2 * Copyright © 2014 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
25 * DOC: Panel Self Refresh (PSR/SRD)
27 * Since Haswell Display controller supports Panel Self-Refresh on display
28 * panels witch have a remote frame buffer (RFB) implemented according to PSR
29 * spec in eDP1.3. PSR feature allows the display to go to lower standby states
30 * when system is idle but display is on as it eliminates display refresh
31 * request to DDR memory completely as long as the frame buffer for that
32 * display is unchanged.
34 * Panel Self Refresh must be supported by both Hardware (source) and
37 * PSR saves power by caching the framebuffer in the panel RFB, which allows us
38 * to power down the link and memory controller. For DSI panels the same idea
39 * is called "manual mode".
41 * The implementation uses the hardware-based PSR support which automatically
42 * enters/exits self-refresh mode. The hardware takes care of sending the
43 * required DP aux message and could even retrain the link (that part isn't
44 * enabled yet though). The hardware also keeps track of any frontbuffer
45 * changes to know when to exit self-refresh mode again. Unfortunately that
46 * part doesn't work too well, hence why the i915 PSR support uses the
47 * software frontbuffer tracking to make sure it doesn't miss a screen
48 * update. For this integration intel_psr_invalidate() and intel_psr_flush()
49 * get called by the frontbuffer tracking code. Note that because of locking
50 * issues the self-refresh re-enable code is done from a work queue, which
51 * must be correctly synchronized/cancelled when shutting down the pipe."
56 #include "intel_drv.h"
59 static bool is_edp_psr(struct intel_dp
*intel_dp
)
61 if (!intel_dp_is_edp(intel_dp
))
64 return intel_dp
->psr_dpcd
[0] & DP_PSR_IS_SUPPORTED
;
67 static bool vlv_is_psr_active_on_pipe(struct drm_device
*dev
, int pipe
)
69 struct drm_i915_private
*dev_priv
= to_i915(dev
);
72 val
= I915_READ(VLV_PSRSTAT(pipe
)) &
73 VLV_EDP_PSR_CURR_STATE_MASK
;
74 return (val
== VLV_EDP_PSR_ACTIVE_NORFB_UP
) ||
75 (val
== VLV_EDP_PSR_ACTIVE_SF_UPDATE
);
78 static void vlv_psr_setup_vsc(struct intel_dp
*intel_dp
,
79 const struct intel_crtc_state
*crtc_state
)
81 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->base
.crtc
);
82 struct drm_i915_private
*dev_priv
= to_i915(crtc
->base
.dev
);
85 /* VLV auto-generate VSC package as per EDP 1.3 spec, Table 3.10 */
86 val
= I915_READ(VLV_VSCSDP(crtc
->pipe
));
87 val
&= ~VLV_EDP_PSR_SDP_FREQ_MASK
;
88 val
|= VLV_EDP_PSR_SDP_FREQ_EVFRAME
;
89 I915_WRITE(VLV_VSCSDP(crtc
->pipe
), val
);
92 static void hsw_psr_setup_vsc(struct intel_dp
*intel_dp
,
93 const struct intel_crtc_state
*crtc_state
)
95 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
96 struct drm_i915_private
*dev_priv
= to_i915(intel_dig_port
->base
.base
.dev
);
97 struct edp_vsc_psr psr_vsc
;
99 if (dev_priv
->psr
.psr2_support
) {
100 /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
101 memset(&psr_vsc
, 0, sizeof(psr_vsc
));
102 psr_vsc
.sdp_header
.HB0
= 0;
103 psr_vsc
.sdp_header
.HB1
= 0x7;
104 if (dev_priv
->psr
.colorimetry_support
&&
105 dev_priv
->psr
.y_cord_support
) {
106 psr_vsc
.sdp_header
.HB2
= 0x5;
107 psr_vsc
.sdp_header
.HB3
= 0x13;
108 } else if (dev_priv
->psr
.y_cord_support
) {
109 psr_vsc
.sdp_header
.HB2
= 0x4;
110 psr_vsc
.sdp_header
.HB3
= 0xe;
112 psr_vsc
.sdp_header
.HB2
= 0x3;
113 psr_vsc
.sdp_header
.HB3
= 0xc;
116 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
117 memset(&psr_vsc
