bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
blobdf505868d65aafc6a18e92fb002f0bb362f3470a
1 /*
2 * Copyright © 2008,2010 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 * Chris Wilson <chris@chris-wilson.co.uk>
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/sync_file.h>
32 #include <linux/uaccess.h>
34 #include <drm/drmP.h>
35 #include <drm/drm_syncobj.h>
36 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_gem_clflush.h"
40 #include "i915_trace.h"
41 #include "intel_drv.h"
42 #include "intel_frontbuffer.h"
44 enum {
45 FORCE_CPU_RELOC = 1,
46 FORCE_GTT_RELOC,
47 FORCE_GPU_RELOC,
48 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
51 #define __EXEC_OBJECT_HAS_REF BIT(31)
52 #define __EXEC_OBJECT_HAS_PIN BIT(30)
53 #define __EXEC_OBJECT_HAS_FENCE BIT(29)
54 #define __EXEC_OBJECT_NEEDS_MAP BIT(28)
55 #define __EXEC_OBJECT_NEEDS_BIAS BIT(27)
56 #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 27) /* all of the above */
57 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
59 #define __EXEC_HAS_RELOC BIT(31)
60 #define __EXEC_VALIDATED BIT(30)
61 #define __EXEC_INTERNAL_FLAGS (~0u << 30)
62 #define UPDATE PIN_OFFSET_FIXED
64 #define BATCH_OFFSET_BIAS (256*1024)
66 #define __I915_EXEC_ILLEGAL_FLAGS \
67 (__I915_EXEC_UNKNOWN_FLAGS | I915_EXEC_CONSTANTS_MASK)
69 /**
70 * DOC: User command execution
72 * Userspace submits commands to be executed on the GPU as an instruction
73 * stream within a GEM object we call a batchbuffer. This instructions may
74 * refer to other GEM objects containing auxiliary state such as kernels,
75 * samplers, render targets and even secondary batchbuffers. Userspace does
76 * not know where in the GPU memory these objects reside and so before the
77 * batchbuffer is passed to the GPU for execution, those addresses in the
78 * batchbuffer and auxiliary objects are updated. This is known as relocation,
79 * or patching. To try and avoid having to relocate each object on the next
80 * execution, userspace is told the location of those objects in this pass,
81 * but this remains just a hint as the kernel may choose a new location for
82 * any object in the future.
84 * Processing an execbuf ioctl is conceptually split up into a few phases.
86 * 1. Validation - Ensure all the pointers, handles and flags are valid.
87 * 2. Reservation - Assign GPU address space for every object
88 * 3. Relocation - Update any addresses to point to the final locations
89 * 4. Serialisation - Order the request with respect to its dependencies
90 * 5. Construction - Construct a request to execute the batchbuffer
91 * 6. Submission (at some point in the future execution)
93 * Reserving resources for the execbuf is the most complicated phase. We
94 * neither want to have to migrate the object in the address space, nor do
95 * we want to have to update any relocations pointing to this object. Ideally,
96 * we want to leave the object where it is and for all the existing relocations
97 * to match. If the object is given a new address, or if userspace thinks the
98 * object is elsewhere, we have to parse all the relocation entries and update
99 * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
100 * all the target addresses in all of its objects match the value in the
101 * relocation entries and that they all match the presumed offsets given by the
102 * list of execbuffer objects. Using this knowledge, we know that if we haven't
103 * moved any buffers, all the relocation entries are valid and we can skip
104 * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
105 * hang.) The requirement for using I915_EXEC_NO_RELOC are:
107 * The addresses written in the objects must match the corresponding
108 * reloc.presumed_offset which in turn must match the corresponding
109 * execobject.offset.
111 * Any render targets written to in the batch must be flagged with
112 * EXEC_OBJECT_WRITE.
114 * To avoid stalling, execobject.offset should match the current
115 * address of that object within the active context.
117 * The reservation is done is multiple phases. First we try and keep any
118 * object already bound in its current location - so as long as meets the
119 * constraints imposed by the new execbuffer. Any object left unbound after the
120 * first pass is then fitted into any available idle space. If an object does
121 * not fit, all objects are removed from the reservation and the process rerun
122 * after sorting the objects into a priority order (more difficult to fit
123 * objects are tried first). Failing that, the entire VM is cleared and we try
124 * to fit the execbuf once last time before concluding that it simply will not
125 * fit.
127 * A small complication to all of this is that we allow userspace not only to
128 * specify an alignment and a size for the object in the address space, but
129 * we also allow userspace to specify the exact offset. This objects are
130 * simpler to place (the location is known a priori) all we have to do is make
131 * sure the space is available.
133 * Once all the objects are in place, patching up the buried pointers to point
134 * to the final locations is a fairly simple job of walking over the relocation
135 * entry arrays, looking up the right address and rewriting the value into
136 * the object. Simple! ... The relocation entries are stored in user memory
137 * and so to access them we have to copy them into a local buffer. That copy
138 * has to avoid taking any pagefaults as they may lead back to a GEM object
139 * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
140 * the relocation into multiple passes. First we try to do everything within an
141 * atomic context (avoid the pagefaults) which requires that we never wait. If
142 * we detect that we may wait, or if we need to fault, then we have to fallback
143 * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
144 * bells yet?) Dropping the mutex means that we lose all the state we have
145 * built up so far for the execbuf and we must reset any global data. However,
146 * we do leave the objects pinned in their final locations - which is a
147 * potential issue for concurrent execbufs. Once we have left the mutex, we can
148 * allocate and copy all the relocation entries into a large array at our
149 * leisure, reacquire the mutex, reclaim all the objects and other state and
150 * then proceed to update any incorrect addresses with the objects.
152 * As we process the relocation entries, we maintain a record of whether the
153 * object is being written to. Using NORELOC, we expect userspace to provide
154 * this information instead. We also check whether we can skip the relocation
155 * by comparing the expected value inside the relocation entry with the target's
156 * final address. If they differ, we have to map the current object and rewrite
157 * the 4 or 8 byte pointer within.
159 * Serialising an execbuf is quite simple according to the rules of the GEM
160 * ABI. Execution within each context is ordered by the order of submission.
161 * Writes to any GEM object are in order of submission and are exclusive. Reads
162 * from a GEM object are unordered with respect to other reads, but ordered by
163 * writes. A write submitted after a read cannot occur before the read, and
164 * similarly any read submitted after a write cannot occur before the write.
165 * Writes are ordered between engines such that only one write occurs at any
166 * time (completing any reads beforehand) - using semaphores where available
167 * and CPU serialisation otherwise. Other GEM access obey the same rules, any
168 * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
169 * reads before starting, and any read (either using set-domain or pread) must
170 * flush all GPU writes before starting. (Note we only employ a barrier before,
171 * we currently rely on userspace not concurrently starting a new execution
172 * whilst reading or writing to an object. This may be an advantage or not
173 * depending on how much you trust userspace not to shoot themselves in the
174 * foot.) Serialisation may just result in the request being inserted into
175 * a DAG awaiting its turn, but most simple is to wait on the CPU until
176 * all dependencies are resolved.
178 * After all of that, is just a matter of closing the request and handing it to
179 * the hardware (well, leaving it in a queue to be executed). However, we also
180 * offer the ability for batchbuffers to be run with elevated privileges so
181 * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
182 * Before any batch is given extra privileges we first must check that it
183 * contains no nefarious instructions, we check that each instruction is from
184 * our whitelist and all registers are also from an allowed list. We first
185 * copy the user's batchbuffer to a shadow (so that the user doesn't have
186 * access to it, either by the CPU or GPU as we scan it) and then parse each
187 * instruction. If everything is ok, we set a flag telling the hardware to run
188 * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
191 struct i915_execbuffer {
192 struct drm_i915_private *i915; /** i915 backpointer */
193 struct drm_file *file; /** per-file lookup tables and limits */
194 struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
195 struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
196 struct i915_vma **vma;
197 unsigned int *flags;
199 struct intel_engine_cs *engine; /** engine to queue the request to */
200 struct i915_gem_context *ctx; /** context for building the request */
201 struct i915_address_space *vm; /** GTT and vma for the request */
203 struct drm_i915_gem_request *request; /** our request to build */
204 struct i915_vma *batch; /** identity of the batch obj/vma */
206 /** actual size of execobj[] as we may extend it for the cmdparser */
207 unsigned int buffer_count;
209 /** list of vma not yet bound during reservation phase */
210 struct list_head unbound;
212 /** list of vma that have execobj.relocation_count */
213 struct list_head relocs;
216 * Track the most recently used object for relocations, as we
217 * frequently have to perform multiple relocations within the same
218 * obj/page
220 struct reloc_cache {
221 struct drm_mm_node node; /** temporary GTT binding */
222 unsigned long vaddr; /** Current kmap address */
223 unsigned long page; /** Currently mapped page index */
224 unsigned int gen; /** Cached value of INTEL_GEN */
225 bool use_64bit_reloc : 1;
226 bool has_llc : 1;
227 bool has_fence : 1;
228 bool needs_unfenced : 1;
230 struct drm_i915_gem_request *rq;
231 u32 *rq_cmd;
232 unsigned int rq_size;
233 } reloc_cache;
235 u64 invalid_flags; /** Set of execobj.flags that are invalid */
236 u32 context_flags; /** Set of execobj.flags to insert from the ctx */
238 u32 batch_start_offset; /** Location within object of batch */
239 u32 batch_len; /** Length of batch within object */
240 u32 batch_flags; /** Flags composed for emit_bb_start() */
243 * Indicate either the size of the hastable used to resolve
244 * relocation handles, or if negative that we are using a direct
245 * index into the execobj[].
247 int lut_size;
248 struct hlist_head *buckets; /** ht for relocation handles */
251 #define exec_entry(EB, VMA) (&(EB)->exec[(VMA)->exec_flags - (EB)->flags])
254 * Used to convert any address to canonical form.
