2 * Copyright © 2008,2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/sync_file.h>
32 #include <linux/uaccess.h>
35 #include <drm/drm_syncobj.h>
36 #include <drm/i915_drm.h>
39 #include "i915_gem_clflush.h"
40 #include "i915_trace.h"
41 #include "intel_drv.h"
42 #include "intel_frontbuffer.h"
48 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
51 #define __EXEC_OBJECT_HAS_REF BIT(31)
52 #define __EXEC_OBJECT_HAS_PIN BIT(30)
53 #define __EXEC_OBJECT_HAS_FENCE BIT(29)
54 #define __EXEC_OBJECT_NEEDS_MAP BIT(28)
55 #define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
56 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
57 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
59 #define __EXEC_HAS_RELOC BIT(31)
60 #define __EXEC_VALIDATED BIT(30)
61 #define __EXEC_INTERNAL_FLAGS (~0u << 30)
62 #define UPDATE PIN_OFFSET_FIXED
64 #define BATCH_OFFSET_BIAS (256*1024)
66 #define __I915_EXEC_ILLEGAL_FLAGS \
67 (__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
70 * DOC: User command execution
72 * Userspace submits commands to be executed on the GPU as an instruction
73 * stream within a GEM object we call a batchbuffer. This instructions may
74 * refer to other GEM objects containing auxiliary state such as kernels,
75 * samplers, render targets and even secondary batchbuffers. Userspace does
76 * not know where in the GPU memory these objects reside and so before the
77 * batchbuffer is passed to the GPU for execution, those addresses in the
78 * batchbuffer and auxiliary objects are updated. This is known as relocation,
79 * or patching. To try and avoid having to relocate each object on the next
80 * execution, userspace is told the location of those objects in this pass,
81 * but this remains just a hint as the kernel may choose a new location for
82 * any object in the future.
84 * Processing an execbuf ioctl is conceptually split up into a few phases.
86 * 1. Validation - Ensure all the pointers, handles and flags are valid.
87 * 2. Reservation - Assign GPU address space for every object
88 * 3. Relocation - Update any addresses to point to the final locations
89 * 4. Serialisation - Order the request with respect to its dependencies
90 * 5. Construction - Construct a request to execute the batchbuffer
91 * 6. Submission (at some point in the future execution)
93 * Reserving resources for the execbuf is the most complicated phase. We
94 * neither want to have to migrate the object in the address space, nor do
95 * we want to have to update any relocations pointing to this object. Ideally,
96 * we want to leave the object where it is and for all the existing relocations
97 * to match. If the object is given a new address, or if userspace thinks the
98 * object is elsewhere, we have to parse all the relocation entries and update
99 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
100 * all the target addresses in all of its objects match the value in the
101 * relocation entries and that they all match the presumed offsets given by the
102 * list of execbuffer objects. Using this knowledge, we know that if we haven't
103 * moved any buffers, all the relocation entries are valid and we can skip
104 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
105 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
107 * The addresses written in the objects must match the corresponding
108 * reloc.presumed_offset which in turn must match the corresponding
111 * Any render targets written to in the batch must be flagged with
114 * To avoid stalling, execobject.offset should match the current
115 * address of that object within the active context.
117 * The reservation is done is multiple phases. First we try and keep any
118 * object already bound in its current location - so as long as meets the
119 * constraints imposed by the new execbuffer. Any object left unbound after the
120 * first pass is then fitted into any available idle space. If an object does
121 * not fit, all objects are removed from the reservation and the process rerun
122 * after sorting the objects into a priority order (more difficult to fit
123 * objects are tried first). Failing that, the entire VM is cleared and we try
124 * to fit the execbuf once last time before concluding that it simply will not
127 * A small complication to all of this is that we allow userspace not only to
128 * specify an alignment and a size for the object in the address space, but
129 * we also allow userspace to specify the exact offset. This objects are
130 * simpler to place (the location is known a priori) all we have to do is make
131 * sure the space is available.
133 * Once all the objects are in place, patching up the buried pointers to point
134 * to the final locations is a fairly simple job of walking over the relocation
135 * entry arrays, looking up the right address and rewriting the value into
136 * the object. Simple! ... The relocation entries are stored in user memory
137 * and so to access them we have to copy them into a local buffer. That copy
138 * has to avoid taking any pagefaults as they may lead back to a GEM object
139 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
140 * the relocation into multiple passes. First we try to do everything within an
141 * atomic context (avoid the pagefaults) which requires that we never wait. If
142 * we detect that we may wait, or if we need to fault, then we have to fallback
143 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
144 * bells yet?) Dropping the mutex means that we lose all the state we have
145 * built up so far for the execbuf and we must reset any global data. However,
146 * we do leave the objects pinned in their final locations - which is a
147 * potential issue for concurrent execbufs. Once we have left the mutex, we can
148 * allocate and copy all the relocation entries into a large array at our
149 * leisure, reacquire the mutex, reclaim all the objects and other state and
150 * then proceed to update any incorrect addresses with the objects.
152 * As we process the relocation entries, we maintain a record of whether the
153 * object is being written to. Using NORELOC, we expect userspace to provide
154 * this information instead. We also check whether we can skip the relocation
155 * by comparing the expected value inside the relocation entry with the target's
156 * final address. If they differ, we have to map the current object and rewrite
157 * the 4 or 8 byte pointer within.
159 * Serialising an execbuf is quite simple according to the rules of the GEM
160 * ABI. Execution within each context is ordered by the order of submission.
161 * Writes to any GEM object are in order of submission and are exclusive. Reads
162 * from a GEM object are unordered with respect to other reads, but ordered by
163 * writes. A write submitted after a read cannot occur before the read, and
164 * similarly any read submitted after a write cannot occur before the write.
165 * Writes are ordered between engines such that only one write occurs at any
166 * time (completing any reads beforehand) - using semaphores where available
167 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
168 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
169 * reads before starting, and any read (either using set-domain or pread) must
170 * flush all GPU writes before starting. (Note we only employ a barrier before,
171 * we currently rely on userspace not concurrently starting a new execution
172 * whilst reading or writing to an object. This may be an advantage or not
173 * depending on how much you trust userspace not to shoot themselves in the
174 * foot.) Serialisation may just result in the request being inserted into
175 * a DAG awaiting its turn, but most simple is to wait on the CPU until
176 * all dependencies are resolved.
178 * After all of that, is just a matter of closing the request and handing it to
179 * the hardware (well, leaving it in a queue to be executed). However, we also
180 * offer the ability for batchbuffers to be run with elevated privileges so
181 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
182 * Before any batch is given extra privileges we first must check that it
183 * contains no nefarious instructions, we check that each instruction is from
184 * our whitelist and all registers are also from an allowed list. We first
185 * copy the user's batchbuffer to a shadow (so that the user doesn't have
186 * access to it, either by the CPU or GPU as we scan it) and then parse each
187 * instruction. If everything is ok, we set a flag telling the hardware to run
188 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
191 struct i915_execbuffer
{
192 struct drm_i915_private
*i915
; /** i915 backpointer */
193 struct drm_file
*file
; /** per-file lookup tables and limits */
194 struct drm_i915_gem_execbuffer2
*args
; /** ioctl parameters */
195 struct drm_i915_gem_exec_object2
*exec
; /** ioctl execobj[] */
196 struct i915_vma
**vma
;
199 struct intel_engine_cs
*engine
; /** engine to queue the request to */
200 struct i915_gem_context
*ctx
; /** context for building the request */
201 struct i915_address_space
*vm
; /** GTT and vma for the request */
203 struct drm_i915_gem_request
*request
; /** our request to build */
204 struct i915_vma
*batch
; /** identity of the batch obj/vma */
206 /** actual size of execobj[] as we may extend it for the cmdparser */
207 unsigned int buffer_count
;
209 /** list of vma not yet bound during reservation phase */
210 struct list_head unbound
;
212 /** list of vma that have execobj.relocation_count */
213 struct list_head relocs
;
216 * Track the most recently used object for relocations, as we
217 * frequently have to perform multiple relocations within the same
221 struct drm_mm_node node
; /** temporary GTT binding */
222 unsigned long vaddr
; /** Current kmap address */
223 unsigned long page
; /** Currently mapped page index */
224 unsigned int gen
; /** Cached value of INTEL_GEN */
225 bool use_64bit_reloc
: 1;
228 bool needs_unfenced
: 1;
230 struct drm_i915_gem_request
*rq
;
232 unsigned int rq_size
;
235 u64 invalid_flags
; /** Set of execobj.flags that are invalid */
236 u32 context_flags
; /** Set of execobj.flags to insert from the ctx */
238 u32 batch_start_offset
; /** Location within object of batch */
239 u32 batch_len
; /** Length of batch within object */
240 u32 batch_flags
; /** Flags composed for emit_bb_start() */
243 * Indicate either the size of the hastable used to resolve
244 * relocation handles, or if negative that we are using a direct
245 * index into the execobj[].
248 struct hlist_head
*buckets
; /** ht for relocation handles */
251 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
254 * Used to convert any address to canonical form.
255 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
256 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
257 * addresses to be in a canonical form:
258 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
259 * canonical form [63:48] == [47]."
261 #define GEN8_HIGH_ADDRESS_BIT 47
262 static inline u64
gen8_canonical_addr(u64 address
)
264 return sign_extend64(address
, GEN8_HIGH_ADDRESS_BIT
);
267 static inline u64
gen8_noncanonical_addr(u64 address
)
269 return address
& GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT
, 0);
272 static inline bool eb_use_cmdparser(const struct i915_execbuffer
*eb
)
274 return intel_engine_needs_cmd_parser(eb
->engine
) && eb
->batch_len
;
277 static int eb_create(struct i915_execbuffer
*eb
)
279 if (!(eb
->args
->flags
& I915_EXEC_HANDLE_LUT
)) {
280 unsigned int size
= 1 + ilog2(eb
->buffer_count
);
283 * Without a 1:1 association between relocation handles and
284 * the execobject[] index, we instead create a hashtable.
