2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "i915_gemfs.h"
39 #include <linux/dma-fence-array.h>
40 #include <linux/kthread.h>
41 #include <linux/reservation.h>
42 #include <linux/shmem_fs.h>
43 #include <linux/slab.h>
44 #include <linux/stop_machine.h>
45 #include <linux/swap.h>
46 #include <linux/pci.h>
47 #include <linux/dma-buf.h>
49 static void i915_gem_flush_free_objects(struct drm_i915_private
*i915
);
51 static bool cpu_write_needs_clflush(struct drm_i915_gem_object
*obj
)
56 if (!(obj
->cache_coherent
& I915_BO_CACHE_COHERENT_FOR_WRITE
))
59 return obj
->pin_global
; /* currently in use by HW, keep flushed */
63 insert_mappable_node(struct i915_ggtt
*ggtt
,
64 struct drm_mm_node
*node
, u32 size
)
66 memset(node
, 0, sizeof(*node
));
67 return drm_mm_insert_node_in_range(&ggtt
->base
.mm
, node
,
68 size
, 0, I915_COLOR_UNEVICTABLE
,
69 0, ggtt
->mappable_end
,
74 remove_mappable_node(struct drm_mm_node
*node
)
76 drm_mm_remove_node(node
);
79 /* some bookkeeping */
80 static void i915_gem_info_add_obj(struct drm_i915_private
*dev_priv
,
83 spin_lock(&dev_priv
->mm
.object_stat_lock
);
84 dev_priv
->mm
.object_count
++;
85 dev_priv
->mm
.object_memory
+= size
;
86 spin_unlock(&dev_priv
->mm
.object_stat_lock
);
89 static void i915_gem_info_remove_obj(struct drm_i915_private
*dev_priv
,
92 spin_lock(&dev_priv
->mm
.object_stat_lock
);
93 dev_priv
->mm
.object_count
--;
94 dev_priv
->mm
.object_memory
-= size
;
95 spin_unlock(&dev_priv
->mm
.object_stat_lock
);
99 i915_gem_wait_for_error(struct i915_gpu_error
*error
)
106 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107 * userspace. If it takes that long something really bad is going on and
108 * we should simply try to bail out and fail as gracefully as possible.
110 ret
= wait_event_interruptible_timeout(error
->reset_queue
,
111 !i915_reset_backoff(error
),
114 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116 } else if (ret
< 0) {
123 int i915_mutex_lock_interruptible(struct drm_device
*dev
)
125 struct drm_i915_private
*dev_priv
= to_i915(dev
);
128 ret
= i915_gem_wait_for_error(&dev_priv
->gpu_error
);
132 ret
= mutex_lock_interruptible(&dev
->struct_mutex
);
140 i915_gem_get_aperture_ioctl(struct drm_device
*dev
, void *data
,
141 struct drm_file
*file
)
143 struct drm_i915_private
*dev_priv
= to_i915(dev
);
144 struct i915_ggtt
*ggtt
= &dev_priv
->ggtt
;
145 struct drm_i915_gem_get_aperture
*args
= data
;
146 struct i915_vma
*vma
;
149 pinned
= ggtt
->base
.reserved
;
150 mutex_lock(&dev
->struct_mutex
);
151 list_for_each_entry(vma
, &ggtt
->base
.active_list
, vm_link
)
152 if (i915_vma_is_pinned(vma
))
153 pinned
+= vma
->node
.size
;
154 list_for_each_entry(vma
, &ggtt
->base
.inactive_list
, vm_link
)
155 if (i915_vma_is_pinned(vma
))
156 pinned
+= vma
->node
.size
;
157 mutex_unlock(&dev
->struct_mutex
);
159 args
->aper_size
= ggtt
->base
.total
;
160 args
->aper_available_size
= args
->aper_size
- pinned
;
165 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object
*obj
)
167 struct address_space
*mapping
= obj
->base
.filp
->f_mapping
;
168 drm_dma_handle_t
*phys
;
170 struct scatterlist
*sg
;
175 if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj
)))
178 /* Always aligning to the object size, allows a single allocation
179 * to handle all possible callers, and given typical object sizes,
180 * the alignment of the buddy allocation will naturally match.
182 phys
= drm_pci_alloc(obj
->base
.dev
,
183 roundup_pow_of_two(obj
->base
.size
),
184 roundup_pow_of_two(obj
->base
.size
));
189 for (i
= 0; i
< obj
->base
.size
/ PAGE_SIZE
; i
++) {
193 page
= shmem_read_mapping_page(mapping
, i
);
199 src
= kmap_atomic(page
);
200 memcpy(vaddr
, src
, PAGE_SIZE
);
201 drm_clflush_virt_range(vaddr
, PAGE_SIZE
);
208 i915_gem_chipset_flush(to_i915(obj
->base
.dev
));
210 st
= kmalloc(sizeof(*st
), GFP_KERNEL
);
216 if (sg_alloc_table(st
, 1, GFP_KERNEL
)) {
224 sg
->length
= obj
->base
.size
;
226 sg_dma_address(sg
) = phys
->busaddr
;
227 sg_dma_len(sg
) = obj
->base
.size
;
229 obj
->phys_handle
= phys
;
231 __i915_gem_object_set_pages(obj
, st
, sg
->length
);
236 drm_pci_free(obj
->base
.dev
, phys
);
241 static void __start_cpu_write(struct drm_i915_gem_object
*obj
)
243 obj
->base
.read_domains
= I915_GEM_DOMAIN_CPU
;
244 obj
->base
.write_domain
= I915_GEM_DOMAIN_CPU
;
245 if (cpu_write_needs_clflush(obj
))
246 obj
->cache_dirty
= true;
250 __i915_gem_object_release_shmem(struct drm_i915_gem_object
*obj
,
251 struct sg_table
*pages
,
254 GEM_BUG_ON(obj
->mm
.madv
== __I915_MADV_PURGED
);
256 if (obj
->mm
.madv
== I915_MADV_DONTNEED
)
257 obj
->mm
.dirty
= false;
260 (obj
->base
.read_domains
& I915_GEM_DOMAIN_CPU
) == 0 &&
261 !(obj
->cache_coherent
& I915_BO_CACHE_COHERENT_FOR_READ
))
262 drm_clflush_sg(pages
);
264 __start_cpu_write(obj
);
268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object
*obj
,
269 struct sg_table
*pages
)
271 __i915_gem_object_release_shmem(obj
, pages
, false);
274 struct address_space
*mapping
= obj
->base
.filp
->f_mapping
;
275 char *vaddr
= obj
->phys_handle
->vaddr
;
278 for (i
= 0; i
< obj
->base
.size
/ PAGE_SIZE
; i
++) {
282 page
= shmem_read_mapping_page(mapping
, i
);
286 dst
= kmap_atomic(page
);
287 drm_clflush_virt_range(vaddr
, PAGE_SIZE
);
288 memcpy(dst
, vaddr
, PAGE_SIZE
);
291 set_page_dirty(page
);
292 if (obj
->mm
.madv
== I915_MADV_WILLNEED
)
293 mark_page_accessed(page
);
297 obj
->mm
.dirty
= false;
300 sg_free_table(pages
);
303 drm_pci_free(obj
->base
.dev
, obj
->phys_handle
);
307 i915_gem_object_release_phys(struct drm_i915_gem_object
*obj
)
309 i915_gem_object_unpin_pages(obj
);
312 static const struct drm_i915_gem_object_ops i915_gem_phys_ops
= {
313 .get_pages
= i915_gem_object_get_pages_phys
,
314 .put_pages
= i915_gem_object_put_pages_phys
,
315 .release
= i915_gem_object_release_phys
,
318 static const struct drm_i915_gem_object_ops i915_gem_object_ops
;
320 int i915_gem_object_unbind(struct drm_i915_gem_object
*obj
)
322 struct i915_vma
*vma
;
323 LIST_HEAD(still_in_list
);
326 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
328 /* Closed vma are removed from the obj->vma_list - but they may
329 * still have an active binding on the object. To remove those we
330 * must wait for all rendering to complete to the object (as unbinding
331 * must anyway), and retire the requests.
333 ret
= i915_gem_object_set_to_cpu_domain(obj
, false);
337 while ((vma
= list_first_entry_or_null(&obj
->vma_list
,
340 list_move_tail(&vma
->obj_link
, &still_in_list
);
341 ret
= i915_vma_unbind(vma
);
345 list_splice(&still_in_list
, &obj
->vma_list
);
351 i915_gem_object_wait_fence(struct dma_fence
*fence
,
354 struct intel_rps_client
*rps_client
)
356 struct drm_i915_gem_request
*rq
;
358 BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE
!= 0x1);
360 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT
, &fence
->flags
))
363 if (!dma_fence_is_i915(fence
))
364 return dma_fence_wait_timeout(fence
,
365 flags
& I915_WAIT_INTERRUPTIBLE
,
368 rq
= to_request(fence
);
369 if (i915_gem_request_completed(rq
))
372 /* This client is about to stall waiting for the GPU. In many cases
373 * this is undesirable and limits the throughput of the system, as
374 * many clients cannot continue processing user input/output whilst
375 * blocked. RPS autotuning may take tens of milliseconds to respond
376 * to the GPU load and thus incurs additional latency for the client.
377 * We can circumvent that by promoting the GPU frequency to maximum
378 * before we wait. This makes the GPU throttle up much more quickly
379 * (good for benchmarks and user experience, e.g. window animations),
380 * but at a cost of spending more power processing the workload
381 * (bad for battery). Not all clients even want their results
382 * immediately and for them we should just let the GPU select its own
383 * frequency to maximise efficiency. To prevent a single client from
384 * forcing the clocks too high for the whole system, we only allow
385 * each client to waitboost once in a busy period.
388 if (INTEL_GEN(rq
->i915
) >= 6)
389 gen6_rps_boost(rq
, rps_client
);
394 timeout
= i915_wait_request(rq
, flags
, timeout
);
397 if (flags
& I915_WAIT_LOCKED
&& i915_gem_request_completed(rq
))
398 i915_gem_request_retire_upto(rq
);
404 i915_gem_object_wait_reservation(struct reservation_object
*resv
,
407 struct intel_rps_client
*rps_client
)
409 unsigned int seq
= __read_seqcount_begin(&resv
->seq
);
410 struct dma_fence
*excl
;
411 bool prune_fences
= false;
413 if (flags
& I915_WAIT_ALL
) {
414 struct dma_fence
**shared
;
415 unsigned int count
, i
;
418 ret
= reservation_object_get_fences_rcu(resv
,
419 &excl
, &count
, &shared
);
423 for (i
= 0; i
< count
; i
++) {
424 timeout
= i915_gem_object_wait_fence(shared
[i
],
430 dma_fence_put(shared
[i
]);
433 for (; i
< count
; i
++)
434 dma_fence_put(shared
[i
]);
438 * If both shared fences and an exclusive fence exist,
439 * then by construction the shared fences must be later
440 * than the exclusive fence. If we successfully wait for
441 * all the shared fences, we know that the exclusive fence
442 * must all be signaled. If all the shared fences are
443 * signaled, we can prune the array and recover the
444 * floating references on the fences/requests.
446 prune_fences
= count
&& timeout
>= 0;
448 excl
= reservation_object_get_excl_rcu(resv
);
451 if (excl
&& timeout
>= 0)
452 timeout
= i915_gem_object_wait_fence(excl
, flags
, timeout
,
458 * Opportunistically prune the fences iff we know they have *all* been
459 * signaled and that the reservation object has not been changed (i.e.
460 * no new fences have been added).
462 if (prune_fences
&& !__read_seqcount_retry(&resv
->seq
, seq
)) {
463 if (reservation_object_trylock(resv
)) {
464 if (!__read_seqcount_retry(&resv
->seq
, seq
))
465 reservation_object_add_excl_fence(resv
, NULL
);
466 reservation_object_unlock(resv
);
473 static void __fence_set_priority(struct dma_fence
*fence
, int prio
)
475 struct drm_i915_gem_request
*rq
;
476 struct intel_engine_cs
*engine
;
478 if (dma_fence_is_signaled(fence
) || !dma_fence_is_i915(fence
))
481 rq
= to_request(fence
);
483 if (!engine
->schedule
)
486 engine
->schedule(rq
, prio
);
489 static void fence_set_priority(struct dma_fence
*fence
, int prio
)
491 /* Recurse once into a fence-array */
492 if (dma_fence_is_array(fence
)) {
493 struct dma_fence_array
*array
= to_dma_fence_array(fence
);
496 for (i
= 0; i
< array
->num_fences
; i
++)
497 __fence_set_priority(array
->fences
[i
], prio
);
499 __fence_set_priority(fence
, prio
);
504 i915_gem_object_wait_priority(struct drm_i915_gem_object
*obj
,
508 struct dma_fence
*excl
;
510 if (flags
& I915_WAIT_ALL
) {
511 struct dma_fence
**shared
;
512 unsigned int count
, i
;
515 ret
= reservation_object_get_fences_rcu(obj
->resv
,
516 &excl
, &count
, &shared
);
520 for (i
= 0; i
< count
; i
++) {
521 fence_set_priority(shared
[i
], prio
);
522 dma_fence_put(shared
[i
]);
527 excl
= reservation_object_get_excl_rcu(obj
->resv
);
531 fence_set_priority(excl
, prio
);
538 * Waits for rendering to the object to be completed
539 * @obj: i915 gem object
540 * @flags: how to wait (under a lock, for all rendering or just for writes etc)
541 * @timeout: how long to wait
542 * @rps_client: client (user process) to charge for any waitboosting
545 i915_gem_object_wait(struct drm_i915_gem_object
*obj
,
548 struct intel_rps_client
*rps_client
)
551 #if IS_ENABLED(CONFIG_LOCKDEP)
552 GEM_BUG_ON(debug_locks
&&
553 !!lockdep_is_held(&obj
->base
.dev
->struct_mutex
) !=
554 !!(flags
& I915_WAIT_LOCKED
));
556 GEM_BUG_ON(timeout
< 0);
558 timeout
= i915_gem_object_wait_reservation(obj
->resv
,
561 return timeout
< 0 ? timeout
: 0;
564 static struct intel_rps_client
*to_rps_client(struct drm_file
*file
)
566 struct drm_i915_file_private
*fpriv
= file
->driver_priv
;
568 return &fpriv
->rps_client
;
572 i915_gem_phys_pwrite(struct drm_i915_gem_object
*obj
,
573 struct drm_i915_gem_pwrite
*args
,
574 struct drm_file
*file
)
576 void *vaddr
= obj
->phys_handle
->vaddr
+ args
->offset
;
577 char __user
*user_data
= u64_to_user_ptr(args
->data_ptr
);
579 /* We manually control the domain here and pretend that it
580 * remains coherent i.e. in the GTT domain, like shmem_pwrite.
582 intel_fb_obj_invalidate(obj
, ORIGIN_CPU
);
583 if (copy_from_user(vaddr
, user_data
, args
->size
))
586 drm_clflush_virt_range(vaddr
, args
->size
);
587 i915_gem_chipset_flush(to_i915(obj
->base
.dev
));
589 intel_fb_obj_flush(obj
, ORIGIN_CPU
);
593 void *i915_gem_object_alloc(struct drm_i915_private
*dev_priv
)
595 return kmem_cache_zalloc(dev_priv
->objects
, GFP_KERNEL
);
598 void i915_gem_object_free(struct drm_i915_gem_object
*obj
)
600 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
601 kmem_cache_free(dev_priv
->objects
, obj
);
605 i915_gem_create(struct drm_file
*file
,
606 struct drm_i915_private
*dev_priv
,
610 struct drm_i915_gem_object
*obj
;
614 size
= roundup(size
, PAGE_SIZE
);
618 /* Allocate the new object */
619 obj
= i915_gem_object_create(dev_priv
, size
);
623 ret
= drm_gem_handle_create(file
, &obj
->base
, &handle
);
624 /* drop reference from allocate - handle holds it now */
625 i915_gem_object_put(obj
);
634 i915_gem_dumb_create(struct drm_file
*file
,
635 struct drm_device
*dev
,
636 struct drm_mode_create_dumb
*args
)
638 /* have to work out size/pitch and return them */
639 args
->pitch
= ALIGN(args
->width
* DIV_ROUND_UP(args
->bpp
, 8), 64);
640 args
->size
= args
->pitch
* args
->height
;
641 return i915_gem_create(file
, to_i915(dev
),
642 args
->size
, &args
->handle
);
645 static bool gpu_write_needs_clflush(struct drm_i915_gem_object
*obj
)
647 return !(obj
->cache_level
== I915_CACHE_NONE
||
648 obj
->cache_level
== I915_CACHE_WT
);
652 * Creates a new mm object and returns a handle to it.
653 * @dev: drm device pointer
654 * @data: ioctl data blob
655 * @file: drm file pointer
658 i915_gem_create_ioctl(struct drm_device
*dev
, void *data
,
659 struct drm_file
*file
)
661 struct drm_i915_private
*dev_priv
= to_i915(dev
);
662 struct drm_i915_gem_create
*args
= data
;
664 i915_gem_flush_free_objects(dev_priv
);
666 return i915_gem_create(file
, dev_priv
,
667 args
->size
, &args
->handle
);
670 static inline enum fb_op_origin
671 fb_write_origin(struct drm_i915_gem_object
*obj
, unsigned int domain
)
673 return (domain
== I915_GEM_DOMAIN_GTT
?
674 obj
->frontbuffer_ggtt_origin
: ORIGIN_CPU
);
677 void i915_gem_flush_ggtt_writes(struct drm_i915_private
*dev_priv
)
680 * No actual flushing is required for the GTT write domain for reads
681 * from the GTT domain. Writes to it "immediately" go to main memory
682 * as far as we know, so there's no chipset flush. It also doesn't
683 * land in the GPU render cache.
685 * However, we do have to enforce the order so that all writes through
686 * the GTT land before any writes to the device, such as updates to
689 * We also have to wait a bit for the writes to land from the GTT.
690 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
691 * timing. This issue has only been observed when switching quickly
692 * between GTT writes and CPU reads from inside the kernel on recent hw,
693 * and it appears to only affect discrete GTT blocks (i.e. on LLC
694 * system agents we cannot reproduce this behaviour, until Cannonlake
700 intel_runtime_pm_get(dev_priv
);
701 spin_lock_irq(&dev_priv
->uncore
.lock
);
703 POSTING_READ_FW(RING_HEAD(RENDER_RING_BASE
));
705 spin_unlock_irq(&dev_priv
->uncore
.lock
);
706 intel_runtime_pm_put(dev_priv
);
710 flush_write_domain(struct drm_i915_gem_object
*obj
, unsigned int flush_domains
)
712 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
713 struct i915_vma
*vma
;
715 if (!(obj
->base
.write_domain
& flush_domains
))
718 switch (obj
->base
.write_domain
) {
719 case I915_GEM_DOMAIN_GTT
:
720 i915_gem_flush_ggtt_writes(dev_priv
);
722 intel_fb_obj_flush(obj
,
723 fb_write_origin(obj
, I915_GEM_DOMAIN_GTT
));
725 for_each_ggtt_vma(vma
, obj
) {
729 i915_vma_unset_ggtt_write(vma
);
733 case I915_GEM_DOMAIN_CPU
:
734 i915_gem_clflush_object(obj
, I915_CLFLUSH_SYNC
);
737 case I915_GEM_DOMAIN_RENDER
:
738 if (gpu_write_needs_clflush(obj
))
739 obj
->cache_dirty
= true;
743 obj
->base
.write_domain
= 0;
747 __copy_to_user_swizzled(char __user
*cpu_vaddr
,
748 const char *gpu_vaddr
, int gpu_offset
,
751 int ret
, cpu_offset
= 0;
754 int cacheline_end
= ALIGN(gpu_offset
+ 1, 64);
755 int this_length
= min(cacheline_end
- gpu_offset
, length
);
756 int swizzled_gpu_offset
= gpu_offset
^ 64;
758 ret
= __copy_to_user(cpu_vaddr
+ cpu_offset
,
759 gpu_vaddr
+ swizzled_gpu_offset
,
764 cpu_offset
+= this_length
;
765 gpu_offset
+= this_length
;
766 length
-= this_length
;
773 __copy_from_user_swizzled(char *gpu_vaddr
, int gpu_offset
,
774 const char __user
*cpu_vaddr
,
777 int ret
, cpu_offset
= 0;
780 int cacheline_end
= ALIGN(gpu_offset
+ 1, 64);
781 int this_length
= min(cacheline_end
- gpu_offset
, length
);
782 int swizzled_gpu_offset
= gpu_offset
^ 64;
784 ret
= __copy_from_user(gpu_vaddr
+ swizzled_gpu_offset
,
785 cpu_vaddr
+ cpu_offset
,
790 cpu_offset
+= this_length
;
791 gpu_offset
+= this_length
;
792 length
-= this_length
;
799 * Pins the specified object's pages and synchronizes the object with
800 * GPU accesses. Sets needs_clflush to non-zero if the caller should
801 * flush the object from the CPU cache.
803 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object
*obj
,
804 unsigned int *needs_clflush
)
808 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
811 if (!i915_gem_object_has_struct_page(obj
))
814 ret
= i915_gem_object_wait(obj
,
815 I915_WAIT_INTERRUPTIBLE
|
817 MAX_SCHEDULE_TIMEOUT
,
822 ret
= i915_gem_object_pin_pages(obj
);
826 if (obj
->cache_coherent
& I915_BO_CACHE_COHERENT_FOR_READ
||
827 !static_cpu_has(X86_FEATURE_CLFLUSH
)) {
828 ret
= i915_gem_object_set_to_cpu_domain(obj
, false);
835 flush_write_domain(obj
, ~I915_GEM_DOMAIN_CPU
);
837 /* If we're not in the cpu read domain, set ourself into the gtt
838 * read domain and manually flush cachelines (if required). This
839 * optimizes for the case when the gpu will dirty the data
840 * anyway again before the next pread happens.