255 * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
256 * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
257 * addresses to be in a canonical form:
258 * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
259 * canonical form [63:48] == [47]."
261 #define GEN8_HIGH_ADDRESS_BIT 47
262 static inline u64 gen8_canonical_addr(u64 address)
264 return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
267 static inline u64 gen8_noncanonical_addr(u64 address)
269 return address & GENMASK_ULL(GEN8_HIGH_ADDRESS_BIT, 0);
272 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
274 return intel_engine_needs_cmd_parser(eb->engine) && eb->batch_len;
277 static int eb_create(struct i915_execbuffer *eb)
279 if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
280 unsigned int size = 1 + ilog2(eb->buffer_count);
283 * Without a 1:1 association between relocation handles and
284 * the execobject[] index, we instead create a hashtable.
285 * We size it dynamically based on available memory, starting
286 * first with 1:1 assocative hash and scaling back until
287 * the allocation succeeds.
289 * Later on we use a positive lut_size to indicate we are
290 * using this hashtable, and a negative value to indicate a
291 * direct lookup.
293 do {
294 gfp_t flags;
296 /* While we can still reduce the allocation size, don't
297 * raise a warning and allow the allocation to fail.
298 * On the last pass though, we want to try as hard
299 * as possible to perform the allocation and warn
300 * if it fails.
302 flags = GFP_KERNEL;
303 if (size > 1)
304 flags |= __GFP_NORETRY | __GFP_NOWARN;
306 eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
307 flags);
308 if (eb->buckets)
309 break;
310 } while (--size);
312 if (unlikely(!size))
313 return -ENOMEM;
315 eb->lut_size = size;
316 } else {
317 eb->lut_size = -eb->buffer_count;
320 return 0;
323 static bool
324 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
325 const struct i915_vma *vma,
326 unsigned int flags)
328 if (vma->node.size < entry->pad_to_size)
329 return true;
331 if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
332 return true;
334 if (flags & EXEC_OBJECT_PINNED &&
335 vma->node.start != entry->offset)
336 return true;
338 if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
339 vma->node.start < BATCH_OFFSET_BIAS)
340 return true;
342 if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
343 (vma->node.start + vma->node.size - 1) >> 32)
344 return true;
346 if (flags & __EXEC_OBJECT_NEEDS_MAP &&
347 !i915_vma_is_map_and_fenceable(vma))
348 return true;
350 return false;
353 static inline bool
354 eb_pin_vma(struct i915_execbuffer *eb,
355 const struct drm_i915_gem_exec_object2 *entry,
356 struct i915_vma *vma)
358 unsigned int exec_flags = *vma->exec_flags;
359 u64 pin_flags;
361 if (vma->node.size)
362 pin_flags = vma->node.start;
363 else
364 pin_flags = entry->offset & PIN_OFFSET_MASK;
366 pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
367 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_GTT))
368 pin_flags |= PIN_GLOBAL;
370 if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
371 return false;
373 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
374 if (unlikely(i915_vma_pin_fence(vma))) {
375 i915_vma_unpin(vma);
376 return false;
379 if (vma->fence)
380 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
383 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
384 return !eb_vma_misplaced(entry, vma, exec_flags);
387 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
389 GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
391 if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
392 __i915_vma_unpin_fence(vma);
394 __i915_vma_unpin(vma);
397 static inline void
398 eb_unreserve_vma(struct i915_vma *vma, unsigned int *flags)
400 if (!(*flags & __EXEC_OBJECT_HAS_PIN))
401 return;
403 __eb_unreserve_vma(vma, *flags);
404 *flags &= ~__EXEC_OBJECT_RESERVED;
407 static int
408 eb_validate_vma(struct i915_execbuffer *eb,
409 struct drm_i915_gem_exec_object2 *entry,
410 struct i915_vma *vma)
412 if (unlikely(entry->flags & eb->invalid_flags))
413 return -EINVAL;
415 if (unlikely(entry->alignment && !is_power_of_2(entry->alignment)))
416 return -EINVAL;
419 * Offset can be used as input (EXEC_OBJECT_PINNED), reject
420 * any non-page-aligned or non-canonical addresses.
422 if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
423 entry->offset != gen8_canonical_addr(entry->offset & PAGE_MASK)))
424 return -EINVAL;
426 /* pad_to_size was once a reserved field, so sanitize it */
427 if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
428 if (unlikely(offset_in_page(entry->pad_to_size)))
429 return -EINVAL;
430 } else {
431 entry->pad_to_size = 0;
434 if (unlikely(vma->exec_flags)) {
435 DRM_DEBUG("Object [handle %d, index %d] appears more than once in object list\n",
436 entry->handle, (int)(entry - eb->exec));
437 return -EINVAL;
441 * From drm_mm perspective address space is continuous,
442 * so from this point we're always using non-canonical
443 * form internally.
445 entry->offset = gen8_noncanonical_addr(entry->offset);
447 if (!eb->reloc_cache.has_fence) {
448 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
449 } else {
450 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
451 eb->reloc_cache.needs_unfenced) &&
452 i915_gem_object_is_tiled(vma->obj))
453 entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
456 if (!(entry->flags & EXEC_OBJECT_PINNED))
457 entry->flags |= eb->context_flags;
459 return 0;
462 static int
463 eb_add_vma(struct i915_execbuffer *eb, unsigned int i, struct i915_vma *vma)
465 struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
466 int err;
468 GEM_BUG_ON(i915_vma_is_closed(vma));
470 if (!(eb->args->flags & __EXEC_VALIDATED)) {
471 err = eb_validate_vma(eb, entry, vma);
472 if (unlikely(err))
473 return err;
476 if (eb->lut_size > 0) {
477 vma->exec_handle = entry->handle;
478 hlist_add_head(&vma->exec_node,
479 &eb->buckets[hash_32(entry->handle,
480 eb->lut_size)]);
483 if (entry->relocation_count)
484 list_add_tail(&vma->reloc_link, &eb->relocs);
487 * Stash a pointer from the vma to execobj, so we can query its flags,
488 * size, alignment etc as provided by the user. Also we stash a pointer
489 * to the vma inside the execobj so that we can use a direct lookup
490 * to find the right target VMA when doing relocations.
492 eb->vma[i] = vma;
493 eb->flags[i] = entry->flags;
494 vma->exec_flags = &eb->flags[i];
496 err = 0;
497 if (eb_pin_vma(eb, entry, vma)) {
498 if (entry->offset != vma->node.start) {
499 entry->offset = vma->node.start | UPDATE;
500 eb->args->flags |= __EXEC_HAS_RELOC;
502 } else {
503 eb_unreserve_vma(vma, vma->exec_flags);
505 list_add_tail(&vma->exec_link, &eb->unbound);
506 if (drm_mm_node_allocated(&vma->node))
507 err = i915_vma_unbind(vma);
508 if (unlikely(err))
509 vma->exec_flags = NULL;
511 return err;
514 static inline int use_cpu_reloc(const struct reloc_cache *cache,
515 const struct drm_i915_gem_object *obj)
517 if (!i915_gem_object_has_struct_page(obj))
518 return false;
520 if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
521 return true;
523 if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
524 return false;
526 return (cache->has_llc ||
527 obj->cache_dirty ||
528 obj->cache_level != I915_CACHE_NONE);
531 static int eb_reserve_vma(const struct i915_execbuffer *eb,
532 struct i915_vma *vma)
534 struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
535 unsigned int exec_flags = *vma->exec_flags;
536 u64 pin_flags;
537 int err;
539 pin_flags = PIN_USER | PIN_NONBLOCK;
540 if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
541 pin_flags |= PIN_GLOBAL;
544 * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
545 * limit address to the first 4GBs for unflagged objects.
547 if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
548 pin_flags |= PIN_ZONE_4G;
550 if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
551 pin_flags |= PIN_MAPPABLE;
553 if (exec_flags & EXEC_OBJECT_PINNED) {
554 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
555 pin_flags &= ~PIN_NONBLOCK; /* force overlapping checks */
556 } else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) {
557 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
560 err = i915_vma_pin(vma,
561 entry->pad_to_size, entry->alignment,
562 pin_flags);
563 if (err)
564 return err;
566 if (entry->offset != vma->node.start) {
567 entry->offset = vma->node.start | UPDATE;
568 eb->args->flags |= __EXEC_HAS_RELOC;
571 if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
572 err = i915_vma_pin_fence(vma);
573 if (unlikely(err)) {
574 i915_vma_unpin(vma);
575 return err;
578 if (vma->fence)
579 exec_flags |= __EXEC_OBJECT_HAS_FENCE;
582 *vma->exec_flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
583 GEM_BUG_ON(eb_vma_misplaced(entry, vma, exec_flags));
585 return 0;
588 static int eb_reserve(struct i915_execbuffer *eb)
590 const unsigned int count = eb->buffer_count;
591 struct list_head last;
592 struct i915_vma *vma;
593 unsigned int i, pass;
594 int err;
597 * Attempt to pin all of the buffers into the GTT.
598 * This is done in 3 phases:
600 * 1a. Unbind all objects that do not match the GTT constraints for
601 * the execbuffer (fenceable, mappable, alignment etc).
602 * 1b. Increment pin count for already bound objects.
603 * 2. Bind new objects.
604 * 3. Decrement pin count.
606 * This avoid unnecessary unbinding of later objects in order to make
607 * room for the earlier objects *unless* we need to defragment.