285 * We size it dynamically based on available memory, starting
286 * first with 1:1 assocative hash and scaling back until
287 * the allocation succeeds.
289 * Later on we use a positive lut_size to indicate we are
290 * using this hashtable, and a negative value to indicate a
296 /* While we can still reduce the allocation size, don't
297 * raise a warning and allow the allocation to fail.
298 * On the last pass though, we want to try as hard
299 * as possible to perform the allocation and warn
304 flags
|= __GFP_NORETRY
| __GFP_NOWARN
;
306 eb
->buckets
= kzalloc(sizeof(struct hlist_head
) << size
,
317 eb
->lut_size
= -eb
->buffer_count
;
324 eb_vma_misplaced(const struct drm_i915_gem_exec_object2
*entry
,
325 const struct i915_vma
*vma
,
328 if (vma
->node
.size
< entry
->pad_to_size
)
331 if (entry
->alignment
&& !IS_ALIGNED(vma
->node
.start
, entry
->alignment
))
334 if (flags
& EXEC_OBJECT_PINNED
&&
335 vma
->node
.start
!= entry
->offset
)
338 if (flags
& __EXEC_OBJECT_NEEDS_BIAS
&&
339 vma
->node
.start
< BATCH_OFFSET_BIAS
)
342 if (!(flags
& EXEC_OBJECT_SUPPORTS_48B_ADDRESS
) &&
343 (vma
->node
.start
+ vma
->node
.size
- 1) >> 32)
346 if (flags
& __EXEC_OBJECT_NEEDS_MAP
&&
347 !i915_vma_is_map_and_fenceable(vma
))
354 eb_pin_vma(struct i915_execbuffer
*eb
,
355 const struct drm_i915_gem_exec_object2
*entry
,
356 struct i915_vma
*vma
)
358 unsigned int exec_flags
= *vma
->exec_flags
;
362 pin_flags
= vma
->node
.start
;
364 pin_flags
= entry
->offset
& PIN_OFFSET_MASK
;
366 pin_flags
|= PIN_USER
| PIN_NOEVICT
| PIN_OFFSET_FIXED
;
367 if (unlikely(exec_flags
& EXEC_OBJECT_NEEDS_GTT
))
368 pin_flags
|= PIN_GLOBAL
;
370 if (unlikely(i915_vma_pin(vma
, 0, 0, pin_flags
)))
373 if (unlikely(exec_flags
& EXEC_OBJECT_NEEDS_FENCE
)) {
374 if (unlikely(i915_vma_pin_fence(vma
))) {
380 exec_flags
|= __EXEC_OBJECT_HAS_FENCE
;
383 *vma
->exec_flags
= exec_flags
| __EXEC_OBJECT_HAS_PIN
;
384 return !eb_vma_misplaced(entry
, vma
, exec_flags
);
387 static inline void __eb_unreserve_vma(struct i915_vma
*vma
, unsigned int flags
)
389 GEM_BUG_ON(!(flags
& __EXEC_OBJECT_HAS_PIN
));
391 if (unlikely(flags
& __EXEC_OBJECT_HAS_FENCE
))
392 __i915_vma_unpin_fence(vma
);
394 __i915_vma_unpin(vma
);
398 eb_unreserve_vma(struct i915_vma
*vma
, unsigned int *flags
)
400 if (!(*flags
& __EXEC_OBJECT_HAS_PIN
))
403 __eb_unreserve_vma(vma
, *flags
);
404 *flags
&= ~__EXEC_OBJECT_RESERVED
;
408 eb_validate_vma(struct i915_execbuffer
*eb
,
409 struct drm_i915_gem_exec_object2
*entry
,
410 struct i915_vma
*vma
)
412 if (unlikely(entry
->flags
& eb
->invalid_flags
))
415 if (unlikely(entry
->alignment
&& !is_power_of_2(entry
->alignment
)))
419 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
420 * any non-page-aligned or non-canonical addresses.
422 if (unlikely(entry
->flags
& EXEC_OBJECT_PINNED
&&
423 entry
->offset
!= gen8_canonical_addr(entry
->offset
& PAGE_MASK
)))
426 /* pad_to_size was once a reserved field, so sanitize it */
427 if (entry
->flags
& EXEC_OBJECT_PAD_TO_SIZE
) {
428 if (unlikely(offset_in_page(entry
->pad_to_size
)))
431 entry
->pad_to_size
= 0;
434 if (unlikely(vma
->exec_flags
)) {
435 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
436 entry
->handle
, (int)(entry
- eb
->exec
));
441 * From drm_mm perspective address space is continuous,
442 * so from this point we're always using non-canonical
445 entry
->offset
= gen8_noncanonical_addr(entry
->offset
);
447 if (!eb
->reloc_cache
.has_fence
) {
448 entry
->flags
&= ~EXEC_OBJECT_NEEDS_FENCE
;
450 if ((entry
->flags
& EXEC_OBJECT_NEEDS_FENCE
||
451 eb
->reloc_cache
.needs_unfenced
) &&
452 i915_gem_object_is_tiled(vma
->obj
))
453 entry
->flags
|= EXEC_OBJECT_NEEDS_GTT
| __EXEC_OBJECT_NEEDS_MAP
;
456 if (!(entry
->flags
& EXEC_OBJECT_PINNED
))
457 entry
->flags
|= eb
->context_flags
;
463 eb_add_vma(struct i915_execbuffer
*eb
, unsigned int i
, struct i915_vma
*vma
)
465 struct drm_i915_gem_exec_object2
*entry
= &eb
->exec
[i
];
468 GEM_BUG_ON(i915_vma_is_closed(vma
));
470 if (!(eb
->args
->flags
& __EXEC_VALIDATED
)) {
471 err
= eb_validate_vma(eb
, entry
, vma
);
476 if (eb
->lut_size
> 0) {
477 vma
->exec_handle
= entry
->handle
;
478 hlist_add_head(&vma
->exec_node
,
479 &eb
->buckets
[hash_32(entry
->handle
,
483 if (entry
->relocation_count
)
484 list_add_tail(&vma
->reloc_link
, &eb
->relocs
);
487 * Stash a pointer from the vma to execobj, so we can query its flags,
488 * size, alignment etc as provided by the user. Also we stash a pointer
489 * to the vma inside the execobj so that we can use a direct lookup
490 * to find the right target VMA when doing relocations.
493 eb
->flags
[i
] = entry
->flags
;
494 vma
->exec_flags
= &eb
->flags
[i
];
497 if (eb_pin_vma(eb
, entry
, vma
)) {
498 if (entry
->offset
!= vma
->node
.start
) {
499 entry
->offset
= vma
->node
.start
| UPDATE
;
500 eb
->args
->flags
|= __EXEC_HAS_RELOC
;
503 eb_unreserve_vma(vma
, vma
->exec_flags
);
505 list_add_tail(&vma
->exec_link
, &eb
->unbound
);
506 if (drm_mm_node_allocated(&vma
->node
))
507 err
= i915_vma_unbind(vma
);
509 vma
->exec_flags
= NULL
;
514 static inline int use_cpu_reloc(const struct reloc_cache
*cache
,
515 const struct drm_i915_gem_object
*obj
)
517 if (!i915_gem_object_has_struct_page(obj
))
520 if (DBG_FORCE_RELOC
== FORCE_CPU_RELOC
)
523 if (DBG_FORCE_RELOC
== FORCE_GTT_RELOC
)
526 return (cache
->has_llc
||
528 obj
->cache_level
!= I915_CACHE_NONE
);
531 static int eb_reserve_vma(const struct i915_execbuffer
*eb
,
532 struct i915_vma
*vma
)
534 struct drm_i915_gem_exec_object2
*entry
= exec_entry(eb
, vma
);
535 unsigned int exec_flags
= *vma
->exec_flags
;
539 pin_flags
= PIN_USER
| PIN_NONBLOCK
;
540 if (exec_flags
& EXEC_OBJECT_NEEDS_GTT
)
541 pin_flags
|= PIN_GLOBAL
;
544 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
545 * limit address to the first 4GBs for unflagged objects.
547 if (!(exec_flags
& EXEC_OBJECT_SUPPORTS_48B_ADDRESS
))
548 pin_flags
|= PIN_ZONE_4G
;
550 if (exec_flags
& __EXEC_OBJECT_NEEDS_MAP
)
551 pin_flags
|= PIN_MAPPABLE
;
553 if (exec_flags
& EXEC_OBJECT_PINNED
) {
554 pin_flags
|= entry
->offset
| PIN_OFFSET_FIXED
;
555 pin_flags
&= ~PIN_NONBLOCK
; /* force overlapping checks */
556 } else if (exec_flags
& __EXEC_OBJECT_NEEDS_BIAS
) {
557 pin_flags
|= BATCH_OFFSET_BIAS
| PIN_OFFSET_BIAS
;
560 err
= i915_vma_pin(vma
,
561 entry
->pad_to_size
, entry
->alignment
,
566 if (entry
->offset
!= vma
->node
.start
) {
567 entry
->offset
= vma
->node
.start
| UPDATE
;
568 eb
->args
->flags
|= __EXEC_HAS_RELOC
;
571 if (unlikely(exec_flags
& EXEC_OBJECT_NEEDS_FENCE
)) {
572 err
= i915_vma_pin_fence(vma
);
579 exec_flags
|= __EXEC_OBJECT_HAS_FENCE
;
582 *vma
->exec_flags
= exec_flags
| __EXEC_OBJECT_HAS_PIN
;
583 GEM_BUG_ON(eb_vma_misplaced(entry
, vma
, exec_flags
));
588 static int eb_reserve(struct i915_execbuffer
*eb
)
590 const unsigned int count
= eb
->buffer_count
;
591 struct list_head last
;
592 struct i915_vma
*vma
;
593 unsigned int i
, pass
;
597 * Attempt to pin all of the buffers into the GTT.
598 * This is done in 3 phases:
600 * 1a. Unbind all objects that do not match the GTT constraints for
601 * the execbuffer (fenceable, mappable, alignment etc).
602 * 1b. Increment pin count for already bound objects.
603 * 2. Bind new objects.
