bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / i915_gem_request.c
bloba3e93d46316a267571f199cfcbd665434f41003f
1 /*
2 * Copyright © 2008-2015 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
31 #include "i915_drv.h"
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
35 return "i915";
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
40 /* The timeline struct (as part of the ppgtt underneath a context)
41 * may be freed when the request is no longer in use by the GPU.
42 * We could extend the life of a context to beyond that of all
43 * fences, possibly keeping the hw resource around indefinitely,
44 * or we just give them a false name. Since
45 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
46 * lie seems justifiable.
48 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
49 return "signaled";
51 return to_request(fence)->timeline->common->name;
54 static bool i915_fence_signaled(struct dma_fence *fence)
56 return i915_gem_request_completed(to_request(fence));
59 static bool i915_fence_enable_signaling(struct dma_fence *fence)
61 if (i915_fence_signaled(fence))
62 return false;
64 intel_engine_enable_signaling(to_request(fence), true);
65 return !i915_fence_signaled(fence);
68 static signed long i915_fence_wait(struct dma_fence *fence,
69 bool interruptible,
70 signed long timeout)
72 return i915_wait_request(to_request(fence), interruptible, timeout);
75 static void i915_fence_release(struct dma_fence *fence)
77 struct drm_i915_gem_request *req = to_request(fence);
79 /* The request is put onto a RCU freelist (i.e. the address
80 * is immediately reused), mark the fences as being freed now.
81 * Otherwise the debugobjects for the fences are only marked as
82 * freed when the slab cache itself is freed, and so we would get
83 * caught trying to reuse dead objects.
85 i915_sw_fence_fini(&req->submit);
87 kmem_cache_free(req->i915->requests, req);
90 const struct dma_fence_ops i915_fence_ops = {
91 .get_driver_name = i915_fence_get_driver_name,
92 .get_timeline_name = i915_fence_get_timeline_name,
93 .enable_signaling = i915_fence_enable_signaling,
94 .signaled = i915_fence_signaled,
95 .wait = i915_fence_wait,
96 .release = i915_fence_release,
99 static inline void
100 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
102 struct drm_i915_file_private *file_priv;
104 file_priv = request->file_priv;
105 if (!file_priv)
106 return;
108 spin_lock(&file_priv->mm.lock);
109 if (request->file_priv) {
110 list_del(&request->client_link);
111 request->file_priv = NULL;
113 spin_unlock(&file_priv->mm.lock);
116 static struct i915_dependency *
117 i915_dependency_alloc(struct drm_i915_private *i915)
119 return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
122 static void
123 i915_dependency_free(struct drm_i915_private *i915,
124 struct i915_dependency *dep)
126 kmem_cache_free(i915->dependencies, dep);
129 static void
130 __i915_priotree_add_dependency(struct i915_priotree *pt,
131 struct i915_priotree *signal,
132 struct i915_dependency *dep,
133 unsigned long flags)
135 INIT_LIST_HEAD(&dep->dfs_link);
136 list_add(&dep->wait_link, &signal->waiters_list);
137 list_add(&dep->signal_link, &pt->signalers_list);
138 dep->signaler = signal;
139 dep->flags = flags;
142 static int
143 i915_priotree_add_dependency(struct drm_i915_private *i915,
144 struct i915_priotree *pt,
145 struct i915_priotree *signal)
147 struct i915_dependency *dep;
149 dep = i915_dependency_alloc(i915);
150 if (!dep)
151 return -ENOMEM;
153 __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
154 return 0;
157 static void
158 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
160 struct i915_dependency *dep, *next;
162 GEM_BUG_ON(!list_empty(&pt->link));
164 /* Everyone we depended upon (the fences we wait to be signaled)
165 * should retire before us and remove themselves from our list.
166 * However, retirement is run independently on each timeline and
167 * so we may be called out-of-order.