610 pass = 0;
611 err = 0;
612 do {
613 list_for_each_entry(vma, &eb->unbound, exec_link) {
614 err = eb_reserve_vma(eb, vma);
615 if (err)
616 break;
618 if (err != -ENOSPC)
619 return err;
621 /* Resort *all* the objects into priority order */
622 INIT_LIST_HEAD(&eb->unbound);
623 INIT_LIST_HEAD(&last);
624 for (i = 0; i < count; i++) {
625 unsigned int flags = eb->flags[i];
626 struct i915_vma *vma = eb->vma[i];
628 if (flags & EXEC_OBJECT_PINNED &&
629 flags & __EXEC_OBJECT_HAS_PIN)
630 continue;
632 eb_unreserve_vma(vma, &eb->flags[i]);
634 if (flags & EXEC_OBJECT_PINNED)
635 list_add(&vma->exec_link, &eb->unbound);
636 else if (flags & __EXEC_OBJECT_NEEDS_MAP)
637 list_add_tail(&vma->exec_link, &eb->unbound);
638 else
639 list_add_tail(&vma->exec_link, &last);
641 list_splice_tail(&last, &eb->unbound);
643 switch (pass++) {
644 case 0:
645 break;
647 case 1:
648 /* Too fragmented, unbind everything and retry */
649 err = i915_gem_evict_vm(eb->vm);
650 if (err)
651 return err;
652 break;
654 default:
655 return -ENOSPC;
657 } while (1);
660 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
662 if (eb->args->flags & I915_EXEC_BATCH_FIRST)
663 return 0;
664 else
665 return eb->buffer_count - 1;
668 static int eb_select_context(struct i915_execbuffer *eb)
670 struct i915_gem_context *ctx;
672 ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
673 if (unlikely(!ctx))
674 return -ENOENT;
676 eb->ctx = ctx;
677 eb->vm = ctx->ppgtt ? &ctx->ppgtt->base : &eb->i915->ggtt.base;
679 eb->context_flags = 0;
680 if (ctx->flags & CONTEXT_NO_ZEROMAP)
681 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
683 return 0;
686 static int eb_lookup_vmas(struct i915_execbuffer *eb)
688 struct radix_tree_root *handles_vma = &eb->ctx->handles_vma;
689 struct drm_i915_gem_object *obj;
690 unsigned int i;
691 int err;
693 if (unlikely(i915_gem_context_is_closed(eb->ctx)))
694 return -ENOENT;
696 if (unlikely(i915_gem_context_is_banned(eb->ctx)))
697 return -EIO;
699 INIT_LIST_HEAD(&eb->relocs);
700 INIT_LIST_HEAD(&eb->unbound);
702 for (i = 0; i < eb->buffer_count; i++) {
703 u32 handle = eb->exec[i].handle;
704 struct i915_lut_handle *lut;
705 struct i915_vma *vma;
707 vma = radix_tree_lookup(handles_vma, handle);
708 if (likely(vma))
709 goto add_vma;
711 obj = i915_gem_object_lookup(eb->file, handle);
712 if (unlikely(!obj)) {
713 err = -ENOENT;
714 goto err_vma;
717 vma = i915_vma_instance(obj, eb->vm, NULL);
718 if (unlikely(IS_ERR(vma))) {
719 err = PTR_ERR(vma);
720 goto err_obj;
723 lut = kmem_cache_alloc(eb->i915->luts, GFP_KERNEL);
724 if (unlikely(!lut)) {
725 err = -ENOMEM;
726 goto err_obj;
729 err = radix_tree_insert(handles_vma, handle, vma);
730 if (unlikely(err)) {
731 kmem_cache_free(eb->i915->luts, lut);
732 goto err_obj;
735 /* transfer ref to ctx */
736 vma->open_count++;
737 list_add(&lut->obj_link, &obj->lut_list);
738 list_add(&lut->ctx_link, &eb->ctx->handles_list);
739 lut->ctx = eb->ctx;
740 lut->handle = handle;
742 add_vma:
743 err = eb_add_vma(eb, i, vma);
744 if (unlikely(err))
745 goto err_vma;
747 GEM_BUG_ON(vma != eb->vma[i]);
748 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
751 /* take note of the batch buffer before we might reorder the lists */
752 i = eb_batch_index(eb);
753 eb->batch = eb->vma[i];
754 GEM_BUG_ON(eb->batch->exec_flags != &eb->flags[i]);
757 * SNA is doing fancy tricks with compressing batch buffers, which leads
758 * to negative relocation deltas. Usually that works out ok since the
759 * relocate address is still positive, except when the batch is placed
760 * very low in the GTT. Ensure this doesn't happen.
762 * Note that actual hangs have only been observed on gen7, but for
763 * paranoia do it everywhere.
765 if (!(eb->flags[i] & EXEC_OBJECT_PINNED))
766 eb->flags[i] |= __EXEC_OBJECT_NEEDS_BIAS;
767 if (eb->reloc_cache.has_fence)
768 eb->flags[i] |= EXEC_OBJECT_NEEDS_FENCE;
770 eb->args->flags |= __EXEC_VALIDATED;
771 return eb_reserve(eb);
773 err_obj:
774 i915_gem_object_put(obj);
775 err_vma:
776 eb->vma[i] = NULL;
777 return err;
780 static struct i915_vma *
781 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
783 if (eb->lut_size < 0) {
784 if (handle >= -eb->lut_size)
785 return NULL;
786 return eb->vma[handle];
787 } else {
788 struct hlist_head *head;
789 struct i915_vma *vma;
791 head = &eb->buckets[hash_32(handle, eb->lut_size)];
792 hlist_for_each_entry(vma, head, exec_node) {
793 if (vma->exec_handle == handle)
794 return vma;
796 return NULL;
800 static void eb_release_vmas(const struct i915_execbuffer *eb)
802 const unsigned int count = eb->buffer_count;
803 unsigned int i;
805 for (i = 0; i < count; i++) {
806 struct i915_vma *vma = eb->vma[i];
807 unsigned int flags = eb->flags[i];
809 if (!vma)
810 break;
812 GEM_BUG_ON(vma->exec_flags != &eb->flags[i]);
813 vma->exec_flags = NULL;
814 eb->vma[i] = NULL;
816 if (flags & __EXEC_OBJECT_HAS_PIN)
817 __eb_unreserve_vma(vma, flags);
819 if (flags & __EXEC_OBJECT_HAS_REF)
820 i915_vma_put(vma);
824 static void eb_reset_vmas(const struct i915_execbuffer *eb)
826 eb_release_vmas(eb);
827 if (eb->lut_size > 0)
828 memset(eb->buckets, 0,
829 sizeof(struct hlist_head) << eb->lut_size);
832 static void eb_destroy(const struct i915_execbuffer *eb)
834 GEM_BUG_ON(eb->reloc_cache.rq);
836 if (eb->lut_size > 0)
837 kfree(eb->buckets);
840 static inline u64
841 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
842 const struct i915_vma *target)
844 return gen8_canonical_addr((int)reloc->delta + target->node.start);
847 static void reloc_cache_init(struct reloc_cache *cache,
848 struct drm_i915_private *i915)
850 cache->page = -1;
851 cache->vaddr = 0;
852 /* Must be a variable in the struct to allow GCC to unroll. */
853 cache->gen = INTEL_GEN(i915);
854 cache->has_llc = HAS_LLC(i915);
855 cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
856 cache->has_fence = cache->gen < 4;
857 cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
858 cache->node.allocated = false;
859 cache->rq = NULL;
860 cache->rq_size = 0;
863 static inline void *unmask_page(unsigned long p)
865 return (void *)(uintptr_t)(p & PAGE_MASK);
868 static inline unsigned int unmask_flags(unsigned long p)
870 return p & ~PAGE_MASK;
873 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
875 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
877 struct drm_i915_private *i915 =
878 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
879 return &i915->ggtt;
882 static void reloc_gpu_flush(struct reloc_cache *cache)
884 GEM_BUG_ON(cache->rq_size >= cache->rq->batch->obj->base.size / sizeof(u32));
885 cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
886 i915_gem_object_unpin_map(cache->rq->batch->obj);
887 i915_gem_chipset_flush(cache->rq->i915);
889 __i915_add_request(cache->rq, true);
890 cache->rq = NULL;
893 static void reloc_cache_reset(struct reloc_cache *cache)
895 void *vaddr;
897 if (cache->rq)
898 reloc_gpu_flush(cache);
900 if (!cache->vaddr)
901 return;
903 vaddr = unmask_page(cache->vaddr);
904 if (cache->vaddr & KMAP) {
905 if (cache->vaddr & CLFLUSH_AFTER)
906 mb();
908 kunmap_atomic(vaddr);
909 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
910 } else {
911 wmb();
912 io_mapping_unmap_atomic((void __iomem *)vaddr);
913 if (cache->node.allocated) {
914 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
916 ggtt->base.clear_range(&ggtt->base,
917 cache->node.start,
918 cache->node.size);
919 drm_mm_remove_node(&cache->node);
920 } else {
921 i915_vma_unpin((struct i915_vma *)cache->node.mm);
925 cache->vaddr = 0;
926 cache->page = -1;
929 static void *reloc_kmap(struct drm_i915_gem_object *obj,
930 struct reloc_cache *cache,
931 unsigned long page)
933 void *vaddr;
935 if (cache->vaddr) {
936 kunmap_atomic(unmask_page(cache->vaddr));
937 } else {
938 unsigned int flushes;
939 int err;
941 err = i915_gem_obj_prepare_shmem_write(obj, &flushes);
942 if (err)
943 return ERR_PTR(err);
945 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
946 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
948 cache->vaddr = flushes | KMAP;
949 cache->node.mm = (void *)obj;
950 if (flushes)
951 mb();
954 vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
955 cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
956 cache->page = page;
958 return vaddr;
961 static void *reloc_iomap(struct drm_i915_gem_object *obj,
962 struct reloc_cache *cache,
963 unsigned long page)
965 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
966 unsigned long offset;
967 void *vaddr;
969 if (cache->vaddr) {
970 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
971 } else {
972 struct i915_vma *vma;
973 int err;
975 if (use_cpu_reloc(cache, obj))
976 return NULL;
978 err = i915_gem_object_set_to_gtt_domain(obj, true);
979 if (err)
980 return ERR_PTR(err);
982 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
983 PIN_MAPPABLE |
984 PIN_NONBLOCK |
985 PIN_NONFAULT);
986 if (IS_ERR(vma)) {
987 memset(&cache->node, 0, sizeof(cache->node));
988 err = drm_mm_insert_node_in_range
989 (&ggtt->base.mm, &cache->node,
990 PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
991 0, ggtt->mappable_end,
992 DRM_MM_INSERT_LOW);
993 if (err) /* no inactive aperture space, use cpu reloc */
994 return NULL;
995 } else {
996 err = i915_vma_put_fence(vma);
997 if (err) {
998 i915_vma_unpin(vma);
999 return ERR_PTR(err);
1002 cache->node.start = vma->node.start;
1003 cache->node.mm = (void *)vma;
1007 offset = cache->node.start;
1008 if (cache->node.allocated) {
1009 wmb();
1010 ggtt->base.insert_page(&ggtt->base,
1011 i915_gem_object_get_dma_address(obj, page),
1012 offset, I915_CACHE_NONE, 0);
1013 } else {
1014 offset += page << PAGE_SHIFT;
1017 vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1018 offset);
1019 cache->page = page;
1020 cache->vaddr = (unsigned long)vaddr;
1022 return vaddr;
1025 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1026 struct reloc_cache *cache,
1027 unsigned long page)
1029 void *vaddr;
1031 if (cache->page == page) {
1032 vaddr = unmask_page(cache->vaddr);
1033 } else {
1034 vaddr = NULL;
1035 if ((cache->vaddr & KMAP) == 0)
1036 vaddr = reloc_iomap(obj, cache, page);
1037 if (!vaddr)
1038 vaddr = reloc_kmap(obj, cache, page);
1041 return vaddr;
1044 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1046 if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1047 if (flushes & CLFLUSH_BEFORE) {
1048 clflushopt(addr);
1049 mb();
1052 *addr = value;
1055 * Writes to the same cacheline are serialised by the CPU
1056 * (including clflush). On the write path, we only require
1057 * that it hits memory in an orderly fashion and place
1058 * mb barriers at the start and end of the relocation phase
1059 * to ensure ordering of clflush wrt to the system.
