2 * Copyright © 2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
24 * Ben Widawsky <ben@bwidawsk.net>
25 * Michel Thierry <michel.thierry@intel.com>
26 * Thomas Daniel <thomas.daniel@intel.com>
27 * Oscar Mateo <oscar.mateo@intel.com>
32 * DOC: Logical Rings, Logical Ring Contexts and Execlists
35 * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36 * These expanded contexts enable a number of new abilities, especially
37 * "Execlists" (also implemented in this file).
39 * One of the main differences with the legacy HW contexts is that logical
40 * ring contexts incorporate many more things to the context's state, like
41 * PDPs or ringbuffer control registers:
43 * The reason why PDPs are included in the context is straightforward: as
44 * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45 * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46 * instead, the GPU will do it for you on the context switch.
48 * But, what about the ringbuffer control registers (head, tail, etc..)?
49 * shouldn't we just need a set of those per engine command streamer? This is
50 * where the name "Logical Rings" starts to make sense: by virtualizing the
51 * rings, the engine cs shifts to a new "ring buffer" with every context
52 * switch. When you want to submit a workload to the GPU you: A) choose your
53 * context, B) find its appropriate virtualized ring, C) write commands to it
54 * and then, finally, D) tell the GPU to switch to that context.
56 * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57 * to a contexts is via a context execution list, ergo "Execlists".
60 * Regarding the creation of contexts, we have:
62 * - One global default context.
63 * - One local default context for each opened fd.
64 * - One local extra context for each context create ioctl call.
66 * Now that ringbuffers belong per-context (and not per-engine, like before)
67 * and that contexts are uniquely tied to a given engine (and not reusable,
68 * like before) we need:
70 * - One ringbuffer per-engine inside each context.
71 * - One backing object per-engine inside each context.
73 * The global default context starts its life with these new objects fully
74 * allocated and populated. The local default context for each opened fd is
75 * more complex, because we don't know at creation time which engine is going
76 * to use them. To handle this, we have implemented a deferred creation of LR
79 * The local context starts its life as a hollow or blank holder, that only
80 * gets populated for a given engine once we receive an execbuffer. If later
81 * on we receive another execbuffer ioctl for the same context but a different
82 * engine, we allocate/populate a new ringbuffer and context backing object and
85 * Finally, regarding local contexts created using the ioctl call: as they are
86 * only allowed with the render ring, we can allocate & populate them right
87 * away (no need to defer anything, at least for now).
89 * Execlists implementation:
90 * Execlists are the new method by which, on gen8+ hardware, workloads are
91 * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92 * This method works as follows:
94 * When a request is committed, its commands (the BB start and any leading or
95 * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96 * for the appropriate context. The tail pointer in the hardware context is not
97 * updated at this time, but instead, kept by the driver in the ringbuffer
98 * structure. A structure representing this request is added to a request queue
99 * for the appropriate engine: this structure contains a copy of the context's
100 * tail after the request was written to the ring buffer and a pointer to the
103 * If the engine's request queue was empty before the request was added, the
104 * queue is processed immediately. Otherwise the queue will be processed during
105 * a context switch interrupt. In any case, elements on the queue will get sent
106 * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107 * globally unique 20-bits submission ID.
109 * When execution of a request completes, the GPU updates the context status
110 * buffer with a context complete event and generates a context switch interrupt.
111 * During the interrupt handling, the driver examines the events in the buffer:
112 * for each context complete event, if the announced ID matches that on the head
113 * of the request queue, then that request is retired and removed from the queue.
115 * After processing, if any requests were retired and the queue is not empty
116 * then a new execution list can be submitted. The two requests at the front of
117 * the queue are next to be submitted but since a context may not occur twice in
118 * an execution list, if subsequent requests have the same ID as the first then
119 * the two requests must be combined. This is done simply by discarding requests
120 * at the head of the queue until either only one requests is left (in which case
121 * we use a NULL second context) or the first two requests have unique IDs.
123 * By always executing the first two requests in the queue the driver ensures
124 * that the GPU is kept as busy as possible. In the case where a single context
125 * completes but a second context is still executing, the request for this second
126 * context will be at the head of the queue when we remove the first one. This
127 * request will then be resubmitted along with a new request for a different context,
128 * which will cause the hardware to continue executing the second request and queue
129 * the new request (the GPU detects the condition of a context getting preempted
130 * with the same context and optimizes the context switch flow by not doing
131 * preemption, but just sampling the new tail pointer).
134 #include <linux/interrupt.h>
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "intel_mocs.h"
142 #define RING_EXECLIST_QFULL (1 << 0x2)
143 #define RING_EXECLIST1_VALID (1 << 0x3)
144 #define RING_EXECLIST0_VALID (1 << 0x4)
145 #define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
146 #define RING_EXECLIST1_ACTIVE (1 << 0x11)
147 #define RING_EXECLIST0_ACTIVE (1 << 0x12)
149 #define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
150 #define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
151 #define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
152 #define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
153 #define GEN8_CTX_STATUS_COMPLETE (1 << 4)
154 #define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
156 #define GEN8_CTX_STATUS_COMPLETED_MASK \
157 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
159 #define CTX_LRI_HEADER_0 0x01
160 #define CTX_CONTEXT_CONTROL 0x02
161 #define CTX_RING_HEAD 0x04
162 #define CTX_RING_TAIL 0x06
163 #define CTX_RING_BUFFER_START 0x08
164 #define CTX_RING_BUFFER_CONTROL 0x0a
165 #define CTX_BB_HEAD_U 0x0c
166 #define CTX_BB_HEAD_L 0x0e
167 #define CTX_BB_STATE 0x10
168 #define CTX_SECOND_BB_HEAD_U 0x12
169 #define CTX_SECOND_BB_HEAD_L 0x14
170 #define CTX_SECOND_BB_STATE 0x16
171 #define CTX_BB_PER_CTX_PTR 0x18
172 #define CTX_RCS_INDIRECT_CTX 0x1a
173 #define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
174 #define CTX_LRI_HEADER_1 0x21
175 #define CTX_CTX_TIMESTAMP 0x22
176 #define CTX_PDP3_UDW 0x24
177 #define CTX_PDP3_LDW 0x26
178 #define CTX_PDP2_UDW 0x28
179 #define CTX_PDP2_LDW 0x2a
180 #define CTX_PDP1_UDW 0x2c
181 #define CTX_PDP1_LDW 0x2e
182 #define CTX_PDP0_UDW 0x30
183 #define CTX_PDP0_LDW 0x32
184 #define CTX_LRI_HEADER_2 0x41
185 #define CTX_R_PWR_CLK_STATE 0x42
186 #define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
188 #define CTX_REG(reg_state, pos, reg, val) do { \
189 (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
190 (reg_state)[(pos)+1] = (val); \
193 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
194 const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
195 reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
196 reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
199 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
200 reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
201 reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
204 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
205 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
206 #define GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x19
208 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
209 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
210 #define WA_TAIL_DWORDS 2
211 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
212 #define PREEMPT_ID 0x1
214 static int execlists_context_deferred_alloc(struct i915_gem_context
*ctx
,
215 struct intel_engine_cs
*engine
);
216 static void execlists_init_reg_state(u32
*reg_state
,
217 struct i915_gem_context
*ctx
,
218 struct intel_engine_cs
*engine
,
219 struct intel_ring
*ring
);
222 * intel_lr_context_descriptor_update() - calculate & cache the descriptor
223 * descriptor for a pinned context
224 * @ctx: Context to work on
225 * @engine: Engine the descriptor will be used with
227 * The context descriptor encodes various attributes of a context,
228 * including its GTT address and some flags. Because it's fairly
229 * expensive to calculate, we'll just do it once and cache the result,
230 * which remains valid until the context is unpinned.
232 * This is what a descriptor looks like, from LSB to MSB::
234 * bits 0-11: flags, GEN8_CTX_* (cached in ctx->desc_template)
235 * bits 12-31: LRCA, GTT address of (the HWSP of) this context
236 * bits 32-52: ctx ID, a globally unique tag
237 * bits 53-54: mbz, reserved for use by hardware
238 * bits 55-63: group ID, currently unused and set to 0
241 intel_lr_context_descriptor_update(struct i915_gem_context
*ctx
,
242 struct intel_engine_cs
*engine
)
244 struct intel_context
*ce
= &ctx
->engine
[engine
->id
];
247 BUILD_BUG_ON(MAX_CONTEXT_HW_ID
> (1<<GEN8_CTX_ID_WIDTH
));
249 desc
= ctx
->desc_template
; /* bits 0-11 */
250 desc
|= i915_ggtt_offset(ce
->state
) + LRC_HEADER_PAGES
* PAGE_SIZE
;
252 desc
|= (u64
)ctx
->hw_id
<< GEN8_CTX_ID_SHIFT
; /* bits 32-52 */
257 static struct i915_priolist
*
258 lookup_priolist(struct intel_engine_cs
*engine
,
259 struct i915_priotree
*pt
,
262 struct intel_engine_execlists
* const execlists
= &engine
->execlists
;
263 struct i915_priolist
*p
;
264 struct rb_node
**parent
, *rb
;
267 if (unlikely(execlists
->no_priolist
))
268 prio
= I915_PRIORITY_NORMAL
;
271 /* most positive priority is scheduled first, equal priorities fifo */
273 parent
= &execlists
->queue
.rb_node
;
276 p
= rb_entry(rb
, typeof(*p
), node
);
277 if (prio
> p
->priority
) {
278 parent
= &rb
->rb_left
;
279 } else if (prio
< p
->priority
) {
280 parent
= &rb
->rb_right
;
287 if (prio
== I915_PRIORITY_NORMAL
) {
288 p
= &execlists
->default_priolist
;
290 p
= kmem_cache_alloc(engine
->i915
->priorities
, GFP_ATOMIC
);
291 /* Convert an allocation failure to a priority bump */
293 prio
= I915_PRIORITY_NORMAL
; /* recurses just once */
295 /* To maintain ordering with all rendering, after an
296 * allocation failure we have to disable all scheduling.
297 * Requests will then be executed in fifo, and schedule
298 * will ensure that dependencies are emitted in fifo.
299 * There will be still some reordering with existing
300 * requests, so if userspace lied about their
301 * dependencies that reordering may be visible.