169 list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
170 list_del(&dep->wait_link);
171 if (dep->flags & I915_DEPENDENCY_ALLOC)
172 i915_dependency_free(i915, dep);
175 /* Remove ourselves from everyone who depends upon us */
176 list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
177 list_del(&dep->signal_link);
178 if (dep->flags & I915_DEPENDENCY_ALLOC)
179 i915_dependency_free(i915, dep);
183 static void
184 i915_priotree_init(struct i915_priotree *pt)
186 INIT_LIST_HEAD(&pt->signalers_list);
187 INIT_LIST_HEAD(&pt->waiters_list);
188 INIT_LIST_HEAD(&pt->link);
189 pt->priority = I915_PRIORITY_INVALID;
192 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
194 struct intel_engine_cs *engine;
195 enum intel_engine_id id;
196 int ret;
198 /* Carefully retire all requests without writing to the rings */
199 ret = i915_gem_wait_for_idle(i915,
200 I915_WAIT_INTERRUPTIBLE |
201 I915_WAIT_LOCKED);
202 if (ret)
203 return ret;
205 /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
206 for_each_engine(engine, i915, id) {
207 struct i915_gem_timeline *timeline;
208 struct intel_timeline *tl = engine->timeline;
210 if (!i915_seqno_passed(seqno, tl->seqno)) {
211 /* spin until threads are complete */
212 while (intel_breadcrumbs_busy(engine))
213 cond_resched();
216 /* Check we are idle before we fiddle with hw state! */
217 GEM_BUG_ON(!intel_engine_is_idle(engine));
218 GEM_BUG_ON(i915_gem_active_isset(&engine->timeline->last_request));
220 /* Finally reset hw state */
221 intel_engine_init_global_seqno(engine, seqno);
222 tl->seqno = seqno;
224 list_for_each_entry(timeline, &i915->gt.timelines, link)
225 memset(timeline->engine[id].global_sync, 0,
226 sizeof(timeline->engine[id].global_sync));
229 return 0;
232 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
234 struct drm_i915_private *dev_priv = to_i915(dev);
236 lockdep_assert_held(&dev_priv->drm.struct_mutex);
238 if (seqno == 0)
239 return -EINVAL;
241 /* HWS page needs to be set less than what we
242 * will inject to ring
244 return reset_all_global_seqno(dev_priv, seqno - 1);
247 static void mark_busy(struct drm_i915_private *i915)
249 if (i915->gt.awake)
250 return;
252 GEM_BUG_ON(!i915->gt.active_requests);
254 intel_runtime_pm_get_noresume(i915);
257 * It seems that the DMC likes to transition between the DC states a lot
258 * when there are no connected displays (no active power domains) during
259 * command submission.
261 * This activity has negative impact on the performance of the chip with
262 * huge latencies observed in the interrupt handler and elsewhere.
264 * Work around it by grabbing a GT IRQ power domain whilst there is any
265 * GT activity, preventing any DC state transitions.
267 intel_display_power_get(i915, POWER_DOMAIN_GT_IRQ);
269 i915->gt.awake = true;
271 intel_enable_gt_powersave(i915);
272 i915_update_gfx_val(i915);
273 if (INTEL_GEN(i915) >= 6)
274 gen6_rps_busy(i915);
275 i915_pmu_gt_unparked(i915);
277 intel_engines_unpark(i915);
279 i915_queue_hangcheck(i915);
281 queue_delayed_work(i915->wq,
282 &i915->gt.retire_work,
283 round_jiffies_up_relative(HZ));
286 static int reserve_engine(struct intel_engine_cs *engine)
288 struct drm_i915_private *i915 = engine->i915;
289 u32 active = ++engine->timeline->inflight_seqnos;
290 u32 seqno = engine->timeline->seqno;
291 int ret;
293 /* Reservation is fine until we need to wrap around */
294 if (unlikely(add_overflows(seqno, active))) {
295 ret = reset_all_global_seqno(i915, 0);
296 if (ret) {
297 engine->timeline->inflight_seqnos--;
298 return ret;
302 if (!i915->gt.active_requests++)
303 mark_busy(i915);
305 return 0;
308 static void unreserve_engine(struct intel_engine_cs *engine)
310 struct drm_i915_private *i915 = engine->i915;
312 if (!--i915->gt.active_requests) {
313 /* Cancel the mark_busy() from our reserve_engine() */
314 GEM_BUG_ON(!i915->gt.awake);
315 mod_delayed_work(i915->wq,
316 &i915->gt.idle_work,
317 msecs_to_jiffies(100));
320 GEM_BUG_ON(!engine->timeline->inflight_seqnos);
321 engine->timeline->inflight_seqnos--;
324 void i915_gem_retire_noop(struct i915_gem_active *active,
325 struct drm_i915_gem_request *request)
327 /* Space left intentionally blank */
330 static void advance_ring(struct drm_i915_gem_request *request)
332 unsigned int tail;
334 /* We know the GPU must have read the request to have
335 * sent us the seqno + interrupt, so use the position
336 * of tail of the request to update the last known position
337 * of the GPU head.
339 * Note this requires that we are always called in request
340 * completion order.
342 if (list_is_last(&request->ring_link, &request->ring->request_list)) {
343 /* We may race here with execlists resubmitting this request
344 * as we retire it. The resubmission will move the ring->tail
345 * forwards (to request->wa_tail). We either read the
346 * current value that was written to hw, or the value that
347 * is just about to be. Either works, if we miss the last two
348 * noops - they are safe to be replayed on a reset.
350 tail = READ_ONCE(request->ring->tail);
351 } else {
352 tail = request->postfix;
354 list_del(&request->ring_link);
356 request->ring->head = tail;
359 static void free_capture_list(struct drm_i915_gem_request *request)
361 struct i915_gem_capture_list *capture;
363 capture = request->capture_list;
364 while (capture) {
365 struct i915_gem_capture_list *next = capture->next;
367 kfree(capture);
368 capture = next;
372 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
374 struct intel_engine_cs *engine = request->engine;
375 struct i915_gem_active *active, *next;
377 lockdep_assert_held(&request->i915->drm.struct_mutex);
378 GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
379 GEM_BUG_ON(!i915_gem_request_completed(request));
380 GEM_BUG_ON(!request->i915->gt.active_requests);
382 trace_i915_gem_request_retire(request);
384 spin_lock_irq(&engine->timeline->lock);
385 list_del_init(&request->link);
386 spin_unlock_irq(&engine->timeline->lock);
388 unreserve_engine(request->engine);
389 advance_ring(request);
391 free_capture_list(request);
393 /* Walk through the active list, calling retire on each. This allows
394 * objects to track their GPU activity and mark themselves as idle
395 * when their *last* active request is completed (updating state
396 * tracking lists for eviction, active references for GEM, etc).