1061 if (flushes & CLFLUSH_AFTER)
1062 clflushopt(addr);
1063 } else
1064 *addr = value;
1067 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1068 struct i915_vma *vma,
1069 unsigned int len)
1071 struct reloc_cache *cache = &eb->reloc_cache;
1072 struct drm_i915_gem_object *obj;
1073 struct drm_i915_gem_request *rq;
1074 struct i915_vma *batch;
1075 u32 *cmd;
1076 int err;
1078 GEM_BUG_ON(vma->obj->base.write_domain & I915_GEM_DOMAIN_CPU);
1080 obj = i915_gem_batch_pool_get(&eb->engine->batch_pool, PAGE_SIZE);
1081 if (IS_ERR(obj))
1082 return PTR_ERR(obj);
1084 cmd = i915_gem_object_pin_map(obj,
1085 cache->has_llc ?
1086 I915_MAP_FORCE_WB :
1087 I915_MAP_FORCE_WC);
1088 i915_gem_object_unpin_pages(obj);
1089 if (IS_ERR(cmd))
1090 return PTR_ERR(cmd);
1092 err = i915_gem_object_set_to_wc_domain(obj, false);
1093 if (err)
1094 goto err_unmap;
1096 batch = i915_vma_instance(obj, vma->vm, NULL);
1097 if (IS_ERR(batch)) {
1098 err = PTR_ERR(batch);
1099 goto err_unmap;
1102 err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1103 if (err)
1104 goto err_unmap;
1106 rq = i915_gem_request_alloc(eb->engine, eb->ctx);
1107 if (IS_ERR(rq)) {
1108 err = PTR_ERR(rq);
1109 goto err_unpin;
1112 err = i915_gem_request_await_object(rq, vma->obj, true);
1113 if (err)
1114 goto err_request;
1116 err = eb->engine->emit_bb_start(rq,
1117 batch->node.start, PAGE_SIZE,
1118 cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1119 if (err)
1120 goto err_request;
1122 GEM_BUG_ON(!reservation_object_test_signaled_rcu(batch->resv, true));
1123 i915_vma_move_to_active(batch, rq, 0);
1124 reservation_object_lock(batch->resv, NULL);
1125 reservation_object_add_excl_fence(batch->resv, &rq->fence);
1126 reservation_object_unlock(batch->resv);
1127 i915_vma_unpin(batch);
1129 i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1130 reservation_object_lock(vma->resv, NULL);
1131 reservation_object_add_excl_fence(vma->resv, &rq->fence);
1132 reservation_object_unlock(vma->resv);
1134 rq->batch = batch;
1136 cache->rq = rq;
1137 cache->rq_cmd = cmd;
1138 cache->rq_size = 0;
1140 /* Return with batch mapping (cmd) still pinned */
1141 return 0;
1143 err_request:
1144 i915_add_request(rq);
1145 err_unpin:
1146 i915_vma_unpin(batch);
1147 err_unmap:
1148 i915_gem_object_unpin_map(obj);
1149 return err;
1152 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1153 struct i915_vma *vma,
1154 unsigned int len)
1156 struct reloc_cache *cache = &eb->reloc_cache;
1157 u32 *cmd;
1159 if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1160 reloc_gpu_flush(cache);
1162 if (unlikely(!cache->rq)) {
1163 int err;
1165 /* If we need to copy for the cmdparser, we will stall anyway */
1166 if (eb_use_cmdparser(eb))
1167 return ERR_PTR(-EWOULDBLOCK);
1169 if (!intel_engine_can_store_dword(eb->engine))
1170 return ERR_PTR(-ENODEV);
1172 err = __reloc_gpu_alloc(eb, vma, len);
1173 if (unlikely(err))
1174 return ERR_PTR(err);
1177 cmd = cache->rq_cmd + cache->rq_size;
1178 cache->rq_size += len;
1180 return cmd;
1183 static u64
1184 relocate_entry(struct i915_vma *vma,
1185 const struct drm_i915_gem_relocation_entry *reloc,
1186 struct i915_execbuffer *eb,
1187 const struct i915_vma *target)
1189 u64 offset = reloc->offset;
1190 u64 target_offset = relocation_target(reloc, target);
1191 bool wide = eb->reloc_cache.use_64bit_reloc;
1192 void *vaddr;
1194 if (!eb->reloc_cache.vaddr &&
1195 (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1196 !reservation_object_test_signaled_rcu(vma->resv, true))) {
1197 const unsigned int gen = eb->reloc_cache.gen;
1198 unsigned int len;
1199 u32 *batch;
1200 u64 addr;
1202 if (wide)
1203 len = offset & 7 ? 8 : 5;
1204 else if (gen >= 4)
1205 len = 4;
1206 else
1207 len = 3;
1209 batch = reloc_gpu(eb, vma, len);
1210 if (IS_ERR(batch))
1211 goto repeat;
1213 addr = gen8_canonical_addr(vma->node.start + offset);
1214 if (wide) {
1215 if (offset & 7) {
1216 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1217 *batch++ = lower_32_bits(addr);
1218 *batch++ = upper_32_bits(addr);
1219 *batch++ = lower_32_bits(target_offset);
1221 addr = gen8_canonical_addr(addr + 4);
1223 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1224 *batch++ = lower_32_bits(addr);
1225 *batch++ = upper_32_bits(addr);
1226 *batch++ = upper_32_bits(target_offset);
1227 } else {
1228 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1229 *batch++ = lower_32_bits(addr);
1230 *batch++ = upper_32_bits(addr);
1231 *batch++ = lower_32_bits(target_offset);
1232 *batch++ = upper_32_bits(target_offset);
1234 } else if (gen >= 6) {
1235 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1236 *batch++ = 0;
1237 *batch++ = addr;
1238 *batch++ = target_offset;
1239 } else if (gen >= 4) {
1240 *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1241 *batch++ = 0;
1242 *batch++ = addr;
1243 *batch++ = target_offset;
1244 } else {
1245 *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1246 *batch++ = addr;
1247 *batch++ = target_offset;
1250 goto out;
1253 repeat:
1254 vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1255 if (IS_ERR(vaddr))
1256 return PTR_ERR(vaddr);
1258 clflush_write32(vaddr + offset_in_page(offset),
1259 lower_32_bits(target_offset),
1260 eb->reloc_cache.vaddr);
1262 if (wide) {
1263 offset += sizeof(u32);
1264 target_offset >>= 32;
1265 wide = false;
1266 goto repeat;
1269 out:
1270 return target->node.start | UPDATE;
1273 static u64
1274 eb_relocate_entry(struct i915_execbuffer *eb,
1275 struct i915_vma *vma,
1276 const struct drm_i915_gem_relocation_entry *reloc)
1278 struct i915_vma *target;
1279 int err;
1281 /* we've already hold a reference to all valid objects */
1282 target = eb_get_vma(eb, reloc->target_handle);
1283 if (unlikely(!target))
1284 return -ENOENT;
1286 /* Validate that the target is in a valid r/w GPU domain */
1287 if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1288 DRM_DEBUG("reloc with multiple write domains: "
1289 "target %d offset %d "
1290 "read %08x write %08x",
1291 reloc->target_handle,
1292 (int) reloc->offset,
1293 reloc->read_domains,
1294 reloc->write_domain);
1295 return -EINVAL;
1297 if (unlikely((reloc->write_domain | reloc->read_domains)
1298 & ~I915_GEM_GPU_DOMAINS)) {
1299 DRM_DEBUG("reloc with read/write non-GPU domains: "
1300 "target %d offset %d "
1301 "read %08x write %08x",
1302 reloc->target_handle,
1303 (int) reloc->offset,
1304 reloc->read_domains,
1305 reloc->write_domain);
1306 return -EINVAL;
1309 if (reloc->write_domain) {
1310 *target->exec_flags |= EXEC_OBJECT_WRITE;
1313 * Sandybridge PPGTT errata: We need a global gtt mapping
1314 * for MI and pipe_control writes because the gpu doesn't
1315 * properly redirect them through the ppgtt for non_secure
1316 * batchbuffers.
