2 * Copyright © 2012-2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
26 #include <drm/i915_drm.h>
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30 #include <linux/mmu_context.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/mempolicy.h>
33 #include <linux/swap.h>
34 #include <linux/sched/mm.h>
36 struct i915_mm_struct
{
38 struct drm_i915_private
*i915
;
39 struct i915_mmu_notifier
*mn
;
40 struct hlist_node node
;
42 struct work_struct work
;
45 #if defined(CONFIG_MMU_NOTIFIER)
46 #include <linux/interval_tree.h>
48 struct i915_mmu_notifier
{
50 struct hlist_node node
;
51 struct mmu_notifier mn
;
52 struct rb_root_cached objects
;
53 struct workqueue_struct
*wq
;
56 struct i915_mmu_object
{
57 struct i915_mmu_notifier
*mn
;
58 struct drm_i915_gem_object
*obj
;
59 struct interval_tree_node it
;
60 struct list_head link
;
61 struct work_struct work
;
65 static void cancel_userptr(struct work_struct
*work
)
67 struct i915_mmu_object
*mo
= container_of(work
, typeof(*mo
), work
);
68 struct drm_i915_gem_object
*obj
= mo
->obj
;
69 struct work_struct
*active
;
71 /* Cancel any active worker and force us to re-evaluate gup */
72 mutex_lock(&obj
->mm
.lock
);
73 active
= fetch_and_zero(&obj
->userptr
.work
);
74 mutex_unlock(&obj
->mm
.lock
);
78 i915_gem_object_wait(obj
, I915_WAIT_ALL
, MAX_SCHEDULE_TIMEOUT
, NULL
);
80 mutex_lock(&obj
->base
.dev
->struct_mutex
);
82 /* We are inside a kthread context and can't be interrupted */
83 if (i915_gem_object_unbind(obj
) == 0)
84 __i915_gem_object_put_pages(obj
, I915_MM_NORMAL
);
85 WARN_ONCE(i915_gem_object_has_pages(obj
),
86 "Failed to release pages: bind_count=%d, pages_pin_count=%d, pin_global=%d\n",
88 atomic_read(&obj
->mm
.pages_pin_count
),
91 mutex_unlock(&obj
->base
.dev
->struct_mutex
);
94 i915_gem_object_put(obj
);
97 static void add_object(struct i915_mmu_object
*mo
)
102 interval_tree_insert(&mo
->it
, &mo
->mn
->objects
);
106 static void del_object(struct i915_mmu_object
*mo
)
111 interval_tree_remove(&mo
->it
, &mo
->mn
->objects
);
112 mo
->attached
= false;
115 static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier
*_mn
,
116 struct mm_struct
*mm
,
120 struct i915_mmu_notifier
*mn
=
121 container_of(_mn
, struct i915_mmu_notifier
, mn
);
122 struct i915_mmu_object
*mo
;
123 struct interval_tree_node
*it
;
124 LIST_HEAD(cancelled
);
126 if (RB_EMPTY_ROOT(&mn
->objects
.rb_root
))
129 /* interval ranges are inclusive, but invalidate range is exclusive */
132 spin_lock(&mn
->lock
);
133 it
= interval_tree_iter_first(&mn
->objects
, start
, end
);
135 /* The mmu_object is released late when destroying the
136 * GEM object so it is entirely possible to gain a
137 * reference on an object in the process of being freed
138 * since our serialisation is via the spinlock and not
139 * the struct_mutex - and consequently use it after it
140 * is freed and then double free it. To prevent that
141 * use-after-free we only acquire a reference on the
142 * object if it is not in the process of being destroyed.