842 if (!obj
->cache_dirty
&&
843 !(obj
->base
.read_domains
& I915_GEM_DOMAIN_CPU
))
844 *needs_clflush
= CLFLUSH_BEFORE
;
847 /* return with the pages pinned */
851 i915_gem_object_unpin_pages(obj
);
855 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object
*obj
,
856 unsigned int *needs_clflush
)
860 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
863 if (!i915_gem_object_has_struct_page(obj
))
866 ret
= i915_gem_object_wait(obj
,
867 I915_WAIT_INTERRUPTIBLE
|
870 MAX_SCHEDULE_TIMEOUT
,
875 ret
= i915_gem_object_pin_pages(obj
);
879 if (obj
->cache_coherent
& I915_BO_CACHE_COHERENT_FOR_WRITE
||
880 !static_cpu_has(X86_FEATURE_CLFLUSH
)) {
881 ret
= i915_gem_object_set_to_cpu_domain(obj
, true);
888 flush_write_domain(obj
, ~I915_GEM_DOMAIN_CPU
);
890 /* If we're not in the cpu write domain, set ourself into the
891 * gtt write domain and manually flush cachelines (as required).
892 * This optimizes for the case when the gpu will use the data
893 * right away and we therefore have to clflush anyway.
895 if (!obj
->cache_dirty
) {
896 *needs_clflush
|= CLFLUSH_AFTER
;
899 * Same trick applies to invalidate partially written
900 * cachelines read before writing.
902 if (!(obj
->base
.read_domains
& I915_GEM_DOMAIN_CPU
))
903 *needs_clflush
|= CLFLUSH_BEFORE
;
907 intel_fb_obj_invalidate(obj
, ORIGIN_CPU
);
908 obj
->mm
.dirty
= true;
909 /* return with the pages pinned */
913 i915_gem_object_unpin_pages(obj
);
918 shmem_clflush_swizzled_range(char *addr
, unsigned long length
,
921 if (unlikely(swizzled
)) {
922 unsigned long start
= (unsigned long) addr
;
923 unsigned long end
= (unsigned long) addr
+ length
;
925 /* For swizzling simply ensure that we always flush both
926 * channels. Lame, but simple and it works. Swizzled
927 * pwrite/pread is far from a hotpath - current userspace
928 * doesn't use it at all. */
929 start
= round_down(start
, 128);
930 end
= round_up(end
, 128);
932 drm_clflush_virt_range((void *)start
, end
- start
);
934 drm_clflush_virt_range(addr
, length
);
939 /* Only difference to the fast-path function is that this can handle bit17
940 * and uses non-atomic copy and kmap functions. */
942 shmem_pread_slow(struct page
*page
, int offset
, int length
,
943 char __user
*user_data
,
944 bool page_do_bit17_swizzling
, bool needs_clflush
)
951 shmem_clflush_swizzled_range(vaddr
+ offset
, length
,
952 page_do_bit17_swizzling
);
954 if (page_do_bit17_swizzling
)
955 ret
= __copy_to_user_swizzled(user_data
, vaddr
, offset
, length
);
957 ret
= __copy_to_user(user_data
, vaddr
+ offset
, length
);
960 return ret
? - EFAULT
: 0;
964 shmem_pread(struct page
*page
, int offset
, int length
, char __user
*user_data
,
965 bool page_do_bit17_swizzling
, bool needs_clflush
)
970 if (!page_do_bit17_swizzling
) {
971 char *vaddr
= kmap_atomic(page
);
974 drm_clflush_virt_range(vaddr
+ offset
, length
);
975 ret
= __copy_to_user_inatomic(user_data
, vaddr
+ offset
, length
);
976 kunmap_atomic(vaddr
);
981 return shmem_pread_slow(page
, offset
, length
, user_data
,
982 page_do_bit17_swizzling
, needs_clflush
);
986 i915_gem_shmem_pread(struct drm_i915_gem_object
*obj
,
987 struct drm_i915_gem_pread
*args
)
989 char __user
*user_data
;
991 unsigned int obj_do_bit17_swizzling
;
992 unsigned int needs_clflush
;
993 unsigned int idx
, offset
;
996 obj_do_bit17_swizzling
= 0;
997 if (i915_gem_object_needs_bit17_swizzle(obj
))
998 obj_do_bit17_swizzling
= BIT(17);
1000 ret
= mutex_lock_interruptible(&obj
->base
.dev
->struct_mutex
);
1004 ret
= i915_gem_obj_prepare_shmem_read(obj
, &needs_clflush
);
1005 mutex_unlock(&obj
->base
.dev
->struct_mutex
);
1009 remain
= args
->size
;
1010 user_data
= u64_to_user_ptr(args
->data_ptr
);
1011 offset
= offset_in_page(args
->offset
);
1012 for (idx
= args
->offset
>> PAGE_SHIFT
; remain
; idx
++) {
1013 struct page
*page
= i915_gem_object_get_page(obj
, idx
);
1017 if (offset
+ length
> PAGE_SIZE
)
1018 length
= PAGE_SIZE
- offset
;
1020 ret
= shmem_pread(page
, offset
, length
, user_data
,
1021 page_to_phys(page
) & obj_do_bit17_swizzling
,
1027 user_data
+= length
;
1031 i915_gem_obj_finish_shmem_access(obj
);
1036 gtt_user_read(struct io_mapping
*mapping
,
1037 loff_t base
, int offset
,
1038 char __user
*user_data
, int length
)
1040 void __iomem
*vaddr
;
1041 unsigned long unwritten
;
1043 /* We can use the cpu mem copy function because this is X86. */
1044 vaddr
= io_mapping_map_atomic_wc(mapping
, base
);
1045 unwritten
= __copy_to_user_inatomic(user_data
,
1046 (void __force
*)vaddr
+ offset
,
1048 io_mapping_unmap_atomic(vaddr
);
1050 vaddr
= io_mapping_map_wc(mapping
, base
, PAGE_SIZE
);
1051 unwritten
= copy_to_user(user_data
,
1052 (void __force
*)vaddr
+ offset
,
1054 io_mapping_unmap(vaddr
);
1060 i915_gem_gtt_pread(struct drm_i915_gem_object
*obj
,
1061 const struct drm_i915_gem_pread
*args
)
1063 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
1064 struct i915_ggtt
*ggtt
= &i915
->ggtt
;
1065 struct drm_mm_node node
;
1066 struct i915_vma
*vma
;
1067 void __user
*user_data
;
1071 ret
= mutex_lock_interruptible(&i915
->drm
.struct_mutex
);
1075 intel_runtime_pm_get(i915
);
1076 vma
= i915_gem_object_ggtt_pin(obj
, NULL
, 0, 0,
1081 node
.start
= i915_ggtt_offset(vma
);
1082 node
.allocated
= false;
1083 ret
= i915_vma_put_fence(vma
);
1085 i915_vma_unpin(vma
);
1090 ret
= insert_mappable_node(ggtt
, &node
, PAGE_SIZE
);
1093 GEM_BUG_ON(!node
.allocated
);
1096 ret
= i915_gem_object_set_to_gtt_domain(obj
, false);
1100 mutex_unlock(&i915
->drm
.struct_mutex
);
1102 user_data
= u64_to_user_ptr(args
->data_ptr
);
1103 remain
= args
->size
;
1104 offset
= args
->offset
;
1106 while (remain
> 0) {
1107 /* Operation in this page
1109 * page_base = page offset within aperture
1110 * page_offset = offset within page
1111 * page_length = bytes to copy for this page
1113 u32 page_base
= node
.start
;
1114 unsigned page_offset
= offset_in_page(offset
);
1115 unsigned page_length
= PAGE_SIZE
- page_offset
;
1116 page_length
= remain
< page_length
? remain
: page_length
;
1117 if (node
.allocated
) {
1119 ggtt
->base
.insert_page(&ggtt
->base
,
1120 i915_gem_object_get_dma_address(obj
, offset
>> PAGE_SHIFT
),
1121 node
.start
, I915_CACHE_NONE
, 0);
1124 page_base
+= offset
& PAGE_MASK
;
1127 if (gtt_user_read(&ggtt
->iomap
, page_base
, page_offset
,
1128 user_data
, page_length
)) {
1133 remain
-= page_length
;
1134 user_data
+= page_length
;
1135 offset
+= page_length
;
1138 mutex_lock(&i915
->drm
.struct_mutex
);
1140 if (node
.allocated
) {
1142 ggtt
->base
.clear_range(&ggtt
->base
,
1143 node
.start
, node
.size
);
1144 remove_mappable_node(&node
);
1146 i915_vma_unpin(vma
);
1149 intel_runtime_pm_put(i915
);
1150 mutex_unlock(&i915
->drm
.struct_mutex
);
1156 * Reads data from the object referenced by handle.
1157 * @dev: drm device pointer
1158 * @data: ioctl data blob
1159 * @file: drm file pointer
1161 * On error, the contents of *data are undefined.
1164 i915_gem_pread_ioctl(struct drm_device
*dev
, void *data
,
1165 struct drm_file
*file
)
1167 struct drm_i915_gem_pread
*args
= data
;
1168 struct drm_i915_gem_object
*obj
;
1171 if (args
->size
== 0)
1174 if (!access_ok(VERIFY_WRITE
,
1175 u64_to_user_ptr(args
->data_ptr
),
1179 obj
= i915_gem_object_lookup(file
, args
->handle
);
1183 /* Bounds check source. */
1184 if (range_overflows_t(u64
, args
->offset
, args
->size
, obj
->base
.size
)) {
1189 trace_i915_gem_object_pread(obj
, args
->offset
, args
->size
);
1191 ret
= i915_gem_object_wait(obj
,
1192 I915_WAIT_INTERRUPTIBLE
,
1193 MAX_SCHEDULE_TIMEOUT
,
1194 to_rps_client(file
));
1198 ret
= i915_gem_object_pin_pages(obj
);
1202 ret
= i915_gem_shmem_pread(obj
, args
);
1203 if (ret
== -EFAULT
|| ret
== -ENODEV
)
1204 ret
= i915_gem_gtt_pread(obj
, args
);
1206 i915_gem_object_unpin_pages(obj
);
1208 i915_gem_object_put(obj
);
1212 /* This is the fast write path which cannot handle
1213 * page faults in the source data
1217 ggtt_write(struct io_mapping
*mapping
,
1218 loff_t base
, int offset
,
1219 char __user
*user_data
, int length
)
1221 void __iomem
*vaddr
;
1222 unsigned long unwritten
;
1224 /* We can use the cpu mem copy function because this is X86. */
1225 vaddr
= io_mapping_map_atomic_wc(mapping
, base
);
1226 unwritten
= __copy_from_user_inatomic_nocache((void __force
*)vaddr
+ offset
,
1228 io_mapping_unmap_atomic(vaddr
);
1230 vaddr
= io_mapping_map_wc(mapping
, base
, PAGE_SIZE
);
1231 unwritten
= copy_from_user((void __force
*)vaddr
+ offset
,
1233 io_mapping_unmap(vaddr
);
1240 * This is the fast pwrite path, where we copy the data directly from the
1241 * user into the GTT, uncached.
1242 * @obj: i915 GEM object
1243 * @args: pwrite arguments structure
1246 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object
*obj
,
1247 const struct drm_i915_gem_pwrite
*args
)
1249 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
1250 struct i915_ggtt
*ggtt
= &i915
->ggtt
;
1251 struct drm_mm_node node
;
1252 struct i915_vma
*vma
;
1254 void __user
*user_data
;
1257 ret
= mutex_lock_interruptible(&i915
->drm
.struct_mutex
);
1261 if (i915_gem_object_has_struct_page(obj
)) {
1263 * Avoid waking the device up if we can fallback, as
1264 * waking/resuming is very slow (worst-case 10-100 ms
1265 * depending on PCI sleeps and our own resume time).
1266 * This easily dwarfs any performance advantage from
1267 * using the cache bypass of indirect GGTT access.
1269 if (!intel_runtime_pm_get_if_in_use(i915
)) {
1274 /* No backing pages, no fallback, we must force GGTT access */
1275 intel_runtime_pm_get(i915
);
1278 vma
= i915_gem_object_ggtt_pin(obj
, NULL
, 0, 0,
1283 node
.start
= i915_ggtt_offset(vma
);
1284 node
.allocated
= false;
1285 ret
= i915_vma_put_fence(vma
);
1287 i915_vma_unpin(vma
);
1292 ret
= insert_mappable_node(ggtt
, &node
, PAGE_SIZE
);
1295 GEM_BUG_ON(!node
.allocated
);
1298 ret
= i915_gem_object_set_to_gtt_domain(obj
, true);
1302 mutex_unlock(&i915
->drm
.struct_mutex
);
1304 intel_fb_obj_invalidate(obj
, ORIGIN_CPU
);
1306 user_data
= u64_to_user_ptr(args
->data_ptr
);
1307 offset
= args
->offset
;
1308 remain
= args
->size
;
1310 /* Operation in this page
1312 * page_base = page offset within aperture
1313 * page_offset = offset within page
1314 * page_length = bytes to copy for this page
1316 u32 page_base
= node
.start
;
1317 unsigned int page_offset
= offset_in_page(offset
);
1318 unsigned int page_length
= PAGE_SIZE
- page_offset
;
1319 page_length
= remain
< page_length
? remain
: page_length
;
1320 if (node
.allocated
) {
1321 wmb(); /* flush the write before we modify the GGTT */
1322 ggtt
->base
.insert_page(&ggtt
->base
,
1323 i915_gem_object_get_dma_address(obj
, offset
>> PAGE_SHIFT
),
1324 node
.start
, I915_CACHE_NONE
, 0);
1325 wmb(); /* flush modifications to the GGTT (insert_page) */
1327 page_base
+= offset
& PAGE_MASK
;
1329 /* If we get a fault while copying data, then (presumably) our
1330 * source page isn't available. Return the error and we'll
1331 * retry in the slow path.
1332 * If the object is non-shmem backed, we retry again with the
1333 * path that handles page fault.
1335 if (ggtt_write(&ggtt
->iomap
, page_base
, page_offset
,
1336 user_data
, page_length
)) {
1341 remain
-= page_length
;
1342 user_data
+= page_length
;
1343 offset
+= page_length
;
1345 intel_fb_obj_flush(obj
, ORIGIN_CPU
);
1347 mutex_lock(&i915
->drm
.struct_mutex
);
1349 if (node
.allocated
) {
1351 ggtt
->base
.clear_range(&ggtt
->base
,
1352 node
.start
, node
.size
);
1353 remove_mappable_node(&node
);
1355 i915_vma_unpin(vma
);
1358 intel_runtime_pm_put(i915
);
1360 mutex_unlock(&i915
->drm
.struct_mutex
);
1365 shmem_pwrite_slow(struct page
*page
, int offset
, int length
,
1366 char __user
*user_data
,
1367 bool page_do_bit17_swizzling
,
1368 bool needs_clflush_before
,
1369 bool needs_clflush_after
)
1375 if (unlikely(needs_clflush_before
|| page_do_bit17_swizzling
))
1376 shmem_clflush_swizzled_range(vaddr
+ offset
, length
,
1377 page_do_bit17_swizzling
);
1378 if (page_do_bit17_swizzling
)
1379 ret
= __copy_from_user_swizzled(vaddr
, offset
, user_data
,
1382 ret
= __copy_from_user(vaddr
+ offset
, user_data
, length
);
1383 if (needs_clflush_after
)
1384 shmem_clflush_swizzled_range(vaddr
+ offset
, length
,
1385 page_do_bit17_swizzling
);
1388 return ret
? -EFAULT
: 0;
1391 /* Per-page copy function for the shmem pwrite fastpath.
1392 * Flushes invalid cachelines before writing to the target if
1393 * needs_clflush_before is set and flushes out any written cachelines after
1394 * writing if needs_clflush is set.
1397 shmem_pwrite(struct page
*page
, int offset
, int len
, char __user
*user_data
,
1398 bool page_do_bit17_swizzling
,
1399 bool needs_clflush_before
,
1400 bool needs_clflush_after
)
1405 if (!page_do_bit17_swizzling
) {
1406 char *vaddr
= kmap_atomic(page
);
1408 if (needs_clflush_before
)
1409 drm_clflush_virt_range(vaddr
+ offset
, len
);
1410 ret
= __copy_from_user_inatomic(vaddr
+ offset
, user_data
, len
);
1411 if (needs_clflush_after
)
1412 drm_clflush_virt_range(vaddr
+ offset
, len
);
1414 kunmap_atomic(vaddr
);
1419 return shmem_pwrite_slow(page
, offset
, len
, user_data
,
1420 page_do_bit17_swizzling
,
1421 needs_clflush_before
,
1422 needs_clflush_after
);
1426 i915_gem_shmem_pwrite(struct drm_i915_gem_object
*obj
,
1427 const struct drm_i915_gem_pwrite
*args
)
1429 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
1430 void __user
*user_data
;
1432 unsigned int obj_do_bit17_swizzling
;
1433 unsigned int partial_cacheline_write
;
1434 unsigned int needs_clflush
;
1435 unsigned int offset
, idx
;
1438 ret
= mutex_lock_interruptible(&i915
->drm
.struct_mutex
);
1442 ret
= i915_gem_obj_prepare_shmem_write(obj
, &needs_clflush
);
1443 mutex_unlock(&i915
->drm
.struct_mutex
);
1447 obj_do_bit17_swizzling
= 0;
1448 if (i915_gem_object_needs_bit17_swizzle(obj
))
1449 obj_do_bit17_swizzling
= BIT(17);
1451 /* If we don't overwrite a cacheline completely we need to be
1452 * careful to have up-to-date data by first clflushing. Don't
1453 * overcomplicate things and flush the entire patch.
1455 partial_cacheline_write
= 0;
1456 if (needs_clflush
& CLFLUSH_BEFORE
)
1457 partial_cacheline_write
= boot_cpu_data
.x86_clflush_size
- 1;
1459 user_data
= u64_to_user_ptr(args
->data_ptr
);
1460 remain
= args
->size
;
1461 offset
= offset_in_page(args
->offset
);
1462 for (idx
= args
->offset
>> PAGE_SHIFT
; remain
; idx
++) {
1463 struct page
*page
= i915_gem_object_get_page(obj
, idx
);
1467 if (offset
+ length
> PAGE_SIZE
)
1468 length
= PAGE_SIZE
- offset
;
1470 ret
= shmem_pwrite(page
, offset
, length
, user_data
,
1471 page_to_phys(page
) & obj_do_bit17_swizzling
,
1472 (offset
| length
) & partial_cacheline_write
,
1473 needs_clflush
& CLFLUSH_AFTER
);
1478 user_data
+= length
;
1482 intel_fb_obj_flush(obj
, ORIGIN_CPU
);
1483 i915_gem_obj_finish_shmem_access(obj
);
1488 * Writes data to the object referenced by handle.
1490 * @data: ioctl data blob
1493 * On error, the contents of the buffer that were to be modified are undefined.
1496 i915_gem_pwrite_ioctl(struct drm_device
*dev
, void *data
,
1497 struct drm_file
*file
)
1499 struct drm_i915_gem_pwrite
*args
= data
;
1500 struct drm_i915_gem_object
*obj
;
1503 if (args
->size
== 0)
1506 if (!access_ok(VERIFY_READ
,
1507 u64_to_user_ptr(args
->data_ptr
),
1511 obj
= i915_gem_object_lookup(file
, args
->handle
);
1515 /* Bounds check destination. */
1516 if (range_overflows_t(u64
, args
->offset
, args
->size
, obj
->base
.size
)) {
1521 trace_i915_gem_object_pwrite(obj
, args
->offset
, args
->size
);
1524 if (obj
->ops
->pwrite
)
1525 ret
= obj
->ops
->pwrite(obj
, args
);
1529 ret
= i915_gem_object_wait(obj
,
1530 I915_WAIT_INTERRUPTIBLE
|
1532 MAX_SCHEDULE_TIMEOUT
,
1533 to_rps_client(file
));
1537 ret
= i915_gem_object_pin_pages(obj
);
1542 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1543 * it would end up going through the fenced access, and we'll get
1544 * different detiling behavior between reading and writing.
1545 * pread/pwrite currently are reading and writing from the CPU
1546 * perspective, requiring manual detiling by the client.
1548 if (!i915_gem_object_has_struct_page(obj
) ||
1549 cpu_write_needs_clflush(obj
))
1550 /* Note that the gtt paths might fail with non-page-backed user
1551 * pointers (e.g. gtt mappings when moving data between
1552 * textures). Fallback to the shmem path in that case.
1554 ret
= i915_gem_gtt_pwrite_fast(obj
, args
);
1556 if (ret
== -EFAULT
|| ret
== -ENOSPC
) {
1557 if (obj
->phys_handle
)
1558 ret
= i915_gem_phys_pwrite(obj
, args
, file
);
1560 ret
= i915_gem_shmem_pwrite(obj
, args
);
1563 i915_gem_object_unpin_pages(obj
);
1565 i915_gem_object_put(obj
);
1569 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object
*obj
)
1571 struct drm_i915_private
*i915
;
1572 struct list_head
*list
;
1573 struct i915_vma
*vma
;
1575 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj
));
1577 for_each_ggtt_vma(vma
, obj
) {
1578 if (i915_vma_is_active(vma
))
1581 if (!drm_mm_node_allocated(&vma
->node
))
1584 list_move_tail(&vma
->vm_link
, &vma
->vm
->inactive_list
);
1587 i915
= to_i915(obj
->base
.dev
);
1588 spin_lock(&i915
->mm
.obj_lock
);
1589 list
= obj
->bind_count
? &i915
->mm
.bound_list
: &i915
->mm
.unbound_list
;
1590 list_move_tail(&obj
->mm
.link
, list
);
1591 spin_unlock(&i915
->mm
.obj_lock
);
1595 * Called when user space prepares to use an object with the CPU, either
1596 * through the mmap ioctl's mapping or a GTT mapping.
1598 * @data: ioctl data blob
1602 i915_gem_set_domain_ioctl(struct drm_device
*dev
, void *data
,
1603 struct drm_file
*file
)
1605 struct drm_i915_gem_set_domain
*args
= data
;
1606 struct drm_i915_gem_object
*obj
;
1607 uint32_t read_domains
= args
->read_domains
;
1608 uint32_t write_domain
= args
->write_domain
;
1611 /* Only handle setting domains to types used by the CPU. */
1612 if ((write_domain
| read_domains
) & I915_GEM_GPU_DOMAINS
)
1615 /* Having something in the write domain implies it's in the read
1616 * domain, and only that read domain. Enforce that in the request.
1618 if (write_domain
!= 0 && read_domains
!= write_domain
)
1621 obj
= i915_gem_object_lookup(file
, args
->handle
);
1625 /* Try to flush the object off the GPU without holding the lock.
1626 * We will repeat the flush holding the lock in the normal manner
1627 * to catch cases where we are gazumped.