1318 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1319 IS_GEN6(eb->i915)) {
1320 err = i915_vma_bind(target, target->obj->cache_level,
1321 PIN_GLOBAL);
1322 if (WARN_ONCE(err,
1323 "Unexpected failure to bind target VMA!"))
1324 return err;
1329 * If the relocation already has the right value in it, no
1330 * more work needs to be done.
1332 if (!DBG_FORCE_RELOC &&
1333 gen8_canonical_addr(target->node.start) == reloc->presumed_offset)
1334 return 0;
1336 /* Check that the relocation address is valid... */
1337 if (unlikely(reloc->offset >
1338 vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1339 DRM_DEBUG("Relocation beyond object bounds: "
1340 "target %d offset %d size %d.\n",
1341 reloc->target_handle,
1342 (int)reloc->offset,
1343 (int)vma->size);
1344 return -EINVAL;
1346 if (unlikely(reloc->offset & 3)) {
1347 DRM_DEBUG("Relocation not 4-byte aligned: "
1348 "target %d offset %d.\n",
1349 reloc->target_handle,
1350 (int)reloc->offset);
1351 return -EINVAL;
1355 * If we write into the object, we need to force the synchronisation
1356 * barrier, either with an asynchronous clflush or if we executed the
1357 * patching using the GPU (though that should be serialised by the
1358 * timeline). To be completely sure, and since we are required to
1359 * do relocations we are already stalling, disable the user's opt
1360 * out of our synchronisation.
1362 *vma->exec_flags &= ~EXEC_OBJECT_ASYNC;
1364 /* and update the user's relocation entry */
1365 return relocate_entry(vma, reloc, eb, target);
1368 static int eb_relocate_vma(struct i915_execbuffer *eb, struct i915_vma *vma)
1370 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1371 struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1372 struct drm_i915_gem_relocation_entry __user *urelocs;
1373 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1374 unsigned int remain;
1376 urelocs = u64_to_user_ptr(entry->relocs_ptr);
1377 remain = entry->relocation_count;
1378 if (unlikely(remain > N_RELOC(ULONG_MAX)))
1379 return -EINVAL;
1382 * We must check that the entire relocation array is safe
1383 * to read. However, if the array is not writable the user loses
1384 * the updated relocation values.
1386 if (unlikely(!access_ok(VERIFY_READ, urelocs, remain*sizeof(*urelocs))))
1387 return -EFAULT;
1389 do {
1390 struct drm_i915_gem_relocation_entry *r = stack;
1391 unsigned int count =
1392 min_t(unsigned int, remain, ARRAY_SIZE(stack));
1393 unsigned int copied;
1396 * This is the fast path and we cannot handle a pagefault
1397 * whilst holding the struct mutex lest the user pass in the
1398 * relocations contained within a mmaped bo. For in such a case
1399 * we, the page fault handler would call i915_gem_fault() and
1400 * we would try to acquire the struct mutex again. Obviously
1401 * this is bad and so lockdep complains vehemently.
1403 pagefault_disable();
1404 copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0]));
1405 pagefault_enable();
1406 if (unlikely(copied)) {
1407 remain = -EFAULT;
1408 goto out;
1411 remain -= count;
1412 do {
1413 u64 offset = eb_relocate_entry(eb, vma, r);
1415 if (likely(offset == 0)) {
1416 } else if ((s64)offset < 0) {
1417 remain = (int)offset;
1418 goto out;
1419 } else {
1421 * Note that reporting an error now
1422 * leaves everything in an inconsistent
1423 * state as we have *already* changed
1424 * the relocation value inside the
1425 * object. As we have not changed the
1426 * reloc.presumed_offset or will not
1427 * change the execobject.offset, on the
1428 * call we may not rewrite the value
1429 * inside the object, leaving it
1430 * dangling and causing a GPU hang. Unless
1431 * userspace dynamically rebuilds the
1432 * relocations on each execbuf rather than
1433 * presume a static tree.
1435 * We did previously check if the relocations
1436 * were writable (access_ok), an error now
1437 * would be a strange race with mprotect,
1438 * having already demonstrated that we
1439 * can read from this userspace address.
1441 offset = gen8_canonical_addr(offset & ~UPDATE);
1442 __put_user(offset,
1443 &urelocs[r-stack].presumed_offset);
1445 } while (r++, --count);
1446 urelocs += ARRAY_SIZE(stack);
1447 } while (remain);
1448 out:
1449 reloc_cache_reset(&eb->reloc_cache);
1450 return remain;
1453 static int
1454 eb_relocate_vma_slow(struct i915_execbuffer *eb, struct i915_vma *vma)
1456 const struct drm_i915_gem_exec_object2 *entry = exec_entry(eb, vma);
1457 struct drm_i915_gem_relocation_entry *relocs =
1458 u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1459 unsigned int i;
1460 int err;
1462 for (i = 0; i < entry->relocation_count; i++) {
1463 u64 offset = eb_relocate_entry(eb, vma, &relocs[i]);
1465 if ((s64)offset < 0) {
1466 err = (int)offset;
1467 goto err;
1470 err = 0;
1471 err:
1472 reloc_cache_reset(&eb->reloc_cache);
1473 return err;
1476 static int check_relocations(const struct drm_i915_gem_exec_object2 *entry)
1478 const char __user *addr, *end;
1479 unsigned long size;
1480 char __maybe_unused c;
1482 size = entry->relocation_count;
1483 if (size == 0)
1484 return 0;
1486 if (size > N_RELOC(ULONG_MAX))
1487 return -EINVAL;
1489 addr = u64_to_user_ptr(entry->relocs_ptr);
1490 size *= sizeof(struct drm_i915_gem_relocation_entry);
1491 if (!access_ok(VERIFY_READ, addr, size))
1492 return -EFAULT;
1494 end = addr + size;
1495 for (; addr < end; addr += PAGE_SIZE) {
1496 int err = __get_user(c, addr);
1497 if (err)
1498 return err;
1500 return __get_user(c, end - 1);
1503 static int eb_copy_relocations(const struct i915_execbuffer *eb)
1505 const unsigned int count = eb->buffer_count;
1506 unsigned int i;
1507 int err;
1509 for (i = 0; i < count; i++) {
1510 const unsigned int nreloc = eb->exec[i].relocation_count;
1511 struct drm_i915_gem_relocation_entry __user *urelocs;
1512 struct drm_i915_gem_relocation_entry *relocs;
1513 unsigned long size;
1514 unsigned long copied;
1516 if (nreloc == 0)
1517 continue;
1519 err = check_relocations(&eb->exec[i]);
1520 if (err)
1521 goto err;
1523 urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr);
1524 size = nreloc * sizeof(*relocs);
1526 relocs = kvmalloc_array(size, 1, GFP_KERNEL);
1527 if (!relocs) {
1528 kvfree(relocs);
1529 err = -ENOMEM;
1530 goto err;
1533 /* copy_from_user is limited to < 4GiB */
1534 copied = 0;
1535 do {
1536 unsigned int len =
1537 min_t(u64, BIT_ULL(31), size - copied);
1539 if (__copy_from_user((char *)relocs + copied,
1540 (char __user *)urelocs + copied,
1541 len)) {
1542 kvfree(relocs);
1543 err = -EFAULT;
1544 goto err;
1547 copied += len;
1548 } while (copied < size);
1551 * As we do not update the known relocation offsets after
1552 * relocating (due to the complexities in lock handling),
1553 * we need to mark them as invalid now so that we force the
1554 * relocation processing next time. Just in case the target
1555 * object is evicted and then rebound into its old
1556 * presumed_offset before the next execbuffer - if that
1557 * happened we would make the mistake of assuming that the
1558 * relocations were valid.
1560 user_access_begin();
1561 for (copied = 0; copied < nreloc; copied++)
1562 unsafe_put_user(-1,
1563 &urelocs[copied].presumed_offset,
1564 end_user);
1565 end_user:
1566 user_access_end();
1568 eb->exec[i].relocs_ptr = (uintptr_t)relocs;
1571 return 0;
1573 err:
1574 while (i--) {
1575 struct drm_i915_gem_relocation_entry *relocs =
1576 u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr);
1577 if (eb->exec[i].relocation_count)
1578 kvfree(relocs);
1580 return err;
1583 static int eb_prefault_relocations(const struct i915_execbuffer *eb)
1585 const unsigned int count = eb->buffer_count;
1586 unsigned int i;
1588 if (unlikely(i915_modparams.prefault_disable))
1589 return 0;
1591 for (i = 0; i < count; i++) {
1592 int err;
1594 err = check_relocations(&eb->exec[i]);
1595 if (err)
1596 return err;
1599 return 0;
1602 static noinline int eb_relocate_slow(struct i915_execbuffer *eb)
1604 struct drm_device *dev = &eb->i915->drm;
1605 bool have_copy = false;
1606 struct i915_vma *vma;
1607 int err = 0;
1609 repeat:
1610 if (signal_pending(current)) {
1611 err = -ERESTARTSYS;
1612 goto out;
1615 /* We may process another execbuffer during the unlock... */
1616 eb_reset_vmas(eb);
1617 mutex_unlock(&dev->struct_mutex);
1620 * We take 3 passes through the slowpatch.
1622 * 1 - we try to just prefault all the user relocation entries and
1623 * then attempt to reuse the atomic pagefault disabled fast path again.