144 mo
= container_of(it
, struct i915_mmu_object
, it
);
145 if (kref_get_unless_zero(&mo
->obj
->base
.refcount
))
146 queue_work(mn
->wq
, &mo
->work
);
148 list_add(&mo
->link
, &cancelled
);
149 it
= interval_tree_iter_next(it
, start
, end
);
151 list_for_each_entry(mo
, &cancelled
, link
)
153 spin_unlock(&mn
->lock
);
155 if (!list_empty(&cancelled
))
156 flush_workqueue(mn
->wq
);
159 static const struct mmu_notifier_ops i915_gem_userptr_notifier
= {
160 .invalidate_range_start
= i915_gem_userptr_mn_invalidate_range_start
,
163 static struct i915_mmu_notifier
*
164 i915_mmu_notifier_create(struct mm_struct
*mm
)
166 struct i915_mmu_notifier
*mn
;
168 mn
= kmalloc(sizeof(*mn
), GFP_KERNEL
);
170 return ERR_PTR(-ENOMEM
);
172 spin_lock_init(&mn
->lock
);
173 mn
->mn
.ops
= &i915_gem_userptr_notifier
;
174 mn
->objects
= RB_ROOT_CACHED
;
175 mn
->wq
= alloc_workqueue("i915-userptr-release",
176 WQ_UNBOUND
| WQ_MEM_RECLAIM
,
178 if (mn
->wq
== NULL
) {
180 return ERR_PTR(-ENOMEM
);
187 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object
*obj
)
189 struct i915_mmu_object
*mo
;
191 mo
= obj
->userptr
.mmu_object
;
195 spin_lock(&mo
->mn
->lock
);
197 spin_unlock(&mo
->mn
->lock
);
200 obj
->userptr
.mmu_object
= NULL
;
203 static struct i915_mmu_notifier
*
204 i915_mmu_notifier_find(struct i915_mm_struct
*mm
)
206 struct i915_mmu_notifier
*mn
;
213 mn
= i915_mmu_notifier_create(mm
->mm
);
217 down_write(&mm
->mm
->mmap_sem
);
218 mutex_lock(&mm
->i915
->mm_lock
);
219 if (mm
->mn
== NULL
&& !err
) {
220 /* Protected by mmap_sem (write-lock) */
221 err
= __mmu_notifier_register(&mn
->mn
, mm
->mm
);
223 /* Protected by mm_lock */
224 mm
->mn
= fetch_and_zero(&mn
);
228 * Someone else raced and successfully installed the mmu
229 * notifier, we can cancel our own errors.
233 mutex_unlock(&mm
->i915
->mm_lock
);
234 up_write(&mm
->mm
->mmap_sem
);
236 if (mn
&& !IS_ERR(mn
)) {
237 destroy_workqueue(mn
->wq
);
241 return err
? ERR_PTR(err
) : mm
->mn
;
245 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object
*obj
,
248 struct i915_mmu_notifier
*mn
;
249 struct i915_mmu_object
*mo
;
251 if (flags
& I915_USERPTR_UNSYNCHRONIZED
)
252 return capable(CAP_SYS_ADMIN
) ? 0 : -EPERM
;
254 if (WARN_ON(obj
->userptr
.mm
== NULL
))
257 mn
= i915_mmu_notifier_find(obj
->userptr
.mm
);
261 mo
= kzalloc(sizeof(*mo
), GFP_KERNEL
);
267 mo
->it
.start
= obj
->userptr
.ptr
;
268 mo
->it
.last
= obj
->userptr
.ptr
+ obj
->base
.size
- 1;
269 INIT_WORK(&mo
->work
, cancel_userptr
);
271 obj
->userptr
.mmu_object
= mo
;
276 i915_mmu_notifier_free(struct i915_mmu_notifier
*mn
,
277 struct mm_struct
*mm
)
282 mmu_notifier_unregister(&mn
->mn
, mm
);
283 destroy_workqueue(mn
->wq
);
290 i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object
*obj
)
295 i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object
*obj
,
298 if ((flags
& I915_USERPTR_UNSYNCHRONIZED
) == 0)
301 if (!capable(CAP_SYS_ADMIN
))
308 i915_mmu_notifier_free(struct i915_mmu_notifier
*mn
,
309 struct mm_struct
*mm
)
315 static struct i915_mm_struct
*
316 __i915_mm_struct_find(struct drm_i915_private
*dev_priv
, struct mm_struct
*real
)
318 struct i915_mm_struct
*mm
;
320 /* Protected by dev_priv->mm_lock */
321 hash_for_each_possible(dev_priv
->mm_structs
, mm
, node
, (unsigned long)real