1629 err
= i915_gem_object_wait(obj
,
1630 I915_WAIT_INTERRUPTIBLE
|
1631 (write_domain
? I915_WAIT_ALL
: 0),
1632 MAX_SCHEDULE_TIMEOUT
,
1633 to_rps_client(file
));
1638 * Proxy objects do not control access to the backing storage, ergo
1639 * they cannot be used as a means to manipulate the cache domain
1640 * tracking for that backing storage. The proxy object is always
1641 * considered to be outside of any cache domain.
1643 if (i915_gem_object_is_proxy(obj
)) {
1649 * Flush and acquire obj->pages so that we are coherent through
1650 * direct access in memory with previous cached writes through
1651 * shmemfs and that our cache domain tracking remains valid.
1652 * For example, if the obj->filp was moved to swap without us
1653 * being notified and releasing the pages, we would mistakenly
1654 * continue to assume that the obj remained out of the CPU cached
1657 err
= i915_gem_object_pin_pages(obj
);
1661 err
= i915_mutex_lock_interruptible(dev
);
1665 if (read_domains
& I915_GEM_DOMAIN_WC
)
1666 err
= i915_gem_object_set_to_wc_domain(obj
, write_domain
);
1667 else if (read_domains
& I915_GEM_DOMAIN_GTT
)
1668 err
= i915_gem_object_set_to_gtt_domain(obj
, write_domain
);
1670 err
= i915_gem_object_set_to_cpu_domain(obj
, write_domain
);
1672 /* And bump the LRU for this access */
1673 i915_gem_object_bump_inactive_ggtt(obj
);
1675 mutex_unlock(&dev
->struct_mutex
);
1677 if (write_domain
!= 0)
1678 intel_fb_obj_invalidate(obj
,
1679 fb_write_origin(obj
, write_domain
));
1682 i915_gem_object_unpin_pages(obj
);
1684 i915_gem_object_put(obj
);
1689 * Called when user space has done writes to this buffer
1691 * @data: ioctl data blob
1695 i915_gem_sw_finish_ioctl(struct drm_device
*dev
, void *data
,
1696 struct drm_file
*file
)
1698 struct drm_i915_gem_sw_finish
*args
= data
;
1699 struct drm_i915_gem_object
*obj
;
1701 obj
= i915_gem_object_lookup(file
, args
->handle
);
1706 * Proxy objects are barred from CPU access, so there is no
1707 * need to ban sw_finish as it is a nop.
1710 /* Pinned buffers may be scanout, so flush the cache */
1711 i915_gem_object_flush_if_display(obj
);
1712 i915_gem_object_put(obj
);
1718 * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1721 * @data: ioctl data blob
1724 * While the mapping holds a reference on the contents of the object, it doesn't
1725 * imply a ref on the object itself.
1729 * DRM driver writers who look a this function as an example for how to do GEM
1730 * mmap support, please don't implement mmap support like here. The modern way
1731 * to implement DRM mmap support is with an mmap offset ioctl (like
1732 * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1733 * That way debug tooling like valgrind will understand what's going on, hiding
1734 * the mmap call in a driver private ioctl will break that. The i915 driver only
1735 * does cpu mmaps this way because we didn't know better.
1738 i915_gem_mmap_ioctl(struct drm_device
*dev
, void *data
,
1739 struct drm_file
*file
)
1741 struct drm_i915_gem_mmap
*args
= data
;
1742 struct drm_i915_gem_object
*obj
;
1745 if (args
->flags
& ~(I915_MMAP_WC
))
1748 if (args
->flags
& I915_MMAP_WC
&& !boot_cpu_has(X86_FEATURE_PAT
))
1751 obj
= i915_gem_object_lookup(file
, args
->handle
);
1755 /* prime objects have no backing filp to GEM mmap
1758 if (!obj
->base
.filp
) {
1759 i915_gem_object_put(obj
);
1763 addr
= vm_mmap(obj
->base
.filp
, 0, args
->size
,
1764 PROT_READ
| PROT_WRITE
, MAP_SHARED
,
1766 if (args
->flags
& I915_MMAP_WC
) {
1767 struct mm_struct
*mm
= current
->mm
;
1768 struct vm_area_struct
*vma
;
1770 if (down_write_killable(&mm
->mmap_sem
)) {
1771 i915_gem_object_put(obj
);
1774 vma
= find_vma(mm
, addr
);
1777 pgprot_writecombine(vm_get_page_prot(vma
->vm_flags
));
1780 up_write(&mm
->mmap_sem
);
1782 /* This may race, but that's ok, it only gets set */
1783 WRITE_ONCE(obj
->frontbuffer_ggtt_origin
, ORIGIN_CPU
);
1785 i915_gem_object_put(obj
);
1786 if (IS_ERR((void *)addr
))
1789 args
->addr_ptr
= (uint64_t) addr
;
1794 static unsigned int tile_row_pages(struct drm_i915_gem_object
*obj
)
1796 return i915_gem_object_get_tile_row_size(obj
) >> PAGE_SHIFT
;
1800 * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1802 * A history of the GTT mmap interface:
1804 * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1805 * aligned and suitable for fencing, and still fit into the available
1806 * mappable space left by the pinned display objects. A classic problem
1807 * we called the page-fault-of-doom where we would ping-pong between
1808 * two objects that could not fit inside the GTT and so the memcpy
1809 * would page one object in at the expense of the other between every
1812 * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1813 * as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1814 * object is too large for the available space (or simply too large
1815 * for the mappable aperture!), a view is created instead and faulted
1816 * into userspace. (This view is aligned and sized appropriately for
1819 * 2 - Recognise WC as a separate cache domain so that we can flush the
1820 * delayed writes via GTT before performing direct access via WC.
1824 * * snoopable objects cannot be accessed via the GTT. It can cause machine
1825 * hangs on some architectures, corruption on others. An attempt to service
1826 * a GTT page fault from a snoopable object will generate a SIGBUS.
1828 * * the object must be able to fit into RAM (physical memory, though no
1829 * limited to the mappable aperture).
1834 * * a new GTT page fault will synchronize rendering from the GPU and flush
1835 * all data to system memory. Subsequent access will not be synchronized.
1837 * * all mappings are revoked on runtime device suspend.
1839 * * there are only 8, 16 or 32 fence registers to share between all users
1840 * (older machines require fence register for display and blitter access
1841 * as well). Contention of the fence registers will cause the previous users
1842 * to be unmapped and any new access will generate new page faults.
1844 * * running out of memory while servicing a fault may generate a SIGBUS,
1845 * rather than the expected SIGSEGV.
1847 int i915_gem_mmap_gtt_version(void)
1852 static inline struct i915_ggtt_view
1853 compute_partial_view(struct drm_i915_gem_object
*obj
,
1854 pgoff_t page_offset
,
1857 struct i915_ggtt_view view
;
1859 if (i915_gem_object_is_tiled(obj
))
1860 chunk
= roundup(chunk
, tile_row_pages(obj
));
1862 view
.type
= I915_GGTT_VIEW_PARTIAL
;
1863 view
.partial
.offset
= rounddown(page_offset
, chunk
);
1865 min_t(unsigned int, chunk
,
1866 (obj
->base
.size
>> PAGE_SHIFT
) - view
.partial
.offset
);
1868 /* If the partial covers the entire object, just create a normal VMA. */
1869 if (chunk
>= obj
->base
.size
>> PAGE_SHIFT
)
1870 view
.type
= I915_GGTT_VIEW_NORMAL
;
1876 * i915_gem_fault - fault a page into the GTT
1879 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1880 * from userspace. The fault handler takes care of binding the object to
1881 * the GTT (if needed), allocating and programming a fence register (again,
1882 * only if needed based on whether the old reg is still valid or the object
1883 * is tiled) and inserting a new PTE into the faulting process.
1885 * Note that the faulting process may involve evicting existing objects
1886 * from the GTT and/or fence registers to make room. So performance may
1887 * suffer if the GTT working set is large or there are few fence registers
1890 * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1891 * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1893 int i915_gem_fault(struct vm_fault
*vmf
)
1895 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1896 struct vm_area_struct
*area
= vmf
->vma
;
1897 struct drm_i915_gem_object
*obj
= to_intel_bo(area
->vm_private_data
);
1898 struct drm_device
*dev
= obj
->base
.dev
;
1899 struct drm_i915_private
*dev_priv
= to_i915(dev
);
1900 struct i915_ggtt
*ggtt
= &dev_priv
->ggtt
;
1901 bool write
= !!(vmf
->flags
& FAULT_FLAG_WRITE
);
1902 struct i915_vma
*vma
;
1903 pgoff_t page_offset
;
1907 /* We don't use vmf->pgoff since that has the fake offset */
1908 page_offset
= (vmf
->address
- area
->vm_start
) >> PAGE_SHIFT
;
1910 trace_i915_gem_object_fault(obj
, page_offset
, true, write
);
1912 /* Try to flush the object off the GPU first without holding the lock.
1913 * Upon acquiring the lock, we will perform our sanity checks and then
1914 * repeat the flush holding the lock in the normal manner to catch cases
1915 * where we are gazumped.
1917 ret
= i915_gem_object_wait(obj
,
1918 I915_WAIT_INTERRUPTIBLE
,
1919 MAX_SCHEDULE_TIMEOUT
,
1924 ret
= i915_gem_object_pin_pages(obj
);
1928 intel_runtime_pm_get(dev_priv
);
1930 ret
= i915_mutex_lock_interruptible(dev
);
1934 /* Access to snoopable pages through the GTT is incoherent. */
1935 if (obj
->cache_level
!= I915_CACHE_NONE
&& !HAS_LLC(dev_priv
)) {
1940 /* If the object is smaller than a couple of partial vma, it is
1941 * not worth only creating a single partial vma - we may as well
1942 * clear enough space for the full object.
1944 flags
= PIN_MAPPABLE
;
1945 if (obj
->base
.size
> 2 * MIN_CHUNK_PAGES
<< PAGE_SHIFT
)
1946 flags
|= PIN_NONBLOCK
| PIN_NONFAULT
;
1948 /* Now pin it into the GTT as needed */
1949 vma
= i915_gem_object_ggtt_pin(obj
, NULL
, 0, 0, flags
);
1951 /* Use a partial view if it is bigger than available space */
1952 struct i915_ggtt_view view
=
1953 compute_partial_view(obj
, page_offset
, MIN_CHUNK_PAGES
);
1955 /* Userspace is now writing through an untracked VMA, abandon
1956 * all hope that the hardware is able to track future writes.
1958 obj
->frontbuffer_ggtt_origin
= ORIGIN_CPU
;
1960 vma
= i915_gem_object_ggtt_pin(obj
, &view
, 0, 0, PIN_MAPPABLE
);
1967 ret
= i915_gem_object_set_to_gtt_domain(obj
, write
);
1971 ret
= i915_vma_pin_fence(vma
);
1975 /* Finally, remap it using the new GTT offset */
1976 ret
= remap_io_mapping(area
,
1977 area
->vm_start
+ (vma
->ggtt_view
.partial
.offset
<< PAGE_SHIFT
),
1978 (ggtt
->gmadr
.start
+ vma
->node
.start
) >> PAGE_SHIFT
,
1979 min_t(u64
, vma
->size
, area
->vm_end
- area
->vm_start
),
1984 /* Mark as being mmapped into userspace for later revocation */
1985 assert_rpm_wakelock_held(dev_priv
);
1986 if (!i915_vma_set_userfault(vma
) && !obj
->userfault_count
++)
1987 list_add(&obj
->userfault_link
, &dev_priv
->mm
.userfault_list
);
1988 GEM_BUG_ON(!obj
->userfault_count
);
1990 i915_vma_set_ggtt_write(vma
);
1993 i915_vma_unpin_fence(vma
);
1995 __i915_vma_unpin(vma
);
1997 mutex_unlock(&dev
->struct_mutex
);
1999 intel_runtime_pm_put(dev_priv
);
2000 i915_gem_object_unpin_pages(obj
);
2005 * We eat errors when the gpu is terminally wedged to avoid
2006 * userspace unduly crashing (gl has no provisions for mmaps to
2007 * fail). But any other -EIO isn't ours (e.g. swap in failure)
2008 * and so needs to be reported.
2010 if (!i915_terminally_wedged(&dev_priv
->gpu_error
)) {
2011 ret
= VM_FAULT_SIGBUS
;
2016 * EAGAIN means the gpu is hung and we'll wait for the error
2017 * handler to reset everything when re-faulting in
2018 * i915_mutex_lock_interruptible.
2025 * EBUSY is ok: this just means that another thread
2026 * already did the job.
2028 ret
= VM_FAULT_NOPAGE
;
2035 ret
= VM_FAULT_SIGBUS
;
2038 WARN_ONCE(ret
, "unhandled error in i915_gem_fault: %i\n", ret
);
2039 ret
= VM_FAULT_SIGBUS
;
2045 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object
*obj
)
2047 struct i915_vma
*vma
;
2049 GEM_BUG_ON(!obj
->userfault_count
);
2051 obj
->userfault_count
= 0;
2052 list_del(&obj
->userfault_link
);
2053 drm_vma_node_unmap(&obj
->base
.vma_node
,
2054 obj
->base
.dev
->anon_inode
->i_mapping
);
2056 for_each_ggtt_vma(vma
, obj
)
2057 i915_vma_unset_userfault(vma
);
2061 * i915_gem_release_mmap - remove physical page mappings
2062 * @obj: obj in question
2064 * Preserve the reservation of the mmapping with the DRM core code, but
2065 * relinquish ownership of the pages back to the system.
2067 * It is vital that we remove the page mapping if we have mapped a tiled
2068 * object through the GTT and then lose the fence register due to
2069 * resource pressure. Similarly if the object has been moved out of the
2070 * aperture, than pages mapped into userspace must be revoked. Removing the
2071 * mapping will then trigger a page fault on the next user access, allowing
2072 * fixup by i915_gem_fault().
2075 i915_gem_release_mmap(struct drm_i915_gem_object
*obj
)
2077 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
2079 /* Serialisation between user GTT access and our code depends upon
2080 * revoking the CPU's PTE whilst the mutex is held. The next user
2081 * pagefault then has to wait until we release the mutex.
2083 * Note that RPM complicates somewhat by adding an additional
2084 * requirement that operations to the GGTT be made holding the RPM
2087 lockdep_assert_held(&i915
->drm
.struct_mutex
);
2088 intel_runtime_pm_get(i915
);
2090 if (!obj
->userfault_count
)
2093 __i915_gem_object_release_mmap(obj
);
2095 /* Ensure that the CPU's PTE are revoked and there are not outstanding
2096 * memory transactions from userspace before we return. The TLB
2097 * flushing implied above by changing the PTE above *should* be
2098 * sufficient, an extra barrier here just provides us with a bit
2099 * of paranoid documentation about our requirement to serialise
2100 * memory writes before touching registers / GSM.
2105 intel_runtime_pm_put(i915
);
2108 void i915_gem_runtime_suspend(struct drm_i915_private
*dev_priv
)
2110 struct drm_i915_gem_object
*obj
, *on
;
2114 * Only called during RPM suspend. All users of the userfault_list
2115 * must be holding an RPM wakeref to ensure that this can not
2116 * run concurrently with themselves (and use the struct_mutex for
2117 * protection between themselves).
2120 list_for_each_entry_safe(obj
, on
,
2121 &dev_priv
->mm
.userfault_list
, userfault_link
)
2122 __i915_gem_object_release_mmap(obj
);
2124 /* The fence will be lost when the device powers down. If any were
2125 * in use by hardware (i.e. they are pinned), we should not be powering
2126 * down! All other fences will be reacquired by the user upon waking.
2128 for (i
= 0; i
< dev_priv
->num_fence_regs
; i
++) {
2129 struct drm_i915_fence_reg
*reg
= &dev_priv
->fence_regs
[i
];
2131 /* Ideally we want to assert that the fence register is not
2132 * live at this point (i.e. that no piece of code will be
2133 * trying to write through fence + GTT, as that both violates
2134 * our tracking of activity and associated locking/barriers,
2135 * but also is illegal given that the hw is powered down).
2137 * Previously we used reg->pin_count as a "liveness" indicator.
2138 * That is not sufficient, and we need a more fine-grained
2139 * tool if we want to have a sanity check here.
2145 GEM_BUG_ON(i915_vma_has_userfault(reg
->vma
));
2150 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object
*obj
)
2152 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
2155 err
= drm_gem_create_mmap_offset(&obj
->base
);
2159 /* Attempt to reap some mmap space from dead objects */
2161 err
= i915_gem_wait_for_idle(dev_priv
, I915_WAIT_INTERRUPTIBLE
);
2165 i915_gem_drain_freed_objects(dev_priv
);
2166 err
= drm_gem_create_mmap_offset(&obj
->base
);
2170 } while (flush_delayed_work(&dev_priv
->gt
.retire_work
));
2175 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object
*obj
)
2177 drm_gem_free_mmap_offset(&obj
->base
);
2181 i915_gem_mmap_gtt(struct drm_file
*file
,
2182 struct drm_device
*dev
,
2186 struct drm_i915_gem_object
*obj
;
2189 obj
= i915_gem_object_lookup(file
, handle
);
2193 ret
= i915_gem_object_create_mmap_offset(obj
);
2195 *offset
= drm_vma_node_offset_addr(&obj
->base
.vma_node
);
2197 i915_gem_object_put(obj
);
2202 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2204 * @data: GTT mapping ioctl data
2205 * @file: GEM object info
2207 * Simply returns the fake offset to userspace so it can mmap it.
2208 * The mmap call will end up in drm_gem_mmap(), which will set things
2209 * up so we can get faults in the handler above.
2211 * The fault handler will take care of binding the object into the GTT
2212 * (since it may have been evicted to make room for something), allocating
2213 * a fence register, and mapping the appropriate aperture address into
2217 i915_gem_mmap_gtt_ioctl(struct drm_device
*dev
, void *data
,
2218 struct drm_file
*file
)
2220 struct drm_i915_gem_mmap_gtt
*args
= data
;
2222 return i915_gem_mmap_gtt(file
, dev
, args
->handle
, &args
->offset
);
2225 /* Immediately discard the backing storage */
2227 i915_gem_object_truncate(struct drm_i915_gem_object
*obj
)
2229 i915_gem_object_free_mmap_offset(obj
);
2231 if (obj
->base
.filp
== NULL
)
2234 /* Our goal here is to return as much of the memory as
2235 * is possible back to the system as we are called from OOM.
2236 * To do this we must instruct the shmfs to drop all of its
2237 * backing pages, *now*.
2239 shmem_truncate_range(file_inode(obj
->base
.filp
), 0, (loff_t
)-1);
2240 obj
->mm
.madv
= __I915_MADV_PURGED
;
2241 obj
->mm
.pages
= ERR_PTR(-EFAULT
);
2244 /* Try to discard unwanted pages */
2245 void __i915_gem_object_invalidate(struct drm_i915_gem_object
*obj
)
2247 struct address_space
*mapping
;
2249 lockdep_assert_held(&obj
->mm
.lock
);
2250 GEM_BUG_ON(i915_gem_object_has_pages(obj
));
2252 switch (obj
->mm
.madv
) {
2253 case I915_MADV_DONTNEED
:
2254 i915_gem_object_truncate(obj
);
2255 case __I915_MADV_PURGED
:
2259 if (obj
->base
.filp
== NULL
)
2262 mapping
= obj
->base
.filp
->f_mapping
,
2263 invalidate_mapping_pages(mapping
, 0, (loff_t
)-1);
2267 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object
*obj
,
2268 struct sg_table
*pages
)
2270 struct sgt_iter sgt_iter
;
2273 __i915_gem_object_release_shmem(obj
, pages
, true);
2275 i915_gem_gtt_finish_pages(obj
, pages
);
2277 if (i915_gem_object_needs_bit17_swizzle(obj
))
2278 i915_gem_object_save_bit_17_swizzle(obj
, pages
);
2280 for_each_sgt_page(page
, sgt_iter
, pages
) {
2282 set_page_dirty(page
);
2284 if (obj
->mm
.madv
== I915_MADV_WILLNEED
)
2285 mark_page_accessed(page
);
2289 obj
->mm
.dirty
= false;
2291 sg_free_table(pages
);
2295 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object
*obj
)
2297 struct radix_tree_iter iter
;
2301 radix_tree_for_each_slot(slot
, &obj
->mm
.get_page
.radix
, &iter
, 0)
2302 radix_tree_delete(&obj
->mm
.get_page
.radix
, iter
.index
);
2306 void __i915_gem_object_put_pages(struct drm_i915_gem_object
*obj
,
2307 enum i915_mm_subclass subclass
)
2309 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
2310 struct sg_table
*pages
;
2312 if (i915_gem_object_has_pinned_pages(obj
))
2315 GEM_BUG_ON(obj
->bind_count
);
2316 if (!i915_gem_object_has_pages(obj
))
2319 /* May be called by shrinker from within get_pages() (on another bo) */
2320 mutex_lock_nested(&obj
->mm
.lock
, subclass
);
2321 if (unlikely(atomic_read(&obj
->mm
.pages_pin_count
)))
2324 /* ->put_pages might need to allocate memory for the bit17 swizzle
2325 * array, hence protect them from being reaped by removing them from gtt
2327 pages
= fetch_and_zero(&obj
->mm
.pages
);
2330 spin_lock(&i915
->mm
.obj_lock
);
2331 list_del(&obj
->mm
.link
);
2332 spin_unlock(&i915
->mm
.obj_lock
);
2334 if (obj
->mm
.mapping
) {
2337 ptr
= page_mask_bits(obj
->mm
.mapping
);
2338 if (is_vmalloc_addr(ptr
))
2341 kunmap(kmap_to_page(ptr
));
2343 obj
->mm
.mapping
= NULL
;
2346 __i915_gem_object_reset_page_iter(obj
);
2349 obj
->ops
->put_pages(obj
, pages
);
2351 obj
->mm
.page_sizes
.phys
= obj
->mm
.page_sizes
.sg
= 0;
2354 mutex_unlock(&obj
->mm
.lock
);
2357 static bool i915_sg_trim(struct sg_table
*orig_st
)
2359 struct sg_table new_st
;
2360 struct scatterlist
*sg
, *new_sg
;
2363 if (orig_st
->nents
== orig_st
->orig_nents
)
2366 if (sg_alloc_table(&new_st
, orig_st
->nents
, GFP_KERNEL
| __GFP_NOWARN
))
2369 new_sg
= new_st
.sgl
;
2370 for_each_sg(orig_st
->sgl
, sg
, orig_st
->nents
, i
) {
2371 sg_set_page(new_sg
, sg_page(sg
), sg
->length
, 0);
2372 /* called before being DMA mapped, no need to copy sg->dma_* */
2373 new_sg
= sg_next(new_sg
);
2375 GEM_BUG_ON(new_sg
); /* Should walk exactly nents and hit the end */
2377 sg_free_table(orig_st
);
2383 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object
*obj
)
2385 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
2386 const unsigned long page_count
= obj
->base
.size
/ PAGE_SIZE
;
2388 struct address_space
*mapping
;
2389 struct sg_table
*st
;
2390 struct scatterlist
*sg
;
2391 struct sgt_iter sgt_iter
;
2393 unsigned long last_pfn
= 0; /* suppress gcc warning */
2394 unsigned int max_segment
= i915_sg_segment_size();
2395 unsigned int sg_page_sizes
;
2399 /* Assert that the object is not currently in any GPU domain. As it
2400 * wasn't in the GTT, there shouldn't be any way it could have been in
2403 GEM_BUG_ON(obj
->base
.read_domains
& I915_GEM_GPU_DOMAINS
);
2404 GEM_BUG_ON(obj
->base
.write_domain
& I915_GEM_GPU_DOMAINS
);
2406 st
= kmalloc(sizeof(*st
), GFP_KERNEL
);
2411 if (sg_alloc_table(st
, page_count
, GFP_KERNEL
)) {
2416 /* Get the list of pages out of our struct file. They'll be pinned
2417 * at this point until we release them.