398 * As the ->retire() may free the node, we decouple it first and
399 * pass along the auxiliary information (to avoid dereferencing
400 * the node after the callback).
402 list_for_each_entry_safe(active, next, &request->active_list, link) {
403 /* In microbenchmarks or focusing upon time inside the kernel,
404 * we may spend an inordinate amount of time simply handling
405 * the retirement of requests and processing their callbacks.
406 * Of which, this loop itself is particularly hot due to the
407 * cache misses when jumping around the list of i915_gem_active.
408 * So we try to keep this loop as streamlined as possible and
409 * also prefetch the next i915_gem_active to try and hide
410 * the likely cache miss.
412 prefetchw(next);
414 INIT_LIST_HEAD(&active->link);
415 RCU_INIT_POINTER(active->request, NULL);
417 active->retire(active, request);
420 i915_gem_request_remove_from_client(request);
422 /* Retirement decays the ban score as it is a sign of ctx progress */
423 atomic_dec_if_positive(&request->ctx->ban_score);
425 /* The backing object for the context is done after switching to the
426 * *next* context. Therefore we cannot retire the previous context until
427 * the next context has already started running. However, since we
428 * cannot take the required locks at i915_gem_request_submit() we
429 * defer the unpinning of the active context to now, retirement of
430 * the subsequent request.
432 if (engine->last_retired_context)
433 engine->context_unpin(engine, engine->last_retired_context);
434 engine->last_retired_context = request->ctx;
436 spin_lock_irq(&request->lock);
437 if (request->waitboost)
438 atomic_dec(&request->i915->gt_pm.rps.num_waiters);
439 dma_fence_signal_locked(&request->fence);
440 spin_unlock_irq(&request->lock);
442 i915_priotree_fini(request->i915, &request->priotree);
443 i915_gem_request_put(request);
446 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
448 struct intel_engine_cs *engine = req->engine;
449 struct drm_i915_gem_request *tmp;
451 lockdep_assert_held(&req->i915->drm.struct_mutex);
452 GEM_BUG_ON(!i915_gem_request_completed(req));
454 if (list_empty(&req->link))
455 return;
457 do {
458 tmp = list_first_entry(&engine->timeline->requests,
459 typeof(*tmp), link);
461 i915_gem_request_retire(tmp);
462 } while (tmp != req);
465 static u32 timeline_get_seqno(struct intel_timeline *tl)
467 return ++tl->seqno;
470 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
472 struct intel_engine_cs *engine = request->engine;
473 struct intel_timeline *timeline;
474 u32 seqno;
476 GEM_BUG_ON(!irqs_disabled());
477 lockdep_assert_held(&engine->timeline->lock);
479 /* Transfer from per-context onto the global per-engine timeline */
480 timeline = engine->timeline;
481 GEM_BUG_ON(timeline == request->timeline);
482 GEM_BUG_ON(request->global_seqno);
484 seqno = timeline_get_seqno(timeline);
485 GEM_BUG_ON(!seqno);
486 GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
488 /* We may be recursing from the signal callback of another i915 fence */
489 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
490 request->global_seqno = seqno;
491 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
492 intel_engine_enable_signaling(request, false);
493 spin_unlock(&request->lock);
495 engine->emit_breadcrumb(request,
496 request->ring->vaddr + request->postfix);
498 spin_lock(&request->timeline->lock);
499 list_move_tail(&request->link, &timeline->requests);
500 spin_unlock(&request->timeline->lock);
502 trace_i915_gem_request_execute(request);
504 wake_up_all(&request->execute);
507 void i915_gem_request_submit(struct drm_i915_gem_request *request)
509 struct intel_engine_cs *engine = request->engine;
510 unsigned long flags;
512 /* Will be called from irq-context when using foreign fences. */
513 spin_lock_irqsave(&engine->timeline->lock, flags);
515 __i915_gem_request_submit(request);
517 spin_unlock_irqrestore(&engine->timeline->lock, flags);
520 void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
522 struct intel_engine_cs *engine = request->engine;
523 struct intel_timeline *timeline;
525 GEM_BUG_ON(!irqs_disabled());
526 lockdep_assert_held(&engine->timeline->lock);
528 /* Only unwind in reverse order, required so that the per-context list
529 * is kept in seqno/ring order.
