bpf: Prevent memory disambiguation attack
[linux/fpc-iii.git] / drivers / gpu / drm / i915 / intel_ringbuffer.h
bloba0e7a6c2a57cd8f0b66f27e7e5dcc874857fd649
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _INTEL_RINGBUFFER_H_
3 #define _INTEL_RINGBUFFER_H_
5 #include <linux/hashtable.h>
6 #include "i915_gem_batch_pool.h"
7 #include "i915_gem_request.h"
8 #include "i915_gem_timeline.h"
9 #include "i915_pmu.h"
10 #include "i915_selftest.h"
12 struct drm_printer;
14 #define I915_CMD_HASH_ORDER 9
16 /* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
17 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
18 * to give some inclination as to some of the magic values used in the various
19 * workarounds!
21 #define CACHELINE_BYTES 64
22 #define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
24 struct intel_hw_status_page {
25 struct i915_vma *vma;
26 u32 *page_addr;
27 u32 ggtt_offset;
30 #define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
31 #define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)
33 #define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
34 #define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)
36 #define I915_READ_HEAD(engine) I915_READ(RING_HEAD((engine)->mmio_base))
37 #define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)
39 #define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
40 #define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)
42 #define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
43 #define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)
45 #define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
46 #define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)
48 /* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
49 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
51 enum intel_engine_hangcheck_action {
52 ENGINE_IDLE = 0,
53 ENGINE_WAIT,
54 ENGINE_ACTIVE_SEQNO,
55 ENGINE_ACTIVE_HEAD,
56 ENGINE_ACTIVE_SUBUNITS,
57 ENGINE_WAIT_KICK,
58 ENGINE_DEAD,
61 static inline const char *
62 hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
64 switch (a) {
65 case ENGINE_IDLE:
66 return "idle";
67 case ENGINE_WAIT:
68 return "wait";
69 case ENGINE_ACTIVE_SEQNO:
70 return "active seqno";
71 case ENGINE_ACTIVE_HEAD:
72 return "active head";
73 case ENGINE_ACTIVE_SUBUNITS:
74 return "active subunits";
75 case ENGINE_WAIT_KICK:
76 return "wait kick";
77 case ENGINE_DEAD:
78 return "dead";
81 return "unknown";
84 #define I915_MAX_SLICES 3
85 #define I915_MAX_SUBSLICES 3
87 #define instdone_slice_mask(dev_priv__) \
88 (INTEL_GEN(dev_priv__) == 7 ? \
89 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)
91 #define instdone_subslice_mask(dev_priv__) \
92 (INTEL_GEN(dev_priv__) == 7 ? \
93 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)
95 #define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
96 for ((slice__) = 0, (subslice__) = 0; \
97 (slice__) < I915_MAX_SLICES; \
98 (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
99 (slice__) += ((subslice__) == 0)) \
100 for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
101 (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))
103 struct intel_instdone {
104 u32 instdone;
105 /* The following exist only in the RCS engine */
106 u32 slice_common;
107 u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
108 u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
111 struct intel_engine_hangcheck {
112 u64 acthd;
113 u32 seqno;
114 enum intel_engine_hangcheck_action action;
115 unsigned long action_timestamp;
116 int deadlock;
117 struct intel_instdone instdone;
118 struct drm_i915_gem_request *active_request;
119 bool stalled;
122 struct intel_ring {
123 struct i915_vma *vma;
124 void *vaddr;
126 struct list_head request_list;
128 u32 head;
129 u32 tail;
130 u32 emit;
132 u32 space;
133 u32 size;
134 u32 effective_size;
137 struct i915_gem_context;
138 struct drm_i915_reg_table;
141 * we use a single page to load ctx workarounds so all of these
142 * values are referred in terms of dwords
144 * struct i915_wa_ctx_bb:
145 * offset: specifies batch starting position, also helpful in case
146 * if we want to have multiple batches at different offsets based on
147 * some criteria. It is not a requirement at the moment but provides
148 * an option for future use.
149 * size: size of the batch in DWORDS
151 struct i915_ctx_workarounds {
152 struct i915_wa_ctx_bb {
153 u32 offset;
154 u32 size;
155 } indirect_ctx, per_ctx;
156 struct i915_vma *vma;
159 struct drm_i915_gem_request;
162 * Engine IDs definitions.
163 * Keep instances of the same type engine together.
165 enum intel_engine_id {
166 RCS = 0,
167 BCS,
168 VCS,
169 VCS2,
170 #define _VCS(n) (VCS + (n))
171 VECS
174 struct i915_priolist {
175 struct rb_node node;
176 struct list_head requests;
177 int priority;
181 * struct intel_engine_execlists - execlist submission queue and port state
183 * The struct intel_engine_execlists represents the combined logical state of
184 * driver and the hardware state for execlist mode of submission.