2419 * Fail silently without starting the shrinker
2421 mapping
= obj
->base
.filp
->f_mapping
;
2422 noreclaim
= mapping_gfp_constraint(mapping
, ~__GFP_RECLAIM
);
2423 noreclaim
|= __GFP_NORETRY
| __GFP_NOWARN
;
2428 for (i
= 0; i
< page_count
; i
++) {
2429 const unsigned int shrink
[] = {
2430 I915_SHRINK_BOUND
| I915_SHRINK_UNBOUND
| I915_SHRINK_PURGEABLE
,
2433 gfp_t gfp
= noreclaim
;
2436 page
= shmem_read_mapping_page_gfp(mapping
, i
, gfp
);
2437 if (likely(!IS_ERR(page
)))
2441 ret
= PTR_ERR(page
);
2445 i915_gem_shrink(dev_priv
, 2 * page_count
, NULL
, *s
++);
2448 /* We've tried hard to allocate the memory by reaping
2449 * our own buffer, now let the real VM do its job and
2450 * go down in flames if truly OOM.
2452 * However, since graphics tend to be disposable,
2453 * defer the oom here by reporting the ENOMEM back
2457 /* reclaim and warn, but no oom */
2458 gfp
= mapping_gfp_mask(mapping
);
2460 /* Our bo are always dirty and so we require
2461 * kswapd to reclaim our pages (direct reclaim
2462 * does not effectively begin pageout of our
2463 * buffers on its own). However, direct reclaim
2464 * only waits for kswapd when under allocation
2465 * congestion. So as a result __GFP_RECLAIM is
2466 * unreliable and fails to actually reclaim our
2467 * dirty pages -- unless you try over and over
2468 * again with !__GFP_NORETRY. However, we still
2469 * want to fail this allocation rather than
2470 * trigger the out-of-memory killer and for
2471 * this we want __GFP_RETRY_MAYFAIL.
2473 gfp
|= __GFP_RETRY_MAYFAIL
;
2478 sg
->length
>= max_segment
||
2479 page_to_pfn(page
) != last_pfn
+ 1) {
2481 sg_page_sizes
|= sg
->length
;
2485 sg_set_page(sg
, page
, PAGE_SIZE
, 0);
2487 sg
->length
+= PAGE_SIZE
;
2489 last_pfn
= page_to_pfn(page
);
2491 /* Check that the i965g/gm workaround works. */
2492 WARN_ON((gfp
& __GFP_DMA32
) && (last_pfn
>= 0x00100000UL
));
2494 if (sg
) { /* loop terminated early; short sg table */
2495 sg_page_sizes
|= sg
->length
;
2499 /* Trim unused sg entries to avoid wasting memory. */
2502 ret
= i915_gem_gtt_prepare_pages(obj
, st
);
2504 /* DMA remapping failed? One possible cause is that
2505 * it could not reserve enough large entries, asking
2506 * for PAGE_SIZE chunks instead may be helpful.
2508 if (max_segment
> PAGE_SIZE
) {
2509 for_each_sgt_page(page
, sgt_iter
, st
)
2513 max_segment
= PAGE_SIZE
;
2516 dev_warn(&dev_priv
->drm
.pdev
->dev
,
2517 "Failed to DMA remap %lu pages\n",
2523 if (i915_gem_object_needs_bit17_swizzle(obj
))
2524 i915_gem_object_do_bit_17_swizzle(obj
, st
);
2526 __i915_gem_object_set_pages(obj
, st
, sg_page_sizes
);
2533 for_each_sgt_page(page
, sgt_iter
, st
)
2538 /* shmemfs first checks if there is enough memory to allocate the page
2539 * and reports ENOSPC should there be insufficient, along with the usual
2540 * ENOMEM for a genuine allocation failure.
2542 * We use ENOSPC in our driver to mean that we have run out of aperture
2543 * space and so want to translate the error from shmemfs back to our
2544 * usual understanding of ENOMEM.
2552 void __i915_gem_object_set_pages(struct drm_i915_gem_object
*obj
,
2553 struct sg_table
*pages
,
2554 unsigned int sg_page_sizes
)
2556 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
2557 unsigned long supported
= INTEL_INFO(i915
)->page_sizes
;
2560 lockdep_assert_held(&obj
->mm
.lock
);
2562 obj
->mm
.get_page
.sg_pos
= pages
->sgl
;
2563 obj
->mm
.get_page
.sg_idx
= 0;
2565 obj
->mm
.pages
= pages
;
2567 if (i915_gem_object_is_tiled(obj
) &&
2568 i915
->quirks
& QUIRK_PIN_SWIZZLED_PAGES
) {
2569 GEM_BUG_ON(obj
->mm
.quirked
);
2570 __i915_gem_object_pin_pages(obj
);
2571 obj
->mm
.quirked
= true;
2574 GEM_BUG_ON(!sg_page_sizes
);
2575 obj
->mm
.page_sizes
.phys
= sg_page_sizes
;
2578 * Calculate the supported page-sizes which fit into the given
2579 * sg_page_sizes. This will give us the page-sizes which we may be able
2580 * to use opportunistically when later inserting into the GTT. For
2581 * example if phys=2G, then in theory we should be able to use 1G, 2M,
2582 * 64K or 4K pages, although in practice this will depend on a number of
2585 obj
->mm
.page_sizes
.sg
= 0;
2586 for_each_set_bit(i
, &supported
, ilog2(I915_GTT_MAX_PAGE_SIZE
) + 1) {
2587 if (obj
->mm
.page_sizes
.phys
& ~0u << i
)
2588 obj
->mm
.page_sizes
.sg
|= BIT(i
);
2590 GEM_BUG_ON(!HAS_PAGE_SIZES(i915
, obj
->mm
.page_sizes
.sg
));
2592 spin_lock(&i915
->mm
.obj_lock
);
2593 list_add(&obj
->mm
.link
, &i915
->mm
.unbound_list
);
2594 spin_unlock(&i915
->mm
.obj_lock
);
2597 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object
*obj
)
2601 if (unlikely(obj
->mm
.madv
!= I915_MADV_WILLNEED
)) {
2602 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2606 err
= obj
->ops
->get_pages(obj
);
2607 GEM_BUG_ON(!err
&& !i915_gem_object_has_pages(obj
));
2612 /* Ensure that the associated pages are gathered from the backing storage
2613 * and pinned into our object. i915_gem_object_pin_pages() may be called
2614 * multiple times before they are released by a single call to
2615 * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2616 * either as a result of memory pressure (reaping pages under the shrinker)
2617 * or as the object is itself released.
2619 int __i915_gem_object_get_pages(struct drm_i915_gem_object
*obj
)
2623 err
= mutex_lock_interruptible(&obj
->mm
.lock
);
2627 if (unlikely(!i915_gem_object_has_pages(obj
))) {
2628 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj
));
2630 err
= ____i915_gem_object_get_pages(obj
);
2634 smp_mb__before_atomic();
2636 atomic_inc(&obj
->mm
.pages_pin_count
);
2639 mutex_unlock(&obj
->mm
.lock
);
2643 /* The 'mapping' part of i915_gem_object_pin_map() below */
2644 static void *i915_gem_object_map(const struct drm_i915_gem_object
*obj
,
2645 enum i915_map_type type
)
2647 unsigned long n_pages
= obj
->base
.size
>> PAGE_SHIFT
;
2648 struct sg_table
*sgt
= obj
->mm
.pages
;
2649 struct sgt_iter sgt_iter
;
2651 struct page
*stack_pages
[32];
2652 struct page
**pages
= stack_pages
;
2653 unsigned long i
= 0;
2657 /* A single page can always be kmapped */
2658 if (n_pages
== 1 && type
== I915_MAP_WB
)
2659 return kmap(sg_page(sgt
->sgl
));
2661 if (n_pages
> ARRAY_SIZE(stack_pages
)) {
2662 /* Too big for stack -- allocate temporary array instead */
2663 pages
= kvmalloc_array(n_pages
, sizeof(*pages
), GFP_KERNEL
);
2668 for_each_sgt_page(page
, sgt_iter
, sgt
)
2671 /* Check that we have the expected number of pages */
2672 GEM_BUG_ON(i
!= n_pages
);
2677 /* fallthrough to use PAGE_KERNEL anyway */
2679 pgprot
= PAGE_KERNEL
;
2682 pgprot
= pgprot_writecombine(PAGE_KERNEL_IO
);
2685 addr
= vmap(pages
, n_pages
, 0, pgprot
);
2687 if (pages
!= stack_pages
)
2693 /* get, pin, and map the pages of the object into kernel space */
2694 void *i915_gem_object_pin_map(struct drm_i915_gem_object
*obj
,
2695 enum i915_map_type type
)
2697 enum i915_map_type has_type
;
2702 if (unlikely(!i915_gem_object_has_struct_page(obj
)))
2703 return ERR_PTR(-ENXIO
);
2705 ret
= mutex_lock_interruptible(&obj
->mm
.lock
);
2707 return ERR_PTR(ret
);
2709 pinned
= !(type
& I915_MAP_OVERRIDE
);
2710 type
&= ~I915_MAP_OVERRIDE
;
2712 if (!atomic_inc_not_zero(&obj
->mm
.pages_pin_count
)) {
2713 if (unlikely(!i915_gem_object_has_pages(obj
))) {
2714 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj
));
2716 ret
= ____i915_gem_object_get_pages(obj
);
2720 smp_mb__before_atomic();
2722 atomic_inc(&obj
->mm
.pages_pin_count
);
2725 GEM_BUG_ON(!i915_gem_object_has_pages(obj
));
2727 ptr
= page_unpack_bits(obj
->mm
.mapping
, &has_type
);
2728 if (ptr
&& has_type
!= type
) {
2734 if (is_vmalloc_addr(ptr
))
2737 kunmap(kmap_to_page(ptr
));
2739 ptr
= obj
->mm
.mapping
= NULL
;
2743 ptr
= i915_gem_object_map(obj
, type
);
2749 obj
->mm
.mapping
= page_pack_bits(ptr
, type
);
2753 mutex_unlock(&obj
->mm
.lock
);
2757 atomic_dec(&obj
->mm
.pages_pin_count
);
2764 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object
*obj
,
2765 const struct drm_i915_gem_pwrite
*arg
)
2767 struct address_space
*mapping
= obj
->base
.filp
->f_mapping
;
2768 char __user
*user_data
= u64_to_user_ptr(arg
->data_ptr
);
2772 /* Before we instantiate/pin the backing store for our use, we
2773 * can prepopulate the shmemfs filp efficiently using a write into
2774 * the pagecache. We avoid the penalty of instantiating all the
2775 * pages, important if the user is just writing to a few and never
2776 * uses the object on the GPU, and using a direct write into shmemfs
2777 * allows it to avoid the cost of retrieving a page (either swapin
2778 * or clearing-before-use) before it is overwritten.
2780 if (i915_gem_object_has_pages(obj
))
2783 if (obj
->mm
.madv
!= I915_MADV_WILLNEED
)
2786 /* Before the pages are instantiated the object is treated as being
2787 * in the CPU domain. The pages will be clflushed as required before
2788 * use, and we can freely write into the pages directly. If userspace
2789 * races pwrite with any other operation; corruption will ensue -
2790 * that is userspace's prerogative!
2794 offset
= arg
->offset
;
2795 pg
= offset_in_page(offset
);
2798 unsigned int len
, unwritten
;
2803 len
= PAGE_SIZE
- pg
;
2807 err
= pagecache_write_begin(obj
->base
.filp
, mapping
,
2814 unwritten
= copy_from_user(vaddr
+ pg
, user_data
, len
);
2817 err
= pagecache_write_end(obj
->base
.filp
, mapping
,
2818 offset
, len
, len
- unwritten
,
2835 static bool ban_context(const struct i915_gem_context
*ctx
,
2838 return (i915_gem_context_is_bannable(ctx
) &&
2839 score
>= CONTEXT_SCORE_BAN_THRESHOLD
);
2842 static void i915_gem_context_mark_guilty(struct i915_gem_context
*ctx
)
2847 atomic_inc(&ctx
->guilty_count
);
2849 score
= atomic_add_return(CONTEXT_SCORE_GUILTY
, &ctx
->ban_score
);
2850 banned
= ban_context(ctx
, score
);
2851 DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2852 ctx
->name
, score
, yesno(banned
));
2856 i915_gem_context_set_banned(ctx
);
2857 if (!IS_ERR_OR_NULL(ctx
->file_priv
)) {
2858 atomic_inc(&ctx
->file_priv
->context_bans
);
2859 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2860 ctx
->name
, atomic_read(&ctx
->file_priv
->context_bans
));
2864 static void i915_gem_context_mark_innocent(struct i915_gem_context
*ctx
)
2866 atomic_inc(&ctx
->active_count
);
2869 struct drm_i915_gem_request
*
2870 i915_gem_find_active_request(struct intel_engine_cs
*engine
)
2872 struct drm_i915_gem_request
*request
, *active
= NULL
;
2873 unsigned long flags
;
2875 /* We are called by the error capture and reset at a random
2876 * point in time. In particular, note that neither is crucially
2877 * ordered with an interrupt. After a hang, the GPU is dead and we
2878 * assume that no more writes can happen (we waited long enough for
2879 * all writes that were in transaction to be flushed) - adding an
2880 * extra delay for a recent interrupt is pointless. Hence, we do
2881 * not need an engine->irq_seqno_barrier() before the seqno reads.
2883 spin_lock_irqsave(&engine
->timeline
->lock
, flags
);
2884 list_for_each_entry(request
, &engine
->timeline
->requests
, link
) {
2885 if (__i915_gem_request_completed(request
,
2886 request
->global_seqno
))
2889 GEM_BUG_ON(request
->engine
!= engine
);
2890 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT
,
2891 &request
->fence
.flags
));
2896 spin_unlock_irqrestore(&engine
->timeline
->lock
, flags
);
2901 static bool engine_stalled(struct intel_engine_cs
*engine
)
2903 if (!engine
->hangcheck
.stalled
)
2906 /* Check for possible seqno movement after hang declaration */
2907 if (engine
->hangcheck
.seqno
!= intel_engine_get_seqno(engine
)) {
2908 DRM_DEBUG_DRIVER("%s pardoned\n", engine
->name
);
2916 * Ensure irq handler finishes, and not run again.
2917 * Also return the active request so that we only search for it once.
2919 struct drm_i915_gem_request
*
2920 i915_gem_reset_prepare_engine(struct intel_engine_cs
*engine
)
2922 struct drm_i915_gem_request
*request
= NULL
;
2925 * During the reset sequence, we must prevent the engine from
2926 * entering RC6. As the context state is undefined until we restart
2927 * the engine, if it does enter RC6 during the reset, the state
2928 * written to the powercontext is undefined and so we may lose
2929 * GPU state upon resume, i.e. fail to restart after a reset.
2931 intel_uncore_forcewake_get(engine
->i915
, FORCEWAKE_ALL
);
2934 * Prevent the signaler thread from updating the request
2935 * state (by calling dma_fence_signal) as we are processing
2936 * the reset. The write from the GPU of the seqno is
2937 * asynchronous and the signaler thread may see a different
2938 * value to us and declare the request complete, even though
2939 * the reset routine have picked that request as the active
2940 * (incomplete) request. This conflict is not handled
2943 kthread_park(engine
->breadcrumbs
.signaler
);
2946 * Prevent request submission to the hardware until we have
2947 * completed the reset in i915_gem_reset_finish(). If a request
2948 * is completed by one engine, it may then queue a request
2949 * to a second via its execlists->tasklet *just* as we are
2950 * calling engine->init_hw() and also writing the ELSP.
2951 * Turning off the execlists->tasklet until the reset is over
2952 * prevents the race.
2954 tasklet_kill(&engine
->execlists
.tasklet
);
2955 tasklet_disable(&engine
->execlists
.tasklet
);
2958 * We're using worker to queue preemption requests from the tasklet in
2959 * GuC submission mode.
2960 * Even though tasklet was disabled, we may still have a worker queued.
2961 * Let's make sure that all workers scheduled before disabling the
2962 * tasklet are completed before continuing with the reset.
2964 if (engine
->i915
->guc
.preempt_wq
)
2965 flush_workqueue(engine
->i915
->guc
.preempt_wq
);
2967 if (engine
->irq_seqno_barrier
)
2968 engine
->irq_seqno_barrier(engine
);
2970 request
= i915_gem_find_active_request(engine
);
2971 if (request
&& request
->fence
.error
== -EIO
)
2972 request
= ERR_PTR(-EIO
); /* Previous reset failed! */
2977 int i915_gem_reset_prepare(struct drm_i915_private
*dev_priv
)
2979 struct intel_engine_cs
*engine
;
2980 struct drm_i915_gem_request
*request
;
2981 enum intel_engine_id id
;
2984 for_each_engine(engine
, dev_priv
, id
) {
2985 request
= i915_gem_reset_prepare_engine(engine
);
2986 if (IS_ERR(request
)) {
2987 err
= PTR_ERR(request
);
2991 engine
->hangcheck
.active_request
= request
;
2994 i915_gem_revoke_fences(dev_priv
);
2999 static void skip_request(struct drm_i915_gem_request
*request
)
3001 void *vaddr
= request
->ring
->vaddr
;
3004 /* As this request likely depends on state from the lost
3005 * context, clear out all the user operations leaving the
3006 * breadcrumb at the end (so we get the fence notifications).
3008 head
= request
->head
;
3009 if (request
->postfix
< head
) {
3010 memset(vaddr
+ head
, 0, request
->ring
->size
- head
);
3013 memset(vaddr
+ head
, 0, request
->postfix
- head
);
3015 dma_fence_set_error(&request
->fence
, -EIO
);
3018 static void engine_skip_context(struct drm_i915_gem_request
*request
)
3020 struct intel_engine_cs
*engine
= request
->engine
;
3021 struct i915_gem_context
*hung_ctx
= request
->ctx
;
3022 struct intel_timeline
*timeline
;
3023 unsigned long flags
;
3025 timeline
= i915_gem_context_lookup_timeline(hung_ctx
, engine
);
3027 spin_lock_irqsave(&engine
->timeline
->lock
, flags
);
3028 spin_lock(&timeline
->lock
);
3030 list_for_each_entry_continue(request
, &engine
->timeline
->requests
, link
)
3031 if (request
->ctx
== hung_ctx
)
3032 skip_request(request
);
3034 list_for_each_entry(request
, &timeline
->requests
, link
)
3035 skip_request(request
);
3037 spin_unlock(&timeline
->lock
);
3038 spin_unlock_irqrestore(&engine
->timeline
->lock
, flags
);
3041 /* Returns the request if it was guilty of the hang */
3042 static struct drm_i915_gem_request
*
3043 i915_gem_reset_request(struct intel_engine_cs
*engine
,
3044 struct drm_i915_gem_request
*request
)
3046 /* The guilty request will get skipped on a hung engine.
3048 * Users of client default contexts do not rely on logical
3049 * state preserved between batches so it is safe to execute
3050 * queued requests following the hang. Non default contexts
3051 * rely on preserved state, so skipping a batch loses the
3052 * evolution of the state and it needs to be considered corrupted.
3053 * Executing more queued batches on top of corrupted state is
3054 * risky. But we take the risk by trying to advance through
3055 * the queued requests in order to make the client behaviour
3056 * more predictable around resets, by not throwing away random
3057 * amount of batches it has prepared for execution. Sophisticated
3058 * clients can use gem_reset_stats_ioctl and dma fence status
3059 * (exported via sync_file info ioctl on explicit fences) to observe
3060 * when it loses the context state and should rebuild accordingly.
3062 * The context ban, and ultimately the client ban, mechanism are safety
3063 * valves if client submission ends up resulting in nothing more than
3067 if (engine_stalled(engine
)) {
3068 i915_gem_context_mark_guilty(request
->ctx
);
3069 skip_request(request
);
3071 /* If this context is now banned, skip all pending requests. */
3072 if (i915_gem_context_is_banned(request
->ctx
))
3073 engine_skip_context(request
);
3076 * Since this is not the hung engine, it may have advanced
3077 * since the hang declaration. Double check by refinding
3078 * the active request at the time of the reset.
3080 request
= i915_gem_find_active_request(engine
);
3082 i915_gem_context_mark_innocent(request
->ctx
);
3083 dma_fence_set_error(&request
->fence
, -EAGAIN
);
3085 /* Rewind the engine to replay the incomplete rq */
3086 spin_lock_irq(&engine
->timeline
->lock
);
3087 request
= list_prev_entry(request
, link
);
3088 if (&request
->link
== &engine
->timeline
->requests
)
3090 spin_unlock_irq(&engine
->timeline
->lock
);
3097 void i915_gem_reset_engine(struct intel_engine_cs
*engine
,
3098 struct drm_i915_gem_request
*request
)
3101 * Make sure this write is visible before we re-enable the interrupt
3102 * handlers on another CPU, as tasklet_enable() resolves to just
3103 * a compiler barrier which is insufficient for our purpose here.