303 execlists
->no_priolist
= true;
309 INIT_LIST_HEAD(&p
->requests
);
310 rb_link_node(&p
->node
, rb
, parent
);
311 rb_insert_color(&p
->node
, &execlists
->queue
);
314 execlists
->first
= &p
->node
;
316 return ptr_pack_bits(p
, first
, 1);
319 static void unwind_wa_tail(struct drm_i915_gem_request
*rq
)
321 rq
->tail
= intel_ring_wrap(rq
->ring
, rq
->wa_tail
- WA_TAIL_BYTES
);
322 assert_ring_tail_valid(rq
->ring
, rq
->tail
);
325 static void __unwind_incomplete_requests(struct intel_engine_cs
*engine
)
327 struct drm_i915_gem_request
*rq
, *rn
;
328 struct i915_priolist
*uninitialized_var(p
);
329 int last_prio
= I915_PRIORITY_INVALID
;
331 lockdep_assert_held(&engine
->timeline
->lock
);
333 list_for_each_entry_safe_reverse(rq
, rn
,
334 &engine
->timeline
->requests
,
336 if (i915_gem_request_completed(rq
))
339 __i915_gem_request_unsubmit(rq
);
342 GEM_BUG_ON(rq
->priotree
.priority
== I915_PRIORITY_INVALID
);
343 if (rq
->priotree
.priority
!= last_prio
) {
344 p
= lookup_priolist(engine
,
346 rq
->priotree
.priority
);
347 p
= ptr_mask_bits(p
, 1);
349 last_prio
= rq
->priotree
.priority
;
352 list_add(&rq
->priotree
.link
, &p
->requests
);
357 execlists_unwind_incomplete_requests(struct intel_engine_execlists
*execlists
)
359 struct intel_engine_cs
*engine
=
360 container_of(execlists
, typeof(*engine
), execlists
);
362 spin_lock_irq(&engine
->timeline
->lock
);
363 __unwind_incomplete_requests(engine
);
364 spin_unlock_irq(&engine
->timeline
->lock
);
368 execlists_context_status_change(struct drm_i915_gem_request
*rq
,
369 unsigned long status
)
372 * Only used when GVT-g is enabled now. When GVT-g is disabled,
373 * The compiler should eliminate this function as dead-code.
375 if (!IS_ENABLED(CONFIG_DRM_I915_GVT
))
378 atomic_notifier_call_chain(&rq
->engine
->context_status_notifier
,
383 execlists_context_schedule_in(struct drm_i915_gem_request
*rq
)
385 execlists_context_status_change(rq
, INTEL_CONTEXT_SCHEDULE_IN
);
386 intel_engine_context_in(rq
->engine
);
390 execlists_context_schedule_out(struct drm_i915_gem_request
*rq
)
392 intel_engine_context_out(rq
->engine
);
393 execlists_context_status_change(rq
, INTEL_CONTEXT_SCHEDULE_OUT
);
397 execlists_update_context_pdps(struct i915_hw_ppgtt
*ppgtt
, u32
*reg_state
)
399 ASSIGN_CTX_PDP(ppgtt
, reg_state
, 3);
400 ASSIGN_CTX_PDP(ppgtt
, reg_state
, 2);
401 ASSIGN_CTX_PDP(ppgtt
, reg_state
, 1);
402 ASSIGN_CTX_PDP(ppgtt
, reg_state
, 0);
405 static u64
execlists_update_context(struct drm_i915_gem_request
*rq
)
407 struct intel_context
*ce
= &rq
->ctx
->engine
[rq
->engine
->id
];
408 struct i915_hw_ppgtt
*ppgtt
=
409 rq
->ctx
->ppgtt
?: rq
->i915
->mm
.aliasing_ppgtt
;
410 u32
*reg_state
= ce
->lrc_reg_state
;
412 reg_state
[CTX_RING_TAIL
+1] = intel_ring_set_tail(rq
->ring
, rq
->tail
);
414 /* True 32b PPGTT with dynamic page allocation: update PDP
415 * registers and point the unallocated PDPs to scratch page.
416 * PML4 is allocated during ppgtt init, so this is not needed
419 if (ppgtt
&& !i915_vm_is_48bit(&ppgtt
->base
))
420 execlists_update_context_pdps(ppgtt
, reg_state
);
425 static inline void elsp_write(u64 desc
, u32 __iomem
*elsp
)
427 writel(upper_32_bits(desc
), elsp
);
428 writel(lower_32_bits(desc
), elsp
);
431 static void execlists_submit_ports(struct intel_engine_cs
*engine
)
433 struct execlist_port
*port
= engine
->execlists
.port
;
436 for (n
= execlists_num_ports(&engine
->execlists
); n
--; ) {
437 struct drm_i915_gem_request
*rq
;
441 rq
= port_unpack(&port
[n
], &count
);
443 GEM_BUG_ON(count
> !n
);
445 execlists_context_schedule_in(rq
);
446 port_set(&port
[n
], port_pack(rq
, count
));
447 desc
= execlists_update_context(rq
);
448 GEM_DEBUG_EXEC(port
[n
].context_id
= upper_32_bits(desc
));
450 GEM_TRACE("%s in[%d]: ctx=%d.%d, seqno=%x\n",
452 port
[n
].context_id
, count
,
459 elsp_write(desc
, engine
->execlists
.elsp
);
461 execlists_clear_active(&engine
->execlists
, EXECLISTS_ACTIVE_HWACK
);
464 static bool ctx_single_port_submission(const struct i915_gem_context
*ctx
)
466 return (IS_ENABLED(CONFIG_DRM_I915_GVT
) &&
467 i915_gem_context_force_single_submission(ctx
));
470 static bool can_merge_ctx(const struct i915_gem_context
*prev
,
471 const struct i915_gem_context
*next
)
476 if (ctx_single_port_submission(prev
))
482 static void port_assign(struct execlist_port
*port
,
483 struct drm_i915_gem_request
*rq
)
485 GEM_BUG_ON(rq
== port_request(port
));
487 if (port_isset(port
))
488 i915_gem_request_put(port_request(port
));
490 port_set(port
, port_pack(i915_gem_request_get(rq
), port_count(port
)));
493 static void inject_preempt_context(struct intel_engine_cs
*engine
)
495 struct intel_context
*ce
=
496 &engine
->i915
->preempt_context
->engine
[engine
->id
];
499 GEM_BUG_ON(engine
->i915
->preempt_context
->hw_id
!= PREEMPT_ID
);
500 GEM_BUG_ON(!IS_ALIGNED(ce
->ring
->size
, WA_TAIL_BYTES
));
502 memset(ce
->ring
->vaddr
+ ce
->ring
->tail
, 0, WA_TAIL_BYTES
);
503 ce
->ring
->tail
+= WA_TAIL_BYTES
;
504 ce
->ring
->tail
&= (ce
->ring
->size
- 1);
505 ce
->lrc_reg_state
[CTX_RING_TAIL
+1] = ce
->ring
->tail
;
507 GEM_TRACE("%s\n", engine
->name
);
508 for (n
= execlists_num_ports(&engine
->execlists
); --n
; )
509 elsp_write(0, engine
->execlists
.elsp
);
511 elsp_write(ce
->lrc_desc
, engine
->execlists
.elsp
);
512 execlists_clear_active(&engine
->execlists
, EXECLISTS_ACTIVE_HWACK
);
515 static void execlists_dequeue(struct intel_engine_cs
*engine
)
517 struct intel_engine_execlists
* const execlists
= &engine
->execlists
;
518 struct execlist_port
*port
= execlists
->port
;
519 const struct execlist_port
* const last_port
=
520 &execlists
->port
[execlists
->port_mask
];
521 struct drm_i915_gem_request
*last
= port_request(port
);
525 /* Hardware submission is through 2 ports. Conceptually each port
526 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
527 * static for a context, and unique to each, so we only execute
528 * requests belonging to a single context from each ring. RING_HEAD
529 * is maintained by the CS in the context image, it marks the place
530 * where it got up to last time, and through RING_TAIL we tell the CS
531 * where we want to execute up to this time.
533 * In this list the requests are in order of execution. Consecutive
534 * requests from the same context are adjacent in the ringbuffer. We
535 * can combine these requests into a single RING_TAIL update:
537 * RING_HEAD...req1...req2
539 * since to execute req2 the CS must first execute req1.
541 * Our goal then is to point each port to the end of a consecutive
542 * sequence of requests as being the most optimal (fewest wake ups
543 * and context switches) submission.
546 spin_lock_irq(&engine
->timeline
->lock
);
547 rb
= execlists
->first
;
548 GEM_BUG_ON(rb_first(&execlists
->queue
) != rb
);
554 * Don't resubmit or switch until all outstanding
555 * preemptions (lite-restore) are seen. Then we
556 * know the next preemption status we see corresponds
557 * to this ELSP update.
559 GEM_BUG_ON(!port_count(&port
[0]));
560 if (port_count(&port
[0]) > 1)
564 * If we write to ELSP a second time before the HW has had
565 * a chance to respond to the previous write, we can confuse
566 * the HW and hit "undefined behaviour". After writing to ELSP,
567 * we must then wait until we see a context-switch event from
568 * the HW to indicate that it has had a chance to respond.
570 if (!execlists_is_active(execlists
, EXECLISTS_ACTIVE_HWACK
))
573 if (HAS_LOGICAL_RING_PREEMPTION(engine
->i915
) &&
574 rb_entry(rb
, struct i915_priolist
, node
)->priority
>
575 max(last
->priotree
.priority
, 0)) {
577 * Switch to our empty preempt context so
578 * the state of the GPU is known (idle).
580 inject_preempt_context(engine
);
581 execlists_set_active(execlists
,
582 EXECLISTS_ACTIVE_PREEMPT
);
586 * In theory, we could coalesce more requests onto
587 * the second port (the first port is active, with
588 * no preemptions pending). However, that means we
589 * then have to deal with the possible lite-restore
590 * of the second port (as we submit the ELSP, there
591 * may be a context-switch) but also we may complete
592 * the resubmission before the context-switch. Ergo,
593 * coalescing onto the second port will cause a
594 * preemption event, but we cannot predict whether
595 * that will affect port[0] or port[1].
597 * If the second port is already active, we can wait
598 * until the next context-switch before contemplating
599 * new requests. The GPU will be busy and we should be
600 * able to resubmit the new ELSP before it idles,
601 * avoiding pipeline bubbles (momentary pauses where
602 * the driver is unable to keep up the supply of new
605 if (port_count(&port
[1]))
608 /* WaIdleLiteRestore:bdw,skl
609 * Apply the wa NOOPs to prevent
610 * ring:HEAD == req:TAIL as we resubmit the
611 * request. See gen8_emit_breadcrumb() for
612 * where we prepare the padding after the
613 * end of the request.
615 last
->tail
= last
->wa_tail
;
620 struct i915_priolist
*p
= rb_entry(rb
, typeof(*p
), node
);
621 struct drm_i915_gem_request
*rq
, *rn
;
623 list_for_each_entry_safe(rq
, rn
, &p
->requests
, priotree
.link
) {
625 * Can we combine this request with the current port?