186 struct intel_engine_execlists {
188 * @tasklet: softirq tasklet for bottom handler
190 struct tasklet_struct tasklet;
193 * @default_priolist: priority list for I915_PRIORITY_NORMAL
195 struct i915_priolist default_priolist;
198 * @no_priolist: priority lists disabled
200 bool no_priolist;
203 * @elsp: the ExecList Submission Port register
205 u32 __iomem *elsp;
208 * @port: execlist port states
210 * For each hardware ELSP (ExecList Submission Port) we keep
211 * track of the last request and the number of times we submitted
212 * that port to hw. We then count the number of times the hw reports
213 * a context completion or preemption. As only one context can
214 * be active on hw, we limit resubmission of context to port[0]. This
215 * is called Lite Restore, of the context.
217 struct execlist_port {
219 * @request_count: combined request and submission count
221 struct drm_i915_gem_request *request_count;
222 #define EXECLIST_COUNT_BITS 2
223 #define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
224 #define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
225 #define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
226 #define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
227 #define port_set(p, packed) ((p)->request_count = (packed))
228 #define port_isset(p) ((p)->request_count)
229 #define port_index(p, execlists) ((p) - (execlists)->port)
232 * @context_id: context ID for port
234 GEM_DEBUG_DECL(u32 context_id);
236 #define EXECLIST_MAX_PORTS 2
237 } port[EXECLIST_MAX_PORTS];
240 * @active: is the HW active? We consider the HW as active after
241 * submitting any context for execution and until we have seen the
242 * last context completion event. After that, we do not expect any
243 * more events until we submit, and so can park the HW.
245 * As we have a small number of different sources from which we feed
246 * the HW, we track the state of each inside a single bitfield.
248 unsigned int active;
249 #define EXECLISTS_ACTIVE_USER 0
250 #define EXECLISTS_ACTIVE_PREEMPT 1
251 #define EXECLISTS_ACTIVE_HWACK 2
254 * @port_mask: number of execlist ports - 1
256 unsigned int port_mask;
259 * @queue: queue of requests, in priority lists
261 struct rb_root queue;
264 * @first: leftmost level in priority @queue
266 struct rb_node *first;
269 * @fw_domains: forcewake domains for irq tasklet
271 unsigned int fw_domains;
274 * @csb_head: context status buffer head
276 unsigned int csb_head;
279 * @csb_use_mmio: access csb through mmio, instead of hwsp
281 bool csb_use_mmio;
284 #define INTEL_ENGINE_CS_MAX_NAME 8
286 struct intel_engine_cs {
287 struct drm_i915_private *i915;
288 char name[INTEL_ENGINE_CS_MAX_NAME];
290 enum intel_engine_id id;
291 unsigned int hw_id;
292 unsigned int guc_id;
294 u8 uabi_id;
295 u8 uabi_class;
297 u8 class;
298 u8 instance;
299 u32 context_size;
300 u32 mmio_base;
301 unsigned int irq_shift;
303 struct intel_ring *buffer;
304 struct intel_timeline *timeline;
306 struct drm_i915_gem_object *default_state;
308 atomic_t irq_count;
309 unsigned long irq_posted;
310 #define ENGINE_IRQ_BREADCRUMB 0
311 #define ENGINE_IRQ_EXECLIST 1
313 /* Rather than have every client wait upon all user interrupts,
314 * with the herd waking after every interrupt and each doing the
315 * heavyweight seqno dance, we delegate the task (of being the
316 * bottom-half of the user interrupt) to the first client. After
317 * every interrupt, we wake up one client, who does the heavyweight
318 * coherent seqno read and either goes back to sleep (if incomplete),
319 * or wakes up all the completed clients in parallel, before then
320 * transferring the bottom-half status to the next client in the queue.
322 * Compared to walking the entire list of waiters in a single dedicated
323 * bottom-half, we reduce the latency of the first waiter by avoiding
324 * a context switch, but incur additional coherent seqno reads when
325 * following the chain of request breadcrumbs. Since it is most likely
326 * that we have a single client waiting on each seqno, then reducing
327 * the overhead of waking that client is much preferred.
329 struct intel_breadcrumbs {
330 spinlock_t irq_lock; /* protects irq_*; irqsafe */
331 struct intel_wait *irq_wait; /* oldest waiter by retirement */
333 spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
334 struct rb_root waiters; /* sorted by retirement, priority */
335 struct rb_root signals; /* sorted by retirement */
336 struct task_struct *signaler; /* used for fence signalling */
337 struct drm_i915_gem_request __rcu *first_signal;
338 struct timer_list fake_irq; /* used after a missed interrupt */
339 struct timer_list hangcheck; /* detect missed interrupts */
341 unsigned int hangcheck_interrupts;
342 unsigned int irq_enabled;
344 bool irq_armed : 1;
345 I915_SELFTEST_DECLARE(bool mock : 1);
346 } breadcrumbs;
348 struct {
350 * @enable: Bitmask of enable sample events on this engine.
