4242 if (i915_vma_misplaced(vma, size, alignment, flags)) {
4243 if (flags & PIN_NONBLOCK) {
4244 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4245 return ERR_PTR(-ENOSPC);
4247 if (flags & PIN_MAPPABLE &&
4248 vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4249 return ERR_PTR(-ENOSPC);
4252 WARN(i915_vma_is_pinned(vma),
4253 "bo is already pinned in ggtt with incorrect alignment:"
4254 " offset=%08x, req.alignment=%llx,"
4255 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4256 i915_ggtt_offset(vma), alignment,
4257 !!(flags & PIN_MAPPABLE),
4258 i915_vma_is_map_and_fenceable(vma));
4259 ret = i915_vma_unbind(vma);
4260 if (ret)
4261 return ERR_PTR(ret);
4264 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4265 if (ret)
4266 return ERR_PTR(ret);
4268 return vma;
4271 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4273 /* Note that we could alias engines in the execbuf API, but
4274 * that would be very unwise as it prevents userspace from
4275 * fine control over engine selection. Ahem.
4277 * This should be something like EXEC_MAX_ENGINE instead of
4278 * I915_NUM_ENGINES.
4280 BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4281 return 0x10000 << id;
4284 static __always_inline unsigned int __busy_write_id(unsigned int id)
4286 /* The uABI guarantees an active writer is also amongst the read
4287 * engines. This would be true if we accessed the activity tracking
4288 * under the lock, but as we perform the lookup of the object and
4289 * its activity locklessly we can not guarantee that the last_write
4290 * being active implies that we have set the same engine flag from
4291 * last_read - hence we always set both read and write busy for
4292 * last_write.
4294 return id | __busy_read_flag(id);
4297 static __always_inline unsigned int
4298 __busy_set_if_active(const struct dma_fence *fence,
4299 unsigned int (*flag)(unsigned int id))
4301 struct drm_i915_gem_request *rq;
4303 /* We have to check the current hw status of the fence as the uABI
4304 * guarantees forward progress. We could rely on the idle worker
4305 * to eventually flush us, but to minimise latency just ask the
4306 * hardware.
4308 * Note we only report on the status of native fences.
4310 if (!dma_fence_is_i915(fence))
4311 return 0;
4313 /* opencode to_request() in order to avoid const warnings */
4314 rq = container_of(fence, struct drm_i915_gem_request, fence);
4315 if (i915_gem_request_completed(rq))
4316 return 0;
4318 return flag(rq->engine->uabi_id);
4321 static __always_inline unsigned int
4322 busy_check_reader(const struct dma_fence *fence)
4324 return __busy_set_if_active(fence, __busy_read_flag);
4327 static __always_inline unsigned int
4328 busy_check_writer(const struct dma_fence *fence)
4330 if (!fence)
4331 return 0;
4333 return __busy_set_if_active(fence, __busy_write_id);
4337 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4338 struct drm_file *file)
4340 struct drm_i915_gem_busy *args = data;
4341 struct drm_i915_gem_object *obj;
4342 struct reservation_object_list *list;
4343 unsigned int seq;
4344 int err;
4346 err = -ENOENT;
4347 rcu_read_lock();
4348 obj = i915_gem_object_lookup_rcu(file, args->handle);
4349 if (!obj)
4350 goto out;
4352 /* A discrepancy here is that we do not report the status of
4353 * non-i915 fences, i.e. even though we may report the object as idle,
4354 * a call to set-domain may still stall waiting for foreign rendering.
4355 * This also means that wait-ioctl may report an object as busy,
4356 * where busy-ioctl considers it idle.
4358 * We trade the ability to warn of foreign fences to report on which
4359 * i915 engines are active for the object.
4361 * Alternatively, we can trade that extra information on read/write
4362 * activity with
4363 * args->busy =
4364 * !reservation_object_test_signaled_rcu(obj->resv, true);
4365 * to report the overall busyness. This is what the wait-ioctl does.
4368 retry:
4369 seq = raw_read_seqcount(&obj->resv->seq);
4371 /* Translate the exclusive fence to the READ *and* WRITE engine */
4372 args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4374 /* Translate shared fences to READ set of engines */
4375 list = rcu_dereference(obj->resv->fence);
4376 if (list) {
4377 unsigned int shared_count = list->shared_count, i;
4379 for (i = 0; i < shared_count; ++i) {
4380 struct dma_fence *fence =
4381 rcu_dereference(list->shared[i]);
4383 args->busy |= busy_check_reader(fence);
4387 if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4388 goto retry;
4390 err = 0;
4391 out:
4392 rcu_read_unlock();
4393 return err;
4397 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4398 struct drm_file *file_priv)
4400 return i915_gem_ring_throttle(dev, file_priv);
4404 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4405 struct drm_file *file_priv)
4407 struct drm_i915_private *dev_priv = to_i915(dev);
4408 struct drm_i915_gem_madvise *args = data;
4409 struct drm_i915_gem_object *obj;
4410 int err;
4412 switch (args->madv) {
4413 case I915_MADV_DONTNEED:
4414 case I915_MADV_WILLNEED:
4415 break;
4416 default:
4417 return -EINVAL;
4420 obj = i915_gem_object_lookup(file_priv, args->handle);
4421 if (!obj)
4422 return -ENOENT;
4424 err = mutex_lock_interruptible(&obj->mm.lock);
4425 if (err)
4426 goto out;
4428 if (i915_gem_object_has_pages(obj) &&
4429 i915_gem_object_is_tiled(obj) &&
4430 dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4431 if (obj->mm.madv == I915_MADV_WILLNEED) {
4432 GEM_BUG_ON(!obj->mm.quirked);
4433 __i915_gem_object_unpin_pages(obj);
4434 obj->mm.quirked = false;
4436 if (args->madv == I915_MADV_WILLNEED) {
4437 GEM_BUG_ON(obj->mm.quirked);
4438 __i915_gem_object_pin_pages(obj);
4439 obj->mm.quirked = true;
4443 if (obj->mm.madv != __I915_MADV_PURGED)
4444 obj->mm.madv = args->madv;
4446 /* if the object is no longer attached, discard its backing storage */
4447 if (obj->mm.madv == I915_MADV_DONTNEED &&
4448 !i915_gem_object_has_pages(obj))