, 0, sizeof(psr_vsc
));
118 psr_vsc
.sdp_header
.HB0
= 0;
119 psr_vsc
.sdp_header
.HB1
= 0x7;
120 psr_vsc
.sdp_header
.HB2
= 0x2;
121 psr_vsc
.sdp_header
.HB3
= 0x8;
124 intel_dig_port
->write_infoframe(&intel_dig_port
->base
.base
, crtc_state
,
125 DP_SDP_VSC
, &psr_vsc
, sizeof(psr_vsc
));
128 static void vlv_psr_enable_sink(struct intel_dp
*intel_dp
)
130 drm_dp_dpcd_writeb(&intel_dp
->aux
, DP_PSR_EN_CFG
,
131 DP_PSR_ENABLE
| DP_PSR_MAIN_LINK_ACTIVE
);
134 static i915_reg_t
psr_aux_ctl_reg(struct drm_i915_private
*dev_priv
,
137 if (INTEL_INFO(dev_priv
)->gen
>= 9)
138 return DP_AUX_CH_CTL(port
);
140 return EDP_PSR_AUX_CTL
;
143 static i915_reg_t
psr_aux_data_reg(struct drm_i915_private
*dev_priv
,
144 enum port port
, int index
)
146 if (INTEL_INFO(dev_priv
)->gen
>= 9)
147 return DP_AUX_CH_DATA(port
, index
);
149 return EDP_PSR_AUX_DATA(index
);
152 static void hsw_psr_enable_sink(struct intel_dp
*intel_dp
)
154 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
155 struct drm_device
*dev
= dig_port
->base
.base
.dev
;
156 struct drm_i915_private
*dev_priv
= to_i915(dev
);
157 uint32_t aux_clock_divider
;
158 i915_reg_t aux_ctl_reg
;
159 static const uint8_t aux_msg
[] = {
160 [0] = DP_AUX_NATIVE_WRITE
<< 4,
161 [1] = DP_SET_POWER
>> 8,
162 [2] = DP_SET_POWER
& 0xff,
164 [4] = DP_SET_POWER_D0
,
166 enum port port
= dig_port
->base
.port
;
170 BUILD_BUG_ON(sizeof(aux_msg
) > 20);
172 aux_clock_divider
= intel_dp
->get_aux_clock_divider(intel_dp
, 0);
174 /* Enable AUX frame sync at sink */
175 if (dev_priv
->psr
.aux_frame_sync
)
176 drm_dp_dpcd_writeb(&intel_dp
->aux
,
177 DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF
,
178 DP_AUX_FRAME_SYNC_ENABLE
);
179 /* Enable ALPM at sink for psr2 */
180 if (dev_priv
->psr
.psr2_support
&& dev_priv
->psr
.alpm
)
181 drm_dp_dpcd_writeb(&intel_dp
->aux
,
182 DP_RECEIVER_ALPM_CONFIG
,
184 if (dev_priv
->psr
.link_standby
)
185 drm_dp_dpcd_writeb(&intel_dp
->aux
, DP_PSR_EN_CFG
,
186 DP_PSR_ENABLE
| DP_PSR_MAIN_LINK_ACTIVE
);
188 drm_dp_dpcd_writeb(&intel_dp
->aux
, DP_PSR_EN_CFG
,
191 aux_ctl_reg
= psr_aux_ctl_reg(dev_priv
, port
);
193 /* Setup AUX registers */
194 for (i
= 0; i
< sizeof(aux_msg
); i
+= 4)
195 I915_WRITE(psr_aux_data_reg(dev_priv
, port
, i
>> 2),
196 intel_dp_pack_aux(&aux_msg
[i
], sizeof(aux_msg
) - i
));
198 aux_ctl
= intel_dp
->get_aux_send_ctl(intel_dp
, 0, sizeof(aux_msg
),
200 I915_WRITE(aux_ctl_reg
, aux_ctl
);
203 static void vlv_psr_enable_source(struct intel_dp
*intel_dp
,
204 const struct intel_crtc_state
*crtc_state
)
206 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
207 struct drm_i915_private
*dev_priv
= to_i915(dig_port
->base
.base
.dev
);
208 struct intel_crtc
*crtc
= to_intel_crtc(crtc_state
->base
.crtc
);
210 /* Transition from PSR_state 0 (disabled) to PSR_state 1 (inactive) */
211 I915_WRITE(VLV_PSRCTL(crtc
->pipe
),
212 VLV_EDP_PSR_MODE_SW_TIMER
|
213 VLV_EDP_PSR_SRC_TRANSMITTER_STATE
|
217 static void vlv_psr_activate(struct intel_dp
*intel_dp
)
219 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
220 struct drm_device
*dev
= dig_port
->base
.base
.dev
;
221 struct drm_i915_private
*dev_priv
= to_i915(dev
);
222 struct drm_crtc
*crtc
= dig_port
->base
.base
.crtc
;
223 enum pipe pipe
= to_intel_crtc(crtc
)->pipe
;
226 * Let's do the transition from PSR_state 1 (inactive) to
227 * PSR_state 2 (transition to active - static frame transmission).
228 * Then Hardware is responsible for the transition to
229 * PSR_state 3 (active - no Remote Frame Buffer (RFB) update).