)
329 i915_gem_userptr_init__mm_struct(struct drm_i915_gem_object
*obj
)
331 struct drm_i915_private
*dev_priv
= to_i915(obj
->base
.dev
);
332 struct i915_mm_struct
*mm
;
335 /* During release of the GEM object we hold the struct_mutex. This
336 * precludes us from calling mmput() at that time as that may be
337 * the last reference and so call exit_mmap(). exit_mmap() will
338 * attempt to reap the vma, and if we were holding a GTT mmap
339 * would then call drm_gem_vm_close() and attempt to reacquire
340 * the struct mutex. So in order to avoid that recursion, we have
341 * to defer releasing the mm reference until after we drop the
342 * struct_mutex, i.e. we need to schedule a worker to do the clean
345 mutex_lock(&dev_priv
->mm_lock
);
346 mm
= __i915_mm_struct_find(dev_priv
, current
->mm
);
348 mm
= kmalloc(sizeof(*mm
), GFP_KERNEL
);
354 kref_init(&mm
->kref
);
355 mm
->i915
= to_i915(obj
->base
.dev
);
357 mm
->mm
= current
->mm
;
362 /* Protected by dev_priv->mm_lock */
363 hash_add(dev_priv
->mm_structs
,
364 &mm
->node
, (unsigned long)mm
->mm
);
368 obj
->userptr
.mm
= mm
;
370 mutex_unlock(&dev_priv
->mm_lock
);
375 __i915_mm_struct_free__worker(struct work_struct
*work
)
377 struct i915_mm_struct
*mm
= container_of(work
, typeof(*mm
), work
);
378 i915_mmu_notifier_free(mm
->mn
, mm
->mm
);
384 __i915_mm_struct_free(struct kref
*kref
)
386 struct i915_mm_struct
*mm
= container_of(kref
, typeof(*mm
), kref
);
388 /* Protected by dev_priv->mm_lock */
390 mutex_unlock(&mm
->i915
->mm_lock
);
392 INIT_WORK(&mm
->work
, __i915_mm_struct_free__worker
);
393 queue_work(mm
->i915
->mm
.userptr_wq
, &mm
->work
);
397 i915_gem_userptr_release__mm_struct(struct drm_i915_gem_object
*obj
)
399 if (obj
->userptr
.mm
== NULL
)
402 kref_put_mutex(&obj
->userptr
.mm
->kref
,
403 __i915_mm_struct_free
,
404 &to_i915(obj
->base
.dev
)->mm_lock
);
405 obj
->userptr
.mm
= NULL
;
408 struct get_pages_work
{
409 struct work_struct work
;
410 struct drm_i915_gem_object
*obj
;
411 struct task_struct
*task
;
414 static struct sg_table
*
415 __i915_gem_userptr_alloc_pages(struct drm_i915_gem_object
*obj
,
416 struct page
**pvec
, int num_pages
)
418 unsigned int max_segment
= i915_sg_segment_size();
420 unsigned int sg_page_sizes
;
423 st
= kmalloc(sizeof(*st
), GFP_KERNEL
);
425 return ERR_PTR(-ENOMEM
);
428 ret
= __sg_alloc_table_from_pages(st
, pvec
, num_pages
,
429 0, num_pages
<< PAGE_SHIFT
,
437 ret
= i915_gem_gtt_prepare_pages(obj
, st
);
441 if (max_segment
> PAGE_SIZE
) {
442 max_segment
= PAGE_SIZE
;
450 sg_page_sizes
= i915_sg_page_sizes(st
->sgl
);
452 __i915_gem_object_set_pages(obj
, st
, sg_page_sizes
);
458 __i915_gem_userptr_set_active(struct drm_i915_gem_object
*obj
,
463 /* During mm_invalidate_range we need to cancel any userptr that
464 * overlaps the range being invalidated. Doing so requires the
465 * struct_mutex, and that risks recursion. In order to cause
466 * recursion, the user must alias the userptr address space with
467 * a GTT mmapping (possible with a MAP_FIXED) - then when we have
468 * to invalidate that mmaping, mm_invalidate_range is called with
469 * the userptr address *and* the struct_mutex held. To prevent that
470 * we set a flag under the i915_mmu_notifier spinlock to indicate
471 * whether this object is valid.