1625 * 2 - we copy the user entries to a local buffer here outside of the
1626 * local and allow ourselves to wait upon any rendering before
1627 * relocations
1629 * 3 - we already have a local copy of the relocation entries, but
1630 * were interrupted (EAGAIN) whilst waiting for the objects, try again.
1632 if (!err) {
1633 err = eb_prefault_relocations(eb);
1634 } else if (!have_copy) {
1635 err = eb_copy_relocations(eb);
1636 have_copy = err == 0;
1637 } else {
1638 cond_resched();
1639 err = 0;
1641 if (err) {
1642 mutex_lock(&dev->struct_mutex);
1643 goto out;
1646 /* A frequent cause for EAGAIN are currently unavailable client pages */
1647 flush_workqueue(eb->i915->mm.userptr_wq);
1649 err = i915_mutex_lock_interruptible(dev);
1650 if (err) {
1651 mutex_lock(&dev->struct_mutex);
1652 goto out;
1655 /* reacquire the objects */
1656 err = eb_lookup_vmas(eb);
1657 if (err)
1658 goto err;
1660 GEM_BUG_ON(!eb->batch);
1662 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1663 if (!have_copy) {
1664 pagefault_disable();
1665 err = eb_relocate_vma(eb, vma);
1666 pagefault_enable();
1667 if (err)
1668 goto repeat;
1669 } else {
1670 err = eb_relocate_vma_slow(eb, vma);
1671 if (err)
1672 goto err;
1677 * Leave the user relocations as are, this is the painfully slow path,
1678 * and we want to avoid the complication of dropping the lock whilst
1679 * having buffers reserved in the aperture and so causing spurious
1680 * ENOSPC for random operations.
1683 err:
1684 if (err == -EAGAIN)
1685 goto repeat;
1687 out:
1688 if (have_copy) {
1689 const unsigned int count = eb->buffer_count;
1690 unsigned int i;
1692 for (i = 0; i < count; i++) {
1693 const struct drm_i915_gem_exec_object2 *entry =
1694 &eb->exec[i];
1695 struct drm_i915_gem_relocation_entry *relocs;
1697 if (!entry->relocation_count)
1698 continue;
1700 relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr);
1701 kvfree(relocs);
1705 return err;
1708 static int eb_relocate(struct i915_execbuffer *eb)
1710 if (eb_lookup_vmas(eb))
1711 goto slow;
1713 /* The objects are in their final locations, apply the relocations. */
1714 if (eb->args->flags & __EXEC_HAS_RELOC) {
1715 struct i915_vma *vma;
1717 list_for_each_entry(vma, &eb->relocs, reloc_link) {
1718 if (eb_relocate_vma(eb, vma))
1719 goto slow;
1723 return 0;
1725 slow:
1726 return eb_relocate_slow(eb);
1729 static void eb_export_fence(struct i915_vma *vma,
1730 struct drm_i915_gem_request *req,
1731 unsigned int flags)
1733 struct reservation_object *resv = vma->resv;
1736 * Ignore errors from failing to allocate the new fence, we can't
1737 * handle an error right now. Worst case should be missed
1738 * synchronisation leading to rendering corruption.
1740 reservation_object_lock(resv, NULL);
1741 if (flags & EXEC_OBJECT_WRITE)
1742 reservation_object_add_excl_fence(resv, &req->fence);
1743 else if (reservation_object_reserve_shared(resv) == 0)
1744 reservation_object_add_shared_fence(resv, &req->fence);
1745 reservation_object_unlock(resv);
1748 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1750 const unsigned int count = eb->buffer_count;
1751 unsigned int i;
1752 int err;
1754 for (i = 0; i < count; i++) {
1755 unsigned int flags = eb->flags[i];
1756 struct i915_vma *vma = eb->vma[i];
1757 struct drm_i915_gem_object *obj = vma->obj;
1759 if (flags & EXEC_OBJECT_CAPTURE) {
1760 struct i915_gem_capture_list *capture;
1762 capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1763 if (unlikely(!capture))
1764 return -ENOMEM;
1766 capture->next = eb->request->capture_list;
1767 capture->vma = eb->vma[i];
1768 eb->request->capture_list = capture;
1772 * If the GPU is not _reading_ through the CPU cache, we need
1773 * to make sure that any writes (both previous GPU writes from
1774 * before a change in snooping levels and normal CPU writes)
1775 * caught in that cache are flushed to main memory.
1777 * We want to say
1778 * obj->cache_dirty &&
1779 * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1780 * but gcc's optimiser doesn't handle that as well and emits
1781 * two jumps instead of one. Maybe one day...
1783 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1784 if (i915_gem_clflush_object(obj, 0))
1785 flags &= ~EXEC_OBJECT_ASYNC;
1788 if (flags & EXEC_OBJECT_ASYNC)
1789 continue;
1791 err = i915_gem_request_await_object
1792 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
1793 if (err)
1794 return err;
1797 for (i = 0; i < count; i++) {
1798 unsigned int flags = eb->flags[i];
1799 struct i915_vma *vma = eb->vma[i];
1801 i915_vma_move_to_active(vma, eb->request, flags);
1802 eb_export_fence(vma, eb->request, flags);
1804 __eb_unreserve_vma(vma, flags);
1805 vma->exec_flags = NULL;
1807 if (unlikely(flags & __EXEC_OBJECT_HAS_REF))
1808 i915_vma_put(vma);
1810 eb->exec = NULL;
1812 /* Unconditionally flush any chipset caches (for streaming writes). */
1813 i915_gem_chipset_flush(eb->i915);
1815 return 0;
1818 static bool i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1820 if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1821 return false;
1823 /* Kernel clipping was a DRI1 misfeature */
1824 if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1825 if (exec->num_cliprects || exec->cliprects_ptr)
1826 return false;
1829 if (exec->DR4 == 0xffffffff) {
1830 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1831 exec->DR4 = 0;
1833 if (exec->DR1 || exec->DR4)
1834 return false;
1836 if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1837 return false;
1839 return true;
1842 void i915_vma_move_to_active(struct i915_vma *vma,
1843 struct drm_i915_gem_request *req,
1844 unsigned int flags)
1846 struct drm_i915_gem_object *obj = vma->obj;
1847 const unsigned int idx = req->engine->id;
1849 lockdep_assert_held(&req->i915->drm.struct_mutex);
1850 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
1853 * Add a reference if we're newly entering the active list.
1854 * The order in which we add operations to the retirement queue is
1855 * vital here: mark_active adds to the start of the callback list,
1856 * such that subsequent callbacks are called first. Therefore we
1857 * add the active reference first and queue for it to be dropped
1858 * *last*.
1860 if (!i915_vma_is_active(vma))
1861 obj->active_count++;
1862 i915_vma_set_active(vma, idx);
1863 i915_gem_active_set(&vma->last_read[idx], req);
1864 list_move_tail(&vma->vm_link, &vma->vm->active_list);
1866 obj->base.write_domain = 0;
1867 if (flags & EXEC_OBJECT_WRITE) {
1868 obj->base.write_domain = I915_GEM_DOMAIN_RENDER;
1870 if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1871 i915_gem_active_set(&obj->frontbuffer_write, req);
1873 obj->base.read_domains = 0;
1875 obj->base.read_domains |= I915_GEM_GPU_DOMAINS;
1877 if (flags & EXEC_OBJECT_NEEDS_FENCE)
1878 i915_gem_active_set(&vma->last_fence, req);
1881 static int i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1883 u32 *cs;
1884 int i;
1886 if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1887 DRM_DEBUG("sol reset is gen7/rcs only\n");
1888 return -EINVAL;
1891 cs = intel_ring_begin(req, 4 * 2 + 2);
1892 if (IS_ERR(cs))
1893 return PTR_ERR(cs);
1895 *cs++ = MI_LOAD_REGISTER_IMM(4);
1896 for (i = 0; i < 4; i++) {
1897 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1898 *cs++ = 0;
1900 *cs++ = MI_NOOP;
1901 intel_ring_advance(req, cs);
1903 return 0;
1906 static struct i915_vma *eb_parse(struct i915_execbuffer *eb, bool is_master)
1908 struct drm_i915_gem_object *shadow_batch_obj;
1909 struct i915_vma *vma;
1910 int err;
1912 shadow_batch_obj = i915_gem_batch_pool_get(&eb->engine->batch_pool,
1913 PAGE_ALIGN(eb->batch_len));
1914 if (IS_ERR(shadow_batch_obj))
1915 return ERR_CAST(shadow_batch_obj);
1917 err = intel_engine_cmd_parser(eb->engine,
1918 eb->batch->obj,
1919 shadow_batch_obj,
1920 eb->batch_start_offset,
1921 eb->batch_len,
1922 is_master);
1923 if (err) {
1924 if (err == -EACCES) /* unhandled chained batch */
1925 vma = NULL;
1926 else
1927 vma = ERR_PTR(err);
1928 goto out;
1931 vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1932 if (IS_ERR(vma))
1933 goto out;
1935 eb->vma[eb->buffer_count] = i915_vma_get(vma);
1936 eb->flags[eb->buffer_count] =
1937 __EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_REF;
1938 vma->exec_flags = &eb->flags[eb->buffer_count];
1939 eb->buffer_count++;
1941 out:
1942 i915_gem_object_unpin_pages(shadow_batch_obj);
1943 return vma;
1946 static void
1947 add_to_client(struct drm_i915_gem_request *req, struct drm_file *file)
1949 req->file_priv = file->driver_priv;
1950 list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
1953 static int eb_submit(struct i915_execbuffer *eb)
1955 int err;
1957 err = eb_move_to_gpu(eb);
1958 if (err)
1959 return err;
1961 if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1962 err = i915_reset_gen7_sol_offsets(eb->request);
1963 if (err)
1964 return err;
1967 err = eb->engine->emit_bb_start(eb->request,
1968 eb->batch->node.start +
1969 eb->batch_start_offset,
1970 eb->batch_len,
1971 eb->batch_flags);
1972 if (err)
1973 return err;
1975 return 0;
1979 * Find one BSD ring to dispatch the corresponding BSD command.