231 I915_WRITE(VLV_PSRCTL(pipe
), I915_READ(VLV_PSRCTL(pipe
)) |
232 VLV_EDP_PSR_ACTIVE_ENTRY
);
235 static void hsw_activate_psr1(struct intel_dp
*intel_dp
)
237 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
238 struct drm_device
*dev
= dig_port
->base
.base
.dev
;
239 struct drm_i915_private
*dev_priv
= to_i915(dev
);
241 uint32_t max_sleep_time
= 0x1f;
243 * Let's respect VBT in case VBT asks a higher idle_frame value.
244 * Let's use 6 as the minimum to cover all known cases including
245 * the off-by-one issue that HW has in some cases. Also there are
246 * cases where sink should be able to train
247 * with the 5 or 6 idle patterns.
249 uint32_t idle_frames
= max(6, dev_priv
->vbt
.psr
.idle_frames
);
250 uint32_t val
= EDP_PSR_ENABLE
;
252 val
|= max_sleep_time
<< EDP_PSR_MAX_SLEEP_TIME_SHIFT
;
253 val
|= idle_frames
<< EDP_PSR_IDLE_FRAME_SHIFT
;
255 if (IS_HASWELL(dev_priv
))
256 val
|= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES
;
258 if (dev_priv
->psr
.link_standby
)
259 val
|= EDP_PSR_LINK_STANDBY
;
261 if (dev_priv
->vbt
.psr
.tp1_wakeup_time
> 5)
262 val
|= EDP_PSR_TP1_TIME_2500us
;
263 else if (dev_priv
->vbt
.psr
.tp1_wakeup_time
> 1)
264 val
|= EDP_PSR_TP1_TIME_500us
;
265 else if (dev_priv
->vbt
.psr
.tp1_wakeup_time
> 0)
266 val
|= EDP_PSR_TP1_TIME_100us
;
268 val
|= EDP_PSR_TP1_TIME_0us
;
270 if (dev_priv
->vbt
.psr
.tp2_tp3_wakeup_time
> 5)
271 val
|= EDP_PSR_TP2_TP3_TIME_2500us
;
272 else if (dev_priv
->vbt
.psr
.tp2_tp3_wakeup_time
> 1)
273 val
|= EDP_PSR_TP2_TP3_TIME_500us
;
274 else if (dev_priv
->vbt
.psr
.tp2_tp3_wakeup_time
> 0)
275 val
|= EDP_PSR_TP2_TP3_TIME_100us
;
277 val
|= EDP_PSR_TP2_TP3_TIME_0us
;
279 if (intel_dp_source_supports_hbr2(intel_dp
) &&
280 drm_dp_tps3_supported(intel_dp
->dpcd
))
281 val
|= EDP_PSR_TP1_TP3_SEL
;
283 val
|= EDP_PSR_TP1_TP2_SEL
;
285 val
|= I915_READ(EDP_PSR_CTL
) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK
;
286 I915_WRITE(EDP_PSR_CTL
, val
);
289 static void hsw_activate_psr2(struct intel_dp
*intel_dp
)
291 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
292 struct drm_device
*dev
= dig_port
->base
.base
.dev
;
293 struct drm_i915_private
*dev_priv
= to_i915(dev
);
295 * Let's respect VBT in case VBT asks a higher idle_frame value.
296 * Let's use 6 as the minimum to cover all known cases including
297 * the off-by-one issue that HW has in some cases. Also there are
298 * cases where sink should be able to train
299 * with the 5 or 6 idle patterns.
301 uint32_t idle_frames
= max(6, dev_priv
->vbt
.psr
.idle_frames
);
303 uint8_t sink_latency
;
305 val
= idle_frames
<< EDP_PSR_IDLE_FRAME_SHIFT
;
307 /* FIXME: selective update is probably totally broken because it doesn't
308 * mesh at all with our frontbuffer tracking. And the hw alone isn't
310 val
|= EDP_PSR2_ENABLE
|
313 if (drm_dp_dpcd_readb(&intel_dp
->aux
,
314 DP_SYNCHRONIZATION_LATENCY_IN_SINK
,
315 &sink_latency
) == 1) {
316 sink_latency
&= DP_MAX_RESYNC_FRAME_COUNT_MASK
;
320 val
|= EDP_PSR2_FRAME_BEFORE_SU(sink_latency
+ 1);
322 if (dev_priv
->vbt
.psr
.tp2_tp3_wakeup_time
> 5)
323 val
|= EDP_PSR2_TP2_TIME_2500
;
324 else if (dev_priv
->vbt
.psr
.tp2_tp3_wakeup_time
> 1)
325 val
|= EDP_PSR2_TP2_TIME_500
;
326 else if (dev_priv
->vbt
.psr
.tp2_tp3_wakeup_time
> 0)
327 val
|= EDP_PSR2_TP2_TIME_100
;
329 val
|= EDP_PSR2_TP2_TIME_50
;
331 I915_WRITE(EDP_PSR2_CTL
, val
);
334 static void hsw_psr_activate(struct intel_dp
*intel_dp
)
336 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
337 struct drm_device
*dev
= dig_port
->base
.base
.dev
;
338 struct drm_i915_private
*dev_priv
= to_i915(dev
);
340 /* On HSW+ after we enable PSR on source it will activate it
341 * as soon as it match configure idle_frame count. So
342 * we just actually enable it here on activation time.