604 * 3. Decrement pin count.
606 * This avoid unnecessary unbinding of later objects in order to make
607 * room for the earlier objects *unless* we need to defragment.
613 list_for_each_entry(vma
, &eb
->unbound
, exec_link
) {
614 err
= eb_reserve_vma(eb
, vma
);
621 /* Resort *all* the objects into priority order */
622 INIT_LIST_HEAD(&eb
->unbound
);
623 INIT_LIST_HEAD(&last
);
624 for (i
= 0; i
< count
; i
++) {
625 unsigned int flags
= eb
->flags
[i
];
626 struct i915_vma
*vma
= eb
->vma
[i
];
628 if (flags
& EXEC_OBJECT_PINNED
&&
629 flags
& __EXEC_OBJECT_HAS_PIN
)
632 eb_unreserve_vma(vma
, &eb
->flags
[i
]);
634 if (flags
& EXEC_OBJECT_PINNED
)
635 list_add(&vma
->exec_link
, &eb
->unbound
);
636 else if (flags
& __EXEC_OBJECT_NEEDS_MAP
)
637 list_add_tail(&vma
->exec_link
, &eb
->unbound
);
639 list_add_tail(&vma
->exec_link
, &last
);
641 list_splice_tail(&last
, &eb
->unbound
);
648 /* Too fragmented, unbind everything and retry */
649 err
= i915_gem_evict_vm(eb
->vm
);
660 static unsigned int eb_batch_index(const struct i915_execbuffer
*eb
)
662 if (eb
->args
->flags
& I915_EXEC_BATCH_FIRST
)
665 return eb
->buffer_count
- 1;
668 static int eb_select_context(struct i915_execbuffer
*eb
)
670 struct i915_gem_context
*ctx
;
672 ctx
= i915_gem_context_lookup(eb
->file
->driver_priv
, eb
->args
->rsvd1
);
677 eb
->vm
= ctx
->ppgtt
? &ctx
->ppgtt
->base
: &eb
->i915
->ggtt
.base
;
679 eb
->context_flags
= 0;
680 if (ctx
->flags
& CONTEXT_NO_ZEROMAP
)
681 eb
->context_flags
|= __EXEC_OBJECT_NEEDS_BIAS
;
686 static int eb_lookup_vmas(struct i915_execbuffer
*eb
)
688 struct radix_tree_root
*handles_vma
= &eb
->ctx
->handles_vma
;
689 struct drm_i915_gem_object
*obj
;
693 if (unlikely(i915_gem_context_is_closed(eb
->ctx
)))
696 if (unlikely(i915_gem_context_is_banned(eb
->ctx
)))
699 INIT_LIST_HEAD(&eb
->relocs
);
700 INIT_LIST_HEAD(&eb
->unbound
);
702 for (i
= 0; i
< eb
->buffer_count
; i
++) {
703 u32 handle
= eb
->exec
[i
].handle
;
704 struct i915_lut_handle
*lut
;
705 struct i915_vma
*vma
;
707 vma
= radix_tree_lookup(handles_vma
, handle
);
711 obj
= i915_gem_object_lookup(eb
->file
, handle
);
712 if (unlikely(!obj
)) {
717 vma
= i915_vma_instance(obj
, eb
->vm
, NULL
);
718 if (unlikely(IS_ERR(vma
))) {
723 lut
= kmem_cache_alloc(eb
->i915
->luts
, GFP_KERNEL
);
724 if (unlikely(!lut
)) {
729 err
= radix_tree_insert(handles_vma
, handle
, vma
);
731 kmem_cache_free(eb
->i915
->luts
, lut
);
735 /* transfer ref to ctx */
737 list_add(&lut
->obj_link
, &obj
->lut_list
);
738 list_add(&lut
->ctx_link
, &eb
->ctx
->handles_list
);
740 lut
->handle
= handle
;
743 err
= eb_add_vma(eb
, i
, vma
);
747 GEM_BUG_ON(vma
!= eb
->vma
[i
]);
748 GEM_BUG_ON(vma
->exec_flags
!= &eb
->flags
[i
]);
751 /* take note of the batch buffer before we might reorder the lists */
752 i
= eb_batch_index(eb
);
753 eb
->batch
= eb
->vma
[i
];
754 GEM_BUG_ON(eb
->batch
->exec_flags
!= &eb
->flags
[i
]);
757 * SNA is doing fancy tricks with compressing batch buffers, which leads
758 * to negative relocation deltas. Usually that works out ok since the
759 * relocate address is still positive, except when the batch is placed
760 * very low in the GTT. Ensure this doesn't happen.
762 * Note that actual hangs have only been observed on gen7, but for
763 * paranoia do it everywhere.
765 if (!(eb
->flags
[i
] & EXEC_OBJECT_PINNED
))
766 eb
->flags
[i
] |= __EXEC_OBJECT_NEEDS_BIAS
;
767 if (eb
->reloc_cache
.has_fence
)
768 eb
->flags
[i
] |= EXEC_OBJECT_NEEDS_FENCE
;
770 eb
->args
->flags
|= __EXEC_VALIDATED
;
771 return eb_reserve(eb
);
774 i915_gem_object_put(obj
);
780 static struct i915_vma
*
781 eb_get_vma(const struct i915_execbuffer
*eb
, unsigned long handle
)
783 if (eb
->lut_size
< 0) {
784 if (handle
>= -eb
->lut_size
)
786 return eb
->vma
[handle
];
788 struct hlist_head
*head
;
789 struct i915_vma
*vma
;
791 head
= &eb
->buckets
[hash_32(handle
, eb
->lut_size
)];
792 hlist_for_each_entry(vma
, head
, exec_node
) {
793 if (vma
->exec_handle
== handle
)
800 static void eb_release_vmas(const struct i915_execbuffer
*eb
)
802 const unsigned int count
= eb
->buffer_count
;
805 for (i
= 0; i
< count
; i
++) {
806 struct i915_vma
*vma
= eb
->vma
[i
];
807 unsigned int flags
= eb
->flags
[i
];
812 GEM_BUG_ON(vma
->exec_flags
!= &eb
->flags
[i
]);
813 vma
->exec_flags
= NULL
;
816 if (flags
& __EXEC_OBJECT_HAS_PIN
)
817 __eb_unreserve_vma(vma
, flags
);
819 if (flags
& __EXEC_OBJECT_HAS_REF
)
824 static void eb_reset_vmas(const struct i915_execbuffer
*eb
)
827 if (eb
->lut_size
> 0)
828 memset(eb
->buckets
, 0,
829 sizeof(struct hlist_head
) << eb
->lut_size
);
832 static void eb_destroy(const struct i915_execbuffer
*eb
)
834 GEM_BUG_ON(eb
->reloc_cache
.rq
);
836 if (eb
->lut_size
> 0)
841 relocation_target(const struct drm_i915_gem_relocation_entry
*reloc
,
842 const struct i915_vma
*target
)
844 return gen8_canonical_addr((int)reloc
->delta
+ target
->node
.start
);
847 static void reloc_cache_init(struct reloc_cache
*cache
,
848 struct drm_i915_private
*i915
)
852 /* Must be a variable in the struct to allow GCC to unroll. */
853 cache
->gen
= INTEL_GEN(i915
);
854 cache
->has_llc
= HAS_LLC(i915
);
855 cache
->use_64bit_reloc
= HAS_64BIT_RELOC(i915
);
856 cache
->has_fence
= cache
->gen
< 4;
857 cache
->needs_unfenced
= INTEL_INFO(i915
)->unfenced_needs_alignment
;
858 cache
->node
.allocated
= false;
863 static inline void *unmask_page(unsigned long p
)
865 return (void *)(uintptr_t)(p
& PAGE_MASK
);
868 static inline unsigned int unmask_flags(unsigned long p
)
870 return p
& ~PAGE_MASK
;
873 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
875 static inline struct i915_ggtt
*cache_to_ggtt(struct reloc_cache
*cache
)
877 struct drm_i915_private
*i915
=
878 container_of(cache
, struct i915_execbuffer
, reloc_cache
)->i915
;
882 static void reloc_gpu_flush(struct reloc_cache
*cache
)
884 GEM_BUG_ON(cache
->rq_size
>= cache
->rq
->batch
->obj
->base
.size
/ sizeof(u32
));
885 cache
->rq_cmd
[cache
->rq_size
] = MI_BATCH_BUFFER_END
;
886 i915_gem_object_unpin_map(cache
->rq
->batch
->obj
);
887 i915_gem_chipset_flush(cache
->rq
->i915
);
889 __i915_add_request(cache
->rq
, true);
893 static void reloc_cache_reset(struct reloc_cache
*cache
)
898 reloc_gpu_flush(cache
);
903 vaddr
= unmask_page(cache
->vaddr
);
904 if (cache
->vaddr
& KMAP
) {
905 if (cache
->vaddr
& CLFLUSH_AFTER
)
908 kunmap_atomic(vaddr
);
909 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object
*)cache
->node
.mm
);
912 io_mapping_unmap_atomic((void __iomem
*)vaddr
);
913 if (cache
->node
.allocated
) {
914 struct i915_ggtt
*ggtt
= cache_to_ggtt(cache
);
916 ggtt
->base
.clear_range(&ggtt
->base
,
919 drm_mm_remove_node(&cache
->node
);
921 i915_vma_unpin((struct i915_vma
*)cache
->node
.mm
);
929 static void *reloc_kmap(struct drm_i915_gem_object
*obj
,
930 struct reloc_cache
*cache
,
936 kunmap_atomic(unmask_page(cache
->vaddr
));
938 unsigned int flushes
;
941 err
= i915_gem_obj_prepare_shmem_write(obj
, &flushes
);
945 BUILD_BUG_ON(KMAP
& CLFLUSH_FLAGS
);
946 BUILD_BUG_ON((KMAP
| CLFLUSH_FLAGS
) & PAGE_MASK
);
948 cache
->vaddr
= flushes
| KMAP
;
949 cache
->node
.mm
= (void *)obj
;
954 vaddr
= kmap_atomic(i915_gem_object_get_dirty_page(obj
, page
));
955 cache
->vaddr
= unmask_flags(cache
->vaddr
) | (unsigned long)vaddr
;
961 static void *reloc_iomap(struct drm_i915_gem_object
*obj
,
962 struct reloc_cache
*cache
,
965 struct i915_ggtt
*ggtt
= cache_to_ggtt(cache
);
966 unsigned long offset
;
970 io_mapping_unmap_atomic((void __force __iomem
*) unmask_page(cache
->vaddr
));
972 struct i915_vma
*vma
;
975 if (use_cpu_reloc(cache
, obj
))
978 err
= i915_gem_object_set_to_gtt_domain(obj
, true);
982 vma
= i915_gem_object_ggtt_pin(obj
, NULL
, 0, 0,
987 memset(&cache
->node
, 0, sizeof(cache
->node
));
988 err
= drm_mm_insert_node_in_range
989 (&ggtt
->base
.mm
, &cache
->node
,
990 PAGE_SIZE
, 0, I915_COLOR_UNEVICTABLE
,
991 0, ggtt
->mappable_end
,
993 if (err
) /* no inactive aperture space, use cpu reloc */
996 err
= i915_vma_put_fence(vma
);
1002 cache
->node
.start
= vma
->node
.start
;
1003 cache
->node
.mm
= (void *)vma
;
1007 offset
= cache
->node
.start
;
1008 if (cache
->node
.allocated
) {
1010 ggtt
->base
.insert_page(&ggtt
->base
,
1011 i915_gem_object_get_dma_address(obj
, page
),
1012 offset
, I915_CACHE_NONE
, 0);
1014 offset
+= page
<< PAGE_SHIFT
;
1017 vaddr
= (void __force
*)io_mapping_map_atomic_wc(&ggtt
->iomap
,
1020 cache
->vaddr
= (unsigned long)vaddr
;
1025 static void *reloc_vaddr(struct drm_i915_gem_object
*obj
,
1026 struct reloc_cache
*cache
,
1031 if (cache
->page
== page
) {
1032 vaddr
= unmask_page(cache
->vaddr
);
1035 if ((cache
->vaddr
& KMAP
) == 0)
1036 vaddr
= reloc_iomap(obj
, cache
, page
);
1038 vaddr
= reloc_kmap(obj
, cache
, page
);
1044 static void clflush_write32(u32
*addr
, u32 value
, unsigned int flushes
)
1046 if (unlikely(flushes
& (CLFLUSH_BEFORE
| CLFLUSH_AFTER
))) {
1047 if (flushes
& CLFLUSH_BEFORE
) {
1055 * Writes to the same cacheline are serialised by the CPU
1056 * (including clflush). On the write path, we only require
1057 * that it hits memory in an orderly fashion and place
1058 * mb barriers at the start and end of the relocation phase
1059 * to ensure ordering of clflush wrt to the system.