4449 i915_gem_object_truncate(obj);
4451 args->retained = obj->mm.madv != __I915_MADV_PURGED;
4452 mutex_unlock(&obj->mm.lock);
4454 out:
4455 i915_gem_object_put(obj);
4456 return err;
4459 static void
4460 frontbuffer_retire(struct i915_gem_active *active,
4461 struct drm_i915_gem_request *request)
4463 struct drm_i915_gem_object *obj =
4464 container_of(active, typeof(*obj), frontbuffer_write);
4466 intel_fb_obj_flush(obj, ORIGIN_CS);
4469 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4470 const struct drm_i915_gem_object_ops *ops)
4472 mutex_init(&obj->mm.lock);
4474 INIT_LIST_HEAD(&obj->vma_list);
4475 INIT_LIST_HEAD(&obj->lut_list);
4476 INIT_LIST_HEAD(&obj->batch_pool_link);
4478 obj->ops = ops;
4480 reservation_object_init(&obj->__builtin_resv);
4481 obj->resv = &obj->__builtin_resv;
4483 obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4484 init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4486 obj->mm.madv = I915_MADV_WILLNEED;
4487 INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4488 mutex_init(&obj->mm.get_page.lock);
4490 i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4493 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4494 .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4495 I915_GEM_OBJECT_IS_SHRINKABLE,
4497 .get_pages = i915_gem_object_get_pages_gtt,
4498 .put_pages = i915_gem_object_put_pages_gtt,
4500 .pwrite = i915_gem_object_pwrite_gtt,
4503 static int i915_gem_object_create_shmem(struct drm_device *dev,
4504 struct drm_gem_object *obj,
4505 size_t size)
4507 struct drm_i915_private *i915 = to_i915(dev);
4508 unsigned long flags = VM_NORESERVE;
4509 struct file *filp;
4511 drm_gem_private_object_init(dev, obj, size);
4513 if (i915->mm.gemfs)
4514 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4515 flags);
4516 else
4517 filp = shmem_file_setup("i915", size, flags);
4519 if (IS_ERR(filp))
4520 return PTR_ERR(filp);
4522 obj->filp = filp;
4524 return 0;
4527 struct drm_i915_gem_object *
4528 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4530 struct drm_i915_gem_object *obj;
4531 struct address_space *mapping;
4532 unsigned int cache_level;
4533 gfp_t mask;
4534 int ret;
4536 /* There is a prevalence of the assumption that we fit the object's
4537 * page count inside a 32bit _signed_ variable. Let's document this and
4538 * catch if we ever need to fix it. In the meantime, if you do spot
4539 * such a local variable, please consider fixing!
4541 if (size >> PAGE_SHIFT > INT_MAX)
4542 return ERR_PTR(-E2BIG);
4544 if (overflows_type(size, obj->base.size))
4545 return ERR_PTR(-E2BIG);
4547 obj = i915_gem_object_alloc(dev_priv);
4548 if (obj == NULL)
4549 return ERR_PTR(-ENOMEM);
4551 ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4552 if (ret)
4553 goto fail;
4555 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4556 if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4557 /* 965gm cannot relocate objects above 4GiB. */
4558 mask &= ~__GFP_HIGHMEM;
4559 mask |= __GFP_DMA32;
4562 mapping = obj->base.filp->f_mapping;
4563 mapping_set_gfp_mask(mapping, mask);
4564 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4566 i915_gem_object_init(obj, &i915_gem_object_ops);
4568 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4569 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4571 if (HAS_LLC(dev_priv))
4572 /* On some devices, we can have the GPU use the LLC (the CPU
4573 * cache) for about a 10% performance improvement
4574 * compared to uncached. Graphics requests other than
4575 * display scanout are coherent with the CPU in
4576 * accessing this cache. This means in this mode we
4577 * don't need to clflush on the CPU side, and on the
4578 * GPU side we only need to flush internal caches to
4579 * get data visible to the CPU.
4581 * However, we maintain the display planes as UC, and so
4582 * need to rebind when first used as such.
4584 cache_level = I915_CACHE_LLC;
4585 else
4586 cache_level = I915_CACHE_NONE;
4588 i915_gem_object_set_cache_coherency(obj, cache_level);
4590 trace_i915_gem_object_create(obj);
4592 return obj;
4594 fail:
4595 i915_gem_object_free(obj);
4596 return ERR_PTR(ret);
4599 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4601 /* If we are the last user of the backing storage (be it shmemfs
4602 * pages or stolen etc), we know that the pages are going to be
4603 * immediately released. In this case, we can then skip copying
4604 * back the contents from the GPU.
4607 if (obj->mm.madv != I915_MADV_WILLNEED)
4608 return false;
4610 if (obj->base.filp == NULL)
4611 return true;
4613 /* At first glance, this looks racy, but then again so would be
4614 * userspace racing mmap against close. However, the first external
4615 * reference to the filp can only be obtained through the
4616 * i915_gem_mmap_ioctl() which safeguards us against the user
4617 * acquiring such a reference whilst we are in the middle of
4618 * freeing the object.
4620 return atomic_long_read(&obj->base.filp->f_count) == 1;
4623 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4624 struct llist_node *freed)
4626 struct drm_i915_gem_object *obj, *on;
4628 intel_runtime_pm_get(i915);
4629 llist_for_each_entry_safe(obj, on, freed, freed) {
4630 struct i915_vma *vma, *vn;
4632 trace_i915_gem_object_destroy(obj);
4634 mutex_lock(&i915->drm.struct_mutex);
4636 GEM_BUG_ON(i915_gem_object_is_active(obj));
4637 list_for_each_entry_safe(vma, vn,
4638 &obj->vma_list, obj_link) {
4639 GEM_BUG_ON(i915_vma_is_active(vma));
4640 vma->flags &= ~I915_VMA_PIN_MASK;
4641 i915_vma_close(vma);
4643 GEM_BUG_ON(!list_empty(&obj->vma_list));
4644 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4646 /* This serializes freeing with the shrinker. Since the free
4647 * is delayed, first by RCU then by the workqueue, we want the
4648 * shrinker to be able to free pages of unreferenced objects,
4649 * or else we may oom whilst there are plenty of deferred
4650 * freed objects.