626 * It has to be the same context/ringbuffer and not
627 * have any exceptions (e.g. GVT saying never to
630 * If we can combine the requests, we can execute both
631 * by updating the RING_TAIL to point to the end of the
632 * second request, and so we never need to tell the
633 * hardware about the first.
635 if (last
&& !can_merge_ctx(rq
->ctx
, last
->ctx
)) {
637 * If we are on the second port and cannot
638 * combine this request with the last, then we
641 if (port
== last_port
) {
642 __list_del_many(&p
->requests
,
648 * If GVT overrides us we only ever submit
649 * port[0], leaving port[1] empty. Note that we
650 * also have to be careful that we don't queue
651 * the same context (even though a different
652 * request) to the second port.
654 if (ctx_single_port_submission(last
->ctx
) ||
655 ctx_single_port_submission(rq
->ctx
)) {
656 __list_del_many(&p
->requests
,
661 GEM_BUG_ON(last
->ctx
== rq
->ctx
);
664 port_assign(port
, last
);
667 GEM_BUG_ON(port_isset(port
));
670 INIT_LIST_HEAD(&rq
->priotree
.link
);
671 __i915_gem_request_submit(rq
);
672 trace_i915_gem_request_in(rq
, port_index(port
, execlists
));
678 rb_erase(&p
->node
, &execlists
->queue
);
679 INIT_LIST_HEAD(&p
->requests
);
680 if (p
->priority
!= I915_PRIORITY_NORMAL
)
681 kmem_cache_free(engine
->i915
->priorities
, p
);
684 execlists
->first
= rb
;
686 port_assign(port
, last
);
688 spin_unlock_irq(&engine
->timeline
->lock
);
691 execlists_set_active(execlists
, EXECLISTS_ACTIVE_USER
);
692 execlists_submit_ports(engine
);
697 execlists_cancel_port_requests(struct intel_engine_execlists
* const execlists
)
699 struct execlist_port
*port
= execlists
->port
;
700 unsigned int num_ports
= execlists_num_ports(execlists
);
702 while (num_ports
-- && port_isset(port
)) {
703 struct drm_i915_gem_request
*rq
= port_request(port
);
705 GEM_BUG_ON(!execlists
->active
);
706 intel_engine_context_out(rq
->engine
);
707 execlists_context_status_change(rq
, INTEL_CONTEXT_SCHEDULE_PREEMPTED
);
708 i915_gem_request_put(rq
);
710 memset(port
, 0, sizeof(*port
));
715 static void execlists_cancel_requests(struct intel_engine_cs
*engine
)
717 struct intel_engine_execlists
* const execlists
= &engine
->execlists
;
718 struct drm_i915_gem_request
*rq
, *rn
;
722 GEM_TRACE("%s\n", engine
->name
);
724 spin_lock_irqsave(&engine
->timeline
->lock
, flags
);
726 /* Cancel the requests on the HW and clear the ELSP tracker. */
727 execlists_cancel_port_requests(execlists
);
729 /* Mark all executing requests as skipped. */
730 list_for_each_entry(rq
, &engine
->timeline
->requests
, link
) {
731 GEM_BUG_ON(!rq
->global_seqno
);
732 if (!i915_gem_request_completed(rq
))
733 dma_fence_set_error(&rq
->fence
, -EIO
);
736 /* Flush the queued requests to the timeline list (for retiring). */
737 rb
= execlists
->first
;
739 struct i915_priolist
*p
= rb_entry(rb
, typeof(*p
), node
);
741 list_for_each_entry_safe(rq
, rn
, &p
->requests
, priotree
.link
) {
742 INIT_LIST_HEAD(&rq
->priotree
.link
);
744 dma_fence_set_error(&rq
->fence
, -EIO
);
745 __i915_gem_request_submit(rq
);
749 rb_erase(&p
->node
, &execlists
->queue
);
750 INIT_LIST_HEAD(&p
->requests
);
751 if (p
->priority
!= I915_PRIORITY_NORMAL
)
752 kmem_cache_free(engine
->i915
->priorities
, p
);
755 /* Remaining _unready_ requests will be nop'ed when submitted */
758 execlists
->queue
= RB_ROOT
;
759 execlists
->first
= NULL
;
760 GEM_BUG_ON(port_isset(execlists
->port
));
763 * The port is checked prior to scheduling a tasklet, but
764 * just in case we have suspended the tasklet to do the
765 * wedging make sure that when it wakes, it decides there
766 * is no work to do by clearing the irq_posted bit.
768 clear_bit(ENGINE_IRQ_EXECLIST
, &engine
->irq_posted
);
770 /* Mark all CS interrupts as complete */
771 execlists
->active
= 0;
773 spin_unlock_irqrestore(&engine
->timeline
->lock
, flags
);
777 * Check the unread Context Status Buffers and manage the submission of new
778 * contexts to the ELSP accordingly.
780 static void execlists_submission_tasklet(unsigned long data
)
782 struct intel_engine_cs
* const engine
= (struct intel_engine_cs
*)data
;
783 struct intel_engine_execlists
* const execlists
= &engine
->execlists
;
784 struct execlist_port
* const port
= execlists
->port
;
785 struct drm_i915_private
*dev_priv
= engine
->i915
;
787 /* We can skip acquiring intel_runtime_pm_get() here as it was taken
788 * on our behalf by the request (see i915_gem_mark_busy()) and it will
789 * not be relinquished until the device is idle (see
790 * i915_gem_idle_work_handler()). As a precaution, we make sure
791 * that all ELSP are drained i.e. we have processed the CSB,
792 * before allowing ourselves to idle and calling intel_runtime_pm_put().
794 GEM_BUG_ON(!dev_priv
->gt
.awake
);
796 intel_uncore_forcewake_get(dev_priv
, execlists
->fw_domains
);
798 /* Prefer doing test_and_clear_bit() as a two stage operation to avoid
799 * imposing the cost of a locked atomic transaction when submitting a
800 * new request (outside of the context-switch interrupt).
802 while (test_bit(ENGINE_IRQ_EXECLIST
, &engine
->irq_posted
)) {
803 /* The HWSP contains a (cacheable) mirror of the CSB */
805 &engine
->status_page
.page_addr
[I915_HWS_CSB_BUF0_INDEX
];
806 unsigned int head
, tail
;
808 if (unlikely(execlists
->csb_use_mmio
)) {
809 buf
= (u32
* __force
)
810 (dev_priv
->regs
+ i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine
, 0)));
811 execlists
->csb_head
= -1; /* force mmio read of CSB ptrs */
814 /* The write will be ordered by the uncached read (itself
815 * a memory barrier), so we do not need another in the form
816 * of a locked instruction. The race between the interrupt
817 * handler and the split test/clear is harmless as we order
818 * our clear before the CSB read. If the interrupt arrived
819 * first between the test and the clear, we read the updated
820 * CSB and clear the bit. If the interrupt arrives as we read
821 * the CSB or later (i.e. after we had cleared the bit) the bit
822 * is set and we do a new loop.
824 __clear_bit(ENGINE_IRQ_EXECLIST
, &engine
->irq_posted
);
825 if (unlikely(execlists
->csb_head
== -1)) { /* following a reset */
826 head
= readl(dev_priv
->regs
+ i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine
)));
827 tail
= GEN8_CSB_WRITE_PTR(head
);
828 head
= GEN8_CSB_READ_PTR(head
);
829 execlists
->csb_head
= head
;
831 const int write_idx
=
832 intel_hws_csb_write_index(dev_priv
) -
833 I915_HWS_CSB_BUF0_INDEX
;
835 head
= execlists
->csb_head
;
836 tail
= READ_ONCE(buf
[write_idx
]);
838 GEM_TRACE("%s cs-irq head=%d [%d], tail=%d [%d]\n",
840 head
, GEN8_CSB_READ_PTR(readl(dev_priv
->regs
+ i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine
)))),
841 tail
, GEN8_CSB_WRITE_PTR(readl(dev_priv
->regs
+ i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine
)))));
843 while (head
!= tail
) {
844 struct drm_i915_gem_request
*rq
;
848 if (++head
== GEN8_CSB_ENTRIES
)
851 /* We are flying near dragons again.