3105 smp_store_mb(engine
->irq_posted
, 0);
3108 request
= i915_gem_reset_request(engine
, request
);
3111 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3112 engine
->name
, request
->global_seqno
);
3115 /* Setup the CS to resume from the breadcrumb of the hung request */
3116 engine
->reset_hw(engine
, request
);
3119 void i915_gem_reset(struct drm_i915_private
*dev_priv
)
3121 struct intel_engine_cs
*engine
;
3122 enum intel_engine_id id
;
3124 lockdep_assert_held(&dev_priv
->drm
.struct_mutex
);
3126 i915_gem_retire_requests(dev_priv
);
3128 for_each_engine(engine
, dev_priv
, id
) {
3129 struct i915_gem_context
*ctx
;
3131 i915_gem_reset_engine(engine
, engine
->hangcheck
.active_request
);
3132 ctx
= fetch_and_zero(&engine
->last_retired_context
);
3134 engine
->context_unpin(engine
, ctx
);
3137 * Ostensibily, we always want a context loaded for powersaving,
3138 * so if the engine is idle after the reset, send a request
3139 * to load our scratch kernel_context.
3141 * More mysteriously, if we leave the engine idle after a reset,
3142 * the next userspace batch may hang, with what appears to be
3143 * an incoherent read by the CS (presumably stale TLB). An
3144 * empty request appears sufficient to paper over the glitch.
3146 if (list_empty(&engine
->timeline
->requests
)) {
3147 struct drm_i915_gem_request
*rq
;
3149 rq
= i915_gem_request_alloc(engine
,
3150 dev_priv
->kernel_context
);
3152 __i915_add_request(rq
, false);
3156 i915_gem_restore_fences(dev_priv
);
3158 if (dev_priv
->gt
.awake
) {
3159 intel_sanitize_gt_powersave(dev_priv
);
3160 intel_enable_gt_powersave(dev_priv
);
3161 if (INTEL_GEN(dev_priv
) >= 6)
3162 gen6_rps_busy(dev_priv
);
3166 void i915_gem_reset_finish_engine(struct intel_engine_cs
*engine
)
3168 tasklet_enable(&engine
->execlists
.tasklet
);
3169 kthread_unpark(engine
->breadcrumbs
.signaler
);
3171 intel_uncore_forcewake_put(engine
->i915
, FORCEWAKE_ALL
);
3174 void i915_gem_reset_finish(struct drm_i915_private
*dev_priv
)
3176 struct intel_engine_cs
*engine
;
3177 enum intel_engine_id id
;
3179 lockdep_assert_held(&dev_priv
->drm
.struct_mutex
);
3181 for_each_engine(engine
, dev_priv
, id
) {
3182 engine
->hangcheck
.active_request
= NULL
;
3183 i915_gem_reset_finish_engine(engine
);
3187 static void nop_submit_request(struct drm_i915_gem_request
*request
)
3189 dma_fence_set_error(&request
->fence
, -EIO
);
3191 i915_gem_request_submit(request
);
3194 static void nop_complete_submit_request(struct drm_i915_gem_request
*request
)
3196 unsigned long flags
;
3198 dma_fence_set_error(&request
->fence
, -EIO
);
3200 spin_lock_irqsave(&request
->engine
->timeline
->lock
, flags
);
3201 __i915_gem_request_submit(request
);
3202 intel_engine_init_global_seqno(request
->engine
, request
->global_seqno
);
3203 spin_unlock_irqrestore(&request
->engine
->timeline
->lock
, flags
);
3206 void i915_gem_set_wedged(struct drm_i915_private
*i915
)
3208 struct intel_engine_cs
*engine
;
3209 enum intel_engine_id id
;
3212 * First, stop submission to hw, but do not yet complete requests by
3213 * rolling the global seqno forward (since this would complete requests
3214 * for which we haven't set the fence error to EIO yet).
3216 for_each_engine(engine
, i915
, id
) {
3217 i915_gem_reset_prepare_engine(engine
);
3218 engine
->submit_request
= nop_submit_request
;
3222 * Make sure no one is running the old callback before we proceed with
3223 * cancelling requests and resetting the completion tracking. Otherwise
3224 * we might submit a request to the hardware which never completes.
3228 for_each_engine(engine
, i915
, id
) {
3229 /* Mark all executing requests as skipped */
3230 engine
->cancel_requests(engine
);
3233 * Only once we've force-cancelled all in-flight requests can we
3234 * start to complete all requests.
3236 engine
->submit_request
= nop_complete_submit_request
;
3240 * Make sure no request can slip through without getting completed by
3241 * either this call here to intel_engine_init_global_seqno, or the one
3242 * in nop_complete_submit_request.
3246 for_each_engine(engine
, i915
, id
) {
3247 unsigned long flags
;
3249 /* Mark all pending requests as complete so that any concurrent
3250 * (lockless) lookup doesn't try and wait upon the request as we
3253 spin_lock_irqsave(&engine
->timeline
->lock
, flags
);
3254 intel_engine_init_global_seqno(engine
,
3255 intel_engine_last_submit(engine
));
3256 spin_unlock_irqrestore(&engine
->timeline
->lock
, flags
);
3258 i915_gem_reset_finish_engine(engine
);
3261 set_bit(I915_WEDGED
, &i915
->gpu_error
.flags
);
3262 wake_up_all(&i915
->gpu_error
.reset_queue
);
3265 bool i915_gem_unset_wedged(struct drm_i915_private
*i915
)
3267 struct i915_gem_timeline
*tl
;
3270 lockdep_assert_held(&i915
->drm
.struct_mutex
);
3271 if (!test_bit(I915_WEDGED
, &i915
->gpu_error
.flags
))
3274 /* Before unwedging, make sure that all pending operations
3275 * are flushed and errored out - we may have requests waiting upon
3276 * third party fences. We marked all inflight requests as EIO, and
3277 * every execbuf since returned EIO, for consistency we want all
3278 * the currently pending requests to also be marked as EIO, which
3279 * is done inside our nop_submit_request - and so we must wait.
3281 * No more can be submitted until we reset the wedged bit.
3283 list_for_each_entry(tl
, &i915
->gt
.timelines
, link
) {
3284 for (i
= 0; i
< ARRAY_SIZE(tl
->engine
); i
++) {
3285 struct drm_i915_gem_request
*rq
;
3287 rq
= i915_gem_active_peek(&tl
->engine
[i
].last_request
,
3288 &i915
->drm
.struct_mutex
);
3292 /* We can't use our normal waiter as we want to
3293 * avoid recursively trying to handle the current
3294 * reset. The basic dma_fence_default_wait() installs
3295 * a callback for dma_fence_signal(), which is
3296 * triggered by our nop handler (indirectly, the
3297 * callback enables the signaler thread which is
3298 * woken by the nop_submit_request() advancing the seqno
3299 * and when the seqno passes the fence, the signaler
3300 * then signals the fence waking us up).
3302 if (dma_fence_default_wait(&rq
->fence
, true,
3303 MAX_SCHEDULE_TIMEOUT
) < 0)
3308 /* Undo nop_submit_request. We prevent all new i915 requests from
3309 * being queued (by disallowing execbuf whilst wedged) so having
3310 * waited for all active requests above, we know the system is idle
3311 * and do not have to worry about a thread being inside
3312 * engine->submit_request() as we swap over. So unlike installing
3313 * the nop_submit_request on reset, we can do this from normal
3314 * context and do not require stop_machine().
3316 intel_engines_reset_default_submission(i915
);
3317 i915_gem_contexts_lost(i915
);
3319 smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3320 clear_bit(I915_WEDGED
, &i915
->gpu_error
.flags
);
3326 i915_gem_retire_work_handler(struct work_struct
*work
)
3328 struct drm_i915_private
*dev_priv
=
3329 container_of(work
, typeof(*dev_priv
), gt
.retire_work
.work
);
3330 struct drm_device
*dev
= &dev_priv
->drm
;
3332 /* Come back later if the device is busy... */
3333 if (mutex_trylock(&dev
->struct_mutex
)) {
3334 i915_gem_retire_requests(dev_priv
);
3335 mutex_unlock(&dev
->struct_mutex
);
3339 * Keep the retire handler running until we are finally idle.
3340 * We do not need to do this test under locking as in the worst-case
3341 * we queue the retire worker once too often.
3343 if (READ_ONCE(dev_priv
->gt
.awake
))
3344 queue_delayed_work(dev_priv
->wq
,
3345 &dev_priv
->gt
.retire_work
,
3346 round_jiffies_up_relative(HZ
));
3350 new_requests_since_last_retire(const struct drm_i915_private
*i915
)
3352 return (READ_ONCE(i915
->gt
.active_requests
) ||
3353 work_pending(&i915
->gt
.idle_work
.work
));
3357 i915_gem_idle_work_handler(struct work_struct
*work
)
3359 struct drm_i915_private
*dev_priv
=
3360 container_of(work
, typeof(*dev_priv
), gt
.idle_work
.work
);
3361 bool rearm_hangcheck
;
3364 if (!READ_ONCE(dev_priv
->gt
.awake
))
3368 * Wait for last execlists context complete, but bail out in case a
3369 * new request is submitted.
3371 end
= ktime_add_ms(ktime_get(), I915_IDLE_ENGINES_TIMEOUT
);
3373 if (new_requests_since_last_retire(dev_priv
))
3376 if (intel_engines_are_idle(dev_priv
))
3379 usleep_range(100, 500);
3380 } while (ktime_before(ktime_get(), end
));
3383 cancel_delayed_work_sync(&dev_priv
->gpu_error
.hangcheck_work
);
3385 if (!mutex_trylock(&dev_priv
->drm
.struct_mutex
)) {
3386 /* Currently busy, come back later */
3387 mod_delayed_work(dev_priv
->wq
,
3388 &dev_priv
->gt
.idle_work
,
3389 msecs_to_jiffies(50));
3394 * New request retired after this work handler started, extend active
3395 * period until next instance of the work.
3397 if (new_requests_since_last_retire(dev_priv
))
3401 * Be paranoid and flush a concurrent interrupt to make sure
3402 * we don't reactivate any irq tasklets after parking.
3404 * FIXME: Note that even though we have waited for execlists to be idle,
3405 * there may still be an in-flight interrupt even though the CSB
3406 * is now empty. synchronize_irq() makes sure that a residual interrupt
3407 * is completed before we continue, but it doesn't prevent the HW from
3408 * raising a spurious interrupt later. To complete the shield we should
3409 * coordinate disabling the CS irq with flushing the interrupts.
3411 synchronize_irq(dev_priv
->drm
.irq
);
3413 intel_engines_park(dev_priv
);
3414 i915_gem_timelines_park(dev_priv
);
3416 i915_pmu_gt_parked(dev_priv
);
3418 GEM_BUG_ON(!dev_priv
->gt
.awake
);
3419 dev_priv
->gt
.awake
= false;
3420 rearm_hangcheck
= false;
3422 if (INTEL_GEN(dev_priv
) >= 6)
3423 gen6_rps_idle(dev_priv
);
3425 intel_display_power_put(dev_priv
, POWER_DOMAIN_GT_IRQ
);
3427 intel_runtime_pm_put(dev_priv
);
3429 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
3432 if (rearm_hangcheck
) {
3433 GEM_BUG_ON(!dev_priv
->gt
.awake
);
3434 i915_queue_hangcheck(dev_priv
);
3438 void i915_gem_close_object(struct drm_gem_object
*gem
, struct drm_file
*file
)
3440 struct drm_i915_private
*i915
= to_i915(gem
->dev
);
3441 struct drm_i915_gem_object
*obj
= to_intel_bo(gem
);
3442 struct drm_i915_file_private
*fpriv
= file
->driver_priv
;
3443 struct i915_lut_handle
*lut
, *ln
;
3445 mutex_lock(&i915
->drm
.struct_mutex
);
3447 list_for_each_entry_safe(lut
, ln
, &obj
->lut_list
, obj_link
) {
3448 struct i915_gem_context
*ctx
= lut
->ctx
;
3449 struct i915_vma
*vma
;
3451 GEM_BUG_ON(ctx
->file_priv
== ERR_PTR(-EBADF
));
3452 if (ctx
->file_priv
!= fpriv
)
3455 vma
= radix_tree_delete(&ctx
->handles_vma
, lut
->handle
);
3456 GEM_BUG_ON(vma
->obj
!= obj
);
3458 /* We allow the process to have multiple handles to the same
3459 * vma, in the same fd namespace, by virtue of flink/open.
3461 GEM_BUG_ON(!vma
->open_count
);
3462 if (!--vma
->open_count
&& !i915_vma_is_ggtt(vma
))
3463 i915_vma_close(vma
);
3465 list_del(&lut
->obj_link
);
3466 list_del(&lut
->ctx_link
);
3468 kmem_cache_free(i915
->luts
, lut
);
3469 __i915_gem_object_release_unless_active(obj
);
3472 mutex_unlock(&i915
->drm
.struct_mutex
);
3475 static unsigned long to_wait_timeout(s64 timeout_ns
)
3478 return MAX_SCHEDULE_TIMEOUT
;
3480 if (timeout_ns
== 0)
3483 return nsecs_to_jiffies_timeout(timeout_ns
);
3487 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3488 * @dev: drm device pointer
3489 * @data: ioctl data blob
3490 * @file: drm file pointer
3492 * Returns 0 if successful, else an error is returned with the remaining time in
3493 * the timeout parameter.
3494 * -ETIME: object is still busy after timeout
3495 * -ERESTARTSYS: signal interrupted the wait
3496 * -ENONENT: object doesn't exist
3497 * Also possible, but rare:
3498 * -EAGAIN: incomplete, restart syscall
3500 * -ENODEV: Internal IRQ fail
3501 * -E?: The add request failed
3503 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3504 * non-zero timeout parameter the wait ioctl will wait for the given number of
3505 * nanoseconds on an object becoming unbusy. Since the wait itself does so
3506 * without holding struct_mutex the object may become re-busied before this
3507 * function completes. A similar but shorter * race condition exists in the busy
3511 i915_gem_wait_ioctl(struct drm_device
*dev
, void *data
, struct drm_file
*file
)
3513 struct drm_i915_gem_wait
*args
= data
;
3514 struct drm_i915_gem_object
*obj
;
3518 if (args
->flags
!= 0)
3521 obj
= i915_gem_object_lookup(file
, args
->bo_handle
);
3525 start
= ktime_get();
3527 ret
= i915_gem_object_wait(obj
,
3528 I915_WAIT_INTERRUPTIBLE
| I915_WAIT_ALL
,
3529 to_wait_timeout(args
->timeout_ns
),
3530 to_rps_client(file
));
3532 if (args
->timeout_ns
> 0) {
3533 args
->timeout_ns
-= ktime_to_ns(ktime_sub(ktime_get(), start
));
3534 if (args
->timeout_ns
< 0)
3535 args
->timeout_ns
= 0;
3538 * Apparently ktime isn't accurate enough and occasionally has a
3539 * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3540 * things up to make the test happy. We allow up to 1 jiffy.
3542 * This is a regression from the timespec->ktime conversion.
3544 if (ret
== -ETIME
&& !nsecs_to_jiffies(args
->timeout_ns
))
3545 args
->timeout_ns
= 0;
3547 /* Asked to wait beyond the jiffie/scheduler precision? */
3548 if (ret
== -ETIME
&& args
->timeout_ns
)
3552 i915_gem_object_put(obj
);
3556 static int wait_for_timeline(struct i915_gem_timeline
*tl
, unsigned int flags
)
3560 for (i
= 0; i
< ARRAY_SIZE(tl
->engine
); i
++) {
3561 ret
= i915_gem_active_wait(&tl
->engine
[i
].last_request
, flags
);
3569 static int wait_for_engines(struct drm_i915_private
*i915
)
3571 if (wait_for(intel_engines_are_idle(i915
), I915_IDLE_ENGINES_TIMEOUT
)) {
3572 dev_err(i915
->drm
.dev
,
3573 "Failed to idle engines, declaring wedged!\n");
3574 if (drm_debug
& DRM_UT_DRIVER
) {
3575 struct drm_printer p
= drm_debug_printer(__func__
);
3576 struct intel_engine_cs
*engine
;
3577 enum intel_engine_id id
;
3579 for_each_engine(engine
, i915
, id
)
3580 intel_engine_dump(engine
, &p
,
3581 "%s", engine
->name
);
3584 i915_gem_set_wedged(i915
);
3591 int i915_gem_wait_for_idle(struct drm_i915_private
*i915
, unsigned int flags
)
3595 /* If the device is asleep, we have no requests outstanding */
3596 if (!READ_ONCE(i915
->gt
.awake
))
3599 if (flags
& I915_WAIT_LOCKED
) {
3600 struct i915_gem_timeline
*tl
;
3602 lockdep_assert_held(&i915
->drm
.struct_mutex
);
3604 list_for_each_entry(tl
, &i915
->gt
.timelines
, link
) {
3605 ret
= wait_for_timeline(tl
, flags
);
3609 i915_gem_retire_requests(i915
);
3611 ret
= wait_for_engines(i915
);
3613 ret
= wait_for_timeline(&i915
->gt
.global_timeline
, flags
);
3619 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object
*obj
)
3622 * We manually flush the CPU domain so that we can override and
3623 * force the flush for the display, and perform it asyncrhonously.
3625 flush_write_domain(obj
, ~I915_GEM_DOMAIN_CPU
);
3626 if (obj
->cache_dirty
)
3627 i915_gem_clflush_object(obj
, I915_CLFLUSH_FORCE
);
3628 obj
->base
.write_domain
= 0;
3631 void i915_gem_object_flush_if_display(struct drm_i915_gem_object
*obj
)
3633 if (!READ_ONCE(obj
->pin_global
))
3636 mutex_lock(&obj
->base
.dev
->struct_mutex
);
3637 __i915_gem_object_flush_for_display(obj
);
3638 mutex_unlock(&obj
->base
.dev
->struct_mutex
);
3642 * Moves a single object to the WC read, and possibly write domain.
3643 * @obj: object to act on
3644 * @write: ask for write access or read only
3646 * This function returns when the move is complete, including waiting on
3650 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object
*obj
, bool write
)
3654 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
3656 ret
= i915_gem_object_wait(obj
,
3657 I915_WAIT_INTERRUPTIBLE
|
3659 (write
? I915_WAIT_ALL
: 0),
3660 MAX_SCHEDULE_TIMEOUT
,
3665 if (obj
->base
.write_domain
== I915_GEM_DOMAIN_WC
)
3668 /* Flush and acquire obj->pages so that we are coherent through
3669 * direct access in memory with previous cached writes through
3670 * shmemfs and that our cache domain tracking remains valid.
3671 * For example, if the obj->filp was moved to swap without us
3672 * being notified and releasing the pages, we would mistakenly
3673 * continue to assume that the obj remained out of the CPU cached
3676 ret
= i915_gem_object_pin_pages(obj
);
3680 flush_write_domain(obj
, ~I915_GEM_DOMAIN_WC
);
3682 /* Serialise direct access to this object with the barriers for
3683 * coherent writes from the GPU, by effectively invalidating the
3684 * WC domain upon first access.
3686 if ((obj
->base
.read_domains
& I915_GEM_DOMAIN_WC
) == 0)
3689 /* It should now be out of any other write domains, and we can update
3690 * the domain values for our changes.
3692 GEM_BUG_ON((obj
->base
.write_domain
& ~I915_GEM_DOMAIN_WC
) != 0);
3693 obj
->base
.read_domains
|= I915_GEM_DOMAIN_WC
;
3695 obj
->base
.read_domains
= I915_GEM_DOMAIN_WC
;
3696 obj
->base
.write_domain
= I915_GEM_DOMAIN_WC
;
3697 obj
->mm
.dirty
= true;
3700 i915_gem_object_unpin_pages(obj
);
3705 * Moves a single object to the GTT read, and possibly write domain.
3706 * @obj: object to act on
3707 * @write: ask for write access or read only
3709 * This function returns when the move is complete, including waiting on
3713 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object
*obj
, bool write
)
3717 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
3719 ret
= i915_gem_object_wait(obj
,
3720 I915_WAIT_INTERRUPTIBLE
|
3722 (write
? I915_WAIT_ALL
: 0),
3723 MAX_SCHEDULE_TIMEOUT
,
3728 if (obj
->base
.write_domain
== I915_GEM_DOMAIN_GTT
)
3731 /* Flush and acquire obj->pages so that we are coherent through
3732 * direct access in memory with previous cached writes through
3733 * shmemfs and that our cache domain tracking remains valid.
3734 * For example, if the obj->filp was moved to swap without us
3735 * being notified and releasing the pages, we would mistakenly
3736 * continue to assume that the obj remained out of the CPU cached
3739 ret
= i915_gem_object_pin_pages(obj
);
3743 flush_write_domain(obj
, ~I915_GEM_DOMAIN_GTT
);
3745 /* Serialise direct access to this object with the barriers for
3746 * coherent writes from the GPU, by effectively invalidating the
3747 * GTT domain upon first access.
3749 if ((obj
->base
.read_domains
& I915_GEM_DOMAIN_GTT
) == 0)
3752 /* It should now be out of any other write domains, and we can update
3753 * the domain values for our changes.
3755 GEM_BUG_ON((obj
->base
.write_domain
& ~I915_GEM_DOMAIN_GTT
) != 0);
3756 obj
->base
.read_domains
|= I915_GEM_DOMAIN_GTT
;
3758 obj
->base
.read_domains
= I915_GEM_DOMAIN_GTT
;
3759 obj
->base
.write_domain
= I915_GEM_DOMAIN_GTT
;
3760 obj
->mm
.dirty
= true;
3763 i915_gem_object_unpin_pages(obj
);
3768 * Changes the cache-level of an object across all VMA.
3769 * @obj: object to act on
3770 * @cache_level: new cache level to set for the object
3772 * After this function returns, the object will be in the new cache-level
3773 * across all GTT and the contents of the backing storage will be coherent,
3774 * with respect to the new cache-level. In order to keep the backing storage
3775 * coherent for all users, we only allow a single cache level to be set
3776 * globally on the object and prevent it from being changed whilst the
3777 * hardware is reading from the object. That is if the object is currently
3778 * on the scanout it will be set to uncached (or equivalent display
3779 * cache coherency) and all non-MOCS GPU access will also be uncached so
3780 * that all direct access to the scanout remains coherent.