4652 if (i915_gem_object_has_pages(obj)) {
4653 spin_lock(&i915->mm.obj_lock);
4654 list_del_init(&obj->mm.link);
4655 spin_unlock(&i915->mm.obj_lock);
4658 mutex_unlock(&i915->drm.struct_mutex);
4660 GEM_BUG_ON(obj->bind_count);
4661 GEM_BUG_ON(obj->userfault_count);
4662 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4663 GEM_BUG_ON(!list_empty(&obj->lut_list));
4665 if (obj->ops->release)
4666 obj->ops->release(obj);
4668 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4669 atomic_set(&obj->mm.pages_pin_count, 0);
4670 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4671 GEM_BUG_ON(i915_gem_object_has_pages(obj));
4673 if (obj->base.import_attach)
4674 drm_prime_gem_destroy(&obj->base, NULL);
4676 reservation_object_fini(&obj->__builtin_resv);
4677 drm_gem_object_release(&obj->base);
4678 i915_gem_info_remove_obj(i915, obj->base.size);
4680 kfree(obj->bit_17);
4681 i915_gem_object_free(obj);
4683 if (on)
4684 cond_resched();
4686 intel_runtime_pm_put(i915);
4689 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4691 struct llist_node *freed;
4693 /* Free the oldest, most stale object to keep the free_list short */
4694 freed = NULL;
4695 if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4696 /* Only one consumer of llist_del_first() allowed */
4697 spin_lock(&i915->mm.free_lock);
4698 freed = llist_del_first(&i915->mm.free_list);
4699 spin_unlock(&i915->mm.free_lock);
4701 if (unlikely(freed)) {
4702 freed->next = NULL;
4703 __i915_gem_free_objects(i915, freed);
4707 static void __i915_gem_free_work(struct work_struct *work)
4709 struct drm_i915_private *i915 =
4710 container_of(work, struct drm_i915_private, mm.free_work);
4711 struct llist_node *freed;
4713 /* All file-owned VMA should have been released by this point through
4714 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4715 * However, the object may also be bound into the global GTT (e.g.
4716 * older GPUs without per-process support, or for direct access through
4717 * the GTT either for the user or for scanout). Those VMA still need to
4718 * unbound now.
4721 spin_lock(&i915->mm.free_lock);
4722 while ((freed = llist_del_all(&i915->mm.free_list))) {
4723 spin_unlock(&i915->mm.free_lock);
4725 __i915_gem_free_objects(i915, freed);
4726 if (need_resched())
4727 return;
4729 spin_lock(&i915->mm.free_lock);
4731 spin_unlock(&i915->mm.free_lock);
4734 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4736 struct drm_i915_gem_object *obj =
4737 container_of(head, typeof(*obj), rcu);
4738 struct drm_i915_private *i915 = to_i915(obj->base.dev);
4740 /* We can't simply use call_rcu() from i915_gem_free_object()
4741 * as we need to block whilst unbinding, and the call_rcu
4742 * task may be called from softirq context. So we take a
4743 * detour through a worker.
4745 if (llist_add(&obj->freed, &i915->mm.free_list))
4746 schedule_work(&i915->mm.free_work);
4749 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4751 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4753 if (obj->mm.quirked)
4754 __i915_gem_object_unpin_pages(obj);
4756 if (discard_backing_storage(obj))
4757 obj->mm.madv = I915_MADV_DONTNEED;
4759 /* Before we free the object, make sure any pure RCU-only
4760 * read-side critical sections are complete, e.g.
4761 * i915_gem_busy_ioctl(). For the corresponding synchronized
4762 * lookup see i915_gem_object_lookup_rcu().
4764 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4767 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4769 lockdep_assert_held(&obj->base.dev->struct_mutex);
4771 if (!i915_gem_object_has_active_reference(obj) &&
4772 i915_gem_object_is_active(obj))
4773 i915_gem_object_set_active_reference(obj);
4774 else
4775 i915_gem_object_put(obj);
4778 static void assert_kernel_context_is_current(struct drm_i915_private *i915)
4780 struct i915_gem_context *kernel_context = i915->kernel_context;
4781 struct intel_engine_cs *engine;
4782 enum intel_engine_id id;
4784 for_each_engine(engine, i915, id) {
4785 GEM_BUG_ON(__i915_gem_active_peek(&engine->timeline->last_request));
4786 GEM_BUG_ON(engine->last_retired_context != kernel_context);
4790 void i915_gem_sanitize(struct drm_i915_private *i915)
4792 if (i915_terminally_wedged(&i915->gpu_error)) {
4793 mutex_lock(&i915->drm.struct_mutex);
4794 i915_gem_unset_wedged(i915);
4795 mutex_unlock(&i915->drm.struct_mutex);
4799 * If we inherit context state from the BIOS or earlier occupants
4800 * of the GPU, the GPU may be in an inconsistent state when we
4801 * try to take over. The only way to remove the earlier state
4802 * is by resetting. However, resetting on earlier gen is tricky as
4803 * it may impact the display and we are uncertain about the stability
4804 * of the reset, so this could be applied to even earlier gen.
4806 if (INTEL_GEN(i915) >= 5) {
4807 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4808 WARN_ON(reset && reset != -ENODEV);
4812 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4814 struct drm_device *dev = &dev_priv->drm;
4815 int ret;
4817 intel_runtime_pm_get(dev_priv);
4818 intel_suspend_gt_powersave(dev_priv);
4820 mutex_lock(&dev->struct_mutex);
4822 /* We have to flush all the executing contexts to main memory so
4823 * that they can saved in the hibernation image. To ensure the last
4824 * context image is coherent, we have to switch away from it. That
4825 * leaves the dev_priv->kernel_context still active when
4826 * we actually suspend, and its image in memory may not match the GPU
4827 * state. Fortunately, the kernel_context is disposable and we do
4828 * not rely on its state.