531 GEM_BUG_ON(!request->global_seqno);
532 GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
533 engine->timeline->seqno--;
535 /* We may be recursing from the signal callback of another i915 fence */
536 spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
537 request->global_seqno = 0;
538 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
539 intel_engine_cancel_signaling(request);
540 spin_unlock(&request->lock);
542 /* Transfer back from the global per-engine timeline to per-context */
543 timeline = request->timeline;
544 GEM_BUG_ON(timeline == engine->timeline);
546 spin_lock(&timeline->lock);
547 list_move(&request->link, &timeline->requests);
548 spin_unlock(&timeline->lock);
550 /* We don't need to wake_up any waiters on request->execute, they
551 * will get woken by any other event or us re-adding this request
552 * to the engine timeline (__i915_gem_request_submit()). The waiters
553 * should be quite adapt at finding that the request now has a new
554 * global_seqno to the one they went to sleep on.
558 void i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
560 struct intel_engine_cs *engine = request->engine;
561 unsigned long flags;
563 /* Will be called from irq-context when using foreign fences. */
564 spin_lock_irqsave(&engine->timeline->lock, flags);
566 __i915_gem_request_unsubmit(request);
568 spin_unlock_irqrestore(&engine->timeline->lock, flags);
571 static int __i915_sw_fence_call
572 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
574 struct drm_i915_gem_request *request =
575 container_of(fence, typeof(*request), submit);
577 switch (state) {
578 case FENCE_COMPLETE:
579 trace_i915_gem_request_submit(request);
581 * We need to serialize use of the submit_request() callback with its
582 * hotplugging performed during an emergency i915_gem_set_wedged().
583 * We use the RCU mechanism to mark the critical section in order to
584 * force i915_gem_set_wedged() to wait until the submit_request() is
585 * completed before proceeding.
587 rcu_read_lock();
588 request->engine->submit_request(request);
589 rcu_read_unlock();
590 break;
592 case FENCE_FREE:
593 i915_gem_request_put(request);
594 break;
597 return NOTIFY_DONE;
601 * i915_gem_request_alloc - allocate a request structure
603 * @engine: engine that we wish to issue the request on.
604 * @ctx: context that the request will be associated with.
606 * Returns a pointer to the allocated request if successful,
607 * or an error code if not.
609 struct drm_i915_gem_request *
610 i915_gem_request_alloc(struct intel_engine_cs *engine,
611 struct i915_gem_context *ctx)
613 struct drm_i915_private *dev_priv = engine->i915;
614 struct drm_i915_gem_request *req;
615 struct intel_ring *ring;
616 int ret;
618 lockdep_assert_held(&dev_priv->drm.struct_mutex);
621 * Preempt contexts are reserved for exclusive use to inject a
622 * preemption context switch. They are never to be used for any trivial
623 * request!
625 GEM_BUG_ON(ctx == dev_priv->preempt_context);
627 /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
628 * EIO if the GPU is already wedged.
630 if (i915_terminally_wedged(&dev_priv->gpu_error))
631 return ERR_PTR(-EIO);
633 /* Pinning the contexts may generate requests in order to acquire
634 * GGTT space, so do this first before we reserve a seqno for
635 * ourselves.
637 ring = engine->context_pin(engine, ctx);
638 if (IS_ERR(ring))
639 return ERR_CAST(ring);
640 GEM_BUG_ON(!ring);
642 ret = reserve_engine(engine);
643 if (ret)
644 goto err_unpin;
646 ret = intel_ring_wait_for_space(ring, MIN_SPACE_FOR_ADD_REQUEST);
647 if (ret)
648 goto err_unreserve;
650 /* Move the oldest request to the slab-cache (if not in use!) */
651 req = list_first_entry_or_null(&engine->timeline->requests,
652 typeof(*req), link);
653 if (req && i915_gem_request_completed(req))
654 i915_gem_request_retire(req);
656 /* Beware: Dragons be flying overhead.
658 * We use RCU to look up requests in flight. The lookups may
659 * race with the request being allocated from the slab freelist.
660 * That is the request we are writing to here, may be in the process
661 * of being read by __i915_gem_active_get_rcu(). As such,
662 * we have to be very careful when overwriting the contents. During
663 * the RCU lookup, we change chase the request->engine pointer,
664 * read the request->global_seqno and increment the reference count.
666 * The reference count is incremented atomically. If it is zero,
667 * the lookup knows the request is unallocated and complete. Otherwise,
668 * it is either still in use, or has been reallocated and reset
669 * with dma_fence_init(). This increment is safe for release as we
670 * check that the request we have a reference to and matches the active
671 * request.
673 * Before we increment the refcount, we chase the request->engine
674 * pointer. We must not call kmem_cache_zalloc() or else we set
675 * that pointer to NULL and cause a crash during the lookup. If
676 * we see the request is completed (based on the value of the
677 * old engine and seqno), the lookup is complete and reports NULL.
678 * If we decide the request is not completed (new engine or seqno),
679 * then we grab a reference and double check that it is still the
680 * active request - which it won't be and restart the lookup.
682 * Do not use kmem_cache_zalloc() here!