345 /* psr1 and psr2 are mutually exclusive.*/
346 if (dev_priv
->psr
.psr2_support
)
347 hsw_activate_psr2(intel_dp
);
349 hsw_activate_psr1(intel_dp
);
352 void intel_psr_compute_config(struct intel_dp
*intel_dp
,
353 struct intel_crtc_state
*crtc_state
)
355 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
356 struct drm_i915_private
*dev_priv
= to_i915(dig_port
->base
.base
.dev
);
357 const struct drm_display_mode
*adjusted_mode
=
358 &crtc_state
->base
.adjusted_mode
;
361 if (!HAS_PSR(dev_priv
))
364 if (!is_edp_psr(intel_dp
))
367 if (!i915_modparams
.enable_psr
) {
368 DRM_DEBUG_KMS("PSR disable by flag\n");
373 * HSW spec explicitly says PSR is tied to port A.
374 * BDW+ platforms with DDI implementation of PSR have different
375 * PSR registers per transcoder and we only implement transcoder EDP
376 * ones. Since by Display design transcoder EDP is tied to port A
377 * we can safely escape based on the port A.
379 if (HAS_DDI(dev_priv
) && dig_port
->base
.port
!= PORT_A
) {
380 DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
384 if ((IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) &&
385 !dev_priv
->psr
.link_standby
) {
386 DRM_ERROR("PSR condition failed: Link off requested but not supported on this platform\n");
390 if (IS_HASWELL(dev_priv
) &&
391 I915_READ(HSW_STEREO_3D_CTL(crtc_state
->cpu_transcoder
)) &
393 DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
397 if (IS_HASWELL(dev_priv
) &&
398 adjusted_mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
399 DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
403 psr_setup_time
= drm_dp_psr_setup_time(intel_dp
->psr_dpcd
);
404 if (psr_setup_time
< 0) {
405 DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
406 intel_dp
->psr_dpcd
[1]);
410 if (intel_usecs_to_scanlines(adjusted_mode
, psr_setup_time
) >
411 adjusted_mode
->crtc_vtotal
- adjusted_mode
->crtc_vdisplay
- 1) {
412 DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
418 * FIXME psr2_support is messed up. It's both computed
419 * dynamically during PSR enable, and extracted from sink
420 * caps during eDP detection.
422 if (!dev_priv
->psr
.psr2_support
) {
423 crtc_state
->has_psr
= true;
427 /* PSR2 is restricted to work with panel resolutions upto 3200x2000 */
428 if (adjusted_mode
->crtc_hdisplay
> 3200 ||
429 adjusted_mode
->crtc_vdisplay
> 2000) {
430 DRM_DEBUG_KMS("PSR2 disabled, panel resolution too big\n");
435 * FIXME:enable psr2 only for y-cordinate psr2 panels
436 * After gtc implementation , remove this restriction.
438 if (!dev_priv
->psr
.y_cord_support
) {
439 DRM_DEBUG_KMS("PSR2 disabled, panel does not support Y coordinate\n");
443 crtc_state
->has_psr
= true;
444 crtc_state
->has_psr2
= true;
447 static void intel_psr_activate(struct intel_dp
*intel_dp
)
449 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
450 struct drm_device
*dev
= intel_dig_port
->base
.base
.dev
;
451 struct drm_i915_private
*dev_priv
= to_i915(dev
);
453 if (dev_priv
->psr
.psr2_support
)
454 WARN_ON(I915_READ(EDP_PSR2_CTL
) & EDP_PSR2_ENABLE
);
456 WARN_ON(I915_READ(EDP_PSR_CTL
) & EDP_PSR_ENABLE
);
457 WARN_ON(dev_priv
->psr
.active
);
458 lockdep_assert_held(&dev_priv
->psr
.lock
);
460 dev_priv
->psr
.activate(intel_dp
);
461 dev_priv
->psr
.active
= true;
464 static void hsw_psr_enable_source(struct intel_dp
*intel_dp
,
465 const struct intel_crtc_state
*crtc_state
)
467 struct intel_digital_port
*dig_port
= dp_to_dig_port(intel_dp
);
468 struct drm_device
*dev
= dig_port
->base
.base
.dev
;
469 struct drm_i915_private
*dev_priv
= to_i915(dev
);
470 enum transcoder cpu_transcoder
= crtc_state
->cpu_transcoder
;
473 if (dev_priv
->psr
.psr2_support
) {
474 chicken
= PSR2_VSC_ENABLE_PROG_HEADER
;
475 if (dev_priv
->psr
.y_cord_support
)
476 chicken
|= PSR2_ADD_VERTICAL_LINE_COUNT
;
477 I915_WRITE(CHICKEN_TRANS(cpu_transcoder
), chicken
);
479 I915_WRITE(EDP_PSR_DEBUG_CTL
,
480 EDP_PSR_DEBUG_MASK_MEMUP
|
481 EDP_PSR_DEBUG_MASK_HPD
|
482 EDP_PSR_DEBUG_MASK_LPSP
|
483 EDP_PSR_DEBUG_MASK_MAX_SLEEP
|
484 EDP_PSR_DEBUG_MASK_DISP_REG_WRITE
);
487 * Per Spec: Avoid continuous PSR exit by masking MEMUP
488 * and HPD. also mask LPSP to avoid dependency on other
489 * drivers that might block runtime_pm besides
490 * preventing other hw tracking issues now we can rely
491 * on frontbuffer tracking.