4830 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
4831 ret = i915_gem_switch_to_kernel_context(dev_priv);
4832 if (ret)
4833 goto err_unlock;
4835 ret = i915_gem_wait_for_idle(dev_priv,
4836 I915_WAIT_INTERRUPTIBLE |
4837 I915_WAIT_LOCKED);
4838 if (ret && ret != -EIO)
4839 goto err_unlock;
4841 assert_kernel_context_is_current(dev_priv);
4843 i915_gem_contexts_lost(dev_priv);
4844 mutex_unlock(&dev->struct_mutex);
4846 intel_guc_suspend(dev_priv);
4848 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4849 cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4851 /* As the idle_work is rearming if it detects a race, play safe and
4852 * repeat the flush until it is definitely idle.
4854 drain_delayed_work(&dev_priv->gt.idle_work);
4856 /* Assert that we sucessfully flushed all the work and
4857 * reset the GPU back to its idle, low power state.
4859 WARN_ON(dev_priv->gt.awake);
4860 if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4861 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4864 * Neither the BIOS, ourselves or any other kernel
4865 * expects the system to be in execlists mode on startup,
4866 * so we need to reset the GPU back to legacy mode. And the only
4867 * known way to disable logical contexts is through a GPU reset.
4869 * So in order to leave the system in a known default configuration,
4870 * always reset the GPU upon unload and suspend. Afterwards we then
4871 * clean up the GEM state tracking, flushing off the requests and
4872 * leaving the system in a known idle state.
4874 * Note that is of the upmost importance that the GPU is idle and
4875 * all stray writes are flushed *before* we dismantle the backing
4876 * storage for the pinned objects.
4878 * However, since we are uncertain that resetting the GPU on older
4879 * machines is a good idea, we don't - just in case it leaves the
4880 * machine in an unusable condition.
4882 i915_gem_sanitize(dev_priv);
4884 intel_runtime_pm_put(dev_priv);
4885 return 0;
4887 err_unlock:
4888 mutex_unlock(&dev->struct_mutex);
4889 intel_runtime_pm_put(dev_priv);
4890 return ret;
4893 void i915_gem_resume(struct drm_i915_private *i915)
4895 WARN_ON(i915->gt.awake);
4897 mutex_lock(&i915->drm.struct_mutex);
4898 intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
4900 i915_gem_restore_gtt_mappings(i915);
4901 i915_gem_restore_fences(i915);
4904 * As we didn't flush the kernel context before suspend, we cannot
4905 * guarantee that the context image is complete. So let's just reset
4906 * it and start again.
4908 i915->gt.resume(i915);
4910 if (i915_gem_init_hw(i915))
4911 goto err_wedged;
4913 intel_guc_resume(i915);
4915 /* Always reload a context for powersaving. */
4916 if (i915_gem_switch_to_kernel_context(i915))
4917 goto err_wedged;
4919 out_unlock:
4920 intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
4921 mutex_unlock(&i915->drm.struct_mutex);
4922 return;
4924 err_wedged:
4925 if (!i915_terminally_wedged(&i915->gpu_error)) {
4926 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
4927 i915_gem_set_wedged(i915);
4929 goto out_unlock;
4932 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4934 if (INTEL_GEN(dev_priv) < 5 ||
4935 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4936 return;
4938 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4939 DISP_TILE_SURFACE_SWIZZLING);
4941 if (IS_GEN5(dev_priv))
4942 return;
4944 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4945 if (IS_GEN6(dev_priv))
4946 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4947 else if (IS_GEN7(dev_priv))
4948 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4949 else if (IS_GEN8(dev_priv))
4950 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4951 else
4952 BUG();
4955 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4957 I915_WRITE(RING_CTL(base), 0);
4958 I915_WRITE(RING_HEAD(base), 0);
4959 I915_WRITE(RING_TAIL(base), 0);
4960 I915_WRITE(RING_START(base), 0);
4963 static void init_unused_rings(struct drm_i915_private *dev_priv)
4965 if (IS_I830(dev_priv)) {
4966 init_unused_ring(dev_priv, PRB1_BASE);
4967 init_unused_ring(dev_priv, SRB0_BASE);
4968 init_unused_ring(dev_priv, SRB1_BASE);
4969 init_unused_ring(dev_priv, SRB2_BASE);
4970 init_unused_ring(dev_priv, SRB3_BASE);
4971 } else if (IS_GEN2(dev_priv)) {
4972 init_unused_ring(dev_priv, SRB0_BASE);
4973 init_unused_ring(dev_priv, SRB1_BASE);
4974 } else if (IS_GEN3(dev_priv)) {
4975 init_unused_ring(dev_priv, PRB1_BASE);
4976 init_unused_ring(dev_priv, PRB2_BASE);
4980 static int __i915_gem_restart_engines(void *data)
4982 struct drm_i915_private *i915 = data;
4983 struct intel_engine_cs *engine;
4984 enum intel_engine_id id;
4985 int err;
4987 for_each_engine(engine, i915, id) {
4988 err = engine->init_hw(engine);
4989 if (err)
4990 return err;
4993 return 0;
4996 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4998 int ret;
5000 dev_priv->gt.last_init_time = ktime_get();
5002 /* Double layer security blanket, see i915_gem_init() */
5003 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5005 if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
5006 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5008 if (IS_HASWELL(dev_priv))
5009 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
5010 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5012 if (HAS_PCH_NOP(dev_priv)) {
5013 if (IS_IVYBRIDGE(dev_priv)) {
5014 u32 temp = I915_READ(GEN7_MSG_CTL);
5015 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5016 I915_WRITE(GEN7_MSG_CTL, temp);
5017 } else if (INTEL_GEN(dev_priv) >= 7) {
5018 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5019 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5020 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5024 i915_gem_init_swizzling(dev_priv);
5027 * At least 830 can leave some of the unused rings
5028 * "active" (ie. head != tail) after resume which
5029 * will prevent c3 entry. Makes sure all unused rings
5030 * are totally idle.