1980 * The engine index is returned.
1982 static unsigned int
1983 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1984 struct drm_file *file)
1986 struct drm_i915_file_private *file_priv = file->driver_priv;
1988 /* Check whether the file_priv has already selected one ring. */
1989 if ((int)file_priv->bsd_engine < 0)
1990 file_priv->bsd_engine = atomic_fetch_xor(1,
1991 &dev_priv->mm.bsd_engine_dispatch_index);
1993 return file_priv->bsd_engine;
1996 #define I915_USER_RINGS (4)
1998 static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1999 [I915_EXEC_DEFAULT] = RCS,
2000 [I915_EXEC_RENDER] = RCS,
2001 [I915_EXEC_BLT] = BCS,
2002 [I915_EXEC_BSD] = VCS,
2003 [I915_EXEC_VEBOX] = VECS
2006 static struct intel_engine_cs *
2007 eb_select_engine(struct drm_i915_private *dev_priv,
2008 struct drm_file *file,
2009 struct drm_i915_gem_execbuffer2 *args)
2011 unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2012 struct intel_engine_cs *engine;
2014 if (user_ring_id > I915_USER_RINGS) {
2015 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
2016 return NULL;
2019 if ((user_ring_id != I915_EXEC_BSD) &&
2020 ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
2021 DRM_DEBUG("execbuf with non bsd ring but with invalid "
2022 "bsd dispatch flags: %d\n", (int)(args->flags));
2023 return NULL;
2026 if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
2027 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2029 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2030 bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
2031 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2032 bsd_idx <= I915_EXEC_BSD_RING2) {
2033 bsd_idx >>= I915_EXEC_BSD_SHIFT;
2034 bsd_idx--;
2035 } else {
2036 DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
2037 bsd_idx);
2038 return NULL;
2041 engine = dev_priv->engine[_VCS(bsd_idx)];
2042 } else {
2043 engine = dev_priv->engine[user_ring_map[user_ring_id]];
2046 if (!engine) {
2047 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
2048 return NULL;
2051 return engine;
2054 static void
2055 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2057 while (n--)
2058 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2059 kvfree(fences);
2062 static struct drm_syncobj **
2063 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2064 struct drm_file *file)
2066 const unsigned long nfences = args->num_cliprects;
2067 struct drm_i915_gem_exec_fence __user *user;
2068 struct drm_syncobj **fences;
2069 unsigned long n;
2070 int err;
2072 if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2073 return NULL;
2075 /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2076 BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2077 if (nfences > min_t(unsigned long,
2078 ULONG_MAX / sizeof(*user),
2079 SIZE_MAX / sizeof(*fences)))
2080 return ERR_PTR(-EINVAL);
2082 user = u64_to_user_ptr(args->cliprects_ptr);
2083 if (!access_ok(VERIFY_READ, user, nfences * sizeof(*user)))
2084 return ERR_PTR(-EFAULT);
2086 fences = kvmalloc_array(nfences, sizeof(*fences),
2087 __GFP_NOWARN | GFP_KERNEL);
2088 if (!fences)
2089 return ERR_PTR(-ENOMEM);
2091 for (n = 0; n < nfences; n++) {
2092 struct drm_i915_gem_exec_fence fence;
2093 struct drm_syncobj *syncobj;
2095 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2096 err = -EFAULT;
2097 goto err;
2100 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2101 err = -EINVAL;
2102 goto err;
2105 syncobj = drm_syncobj_find(file, fence.handle);
2106 if (!syncobj) {
2107 DRM_DEBUG("Invalid syncobj handle provided\n");
2108 err = -ENOENT;
2109 goto err;
2112 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2113 ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2115 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2118 return fences;
2120 err:
2121 __free_fence_array(fences, n);
2122 return ERR_PTR(err);
2125 static void
2126 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2127 struct drm_syncobj **fences)
2129 if (fences)
2130 __free_fence_array(fences, args->num_cliprects);
2133 static int
2134 await_fence_array(struct i915_execbuffer *eb,
2135 struct drm_syncobj **fences)
2137 const unsigned int nfences = eb->args->num_cliprects;
2138 unsigned int n;
2139 int err;
2141 for (n = 0; n < nfences; n++) {
2142 struct drm_syncobj *syncobj;
2143 struct dma_fence *fence;
2144 unsigned int flags;
2146 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2147 if (!(flags & I915_EXEC_FENCE_WAIT))
2148 continue;
2150 fence = drm_syncobj_fence_get(syncobj);
2151 if (!fence)
2152 return -EINVAL;
2154 err = i915_gem_request_await_dma_fence(eb->request, fence);
2155 dma_fence_put(fence);
2156 if (err < 0)
2157 return err;
2160 return 0;
2163 static void
2164 signal_fence_array(struct i915_execbuffer *eb,
2165 struct drm_syncobj **fences)
2167 const unsigned int nfences = eb->args->num_cliprects;
2168 struct dma_fence * const fence = &eb->request->fence;
2169 unsigned int n;
2171 for (n = 0; n < nfences; n++) {
2172 struct drm_syncobj *syncobj;
2173 unsigned int flags;
2175 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2176 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2177 continue;
2179 drm_syncobj_replace_fence(syncobj, fence);
2183 static int
2184 i915_gem_do_execbuffer(struct drm_device *dev,
2185 struct drm_file *file,
2186 struct drm_i915_gem_execbuffer2 *args,
2187 struct drm_i915_gem_exec_object2 *exec,
2188 struct drm_syncobj **fences)
2190 struct i915_execbuffer eb;
2191 struct dma_fence *in_fence = NULL;
2192 struct sync_file *out_fence = NULL;
2193 int out_fence_fd = -1;
2194 int err;
2196 BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2197 BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2198 ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2200 eb.i915 = to_i915(dev);
2201 eb.file = file;
2202 eb.args = args;
2203 if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2204 args->flags |= __EXEC_HAS_RELOC;
2206 eb.exec = exec;
2207 eb.vma = (struct i915_vma **)(exec + args->buffer_count + 1);
2208 eb.vma[0] = NULL;
2209 eb.flags = (unsigned int *)(eb.vma + args->buffer_count + 1);
2211 eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2212 if (USES_FULL_PPGTT(eb.i915))
2213 eb.invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
2214 reloc_cache_init(&eb.reloc_cache, eb.i915);
2216 eb.buffer_count = args->buffer_count;
2217 eb.batch_start_offset = args->batch_start_offset;
2218 eb.batch_len = args->batch_len;
2220 eb.batch_flags = 0;
2221 if (args->flags & I915_EXEC_SECURE) {
2222 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2223 return -EPERM;
2225 eb.batch_flags |= I915_DISPATCH_SECURE;
2227 if (args->flags & I915_EXEC_IS_PINNED)
2228 eb.batch_flags |= I915_DISPATCH_PINNED;
2230 eb.engine = eb_select_engine(eb.i915, file, args);
2231 if (!eb.engine)
2232 return -EINVAL;
2234 if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
2235 if (!HAS_RESOURCE_STREAMER(eb.i915)) {
2236 DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
2237 return -EINVAL;
2239 if (eb.engine->id != RCS) {
2240 DRM_DEBUG("RS is not available on %s\n",
2241 eb.engine->name);
2242 return -EINVAL;
2245 eb.batch_flags |= I915_DISPATCH_RS;
2248 if (args->flags & I915_EXEC_FENCE_IN) {
2249 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2250 if (!in_fence)
2251 return -EINVAL;
2254 if (args->flags & I915_EXEC_FENCE_OUT) {
2255 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2256 if (out_fence_fd < 0) {
2257 err = out_fence_fd;
2258 goto err_in_fence;
2262 err = eb_create(&eb);
2263 if (err)
2264 goto err_out_fence;
2266 GEM_BUG_ON(!eb.lut_size);
2268 err = eb_select_context(&eb);
2269 if (unlikely(err))
2270 goto err_destroy;
2273 * Take a local wakeref for preparing to dispatch the execbuf as
2274 * we expect to access the hardware fairly frequently in the
2275 * process. Upon first dispatch, we acquire another prolonged
2276 * wakeref that we hold until the GPU has been idle for at least
2277 * 100ms.
2279 intel_runtime_pm_get(eb.i915);
2281 err = i915_mutex_lock_interruptible(dev);
2282 if (err)
2283 goto err_rpm;
2285 err = eb_relocate(&eb);
2286 if (err) {
2288 * If the user expects the execobject.offset and
2289 * reloc.presumed_offset to be an exact match,
2290 * as for using NO_RELOC, then we cannot update
2291 * the execobject.offset until we have completed
2292 * relocation.
2294 args->flags &= ~__EXEC_HAS_RELOC;
2295 goto err_vma;
2298 if (unlikely(*eb.batch->exec_flags & EXEC_OBJECT_WRITE)) {
2299 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
2300 err = -EINVAL;
2301 goto err_vma;
2303 if (eb.batch_start_offset > eb.batch->size ||
2304 eb.batch_len > eb.batch->size - eb.batch_start_offset) {
2305 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
2306 err = -EINVAL;
2307 goto err_vma;
2310 if (eb_use_cmdparser(&eb)) {
2311 struct i915_vma *vma;
2313 vma = eb_parse(&eb, drm_is_current_master(file));
2314 if (IS_ERR(vma)) {
2315 err = PTR_ERR(vma);
2316 goto err_vma;
2319 if (vma) {
2321 * Batch parsed and accepted:
2323 * Set the DISPATCH_SECURE bit to remove the NON_SECURE
2324 * bit from MI_BATCH_BUFFER_START commands issued in
2325 * the dispatch_execbuffer implementations. We
2326 * specifically don't want that set on batches the
2327 * command parser has accepted.