473 #if defined(CONFIG_MMU_NOTIFIER)
474 if (obj
->userptr
.mmu_object
== NULL
)
477 spin_lock(&obj
->userptr
.mmu_object
->mn
->lock
);
478 /* In order to serialise get_pages with an outstanding
479 * cancel_userptr, we must drop the struct_mutex and try again.
482 del_object(obj
->userptr
.mmu_object
);
483 else if (!work_pending(&obj
->userptr
.mmu_object
->work
))
484 add_object(obj
->userptr
.mmu_object
);
487 spin_unlock(&obj
->userptr
.mmu_object
->mn
->lock
);
494 __i915_gem_userptr_get_pages_worker(struct work_struct
*_work
)
496 struct get_pages_work
*work
= container_of(_work
, typeof(*work
), work
);
497 struct drm_i915_gem_object
*obj
= work
->obj
;
498 const int npages
= obj
->base
.size
>> PAGE_SHIFT
;
505 pvec
= kvmalloc_array(npages
, sizeof(struct page
*), GFP_KERNEL
);
507 struct mm_struct
*mm
= obj
->userptr
.mm
->mm
;
508 unsigned int flags
= 0;
510 if (!obj
->userptr
.read_only
)
514 if (mmget_not_zero(mm
)) {
515 down_read(&mm
->mmap_sem
);
516 while (pinned
< npages
) {
517 ret
= get_user_pages_remote
519 obj
->userptr
.ptr
+ pinned
* PAGE_SIZE
,
522 pvec
+ pinned
, NULL
, NULL
);
528 up_read(&mm
->mmap_sem
);
533 mutex_lock(&obj
->mm
.lock
);
534 if (obj
->userptr
.work
== &work
->work
) {
535 struct sg_table
*pages
= ERR_PTR(ret
);
537 if (pinned
== npages
) {
538 pages
= __i915_gem_userptr_alloc_pages(obj
, pvec
,
540 if (!IS_ERR(pages
)) {
546 obj
->userptr
.work
= ERR_CAST(pages
);
548 __i915_gem_userptr_set_active(obj
, false);
550 mutex_unlock(&obj
->mm
.lock
);
552 release_pages(pvec
, pinned
);
555 i915_gem_object_put(obj
);
556 put_task_struct(work
->task
);
560 static struct sg_table
*
561 __i915_gem_userptr_get_pages_schedule(struct drm_i915_gem_object
*obj
)
563 struct get_pages_work
*work
;
565 /* Spawn a worker so that we can acquire the
566 * user pages without holding our mutex. Access
567 * to the user pages requires mmap_sem, and we have
568 * a strict lock ordering of mmap_sem, struct_mutex -
569 * we already hold struct_mutex here and so cannot
570 * call gup without encountering a lock inversion.
572 * Userspace will keep on repeating the operation
573 * (thanks to EAGAIN) until either we hit the fast
574 * path or the worker completes. If the worker is
575 * cancelled or superseded, the task is still run
576 * but the results ignored. (This leads to
577 * complications that we may have a stray object
578 * refcount that we need to be wary of when
579 * checking for existing objects during creation.)
580 * If the worker encounters an error, it reports
581 * that error back to this function through
582 * obj->userptr.work = ERR_PTR.
584 work
= kmalloc(sizeof(*work
), GFP_KERNEL
);
586 return ERR_PTR(-ENOMEM
);
588 obj
->userptr
.work
= &work
->work
;
590 work
->obj
= i915_gem_object_get(obj
);
592 work
->task
= current
;
593 get_task_struct(work
->task
);
595 INIT_WORK(&work
->work
, __i915_gem_userptr_get_pages_worker
);
596 queue_work(to_i915(obj
->base
.dev
)->mm
.userptr_wq
, &work
->work
);
598 return ERR_PTR(-EAGAIN
);
601 static int i915_gem_userptr_get_pages(struct drm_i915_gem_object
*obj
)
603 const int num_pages
= obj
->base
.size
>> PAGE_SHIFT
;
604 struct mm_struct
*mm
= obj
->userptr
.mm
->mm
;
606 struct sg_table
*pages
;
610 /* If userspace should engineer that these pages are replaced in
611 * the vma between us binding this page into the GTT and completion
612 * of rendering... Their loss. If they change the mapping of their
613 * pages they need to create a new bo to point to the new vma.