853 * We hold a reference to the request in execlist_port[]
854 * but no more than that. We are operating in softirq
855 * context and so cannot hold any mutex or sleep. That
856 * prevents us stopping the requests we are processing
857 * in port[] from being retired simultaneously (the
858 * breadcrumb will be complete before we see the
859 * context-switch). As we only hold the reference to the
860 * request, any pointer chasing underneath the request
861 * is subject to a potential use-after-free. Thus we
862 * store all of the bookkeeping within port[] as
863 * required, and avoid using unguarded pointers beneath
864 * request itself. The same applies to the atomic
868 status
= READ_ONCE(buf
[2 * head
]); /* maybe mmio! */
869 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
871 status
, buf
[2*head
+ 1],
874 if (status
& (GEN8_CTX_STATUS_IDLE_ACTIVE
|
875 GEN8_CTX_STATUS_PREEMPTED
))
876 execlists_set_active(execlists
,
877 EXECLISTS_ACTIVE_HWACK
);
878 if (status
& GEN8_CTX_STATUS_ACTIVE_IDLE
)
879 execlists_clear_active(execlists
,
880 EXECLISTS_ACTIVE_HWACK
);
882 if (!(status
& GEN8_CTX_STATUS_COMPLETED_MASK
))
885 /* We should never get a COMPLETED | IDLE_ACTIVE! */
886 GEM_BUG_ON(status
& GEN8_CTX_STATUS_IDLE_ACTIVE
);
888 if (status
& GEN8_CTX_STATUS_COMPLETE
&&
889 buf
[2*head
+ 1] == PREEMPT_ID
) {
890 GEM_TRACE("%s preempt-idle\n", engine
->name
);
892 execlists_cancel_port_requests(execlists
);
893 execlists_unwind_incomplete_requests(execlists
);
895 GEM_BUG_ON(!execlists_is_active(execlists
,
896 EXECLISTS_ACTIVE_PREEMPT
));
897 execlists_clear_active(execlists
,
898 EXECLISTS_ACTIVE_PREEMPT
);
902 if (status
& GEN8_CTX_STATUS_PREEMPTED
&&
903 execlists_is_active(execlists
,
904 EXECLISTS_ACTIVE_PREEMPT
))
907 GEM_BUG_ON(!execlists_is_active(execlists
,
908 EXECLISTS_ACTIVE_USER
));
910 /* Check the context/desc id for this event matches */
911 GEM_DEBUG_BUG_ON(buf
[2 * head
+ 1] != port
->context_id
);
913 rq
= port_unpack(port
, &count
);
914 GEM_TRACE("%s out[0]: ctx=%d.%d, seqno=%x\n",
916 port
->context_id
, count
,
917 rq
? rq
->global_seqno
: 0);
918 GEM_BUG_ON(count
== 0);
920 GEM_BUG_ON(status
& GEN8_CTX_STATUS_PREEMPTED
);
921 GEM_BUG_ON(port_isset(&port
[1]) &&
922 !(status
& GEN8_CTX_STATUS_ELEMENT_SWITCH
));
923 GEM_BUG_ON(!i915_gem_request_completed(rq
));
924 execlists_context_schedule_out(rq
);
925 trace_i915_gem_request_out(rq
);
926 i915_gem_request_put(rq
);
928 execlists_port_complete(execlists
, port
);
930 port_set(port
, port_pack(rq
, count
));
933 /* After the final element, the hw should be idle */
934 GEM_BUG_ON(port_count(port
) == 0 &&
935 !(status
& GEN8_CTX_STATUS_ACTIVE_IDLE
));
936 if (port_count(port
) == 0)
937 execlists_clear_active(execlists
,
938 EXECLISTS_ACTIVE_USER
);
941 if (head
!= execlists
->csb_head
) {
942 execlists
->csb_head
= head
;
943 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK
, head
<< 8),
944 dev_priv
->regs
+ i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine
)));
948 if (!execlists_is_active(execlists
, EXECLISTS_ACTIVE_PREEMPT
))
949 execlists_dequeue(engine
);
951 intel_uncore_forcewake_put(dev_priv
, execlists
->fw_domains
);
954 static void insert_request(struct intel_engine_cs
*engine
,
955 struct i915_priotree
*pt
,
958 struct i915_priolist
*p
= lookup_priolist(engine
, pt
, prio
);
960 list_add_tail(&pt
->link
, &ptr_mask_bits(p
, 1)->requests
);
961 if (ptr_unmask_bits(p
, 1))
962 tasklet_hi_schedule(&engine
->execlists
.tasklet
);
965 static void execlists_submit_request(struct drm_i915_gem_request
*request
)
967 struct intel_engine_cs
*engine
= request
->engine
;
970 /* Will be called from irq-context when using foreign fences. */
971 spin_lock_irqsave(&engine
->timeline
->lock
, flags
);
973 insert_request(engine
, &request
->priotree
, request
->priotree
.priority
);
975 GEM_BUG_ON(!engine
->execlists
.first
);
976 GEM_BUG_ON(list_empty(&request
->priotree
.link
));
978 spin_unlock_irqrestore(&engine
->timeline
->lock
, flags
);
981 static struct drm_i915_gem_request
*pt_to_request(struct i915_priotree
*pt
)
983 return container_of(pt
, struct drm_i915_gem_request
, priotree
);
986 static struct intel_engine_cs
*
987 pt_lock_engine(struct i915_priotree
*pt
, struct intel_engine_cs
*locked
)
989 struct intel_engine_cs
*engine
= pt_to_request(pt
)->engine
;
993 if (engine
!= locked
) {
994 spin_unlock(&locked
->timeline
->lock
);
995 spin_lock(&engine
->timeline
->lock
);
1001 static void execlists_schedule(struct drm_i915_gem_request
*request
, int prio
)
1003 struct intel_engine_cs
*engine
;
1004 struct i915_dependency
*dep
, *p
;
1005 struct i915_dependency stack
;
1008 GEM_BUG_ON(prio
== I915_PRIORITY_INVALID
);
1010 if (i915_gem_request_completed(request
))
1013 if (prio
<= READ_ONCE(request
->priotree
.priority
))
1016 /* Need BKL in order to use the temporary link inside i915_dependency */
1017 lockdep_assert_held(&request
->i915
->drm
.struct_mutex
);
1019 stack
.signaler
= &request
->priotree
;
1020 list_add(&stack
.dfs_link
, &dfs
);
1022 /* Recursively bump all dependent priorities to match the new request.
1024 * A naive approach would be to use recursion:
1025 * static void update_priorities(struct i915_priotree *pt, prio) {
1026 * list_for_each_entry(dep, &pt->signalers_list, signal_link)
1027 * update_priorities(dep->signal, prio)
1028 * insert_request(pt);
1030 * but that may have unlimited recursion depth and so runs a very
1031 * real risk of overunning the kernel stack. Instead, we build
1032 * a flat list of all dependencies starting with the current request.
1033 * As we walk the list of dependencies, we add all of its dependencies
1034 * to the end of the list (this may include an already visited
1035 * request) and continue to walk onwards onto the new dependencies. The
1036 * end result is a topological list of requests in reverse order, the
1037 * last element in the list is the request we must execute first.
1039 list_for_each_entry_safe(dep
, p
, &dfs
, dfs_link
) {
1040 struct i915_priotree
*pt
= dep
->signaler
;
1042 /* Within an engine, there can be no cycle, but we may
1043 * refer to the same dependency chain multiple times
1044 * (redundant dependencies are not eliminated) and across
1047 list_for_each_entry(p
, &pt
->signalers_list
, signal_link
) {
1048 if (i915_gem_request_completed(pt_to_request(p
->signaler
)))
1051 GEM_BUG_ON(p
->signaler
->priority
< pt
->priority
);
1052 if (prio
> READ_ONCE(p
->signaler
->priority
))
1053 list_move_tail(&p
->dfs_link
, &dfs
);
1056 list_safe_reset_next(dep
, p
, dfs_link
);
1059 /* If we didn't need to bump any existing priorities, and we haven't
1060 * yet submitted this request (i.e. there is no potential race with
1061 * execlists_submit_request()), we can set our own priority and skip
1062 * acquiring the engine locks.
1064 if (request
->priotree
.priority
== I915_PRIORITY_INVALID
) {
1065 GEM_BUG_ON(!list_empty(&request
->priotree
.link
));
1066 request
->priotree
.priority
= prio
;
1067 if (stack
.dfs_link
.next
== stack
.dfs_link
.prev
)
1069 __list_del_entry(&stack
.dfs_link
);
1072 engine
= request
->engine
;
1073 spin_lock_irq(&engine
->timeline
->lock
);
1075 /* Fifo and depth-first replacement ensure our deps execute before us */
1076 list_for_each_entry_safe_reverse(dep
, p
, &dfs
, dfs_link
) {
1077 struct i915_priotree
*pt
= dep
->signaler
;
1079 INIT_LIST_HEAD(&dep
->dfs_link
);
1081 engine
= pt_lock_engine(pt
, engine
);
1083 if (prio
<= pt
->priority
)
1086 pt
->priority
= prio
;
1087 if (!list_empty(&pt
->link
)) {
1088 __list_del_entry(&pt
->link
);
1089 insert_request(engine
, pt
, prio
);
1093 spin_unlock_irq(&engine
->timeline
->lock
);
1096 static int __context_pin(struct i915_gem_context
*ctx
, struct i915_vma
*vma
)
1102 * Clear this page out of any CPU caches for coherent swap-in/out.
1103 * We only want to do this on the first bind so that we do not stall
1104 * on an active context (which by nature is already on the GPU).
1106 if (!(vma
->flags
& I915_VMA_GLOBAL_BIND
)) {
1107 err
= i915_gem_object_set_to_gtt_domain(vma
->obj
, true);
1112 flags
= PIN_GLOBAL
| PIN_HIGH
;
1113 if (ctx
->ggtt_offset_bias
)
1114 flags
|= PIN_OFFSET_BIAS
| ctx
->ggtt_offset_bias
;
1116 return i915_vma_pin(vma
, 0, GEN8_LR_CONTEXT_ALIGN
, flags
);
1119 static struct intel_ring
*
1120 execlists_context_pin(struct intel_engine_cs
*engine
,
1121 struct i915_gem_context
*ctx
)
1123 struct intel_context
*ce
= &ctx
->engine
[engine
->id
];
1127 lockdep_assert_held(&ctx
->i915
->drm
.struct_mutex
);
1129 if (likely(ce
->pin_count
++))
1131 GEM_BUG_ON(!ce
->pin_count
); /* no overflow please! */
1134 ret
= execlists_context_deferred_alloc(ctx
, engine
);
1138 GEM_BUG_ON(!ce
->state
);
1140 ret
= __context_pin(ctx
, ce
->state
);
1144 vaddr
= i915_gem_object_pin_map(ce
->state
->obj
, I915_MAP_WB
);
1145 if (IS_ERR(vaddr
)) {
1146 ret
= PTR_ERR(vaddr
);
1150 ret
= intel_ring_pin(ce
->ring
, ctx
->i915
, ctx
->ggtt_offset_bias
);
1154 intel_lr_context_descriptor_update(ctx
, engine
);
1156 ce
->lrc_reg_state
= vaddr
+ LRC_STATE_PN
* PAGE_SIZE
;
1157 ce
->lrc_reg_state
[CTX_RING_BUFFER_START
+1] =
1158 i915_ggtt_offset(ce
->ring
->vma
);
1160 ce
->state
->obj
->pin_global
++;
1161 i915_gem_context_get(ctx
);
1166 i915_gem_object_unpin_map(ce
->state
->obj
);
1168 __i915_vma_unpin(ce
->state
);
1171 return ERR_PTR(ret
);
1174 static void execlists_context_unpin(struct intel_engine_cs
*engine
,
1175 struct i915_gem_context
*ctx
)
1177 struct intel_context
*ce
= &ctx
->engine
[engine
->id
];
1179 lockdep_assert_held(&ctx
->i915
->drm
.struct_mutex
);
1180 GEM_BUG_ON(ce
->pin_count
== 0);
1182 if (--ce
->pin_count
)
1185 intel_ring_unpin(ce
->ring
);
1187 ce
->state
->obj
->pin_global
--;
1188 i915_gem_object_unpin_map(ce
->state
->obj
);
1189 i915_vma_unpin(ce
->state
);
1191 i915_gem_context_put(ctx
);
1194 static int execlists_request_alloc(struct drm_i915_gem_request
*request
)
1196 struct intel_engine_cs
*engine
= request
->engine
;
1197 struct intel_context
*ce
= &request
->ctx
->engine
[engine
->id
];
1200 GEM_BUG_ON(!ce
->pin_count
);
1202 /* Flush enough space to reduce the likelihood of waiting after
1203 * we start building the request - in which case we will just
1204 * have to repeat work.
1206 request
->reserved_space
+= EXECLISTS_REQUEST_SIZE
;
1208 ret
= intel_ring_wait_for_space(request
->ring
, request
->reserved_space
);
1212 /* Note that after this point, we have committed to using
1213 * this request as it is being used to both track the
1214 * state of engine initialisation and liveness of the
1215 * golden renderstate above. Think twice before you try
1216 * to cancel/unwind this request now.