684 req = kmem_cache_alloc(dev_priv->requests,
685 GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
686 if (unlikely(!req)) {
687 /* Ratelimit ourselves to prevent oom from malicious clients */
688 ret = i915_gem_wait_for_idle(dev_priv,
689 I915_WAIT_LOCKED |
690 I915_WAIT_INTERRUPTIBLE);
691 if (ret)
692 goto err_unreserve;
694 req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
695 if (!req) {
696 ret = -ENOMEM;
697 goto err_unreserve;
701 req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
702 GEM_BUG_ON(req->timeline == engine->timeline);
704 spin_lock_init(&req->lock);
705 dma_fence_init(&req->fence,
706 &i915_fence_ops,
707 &req->lock,
708 req->timeline->fence_context,
709 timeline_get_seqno(req->timeline));
711 /* We bump the ref for the fence chain */
712 i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
713 init_waitqueue_head(&req->execute);
715 i915_priotree_init(&req->priotree);
717 INIT_LIST_HEAD(&req->active_list);
718 req->i915 = dev_priv;
719 req->engine = engine;
720 req->ctx = ctx;
721 req->ring = ring;
723 /* No zalloc, must clear what we need by hand */
724 req->global_seqno = 0;
725 req->file_priv = NULL;
726 req->batch = NULL;
727 req->capture_list = NULL;
728 req->waitboost = false;
731 * Reserve space in the ring buffer for all the commands required to
732 * eventually emit this request. This is to guarantee that the
733 * i915_add_request() call can't fail. Note that the reserve may need
734 * to be redone if the request is not actually submitted straight
735 * away, e.g. because a GPU scheduler has deferred it.
737 req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
738 GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
741 * Record the position of the start of the request so that
742 * should we detect the updated seqno part-way through the
743 * GPU processing the request, we never over-estimate the
744 * position of the head.
746 req->head = req->ring->emit;
748 /* Unconditionally invalidate GPU caches and TLBs. */
749 ret = engine->emit_flush(req, EMIT_INVALIDATE);
750 if (ret)
751 goto err_unwind;
753 ret = engine->request_alloc(req);
754 if (ret)
755 goto err_unwind;
757 /* Check that we didn't interrupt ourselves with a new request */
758 GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
759 return req;
761 err_unwind:
762 req->ring->emit = req->head;
764 /* Make sure we didn't add ourselves to external state before freeing */
765 GEM_BUG_ON(!list_empty(&req->active_list));
766 GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
767 GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
769 kmem_cache_free(dev_priv->requests, req);
770 err_unreserve:
771 unreserve_engine(engine);
772 err_unpin:
773 engine->context_unpin(engine, ctx);
774 return ERR_PTR(ret);
777 static int
778 i915_gem_request_await_request(struct drm_i915_gem_request *to,
779 struct drm_i915_gem_request *from)
781 int ret;
783 GEM_BUG_ON(to == from);
784 GEM_BUG_ON(to->timeline == from->timeline);
786 if (i915_gem_request_completed(from))
787 return 0;
789 if (to->engine->schedule) {
790 ret = i915_priotree_add_dependency(to->i915,
791 &to->priotree,
792 &from->priotree);
793 if (ret < 0)
794 return ret;
797 if (to->engine == from->engine) {
798 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
799 &from->submit,
800 I915_FENCE_GFP);
801 return ret < 0 ? ret : 0;
804 if (to->engine->semaphore.sync_to) {
805 u32 seqno;
807 GEM_BUG_ON(!from->engine->semaphore.signal);
809 seqno = i915_gem_request_global_seqno(from);
810 if (!seqno)
811 goto await_dma_fence;
813 if (seqno <= to->timeline->global_sync[from->engine->id])
814 return 0;
816 trace_i915_gem_ring_sync_to(to, from);
817 ret = to->engine->semaphore.sync_to(to, from);
818 if (ret)
819 return ret;
821 to->timeline->global_sync[from->engine->id] = seqno;
822 return 0;
825 await_dma_fence:
826 ret = i915_sw_fence_await_dma_fence(&to->submit,
827 &from->fence, 0,
828 I915_FENCE_GFP);
829 return ret < 0 ? ret : 0;
833 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
834 struct dma_fence *fence)
836 struct dma_fence **child = &fence;
837 unsigned int nchild = 1;
838 int ret;
840 /* Note that if the fence-array was created in signal-on-any mode,
841 * we should *not* decompose it into its individual fences. However,
842 * we don't currently store which mode the fence-array is operating
843 * in. Fortunately, the only user of signal-on-any is private to
844 * amdgpu and we should not see any incoming fence-array from
845 * sync-file being in signal-on-any mode.
847 if (dma_fence_is_array(fence)) {
848 struct dma_fence_array *array = to_dma_fence_array(fence);
850 child = array->fences;
851 nchild = array->num_fences;
852 GEM_BUG_ON(!nchild);
855 do {
856 fence = *child++;
857 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
858 continue;
861 * Requests on the same timeline are explicitly ordered, along
862 * with their dependencies, by i915_add_request() which ensures
863 * that requests are submitted in-order through each ring.