493 I915_WRITE(EDP_PSR_DEBUG_CTL
,
494 EDP_PSR_DEBUG_MASK_MEMUP
|
495 EDP_PSR_DEBUG_MASK_HPD
|
496 EDP_PSR_DEBUG_MASK_LPSP
);
501 * intel_psr_enable - Enable PSR
502 * @intel_dp: Intel DP
503 * @crtc_state: new CRTC state
505 * This function can only be called after the pipe is fully trained and enabled.
507 void intel_psr_enable(struct intel_dp
*intel_dp
,
508 const struct intel_crtc_state
*crtc_state
)
510 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
511 struct drm_device
*dev
= intel_dig_port
->base
.base
.dev
;
512 struct drm_i915_private
*dev_priv
= to_i915(dev
);
514 if (!crtc_state
->has_psr
)
517 WARN_ON(dev_priv
->drrs
.dp
);
518 mutex_lock(&dev_priv
->psr
.lock
);
519 if (dev_priv
->psr
.enabled
) {
520 DRM_DEBUG_KMS("PSR already in use\n");
524 dev_priv
->psr
.psr2_support
= crtc_state
->has_psr2
;
525 dev_priv
->psr
.source_ok
= true;
527 dev_priv
->psr
.busy_frontbuffer_bits
= 0;
529 dev_priv
->psr
.setup_vsc(intel_dp
, crtc_state
);
530 dev_priv
->psr
.enable_sink(intel_dp
);
531 dev_priv
->psr
.enable_source(intel_dp
, crtc_state
);
532 dev_priv
->psr
.enabled
= intel_dp
;
534 if (INTEL_GEN(dev_priv
) >= 9) {
535 intel_psr_activate(intel_dp
);
538 * FIXME: Activation should happen immediately since this
539 * function is just called after pipe is fully trained and
541 * However on some platforms we face issues when first
542 * activation follows a modeset so quickly.
543 * - On VLV/CHV we get bank screen on first activation
544 * - On HSW/BDW we get a recoverable frozen screen until
545 * next exit-activate sequence.
547 schedule_delayed_work(&dev_priv
->psr
.work
,
548 msecs_to_jiffies(intel_dp
->panel_power_cycle_delay
* 5));
552 mutex_unlock(&dev_priv
->psr
.lock
);
555 static void vlv_psr_disable(struct intel_dp
*intel_dp
,
556 const struct intel_crtc_state
*old_crtc_state
)
558 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
559 struct drm_device
*dev
= intel_dig_port
->base
.base
.dev
;
560 struct drm_i915_private
*dev_priv
= to_i915(dev
);
561 struct intel_crtc
*crtc
= to_intel_crtc(old_crtc_state
->base
.crtc
);
564 if (dev_priv
->psr
.active
) {
565 /* Put VLV PSR back to PSR_state 0 (disabled). */
566 if (intel_wait_for_register(dev_priv
,
567 VLV_PSRSTAT(crtc
->pipe
),
568 VLV_EDP_PSR_IN_TRANS
,
571 WARN(1, "PSR transition took longer than expected\n");
573 val
= I915_READ(VLV_PSRCTL(crtc
->pipe
));
574 val
&= ~VLV_EDP_PSR_ACTIVE_ENTRY
;
575 val
&= ~VLV_EDP_PSR_ENABLE
;
576 val
&= ~VLV_EDP_PSR_MODE_MASK
;
577 I915_WRITE(VLV_PSRCTL(crtc
->pipe
), val
);
579 dev_priv
->psr
.active
= false;
581 WARN_ON(vlv_is_psr_active_on_pipe(dev
, crtc
->pipe
));
585 static void hsw_psr_disable(struct intel_dp
*intel_dp
,
586 const struct intel_crtc_state
*old_crtc_state
)
588 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
589 struct drm_device
*dev
= intel_dig_port
->base
.base
.dev
;
590 struct drm_i915_private
*dev_priv
= to_i915(dev
);
592 if (dev_priv
->psr
.active
) {
593 i915_reg_t psr_status
;
596 if (dev_priv
->psr
.aux_frame_sync
)
597 drm_dp_dpcd_writeb(&intel_dp