3782 int i915_gem_object_set_cache_level(struct drm_i915_gem_object
*obj
,
3783 enum i915_cache_level cache_level
)
3785 struct i915_vma
*vma
;
3788 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
3790 if (obj
->cache_level
== cache_level
)
3793 /* Inspect the list of currently bound VMA and unbind any that would
3794 * be invalid given the new cache-level. This is principally to
3795 * catch the issue of the CS prefetch crossing page boundaries and
3796 * reading an invalid PTE on older architectures.
3799 list_for_each_entry(vma
, &obj
->vma_list
, obj_link
) {
3800 if (!drm_mm_node_allocated(&vma
->node
))
3803 if (i915_vma_is_pinned(vma
)) {
3804 DRM_DEBUG("can not change the cache level of pinned objects\n");
3808 if (!i915_vma_is_closed(vma
) &&
3809 i915_gem_valid_gtt_space(vma
, cache_level
))
3812 ret
= i915_vma_unbind(vma
);
3816 /* As unbinding may affect other elements in the
3817 * obj->vma_list (due to side-effects from retiring
3818 * an active vma), play safe and restart the iterator.
3823 /* We can reuse the existing drm_mm nodes but need to change the
3824 * cache-level on the PTE. We could simply unbind them all and
3825 * rebind with the correct cache-level on next use. However since
3826 * we already have a valid slot, dma mapping, pages etc, we may as
3827 * rewrite the PTE in the belief that doing so tramples upon less
3828 * state and so involves less work.
3830 if (obj
->bind_count
) {
3831 /* Before we change the PTE, the GPU must not be accessing it.
3832 * If we wait upon the object, we know that all the bound
3833 * VMA are no longer active.
3835 ret
= i915_gem_object_wait(obj
,
3836 I915_WAIT_INTERRUPTIBLE
|
3839 MAX_SCHEDULE_TIMEOUT
,
3844 if (!HAS_LLC(to_i915(obj
->base
.dev
)) &&
3845 cache_level
!= I915_CACHE_NONE
) {
3846 /* Access to snoopable pages through the GTT is
3847 * incoherent and on some machines causes a hard
3848 * lockup. Relinquish the CPU mmaping to force
3849 * userspace to refault in the pages and we can
3850 * then double check if the GTT mapping is still
3851 * valid for that pointer access.
3853 i915_gem_release_mmap(obj
);
3855 /* As we no longer need a fence for GTT access,
3856 * we can relinquish it now (and so prevent having
3857 * to steal a fence from someone else on the next
3858 * fence request). Note GPU activity would have
3859 * dropped the fence as all snoopable access is
3860 * supposed to be linear.
3862 for_each_ggtt_vma(vma
, obj
) {
3863 ret
= i915_vma_put_fence(vma
);
3868 /* We either have incoherent backing store and
3869 * so no GTT access or the architecture is fully
3870 * coherent. In such cases, existing GTT mmaps
3871 * ignore the cache bit in the PTE and we can
3872 * rewrite it without confusing the GPU or having
3873 * to force userspace to fault back in its mmaps.
3877 list_for_each_entry(vma
, &obj
->vma_list
, obj_link
) {
3878 if (!drm_mm_node_allocated(&vma
->node
))
3881 ret
= i915_vma_bind(vma
, cache_level
, PIN_UPDATE
);
3887 list_for_each_entry(vma
, &obj
->vma_list
, obj_link
)
3888 vma
->node
.color
= cache_level
;
3889 i915_gem_object_set_cache_coherency(obj
, cache_level
);
3890 obj
->cache_dirty
= true; /* Always invalidate stale cachelines */
3895 int i915_gem_get_caching_ioctl(struct drm_device
*dev
, void *data
,
3896 struct drm_file
*file
)
3898 struct drm_i915_gem_caching
*args
= data
;
3899 struct drm_i915_gem_object
*obj
;
3903 obj
= i915_gem_object_lookup_rcu(file
, args
->handle
);
3909 switch (obj
->cache_level
) {
3910 case I915_CACHE_LLC
:
3911 case I915_CACHE_L3_LLC
:
3912 args
->caching
= I915_CACHING_CACHED
;
3916 args
->caching
= I915_CACHING_DISPLAY
;
3920 args
->caching
= I915_CACHING_NONE
;
3928 int i915_gem_set_caching_ioctl(struct drm_device
*dev
, void *data
,
3929 struct drm_file
*file
)
3931 struct drm_i915_private
*i915
= to_i915(dev
);
3932 struct drm_i915_gem_caching
*args
= data
;
3933 struct drm_i915_gem_object
*obj
;
3934 enum i915_cache_level level
;
3937 switch (args
->caching
) {
3938 case I915_CACHING_NONE
:
3939 level
= I915_CACHE_NONE
;
3941 case I915_CACHING_CACHED
:
3943 * Due to a HW issue on BXT A stepping, GPU stores via a
3944 * snooped mapping may leave stale data in a corresponding CPU
3945 * cacheline, whereas normally such cachelines would get
3948 if (!HAS_LLC(i915
) && !HAS_SNOOP(i915
))
3951 level
= I915_CACHE_LLC
;
3953 case I915_CACHING_DISPLAY
:
3954 level
= HAS_WT(i915
) ? I915_CACHE_WT
: I915_CACHE_NONE
;
3960 obj
= i915_gem_object_lookup(file
, args
->handle
);
3965 * The caching mode of proxy object is handled by its generator, and
3966 * not allowed to be changed by userspace.
3968 if (i915_gem_object_is_proxy(obj
)) {
3973 if (obj
->cache_level
== level
)
3976 ret
= i915_gem_object_wait(obj
,
3977 I915_WAIT_INTERRUPTIBLE
,
3978 MAX_SCHEDULE_TIMEOUT
,
3979 to_rps_client(file
));
3983 ret
= i915_mutex_lock_interruptible(dev
);
3987 ret
= i915_gem_object_set_cache_level(obj
, level
);
3988 mutex_unlock(&dev
->struct_mutex
);
3991 i915_gem_object_put(obj
);
3996 * Prepare buffer for display plane (scanout, cursors, etc).
3997 * Can be called from an uninterruptible phase (modesetting) and allows
3998 * any flushes to be pipelined (for pageflips).
4001 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object
*obj
,
4003 const struct i915_ggtt_view
*view
)
4005 struct i915_vma
*vma
;
4008 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
4010 /* Mark the global pin early so that we account for the
4011 * display coherency whilst setting up the cache domains.
4015 /* The display engine is not coherent with the LLC cache on gen6. As
4016 * a result, we make sure that the pinning that is about to occur is
4017 * done with uncached PTEs. This is lowest common denominator for all
4020 * However for gen6+, we could do better by using the GFDT bit instead
4021 * of uncaching, which would allow us to flush all the LLC-cached data
4022 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4024 ret
= i915_gem_object_set_cache_level(obj
,
4025 HAS_WT(to_i915(obj
->base
.dev
)) ?
4026 I915_CACHE_WT
: I915_CACHE_NONE
);
4029 goto err_unpin_global
;
4032 /* As the user may map the buffer once pinned in the display plane
4033 * (e.g. libkms for the bootup splash), we have to ensure that we
4034 * always use map_and_fenceable for all scanout buffers. However,
4035 * it may simply be too big to fit into mappable, in which case
4036 * put it anyway and hope that userspace can cope (but always first
4037 * try to preserve the existing ABI).
4039 vma
= ERR_PTR(-ENOSPC
);
4040 if (!view
|| view
->type
== I915_GGTT_VIEW_NORMAL
)
4041 vma
= i915_gem_object_ggtt_pin(obj
, view
, 0, alignment
,
4042 PIN_MAPPABLE
| PIN_NONBLOCK
);
4044 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
4047 /* Valleyview is definitely limited to scanning out the first
4048 * 512MiB. Lets presume this behaviour was inherited from the
4049 * g4x display engine and that all earlier gen are similarly
4050 * limited. Testing suggests that it is a little more
4051 * complicated than this. For example, Cherryview appears quite
4052 * happy to scanout from anywhere within its global aperture.
4055 if (HAS_GMCH_DISPLAY(i915
))
4056 flags
= PIN_MAPPABLE
;
4057 vma
= i915_gem_object_ggtt_pin(obj
, view
, 0, alignment
, flags
);
4060 goto err_unpin_global
;
4062 vma
->display_alignment
= max_t(u64
, vma
->display_alignment
, alignment
);
4064 /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
4065 __i915_gem_object_flush_for_display(obj
);
4066 intel_fb_obj_flush(obj
, ORIGIN_DIRTYFB
);
4068 /* It should now be out of any other write domains, and we can update
4069 * the domain values for our changes.
4071 obj
->base
.read_domains
|= I915_GEM_DOMAIN_GTT
;
4081 i915_gem_object_unpin_from_display_plane(struct i915_vma
*vma
)
4083 lockdep_assert_held(&vma
->vm
->i915
->drm
.struct_mutex
);
4085 if (WARN_ON(vma
->obj
->pin_global
== 0))
4088 if (--vma
->obj
->pin_global
== 0)
4089 vma
->display_alignment
= I915_GTT_MIN_ALIGNMENT
;
4091 /* Bump the LRU to try and avoid premature eviction whilst flipping */
4092 i915_gem_object_bump_inactive_ggtt(vma
->obj
);
4094 i915_vma_unpin(vma
);
4098 * Moves a single object to the CPU read, and possibly write domain.
4099 * @obj: object to act on
4100 * @write: requesting write or read-only access
4102 * This function returns when the move is complete, including waiting on
4106 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object
*obj
, bool write
)
4110 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
4112 ret
= i915_gem_object_wait(obj
,
4113 I915_WAIT_INTERRUPTIBLE
|
4115 (write
? I915_WAIT_ALL
: 0),
4116 MAX_SCHEDULE_TIMEOUT
,
4121 flush_write_domain(obj
, ~I915_GEM_DOMAIN_CPU
);
4123 /* Flush the CPU cache if it's still invalid. */
4124 if ((obj
->base
.read_domains
& I915_GEM_DOMAIN_CPU
) == 0) {
4125 i915_gem_clflush_object(obj
, I915_CLFLUSH_SYNC
);
4126 obj
->base
.read_domains
|= I915_GEM_DOMAIN_CPU
;
4129 /* It should now be out of any other write domains, and we can update
4130 * the domain values for our changes.
4132 GEM_BUG_ON(obj
->base
.write_domain
& ~I915_GEM_DOMAIN_CPU
);
4134 /* If we're writing through the CPU, then the GPU read domains will
4135 * need to be invalidated at next use.
4138 __start_cpu_write(obj
);
4143 /* Throttle our rendering by waiting until the ring has completed our requests
4144 * emitted over 20 msec ago.
4146 * Note that if we were to use the current jiffies each time around the loop,
4147 * we wouldn't escape the function with any frames outstanding if the time to
4148 * render a frame was over 20ms.
4150 * This should get us reasonable parallelism between CPU and GPU but also
4151 * relatively low latency when blocking on a particular request to finish.
4154 i915_gem_ring_throttle(struct drm_device
*dev
, struct drm_file
*file
)
4156 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4157 struct drm_i915_file_private
*file_priv
= file
->driver_priv
;
4158 unsigned long recent_enough
= jiffies
- DRM_I915_THROTTLE_JIFFIES
;
4159 struct drm_i915_gem_request
*request
, *target
= NULL
;
4162 /* ABI: return -EIO if already wedged */
4163 if (i915_terminally_wedged(&dev_priv
->gpu_error
))
4166 spin_lock(&file_priv
->mm
.lock
);
4167 list_for_each_entry(request
, &file_priv
->mm
.request_list
, client_link
) {
4168 if (time_after_eq(request
->emitted_jiffies
, recent_enough
))
4172 list_del(&target
->client_link
);
4173 target
->file_priv
= NULL
;
4179 i915_gem_request_get(target
);
4180 spin_unlock(&file_priv
->mm
.lock
);
4185 ret
= i915_wait_request(target
,
4186 I915_WAIT_INTERRUPTIBLE
,
4187 MAX_SCHEDULE_TIMEOUT
);
4188 i915_gem_request_put(target
);
4190 return ret
< 0 ? ret
: 0;
4194 i915_gem_object_ggtt_pin(struct drm_i915_gem_object
*obj
,
4195 const struct i915_ggtt_view
*view
,
4200 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
4201 struct i915_address_space
*vm
= &dev_priv
->ggtt
.base
;
4202 struct i915_vma
*vma
;
4205 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
4207 if (!view
&& flags
& PIN_MAPPABLE
) {
4208 /* If the required space is larger than the available
4209 * aperture, we will not able to find a slot for the
4210 * object and unbinding the object now will be in
4211 * vain. Worse, doing so may cause us to ping-pong
4212 * the object in and out of the Global GTT and
4213 * waste a lot of cycles under the mutex.
4215 if (obj
->base
.size
> dev_priv
->ggtt
.mappable_end
)
4216 return ERR_PTR(-E2BIG
);
4218 /* If NONBLOCK is set the caller is optimistically
4219 * trying to cache the full object within the mappable
4220 * aperture, and *must* have a fallback in place for
4221 * situations where we cannot bind the object. We
4222 * can be a little more lax here and use the fallback
4223 * more often to avoid costly migrations of ourselves
4224 * and other objects within the aperture.
4226 * Half-the-aperture is used as a simple heuristic.
4227 * More interesting would to do search for a free
4228 * block prior to making the commitment to unbind.
4229 * That caters for the self-harm case, and with a
4230 * little more heuristics (e.g. NOFAULT, NOEVICT)
4231 * we could try to minimise harm to others.
4233 if (flags
& PIN_NONBLOCK
&&
4234 obj
->base
.size
> dev_priv
->ggtt
.mappable_end
/ 2)
4235 return ERR_PTR(-ENOSPC
);
4238 vma
= i915_vma_instance(obj
, vm
, view
);
4239 if (unlikely(IS_ERR(vma
)))
4242 if (i915_vma_misplaced(vma
, size
, alignment
, flags
)) {
4243 if (flags
& PIN_NONBLOCK
) {
4244 if (i915_vma_is_pinned(vma
) || i915_vma_is_active(vma
))
4245 return ERR_PTR(-ENOSPC
);
4247 if (flags
& PIN_MAPPABLE
&&
4248 vma
->fence_size
> dev_priv
->ggtt
.mappable_end
/ 2)
4249 return ERR_PTR(-ENOSPC
);
4252 WARN(i915_vma_is_pinned(vma
),
4253 "bo is already pinned in ggtt with incorrect alignment:"
4254 " offset=%08x, req.alignment=%llx,"
4255 " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4256 i915_ggtt_offset(vma
), alignment
,
4257 !!(flags
& PIN_MAPPABLE
),
4258 i915_vma_is_map_and_fenceable(vma
));
4259 ret
= i915_vma_unbind(vma
);
4261 return ERR_PTR(ret
);
4264 ret
= i915_vma_pin(vma
, size
, alignment
, flags
| PIN_GLOBAL
);
4266 return ERR_PTR(ret
);
4271 static __always_inline
unsigned int __busy_read_flag(unsigned int id
)
4273 /* Note that we could alias engines in the execbuf API, but
4274 * that would be very unwise as it prevents userspace from
4275 * fine control over engine selection. Ahem.
4277 * This should be something like EXEC_MAX_ENGINE instead of
4280 BUILD_BUG_ON(I915_NUM_ENGINES
> 16);
4281 return 0x10000 << id
;
4284 static __always_inline
unsigned int __busy_write_id(unsigned int id
)
4286 /* The uABI guarantees an active writer is also amongst the read
4287 * engines. This would be true if we accessed the activity tracking
4288 * under the lock, but as we perform the lookup of the object and
4289 * its activity locklessly we can not guarantee that the last_write
4290 * being active implies that we have set the same engine flag from
4291 * last_read - hence we always set both read and write busy for
4294 return id
| __busy_read_flag(id
);
4297 static __always_inline
unsigned int
4298 __busy_set_if_active(const struct dma_fence
*fence
,
4299 unsigned int (*flag
)(unsigned int id
))
4301 struct drm_i915_gem_request
*rq
;
4303 /* We have to check the current hw status of the fence as the uABI
4304 * guarantees forward progress. We could rely on the idle worker
4305 * to eventually flush us, but to minimise latency just ask the
4308 * Note we only report on the status of native fences.
4310 if (!dma_fence_is_i915(fence
))
4313 /* opencode to_request() in order to avoid const warnings */
4314 rq
= container_of(fence
, struct drm_i915_gem_request
, fence
);
4315 if (i915_gem_request_completed(rq
))
4318 return flag(rq
->engine
->uabi_id
);
4321 static __always_inline
unsigned int
4322 busy_check_reader(const struct dma_fence
*fence
)
4324 return __busy_set_if_active(fence
, __busy_read_flag
);
4327 static __always_inline
unsigned int
4328 busy_check_writer(const struct dma_fence
*fence
)
4333 return __busy_set_if_active(fence
, __busy_write_id
);
4337 i915_gem_busy_ioctl(struct drm_device
*dev
, void *data
,
4338 struct drm_file
*file
)
4340 struct drm_i915_gem_busy
*args
= data
;
4341 struct drm_i915_gem_object
*obj
;
4342 struct reservation_object_list
*list
;
4348 obj
= i915_gem_object_lookup_rcu(file
, args
->handle
);
4352 /* A discrepancy here is that we do not report the status of
4353 * non-i915 fences, i.e. even though we may report the object as idle,
4354 * a call to set-domain may still stall waiting for foreign rendering.
4355 * This also means that wait-ioctl may report an object as busy,
4356 * where busy-ioctl considers it idle.
4358 * We trade the ability to warn of foreign fences to report on which
4359 * i915 engines are active for the object.
4361 * Alternatively, we can trade that extra information on read/write
4364 * !reservation_object_test_signaled_rcu(obj->resv, true);
4365 * to report the overall busyness. This is what the wait-ioctl does.
4369 seq
= raw_read_seqcount(&obj
->resv
->seq
);
4371 /* Translate the exclusive fence to the READ *and* WRITE engine */
4372 args
->busy
= busy_check_writer(rcu_dereference(obj
->resv
->fence_excl
));
4374 /* Translate shared fences to READ set of engines */
4375 list
= rcu_dereference(obj
->resv
->fence
);
4377 unsigned int shared_count
= list
->shared_count
, i
;
4379 for (i
= 0; i
< shared_count
; ++i
) {
4380 struct dma_fence
*fence
=
4381 rcu_dereference(list
->shared
[i
]);
4383 args
->busy
|= busy_check_reader(fence
);
4387 if (args
->busy
&& read_seqcount_retry(&obj
->resv
->seq
, seq
))
4397 i915_gem_throttle_ioctl(struct drm_device
*dev
, void *data
,
4398 struct drm_file
*file_priv
)
4400 return i915_gem_ring_throttle(dev
, file_priv
);
4404 i915_gem_madvise_ioctl(struct drm_device
*dev
, void *data
,
4405 struct drm_file
*file_priv
)
4407 struct drm_i915_private
*dev_priv
= to_i915(dev
);
4408 struct drm_i915_gem_madvise
*args
= data
;
4409 struct drm_i915_gem_object
*obj
;
4412 switch (args
->madv
) {
4413 case I915_MADV_DONTNEED
:
4414 case I915_MADV_WILLNEED
:
4420 obj
= i915_gem_object_lookup(file_priv
, args
->handle
);
4424 err
= mutex_lock_interruptible(&obj
->mm
.lock
);
4428 if (i915_gem_object_has_pages(obj
) &&
4429 i915_gem_object_is_tiled(obj
) &&
4430 dev_priv
->quirks
& QUIRK_PIN_SWIZZLED_PAGES
) {
4431 if (obj
->mm
.madv
== I915_MADV_WILLNEED
) {
4432 GEM_BUG_ON(!obj
->mm
.quirked
);
4433 __i915_gem_object_unpin_pages(obj
);
4434 obj
->mm
.quirked
= false;
4436 if (args
->madv
== I915_MADV_WILLNEED
) {
4437 GEM_BUG_ON(obj
->mm
.quirked
);
4438 __i915_gem_object_pin_pages(obj
);
4439 obj
->mm
.quirked
= true;
4443 if (obj
->mm
.madv
!= __I915_MADV_PURGED
)
4444 obj
->mm
.madv
= args
->madv
;
4446 /* if the object is no longer attached, discard its backing storage */
4447 if (obj
->mm
.madv
== I915_MADV_DONTNEED
&&
4448 !i915_gem_object_has_pages(obj
))
4449 i915_gem_object_truncate(obj
);
4451 args
->retained
= obj
->mm
.madv
!= __I915_MADV_PURGED
;
4452 mutex_unlock(&obj
->mm
.lock
);
4455 i915_gem_object_put(obj
);
4460 frontbuffer_retire(struct i915_gem_active
*active
,
4461 struct drm_i915_gem_request
*request
)
4463 struct drm_i915_gem_object
*obj
=
4464 container_of(active
, typeof(*obj
), frontbuffer_write
);
4466 intel_fb_obj_flush(obj
, ORIGIN_CS
);
4469 void i915_gem_object_init(struct drm_i915_gem_object
*obj
,
4470 const struct drm_i915_gem_object_ops
*ops
)
4472 mutex_init(&obj
->mm
.lock
);
4474 INIT_LIST_HEAD(&obj
->vma_list
);
4475 INIT_LIST_HEAD(&obj
->lut_list
);
4476 INIT_LIST_HEAD(&obj
->batch_pool_link
);
4480 reservation_object_init(&obj
->__builtin_resv
);
4481 obj
->resv
= &obj
->__builtin_resv
;
4483 obj
->frontbuffer_ggtt_origin
= ORIGIN_GTT
;
4484 init_request_active(&obj
->frontbuffer_write
, frontbuffer_retire
);
4486 obj
->mm
.madv
= I915_MADV_WILLNEED
;
4487 INIT_RADIX_TREE(&obj
->mm
.get_page
.radix
, GFP_KERNEL
| __GFP_NOWARN
);
4488 mutex_init(&obj
->mm
.get_page
.lock
);
4490 i915_gem_info_add_obj(to_i915(obj
->base
.dev
), obj
->base
.size
);
4493 static const struct drm_i915_gem_object_ops i915_gem_object_ops
= {
4494 .flags
= I915_GEM_OBJECT_HAS_STRUCT_PAGE
|
4495 I915_GEM_OBJECT_IS_SHRINKABLE
,
4497 .get_pages
= i915_gem_object_get_pages_gtt
,
4498 .put_pages
= i915_gem_object_put_pages_gtt
,
4500 .pwrite
= i915_gem_object_pwrite_gtt
,
4503 static int i915_gem_object_create_shmem(struct drm_device
*dev
,
4504 struct drm_gem_object
*obj
,
4507 struct drm_i915_private
*i915
= to_i915(dev
);
4508 unsigned long flags
= VM_NORESERVE
;
4511 drm_gem_private_object_init(dev
, obj
, size
);
4514 filp
= shmem_file_setup_with_mnt(i915
->mm
.gemfs
, "i915", size
,
4517 filp
= shmem_file_setup("i915", size
, flags
);
4520 return PTR_ERR(filp
);
4527 struct drm_i915_gem_object
*
4528 i915_gem_object_create(struct drm_i915_private
*dev_priv
, u64 size
)
4530 struct drm_i915_gem_object
*obj
;
4531 struct address_space
*mapping
;
4532 unsigned int cache_level
;
4536 /* There is a prevalence of the assumption that we fit the object's
4537 * page count inside a 32bit _signed_ variable. Let's document this and
4538 * catch if we ever need to fix it. In the meantime, if you do spot
4539 * such a local variable, please consider fixing!