865 if (fence->context == req->fence.context)
866 continue;
868 /* Squash repeated waits to the same timelines */
869 if (fence->context != req->i915->mm.unordered_timeline &&
870 intel_timeline_sync_is_later(req->timeline, fence))
871 continue;
873 if (dma_fence_is_i915(fence))
874 ret = i915_gem_request_await_request(req,
875 to_request(fence));
876 else
877 ret = i915_sw_fence_await_dma_fence(&req->submit, fence,
878 I915_FENCE_TIMEOUT,
879 I915_FENCE_GFP);
880 if (ret < 0)
881 return ret;
883 /* Record the latest fence used against each timeline */
884 if (fence->context != req->i915->mm.unordered_timeline)
885 intel_timeline_sync_set(req->timeline, fence);
886 } while (--nchild);
888 return 0;
892 * i915_gem_request_await_object - set this request to (async) wait upon a bo
894 * @to: request we are wishing to use
895 * @obj: object which may be in use on another ring.
897 * This code is meant to abstract object synchronization with the GPU.
898 * Conceptually we serialise writes between engines inside the GPU.
899 * We only allow one engine to write into a buffer at any time, but
900 * multiple readers. To ensure each has a coherent view of memory, we must:
902 * - If there is an outstanding write request to the object, the new
903 * request must wait for it to complete (either CPU or in hw, requests
904 * on the same ring will be naturally ordered).
906 * - If we are a write request (pending_write_domain is set), the new
907 * request must wait for outstanding read requests to complete.
909 * Returns 0 if successful, else propagates up the lower layer error.
912 i915_gem_request_await_object(struct drm_i915_gem_request *to,
913 struct drm_i915_gem_object *obj,
914 bool write)
916 struct dma_fence *excl;
917 int ret = 0;
919 if (write) {
920 struct dma_fence **shared;
921 unsigned int count, i;
923 ret = reservation_object_get_fences_rcu(obj->resv,
924 &excl, &count, &shared);
925 if (ret)
926 return ret;
928 for (i = 0; i < count; i++) {
929 ret = i915_gem_request_await_dma_fence(to, shared[i]);
930 if (ret)
931 break;
933 dma_fence_put(shared[i]);
936 for (; i < count; i++)
937 dma_fence_put(shared[i]);
938 kfree(shared);
939 } else {
940 excl = reservation_object_get_excl_rcu(obj->resv);
943 if (excl) {
944 if (ret == 0)
945 ret = i915_gem_request_await_dma_fence(to, excl);
947 dma_fence_put(excl);
950 return ret;
954 * NB: This function is not allowed to fail. Doing so would mean the the
955 * request is not being tracked for completion but the work itself is
956 * going to happen on the hardware. This would be a Bad Thing(tm).
958 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
960 struct intel_engine_cs *engine = request->engine;
961 struct intel_ring *ring = request->ring;
962 struct intel_timeline *timeline = request->timeline;
963 struct drm_i915_gem_request *prev;
964 u32 *cs;
965 int err;
967 lockdep_assert_held(&request->i915->drm.struct_mutex);
968 trace_i915_gem_request_add(request);
970 /* Make sure that no request gazumped us - if it was allocated after
971 * our i915_gem_request_alloc() and called __i915_add_request() before
972 * us, the timeline will hold its seqno which is later than ours.
974 GEM_BUG_ON(timeline->seqno != request->fence.seqno);
977 * To ensure that this call will not fail, space for its emissions
978 * should already have been reserved in the ring buffer. Let the ring
979 * know that it is time to use that space up.
981 request->reserved_space = 0;
984 * Emit any outstanding flushes - execbuf can fail to emit the flush
985 * after having emitted the batchbuffer command. Hence we need to fix
986 * things up similar to emitting the lazy request. The difference here
987 * is that the flush _must_ happen before the next request, no matter
988 * what.
990 if (flush_caches) {
991 err = engine->emit_flush(request, EMIT_FLUSH);
993 /* Not allowed to fail! */
994 WARN(err, "engine->emit_flush() failed: %d!\n", err);
997 /* Record the position of the start of the breadcrumb so that
998 * should we detect the updated seqno part-way through the
999 * GPU processing the request, we never over-estimate the
1000 * position of the ring's HEAD.
1002 cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
1003 GEM_BUG_ON(IS_ERR(cs));
1004 request->postfix = intel_ring_offset(request, cs);
1006 /* Seal the request and mark it as pending execution. Note that
1007 * we may inspect this state, without holding any locks, during
1008 * hangcheck. Hence we apply the barrier to ensure that we do not
1009 * see a more recent value in the hws than we are tracking.