1061 if (flushes
& CLFLUSH_AFTER
)
1067 static int __reloc_gpu_alloc(struct i915_execbuffer
*eb
,
1068 struct i915_vma
*vma
,
1071 struct reloc_cache
*cache
= &eb
->reloc_cache
;
1072 struct drm_i915_gem_object
*obj
;
1073 struct drm_i915_gem_request
*rq
;
1074 struct i915_vma
*batch
;
1078 GEM_BUG_ON(vma
->obj
->base
.write_domain
& I915_GEM_DOMAIN_CPU
);
1080 obj
= i915_gem_batch_pool_get(&eb
->engine
->batch_pool
, PAGE_SIZE
);
1082 return PTR_ERR(obj
);
1084 cmd
= i915_gem_object_pin_map(obj
,
1088 i915_gem_object_unpin_pages(obj
);
1090 return PTR_ERR(cmd
);
1092 err
= i915_gem_object_set_to_wc_domain(obj
, false);
1096 batch
= i915_vma_instance(obj
, vma
->vm
, NULL
);
1097 if (IS_ERR(batch
)) {
1098 err
= PTR_ERR(batch
);
1102 err
= i915_vma_pin(batch
, 0, 0, PIN_USER
| PIN_NONBLOCK
);
1106 rq
= i915_gem_request_alloc(eb
->engine
, eb
->ctx
);
1112 err
= i915_gem_request_await_object(rq
, vma
->obj
, true);
1116 err
= eb
->engine
->emit_bb_start(rq
,
1117 batch
->node
.start
, PAGE_SIZE
,
1118 cache
->gen
> 5 ? 0 : I915_DISPATCH_SECURE
);
1122 GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch
->resv
, true));
1123 i915_vma_move_to_active(batch
, rq
, 0);
1124 reservation_object_lock(batch
->resv
, NULL
);
1125 reservation_object_add_excl_fence(batch
->resv
, &rq
->fence
);
1126 reservation_object_unlock(batch
->resv
);
1127 i915_vma_unpin(batch
);
1129 i915_vma_move_to_active(vma
, rq
, EXEC_OBJECT_WRITE
);
1130 reservation_object_lock(vma
->resv
, NULL
);
1131 reservation_object_add_excl_fence(vma
->resv
, &rq
->fence
);
1132 reservation_object_unlock(vma
->resv
);
1137 cache
->rq_cmd
= cmd
;
1140 /* Return with batch mapping (cmd) still pinned */
1144 i915_add_request(rq
);
1146 i915_vma_unpin(batch
);
1148 i915_gem_object_unpin_map(obj
);
1152 static u32
*reloc_gpu(struct i915_execbuffer
*eb
,
1153 struct i915_vma
*vma
,
1156 struct reloc_cache
*cache
= &eb
->reloc_cache
;
1159 if (cache
->rq_size
> PAGE_SIZE
/sizeof(u32
) - (len
+ 1))
1160 reloc_gpu_flush(cache
);
1162 if (unlikely(!cache
->rq
)) {
1165 /* If we need to copy for the cmdparser, we will stall anyway */
1166 if (eb_use_cmdparser(eb
))
1167 return ERR_PTR(-EWOULDBLOCK
);
1169 if (!intel_engine_can_store_dword(eb
->engine
))
1170 return ERR_PTR(-ENODEV
);
1172 err
= __reloc_gpu_alloc(eb
, vma
, len
);
1174 return ERR_PTR(err
);
1177 cmd
= cache
->rq_cmd
+ cache
->rq_size
;
1178 cache
->rq_size
+= len
;
1184 relocate_entry(struct i915_vma
*vma
,
1185 const struct drm_i915_gem_relocation_entry
*reloc
,
1186 struct i915_execbuffer
*eb
,
1187 const struct i915_vma
*target
)
1189 u64 offset
= reloc
->offset
;
1190 u64 target_offset
= relocation_target(reloc
, target
);
1191 bool wide
= eb
->reloc_cache
.use_64bit_reloc
;
1194 if (!eb
->reloc_cache
.vaddr
&&
1195 (DBG_FORCE_RELOC
== FORCE_GPU_RELOC
||
1196 !reservation_object_test_signaled_rcu(vma
->resv
, true))) {
1197 const unsigned int gen
= eb
->reloc_cache
.gen
;
1203 len
= offset
& 7 ? 8 : 5;
1209 batch
= reloc_gpu(eb
, vma
, len
);
1213 addr
= gen8_canonical_addr(vma
->node
.start
+ offset
);
1216 *batch
++ = MI_STORE_DWORD_IMM_GEN4
;
1217 *batch
++ = lower_32_bits(addr
);
1218 *batch
++ = upper_32_bits(addr
);
1219 *batch
++ = lower_32_bits(target_offset
);
1221 addr
= gen8_canonical_addr(addr
+ 4);
1223 *batch
++ = MI_STORE_DWORD_IMM_GEN4
;
1224 *batch
++ = lower_32_bits(addr
);
1225 *batch
++ = upper_32_bits(addr
);
1226 *batch
++ = upper_32_bits(target_offset
);
1228 *batch
++ = (MI_STORE_DWORD_IMM_GEN4
| (1 << 21)) + 1;
1229 *batch
++ = lower_32_bits(addr
);
1230 *batch
++ = upper_32_bits(addr
);
1231 *batch
++ = lower_32_bits(target_offset
);
1232 *batch
++ = upper_32_bits(target_offset
);
1234 } else if (gen
>= 6) {
1235 *batch
++ = MI_STORE_DWORD_IMM_GEN4
;
1238 *batch
++ = target_offset
;
1239 } else if (gen
>= 4) {
1240 *batch
++ = MI_STORE_DWORD_IMM_GEN4
| MI_USE_GGTT
;
1243 *batch
++ = target_offset
;
1245 *batch
++ = MI_STORE_DWORD_IMM
| MI_MEM_VIRTUAL
;
1247 *batch
++ = target_offset
;
1254 vaddr
= reloc_vaddr(vma
->obj
, &eb
->reloc_cache
, offset
>> PAGE_SHIFT
);
1256 return PTR_ERR(vaddr
);
1258 clflush_write32(vaddr
+ offset_in_page(offset
),
1259 lower_32_bits(target_offset
),
1260 eb
->reloc_cache
.vaddr
);
1263 offset
+= sizeof(u32
);
1264 target_offset
>>= 32;
1270 return target
->node
.start
| UPDATE
;
1274 eb_relocate_entry(struct i915_execbuffer
*eb
,
1275 struct i915_vma
*vma
,
1276 const struct drm_i915_gem_relocation_entry
*reloc
)
1278 struct i915_vma
*target
;
1281 /* we've already hold a reference to all valid objects */
1282 target
= eb_get_vma(eb
, reloc
->target_handle
);
1283 if (unlikely(!target
))
1286 /* Validate that the target is in a valid r/w GPU domain */
1287 if (unlikely(reloc
->write_domain
& (reloc
->write_domain
- 1))) {
1288 DRM_DEBUG("reloc with multiple write domains: "
1289 "target %d offset %d "
1290 "read %08x write %08x",
1291 reloc
->target_handle
,
1292 (int) reloc
->offset
,
1293 reloc
->read_domains
,
1294 reloc
->write_domain
);
1297 if (unlikely((reloc
->write_domain
| reloc
->read_domains
)
1298 & ~I915_GEM_GPU_DOMAINS
)) {
1299 DRM_DEBUG("reloc with read/write non-GPU domains: "
1300 "target %d offset %d "
1301 "read %08x write %08x",
1302 reloc
->target_handle
,
1303 (int) reloc
->offset
,
1304 reloc
->read_domains
,
1305 reloc
->write_domain
);
1309 if (reloc
->write_domain
) {
1310 *target
->exec_flags
|= EXEC_OBJECT_WRITE
;
1313 * Sandybridge PPGTT errata: We need a global gtt mapping
1314 * for MI and pipe_control writes because the gpu doesn't
1315 * properly redirect them through the ppgtt for non_secure
1318 if (reloc
->write_domain
== I915_GEM_DOMAIN_INSTRUCTION
&&
1319 IS_GEN6(eb
->i915
)) {
1320 err
= i915_vma_bind(target
, target
->obj
->cache_level
,
1323 "Unexpected failure to bind target VMA!"))