1219 request
->reserved_space
-= EXECLISTS_REQUEST_SIZE
;
1224 * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1225 * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1226 * but there is a slight complication as this is applied in WA batch where the
1227 * values are only initialized once so we cannot take register value at the
1228 * beginning and reuse it further; hence we save its value to memory, upload a
1229 * constant value with bit21 set and then we restore it back with the saved value.
1230 * To simplify the WA, a constant value is formed by using the default value
1231 * of this register. This shouldn't be a problem because we are only modifying
1232 * it for a short period and this batch in non-premptible. We can ofcourse
1233 * use additional instructions that read the actual value of the register
1234 * at that time and set our bit of interest but it makes the WA complicated.
1236 * This WA is also required for Gen9 so extracting as a function avoids
1240 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs
*engine
, u32
*batch
)
1242 *batch
++ = MI_STORE_REGISTER_MEM_GEN8
| MI_SRM_LRM_GLOBAL_GTT
;
1243 *batch
++ = i915_mmio_reg_offset(GEN8_L3SQCREG4
);
1244 *batch
++ = i915_ggtt_offset(engine
->scratch
) + 256;
1247 *batch
++ = MI_LOAD_REGISTER_IMM(1);
1248 *batch
++ = i915_mmio_reg_offset(GEN8_L3SQCREG4
);
1249 *batch
++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES
;
1251 batch
= gen8_emit_pipe_control(batch
,
1252 PIPE_CONTROL_CS_STALL
|
1253 PIPE_CONTROL_DC_FLUSH_ENABLE
,
1256 *batch
++ = MI_LOAD_REGISTER_MEM_GEN8
| MI_SRM_LRM_GLOBAL_GTT
;
1257 *batch
++ = i915_mmio_reg_offset(GEN8_L3SQCREG4
);
1258 *batch
++ = i915_ggtt_offset(engine
->scratch
) + 256;
1265 * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1266 * initialized at the beginning and shared across all contexts but this field
1267 * helps us to have multiple batches at different offsets and select them based
1268 * on a criteria. At the moment this batch always start at the beginning of the page
1269 * and at this point we don't have multiple wa_ctx batch buffers.
1271 * The number of WA applied are not known at the beginning; we use this field
1272 * to return the no of DWORDS written.
1274 * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1275 * so it adds NOOPs as padding to make it cacheline aligned.
1276 * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1277 * makes a complete batch buffer.
1279 static u32
*gen8_init_indirectctx_bb(struct intel_engine_cs
*engine
, u32
*batch
)
1281 /* WaDisableCtxRestoreArbitration:bdw,chv */
1282 *batch
++ = MI_ARB_ON_OFF
| MI_ARB_DISABLE
;
1284 /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1285 if (IS_BROADWELL(engine
->i915
))
1286 batch
= gen8_emit_flush_coherentl3_wa(engine
, batch
);
1288 /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1289 /* Actual scratch location is at 128 bytes offset */
1290 batch
= gen8_emit_pipe_control(batch
,
1291 PIPE_CONTROL_FLUSH_L3
|
1292 PIPE_CONTROL_GLOBAL_GTT_IVB
|
1293 PIPE_CONTROL_CS_STALL
|
1294 PIPE_CONTROL_QW_WRITE
,
1295 i915_ggtt_offset(engine
->scratch
) +
1296 2 * CACHELINE_BYTES
);
1298 *batch
++ = MI_ARB_ON_OFF
| MI_ARB_ENABLE
;
1300 /* Pad to end of cacheline */
1301 while ((unsigned long)batch
% CACHELINE_BYTES
)
1305 * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1306 * execution depends on the length specified in terms of cache lines
1307 * in the register CTX_RCS_INDIRECT_CTX
1313 static u32
*gen9_init_indirectctx_bb(struct intel_engine_cs
*engine
, u32
*batch
)
1315 *batch
++ = MI_ARB_ON_OFF
| MI_ARB_DISABLE
;
1317 /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1318 batch
= gen8_emit_flush_coherentl3_wa(engine
, batch
);
1320 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1321 *batch
++ = MI_LOAD_REGISTER_IMM(1);
1322 *batch
++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2
);
1323 *batch
++ = _MASKED_BIT_DISABLE(
1324 GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE
);
1327 /* WaClearSlmSpaceAtContextSwitch:kbl */
1328 /* Actual scratch location is at 128 bytes offset */
1329 if (IS_KBL_REVID(engine
->i915
, 0, KBL_REVID_A0
)) {
1330 batch
= gen8_emit_pipe_control(batch
,
1331 PIPE_CONTROL_FLUSH_L3
|
1332 PIPE_CONTROL_GLOBAL_GTT_IVB
|
1333 PIPE_CONTROL_CS_STALL
|
1334 PIPE_CONTROL_QW_WRITE
,
1335 i915_ggtt_offset(engine
->scratch
)
1336 + 2 * CACHELINE_BYTES
);
1339 /* WaMediaPoolStateCmdInWABB:bxt,glk */
1340 if (HAS_POOLED_EU(engine
->i915
)) {
1342 * EU pool configuration is setup along with golden context
1343 * during context initialization. This value depends on
1344 * device type (2x6 or 3x6) and needs to be updated based
1345 * on which subslice is disabled especially for 2x6
1346 * devices, however it is safe to load default
1347 * configuration of 3x6 device instead of masking off
1348 * corresponding bits because HW ignores bits of a disabled
1349 * subslice and drops down to appropriate config. Please
1350 * see render_state_setup() in i915_gem_render_state.c for
1351 * possible configurations, to avoid duplication they are
1352 * not shown here again.
1354 *batch
++ = GEN9_MEDIA_POOL_STATE
;
1355 *batch
++ = GEN9_MEDIA_POOL_ENABLE
;
1356 *batch
++ = 0x00777000;
1362 *batch
++ = MI_ARB_ON_OFF
| MI_ARB_ENABLE
;
1364 /* Pad to end of cacheline */
1365 while ((unsigned long)batch
% CACHELINE_BYTES
)
1371 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1373 static int lrc_setup_wa_ctx(struct intel_engine_cs
*engine
)
1375 struct drm_i915_gem_object
*obj
;
1376 struct i915_vma
*vma
;
1379 obj
= i915_gem_object_create(engine
->i915
, CTX_WA_BB_OBJ_SIZE
);
1381 return PTR_ERR(obj
);
1383 vma
= i915_vma_instance(obj
, &engine
->i915
->ggtt
.base
, NULL
);
1389 err
= i915_vma_pin(vma
, 0, PAGE_SIZE
, PIN_GLOBAL
| PIN_HIGH
);
1393 engine
->wa_ctx
.vma
= vma
;
1397 i915_gem_object_put(obj
);
1401 static void lrc_destroy_wa_ctx(struct intel_engine_cs
*engine
)
1403 i915_vma_unpin_and_release(&engine
->wa_ctx
.vma
);
1406 typedef u32
*(*wa_bb_func_t
)(struct intel_engine_cs
*engine
, u32
*batch
);
1408 static int intel_init_workaround_bb(struct intel_engine_cs
*engine
)
1410 struct i915_ctx_workarounds
*wa_ctx
= &engine
->wa_ctx
;
1411 struct i915_wa_ctx_bb
*wa_bb
[2] = { &wa_ctx
->indirect_ctx
,
1413 wa_bb_func_t wa_bb_fn
[2];
1415 void *batch
, *batch_ptr
;
1419 if (WARN_ON(engine
->id
!= RCS
|| !engine
->scratch
))
1422 switch (INTEL_GEN(engine
->i915
)) {
1426 wa_bb_fn
[0] = gen9_init_indirectctx_bb
;
1430 wa_bb_fn
[0] = gen8_init_indirectctx_bb
;
1434 MISSING_CASE(INTEL_GEN(engine
->i915
));
1438 ret
= lrc_setup_wa_ctx(engine
);
1440 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret
);
1444 page
= i915_gem_object_get_dirty_page(wa_ctx
->vma
->obj
, 0);
1445 batch
= batch_ptr
= kmap_atomic(page
);
1448 * Emit the two workaround batch buffers, recording the offset from the
1449 * start of the workaround batch buffer object for each and their
1452 for (i
= 0; i
< ARRAY_SIZE(wa_bb_fn
); i
++) {
1453 wa_bb
[i
]->offset
= batch_ptr
- batch
;
1454 if (WARN_ON(!IS_ALIGNED(wa_bb
[i
]->offset
, CACHELINE_BYTES
))) {
1459 batch_ptr
= wa_bb_fn
[i
](engine
, batch_ptr
);
1460 wa_bb
[i
]->size
= batch_ptr
- (batch
+ wa_bb
[i
]->offset
);
1463 BUG_ON(batch_ptr
- batch
> CTX_WA_BB_OBJ_SIZE
);
1465 kunmap_atomic(batch
);
1467 lrc_destroy_wa_ctx(engine
);
1472 static u8 gtiir
[] = {
1480 static int gen8_init_common_ring(struct intel_engine_cs
*engine
)
1482 struct drm_i915_private
*dev_priv
= engine
->i915
;
1483 struct intel_engine_execlists
* const execlists
= &engine
->execlists
;
1486 ret
= intel_mocs_init_engine(engine
);
1490 intel_engine_reset_breadcrumbs(engine
);
1491 intel_engine_init_hangcheck(engine
);
1493 I915_WRITE(RING_HWSTAM(engine
->mmio_base
), 0xffffffff);
1494 I915_WRITE(RING_MODE_GEN7(engine
),
1495 _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE
));
1496 I915_WRITE(RING_HWS_PGA(engine
->mmio_base
),
1497 engine
->status_page
.ggtt_offset
);
1498 POSTING_READ(RING_HWS_PGA(engine
->mmio_base
));
1500 DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine
->name
);
1502 GEM_BUG_ON(engine
->id
>= ARRAY_SIZE(gtiir
));
1505 * Clear any pending interrupt state.
1507 * We do it twice out of paranoia that some of the IIR are double
1508 * buffered, and if we only reset it once there may still be
1509 * an interrupt pending.