1012 prev = i915_gem_active_raw(&timeline->last_request,
1013 &request->i915->drm.struct_mutex);
1014 if (prev) {
1015 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
1016 &request->submitq);
1017 if (engine->schedule)
1018 __i915_priotree_add_dependency(&request->priotree,
1019 &prev->priotree,
1020 &request->dep,
1024 spin_lock_irq(&timeline->lock);
1025 list_add_tail(&request->link, &timeline->requests);
1026 spin_unlock_irq(&timeline->lock);
1028 GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1029 i915_gem_active_set(&timeline->last_request, request);
1031 list_add_tail(&request->ring_link, &ring->request_list);
1032 request->emitted_jiffies = jiffies;
1034 /* Let the backend know a new request has arrived that may need
1035 * to adjust the existing execution schedule due to a high priority
1036 * request - i.e. we may want to preempt the current request in order
1037 * to run a high priority dependency chain *before* we can execute this
1038 * request.
1040 * This is called before the request is ready to run so that we can
1041 * decide whether to preempt the entire chain so that it is ready to
1042 * run at the earliest possible convenience.
1044 if (engine->schedule)
1045 engine->schedule(request, request->ctx->priority);
1047 local_bh_disable();
1048 i915_sw_fence_commit(&request->submit);
1049 local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1052 static unsigned long local_clock_us(unsigned int *cpu)
1054 unsigned long t;
1056 /* Cheaply and approximately convert from nanoseconds to microseconds.
1057 * The result and subsequent calculations are also defined in the same
1058 * approximate microseconds units. The principal source of timing
1059 * error here is from the simple truncation.
1061 * Note that local_clock() is only defined wrt to the current CPU;
1062 * the comparisons are no longer valid if we switch CPUs. Instead of
1063 * blocking preemption for the entire busywait, we can detect the CPU
1064 * switch and use that as indicator of system load and a reason to
1065 * stop busywaiting, see busywait_stop().
1067 *cpu = get_cpu();
1068 t = local_clock() >> 10;
1069 put_cpu();
1071 return t;
1074 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1076 unsigned int this_cpu;
1078 if (time_after(local_clock_us(&this_cpu), timeout))
1079 return true;
1081 return this_cpu != cpu;
1084 static bool __i915_spin_request(const struct drm_i915_gem_request *req,
1085 u32 seqno, int state, unsigned long timeout_us)
1087 struct intel_engine_cs *engine = req->engine;
1088 unsigned int irq, cpu;
1090 GEM_BUG_ON(!seqno);
1093 * Only wait for the request if we know it is likely to complete.
1095 * We don't track the timestamps around requests, nor the average
1096 * request length, so we do not have a good indicator that this
1097 * request will complete within the timeout. What we do know is the
1098 * order in which requests are executed by the engine and so we can
1099 * tell if the request has started. If the request hasn't started yet,
1100 * it is a fair assumption that it will not complete within our
1101 * relatively short timeout.
1103 if (!i915_seqno_passed(intel_engine_get_seqno(engine), seqno - 1))
1104 return false;
1106 /* When waiting for high frequency requests, e.g. during synchronous
1107 * rendering split between the CPU and GPU, the finite amount of time
1108 * required to set up the irq and wait upon it limits the response
1109 * rate. By busywaiting on the request completion for a short while we
1110 * can service the high frequency waits as quick as possible. However,
1111 * if it is a slow request, we want to sleep as quickly as possible.
1112 * The tradeoff between waiting and sleeping is roughly the time it
1113 * takes to sleep on a request, on the order of a microsecond.
1116 irq = atomic_read(&engine->irq_count);
1117 timeout_us += local_clock_us(&cpu);
1118 do {
1119 if (i915_seqno_passed(intel_engine_get_seqno(engine), seqno))
1120 return seqno == i915_gem_request_global_seqno(req);
1122 /* Seqno are meant to be ordered *before* the interrupt. If
1123 * we see an interrupt without a corresponding seqno advance,
1124 * assume we won't see one in the near future but require
1125 * the engine->seqno_barrier() to fixup coherency.
1127 if (atomic_read(&engine->irq_count) != irq)
1128 break;
1130 if (signal_pending_state(state, current))
1131 break;
1133 if (busywait_stop(timeout_us, cpu))
1134 break;
1136 cpu_relax();
1137 } while (!need_resched());
1139 return false;
1142 static bool __i915_wait_request_check_and_reset(struct drm_i915_gem_request *request)
1144 if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1145 return false;
1147 __set_current_state(TASK_RUNNING);
1148 i915_reset(request->i915, 0);
1149 return true;
1153 * i915_wait_request - wait until execution of request has finished
1154 * @req: the request to wait upon
1155 * @flags: how to wait
1156 * @timeout: how long to wait in jiffies
1158 * i915_wait_request() waits for the request to be completed, for a
1159 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1160 * unbounded wait).
1162 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1163 * in via the flags, and vice versa if the struct_mutex is not held, the caller
1164 * must not specify that the wait is locked.
1166 * Returns the remaining time (in jiffies) if the request completed, which may
1167 * be zero or -ETIME if the request is unfinished after the timeout expires.
1168 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1169 * pending before the request completes.