1329 * If the relocation already has the right value in it, no
1330 * more work needs to be done.
1332 if (!DBG_FORCE_RELOC
&&
1333 gen8_canonical_addr(target
->node
.start
) == reloc
->presumed_offset
)
1336 /* Check that the relocation address is valid... */
1337 if (unlikely(reloc
->offset
>
1338 vma
->size
- (eb
->reloc_cache
.use_64bit_reloc
? 8 : 4))) {
1339 DRM_DEBUG("Relocation beyond object bounds: "
1340 "target %d offset %d size %d.\n",
1341 reloc
->target_handle
,
1346 if (unlikely(reloc
->offset
& 3)) {
1347 DRM_DEBUG("Relocation not 4-byte aligned: "
1348 "target %d offset %d.\n",
1349 reloc
->target_handle
,
1350 (int)reloc
->offset
);
1355 * If we write into the object, we need to force the synchronisation
1356 * barrier, either with an asynchronous clflush or if we executed the
1357 * patching using the GPU (though that should be serialised by the
1358 * timeline). To be completely sure, and since we are required to
1359 * do relocations we are already stalling, disable the user's opt
1360 * out of our synchronisation.
1362 *vma
->exec_flags
&= ~EXEC_OBJECT_ASYNC
;
1364 /* and update the user's relocation entry */
1365 return relocate_entry(vma
, reloc
, eb
, target
);
1368 static int eb_relocate_vma(struct i915_execbuffer
*eb
, struct i915_vma
*vma
)
1370 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1371 struct drm_i915_gem_relocation_entry stack
[N_RELOC(512)];
1372 struct drm_i915_gem_relocation_entry __user
*urelocs
;
1373 const struct drm_i915_gem_exec_object2
*entry
= exec_entry(eb
, vma
);
1374 unsigned int remain
;
1376 urelocs
= u64_to_user_ptr(entry
->relocs_ptr
);
1377 remain
= entry
->relocation_count
;
1378 if (unlikely(remain
> N_RELOC(ULONG_MAX
)))
1382 * We must check that the entire relocation array is safe
1383 * to read. However, if the array is not writable the user loses
1384 * the updated relocation values.
1386 if (unlikely(!access_ok(VERIFY_READ
, urelocs
, remain
*sizeof(*urelocs
))))
1390 struct drm_i915_gem_relocation_entry
*r
= stack
;
1391 unsigned int count
=
1392 min_t(unsigned int, remain
, ARRAY_SIZE(stack
));
1393 unsigned int copied
;
1396 * This is the fast path and we cannot handle a pagefault
1397 * whilst holding the struct mutex lest the user pass in the
1398 * relocations contained within a mmaped bo. For in such a case
1399 * we, the page fault handler would call i915_gem_fault() and
1400 * we would try to acquire the struct mutex again. Obviously
1401 * this is bad and so lockdep complains vehemently.
1403 pagefault_disable();
1404 copied
= __copy_from_user_inatomic(r
, urelocs
, count
* sizeof(r
[0]));
1406 if (unlikely(copied
)) {
1413 u64 offset
= eb_relocate_entry(eb
, vma
, r
);
1415 if (likely(offset
== 0)) {
1416 } else if ((s64
)offset
< 0) {
1417 remain
= (int)offset
;
1421 * Note that reporting an error now
1422 * leaves everything in an inconsistent
1423 * state as we have *already* changed
1424 * the relocation value inside the
1425 * object. As we have not changed the
1426 * reloc.presumed_offset or will not
1427 * change the execobject.offset, on the
1428 * call we may not rewrite the value
1429 * inside the object, leaving it
1430 * dangling and causing a GPU hang. Unless
1431 * userspace dynamically rebuilds the
1432 * relocations on each execbuf rather than
1433 * presume a static tree.
1435 * We did previously check if the relocations
1436 * were writable (access_ok), an error now
1437 * would be a strange race with mprotect,
1438 * having already demonstrated that we
1439 * can read from this userspace address.
1441 offset
= gen8_canonical_addr(offset
& ~UPDATE
);
1443 &urelocs
[r
-stack
].presumed_offset
);
1445 } while (r
++, --count
);
1446 urelocs
+= ARRAY_SIZE(stack
);
1449 reloc_cache_reset(&eb
->reloc_cache
);
1454 eb_relocate_vma_slow(struct i915_execbuffer
*eb
, struct i915_vma
*vma
)
1456 const struct drm_i915_gem_exec_object2
*entry
= exec_entry(eb
, vma
);
1457 struct drm_i915_gem_relocation_entry
*relocs
=
1458 u64_to_ptr(typeof(*relocs
), entry
->relocs_ptr
);
1462 for (i
= 0; i
< entry
->relocation_count
; i
++) {
1463 u64 offset
= eb_relocate_entry(eb
, vma
, &relocs
[i
]);
1465 if ((s64
)offset
< 0) {
1472 reloc_cache_reset(&eb
->reloc_cache
);
1476 static int check_relocations(const struct drm_i915_gem_exec_object2
*entry
)
1478 const char __user
*addr
, *end
;
1480 char __maybe_unused c
;
1482 size
= entry
->relocation_count
;
1486 if (size
> N_RELOC(ULONG_MAX
))
1489 addr
= u64_to_user_ptr(entry
->relocs_ptr
);
1490 size
*= sizeof(struct drm_i915_gem_relocation_entry
);
1491 if (!access_ok(VERIFY_READ
, addr
, size
))
1495 for (; addr
< end
; addr
+= PAGE_SIZE
) {
1496 int err
= __get_user(c
, addr
);
1500 return __get_user(c
, end
- 1);
1503 static int eb_copy_relocations(const struct i915_execbuffer
*eb
)
1505 const unsigned int count
= eb
->buffer_count
;
1509 for (i
= 0; i
< count
; i
++) {
1510 const unsigned int nreloc
= eb
->exec
[i
].relocation_count
;
1511 struct drm_i915_gem_relocation_entry __user
*urelocs
;
1512 struct drm_i915_gem_relocation_entry
*relocs
;
1514 unsigned long copied
;
1519 err
= check_relocations(&eb
->exec
[i
]);
1523 urelocs
= u64_to_user_ptr(eb
->exec
[i
].relocs_ptr
);
1524 size
= nreloc
* sizeof(*relocs
);
1526 relocs
= kvmalloc_array(size
, 1, GFP_KERNEL
);
1533 /* copy_from_user is limited to < 4GiB */
1537 min_t(u64
, BIT_ULL(31), size
- copied
);
1539 if (__copy_from_user((char *)relocs
+ copied
,
1540 (char __user
*)urelocs
+ copied
,
1548 } while (copied
< size
);
1551 * As we do not update the known relocation offsets after
1552 * relocating (due to the complexities in lock handling),
1553 * we need to mark them as invalid now so that we force the
1554 * relocation processing next time. Just in case the target
1555 * object is evicted and then rebound into its old
1556 * presumed_offset before the next execbuffer - if that
1557 * happened we would make the mistake of assuming that the
1558 * relocations were valid.
1560 user_access_begin();
1561 for (copied
= 0; copied
< nreloc
; copied
++)
1563 &urelocs
[copied
].presumed_offset
,
1568 eb
->exec
[i
].relocs_ptr
= (uintptr_t)relocs
;
1575 struct drm_i915_gem_relocation_entry
*relocs
=
1576 u64_to_ptr(typeof(*relocs
), eb
->exec
[i
].relocs_ptr
);
1577 if (eb
->exec
[i
].relocation_count
)
1583 static int eb_prefault_relocations(const struct i915_execbuffer
*eb
)
1585 const unsigned int count
= eb
->buffer_count
;
1588 if (unlikely(i915_modparams
.prefault_disable
))
1591 for (i
= 0; i
< count
; i
++) {
1594 err
= check_relocations(&eb
->exec
[i
]);
1602 static noinline
int eb_relocate_slow(struct i915_execbuffer
*eb
)
1604 struct drm_device
*dev
= &eb
->i915
->drm
;
1605 bool have_copy
= false;
1606 struct i915_vma
*vma
;
1610 if (signal_pending(current
)) {
1615 /* We may process another execbuffer during the unlock... */
1617 mutex_unlock(&dev
->struct_mutex
);
1620 * We take 3 passes through the slowpatch.
1622 * 1 - we try to just prefault all the user relocation entries and
1623 * then attempt to reuse the atomic pagefault disabled fast path again.