352 * Bits correspond to sample event types, for instance
353 * I915_SAMPLE_QUEUED is bit 0 etc.
355 u32 enable;
357 * @enable_count: Reference count for the enabled samplers.
359 * Index number corresponds to the bit number from @enable.
361 unsigned int enable_count[I915_PMU_SAMPLE_BITS];
363 * @sample: Counter values for sampling events.
365 * Our internal timer stores the current counters in this field.
367 #define I915_ENGINE_SAMPLE_MAX (I915_SAMPLE_SEMA + 1)
368 struct i915_pmu_sample sample[I915_ENGINE_SAMPLE_MAX];
369 } pmu;
372 * A pool of objects to use as shadow copies of client batch buffers
373 * when the command parser is enabled. Prevents the client from
374 * modifying the batch contents after software parsing.
376 struct i915_gem_batch_pool batch_pool;
378 struct intel_hw_status_page status_page;
379 struct i915_ctx_workarounds wa_ctx;
380 struct i915_vma *scratch;
382 u32 irq_keep_mask; /* always keep these interrupts */
383 u32 irq_enable_mask; /* bitmask to enable ring interrupt */
384 void (*irq_enable)(struct intel_engine_cs *engine);
385 void (*irq_disable)(struct intel_engine_cs *engine);
387 int (*init_hw)(struct intel_engine_cs *engine);
388 void (*reset_hw)(struct intel_engine_cs *engine,
389 struct drm_i915_gem_request *req);
391 void (*park)(struct intel_engine_cs *engine);
392 void (*unpark)(struct intel_engine_cs *engine);
394 void (*set_default_submission)(struct intel_engine_cs *engine);
396 struct intel_ring *(*context_pin)(struct intel_engine_cs *engine,
397 struct i915_gem_context *ctx);
398 void (*context_unpin)(struct intel_engine_cs *engine,
399 struct i915_gem_context *ctx);
400 int (*request_alloc)(struct drm_i915_gem_request *req);
401 int (*init_context)(struct drm_i915_gem_request *req);
403 int (*emit_flush)(struct drm_i915_gem_request *request,
404 u32 mode);
405 #define EMIT_INVALIDATE BIT(0)
406 #define EMIT_FLUSH BIT(1)
407 #define EMIT_BARRIER (EMIT_INVALIDATE | EMIT_FLUSH)
408 int (*emit_bb_start)(struct drm_i915_gem_request *req,
409 u64 offset, u32 length,
410 unsigned int dispatch_flags);
411 #define I915_DISPATCH_SECURE BIT(0)
412 #define I915_DISPATCH_PINNED BIT(1)
413 #define I915_DISPATCH_RS BIT(2)
414 void (*emit_breadcrumb)(struct drm_i915_gem_request *req,
415 u32 *cs);
416 int emit_breadcrumb_sz;
418 /* Pass the request to the hardware queue (e.g. directly into
419 * the legacy ringbuffer or to the end of an execlist).
421 * This is called from an atomic context with irqs disabled; must
422 * be irq safe.
424 void (*submit_request)(struct drm_i915_gem_request *req);
426 /* Call when the priority on a request has changed and it and its
427 * dependencies may need rescheduling. Note the request itself may
428 * not be ready to run!
430 * Called under the struct_mutex.
432 void (*schedule)(struct drm_i915_gem_request *request,
433 int priority);
436 * Cancel all requests on the hardware, or queued for execution.
437 * This should only cancel the ready requests that have been
438 * submitted to the engine (via the engine->submit_request callback).
439 * This is called when marking the device as wedged.
441 void (*cancel_requests)(struct intel_engine_cs *engine);
443 /* Some chipsets are not quite as coherent as advertised and need
444 * an expensive kick to force a true read of the up-to-date seqno.
445 * However, the up-to-date seqno is not always required and the last
446 * seen value is good enough. Note that the seqno will always be
447 * monotonic, even if not coherent.
449 void (*irq_seqno_barrier)(struct intel_engine_cs *engine);
450 void (*cleanup)(struct intel_engine_cs *engine);
452 /* GEN8 signal/wait table - never trust comments!