1511 I915_WRITE(GEN8_GT_IIR(gtiir
[engine
->id
]),
1512 GT_CONTEXT_SWITCH_INTERRUPT
<< engine
->irq_shift
);
1513 I915_WRITE(GEN8_GT_IIR(gtiir
[engine
->id
]),
1514 GT_CONTEXT_SWITCH_INTERRUPT
<< engine
->irq_shift
);
1515 clear_bit(ENGINE_IRQ_EXECLIST
, &engine
->irq_posted
);
1516 execlists
->csb_head
= -1;
1517 execlists
->active
= 0;
1520 dev_priv
->regs
+ i915_mmio_reg_offset(RING_ELSP(engine
));
1522 /* After a GPU reset, we may have requests to replay */
1523 if (execlists
->first
)
1524 tasklet_schedule(&execlists
->tasklet
);
1529 static int gen8_init_render_ring(struct intel_engine_cs
*engine
)
1531 struct drm_i915_private
*dev_priv
= engine
->i915
;
1534 ret
= gen8_init_common_ring(engine
);
1538 /* We need to disable the AsyncFlip performance optimisations in order
1539 * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1540 * programmed to '1' on all products.
1542 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1544 I915_WRITE(MI_MODE
, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE
));
1546 I915_WRITE(INSTPM
, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING
));
1548 return init_workarounds_ring(engine
);
1551 static int gen9_init_render_ring(struct intel_engine_cs
*engine
)
1555 ret
= gen8_init_common_ring(engine
);
1559 return init_workarounds_ring(engine
);
1562 static void reset_common_ring(struct intel_engine_cs
*engine
,
1563 struct drm_i915_gem_request
*request
)
1565 struct intel_engine_execlists
* const execlists
= &engine
->execlists
;
1566 struct intel_context
*ce
;
1567 unsigned long flags
;
1569 GEM_TRACE("%s seqno=%x\n",
1570 engine
->name
, request
? request
->global_seqno
: 0);
1571 spin_lock_irqsave(&engine
->timeline
->lock
, flags
);
1574 * Catch up with any missed context-switch interrupts.
1576 * Ideally we would just read the remaining CSB entries now that we
1577 * know the gpu is idle. However, the CSB registers are sometimes^W
1578 * often trashed across a GPU reset! Instead we have to rely on
1579 * guessing the missed context-switch events by looking at what
1580 * requests were completed.
1582 execlists_cancel_port_requests(execlists
);
1584 /* Push back any incomplete requests for replay after the reset. */
1585 __unwind_incomplete_requests(engine
);
1587 spin_unlock_irqrestore(&engine
->timeline
->lock
, flags
);
1589 /* If the request was innocent, we leave the request in the ELSP
1590 * and will try to replay it on restarting. The context image may
1591 * have been corrupted by the reset, in which case we may have
1592 * to service a new GPU hang, but more likely we can continue on
1595 * If the request was guilty, we presume the context is corrupt
1596 * and have to at least restore the RING register in the context
1597 * image back to the expected values to skip over the guilty request.
1599 if (!request
|| request
->fence
.error
!= -EIO
)
1602 /* We want a simple context + ring to execute the breadcrumb update.
1603 * We cannot rely on the context being intact across the GPU hang,
1604 * so clear it and rebuild just what we need for the breadcrumb.
1605 * All pending requests for this context will be zapped, and any
1606 * future request will be after userspace has had the opportunity
1607 * to recreate its own state.
1609 ce
= &request
->ctx
->engine
[engine
->id
];
1610 execlists_init_reg_state(ce
->lrc_reg_state
,
1611 request
->ctx
, engine
, ce
->ring
);
1613 /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1614 ce
->lrc_reg_state
[CTX_RING_BUFFER_START
+1] =
1615 i915_ggtt_offset(ce
->ring
->vma
);
1616 ce
->lrc_reg_state
[CTX_RING_HEAD
+1] = request
->postfix
;
1618 request
->ring
->head
= request
->postfix
;
1619 intel_ring_update_space(request
->ring
);
1621 /* Reset WaIdleLiteRestore:bdw,skl as well */
1622 unwind_wa_tail(request
);
1625 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request
*req
)
1627 struct i915_hw_ppgtt
*ppgtt
= req
->ctx
->ppgtt
;
1628 struct intel_engine_cs
*engine
= req
->engine
;
1629 const int num_lri_cmds
= GEN8_3LVL_PDPES
* 2;
1633 cs
= intel_ring_begin(req
, num_lri_cmds
* 2 + 2);
1637 *cs
++ = MI_LOAD_REGISTER_IMM(num_lri_cmds
);
1638 for (i
= GEN8_3LVL_PDPES
- 1; i
>= 0; i
--) {
1639 const dma_addr_t pd_daddr
= i915_page_dir_dma_addr(ppgtt
, i
);
1641 *cs
++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine
, i
));
1642 *cs
++ = upper_32_bits(pd_daddr
);
1643 *cs
++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine
, i
));
1644 *cs
++ = lower_32_bits(pd_daddr
);
1648 intel_ring_advance(req
, cs
);
1653 static int gen8_emit_bb_start(struct drm_i915_gem_request
*req
,
1654 u64 offset
, u32 len
,
1655 const unsigned int flags
)
1660 /* Don't rely in hw updating PDPs, specially in lite-restore.
1661 * Ideally, we should set Force PD Restore in ctx descriptor,
1662 * but we can't. Force Restore would be a second option, but
1663 * it is unsafe in case of lite-restore (because the ctx is
1664 * not idle). PML4 is allocated during ppgtt init so this is
1665 * not needed in 48-bit.*/
1666 if (req
->ctx
->ppgtt
&&
1667 (intel_engine_flag(req
->engine
) & req
->ctx
->ppgtt
->pd_dirty_rings
) &&
1668 !i915_vm_is_48bit(&req
->ctx
->ppgtt
->base
) &&
1669 !intel_vgpu_active(req
->i915
)) {
1670 ret
= intel_logical_ring_emit_pdps(req
);
1674 req
->ctx
->ppgtt
->pd_dirty_rings
&= ~intel_engine_flag(req
->engine
);
1677 cs
= intel_ring_begin(req
, 4);
1682 * WaDisableCtxRestoreArbitration:bdw,chv
1684 * We don't need to perform MI_ARB_ENABLE as often as we do (in
1685 * particular all the gen that do not need the w/a at all!), if we
1686 * took care to make sure that on every switch into this context
1687 * (both ordinary and for preemption) that arbitrartion was enabled
1688 * we would be fine. However, there doesn't seem to be a downside to
1689 * being paranoid and making sure it is set before each batch and
1690 * every context-switch.
1692 * Note that if we fail to enable arbitration before the request
1693 * is complete, then we do not see the context-switch interrupt and
1694 * the engine hangs (with RING_HEAD == RING_TAIL).
1696 * That satisfies both the GPGPU w/a and our heavy-handed paranoia.
1698 *cs
++ = MI_ARB_ON_OFF
| MI_ARB_ENABLE
;
1700 /* FIXME(BDW): Address space and security selectors. */
1701 *cs
++ = MI_BATCH_BUFFER_START_GEN8
|
1702 (flags
& I915_DISPATCH_SECURE
? 0 : BIT(8)) |
1703 (flags
& I915_DISPATCH_RS
? MI_BATCH_RESOURCE_STREAMER
: 0);
1704 *cs
++ = lower_32_bits(offset
);
1705 *cs
++ = upper_32_bits(offset
);
1706 intel_ring_advance(req
, cs
);
1711 static void gen8_logical_ring_enable_irq(struct intel_engine_cs
*engine
)
1713 struct drm_i915_private
*dev_priv
= engine
->i915
;
1714 I915_WRITE_IMR(engine
,
1715 ~(engine
->irq_enable_mask
| engine
->irq_keep_mask
));
1716 POSTING_READ_FW(RING_IMR(engine
->mmio_base
));
1719 static void gen8_logical_ring_disable_irq(struct intel_engine_cs
*engine
)
1721 struct drm_i915_private
*dev_priv
= engine
->i915
;
1722 I915_WRITE_IMR(engine
, ~engine
->irq_keep_mask
);
1725 static int gen8_emit_flush(struct drm_i915_gem_request
*request
, u32 mode
)
1729 cs
= intel_ring_begin(request
, 4);
1733 cmd
= MI_FLUSH_DW
+ 1;
1735 /* We always require a command barrier so that subsequent
1736 * commands, such as breadcrumb interrupts, are strictly ordered
1737 * wrt the contents of the write cache being flushed to memory
1738 * (and thus being coherent from the CPU).
1740 cmd
|= MI_FLUSH_DW_STORE_INDEX
| MI_FLUSH_DW_OP_STOREDW
;
1742 if (mode
& EMIT_INVALIDATE
) {
1743 cmd
|= MI_INVALIDATE_TLB
;
1744 if (request
->engine
->id
== VCS
)
1745 cmd
|= MI_INVALIDATE_BSD
;
1749 *cs
++ = I915_GEM_HWS_SCRATCH_ADDR
| MI_FLUSH_DW_USE_GTT
;
1750 *cs
++ = 0; /* upper addr */
1751 *cs
++ = 0; /* value */
1752 intel_ring_advance(request
, cs
);
1757 static int gen8_emit_flush_render(struct drm_i915_gem_request
*request
,
1760 struct intel_engine_cs
*engine
= request
->engine
;
1762 i915_ggtt_offset(engine
->scratch
) + 2 * CACHELINE_BYTES
;
1763 bool vf_flush_wa
= false, dc_flush_wa
= false;
1767 flags
|= PIPE_CONTROL_CS_STALL
;
1769 if (mode
& EMIT_FLUSH
) {
1770 flags
|= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH
;
1771 flags
|= PIPE_CONTROL_DEPTH_CACHE_FLUSH
;
1772 flags
|= PIPE_CONTROL_DC_FLUSH_ENABLE
;
1773 flags
|= PIPE_CONTROL_FLUSH_ENABLE
;
1776 if (mode
& EMIT_INVALIDATE
) {
1777 flags
|= PIPE_CONTROL_TLB_INVALIDATE
;
1778 flags
|= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE
;
1779 flags
|= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE
;
1780 flags
|= PIPE_CONTROL_VF_CACHE_INVALIDATE
;
1781 flags
|= PIPE_CONTROL_CONST_CACHE_INVALIDATE
;
1782 flags
|= PIPE_CONTROL_STATE_CACHE_INVALIDATE
;
1783 flags
|= PIPE_CONTROL_QW_WRITE
;
1784 flags
|= PIPE_CONTROL_GLOBAL_GTT_IVB
;
1787 * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1790 if (IS_GEN9(request
->i915
))
1793 /* WaForGAMHang:kbl */
1794 if (IS_KBL_REVID(request
->i915
, 0, KBL_REVID_B0
))
1806 cs
= intel_ring_begin(request
, len
);
1811 cs
= gen8_emit_pipe_control(cs
, 0, 0);
1814 cs
= gen8_emit_pipe_control(cs
, PIPE_CONTROL_DC_FLUSH_ENABLE
,
1817 cs
= gen8_emit_pipe_control(cs
, flags
, scratch_addr
);
1820 cs
= gen8_emit_pipe_control(cs
, PIPE_CONTROL_CS_STALL
, 0);
1822 intel_ring_advance(request
, cs
);
1828 * Reserve space for 2 NOOPs at the end of each request to be
1829 * used as a workaround for not being allowed to do lite
1830 * restore with HEAD==TAIL (WaIdleLiteRestore).