2329 eb.batch_flags |= I915_DISPATCH_SECURE;
2330 eb.batch_start_offset = 0;
2331 eb.batch = vma;
2335 if (eb.batch_len == 0)
2336 eb.batch_len = eb.batch->size - eb.batch_start_offset;
2339 * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2340 * batch" bit. Hence we need to pin secure batches into the global gtt.
2341 * hsw should have this fixed, but bdw mucks it up again. */
2342 if (eb.batch_flags & I915_DISPATCH_SECURE) {
2343 struct i915_vma *vma;
2346 * So on first glance it looks freaky that we pin the batch here
2347 * outside of the reservation loop. But:
2348 * - The batch is already pinned into the relevant ppgtt, so we
2349 * already have the backing storage fully allocated.
2350 * - No other BO uses the global gtt (well contexts, but meh),
2351 * so we don't really have issues with multiple objects not
2352 * fitting due to fragmentation.
2353 * So this is actually safe.
2355 vma = i915_gem_object_ggtt_pin(eb.batch->obj, NULL, 0, 0, 0);
2356 if (IS_ERR(vma)) {
2357 err = PTR_ERR(vma);
2358 goto err_vma;
2361 eb.batch = vma;
2364 /* All GPU relocation batches must be submitted prior to the user rq */
2365 GEM_BUG_ON(eb.reloc_cache.rq);
2367 /* Allocate a request for this batch buffer nice and early. */
2368 eb.request = i915_gem_request_alloc(eb.engine, eb.ctx);
2369 if (IS_ERR(eb.request)) {
2370 err = PTR_ERR(eb.request);
2371 goto err_batch_unpin;
2374 if (in_fence) {
2375 err = i915_gem_request_await_dma_fence(eb.request, in_fence);
2376 if (err < 0)
2377 goto err_request;
2380 if (fences) {
2381 err = await_fence_array(&eb, fences);
2382 if (err)
2383 goto err_request;
2386 if (out_fence_fd != -1) {
2387 out_fence = sync_file_create(&eb.request->fence);
2388 if (!out_fence) {
2389 err = -ENOMEM;
2390 goto err_request;
2395 * Whilst this request exists, batch_obj will be on the
2396 * active_list, and so will hold the active reference. Only when this
2397 * request is retired will the the batch_obj be moved onto the
2398 * inactive_list and lose its active reference. Hence we do not need
2399 * to explicitly hold another reference here.
2401 eb.request->batch = eb.batch;
2403 trace_i915_gem_request_queue(eb.request, eb.batch_flags);
2404 err = eb_submit(&eb);
2405 err_request:
2406 __i915_add_request(eb.request, err == 0);
2407 add_to_client(eb.request, file);
2409 if (fences)
2410 signal_fence_array(&eb, fences);
2412 if (out_fence) {
2413 if (err == 0) {
2414 fd_install(out_fence_fd, out_fence->file);
2415 args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2416 args->rsvd2 |= (u64)out_fence_fd << 32;
2417 out_fence_fd = -1;
2418 } else {
2419 fput(out_fence->file);
2423 err_batch_unpin:
2424 if (eb.batch_flags & I915_DISPATCH_SECURE)
2425 i915_vma_unpin(eb.batch);
2426 err_vma:
2427 if (eb.exec)
2428 eb_release_vmas(&eb);
2429 mutex_unlock(&dev->struct_mutex);
2430 err_rpm:
2431 intel_runtime_pm_put(eb.i915);
2432 i915_gem_context_put(eb.ctx);
2433 err_destroy:
2434 eb_destroy(&eb);
2435 err_out_fence:
2436 if (out_fence_fd != -1)
2437 put_unused_fd(out_fence_fd);
2438 err_in_fence:
2439 dma_fence_put(in_fence);
2440 return err;
2443 static size_t eb_element_size(void)
2445 return (sizeof(struct drm_i915_gem_exec_object2) +
2446 sizeof(struct i915_vma *) +
2447 sizeof(unsigned int));
2450 static bool check_buffer_count(size_t count)
2452 const size_t sz = eb_element_size();
2455 * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2456 * array size (see eb_create()). Otherwise, we can accept an array as
2457 * large as can be addressed (though use large arrays at your peril)!
2460 return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2464 * Legacy execbuffer just creates an exec2 list from the original exec object
2465 * list array and passes it to the real function.
2468 i915_gem_execbuffer(struct drm_device *dev, void *data,
2469 struct drm_file *file)
2471 struct drm_i915_gem_execbuffer *args = data;
2472 struct drm_i915_gem_execbuffer2 exec2;
2473 struct drm_i915_gem_exec_object *exec_list = NULL;
2474 struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2475 const size_t count = args->buffer_count;
2476 unsigned int i;
2477 int err;
2479 if (!check_buffer_count(count)) {
2480 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2481 return -EINVAL;
2484 exec2.buffers_ptr = args->buffers_ptr;
2485 exec2.buffer_count = args->buffer_count;
2486 exec2.batch_start_offset = args->batch_start_offset;
2487 exec2.batch_len = args->batch_len;
2488 exec2.DR1 = args->DR1;
2489 exec2.DR4 = args->DR4;
2490 exec2.num_cliprects = args->num_cliprects;
2491 exec2.cliprects_ptr = args->cliprects_ptr;
2492 exec2.flags = I915_EXEC_RENDER;
2493 i915_execbuffer2_set_context_id(exec2, 0);
2495 if (!i915_gem_check_execbuffer(&exec2))
2496 return -EINVAL;
2498 /* Copy in the exec list from userland */
2499 exec_list = kvmalloc_array(count, sizeof(*exec_list),
2500 __GFP_NOWARN | GFP_KERNEL);
2501 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2502 __GFP_NOWARN | GFP_KERNEL);
2503 if (exec_list == NULL || exec2_list == NULL) {
2504 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
2505 args->buffer_count);
2506 kvfree(exec_list);
2507 kvfree(exec2_list);
2508 return -ENOMEM;
2510 err = copy_from_user(exec_list,
2511 u64_to_user_ptr(args->buffers_ptr),
2512 sizeof(*exec_list) * count);
2513 if (err) {
2514 DRM_DEBUG("copy %d exec entries failed %d\n",
2515 args->buffer_count, err);
2516 kvfree(exec_list);
2517 kvfree(exec2_list);
2518 return -EFAULT;
2521 for (i = 0; i < args->buffer_count; i++) {
2522 exec2_list[i].handle = exec_list[i].handle;
2523 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2524 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2525 exec2_list[i].alignment = exec_list[i].alignment;
2526 exec2_list[i].offset = exec_list[i].offset;
2527 if (INTEL_GEN(to_i915(dev)) < 4)
2528 exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2529 else
2530 exec2_list[i].flags = 0;
2533 err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2534 if (exec2.flags & __EXEC_HAS_RELOC) {
2535 struct drm_i915_gem_exec_object __user *user_exec_list =
2536 u64_to_user_ptr(args->buffers_ptr);
2538 /* Copy the new buffer offsets back to the user's exec list. */
2539 for (i = 0; i < args->buffer_count; i++) {
2540 if (!(exec2_list[i].offset & UPDATE))
2541 continue;
2543 exec2_list[i].offset =
2544 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2545 exec2_list[i].offset &= PIN_OFFSET_MASK;
2546 if (__copy_to_user(&user_exec_list[i].offset,
2547 &exec2_list[i].offset,
2548 sizeof(user_exec_list[i].offset)))
2549 break;
2553 kvfree(exec_list);
2554 kvfree(exec2_list);
2555 return err;
2559 i915_gem_execbuffer2(struct drm_device *dev, void *data,
2560 struct drm_file *file)
2562 struct drm_i915_gem_execbuffer2 *args = data;
2563 struct drm_i915_gem_exec_object2 *exec2_list;
2564 struct drm_syncobj **fences = NULL;
2565 const size_t count = args->buffer_count;
2566 int err;
2568 if (!check_buffer_count(count)) {
2569 DRM_DEBUG("execbuf2 with %zd buffers\n", count);
2570 return -EINVAL;
2573 if (!i915_gem_check_execbuffer(args))
2574 return -EINVAL;
2576 /* Allocate an extra slot for use by the command parser */
2577 exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2578 __GFP_NOWARN | GFP_KERNEL);
2579 if (exec2_list == NULL) {
2580 DRM_DEBUG("Failed to allocate exec list for %zd buffers\n",
2581 count);
2582 return -ENOMEM;
2584 if (copy_from_user(exec2_list,
2585 u64_to_user_ptr(args->buffers_ptr),
2586 sizeof(*exec2_list) * count)) {
2587 DRM_DEBUG("copy %zd exec entries failed\n", count);
2588 kvfree(exec2_list);
2589 return -EFAULT;
2592 if (args->flags & I915_EXEC_FENCE_ARRAY) {
2593 fences = get_fence_array(args, file);
2594 if (IS_ERR(fences)) {
2595 kvfree(exec2_list);
2596 return PTR_ERR(fences);
2600 err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2603 * Now that we have begun execution of the batchbuffer, we ignore
2604 * any new error after this point. Also given that we have already
2605 * updated the associated relocations, we try to write out the current
2606 * object locations irrespective of any error.
2608 if (args->flags & __EXEC_HAS_RELOC) {
2609 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2610 u64_to_user_ptr(args->buffers_ptr);
2611 unsigned int i;
2613 /* Copy the new buffer offsets back to the user's exec list. */
2614 user_access_begin();
2615 for (i = 0; i < args->buffer_count; i++) {
2616 if (!(exec2_list[i].offset & UPDATE))
2617 continue;
2619 exec2_list[i].offset =
2620 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2621 unsafe_put_user(exec2_list[i].offset,
2622 &user_exec_list[i].offset,
2623 end_user);
2625 end_user:
2626 user_access_end();
2629 args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2630 put_fence_array(args, fences);
2631 kvfree(exec2_list);
2632 return err;