4541 if (size
>> PAGE_SHIFT
> INT_MAX
)
4542 return ERR_PTR(-E2BIG
);
4544 if (overflows_type(size
, obj
->base
.size
))
4545 return ERR_PTR(-E2BIG
);
4547 obj
= i915_gem_object_alloc(dev_priv
);
4549 return ERR_PTR(-ENOMEM
);
4551 ret
= i915_gem_object_create_shmem(&dev_priv
->drm
, &obj
->base
, size
);
4555 mask
= GFP_HIGHUSER
| __GFP_RECLAIMABLE
;
4556 if (IS_I965GM(dev_priv
) || IS_I965G(dev_priv
)) {
4557 /* 965gm cannot relocate objects above 4GiB. */
4558 mask
&= ~__GFP_HIGHMEM
;
4559 mask
|= __GFP_DMA32
;
4562 mapping
= obj
->base
.filp
->f_mapping
;
4563 mapping_set_gfp_mask(mapping
, mask
);
4564 GEM_BUG_ON(!(mapping_gfp_mask(mapping
) & __GFP_RECLAIM
));
4566 i915_gem_object_init(obj
, &i915_gem_object_ops
);
4568 obj
->base
.write_domain
= I915_GEM_DOMAIN_CPU
;
4569 obj
->base
.read_domains
= I915_GEM_DOMAIN_CPU
;
4571 if (HAS_LLC(dev_priv
))
4572 /* On some devices, we can have the GPU use the LLC (the CPU
4573 * cache) for about a 10% performance improvement
4574 * compared to uncached. Graphics requests other than
4575 * display scanout are coherent with the CPU in
4576 * accessing this cache. This means in this mode we
4577 * don't need to clflush on the CPU side, and on the
4578 * GPU side we only need to flush internal caches to
4579 * get data visible to the CPU.
4581 * However, we maintain the display planes as UC, and so
4582 * need to rebind when first used as such.
4584 cache_level
= I915_CACHE_LLC
;
4586 cache_level
= I915_CACHE_NONE
;
4588 i915_gem_object_set_cache_coherency(obj
, cache_level
);
4590 trace_i915_gem_object_create(obj
);
4595 i915_gem_object_free(obj
);
4596 return ERR_PTR(ret
);
4599 static bool discard_backing_storage(struct drm_i915_gem_object
*obj
)
4601 /* If we are the last user of the backing storage (be it shmemfs
4602 * pages or stolen etc), we know that the pages are going to be
4603 * immediately released. In this case, we can then skip copying
4604 * back the contents from the GPU.
4607 if (obj
->mm
.madv
!= I915_MADV_WILLNEED
)
4610 if (obj
->base
.filp
== NULL
)
4613 /* At first glance, this looks racy, but then again so would be
4614 * userspace racing mmap against close. However, the first external
4615 * reference to the filp can only be obtained through the
4616 * i915_gem_mmap_ioctl() which safeguards us against the user
4617 * acquiring such a reference whilst we are in the middle of
4618 * freeing the object.
4620 return atomic_long_read(&obj
->base
.filp
->f_count
) == 1;
4623 static void __i915_gem_free_objects(struct drm_i915_private
*i915
,
4624 struct llist_node
*freed
)
4626 struct drm_i915_gem_object
*obj
, *on
;
4628 intel_runtime_pm_get(i915
);
4629 llist_for_each_entry_safe(obj
, on
, freed
, freed
) {
4630 struct i915_vma
*vma
, *vn
;
4632 trace_i915_gem_object_destroy(obj
);
4634 mutex_lock(&i915
->drm
.struct_mutex
);
4636 GEM_BUG_ON(i915_gem_object_is_active(obj
));
4637 list_for_each_entry_safe(vma
, vn
,
4638 &obj
->vma_list
, obj_link
) {
4639 GEM_BUG_ON(i915_vma_is_active(vma
));
4640 vma
->flags
&= ~I915_VMA_PIN_MASK
;
4641 i915_vma_close(vma
);
4643 GEM_BUG_ON(!list_empty(&obj
->vma_list
));
4644 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj
->vma_tree
));
4646 /* This serializes freeing with the shrinker. Since the free
4647 * is delayed, first by RCU then by the workqueue, we want the
4648 * shrinker to be able to free pages of unreferenced objects,
4649 * or else we may oom whilst there are plenty of deferred
4652 if (i915_gem_object_has_pages(obj
)) {
4653 spin_lock(&i915
->mm
.obj_lock
);
4654 list_del_init(&obj
->mm
.link
);
4655 spin_unlock(&i915
->mm
.obj_lock
);
4658 mutex_unlock(&i915
->drm
.struct_mutex
);
4660 GEM_BUG_ON(obj
->bind_count
);
4661 GEM_BUG_ON(obj
->userfault_count
);
4662 GEM_BUG_ON(atomic_read(&obj
->frontbuffer_bits
));
4663 GEM_BUG_ON(!list_empty(&obj
->lut_list
));
4665 if (obj
->ops
->release
)
4666 obj
->ops
->release(obj
);
4668 if (WARN_ON(i915_gem_object_has_pinned_pages(obj
)))
4669 atomic_set(&obj
->mm
.pages_pin_count
, 0);
4670 __i915_gem_object_put_pages(obj
, I915_MM_NORMAL
);
4671 GEM_BUG_ON(i915_gem_object_has_pages(obj
));
4673 if (obj
->base
.import_attach
)
4674 drm_prime_gem_destroy(&obj
->base
, NULL
);
4676 reservation_object_fini(&obj
->__builtin_resv
);
4677 drm_gem_object_release(&obj
->base
);
4678 i915_gem_info_remove_obj(i915
, obj
->base
.size
);
4681 i915_gem_object_free(obj
);
4686 intel_runtime_pm_put(i915
);
4689 static void i915_gem_flush_free_objects(struct drm_i915_private
*i915
)
4691 struct llist_node
*freed
;
4693 /* Free the oldest, most stale object to keep the free_list short */
4695 if (!llist_empty(&i915
->mm
.free_list
)) { /* quick test for hotpath */
4696 /* Only one consumer of llist_del_first() allowed */
4697 spin_lock(&i915
->mm
.free_lock
);
4698 freed
= llist_del_first(&i915
->mm
.free_list
);
4699 spin_unlock(&i915
->mm
.free_lock
);
4701 if (unlikely(freed
)) {
4703 __i915_gem_free_objects(i915
, freed
);
4707 static void __i915_gem_free_work(struct work_struct
*work
)
4709 struct drm_i915_private
*i915
=
4710 container_of(work
, struct drm_i915_private
, mm
.free_work
);
4711 struct llist_node
*freed
;
4713 /* All file-owned VMA should have been released by this point through
4714 * i915_gem_close_object(), or earlier by i915_gem_context_close().
4715 * However, the object may also be bound into the global GTT (e.g.
4716 * older GPUs without per-process support, or for direct access through
4717 * the GTT either for the user or for scanout). Those VMA still need to
4721 spin_lock(&i915
->mm
.free_lock
);
4722 while ((freed
= llist_del_all(&i915
->mm
.free_list
))) {
4723 spin_unlock(&i915
->mm
.free_lock
);
4725 __i915_gem_free_objects(i915
, freed
);
4729 spin_lock(&i915
->mm
.free_lock
);
4731 spin_unlock(&i915
->mm
.free_lock
);
4734 static void __i915_gem_free_object_rcu(struct rcu_head
*head
)
4736 struct drm_i915_gem_object
*obj
=
4737 container_of(head
, typeof(*obj
), rcu
);
4738 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
4740 /* We can't simply use call_rcu() from i915_gem_free_object()
4741 * as we need to block whilst unbinding, and the call_rcu
4742 * task may be called from softirq context. So we take a
4743 * detour through a worker.
4745 if (llist_add(&obj
->freed
, &i915
->mm
.free_list
))
4746 schedule_work(&i915
->mm
.free_work
);
4749 void i915_gem_free_object(struct drm_gem_object
*gem_obj
)
4751 struct drm_i915_gem_object
*obj
= to_intel_bo(gem_obj
);
4753 if (obj
->mm
.quirked
)
4754 __i915_gem_object_unpin_pages(obj
);
4756 if (discard_backing_storage(obj
))
4757 obj
->mm
.madv
= I915_MADV_DONTNEED
;
4759 /* Before we free the object, make sure any pure RCU-only
4760 * read-side critical sections are complete, e.g.
4761 * i915_gem_busy_ioctl(). For the corresponding synchronized
4762 * lookup see i915_gem_object_lookup_rcu().
4764 call_rcu(&obj
->rcu
, __i915_gem_free_object_rcu
);
4767 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object
*obj
)
4769 lockdep_assert_held(&obj
->base
.dev
->struct_mutex
);
4771 if (!i915_gem_object_has_active_reference(obj
) &&
4772 i915_gem_object_is_active(obj
))
4773 i915_gem_object_set_active_reference(obj
);
4775 i915_gem_object_put(obj
);
4778 static void assert_kernel_context_is_current(struct drm_i915_private
*i915
)
4780 struct i915_gem_context
*kernel_context
= i915
->kernel_context
;
4781 struct intel_engine_cs
*engine
;
4782 enum intel_engine_id id
;
4784 for_each_engine(engine
, i915
, id
) {
4785 GEM_BUG_ON(__i915_gem_active_peek(&engine
->timeline
->last_request
));
4786 GEM_BUG_ON(engine
->last_retired_context
!= kernel_context
);
4790 void i915_gem_sanitize(struct drm_i915_private
*i915
)
4792 if (i915_terminally_wedged(&i915
->gpu_error
)) {
4793 mutex_lock(&i915
->drm
.struct_mutex
);
4794 i915_gem_unset_wedged(i915
);
4795 mutex_unlock(&i915
->drm
.struct_mutex
);
4799 * If we inherit context state from the BIOS or earlier occupants
4800 * of the GPU, the GPU may be in an inconsistent state when we
4801 * try to take over. The only way to remove the earlier state
4802 * is by resetting. However, resetting on earlier gen is tricky as
4803 * it may impact the display and we are uncertain about the stability
4804 * of the reset, so this could be applied to even earlier gen.
4806 if (INTEL_GEN(i915
) >= 5) {
4807 int reset
= intel_gpu_reset(i915
, ALL_ENGINES
);
4808 WARN_ON(reset
&& reset
!= -ENODEV
);
4812 int i915_gem_suspend(struct drm_i915_private
*dev_priv
)
4814 struct drm_device
*dev
= &dev_priv
->drm
;
4817 intel_runtime_pm_get(dev_priv
);
4818 intel_suspend_gt_powersave(dev_priv
);
4820 mutex_lock(&dev
->struct_mutex
);
4822 /* We have to flush all the executing contexts to main memory so
4823 * that they can saved in the hibernation image. To ensure the last
4824 * context image is coherent, we have to switch away from it. That
4825 * leaves the dev_priv->kernel_context still active when
4826 * we actually suspend, and its image in memory may not match the GPU
4827 * state. Fortunately, the kernel_context is disposable and we do
4828 * not rely on its state.
4830 if (!i915_terminally_wedged(&dev_priv
->gpu_error
)) {
4831 ret
= i915_gem_switch_to_kernel_context(dev_priv
);
4835 ret
= i915_gem_wait_for_idle(dev_priv
,
4836 I915_WAIT_INTERRUPTIBLE
|
4838 if (ret
&& ret
!= -EIO
)
4841 assert_kernel_context_is_current(dev_priv
);
4843 i915_gem_contexts_lost(dev_priv
);
4844 mutex_unlock(&dev
->struct_mutex
);
4846 intel_guc_suspend(dev_priv
);
4848 cancel_delayed_work_sync(&dev_priv
->gpu_error
.hangcheck_work
);
4849 cancel_delayed_work_sync(&dev_priv
->gt
.retire_work
);
4851 /* As the idle_work is rearming if it detects a race, play safe and
4852 * repeat the flush until it is definitely idle.
4854 drain_delayed_work(&dev_priv
->gt
.idle_work
);
4856 /* Assert that we sucessfully flushed all the work and
4857 * reset the GPU back to its idle, low power state.
4859 WARN_ON(dev_priv
->gt
.awake
);
4860 if (WARN_ON(!intel_engines_are_idle(dev_priv
)))
4861 i915_gem_set_wedged(dev_priv
); /* no hope, discard everything */
4864 * Neither the BIOS, ourselves or any other kernel
4865 * expects the system to be in execlists mode on startup,
4866 * so we need to reset the GPU back to legacy mode. And the only
4867 * known way to disable logical contexts is through a GPU reset.
4869 * So in order to leave the system in a known default configuration,
4870 * always reset the GPU upon unload and suspend. Afterwards we then
4871 * clean up the GEM state tracking, flushing off the requests and
4872 * leaving the system in a known idle state.
4874 * Note that is of the upmost importance that the GPU is idle and
4875 * all stray writes are flushed *before* we dismantle the backing
4876 * storage for the pinned objects.
4878 * However, since we are uncertain that resetting the GPU on older
4879 * machines is a good idea, we don't - just in case it leaves the
4880 * machine in an unusable condition.
4882 i915_gem_sanitize(dev_priv
);
4884 intel_runtime_pm_put(dev_priv
);
4888 mutex_unlock(&dev
->struct_mutex
);
4889 intel_runtime_pm_put(dev_priv
);
4893 void i915_gem_resume(struct drm_i915_private
*i915
)
4895 WARN_ON(i915
->gt
.awake
);
4897 mutex_lock(&i915
->drm
.struct_mutex
);
4898 intel_uncore_forcewake_get(i915
, FORCEWAKE_ALL
);
4900 i915_gem_restore_gtt_mappings(i915
);
4901 i915_gem_restore_fences(i915
);
4904 * As we didn't flush the kernel context before suspend, we cannot
4905 * guarantee that the context image is complete. So let's just reset
4906 * it and start again.
4908 i915
->gt
.resume(i915
);
4910 if (i915_gem_init_hw(i915
))
4913 intel_guc_resume(i915
);
4915 /* Always reload a context for powersaving. */
4916 if (i915_gem_switch_to_kernel_context(i915
))
4920 intel_uncore_forcewake_put(i915
, FORCEWAKE_ALL
);
4921 mutex_unlock(&i915
->drm
.struct_mutex
);
4925 if (!i915_terminally_wedged(&i915
->gpu_error
)) {
4926 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
4927 i915_gem_set_wedged(i915
);
4932 void i915_gem_init_swizzling(struct drm_i915_private
*dev_priv
)
4934 if (INTEL_GEN(dev_priv
) < 5 ||
4935 dev_priv
->mm
.bit_6_swizzle_x
== I915_BIT_6_SWIZZLE_NONE
)
4938 I915_WRITE(DISP_ARB_CTL
, I915_READ(DISP_ARB_CTL
) |
4939 DISP_TILE_SURFACE_SWIZZLING
);
4941 if (IS_GEN5(dev_priv
))
4944 I915_WRITE(TILECTL
, I915_READ(TILECTL
) | TILECTL_SWZCTL
);
4945 if (IS_GEN6(dev_priv
))
4946 I915_WRITE(ARB_MODE
, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB
));
4947 else if (IS_GEN7(dev_priv
))
4948 I915_WRITE(ARB_MODE
, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB
));
4949 else if (IS_GEN8(dev_priv
))
4950 I915_WRITE(GAMTARBMODE
, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW
));
4955 static void init_unused_ring(struct drm_i915_private
*dev_priv
, u32 base
)
4957 I915_WRITE(RING_CTL(base
), 0);
4958 I915_WRITE(RING_HEAD(base
), 0);
4959 I915_WRITE(RING_TAIL(base
), 0);
4960 I915_WRITE(RING_START(base
), 0);
4963 static void init_unused_rings(struct drm_i915_private
*dev_priv
)
4965 if (IS_I830(dev_priv
)) {
4966 init_unused_ring(dev_priv
, PRB1_BASE
);
4967 init_unused_ring(dev_priv
, SRB0_BASE
);
4968 init_unused_ring(dev_priv
, SRB1_BASE
);
4969 init_unused_ring(dev_priv
, SRB2_BASE
);
4970 init_unused_ring(dev_priv
, SRB3_BASE
);
4971 } else if (IS_GEN2(dev_priv
)) {
4972 init_unused_ring(dev_priv
, SRB0_BASE
);
4973 init_unused_ring(dev_priv
, SRB1_BASE
);
4974 } else if (IS_GEN3(dev_priv
)) {
4975 init_unused_ring(dev_priv
, PRB1_BASE
);
4976 init_unused_ring(dev_priv
, PRB2_BASE
);
4980 static int __i915_gem_restart_engines(void *data
)
4982 struct drm_i915_private
*i915
= data
;
4983 struct intel_engine_cs
*engine
;
4984 enum intel_engine_id id
;
4987 for_each_engine(engine
, i915
, id
) {
4988 err
= engine
->init_hw(engine
);
4996 int i915_gem_init_hw(struct drm_i915_private
*dev_priv
)
5000 dev_priv
->gt
.last_init_time
= ktime_get();
5002 /* Double layer security blanket, see i915_gem_init() */
5003 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
5005 if (HAS_EDRAM(dev_priv
) && INTEL_GEN(dev_priv
) < 9)
5006 I915_WRITE(HSW_IDICR
, I915_READ(HSW_IDICR
) | IDIHASHMSK(0xf));
5008 if (IS_HASWELL(dev_priv
))
5009 I915_WRITE(MI_PREDICATE_RESULT_2
, IS_HSW_GT3(dev_priv
) ?
5010 LOWER_SLICE_ENABLED
: LOWER_SLICE_DISABLED
);
5012 if (HAS_PCH_NOP(dev_priv
)) {
5013 if (IS_IVYBRIDGE(dev_priv
)) {
5014 u32 temp
= I915_READ(GEN7_MSG_CTL
);
5015 temp
&= ~(WAIT_FOR_PCH_FLR_ACK
| WAIT_FOR_PCH_RESET_ACK
);
5016 I915_WRITE(GEN7_MSG_CTL
, temp
);
5017 } else if (INTEL_GEN(dev_priv
) >= 7) {
5018 u32 temp
= I915_READ(HSW_NDE_RSTWRN_OPT
);
5019 temp
&= ~RESET_PCH_HANDSHAKE_ENABLE
;
5020 I915_WRITE(HSW_NDE_RSTWRN_OPT
, temp
);
5024 i915_gem_init_swizzling(dev_priv
);
5027 * At least 830 can leave some of the unused rings
5028 * "active" (ie. head != tail) after resume which
5029 * will prevent c3 entry. Makes sure all unused rings
5032 init_unused_rings(dev_priv
);
5034 BUG_ON(!dev_priv
->kernel_context
);
5035 if (i915_terminally_wedged(&dev_priv
->gpu_error
)) {
5040 ret
= i915_ppgtt_init_hw(dev_priv
);
5042 DRM_ERROR("PPGTT enable HW failed %d\n", ret
);
5046 /* We can't enable contexts until all firmware is loaded */
5047 ret
= intel_uc_init_hw(dev_priv
);
5051 intel_mocs_init_l3cc_table(dev_priv
);
5053 /* Only when the HW is re-initialised, can we replay the requests */
5054 ret
= __i915_gem_restart_engines(dev_priv
);
5056 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5060 static int __intel_engines_record_defaults(struct drm_i915_private
*i915
)
5062 struct i915_gem_context
*ctx
;
5063 struct intel_engine_cs
*engine
;
5064 enum intel_engine_id id
;
5068 * As we reset the gpu during very early sanitisation, the current
5069 * register state on the GPU should reflect its defaults values.
5070 * We load a context onto the hw (with restore-inhibit), then switch
5071 * over to a second context to save that default register state. We
5072 * can then prime every new context with that state so they all start
5073 * from the same default HW values.
5076 ctx
= i915_gem_context_create_kernel(i915
, 0);
5078 return PTR_ERR(ctx
);
5080 for_each_engine(engine
, i915
, id
) {
5081 struct drm_i915_gem_request
*rq
;
5083 rq
= i915_gem_request_alloc(engine
, ctx
);
5090 if (engine
->init_context
)
5091 err
= engine
->init_context(rq
);
5093 __i915_add_request(rq
, true);
5098 err
= i915_gem_switch_to_kernel_context(i915
);
5102 err
= i915_gem_wait_for_idle(i915
, I915_WAIT_LOCKED
);
5106 assert_kernel_context_is_current(i915
);
5108 for_each_engine(engine
, i915
, id
) {
5109 struct i915_vma
*state
;
5111 state
= ctx
->engine
[id
].state
;
5116 * As we will hold a reference to the logical state, it will
5117 * not be torn down with the context, and importantly the
5118 * object will hold onto its vma (making it possible for a
5119 * stray GTT write to corrupt our defaults). Unmap the vma
5120 * from the GTT to prevent such accidents and reclaim the
5123 err
= i915_vma_unbind(state
);
5127 err
= i915_gem_object_set_to_cpu_domain(state
->obj
, false);
5131 engine
->default_state
= i915_gem_object_get(state
->obj
);
5134 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM
)) {
5135 unsigned int found
= intel_engines_has_context_isolation(i915
);
5138 * Make sure that classes with multiple engine instances all
5139 * share the same basic configuration.