1625 * 2 - we copy the user entries to a local buffer here outside of the
1626 * local and allow ourselves to wait upon any rendering before
1629 * 3 - we already have a local copy of the relocation entries, but
1630 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1633 err
= eb_prefault_relocations(eb
);
1634 } else if (!have_copy
) {
1635 err
= eb_copy_relocations(eb
);
1636 have_copy
= err
== 0;
1642 mutex_lock(&dev
->struct_mutex
);
1646 /* A frequent cause for EAGAIN are currently unavailable client pages */
1647 flush_workqueue(eb
->i915
->mm
.userptr_wq
);
1649 err
= i915_mutex_lock_interruptible(dev
);
1651 mutex_lock(&dev
->struct_mutex
);
1655 /* reacquire the objects */
1656 err
= eb_lookup_vmas(eb
);
1660 GEM_BUG_ON(!eb
->batch
);
1662 list_for_each_entry(vma
, &eb
->relocs
, reloc_link
) {
1664 pagefault_disable();
1665 err
= eb_relocate_vma(eb
, vma
);
1670 err
= eb_relocate_vma_slow(eb
, vma
);
1677 * Leave the user relocations as are, this is the painfully slow path,
1678 * and we want to avoid the complication of dropping the lock whilst
1679 * having buffers reserved in the aperture and so causing spurious
1680 * ENOSPC for random operations.
1689 const unsigned int count
= eb
->buffer_count
;
1692 for (i
= 0; i
< count
; i
++) {
1693 const struct drm_i915_gem_exec_object2
*entry
=
1695 struct drm_i915_gem_relocation_entry
*relocs
;
1697 if (!entry
->relocation_count
)
1700 relocs
= u64_to_ptr(typeof(*relocs
), entry
->relocs_ptr
);
1708 static int eb_relocate(struct i915_execbuffer
*eb
)
1710 if (eb_lookup_vmas(eb
))
1713 /* The objects are in their final locations, apply the relocations. */
1714 if (eb
->args
->flags
& __EXEC_HAS_RELOC
) {
1715 struct i915_vma
*vma
;
1717 list_for_each_entry(vma
, &eb
->relocs
, reloc_link
) {
1718 if (eb_relocate_vma(eb
, vma
))
1726 return eb_relocate_slow(eb
);
1729 static void eb_export_fence(struct i915_vma
*vma
,
1730 struct drm_i915_gem_request
*req
,
1733 struct reservation_object
*resv
= vma
->resv
;
1736 * Ignore errors from failing to allocate the new fence, we can't
1737 * handle an error right now. Worst case should be missed
1738 * synchronisation leading to rendering corruption.
1740 reservation_object_lock(resv
, NULL
);
1741 if (flags
& EXEC_OBJECT_WRITE
)
1742 reservation_object_add_excl_fence(resv
, &req
->fence
);
1743 else if (reservation_object_reserve_shared(resv
) == 0)
1744 reservation_object_add_shared_fence(resv
, &req
->fence
);
1745 reservation_object_unlock(resv
);
1748 static int eb_move_to_gpu(struct i915_execbuffer
*eb
)
1750 const unsigned int count
= eb
->buffer_count
;
1754 for (i
= 0; i
< count
; i
++) {
1755 unsigned int flags
= eb
->flags
[i
];
1756 struct i915_vma
*vma
= eb
->vma
[i
];
1757 struct drm_i915_gem_object
*obj
= vma
->obj
;
1759 if (flags
& EXEC_OBJECT_CAPTURE
) {
1760 struct i915_gem_capture_list
*capture
;
1762 capture
= kmalloc(sizeof(*capture
), GFP_KERNEL
);
1763 if (unlikely(!capture
))
1766 capture
->next
= eb
->request
->capture_list
;
1767 capture
->vma
= eb
->vma
[i
];
1768 eb
->request
->capture_list
= capture
;
1772 * If the GPU is not _reading_ through the CPU cache, we need
1773 * to make sure that any writes (both previous GPU writes from
1774 * before a change in snooping levels and normal CPU writes)
1775 * caught in that cache are flushed to main memory.
1778 * obj->cache_dirty &&
1779 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1780 * but gcc's optimiser doesn't handle that as well and emits
1781 * two jumps instead of one. Maybe one day...
1783 if (unlikely(obj
->cache_dirty
& ~obj
->cache_coherent
)) {
1784 if (i915_gem_clflush_object(obj
, 0))
1785 flags
&= ~EXEC_OBJECT_ASYNC
;
1788 if (flags
& EXEC_OBJECT_ASYNC
)
1791 err
= i915_gem_request_await_object
1792 (eb
->request
, obj
, flags
& EXEC_OBJECT_WRITE
);
1797 for (i
= 0; i
< count
; i
++) {
1798 unsigned int flags
= eb
->flags
[i
];
1799 struct i915_vma
*vma
= eb
->vma
[i
];
1801 i915_vma_move_to_active(vma
, eb
->request
, flags
);
1802 eb_export_fence(vma
, eb
->request
, flags
);
1804 __eb_unreserve_vma(vma
, flags
);
1805 vma
->exec_flags
= NULL
;
1807 if (unlikely(flags
& __EXEC_OBJECT_HAS_REF
))
1812 /* Unconditionally flush any chipset caches (for streaming writes). */
1813 i915_gem_chipset_flush(eb
->i915
);
1818 static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2
*exec
)
1820 if (exec
->flags
& __I915_EXEC_ILLEGAL_FLAGS
)
1823 /* Kernel clipping was a DRI1 misfeature */
1824 if (!(exec
->flags
& I915_EXEC_FENCE_ARRAY
)) {
1825 if (exec
->num_cliprects
|| exec
->cliprects_ptr
)
1829 if (exec
->DR4
== 0xffffffff) {
1830 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1833 if (exec
->DR1
|| exec
->DR4
)
1836 if ((exec
->batch_start_offset
| exec
->batch_len
) & 0x7)
1842 void i915_vma_move_to_active(struct i915_vma
*vma
,
1843 struct drm_i915_gem_request
*req
,
1846 struct drm_i915_gem_object
*obj
= vma
->obj
;
1847 const unsigned int idx
= req
->engine
->id
;
1849 lockdep_assert_held(&req
->i915
->drm
.struct_mutex
);
1850 GEM_BUG_ON(!drm_mm_node_allocated(&vma
->node
));
1853 * Add a reference if we're newly entering the active list.
1854 * The order in which we add operations to the retirement queue is
1855 * vital here: mark_active adds to the start of the callback list,
1856 * such that subsequent callbacks are called first. Therefore we
1857 * add the active reference first and queue for it to be dropped
1860 if (!i915_vma_is_active(vma
))
1861 obj
->active_count
++;
1862 i915_vma_set_active(vma
, idx
);
1863 i915_gem_active_set(&vma
->last_read
[idx
], req
);
1864 list_move_tail(&vma
->vm_link
, &vma
->vm
->active_list
);
1866 obj
->base
.write_domain
= 0;
1867 if (flags
& EXEC_OBJECT_WRITE
) {
1868 obj
->base
.write_domain
= I915_GEM_DOMAIN_RENDER
;
1870 if (intel_fb_obj_invalidate(obj
, ORIGIN_CS
))
1871 i915_gem_active_set(&obj
->frontbuffer_write
, req
);
1873 obj
->base
.read_domains
= 0;
1875 obj
->base
.read_domains
|= I915_GEM_GPU_DOMAINS
;
1877 if (flags
& EXEC_OBJECT_NEEDS_FENCE
)
1878 i915_gem_active_set(&vma
->last_fence
, req
);
1881 static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request
*req
)
1886 if (!IS_GEN7(req
->i915
) || req
->engine
->id
!= RCS
) {
1887 DRM_DEBUG("sol reset is gen7/rcs only\n");
1891 cs
= intel_ring_begin(req
, 4 * 2 + 2);
1895 *cs
++ = MI_LOAD_REGISTER_IMM(4);
1896 for (i
= 0; i
< 4; i
++) {
1897 *cs
++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i
));
1901 intel_ring_advance(req
, cs
);
1906 static struct i915_vma
*eb_parse(struct i915_execbuffer
*eb
, bool is_master
)
1908 struct drm_i915_gem_object
*shadow_batch_obj
;
1909 struct i915_vma
*vma
;
1912 shadow_batch_obj
= i915_gem_batch_pool_get(&eb
->engine
->batch_pool
,
1913 PAGE_ALIGN(eb
->batch_len
));
1914 if (IS_ERR(shadow_batch_obj
))
1915 return ERR_CAST(shadow_batch_obj
);
1917 err
= intel_engine_cmd_parser(eb
->engine
,
1920 eb
->batch_start_offset
,
1924 if (err
== -EACCES
) /* unhandled chained batch */
1931 vma
= i915_gem_object_ggtt_pin(shadow_batch_obj
, NULL
, 0, 0, 0);
1935 eb
->vma
[eb
->buffer_count
] = i915_vma_get(vma
);
1936 eb
->flags
[eb
->buffer_count
] =
1937 __EXEC_OBJECT_HAS_PIN
| __EXEC_OBJECT_HAS_REF
;
1938 vma
->exec_flags
= &eb
->flags
[eb
->buffer_count
];
1942 i915_gem_object_unpin_pages(shadow_batch_obj
);
1947 add_to_client(struct drm_i915_gem_request
*req
, struct drm_file
*file
)
1949 req
->file_priv
= file
->driver_priv
;
1950 list_add_tail(&req
->client_link
, &req
->file_priv
->mm
.request_list
);
1953 static int eb_submit(struct i915_execbuffer
*eb
)
1957 err
= eb_move_to_gpu(eb
);
1961 if (eb
->args
->flags
& I915_EXEC_GEN7_SOL_RESET
) {
1962 err
= i915_reset_gen7_sol_offsets(eb
->request
);
1967 err
= eb
->engine
->emit_bb_start(eb
->request
,
1968 eb
->batch
->node
.start
+
1969 eb
->batch_start_offset
,
1979 * Find one BSD ring to dispatch the corresponding BSD command.
1980 * The engine index is returned.