1832 static void gen8_emit_wa_tail(struct drm_i915_gem_request
*request
, u32
*cs
)
1834 /* Ensure there's always at least one preemption point per-request. */
1835 *cs
++ = MI_ARB_CHECK
;
1837 request
->wa_tail
= intel_ring_offset(request
, cs
);
1840 static void gen8_emit_breadcrumb(struct drm_i915_gem_request
*request
, u32
*cs
)
1842 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1843 BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR
& (1 << 5));
1845 cs
= gen8_emit_ggtt_write(cs
, request
->global_seqno
,
1846 intel_hws_seqno_address(request
->engine
));
1847 *cs
++ = MI_USER_INTERRUPT
;
1849 request
->tail
= intel_ring_offset(request
, cs
);
1850 assert_ring_tail_valid(request
->ring
, request
->tail
);
1852 gen8_emit_wa_tail(request
, cs
);
1854 static const int gen8_emit_breadcrumb_sz
= 6 + WA_TAIL_DWORDS
;
1856 static void gen8_emit_breadcrumb_rcs(struct drm_i915_gem_request
*request
,
1859 /* We're using qword write, seqno should be aligned to 8 bytes. */
1860 BUILD_BUG_ON(I915_GEM_HWS_INDEX
& 1);
1862 cs
= gen8_emit_ggtt_write_rcs(cs
, request
->global_seqno
,
1863 intel_hws_seqno_address(request
->engine
));
1864 *cs
++ = MI_USER_INTERRUPT
;
1866 request
->tail
= intel_ring_offset(request
, cs
);
1867 assert_ring_tail_valid(request
->ring
, request
->tail
);
1869 gen8_emit_wa_tail(request
, cs
);
1871 static const int gen8_emit_breadcrumb_rcs_sz
= 8 + WA_TAIL_DWORDS
;
1873 static int gen8_init_rcs_context(struct drm_i915_gem_request
*req
)
1877 ret
= intel_ring_workarounds_emit(req
);
1881 ret
= intel_rcs_context_init_mocs(req
);
1883 * Failing to program the MOCS is non-fatal.The system will not
1884 * run at peak performance. So generate an error and carry on.
1887 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1889 return i915_gem_render_state_emit(req
);
1893 * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1894 * @engine: Engine Command Streamer.
1896 void intel_logical_ring_cleanup(struct intel_engine_cs
*engine
)
1898 struct drm_i915_private
*dev_priv
;
1901 * Tasklet cannot be active at this point due intel_mark_active/idle
1902 * so this is just for documentation.
1904 if (WARN_ON(test_bit(TASKLET_STATE_SCHED
,
1905 &engine
->execlists
.tasklet
.state
)))
1906 tasklet_kill(&engine
->execlists
.tasklet
);
1908 dev_priv
= engine
->i915
;
1910 if (engine
->buffer
) {
1911 WARN_ON((I915_READ_MODE(engine
) & MODE_IDLE
) == 0);
1914 if (engine
->cleanup
)
1915 engine
->cleanup(engine
);
1917 intel_engine_cleanup_common(engine
);
1919 lrc_destroy_wa_ctx(engine
);
1920 engine
->i915
= NULL
;
1921 dev_priv
->engine
[engine
->id
] = NULL
;
1925 static void execlists_set_default_submission(struct intel_engine_cs
*engine
)
1927 engine
->submit_request
= execlists_submit_request
;
1928 engine
->cancel_requests
= execlists_cancel_requests
;
1929 engine
->schedule
= execlists_schedule
;
1930 engine
->execlists
.tasklet
.func
= execlists_submission_tasklet
;
1932 engine
->park
= NULL
;
1933 engine
->unpark
= NULL
;
1935 engine
->flags
|= I915_ENGINE_SUPPORTS_STATS
;
1939 logical_ring_default_vfuncs(struct intel_engine_cs
*engine
)
1941 /* Default vfuncs which can be overriden by each engine. */
1942 engine
->init_hw
= gen8_init_common_ring
;
1943 engine
->reset_hw
= reset_common_ring
;
1945 engine
->context_pin
= execlists_context_pin
;
1946 engine
->context_unpin
= execlists_context_unpin
;
1948 engine
->request_alloc
= execlists_request_alloc
;
1950 engine
->emit_flush
= gen8_emit_flush
;
1951 engine
->emit_breadcrumb
= gen8_emit_breadcrumb
;
1952 engine
->emit_breadcrumb_sz
= gen8_emit_breadcrumb_sz
;
1954 engine
->set_default_submission
= execlists_set_default_submission
;
1956 engine
->irq_enable
= gen8_logical_ring_enable_irq
;
1957 engine
->irq_disable
= gen8_logical_ring_disable_irq
;
1958 engine
->emit_bb_start
= gen8_emit_bb_start
;
1962 logical_ring_default_irqs(struct intel_engine_cs
*engine
)
1964 unsigned shift
= engine
->irq_shift
;
1965 engine
->irq_enable_mask
= GT_RENDER_USER_INTERRUPT
<< shift
;
1966 engine
->irq_keep_mask
= GT_CONTEXT_SWITCH_INTERRUPT
<< shift
;
1970 logical_ring_setup(struct intel_engine_cs
*engine
)
1972 struct drm_i915_private
*dev_priv
= engine
->i915
;
1973 enum forcewake_domains fw_domains
;
1975 intel_engine_setup_common(engine
);
1977 /* Intentionally left blank. */
1978 engine
->buffer
= NULL
;
1980 fw_domains
= intel_uncore_forcewake_for_reg(dev_priv
,
1984 fw_domains
|= intel_uncore_forcewake_for_reg(dev_priv
,
1985 RING_CONTEXT_STATUS_PTR(engine
),
1986 FW_REG_READ
| FW_REG_WRITE
);
1988 fw_domains
|= intel_uncore_forcewake_for_reg(dev_priv
,
1989 RING_CONTEXT_STATUS_BUF_BASE(engine
),
1992 engine
->execlists
.fw_domains
= fw_domains
;
1994 tasklet_init(&engine
->execlists
.tasklet
,
1995 execlists_submission_tasklet
, (unsigned long)engine
);
1997 logical_ring_default_vfuncs(engine
);
1998 logical_ring_default_irqs(engine
);
2001 static int logical_ring_init(struct intel_engine_cs
*engine
)
2005 ret
= intel_engine_init_common(engine
);
2012 intel_logical_ring_cleanup(engine
);
2016 int logical_render_ring_init(struct intel_engine_cs
*engine
)
2018 struct drm_i915_private
*dev_priv
= engine
->i915
;
2021 logical_ring_setup(engine
);
2023 if (HAS_L3_DPF(dev_priv
))
2024 engine
->irq_keep_mask
|= GT_RENDER_L3_PARITY_ERROR_INTERRUPT
;
2026 /* Override some for render ring. */
2027 if (INTEL_GEN(dev_priv
) >= 9)
2028 engine
->init_hw
= gen9_init_render_ring
;
2030 engine
->init_hw
= gen8_init_render_ring
;
2031 engine
->init_context
= gen8_init_rcs_context
;
2032 engine
->emit_flush
= gen8_emit_flush_render
;
2033 engine
->emit_breadcrumb
= gen8_emit_breadcrumb_rcs
;
2034 engine
->emit_breadcrumb_sz
= gen8_emit_breadcrumb_rcs_sz
;
2036 ret
= intel_engine_create_scratch(engine
, PAGE_SIZE
);
2040 ret
= intel_init_workaround_bb(engine
);
2043 * We continue even if we fail to initialize WA batch
2044 * because we only expect rare glitches but nothing
2045 * critical to prevent us from using GPU
2047 DRM_ERROR("WA batch buffer initialization failed: %d\n",
2051 return logical_ring_init(engine
);
2054 int logical_xcs_ring_init(struct intel_engine_cs
*engine
)
2056 logical_ring_setup(engine
);
2058 return logical_ring_init(engine
);
2062 make_rpcs(struct drm_i915_private
*dev_priv
)
2067 * No explicit RPCS request is needed to ensure full
2068 * slice/subslice/EU enablement prior to Gen9.
2070 if (INTEL_GEN(dev_priv
) < 9)
2074 * Starting in Gen9, render power gating can leave
2075 * slice/subslice/EU in a partially enabled state. We
2076 * must make an explicit request through RPCS for full
2079 if (INTEL_INFO(dev_priv
)->sseu
.has_slice_pg
) {
2080 rpcs
|= GEN8_RPCS_S_CNT_ENABLE
;
2081 rpcs
|= hweight8(INTEL_INFO(dev_priv
)->sseu
.slice_mask
) <<
2082 GEN8_RPCS_S_CNT_SHIFT
;
2083 rpcs
|= GEN8_RPCS_ENABLE
;
2086 if (INTEL_INFO(dev_priv
)->sseu
.has_subslice_pg
) {
2087 rpcs
|= GEN8_RPCS_SS_CNT_ENABLE
;
2088 rpcs
|= hweight8(INTEL_INFO(dev_priv
)->sseu
.subslice_mask
) <<
2089 GEN8_RPCS_SS_CNT_SHIFT
;
2090 rpcs
|= GEN8_RPCS_ENABLE
;
2093 if (INTEL_INFO(dev_priv
)->sseu
.has_eu_pg
) {
2094 rpcs
|= INTEL_INFO(dev_priv
)->sseu
.eu_per_subslice
<<
2095 GEN8_RPCS_EU_MIN_SHIFT
;
2096 rpcs
|= INTEL_INFO(dev_priv
)->sseu
.eu_per_subslice
<<
2097 GEN8_RPCS_EU_MAX_SHIFT
;
2098 rpcs
|= GEN8_RPCS_ENABLE
;
2104 static u32
intel_lr_indirect_ctx_offset(struct intel_engine_cs
*engine
)
2106 u32 indirect_ctx_offset
;
2108 switch (INTEL_GEN(engine
->i915
)) {
2110 MISSING_CASE(INTEL_GEN(engine
->i915
));
2113 indirect_ctx_offset
=
2114 GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT
;
2117 indirect_ctx_offset
=
2118 GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT
;
2121 indirect_ctx_offset
=
2122 GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT
;
2126 return indirect_ctx_offset
;
2129 static void execlists_init_reg_state(u32
*regs
,
2130 struct i915_gem_context
*ctx
,
2131 struct intel_engine_cs
*engine
,
2132 struct intel_ring
*ring
)
2134 struct drm_i915_private
*dev_priv
= engine
->i915
;
2135 struct i915_hw_ppgtt
*ppgtt
= ctx
->ppgtt
?: dev_priv
->mm
.aliasing_ppgtt
;
2136 u32 base
= engine
->mmio_base
;
2137 bool rcs
= engine
->id
== RCS
;
2139 /* A context is actually a big batch buffer with several
2140 * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2141 * values we are setting here are only for the first context restore:
2142 * on a subsequent save, the GPU will recreate this batchbuffer with new
2143 * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2144 * we are not initializing here).