615 * However, that still leaves open the possibility of the vma
616 * being copied upon fork. Which falls under the same userspace
617 * synchronisation issue as a regular bo, except that this time
618 * the process may not be expecting that a particular piece of
619 * memory is tied to the GPU.
621 * Fortunately, we can hook into the mmu_notifier in order to
622 * discard the page references prior to anything nasty happening
623 * to the vma (discard or cloning) which should prevent the more
624 * egregious cases from causing harm.
627 if (obj
->userptr
.work
) {
628 /* active flag should still be held for the pending work */
629 if (IS_ERR(obj
->userptr
.work
))
630 return PTR_ERR(obj
->userptr
.work
);
638 if (mm
== current
->mm
) {
639 pvec
= kvmalloc_array(num_pages
, sizeof(struct page
*),
643 if (pvec
) /* defer to worker if malloc fails */
644 pinned
= __get_user_pages_fast(obj
->userptr
.ptr
,
646 !obj
->userptr
.read_only
,
652 pages
= ERR_PTR(pinned
);
654 } else if (pinned
< num_pages
) {
655 pages
= __i915_gem_userptr_get_pages_schedule(obj
);
656 active
= pages
== ERR_PTR(-EAGAIN
);
658 pages
= __i915_gem_userptr_alloc_pages(obj
, pvec
, num_pages
);
659 active
= !IS_ERR(pages
);
662 __i915_gem_userptr_set_active(obj
, true);
665 release_pages(pvec
, pinned
);
668 return PTR_ERR_OR_ZERO(pages
);
672 i915_gem_userptr_put_pages(struct drm_i915_gem_object
*obj
,
673 struct sg_table
*pages
)
675 struct sgt_iter sgt_iter
;
678 BUG_ON(obj
->userptr
.work
!= NULL
);
679 __i915_gem_userptr_set_active(obj
, false);
681 if (obj
->mm
.madv
!= I915_MADV_WILLNEED
)
682 obj
->mm
.dirty
= false;
684 i915_gem_gtt_finish_pages(obj
, pages
);
686 for_each_sgt_page(page
, sgt_iter
, pages
) {
688 set_page_dirty(page
);
690 mark_page_accessed(page
);
693 obj
->mm
.dirty
= false;
695 sg_free_table(pages
);
700 i915_gem_userptr_release(struct drm_i915_gem_object
*obj
)
702 i915_gem_userptr_release__mmu_notifier(obj
);
703 i915_gem_userptr_release__mm_struct(obj
);
707 i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object
*obj
)
709 if (obj
->userptr
.mmu_object
)
712 return i915_gem_userptr_init__mmu_notifier(obj
, 0);
715 static const struct drm_i915_gem_object_ops i915_gem_userptr_ops
= {
716 .flags
= I915_GEM_OBJECT_HAS_STRUCT_PAGE
|
717 I915_GEM_OBJECT_IS_SHRINKABLE
,
718 .get_pages
= i915_gem_userptr_get_pages
,
719 .put_pages
= i915_gem_userptr_put_pages
,
720 .dmabuf_export
= i915_gem_userptr_dmabuf_export
,
721 .release
= i915_gem_userptr_release
,
725 * Creates a new mm object that wraps some normal memory from the process
726 * context - user memory.
728 * We impose several restrictions upon the memory being mapped
730 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
731 * 2. It must be normal system memory, not a pointer into another map of IO
732 * space (e.g. it must not be a GTT mmapping of another object).
733 * 3. We only allow a bo as large as we could in theory map into the GTT,
734 * that is we limit the size to the total size of the GTT.