1171 long i915_wait_request(struct drm_i915_gem_request *req,
1172 unsigned int flags,
1173 long timeout)
1175 const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1176 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1177 wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1178 DEFINE_WAIT_FUNC(reset, default_wake_function);
1179 DEFINE_WAIT_FUNC(exec, default_wake_function);
1180 struct intel_wait wait;
1182 might_sleep();
1183 #if IS_ENABLED(CONFIG_LOCKDEP)
1184 GEM_BUG_ON(debug_locks &&
1185 !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1186 !!(flags & I915_WAIT_LOCKED));
1187 #endif
1188 GEM_BUG_ON(timeout < 0);
1190 if (i915_gem_request_completed(req))
1191 return timeout;
1193 if (!timeout)
1194 return -ETIME;
1196 trace_i915_gem_request_wait_begin(req, flags);
1198 add_wait_queue(&req->execute, &exec);
1199 if (flags & I915_WAIT_LOCKED)
1200 add_wait_queue(errq, &reset);
1202 intel_wait_init(&wait, req);
1204 restart:
1205 do {
1206 set_current_state(state);
1207 if (intel_wait_update_request(&wait, req))
1208 break;
1210 if (flags & I915_WAIT_LOCKED &&
1211 __i915_wait_request_check_and_reset(req))
1212 continue;
1214 if (signal_pending_state(state, current)) {
1215 timeout = -ERESTARTSYS;
1216 goto complete;
1219 if (!timeout) {
1220 timeout = -ETIME;
1221 goto complete;
1224 timeout = io_schedule_timeout(timeout);
1225 } while (1);
1227 GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1228 GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1230 /* Optimistic short spin before touching IRQs */
1231 if (__i915_spin_request(req, wait.seqno, state, 5))
1232 goto complete;
1234 set_current_state(state);
1235 if (intel_engine_add_wait(req->engine, &wait))
1236 /* In order to check that we haven't missed the interrupt
1237 * as we enabled it, we need to kick ourselves to do a
1238 * coherent check on the seqno before we sleep.
1240 goto wakeup;
1242 if (flags & I915_WAIT_LOCKED)
1243 __i915_wait_request_check_and_reset(req);
1245 for (;;) {
1246 if (signal_pending_state(state, current)) {
1247 timeout = -ERESTARTSYS;
1248 break;
1251 if (!timeout) {
1252 timeout = -ETIME;
1253 break;
1256 timeout = io_schedule_timeout(timeout);
1258 if (intel_wait_complete(&wait) &&
1259 intel_wait_check_request(&wait, req))
1260 break;
1262 set_current_state(state);
1264 wakeup:
1265 /* Carefully check if the request is complete, giving time
1266 * for the seqno to be visible following the interrupt.
1267 * We also have to check in case we are kicked by the GPU
1268 * reset in order to drop the struct_mutex.
1270 if (__i915_request_irq_complete(req))
1271 break;
1273 /* If the GPU is hung, and we hold the lock, reset the GPU
1274 * and then check for completion. On a full reset, the engine's
1275 * HW seqno will be advanced passed us and we are complete.
1276 * If we do a partial reset, we have to wait for the GPU to
1277 * resume and update the breadcrumb.
1279 * If we don't hold the mutex, we can just wait for the worker
1280 * to come along and update the breadcrumb (either directly
1281 * itself, or indirectly by recovering the GPU).
1283 if (flags & I915_WAIT_LOCKED &&
1284 __i915_wait_request_check_and_reset(req))
1285 continue;
1287 /* Only spin if we know the GPU is processing this request */
1288 if (__i915_spin_request(req, wait.seqno, state, 2))
1289 break;
1291 if (!intel_wait_check_request(&wait, req)) {
1292 intel_engine_remove_wait(req->engine, &wait);
1293 goto restart;
1297 intel_engine_remove_wait(req->engine, &wait);
1298 complete:
1299 __set_current_state(TASK_RUNNING);
1300 if (flags & I915_WAIT_LOCKED)
1301 remove_wait_queue(errq, &reset);
1302 remove_wait_queue(&req->execute, &exec);
1303 trace_i915_gem_request_wait_end(req);
1305 return timeout;
1308 static void engine_retire_requests(struct intel_engine_cs *engine)
1310 struct drm_i915_gem_request *request, *next;
1311 u32 seqno = intel_engine_get_seqno(engine);
1312 LIST_HEAD(retire);
1314 spin_lock_irq(&engine->timeline->lock);
1315 list_for_each_entry_safe(request, next,
1316 &engine->timeline->requests, link) {
1317 if (!i915_seqno_passed(seqno, request->global_seqno))
1318 break;
1320 list_move_tail(&request->link, &retire);
1322 spin_unlock_irq(&engine->timeline->lock);
1324 list_for_each_entry_safe(request, next, &retire, link)
1325 i915_gem_request_retire(request);
1328 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1330 struct intel_engine_cs *engine;
1331 enum intel_engine_id id;
1333 lockdep_assert_held(&dev_priv->drm.struct_mutex);
1335 if (!dev_priv->gt.active_requests)
1336 return;
1338 for_each_engine(engine, dev_priv, id)
1339 engine_retire_requests(engine);
1342 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1343 #include "selftests/mock_request.c"
1344 #include "selftests/i915_gem_request.c"
1345 #endif