2146 regs
[CTX_LRI_HEADER_0
] = MI_LOAD_REGISTER_IMM(rcs
? 14 : 11) |
2147 MI_LRI_FORCE_POSTED
;
2149 CTX_REG(regs
, CTX_CONTEXT_CONTROL
, RING_CONTEXT_CONTROL(engine
),
2150 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH
|
2151 (HAS_RESOURCE_STREAMER(dev_priv
) ?
2152 CTX_CTRL_RS_CTX_ENABLE
: 0)));
2153 CTX_REG(regs
, CTX_RING_HEAD
, RING_HEAD(base
), 0);
2154 CTX_REG(regs
, CTX_RING_TAIL
, RING_TAIL(base
), 0);
2155 CTX_REG(regs
, CTX_RING_BUFFER_START
, RING_START(base
), 0);
2156 CTX_REG(regs
, CTX_RING_BUFFER_CONTROL
, RING_CTL(base
),
2157 RING_CTL_SIZE(ring
->size
) | RING_VALID
);
2158 CTX_REG(regs
, CTX_BB_HEAD_U
, RING_BBADDR_UDW(base
), 0);
2159 CTX_REG(regs
, CTX_BB_HEAD_L
, RING_BBADDR(base
), 0);
2160 CTX_REG(regs
, CTX_BB_STATE
, RING_BBSTATE(base
), RING_BB_PPGTT
);
2161 CTX_REG(regs
, CTX_SECOND_BB_HEAD_U
, RING_SBBADDR_UDW(base
), 0);
2162 CTX_REG(regs
, CTX_SECOND_BB_HEAD_L
, RING_SBBADDR(base
), 0);
2163 CTX_REG(regs
, CTX_SECOND_BB_STATE
, RING_SBBSTATE(base
), 0);
2165 struct i915_ctx_workarounds
*wa_ctx
= &engine
->wa_ctx
;
2167 CTX_REG(regs
, CTX_RCS_INDIRECT_CTX
, RING_INDIRECT_CTX(base
), 0);
2168 CTX_REG(regs
, CTX_RCS_INDIRECT_CTX_OFFSET
,
2169 RING_INDIRECT_CTX_OFFSET(base
), 0);
2170 if (wa_ctx
->indirect_ctx
.size
) {
2171 u32 ggtt_offset
= i915_ggtt_offset(wa_ctx
->vma
);
2173 regs
[CTX_RCS_INDIRECT_CTX
+ 1] =
2174 (ggtt_offset
+ wa_ctx
->indirect_ctx
.offset
) |
2175 (wa_ctx
->indirect_ctx
.size
/ CACHELINE_BYTES
);
2177 regs
[CTX_RCS_INDIRECT_CTX_OFFSET
+ 1] =
2178 intel_lr_indirect_ctx_offset(engine
) << 6;
2181 CTX_REG(regs
, CTX_BB_PER_CTX_PTR
, RING_BB_PER_CTX_PTR(base
), 0);
2182 if (wa_ctx
->per_ctx
.size
) {
2183 u32 ggtt_offset
= i915_ggtt_offset(wa_ctx
->vma
);
2185 regs
[CTX_BB_PER_CTX_PTR
+ 1] =
2186 (ggtt_offset
+ wa_ctx
->per_ctx
.offset
) | 0x01;
2190 regs
[CTX_LRI_HEADER_1
] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED
;
2192 CTX_REG(regs
, CTX_CTX_TIMESTAMP
, RING_CTX_TIMESTAMP(base
), 0);
2193 /* PDP values well be assigned later if needed */
2194 CTX_REG(regs
, CTX_PDP3_UDW
, GEN8_RING_PDP_UDW(engine
, 3), 0);
2195 CTX_REG(regs
, CTX_PDP3_LDW
, GEN8_RING_PDP_LDW(engine
, 3), 0);
2196 CTX_REG(regs
, CTX_PDP2_UDW
, GEN8_RING_PDP_UDW(engine
, 2), 0);
2197 CTX_REG(regs
, CTX_PDP2_LDW
, GEN8_RING_PDP_LDW(engine
, 2), 0);
2198 CTX_REG(regs
, CTX_PDP1_UDW
, GEN8_RING_PDP_UDW(engine
, 1), 0);
2199 CTX_REG(regs
, CTX_PDP1_LDW
, GEN8_RING_PDP_LDW(engine
, 1), 0);
2200 CTX_REG(regs
, CTX_PDP0_UDW
, GEN8_RING_PDP_UDW(engine
, 0), 0);
2201 CTX_REG(regs
, CTX_PDP0_LDW
, GEN8_RING_PDP_LDW(engine
, 0), 0);
2203 if (ppgtt
&& i915_vm_is_48bit(&ppgtt
->base
)) {
2204 /* 64b PPGTT (48bit canonical)
2205 * PDP0_DESCRIPTOR contains the base address to PML4 and
2206 * other PDP Descriptors are ignored.
2208 ASSIGN_CTX_PML4(ppgtt
, regs
);
2212 regs
[CTX_LRI_HEADER_2
] = MI_LOAD_REGISTER_IMM(1);
2213 CTX_REG(regs
, CTX_R_PWR_CLK_STATE
, GEN8_R_PWR_CLK_STATE
,
2214 make_rpcs(dev_priv
));
2216 i915_oa_init_reg_state(engine
, ctx
, regs
);
2221 populate_lr_context(struct i915_gem_context
*ctx
,
2222 struct drm_i915_gem_object
*ctx_obj
,
2223 struct intel_engine_cs
*engine
,
2224 struct intel_ring
*ring
)
2230 ret
= i915_gem_object_set_to_cpu_domain(ctx_obj
, true);
2232 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
2236 vaddr
= i915_gem_object_pin_map(ctx_obj
, I915_MAP_WB
);
2237 if (IS_ERR(vaddr
)) {
2238 ret
= PTR_ERR(vaddr
);
2239 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret
);
2242 ctx_obj
->mm
.dirty
= true;
2244 if (engine
->default_state
) {
2246 * We only want to copy over the template context state;
2247 * skipping over the headers reserved for GuC communication,
2248 * leaving those as zero.
2250 const unsigned long start
= LRC_HEADER_PAGES
* PAGE_SIZE
;
2253 defaults
= i915_gem_object_pin_map(engine
->default_state
,
2255 if (IS_ERR(defaults
))
2256 return PTR_ERR(defaults
);
2258 memcpy(vaddr
+ start
, defaults
+ start
, engine
->context_size
);
2259 i915_gem_object_unpin_map(engine
->default_state
);
2262 /* The second page of the context object contains some fields which must
2263 * be set up prior to the first execution. */
2264 regs
= vaddr
+ LRC_STATE_PN
* PAGE_SIZE
;
2265 execlists_init_reg_state(regs
, ctx
, engine
, ring
);
2266 if (!engine
->default_state
)
2267 regs
[CTX_CONTEXT_CONTROL
+ 1] |=
2268 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT
);
2270 i915_gem_object_unpin_map(ctx_obj
);
2275 static int execlists_context_deferred_alloc(struct i915_gem_context
*ctx
,
2276 struct intel_engine_cs
*engine
)
2278 struct drm_i915_gem_object
*ctx_obj
;
2279 struct intel_context
*ce
= &ctx
->engine
[engine
->id
];
2280 struct i915_vma
*vma
;
2281 uint32_t context_size
;
2282 struct intel_ring
*ring
;
2287 context_size
= round_up(engine
->context_size
, I915_GTT_PAGE_SIZE
);
2290 * Before the actual start of the context image, we insert a few pages
2291 * for our own use and for sharing with the GuC.
2293 context_size
+= LRC_HEADER_PAGES
* PAGE_SIZE
;
2295 ctx_obj
= i915_gem_object_create(ctx
->i915
, context_size
);
2296 if (IS_ERR(ctx_obj
)) {
2297 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2298 return PTR_ERR(ctx_obj
);
2301 vma
= i915_vma_instance(ctx_obj
, &ctx
->i915
->ggtt
.base
, NULL
);
2304 goto error_deref_obj
;
2307 ring
= intel_engine_create_ring(engine
, ctx
->ring_size
);
2309 ret
= PTR_ERR(ring
);
2310 goto error_deref_obj
;
2313 ret
= populate_lr_context(ctx
, ctx_obj
, engine
, ring
);
2315 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret
);
2316 goto error_ring_free
;
2325 intel_ring_free(ring
);
2327 i915_gem_object_put(ctx_obj
);
2331 void intel_lr_context_resume(struct drm_i915_private
*dev_priv
)
2333 struct intel_engine_cs
*engine
;
2334 struct i915_gem_context
*ctx
;
2335 enum intel_engine_id id
;
2337 /* Because we emit WA_TAIL_DWORDS there may be a disparity
2338 * between our bookkeeping in ce->ring->head and ce->ring->tail and
2339 * that stored in context. As we only write new commands from
2340 * ce->ring->tail onwards, everything before that is junk. If the GPU
2341 * starts reading from its RING_HEAD from the context, it may try to
2342 * execute that junk and die.
2344 * So to avoid that we reset the context images upon resume. For
2345 * simplicity, we just zero everything out.
2347 list_for_each_entry(ctx
, &dev_priv
->contexts
.list
, link
) {
2348 for_each_engine(engine
, dev_priv
, id
) {
2349 struct intel_context
*ce
= &ctx
->engine
[engine
->id
];
2355 reg
= i915_gem_object_pin_map(ce
->state
->obj
,
2357 if (WARN_ON(IS_ERR(reg
)))
2360 reg
+= LRC_STATE_PN
* PAGE_SIZE
/ sizeof(*reg
);
2361 reg
[CTX_RING_HEAD
+1] = 0;
2362 reg
[CTX_RING_TAIL
+1] = 0;
2364 ce
->state
->obj
->mm
.dirty
= true;
2365 i915_gem_object_unpin_map(ce
->state
->obj
);
2367 intel_ring_reset(ce
->ring
, 0);