735 * 4. The bo is marked as being snoopable. The backing pages are left
736 * accessible directly by the CPU, but reads and writes by the GPU may
737 * incur the cost of a snoop (unless you have an LLC architecture).
739 * Synchronisation between multiple users and the GPU is left to userspace
740 * through the normal set-domain-ioctl. The kernel will enforce that the
741 * GPU relinquishes the VMA before it is returned back to the system
742 * i.e. upon free(), munmap() or process termination. However, the userspace
743 * malloc() library may not immediately relinquish the VMA after free() and
744 * instead reuse it whilst the GPU is still reading and writing to the VMA.
747 * Also note, that the object created here is not currently a "first class"
748 * object, in that several ioctls are banned. These are the CPU access
749 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
750 * direct access via your pointer rather than use those ioctls. Another
751 * restriction is that we do not allow userptr surfaces to be pinned to the
752 * hardware and so we reject any attempt to create a framebuffer out of a
755 * If you think this is a good interface to use to pass GPU memory between
756 * drivers, please use dma-buf instead. In fact, wherever possible use
760 i915_gem_userptr_ioctl(struct drm_device
*dev
, void *data
, struct drm_file
*file
)
762 struct drm_i915_private
*dev_priv
= to_i915(dev
);
763 struct drm_i915_gem_userptr
*args
= data
;
764 struct drm_i915_gem_object
*obj
;
768 if (!HAS_LLC(dev_priv
) && !HAS_SNOOP(dev_priv
)) {
769 /* We cannot support coherent userptr objects on hw without
770 * LLC and broken snooping.
775 if (args
->flags
& ~(I915_USERPTR_READ_ONLY
|
776 I915_USERPTR_UNSYNCHRONIZED
))
779 if (offset_in_page(args
->user_ptr
| args
->user_size
))
782 if (!access_ok(args
->flags
& I915_USERPTR_READ_ONLY
? VERIFY_READ
: VERIFY_WRITE
,
783 (char __user
*)(unsigned long)args
->user_ptr
, args
->user_size
))
786 if (args
->flags
& I915_USERPTR_READ_ONLY
) {
787 /* On almost all of the current hw, we cannot tell the GPU that a
788 * page is readonly, so this is just a placeholder in the uAPI.
793 obj
= i915_gem_object_alloc(dev_priv
);
797 drm_gem_private_object_init(dev
, &obj
->base
, args
->user_size
);
798 i915_gem_object_init(obj
, &i915_gem_userptr_ops
);
799 obj
->base
.read_domains
= I915_GEM_DOMAIN_CPU
;
800 obj
->base
.write_domain
= I915_GEM_DOMAIN_CPU
;
801 i915_gem_object_set_cache_coherency(obj
, I915_CACHE_LLC
);
803 obj
->userptr
.ptr
= args
->user_ptr
;
804 obj
->userptr
.read_only
= !!(args
->flags
& I915_USERPTR_READ_ONLY
);
806 /* And keep a pointer to the current->mm for resolving the user pages
807 * at binding. This means that we need to hook into the mmu_notifier
808 * in order to detect if the mmu is destroyed.
810 ret
= i915_gem_userptr_init__mm_struct(obj
);
812 ret
= i915_gem_userptr_init__mmu_notifier(obj
, args
->flags
);
814 ret
= drm_gem_handle_create(file
, &obj
->base
, &handle
);
816 /* drop reference from allocate - handle holds it now */
817 i915_gem_object_put(obj
);
821 args
->handle
= handle
;
825 int i915_gem_init_userptr(struct drm_i915_private
*dev_priv
)
827 mutex_init(&dev_priv
->mm_lock
);
828 hash_init(dev_priv
->mm_structs
);
830 dev_priv
->mm
.userptr_wq
=
831 alloc_workqueue("i915-userptr-acquire",
832 WQ_HIGHPRI
| WQ_UNBOUND
,
834 if (!dev_priv
->mm
.userptr_wq
)
840 void i915_gem_cleanup_userptr(struct drm_i915_private
*dev_priv
)
842 destroy_workqueue(dev_priv
->mm
.userptr_wq
);