5032 init_unused_rings(dev_priv);
5034 BUG_ON(!dev_priv->kernel_context);
5035 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
5036 ret = -EIO;
5037 goto out;
5040 ret = i915_ppgtt_init_hw(dev_priv);
5041 if (ret) {
5042 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5043 goto out;
5046 /* We can't enable contexts until all firmware is loaded */
5047 ret = intel_uc_init_hw(dev_priv);
5048 if (ret)
5049 goto out;
5051 intel_mocs_init_l3cc_table(dev_priv);
5053 /* Only when the HW is re-initialised, can we replay the requests */
5054 ret = __i915_gem_restart_engines(dev_priv);
5055 out:
5056 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5057 return ret;
5060 static int __intel_engines_record_defaults(struct drm_i915_private *i915)
5062 struct i915_gem_context *ctx;
5063 struct intel_engine_cs *engine;
5064 enum intel_engine_id id;
5065 int err;
5068 * As we reset the gpu during very early sanitisation, the current
5069 * register state on the GPU should reflect its defaults values.
5070 * We load a context onto the hw (with restore-inhibit), then switch
5071 * over to a second context to save that default register state. We
5072 * can then prime every new context with that state so they all start
5073 * from the same default HW values.
5076 ctx = i915_gem_context_create_kernel(i915, 0);
5077 if (IS_ERR(ctx))
5078 return PTR_ERR(ctx);
5080 for_each_engine(engine, i915, id) {
5081 struct drm_i915_gem_request *rq;
5083 rq = i915_gem_request_alloc(engine, ctx);
5084 if (IS_ERR(rq)) {
5085 err = PTR_ERR(rq);
5086 goto out_ctx;
5089 err = 0;
5090 if (engine->init_context)
5091 err = engine->init_context(rq);
5093 __i915_add_request(rq, true);
5094 if (err)
5095 goto err_active;
5098 err = i915_gem_switch_to_kernel_context(i915);
5099 if (err)
5100 goto err_active;
5102 err = i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED);
5103 if (err)
5104 goto err_active;
5106 assert_kernel_context_is_current(i915);
5108 for_each_engine(engine, i915, id) {
5109 struct i915_vma *state;
5111 state = ctx->engine[id].state;
5112 if (!state)
5113 continue;
5116 * As we will hold a reference to the logical state, it will
5117 * not be torn down with the context, and importantly the
5118 * object will hold onto its vma (making it possible for a
5119 * stray GTT write to corrupt our defaults). Unmap the vma
5120 * from the GTT to prevent such accidents and reclaim the
5121 * space.
5123 err = i915_vma_unbind(state);
5124 if (err)
5125 goto err_active;
5127 err = i915_gem_object_set_to_cpu_domain(state->obj, false);
5128 if (err)
5129 goto err_active;
5131 engine->default_state = i915_gem_object_get(state->obj);
5134 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
5135 unsigned int found = intel_engines_has_context_isolation(i915);
5138 * Make sure that classes with multiple engine instances all
5139 * share the same basic configuration.
5141 for_each_engine(engine, i915, id) {
5142 unsigned int bit = BIT(engine->uabi_class);
5143 unsigned int expected = engine->default_state ? bit : 0;
5145 if ((found & bit) != expected) {
5146 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5147 engine->uabi_class, engine->name);
5152 out_ctx:
5153 i915_gem_context_set_closed(ctx);
5154 i915_gem_context_put(ctx);
5155 return err;
5157 err_active:
5159 * If we have to abandon now, we expect the engines to be idle
5160 * and ready to be torn-down. First try to flush any remaining
5161 * request, ensure we are pointing at the kernel context and
5162 * then remove it.
5164 if (WARN_ON(i915_gem_switch_to_kernel_context(i915)))
5165 goto out_ctx;
5167 if (WARN_ON(i915_gem_wait_for_idle(i915, I915_WAIT_LOCKED)))
5168 goto out_ctx;
5170 i915_gem_contexts_lost(i915);
5171 goto out_ctx;
5174 int i915_gem_init(struct drm_i915_private *dev_priv)
5176 int ret;
5179 * We need to fallback to 4K pages since gvt gtt handling doesn't
5180 * support huge page entries - we will need to check either hypervisor
5181 * mm can support huge guest page or just do emulation in gvt.
5183 if (intel_vgpu_active(dev_priv))
5184 mkwrite_device_info(dev_priv)->page_sizes =
5185 I915_GTT_PAGE_SIZE_4K;
5187 dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
5189 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) {
5190 dev_priv->gt.resume = intel_lr_context_resume;
5191 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5192 } else {
5193 dev_priv->gt.resume = intel_legacy_submission_resume;
5194 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
5197 ret = i915_gem_init_userptr(dev_priv);
5198 if (ret)
5199 return ret;
5201 ret = intel_uc_init_wq(dev_priv);
5202 if (ret)
5203 return ret;
5205 /* This is just a security blanket to placate dragons.
5206 * On some systems, we very sporadically observe that the first TLBs
5207 * used by the CS may be stale, despite us poking the TLB reset. If
5208 * we hold the forcewake during initialisation these problems
5209 * just magically go away.
5211 mutex_lock(&dev_priv->drm.struct_mutex);
5212 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5214 ret = i915_gem_init_ggtt(dev_priv);
5215 if (ret) {
5216 GEM_BUG_ON(ret == -EIO);
5217 goto err_unlock;
5220 ret = i915_gem_contexts_init(dev_priv);
5221 if (ret) {
5222 GEM_BUG_ON(ret == -EIO);
5223 goto err_ggtt;
5226 ret = intel_engines_init(dev_priv);
5227 if (ret) {
5228 GEM_BUG_ON(ret == -EIO);
5229 goto err_context;
5232 intel_init_gt_powersave(dev_priv);
5234 ret = intel_uc_init(dev_priv);
5235 if (ret)
5236 goto err_pm;
5238 ret = i915_gem_init_hw(dev_priv);
5239 if (ret)
5240 goto err_uc_init;
5243 * Despite its name intel_init_clock_gating applies both display
5244 * clock gating workarounds; GT mmio workarounds and the occasional
5245 * GT power context workaround. Worse, sometimes it includes a context
5246 * register workaround which we need to apply before we record the
5247 * default HW state for all contexts.