5141 for_each_engine(engine
, i915
, id
) {
5142 unsigned int bit
= BIT(engine
->uabi_class
);
5143 unsigned int expected
= engine
->default_state
? bit
: 0;
5145 if ((found
& bit
) != expected
) {
5146 DRM_ERROR("mismatching default context state for class %d on engine %s\n",
5147 engine
->uabi_class
, engine
->name
);
5153 i915_gem_context_set_closed(ctx
);
5154 i915_gem_context_put(ctx
);
5159 * If we have to abandon now, we expect the engines to be idle
5160 * and ready to be torn-down. First try to flush any remaining
5161 * request, ensure we are pointing at the kernel context and
5164 if (WARN_ON(i915_gem_switch_to_kernel_context(i915
)))
5167 if (WARN_ON(i915_gem_wait_for_idle(i915
, I915_WAIT_LOCKED
)))
5170 i915_gem_contexts_lost(i915
);
5174 int i915_gem_init(struct drm_i915_private
*dev_priv
)
5179 * We need to fallback to 4K pages since gvt gtt handling doesn't
5180 * support huge page entries - we will need to check either hypervisor
5181 * mm can support huge guest page or just do emulation in gvt.
5183 if (intel_vgpu_active(dev_priv
))
5184 mkwrite_device_info(dev_priv
)->page_sizes
=
5185 I915_GTT_PAGE_SIZE_4K
;
5187 dev_priv
->mm
.unordered_timeline
= dma_fence_context_alloc(1);
5189 if (HAS_LOGICAL_RING_CONTEXTS(dev_priv
)) {
5190 dev_priv
->gt
.resume
= intel_lr_context_resume
;
5191 dev_priv
->gt
.cleanup_engine
= intel_logical_ring_cleanup
;
5193 dev_priv
->gt
.resume
= intel_legacy_submission_resume
;
5194 dev_priv
->gt
.cleanup_engine
= intel_engine_cleanup
;
5197 ret
= i915_gem_init_userptr(dev_priv
);
5201 ret
= intel_uc_init_wq(dev_priv
);
5205 /* This is just a security blanket to placate dragons.
5206 * On some systems, we very sporadically observe that the first TLBs
5207 * used by the CS may be stale, despite us poking the TLB reset. If
5208 * we hold the forcewake during initialisation these problems
5209 * just magically go away.
5211 mutex_lock(&dev_priv
->drm
.struct_mutex
);
5212 intel_uncore_forcewake_get(dev_priv
, FORCEWAKE_ALL
);
5214 ret
= i915_gem_init_ggtt(dev_priv
);
5216 GEM_BUG_ON(ret
== -EIO
);
5220 ret
= i915_gem_contexts_init(dev_priv
);
5222 GEM_BUG_ON(ret
== -EIO
);
5226 ret
= intel_engines_init(dev_priv
);
5228 GEM_BUG_ON(ret
== -EIO
);
5232 intel_init_gt_powersave(dev_priv
);
5234 ret
= intel_uc_init(dev_priv
);
5238 ret
= i915_gem_init_hw(dev_priv
);
5243 * Despite its name intel_init_clock_gating applies both display
5244 * clock gating workarounds; GT mmio workarounds and the occasional
5245 * GT power context workaround. Worse, sometimes it includes a context
5246 * register workaround which we need to apply before we record the
5247 * default HW state for all contexts.
5249 * FIXME: break up the workarounds and apply them at the right time!
5251 intel_init_clock_gating(dev_priv
);
5253 ret
= __intel_engines_record_defaults(dev_priv
);
5257 if (i915_inject_load_failure()) {
5262 if (i915_inject_load_failure()) {
5267 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5268 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
5273 * Unwinding is complicated by that we want to handle -EIO to mean
5274 * disable GPU submission but keep KMS alive. We want to mark the
5275 * HW as irrevisibly wedged, but keep enough state around that the
5276 * driver doesn't explode during runtime.
5279 i915_gem_wait_for_idle(dev_priv
, I915_WAIT_LOCKED
);
5280 i915_gem_contexts_lost(dev_priv
);
5281 intel_uc_fini_hw(dev_priv
);
5283 intel_uc_fini(dev_priv
);
5286 intel_cleanup_gt_powersave(dev_priv
);
5287 i915_gem_cleanup_engines(dev_priv
);
5291 i915_gem_contexts_fini(dev_priv
);
5294 intel_uncore_forcewake_put(dev_priv
, FORCEWAKE_ALL
);
5295 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
5297 intel_uc_fini_wq(dev_priv
);
5300 i915_gem_cleanup_userptr(dev_priv
);
5304 * Allow engine initialisation to fail by marking the GPU as
5305 * wedged. But we only want to do this where the GPU is angry,
5306 * for all other failure, such as an allocation failure, bail.
5308 if (!i915_terminally_wedged(&dev_priv
->gpu_error
)) {
5309 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5310 i915_gem_set_wedged(dev_priv
);
5315 i915_gem_drain_freed_objects(dev_priv
);
5319 void i915_gem_init_mmio(struct drm_i915_private
*i915
)
5321 i915_gem_sanitize(i915
);
5325 i915_gem_cleanup_engines(struct drm_i915_private
*dev_priv
)
5327 struct intel_engine_cs
*engine
;
5328 enum intel_engine_id id
;
5330 for_each_engine(engine
, dev_priv
, id
)
5331 dev_priv
->gt
.cleanup_engine(engine
);
5335 i915_gem_load_init_fences(struct drm_i915_private
*dev_priv
)
5339 if (INTEL_INFO(dev_priv
)->gen
>= 7 && !IS_VALLEYVIEW(dev_priv
) &&
5340 !IS_CHERRYVIEW(dev_priv
))
5341 dev_priv
->num_fence_regs
= 32;
5342 else if (INTEL_INFO(dev_priv
)->gen
>= 4 ||
5343 IS_I945G(dev_priv
) || IS_I945GM(dev_priv
) ||
5344 IS_G33(dev_priv
) || IS_PINEVIEW(dev_priv
))
5345 dev_priv
->num_fence_regs
= 16;
5347 dev_priv
->num_fence_regs
= 8;
5349 if (intel_vgpu_active(dev_priv
))
5350 dev_priv
->num_fence_regs
=
5351 I915_READ(vgtif_reg(avail_rs
.fence_num
));
5353 /* Initialize fence registers to zero */
5354 for (i
= 0; i
< dev_priv
->num_fence_regs
; i
++) {
5355 struct drm_i915_fence_reg
*fence
= &dev_priv
->fence_regs
[i
];
5357 fence
->i915
= dev_priv
;
5359 list_add_tail(&fence
->link
, &dev_priv
->mm
.fence_list
);
5361 i915_gem_restore_fences(dev_priv
);
5363 i915_gem_detect_bit_6_swizzle(dev_priv
);
5366 static void i915_gem_init__mm(struct drm_i915_private
*i915
)
5368 spin_lock_init(&i915
->mm
.object_stat_lock
);
5369 spin_lock_init(&i915
->mm
.obj_lock
);
5370 spin_lock_init(&i915
->mm
.free_lock
);
5372 init_llist_head(&i915
->mm
.free_list
);
5374 INIT_LIST_HEAD(&i915
->mm
.unbound_list
);
5375 INIT_LIST_HEAD(&i915
->mm
.bound_list
);
5376 INIT_LIST_HEAD(&i915
->mm
.fence_list
);
5377 INIT_LIST_HEAD(&i915
->mm
.userfault_list
);
5379 INIT_WORK(&i915
->mm
.free_work
, __i915_gem_free_work
);
5383 i915_gem_load_init(struct drm_i915_private
*dev_priv
)
5387 dev_priv
->objects
= KMEM_CACHE(drm_i915_gem_object
, SLAB_HWCACHE_ALIGN
);
5388 if (!dev_priv
->objects
)
5391 dev_priv
->vmas
= KMEM_CACHE(i915_vma
, SLAB_HWCACHE_ALIGN
);
5392 if (!dev_priv
->vmas
)
5395 dev_priv
->luts
= KMEM_CACHE(i915_lut_handle
, 0);
5396 if (!dev_priv
->luts
)
5399 dev_priv
->requests
= KMEM_CACHE(drm_i915_gem_request
,
5400 SLAB_HWCACHE_ALIGN
|
5401 SLAB_RECLAIM_ACCOUNT
|
5402 SLAB_TYPESAFE_BY_RCU
);
5403 if (!dev_priv
->requests
)
5406 dev_priv
->dependencies
= KMEM_CACHE(i915_dependency
,
5407 SLAB_HWCACHE_ALIGN
|
5408 SLAB_RECLAIM_ACCOUNT
);
5409 if (!dev_priv
->dependencies
)
5412 dev_priv
->priorities
= KMEM_CACHE(i915_priolist
, SLAB_HWCACHE_ALIGN
);
5413 if (!dev_priv
->priorities
)
5414 goto err_dependencies
;
5416 mutex_lock(&dev_priv
->drm
.struct_mutex
);
5417 INIT_LIST_HEAD(&dev_priv
->gt
.timelines
);
5418 err
= i915_gem_timeline_init__global(dev_priv
);
5419 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
5421 goto err_priorities
;
5423 i915_gem_init__mm(dev_priv
);
5425 INIT_DELAYED_WORK(&dev_priv
->gt
.retire_work
,
5426 i915_gem_retire_work_handler
);
5427 INIT_DELAYED_WORK(&dev_priv
->gt
.idle_work
,
5428 i915_gem_idle_work_handler
);
5429 init_waitqueue_head(&dev_priv
->gpu_error
.wait_queue
);
5430 init_waitqueue_head(&dev_priv
->gpu_error
.reset_queue
);
5432 atomic_set(&dev_priv
->mm
.bsd_engine_dispatch_index
, 0);
5434 spin_lock_init(&dev_priv
->fb_tracking
.lock
);
5436 err
= i915_gemfs_init(dev_priv
);
5438 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err
);
5443 kmem_cache_destroy(dev_priv
->priorities
);
5445 kmem_cache_destroy(dev_priv
->dependencies
);
5447 kmem_cache_destroy(dev_priv
->requests
);
5449 kmem_cache_destroy(dev_priv
->luts
);
5451 kmem_cache_destroy(dev_priv
->vmas
);
5453 kmem_cache_destroy(dev_priv
->objects
);
5458 void i915_gem_load_cleanup(struct drm_i915_private
*dev_priv
)
5460 i915_gem_drain_freed_objects(dev_priv
);
5461 WARN_ON(!llist_empty(&dev_priv
->mm
.free_list
));
5462 WARN_ON(dev_priv
->mm
.object_count
);
5464 mutex_lock(&dev_priv
->drm
.struct_mutex
);
5465 i915_gem_timeline_fini(&dev_priv
->gt
.global_timeline
);
5466 WARN_ON(!list_empty(&dev_priv
->gt
.timelines
));
5467 mutex_unlock(&dev_priv
->drm
.struct_mutex
);
5469 kmem_cache_destroy(dev_priv
->priorities
);
5470 kmem_cache_destroy(dev_priv
->dependencies
);
5471 kmem_cache_destroy(dev_priv
->requests
);
5472 kmem_cache_destroy(dev_priv
->luts
);
5473 kmem_cache_destroy(dev_priv
->vmas
);
5474 kmem_cache_destroy(dev_priv
->objects
);
5476 /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5479 i915_gemfs_fini(dev_priv
);
5482 int i915_gem_freeze(struct drm_i915_private
*dev_priv
)
5484 /* Discard all purgeable objects, let userspace recover those as
5485 * required after resuming.
5487 i915_gem_shrink_all(dev_priv
);
5492 int i915_gem_freeze_late(struct drm_i915_private
*dev_priv
)
5494 struct drm_i915_gem_object
*obj
;
5495 struct list_head
*phases
[] = {
5496 &dev_priv
->mm
.unbound_list
,
5497 &dev_priv
->mm
.bound_list
,
5501 /* Called just before we write the hibernation image.
5503 * We need to update the domain tracking to reflect that the CPU
5504 * will be accessing all the pages to create and restore from the
5505 * hibernation, and so upon restoration those pages will be in the
5508 * To make sure the hibernation image contains the latest state,
5509 * we update that state just before writing out the image.
5511 * To try and reduce the hibernation image, we manually shrink
5512 * the objects as well, see i915_gem_freeze()
5515 i915_gem_shrink(dev_priv
, -1UL, NULL
, I915_SHRINK_UNBOUND
);
5516 i915_gem_drain_freed_objects(dev_priv
);
5518 spin_lock(&dev_priv
->mm
.obj_lock
);
5519 for (p
= phases
; *p
; p
++) {
5520 list_for_each_entry(obj
, *p
, mm
.link
)
5521 __start_cpu_write(obj
);
5523 spin_unlock(&dev_priv
->mm
.obj_lock
);
5528 void i915_gem_release(struct drm_device
*dev
, struct drm_file
*file
)
5530 struct drm_i915_file_private
*file_priv
= file
->driver_priv
;
5531 struct drm_i915_gem_request
*request
;
5533 /* Clean up our request list when the client is going away, so that
5534 * later retire_requests won't dereference our soon-to-be-gone
5537 spin_lock(&file_priv
->mm
.lock
);
5538 list_for_each_entry(request
, &file_priv
->mm
.request_list
, client_link
)
5539 request
->file_priv
= NULL
;
5540 spin_unlock(&file_priv
->mm
.lock
);
5543 int i915_gem_open(struct drm_i915_private
*i915
, struct drm_file
*file
)
5545 struct drm_i915_file_private
*file_priv
;
5550 file_priv
= kzalloc(sizeof(*file_priv
), GFP_KERNEL
);
5554 file
->driver_priv
= file_priv
;
5555 file_priv
->dev_priv
= i915
;
5556 file_priv
->file
= file
;
5558 spin_lock_init(&file_priv
->mm
.lock
);
5559 INIT_LIST_HEAD(&file_priv
->mm
.request_list
);
5561 file_priv
->bsd_engine
= -1;
5563 ret
= i915_gem_context_open(i915
, file
);
5571 * i915_gem_track_fb - update frontbuffer tracking
5572 * @old: current GEM buffer for the frontbuffer slots
5573 * @new: new GEM buffer for the frontbuffer slots
5574 * @frontbuffer_bits: bitmask of frontbuffer slots
5576 * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5577 * from @old and setting them in @new. Both @old and @new can be NULL.
5579 void i915_gem_track_fb(struct drm_i915_gem_object
*old
,
5580 struct drm_i915_gem_object
*new,
5581 unsigned frontbuffer_bits
)
5583 /* Control of individual bits within the mask are guarded by
5584 * the owning plane->mutex, i.e. we can never see concurrent
5585 * manipulation of individual bits. But since the bitfield as a whole
5586 * is updated using RMW, we need to use atomics in order to update
5589 BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE
* I915_MAX_PIPES
>
5590 sizeof(atomic_t
) * BITS_PER_BYTE
);
5593 WARN_ON(!(atomic_read(&old
->frontbuffer_bits
) & frontbuffer_bits
));
5594 atomic_andnot(frontbuffer_bits
, &old
->frontbuffer_bits
);
5598 WARN_ON(atomic_read(&new->frontbuffer_bits
) & frontbuffer_bits
);
5599 atomic_or(frontbuffer_bits
, &new->frontbuffer_bits
);
5603 /* Allocate a new GEM object and fill it with the supplied data */
5604 struct drm_i915_gem_object
*
5605 i915_gem_object_create_from_data(struct drm_i915_private
*dev_priv
,
5606 const void *data
, size_t size
)
5608 struct drm_i915_gem_object
*obj
;
5613 obj
= i915_gem_object_create(dev_priv
, round_up(size
, PAGE_SIZE
));
5617 GEM_BUG_ON(obj
->base
.write_domain
!= I915_GEM_DOMAIN_CPU
);
5619 file
= obj
->base
.filp
;
5622 unsigned int len
= min_t(typeof(size
), size
, PAGE_SIZE
);
5624 void *pgdata
, *vaddr
;
5626 err
= pagecache_write_begin(file
, file
->f_mapping
,
5633 memcpy(vaddr
, data
, len
);
5636 err
= pagecache_write_end(file
, file
->f_mapping
,
5650 i915_gem_object_put(obj
);
5651 return ERR_PTR(err
);
5654 struct scatterlist
*
5655 i915_gem_object_get_sg(struct drm_i915_gem_object
*obj
,
5657 unsigned int *offset
)
5659 struct i915_gem_object_page_iter
*iter
= &obj
->mm
.get_page
;
5660 struct scatterlist
*sg
;
5661 unsigned int idx
, count
;
5664 GEM_BUG_ON(n
>= obj
->base
.size
>> PAGE_SHIFT
);
5665 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj
));
5667 /* As we iterate forward through the sg, we record each entry in a
5668 * radixtree for quick repeated (backwards) lookups. If we have seen
5669 * this index previously, we will have an entry for it.
5671 * Initial lookup is O(N), but this is amortized to O(1) for
5672 * sequential page access (where each new request is consecutive
5673 * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5674 * i.e. O(1) with a large constant!
5676 if (n
< READ_ONCE(iter
->sg_idx
))
5679 mutex_lock(&iter
->lock
);
5681 /* We prefer to reuse the last sg so that repeated lookup of this
5682 * (or the subsequent) sg are fast - comparing against the last
5683 * sg is faster than going through the radixtree.
5688 count
= __sg_page_count(sg
);
5690 while (idx
+ count
<= n
) {
5691 unsigned long exception
, i
;
5694 /* If we cannot allocate and insert this entry, or the
5695 * individual pages from this range, cancel updating the
5696 * sg_idx so that on this lookup we are forced to linearly
5697 * scan onwards, but on future lookups we will try the
5698 * insertion again (in which case we need to be careful of
5699 * the error return reporting that we have already inserted
5702 ret
= radix_tree_insert(&iter
->radix
, idx
, sg
);
5703 if (ret
&& ret
!= -EEXIST
)
5707 RADIX_TREE_EXCEPTIONAL_ENTRY
|
5708 idx
<< RADIX_TREE_EXCEPTIONAL_SHIFT
;
5709 for (i
= 1; i
< count
; i
++) {
5710 ret
= radix_tree_insert(&iter
->radix
, idx
+ i
,
5712 if (ret
&& ret
!= -EEXIST
)
5717 sg
= ____sg_next(sg
);
5718 count
= __sg_page_count(sg
);
5725 mutex_unlock(&iter
->lock
);
5727 if (unlikely(n
< idx
)) /* insertion completed by another thread */
5730 /* In case we failed to insert the entry into the radixtree, we need
5731 * to look beyond the current sg.
5733 while (idx
+ count
<= n
) {
5735 sg
= ____sg_next(sg
);
5736 count
= __sg_page_count(sg
);
5745 sg
= radix_tree_lookup(&iter
->radix
, n
);
5748 /* If this index is in the middle of multi-page sg entry,
5749 * the radixtree will contain an exceptional entry that points
5750 * to the start of that range. We will return the pointer to
5751 * the base page and the offset of this page within the
5755 if (unlikely(radix_tree_exception(sg
))) {
5756 unsigned long base
=
5757 (unsigned long)sg
>> RADIX_TREE_EXCEPTIONAL_SHIFT
;
5759 sg
= radix_tree_lookup(&iter
->radix
, base
);
5771 i915_gem_object_get_page(struct drm_i915_gem_object
*obj
, unsigned int n
)
5773 struct scatterlist
*sg
;
5774 unsigned int offset
;
5776 GEM_BUG_ON(!i915_gem_object_has_struct_page(obj
));
5778 sg
= i915_gem_object_get_sg(obj
, n
, &offset
);
5779 return nth_page(sg_page(sg
), offset
);
5782 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5784 i915_gem_object_get_dirty_page(struct drm_i915_gem_object
*obj
,
5789 page
= i915_gem_object_get_page(obj
, n
);
5791 set_page_dirty(page
);
5797 i915_gem_object_get_dma_address(struct drm_i915_gem_object
*obj
,
5800 struct scatterlist
*sg
;
5801 unsigned int offset
;
5803 sg
= i915_gem_object_get_sg(obj
, n
, &offset
);
5804 return sg_dma_address(sg
) + (offset
<< PAGE_SHIFT
);
5807 int i915_gem_object_attach_phys(struct drm_i915_gem_object
*obj
, int align
)
5809 struct sg_table
*pages
;
5812 if (align
> obj
->base
.size
)
5815 if (obj
->ops
== &i915_gem_phys_ops
)
5818 if (obj
->ops
!= &i915_gem_object_ops
)
5821 err
= i915_gem_object_unbind(obj
);
5825 mutex_lock(&obj
->mm
.lock
);
5827 if (obj
->mm
.madv
!= I915_MADV_WILLNEED
) {
5832 if (obj
->mm
.quirked
) {
5837 if (obj
->mm
.mapping
) {
5842 pages
= fetch_and_zero(&obj
->mm
.pages
);
5844 struct drm_i915_private
*i915
= to_i915(obj
->base
.dev
);
5846 __i915_gem_object_reset_page_iter(obj
);
5848 spin_lock(&i915
->mm
.obj_lock
);
5849 list_del(&obj
->mm
.link
);
5850 spin_unlock(&i915
->mm
.obj_lock
);
5853 obj
->ops
= &i915_gem_phys_ops
;
5855 err
= ____i915_gem_object_get_pages(obj
);
5859 /* Perma-pin (until release) the physical set of pages */
5860 __i915_gem_object_pin_pages(obj
);
5862 if (!IS_ERR_OR_NULL(pages
))
5863 i915_gem_object_ops
.put_pages(obj
, pages
);
5864 mutex_unlock(&obj
->mm
.lock
);
5868 obj
->ops
= &i915_gem_object_ops
;
5869 obj
->mm
.pages
= pages
;
5871 mutex_unlock(&obj
->mm
.lock
);
5875 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5876 #include "selftests/scatterlist.c"
5877 #include "selftests/mock_gem_device.c"
5878 #include "selftests/huge_gem_object.c"
5879 #include "selftests/huge_pages.c"
5880 #include "selftests/i915_gem_object.c"
5881 #include "selftests/i915_gem_coherency.c"