1983 gen8_dispatch_bsd_engine(struct drm_i915_private
*dev_priv
,
1984 struct drm_file
*file
)
1986 struct drm_i915_file_private
*file_priv
= file
->driver_priv
;
1988 /* Check whether the file_priv has already selected one ring. */
1989 if ((int)file_priv
->bsd_engine
< 0)
1990 file_priv
->bsd_engine
= atomic_fetch_xor(1,
1991 &dev_priv
->mm
.bsd_engine_dispatch_index
);
1993 return file_priv
->bsd_engine
;
1996 #define I915_USER_RINGS (4)
1998 static const enum intel_engine_id user_ring_map
[I915_USER_RINGS
+ 1] = {
1999 [I915_EXEC_DEFAULT
] = RCS
,
2000 [I915_EXEC_RENDER
] = RCS
,
2001 [I915_EXEC_BLT
] = BCS
,
2002 [I915_EXEC_BSD
] = VCS
,
2003 [I915_EXEC_VEBOX
] = VECS
2006 static struct intel_engine_cs
*
2007 eb_select_engine(struct drm_i915_private
*dev_priv
,
2008 struct drm_file
*file
,
2009 struct drm_i915_gem_execbuffer2
*args
)
2011 unsigned int user_ring_id
= args
->flags
& I915_EXEC_RING_MASK
;
2012 struct intel_engine_cs
*engine
;
2014 if (user_ring_id
> I915_USER_RINGS
) {
2015 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id
);
2019 if ((user_ring_id
!= I915_EXEC_BSD
) &&
2020 ((args
->flags
& I915_EXEC_BSD_MASK
) != 0)) {
2021 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2022 "bsd dispatch flags: %d\n", (int)(args
->flags
));
2026 if (user_ring_id
== I915_EXEC_BSD
&& HAS_BSD2(dev_priv
)) {
2027 unsigned int bsd_idx
= args
->flags
& I915_EXEC_BSD_MASK
;
2029 if (bsd_idx
== I915_EXEC_BSD_DEFAULT
) {
2030 bsd_idx
= gen8_dispatch_bsd_engine(dev_priv
, file
);
2031 } else if (bsd_idx
>= I915_EXEC_BSD_RING1
&&
2032 bsd_idx
<= I915_EXEC_BSD_RING2
) {
2033 bsd_idx
>>= I915_EXEC_BSD_SHIFT
;
2036 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2041 engine
= dev_priv
->engine
[_VCS(bsd_idx
)];
2043 engine
= dev_priv
->engine
[user_ring_map
[user_ring_id
]];
2047 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id
);
2055 __free_fence_array(struct drm_syncobj
**fences
, unsigned int n
)
2058 drm_syncobj_put(ptr_mask_bits(fences
[n
], 2));
2062 static struct drm_syncobj
**
2063 get_fence_array(struct drm_i915_gem_execbuffer2
*args
,
2064 struct drm_file
*file
)
2066 const unsigned long nfences
= args
->num_cliprects
;
2067 struct drm_i915_gem_exec_fence __user
*user
;
2068 struct drm_syncobj
**fences
;
2072 if (!(args
->flags
& I915_EXEC_FENCE_ARRAY
))
2075 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2076 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2077 if (nfences
> min_t(unsigned long,
2078 ULONG_MAX
/ sizeof(*user
),
2079 SIZE_MAX
/ sizeof(*fences
)))
2080 return ERR_PTR(-EINVAL
);
2082 user
= u64_to_user_ptr(args
->cliprects_ptr
);
2083 if (!access_ok(VERIFY_READ
, user
, nfences
* sizeof(*user
)))
2084 return ERR_PTR(-EFAULT
);
2086 fences
= kvmalloc_array(nfences
, sizeof(*fences
),
2087 __GFP_NOWARN
| GFP_KERNEL
);
2089 return ERR_PTR(-ENOMEM
);
2091 for (n
= 0; n
< nfences
; n
++) {
2092 struct drm_i915_gem_exec_fence fence
;
2093 struct drm_syncobj
*syncobj
;
2095 if (__copy_from_user(&fence
, user
++, sizeof(fence
))) {
2100 if (fence
.flags
& __I915_EXEC_FENCE_UNKNOWN_FLAGS
) {
2105 syncobj
= drm_syncobj_find(file
, fence
.handle
);
2107 DRM_DEBUG("Invalid syncobj handle provided\n");
2112 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN
- 1) &
2113 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS
);
2115 fences
[n
] = ptr_pack_bits(syncobj
, fence
.flags
, 2);
2121 __free_fence_array(fences
, n
);
2122 return ERR_PTR(err
);
2126 put_fence_array(struct drm_i915_gem_execbuffer2
*args
,
2127 struct drm_syncobj
**fences
)
2130 __free_fence_array(fences
, args
->num_cliprects
);
2134 await_fence_array(struct i915_execbuffer
*eb
,
2135 struct drm_syncobj
**fences
)
2137 const unsigned int nfences
= eb
->args
->num_cliprects
;
2141 for (n
= 0; n
< nfences
; n
++) {
2142 struct drm_syncobj
*syncobj
;
2143 struct dma_fence
*fence
;
2146 syncobj
= ptr_unpack_bits(fences
[n
], &flags
, 2);
2147 if (!(flags
& I915_EXEC_FENCE_WAIT
))
2150 fence
= drm_syncobj_fence_get(syncobj
);
2154 err
= i915_gem_request_await_dma_fence(eb
->request
, fence
);
2155 dma_fence_put(fence
);
2164 signal_fence_array(struct i915_execbuffer
*eb
,
2165 struct drm_syncobj
**fences
)
2167 const unsigned int nfences
= eb
->args
->num_cliprects
;
2168 struct dma_fence
* const fence
= &eb
->request
->fence
;
2171 for (n
= 0; n
< nfences
; n
++) {
2172 struct drm_syncobj
*syncobj
;
2175 syncobj
= ptr_unpack_bits(fences
[n
], &flags
, 2);
2176 if (!(flags
& I915_EXEC_FENCE_SIGNAL
))
2179 drm_syncobj_replace_fence(syncobj
, fence
);
2184 i915_gem_do_execbuffer(struct drm_device
*dev
,
2185 struct drm_file
*file
,
2186 struct drm_i915_gem_execbuffer2
*args
,
2187 struct drm_i915_gem_exec_object2
*exec
,
2188 struct drm_syncobj
**fences
)
2190 struct i915_execbuffer eb
;
2191 struct dma_fence
*in_fence
= NULL
;
2192 struct sync_file
*out_fence
= NULL
;
2193 int out_fence_fd
= -1;
2196 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS
& ~__I915_EXEC_ILLEGAL_FLAGS
);
2197 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS
&
2198 ~__EXEC_OBJECT_UNKNOWN_FLAGS
);
2200 eb
.i915
= to_i915(dev
);
2203 if (DBG_FORCE_RELOC
|| !(args
->flags
& I915_EXEC_NO_RELOC
))
2204 args
->flags
|= __EXEC_HAS_RELOC
;
2207 eb
.vma
= (struct i915_vma
**)(exec
+ args
->buffer_count
+ 1);
2209 eb
.flags
= (unsigned int *)(eb
.vma
+ args
->buffer_count
+ 1);
2211 eb
.invalid_flags
= __EXEC_OBJECT_UNKNOWN_FLAGS
;
2212 if (USES_FULL_PPGTT(eb
.i915
))
2213 eb
.invalid_flags
|= EXEC_OBJECT_NEEDS_GTT
;
2214 reloc_cache_init(&eb
.reloc_cache
, eb
.i915
);
2216 eb
.buffer_count
= args
->buffer_count
;
2217 eb
.batch_start_offset
= args
->batch_start_offset
;
2218 eb
.batch_len
= args
->batch_len
;
2221 if (args
->flags
& I915_EXEC_SECURE
) {
2222 if (!drm_is_current_master(file
) || !capable(CAP_SYS_ADMIN
))
2225 eb
.batch_flags
|= I915_DISPATCH_SECURE
;
2227 if (args
->flags
& I915_EXEC_IS_PINNED
)
2228 eb
.batch_flags
|= I915_DISPATCH_PINNED
;
2230 eb
.engine
= eb_select_engine(eb
.i915
, file
, args
);
2234 if (args
->flags
& I915_EXEC_RESOURCE_STREAMER
) {
2235 if (!HAS_RESOURCE_STREAMER(eb
.i915
)) {
2236 DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
2239 if (eb
.engine
->id
!= RCS
) {
2240 DRM_DEBUG("RS is not available on %s\n",
2245 eb
.batch_flags
|= I915_DISPATCH_RS
;
2248 if (args
->flags
& I915_EXEC_FENCE_IN
) {
2249 in_fence
= sync_file_get_fence(lower_32_bits(args
->rsvd2
));
2254 if (args
->flags
& I915_EXEC_FENCE_OUT
) {
2255 out_fence_fd
= get_unused_fd_flags(O_CLOEXEC
);
2256 if (out_fence_fd
< 0) {
2262 err
= eb_create(&eb
);
2266 GEM_BUG_ON(!eb
.lut_size
);
2268 err
= eb_select_context(&eb
);
2273 * Take a local wakeref for preparing to dispatch the execbuf as
2274 * we expect to access the hardware fairly frequently in the
2275 * process. Upon first dispatch, we acquire another prolonged
2276 * wakeref that we hold until the GPU has been idle for at least
2279 intel_runtime_pm_get(eb
.i915
);
2281 err
= i915_mutex_lock_interruptible(dev
);
2285 err
= eb_relocate(&eb
);
2288 * If the user expects the execobject.offset and
2289 * reloc.presumed_offset to be an exact match,
2290 * as for using NO_RELOC, then we cannot update
2291 * the execobject.offset until we have completed
2294 args
->flags
&= ~__EXEC_HAS_RELOC
;
2298 if (unlikely(*eb
.batch
->exec_flags
& EXEC_OBJECT_WRITE
)) {
2299 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2303 if (eb
.batch_start_offset
> eb
.batch
->size
||
2304 eb
.batch_len
> eb
.batch
->size
- eb
.batch_start_offset
) {
2305 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2310 if (eb_use_cmdparser(&eb
)) {
2311 struct i915_vma
*vma
;
2313 vma
= eb_parse(&eb
, drm_is_current_master(file
));
2321 * Batch parsed and accepted:
2323 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
2324 * bit from MI_BATCH_BUFFER_START commands issued in
2325 * the dispatch_execbuffer implementations. We
2326 * specifically don't want that set on batches the
2327 * command parser has accepted.