5249 * FIXME: break up the workarounds and apply them at the right time!
5251 intel_init_clock_gating(dev_priv);
5253 ret = __intel_engines_record_defaults(dev_priv);
5254 if (ret)
5255 goto err_init_hw;
5257 if (i915_inject_load_failure()) {
5258 ret = -ENODEV;
5259 goto err_init_hw;
5262 if (i915_inject_load_failure()) {
5263 ret = -EIO;
5264 goto err_init_hw;
5267 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5268 mutex_unlock(&dev_priv->drm.struct_mutex);
5270 return 0;
5273 * Unwinding is complicated by that we want to handle -EIO to mean
5274 * disable GPU submission but keep KMS alive. We want to mark the
5275 * HW as irrevisibly wedged, but keep enough state around that the
5276 * driver doesn't explode during runtime.
5278 err_init_hw:
5279 i915_gem_wait_for_idle(dev_priv, I915_WAIT_LOCKED);
5280 i915_gem_contexts_lost(dev_priv);
5281 intel_uc_fini_hw(dev_priv);
5282 err_uc_init:
5283 intel_uc_fini(dev_priv);
5284 err_pm:
5285 if (ret != -EIO) {
5286 intel_cleanup_gt_powersave(dev_priv);
5287 i915_gem_cleanup_engines(dev_priv);
5289 err_context:
5290 if (ret != -EIO)
5291 i915_gem_contexts_fini(dev_priv);
5292 err_ggtt:
5293 err_unlock:
5294 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5295 mutex_unlock(&dev_priv->drm.struct_mutex);
5297 intel_uc_fini_wq(dev_priv);
5299 if (ret != -EIO)
5300 i915_gem_cleanup_userptr(dev_priv);
5302 if (ret == -EIO) {
5304 * Allow engine initialisation to fail by marking the GPU as
5305 * wedged. But we only want to do this where the GPU is angry,
5306 * for all other failure, such as an allocation failure, bail.
5308 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5309 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5310 i915_gem_set_wedged(dev_priv);
5312 ret = 0;
5315 i915_gem_drain_freed_objects(dev_priv);
5316 return ret;
5319 void i915_gem_init_mmio(struct drm_i915_private *i915)
5321 i915_gem_sanitize(i915);
5324 void
5325 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5327 struct intel_engine_cs *engine;
5328 enum intel_engine_id id;
5330 for_each_engine(engine, dev_priv, id)
5331 dev_priv->gt.cleanup_engine(engine);
5334 void
5335 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5337 int i;
5339 if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5340 !IS_CHERRYVIEW(dev_priv))
5341 dev_priv->num_fence_regs = 32;
5342 else if (INTEL_INFO(dev_priv)->gen >= 4 ||
5343 IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5344 IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5345 dev_priv->num_fence_regs = 16;
5346 else
5347 dev_priv->num_fence_regs = 8;
5349 if (intel_vgpu_active(dev_priv))
5350 dev_priv->num_fence_regs =
5351 I915_READ(vgtif_reg(avail_rs.fence_num));
5353 /* Initialize fence registers to zero */
5354 for (i = 0; i < dev_priv->num_fence_regs; i++) {
5355 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5357 fence->i915 = dev_priv;
5358 fence->id = i;
5359 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5361 i915_gem_restore_fences(dev_priv);
5363 i915_gem_detect_bit_6_swizzle(dev_priv);
5366 static void i915_gem_init__mm(struct drm_i915_private *i915)
5368 spin_lock_init(&i915->mm.object_stat_lock);
5369 spin_lock_init(&i915->mm.obj_lock);
5370 spin_lock_init(&i915->mm.free_lock);
5372 init_llist_head(&i915->mm.free_list);
5374 INIT_LIST_HEAD(&i915->mm.unbound_list);
5375 INIT_LIST_HEAD(&i915->mm.bound_list);
5376 INIT_LIST_HEAD(&i915->mm.fence_list);
5377 INIT_LIST_HEAD(&i915->mm.userfault_list);
5379 INIT_WORK(&i915->mm.free_work, __i915_gem_free_work);
5383 i915_gem_load_init(struct drm_i915_private *dev_priv)
5385 int err = -ENOMEM;
5387 dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5388 if (!dev_priv->objects)
5389 goto err_out;
5391 dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5392 if (!dev_priv->vmas)
5393 goto err_objects;
5395 dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5396 if (!dev_priv->luts)
5397 goto err_vmas;
5399 dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
5400 SLAB_HWCACHE_ALIGN |
5401 SLAB_RECLAIM_ACCOUNT |
5402 SLAB_TYPESAFE_BY_RCU);
5403 if (!dev_priv->requests)
5404 goto err_luts;
5406 dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5407 SLAB_HWCACHE_ALIGN |
5408 SLAB_RECLAIM_ACCOUNT);
5409 if (!dev_priv->dependencies)
5410 goto err_requests;
5412 dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5413 if (!dev_priv->priorities)
5414 goto err_dependencies;
5416 mutex_lock(&dev_priv->drm.struct_mutex);
5417 INIT_LIST_HEAD(&dev_priv->gt.timelines);
5418 err = i915_gem_timeline_init__global(dev_priv);
5419 mutex_unlock(&dev_priv->drm.struct_mutex);
5420 if (err)
5421 goto err_priorities;
5423 i915_gem_init__mm(dev_priv);
5425 INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5426 i915_gem_retire_work_handler);
5427 INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5428 i915_gem_idle_work_handler);
5429 init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5430 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5432 atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5434 spin_lock_init(&dev_priv->fb_tracking.lock);
5436 err = i915_gemfs_init(dev_priv);
5437 if (err)
5438 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5440 return 0;
5442 err_priorities:
5443 kmem_cache_destroy(dev_priv->priorities);
5444 err_dependencies:
5445 kmem_cache_destroy(dev_priv->dependencies);
5446 err_requests:
5447 kmem_cache_destroy(dev_priv->requests);
5448 err_luts:
5449 kmem_cache_destroy(dev_priv->luts);
5450 err_vmas:
5451 kmem_cache_destroy(dev_priv->vmas);
5452 err_objects:
5453 kmem_cache_destroy(dev_priv->objects);
5454 err_out:
5455 return err;
5458 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5460 i915_gem_drain_freed_objects(dev_priv);
5461 WARN_ON(!llist_empty(&dev_priv->mm.free_list));
5462 WARN_ON(dev_priv->mm.object_count);
5464 mutex_lock(&dev_priv->drm.struct_mutex);
5465 i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5466 WARN_ON(!list_empty(&dev_priv->gt.timelines));
5467 mutex_unlock(&dev_priv->drm.struct_mutex);
5469 kmem_cache_destroy(dev_priv->priorities);
5470 kmem_cache_destroy(dev_priv->dependencies);
5471 kmem_cache_destroy(dev_priv->requests);
5472 kmem_cache_destroy(dev_priv->luts);
5473 kmem_cache_destroy(dev_priv->vmas);
5474 kmem_cache_destroy(dev_priv->objects);
5476 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5477 rcu_barrier();
5479 i915_gemfs_fini(dev_priv);
5482 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5484 /* Discard all purgeable objects, let userspace recover those as
5485 * required after resuming.