->aux
,
598 DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF
,
601 if (dev_priv
->psr
.psr2_support
) {
602 psr_status
= EDP_PSR2_STATUS_CTL
;
603 psr_status_mask
= EDP_PSR2_STATUS_STATE_MASK
;
605 I915_WRITE(EDP_PSR2_CTL
,
606 I915_READ(EDP_PSR2_CTL
) &
607 ~(EDP_PSR2_ENABLE
| EDP_SU_TRACK_ENABLE
));
610 psr_status
= EDP_PSR_STATUS_CTL
;
611 psr_status_mask
= EDP_PSR_STATUS_STATE_MASK
;
613 I915_WRITE(EDP_PSR_CTL
,
614 I915_READ(EDP_PSR_CTL
) & ~EDP_PSR_ENABLE
);
617 /* Wait till PSR is idle */
618 if (intel_wait_for_register(dev_priv
,
619 psr_status
, psr_status_mask
, 0,
621 DRM_ERROR("Timed out waiting for PSR Idle State\n");
623 dev_priv
->psr
.active
= false;
625 if (dev_priv
->psr
.psr2_support
)
626 WARN_ON(I915_READ(EDP_PSR2_CTL
) & EDP_PSR2_ENABLE
);
628 WARN_ON(I915_READ(EDP_PSR_CTL
) & EDP_PSR_ENABLE
);
633 * intel_psr_disable - Disable PSR
634 * @intel_dp: Intel DP
635 * @old_crtc_state: old CRTC state
637 * This function needs to be called before disabling pipe.
639 void intel_psr_disable(struct intel_dp
*intel_dp
,
640 const struct intel_crtc_state
*old_crtc_state
)
642 struct intel_digital_port
*intel_dig_port
= dp_to_dig_port(intel_dp
);
643 struct drm_device
*dev
= intel_dig_port
->base
.base
.dev
;
644 struct drm_i915_private
*dev_priv
= to_i915(dev
);
646 if (!old_crtc_state
->has_psr
)
649 mutex_lock(&dev_priv
->psr
.lock
);
650 if (!dev_priv
->psr
.enabled
) {
651 mutex_unlock(&dev_priv
->psr
.lock
);
655 dev_priv
->psr
.disable_source(intel_dp
, old_crtc_state
);
657 /* Disable PSR on Sink */
658 drm_dp_dpcd_writeb(&intel_dp
->aux
, DP_PSR_EN_CFG
, 0);
660 dev_priv
->psr
.enabled
= NULL
;
661 mutex_unlock(&dev_priv
->psr
.lock
);
663 cancel_delayed_work_sync(&dev_priv
->psr
.work
);
666 static void intel_psr_work(struct work_struct
*work
)
668 struct drm_i915_private
*dev_priv
=
669 container_of(work
, typeof(*dev_priv
), psr
.work
.work
);
670 struct intel_dp
*intel_dp
= dev_priv
->psr
.enabled
;
671 struct drm_crtc
*crtc
= dp_to_dig_port(intel_dp
)->base
.base
.crtc
;
672 enum pipe pipe
= to_intel_crtc(crtc
)->pipe
;
674 /* We have to make sure PSR is ready for re-enable
675 * otherwise it keeps disabled until next full enable/disable cycle.
676 * PSR might take some time to get fully disabled
677 * and be ready for re-enable.
679 if (HAS_DDI(dev_priv
)) {
680 if (dev_priv
->psr
.psr2_support
) {
681 if (intel_wait_for_register(dev_priv
,
683 EDP_PSR2_STATUS_STATE_MASK
,
686 DRM_ERROR("Timed out waiting for PSR2 Idle for re-enable\n");
690 if (intel_wait_for_register(dev_priv
,
692 EDP_PSR_STATUS_STATE_MASK
,
695 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
700 if (intel_wait_for_register(dev_priv
,
702 VLV_EDP_PSR_IN_TRANS
,
705 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
709 mutex_lock(&dev_priv
->psr
.lock
);
710 intel_dp
= dev_priv
->psr
.enabled
;
716 * The delayed work can race with an invalidate hence we need to
717 * recheck. Since psr_flush first clears this and then reschedules we
718 * won't ever miss a flush when bailing out here.