2329 eb
.batch_flags
|= I915_DISPATCH_SECURE
;
2330 eb
.batch_start_offset
= 0;
2335 if (eb
.batch_len
== 0)
2336 eb
.batch_len
= eb
.batch
->size
- eb
.batch_start_offset
;
2339 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2340 * batch" bit. Hence we need to pin secure batches into the global gtt.
2341 * hsw should have this fixed, but bdw mucks it up again. */
2342 if (eb
.batch_flags
& I915_DISPATCH_SECURE
) {
2343 struct i915_vma
*vma
;
2346 * So on first glance it looks freaky that we pin the batch here
2347 * outside of the reservation loop. But:
2348 * - The batch is already pinned into the relevant ppgtt, so we
2349 * already have the backing storage fully allocated.
2350 * - No other BO uses the global gtt (well contexts, but meh),
2351 * so we don't really have issues with multiple objects not
2352 * fitting due to fragmentation.
2353 * So this is actually safe.
2355 vma
= i915_gem_object_ggtt_pin(eb
.batch
->obj
, NULL
, 0, 0, 0);
2364 /* All GPU relocation batches must be submitted prior to the user rq */
2365 GEM_BUG_ON(eb
.reloc_cache
.rq
);
2367 /* Allocate a request for this batch buffer nice and early. */
2368 eb
.request
= i915_gem_request_alloc(eb
.engine
, eb
.ctx
);
2369 if (IS_ERR(eb
.request
)) {
2370 err
= PTR_ERR(eb
.request
);
2371 goto err_batch_unpin
;
2375 err
= i915_gem_request_await_dma_fence(eb
.request
, in_fence
);
2381 err
= await_fence_array(&eb
, fences
);
2386 if (out_fence_fd
!= -1) {
2387 out_fence
= sync_file_create(&eb
.request
->fence
);
2395 * Whilst this request exists, batch_obj will be on the
2396 * active_list, and so will hold the active reference. Only when this
2397 * request is retired will the the batch_obj be moved onto the
2398 * inactive_list and lose its active reference. Hence we do not need
2399 * to explicitly hold another reference here.
2401 eb
.request
->batch
= eb
.batch
;
2403 trace_i915_gem_request_queue(eb
.request
, eb
.batch_flags
);
2404 err
= eb_submit(&eb
);
2406 __i915_add_request(eb
.request
, err
== 0);
2407 add_to_client(eb
.request
, file
);
2410 signal_fence_array(&eb
, fences
);
2414 fd_install(out_fence_fd
, out_fence
->file
);
2415 args
->rsvd2
&= GENMASK_ULL(31, 0); /* keep in-fence */
2416 args
->rsvd2
|= (u64
)out_fence_fd
<< 32;
2419 fput(out_fence
->file
);
2424 if (eb
.batch_flags
& I915_DISPATCH_SECURE
)
2425 i915_vma_unpin(eb
.batch
);
2428 eb_release_vmas(&eb
);
2429 mutex_unlock(&dev
->struct_mutex
);
2431 intel_runtime_pm_put(eb
.i915
);
2432 i915_gem_context_put(eb
.ctx
);
2436 if (out_fence_fd
!= -1)
2437 put_unused_fd(out_fence_fd
);
2439 dma_fence_put(in_fence
);
2443 static size_t eb_element_size(void)
2445 return (sizeof(struct drm_i915_gem_exec_object2
) +
2446 sizeof(struct i915_vma
*) +
2447 sizeof(unsigned int));
2450 static bool check_buffer_count(size_t count
)
2452 const size_t sz
= eb_element_size();
2455 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2456 * array size (see eb_create()). Otherwise, we can accept an array as
2457 * large as can be addressed (though use large arrays at your peril)!
2460 return !(count
< 1 || count
> INT_MAX
|| count
> SIZE_MAX
/ sz
- 1);
2464 * Legacy execbuffer just creates an exec2 list from the original exec object
2465 * list array and passes it to the real function.
2468 i915_gem_execbuffer(struct drm_device
*dev
, void *data
,
2469 struct drm_file
*file
)
2471 struct drm_i915_gem_execbuffer
*args
= data
;
2472 struct drm_i915_gem_execbuffer2 exec2
;
2473 struct drm_i915_gem_exec_object
*exec_list
= NULL
;
2474 struct drm_i915_gem_exec_object2
*exec2_list
= NULL
;
2475 const size_t count
= args
->buffer_count
;
2479 if (!check_buffer_count(count
)) {
2480 DRM_DEBUG("execbuf2 with %zd buffers\n", count
);
2484 exec2
.buffers_ptr
= args
->buffers_ptr
;
2485 exec2
.buffer_count
= args
->buffer_count
;
2486 exec2
.batch_start_offset
= args
->batch_start_offset
;
2487 exec2
.batch_len
= args
->batch_len
;
2488 exec2
.DR1
= args
->DR1
;
2489 exec2
.DR4
= args
->DR4
;
2490 exec2
.num_cliprects
= args
->num_cliprects
;
2491 exec2
.cliprects_ptr
= args
->cliprects_ptr
;
2492 exec2
.flags
= I915_EXEC_RENDER
;
2493 i915_execbuffer2_set_context_id(exec2
, 0);
2495 if (!i915_gem_check_execbuffer(&exec2
))
2498 /* Copy in the exec list from userland */
2499 exec_list
= kvmalloc_array(count
, sizeof(*exec_list
),
2500 __GFP_NOWARN
| GFP_KERNEL
);
2501 exec2_list
= kvmalloc_array(count
+ 1, eb_element_size(),
2502 __GFP_NOWARN
| GFP_KERNEL
);
2503 if (exec_list
== NULL
|| exec2_list
== NULL
) {
2504 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2505 args
->buffer_count
);
2510 err
= copy_from_user(exec_list
,
2511 u64_to_user_ptr(args
->buffers_ptr
),
2512 sizeof(*exec_list
) * count
);
2514 DRM_DEBUG("copy %d exec entries failed %d\n",
2515 args
->buffer_count
, err
);
2521 for (i
= 0; i
< args
->buffer_count
; i
++) {
2522 exec2_list
[i
].handle
= exec_list
[i
].handle
;
2523 exec2_list
[i
].relocation_count
= exec_list
[i
].relocation_count
;
2524 exec2_list
[i
].relocs_ptr
= exec_list
[i
].relocs_ptr
;
2525 exec2_list
[i
].alignment
= exec_list
[i
].alignment
;
2526 exec2_list
[i
].offset
= exec_list
[i
].offset
;
2527 if (INTEL_GEN(to_i915(dev
)) < 4)
2528 exec2_list
[i
].flags
= EXEC_OBJECT_NEEDS_FENCE
;
2530 exec2_list
[i
].flags
= 0;
2533 err
= i915_gem_do_execbuffer(dev
, file
, &exec2
, exec2_list
, NULL
);
2534 if (exec2
.flags
& __EXEC_HAS_RELOC
) {
2535 struct drm_i915_gem_exec_object __user
*user_exec_list
=
2536 u64_to_user_ptr(args
->buffers_ptr
);
2538 /* Copy the new buffer offsets back to the user's exec list. */
2539 for (i
= 0; i
< args
->buffer_count
; i
++) {
2540 if (!(exec2_list
[i
].offset
& UPDATE
))
2543 exec2_list
[i
].offset
=
2544 gen8_canonical_addr(exec2_list
[i
].offset
& PIN_OFFSET_MASK
);
2545 exec2_list
[i
].offset
&= PIN_OFFSET_MASK
;
2546 if (__copy_to_user(&user_exec_list
[i
].offset
,
2547 &exec2_list
[i
].offset
,
2548 sizeof(user_exec_list
[i
].offset
)))
2559 i915_gem_execbuffer2(struct drm_device
*dev
, void *data
,
2560 struct drm_file
*file
)
2562 struct drm_i915_gem_execbuffer2
*args
= data
;
2563 struct drm_i915_gem_exec_object2
*exec2_list
;
2564 struct drm_syncobj
**fences
= NULL
;
2565 const size_t count
= args
->buffer_count
;
2568 if (!check_buffer_count(count
)) {
2569 DRM_DEBUG("execbuf2 with %zd buffers\n", count
);
2573 if (!i915_gem_check_execbuffer(args
))
2576 /* Allocate an extra slot for use by the command parser */
2577 exec2_list
= kvmalloc_array(count
+ 1, eb_element_size(),
2578 __GFP_NOWARN
| GFP_KERNEL
);
2579 if (exec2_list
== NULL
) {
2580 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2584 if (copy_from_user(exec2_list
,
2585 u64_to_user_ptr(args
->buffers_ptr
),
2586 sizeof(*exec2_list
) * count
)) {
2587 DRM_DEBUG("copy %zd exec entries failed\n", count
);
2592 if (args
->flags
& I915_EXEC_FENCE_ARRAY
) {
2593 fences
= get_fence_array(args
, file
);
2594 if (IS_ERR(fences
)) {
2596 return PTR_ERR(fences
);
2600 err
= i915_gem_do_execbuffer(dev
, file
, args
, exec2_list
, fences
);
2603 * Now that we have begun execution of the batchbuffer, we ignore
2604 * any new error after this point. Also given that we have already
2605 * updated the associated relocations, we try to write out the current
2606 * object locations irrespective of any error.
2608 if (args
->flags
& __EXEC_HAS_RELOC
) {
2609 struct drm_i915_gem_exec_object2 __user
*user_exec_list
=
2610 u64_to_user_ptr(args
->buffers_ptr
);
2613 /* Copy the new buffer offsets back to the user's exec list. */
2614 user_access_begin();
2615 for (i
= 0; i
< args
->buffer_count
; i
++) {
2616 if (!(exec2_list
[i
].offset
& UPDATE
))
2619 exec2_list
[i
].offset
=
2620 gen8_canonical_addr(exec2_list
[i
].offset
& PIN_OFFSET_MASK
);
2621 unsafe_put_user(exec2_list
[i
].offset
,
2622 &user_exec_list
[i
].offset
,
2629 args
->flags
&= ~__I915_EXEC_UNKNOWN_FLAGS
;
2630 put_fence_array(args
, fences
);