5487 i915_gem_shrink_all(dev_priv);
5489 return 0;
5492 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5494 struct drm_i915_gem_object *obj;
5495 struct list_head *phases[] = {
5496 &dev_priv->mm.unbound_list,
5497 &dev_priv->mm.bound_list,
5498 NULL
5499 }, **p;
5501 /* Called just before we write the hibernation image.
5503 * We need to update the domain tracking to reflect that the CPU
5504 * will be accessing all the pages to create and restore from the
5505 * hibernation, and so upon restoration those pages will be in the
5506 * CPU domain.
5508 * To make sure the hibernation image contains the latest state,
5509 * we update that state just before writing out the image.
5511 * To try and reduce the hibernation image, we manually shrink
5512 * the objects as well, see i915_gem_freeze()
5515 i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5516 i915_gem_drain_freed_objects(dev_priv);
5518 spin_lock(&dev_priv->mm.obj_lock);
5519 for (p = phases; *p; p++) {
5520 list_for_each_entry(obj, *p, mm.link)
5521 __start_cpu_write(obj);
5523 spin_unlock(&dev_priv->mm.obj_lock);
5525 return 0;
5528 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5530 struct drm_i915_file_private *file_priv = file->driver_priv;
5531 struct drm_i915_gem_request *request;
5533 /* Clean up our request list when the client is going away, so that
5534 * later retire_requests won't dereference our soon-to-be-gone
5535 * file_priv.
5537 spin_lock(&file_priv->mm.lock);
5538 list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5539 request->file_priv = NULL;
5540 spin_unlock(&file_priv->mm.lock);
5543 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5545 struct drm_i915_file_private *file_priv;
5546 int ret;
5548 DRM_DEBUG("\n");
5550 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5551 if (!file_priv)
5552 return -ENOMEM;
5554 file->driver_priv = file_priv;
5555 file_priv->dev_priv = i915;
5556 file_priv->file = file;
5558 spin_lock_init(&file_priv->mm.lock);
5559 INIT_LIST_HEAD(&file_priv->mm.request_list);
5561 file_priv->bsd_engine = -1;
5563 ret = i915_gem_context_open(i915, file);
5564 if (ret)
5565 kfree(file_priv);
5567 return ret;
5571 * i915_gem_track_fb - update frontbuffer tracking
5572 * @old: current GEM buffer for the frontbuffer slots
5573 * @new: new GEM buffer for the frontbuffer slots
5574 * @frontbuffer_bits: bitmask of frontbuffer slots
5576 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5577 * from @old and setting them in @new. Both @old and @new can be NULL.
5579 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5580 struct drm_i915_gem_object *new,
5581 unsigned frontbuffer_bits)
5583 /* Control of individual bits within the mask are guarded by
5584 * the owning plane->mutex, i.e. we can never see concurrent
5585 * manipulation of individual bits. But since the bitfield as a whole
5586 * is updated using RMW, we need to use atomics in order to update
5587 * the bits.
5589 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5590 sizeof(atomic_t) * BITS_PER_BYTE);
5592 if (old) {
5593 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5594 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5597 if (new) {
5598 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5599 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5603 /* Allocate a new GEM object and fill it with the supplied data */
5604 struct drm_i915_gem_object *
5605 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5606 const void *data, size_t size)
5608 struct drm_i915_gem_object *obj;
5609 struct file *file;
5610 size_t offset;
5611 int err;
5613 obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5614 if (IS_ERR(obj))
5615 return obj;
5617 GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5619 file = obj->base.filp;
5620 offset = 0;
5621 do {
5622 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5623 struct page *page;
5624 void *pgdata, *vaddr;
5626 err = pagecache_write_begin(file, file->f_mapping,
5627 offset, len, 0,
5628 &page, &pgdata);
5629 if (err < 0)
5630 goto fail;
5632 vaddr = kmap(page);
5633 memcpy(vaddr, data, len);
5634 kunmap(page);
5636 err = pagecache_write_end(file, file->f_mapping,
5637 offset, len, len,
5638 page, pgdata);
5639 if (err < 0)
5640 goto fail;
5642 size -= len;
5643 data += len;
5644 offset += len;
5645 } while (size);
5647 return obj;
5649 fail:
5650 i915_gem_object_put(obj);
5651 return ERR_PTR(err);
5654 struct scatterlist *
5655 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5656 unsigned int n,
5657 unsigned int *offset)
5659 struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5660 struct scatterlist *sg;
5661 unsigned int idx, count;
5663 might_sleep();
5664 GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5665 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5667 /* As we iterate forward through the sg, we record each entry in a
5668 * radixtree for quick repeated (backwards) lookups. If we have seen
5669 * this index previously, we will have an entry for it.