720 if (dev_priv
->psr
.busy_frontbuffer_bits
)
723 intel_psr_activate(intel_dp
);
725 mutex_unlock(&dev_priv
->psr
.lock
);
728 static void intel_psr_exit(struct drm_i915_private
*dev_priv
)
730 struct intel_dp
*intel_dp
= dev_priv
->psr
.enabled
;
731 struct drm_crtc
*crtc
= dp_to_dig_port(intel_dp
)->base
.base
.crtc
;
732 enum pipe pipe
= to_intel_crtc(crtc
)->pipe
;
735 if (!dev_priv
->psr
.active
)
738 if (HAS_DDI(dev_priv
)) {
739 if (dev_priv
->psr
.aux_frame_sync
)
740 drm_dp_dpcd_writeb(&intel_dp
->aux
,
741 DP_SINK_DEVICE_AUX_FRAME_SYNC_CONF
,
743 if (dev_priv
->psr
.psr2_support
) {
744 val
= I915_READ(EDP_PSR2_CTL
);
745 WARN_ON(!(val
& EDP_PSR2_ENABLE
));
746 I915_WRITE(EDP_PSR2_CTL
, val
& ~EDP_PSR2_ENABLE
);
748 val
= I915_READ(EDP_PSR_CTL
);
749 WARN_ON(!(val
& EDP_PSR_ENABLE
));
750 I915_WRITE(EDP_PSR_CTL
, val
& ~EDP_PSR_ENABLE
);
753 val
= I915_READ(VLV_PSRCTL(pipe
));
756 * Here we do the transition drirectly from
757 * PSR_state 3 (active - no Remote Frame Buffer (RFB) update) to
758 * PSR_state 5 (exit).
759 * PSR State 4 (active with single frame update) can be skipped.
760 * On PSR_state 5 (exit) Hardware is responsible to transition
761 * back to PSR_state 1 (inactive).
762 * Now we are at Same state after vlv_psr_enable_source.
764 val
&= ~VLV_EDP_PSR_ACTIVE_ENTRY
;
765 I915_WRITE(VLV_PSRCTL(pipe
), val
);
768 * Send AUX wake up - Spec says after transitioning to PSR
769 * active we have to send AUX wake up by writing 01h in DPCD
770 * 600h of sink device.
771 * XXX: This might slow down the transition, but without this
772 * HW doesn't complete the transition to PSR_state 1 and we
773 * never get the screen updated.
775 drm_dp_dpcd_writeb(&intel_dp
->aux
, DP_SET_POWER
,
779 dev_priv
->psr
.active
= false;
783 * intel_psr_single_frame_update - Single Frame Update
784 * @dev_priv: i915 device
785 * @frontbuffer_bits: frontbuffer plane tracking bits
787 * Some platforms support a single frame update feature that is used to
788 * send and update only one frame on Remote Frame Buffer.
789 * So far it is only implemented for Valleyview and Cherryview because
790 * hardware requires this to be done before a page flip.
792 void intel_psr_single_frame_update(struct drm_i915_private
*dev_priv
,
793 unsigned frontbuffer_bits
)
795 struct drm_crtc
*crtc
;
799 if (!HAS_PSR(dev_priv
))
803 * Single frame update is already supported on BDW+ but it requires
804 * many W/A and it isn't really needed.
806 if (!IS_VALLEYVIEW(dev_priv
) && !IS_CHERRYVIEW(dev_priv
))
809 mutex_lock(&dev_priv
->psr
.lock
);
810 if (!dev_priv
->psr
.enabled
) {
811 mutex_unlock(&dev_priv
->psr
.lock
);
815 crtc
= dp_to_dig_port(dev_priv
->psr
.enabled
)->base
.base
.crtc
;
816 pipe
= to_intel_crtc(crtc
)->pipe
;
818 if (frontbuffer_bits
& INTEL_FRONTBUFFER_ALL_MASK(pipe
)) {
819 val
= I915_READ(VLV_PSRCTL(pipe
));
822 * We need to set this bit before writing registers for a flip.
823 * This bit will be self-clear when it gets to the PSR active state.
825 I915_WRITE(VLV_PSRCTL(pipe
), val
| VLV_EDP_PSR_SINGLE_FRAME_UPDATE
);
827 mutex_unlock(&dev_priv
->psr
.lock
);
831 * intel_psr_invalidate - Invalidade PSR
832 * @dev_priv: i915 device
833 * @frontbuffer_bits: frontbuffer plane tracking bits
835 * Since the hardware frontbuffer tracking has gaps we need to integrate
836 * with the software frontbuffer tracking. This function gets called every
837 * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
838 * disabled if the frontbuffer mask contains a buffer relevant to PSR.
840 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
842 void intel_psr_invalidate(struct drm_i915_private
*dev_priv
,
843 unsigned frontbuffer_bits
)
845 struct drm_crtc
*crtc
;
848 if (!HAS_PSR(dev_priv
))
851 mutex_lock(&dev_priv
->psr
.lock
);
852 if (!dev_priv
->psr
.enabled
) {
853 mutex_unlock(&dev_priv
->psr
.lock
);
857 crtc
= dp_to_dig_port(dev_priv
->psr
.enabled
)->base
.base
.crtc
;
858 pipe
= to_intel_crtc(crtc
)->pipe
;
860 frontbuffer_bits
&= INTEL_FRONTBUFFER_ALL_MASK(pipe
);
861 dev_priv
->psr
.busy_frontbuffer_bits
|= frontbuffer_bits
;
863 if (frontbuffer_bits
)
864 intel_psr_exit(dev_priv
);
866 mutex_unlock(&dev_priv
->psr
.lock
);
870 * intel_psr_flush - Flush PSR
871 * @dev_priv: i915 device
872 * @frontbuffer_bits: frontbuffer plane tracking bits
873 * @origin: which operation caused the flush
875 * Since the hardware frontbuffer tracking has gaps we need to integrate
876 * with the software frontbuffer tracking. This function gets called every
877 * time frontbuffer rendering has completed and flushed out to memory. PSR
878 * can be enabled again if no other frontbuffer relevant to PSR is dirty.