5671 * Initial lookup is O(N), but this is amortized to O(1) for
5672 * sequential page access (where each new request is consecutive
5673 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5674 * i.e. O(1) with a large constant!
5676 if (n < READ_ONCE(iter->sg_idx))
5677 goto lookup;
5679 mutex_lock(&iter->lock);
5681 /* We prefer to reuse the last sg so that repeated lookup of this
5682 * (or the subsequent) sg are fast - comparing against the last
5683 * sg is faster than going through the radixtree.
5686 sg = iter->sg_pos;
5687 idx = iter->sg_idx;
5688 count = __sg_page_count(sg);
5690 while (idx + count <= n) {
5691 unsigned long exception, i;
5692 int ret;
5694 /* If we cannot allocate and insert this entry, or the
5695 * individual pages from this range, cancel updating the
5696 * sg_idx so that on this lookup we are forced to linearly
5697 * scan onwards, but on future lookups we will try the
5698 * insertion again (in which case we need to be careful of
5699 * the error return reporting that we have already inserted
5700 * this index).
5702 ret = radix_tree_insert(&iter->radix, idx, sg);
5703 if (ret && ret != -EEXIST)
5704 goto scan;
5706 exception =
5707 RADIX_TREE_EXCEPTIONAL_ENTRY |
5708 idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5709 for (i = 1; i < count; i++) {
5710 ret = radix_tree_insert(&iter->radix, idx + i,
5711 (void *)exception);
5712 if (ret && ret != -EEXIST)
5713 goto scan;
5716 idx += count;
5717 sg = ____sg_next(sg);
5718 count = __sg_page_count(sg);
5721 scan:
5722 iter->sg_pos = sg;
5723 iter->sg_idx = idx;
5725 mutex_unlock(&iter->lock);
5727 if (unlikely(n < idx)) /* insertion completed by another thread */
5728 goto lookup;
5730 /* In case we failed to insert the entry into the radixtree, we need
5731 * to look beyond the current sg.
5733 while (idx + count <= n) {
5734 idx += count;
5735 sg = ____sg_next(sg);
5736 count = __sg_page_count(sg);
5739 *offset = n - idx;
5740 return sg;
5742 lookup:
5743 rcu_read_lock();
5745 sg = radix_tree_lookup(&iter->radix, n);
5746 GEM_BUG_ON(!sg);
5748 /* If this index is in the middle of multi-page sg entry,
5749 * the radixtree will contain an exceptional entry that points
5750 * to the start of that range. We will return the pointer to
5751 * the base page and the offset of this page within the
5752 * sg entry's range.
5754 *offset = 0;
5755 if (unlikely(radix_tree_exception(sg))) {
5756 unsigned long base =
5757 (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5759 sg = radix_tree_lookup(&iter->radix, base);
5760 GEM_BUG_ON(!sg);
5762 *offset = n - base;
5765 rcu_read_unlock();
5767 return sg;
5770 struct page *
5771 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5773 struct scatterlist *sg;
5774 unsigned int offset;
5776 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5778 sg = i915_gem_object_get_sg(obj, n, &offset);
5779 return nth_page(sg_page(sg), offset);
5782 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5783 struct page *
5784 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5785 unsigned int n)
5787 struct page *page;
5789 page = i915_gem_object_get_page(obj, n);
5790 if (!obj->mm.dirty)
5791 set_page_dirty(page);
5793 return page;
5796 dma_addr_t
5797 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5798 unsigned long n)
5800 struct scatterlist *sg;
5801 unsigned int offset;
5803 sg = i915_gem_object_get_sg(obj, n, &offset);
5804 return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5807 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5809 struct sg_table *pages;
5810 int err;
5812 if (align > obj->base.size)
5813 return -EINVAL;
5815 if (obj->ops == &i915_gem_phys_ops)
5816 return 0;
5818 if (obj->ops != &i915_gem_object_ops)
5819 return -EINVAL;
5821 err = i915_gem_object_unbind(obj);
5822 if (err)
5823 return err;
5825 mutex_lock(&obj->mm.lock);
5827 if (obj->mm.madv != I915_MADV_WILLNEED) {
5828 err = -EFAULT;
5829 goto err_unlock;
5832 if (obj->mm.quirked) {
5833 err = -EFAULT;
5834 goto err_unlock;
5837 if (obj->mm.mapping) {
5838 err = -EBUSY;
5839 goto err_unlock;
5842 pages = fetch_and_zero(&obj->mm.pages);
5843 if (pages) {
5844 struct drm_i915_private *i915 = to_i915(obj->base.dev);
5846 __i915_gem_object_reset_page_iter(obj);
5848 spin_lock(&i915->mm.obj_lock);
5849 list_del(&obj->mm.link);
5850 spin_unlock(&i915->mm.obj_lock);
5853 obj->ops = &i915_gem_phys_ops;
5855 err = ____i915_gem_object_get_pages(obj);
5856 if (err)
5857 goto err_xfer;
5859 /* Perma-pin (until release) the physical set of pages */
5860 __i915_gem_object_pin_pages(obj);
5862 if (!IS_ERR_OR_NULL(pages))
5863 i915_gem_object_ops.put_pages(obj, pages);
5864 mutex_unlock(&obj->mm.lock);
5865 return 0;
5867 err_xfer:
5868 obj->ops = &i915_gem_object_ops;
5869 obj->mm.pages = pages;
5870 err_unlock:
5871 mutex_unlock(&obj->mm.lock);
5872 return err;
5875 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5876 #include "selftests/scatterlist.c"
5877 #include "selftests/mock_gem_device.c"
5878 #include "selftests/huge_gem_object.c"
5879 #include "selftests/huge_pages.c"
5880 #include "selftests/i915_gem_object.c"
5881 #include "selftests/i915_gem_coherency.c"
5882 #endif