880 * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
882 void intel_psr_flush(struct drm_i915_private
*dev_priv
,
883 unsigned frontbuffer_bits
, enum fb_op_origin origin
)
885 struct drm_crtc
*crtc
;
888 if (!HAS_PSR(dev_priv
))
891 mutex_lock(&dev_priv
->psr
.lock
);
892 if (!dev_priv
->psr
.enabled
) {
893 mutex_unlock(&dev_priv
->psr
.lock
);
897 crtc
= dp_to_dig_port(dev_priv
->psr
.enabled
)->base
.base
.crtc
;
898 pipe
= to_intel_crtc(crtc
)->pipe
;
900 frontbuffer_bits
&= INTEL_FRONTBUFFER_ALL_MASK(pipe
);
901 dev_priv
->psr
.busy_frontbuffer_bits
&= ~frontbuffer_bits
;
903 /* By definition flush = invalidate + flush */
904 if (frontbuffer_bits
)
905 intel_psr_exit(dev_priv
);
907 if (!dev_priv
->psr
.active
&& !dev_priv
->psr
.busy_frontbuffer_bits
)
908 if (!work_busy(&dev_priv
->psr
.work
.work
))
909 schedule_delayed_work(&dev_priv
->psr
.work
,
910 msecs_to_jiffies(100));
911 mutex_unlock(&dev_priv
->psr
.lock
);
915 * intel_psr_init - Init basic PSR work and mutex.
916 * @dev_priv: i915 device private
918 * This function is called only once at driver load to initialize basic
921 void intel_psr_init(struct drm_i915_private
*dev_priv
)
923 if (!HAS_PSR(dev_priv
))
926 dev_priv
->psr_mmio_base
= IS_HASWELL(dev_priv
) ?
927 HSW_EDP_PSR_BASE
: BDW_EDP_PSR_BASE
;
929 /* Per platform default: all disabled. */
930 if (i915_modparams
.enable_psr
== -1)
931 i915_modparams
.enable_psr
= 0;
933 /* Set link_standby x link_off defaults */
934 if (IS_HASWELL(dev_priv
) || IS_BROADWELL(dev_priv
))
935 /* HSW and BDW require workarounds that we don't implement. */
936 dev_priv
->psr
.link_standby
= false;
937 else if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
))
938 /* On VLV and CHV only standby mode is supported. */
939 dev_priv
->psr
.link_standby
= true;
941 /* For new platforms let's respect VBT back again */
942 dev_priv
->psr
.link_standby
= dev_priv
->vbt
.psr
.full_link
;
944 /* Override link_standby x link_off defaults */
945 if (i915_modparams
.enable_psr
== 2 && !dev_priv
->psr
.link_standby
) {
946 DRM_DEBUG_KMS("PSR: Forcing link standby\n");
947 dev_priv
->psr
.link_standby
= true;
949 if (i915_modparams
.enable_psr
== 3 && dev_priv
->psr
.link_standby
) {
950 DRM_DEBUG_KMS("PSR: Forcing main link off\n");
951 dev_priv
->psr
.link_standby
= false;
954 INIT_DELAYED_WORK(&dev_priv
->psr
.work
, intel_psr_work
);
955 mutex_init(&dev_priv
->psr
.lock
);
957 if (IS_VALLEYVIEW(dev_priv
) || IS_CHERRYVIEW(dev_priv
)) {
958 dev_priv
->psr
.enable_source
= vlv_psr_enable_source
;
959 dev_priv
->psr
.disable_source
= vlv_psr_disable
;
960 dev_priv
->psr
.enable_sink
= vlv_psr_enable_sink
;
961 dev_priv
->psr
.activate
= vlv_psr_activate
;
962 dev_priv
->psr
.setup_vsc
= vlv_psr_setup_vsc
;
964 dev_priv
->psr
.enable_source
= hsw_psr_enable_source
;
965 dev_priv
->psr
.disable_source
= hsw_psr_disable
;
966 dev_priv
->psr
.enable_sink
= hsw_psr_enable_sink
;
967 dev_priv
->psr
.activate
= hsw_psr_activate
;
968 dev_priv
->psr
.setup_vsc
= hsw_psr_setup_vsc
;