453 * signal to signal to signal to signal to signal to
454 * RCS VCS BCS VECS VCS2
455 * --------------------------------------------------------------------
456 * RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
457 * |-------------------------------------------------------------------
458 * VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
459 * |-------------------------------------------------------------------
460 * BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
461 * |-------------------------------------------------------------------
462 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) | NOP (0x90) | VCS2 (0x98) |
463 * |-------------------------------------------------------------------
464 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP (0xc0) |
465 * |-------------------------------------------------------------------
467 * Generalization:
468 * f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
469 * ie. transpose of g(x, y)
471 * sync from sync from sync from sync from sync from
472 * RCS VCS BCS VECS VCS2
473 * --------------------------------------------------------------------
474 * RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
475 * |-------------------------------------------------------------------
476 * VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
477 * |-------------------------------------------------------------------
478 * BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
479 * |-------------------------------------------------------------------
480 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) | NOP (0x90) | VCS2 (0xb8) |
481 * |-------------------------------------------------------------------
482 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) | NOP (0xc0) |
483 * |-------------------------------------------------------------------
485 * Generalization:
486 * g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
487 * ie. transpose of f(x, y)
489 struct {
490 #define GEN6_SEMAPHORE_LAST VECS_HW
491 #define GEN6_NUM_SEMAPHORES (GEN6_SEMAPHORE_LAST + 1)
492 #define GEN6_SEMAPHORES_MASK GENMASK(GEN6_SEMAPHORE_LAST, 0)
493 struct {
494 /* our mbox written by others */
495 u32 wait[GEN6_NUM_SEMAPHORES];
496 /* mboxes this ring signals to */
497 i915_reg_t signal[GEN6_NUM_SEMAPHORES];
498 } mbox;
500 /* AKA wait() */
501 int (*sync_to)(struct drm_i915_gem_request *req,
502 struct drm_i915_gem_request *signal);
503 u32 *(*signal)(struct drm_i915_gem_request *req, u32 *cs);
504 } semaphore;
506 struct intel_engine_execlists execlists;
508 /* Contexts are pinned whilst they are active on the GPU. The last
509 * context executed remains active whilst the GPU is idle - the
510 * switch away and write to the context object only occurs on the
511 * next execution. Contexts are only unpinned on retirement of the
512 * following request ensuring that we can always write to the object
513 * on the context switch even after idling. Across suspend, we switch
514 * to the kernel context and trash it as the save may not happen
515 * before the hardware is powered down.
517 struct i915_gem_context *last_retired_context;
519 /* We track the current MI_SET_CONTEXT in order to eliminate
520 * redudant context switches. This presumes that requests are not
521 * reordered! Or when they are the tracking is updated along with
522 * the emission of individual requests into the legacy command
523 * stream (ring).
525 struct i915_gem_context *legacy_active_context;
526 struct i915_hw_ppgtt *legacy_active_ppgtt;
528 /* status_notifier: list of callbacks for context-switch changes */
529 struct atomic_notifier_head context_status_notifier;
531 struct intel_engine_hangcheck hangcheck;
533 #define I915_ENGINE_NEEDS_CMD_PARSER BIT(0)
534 #define I915_ENGINE_SUPPORTS_STATS BIT(1)
535 unsigned int flags;
538 * Table of commands the command parser needs to know about
539 * for this engine.
541 DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
544 * Table of registers allowed in commands that read/write registers.
546 const struct drm_i915_reg_table *reg_tables;
547 int reg_table_count;
550 * Returns the bitmask for the length field of the specified command.
551 * Return 0 for an unrecognized/invalid command.
553 * If the command parser finds an entry for a command in the engine's
554 * cmd_tables, it gets the command's length based on the table entry.
555 * If not, it calls this function to determine the per-engine length
556 * field encoding for the command (i.e. different opcode ranges use
557 * certain bits to encode the command length in the header).
559 u32 (*get_cmd_length_mask)(u32 cmd_header);
561 struct {
563 * @lock: Lock protecting the below fields.
565 spinlock_t lock;
567 * @enabled: Reference count indicating number of listeners.
569 unsigned int enabled;
571 * @active: Number of contexts currently scheduled in.
573 unsigned int active;
575 * @enabled_at: Timestamp when busy stats were enabled.
577 ktime_t enabled_at;
579 * @start: Timestamp of the last idle to active transition.
581 * Idle is defined as active == 0, active is active > 0.
583 ktime_t start;
585 * @total: Total time this engine was busy.
587 * Accumulated time not counting the most recent block in cases
588 * where engine is currently busy (active > 0).
590 ktime_t total;
591 } stats;
594 static inline bool intel_engine_needs_cmd_parser(struct intel_engine_cs *engine)
596 return engine->flags & I915_ENGINE_NEEDS_CMD_PARSER;
599 static inline bool intel_engine_supports_stats(struct intel_engine_cs *engine)
601 return engine->flags & I915_ENGINE_SUPPORTS_STATS;
604 static inline void
605 execlists_set_active(struct intel_engine_execlists *execlists,
606 unsigned int bit)
608 __set_bit(bit, (unsigned long *)&execlists->active);
611 static inline void
612 execlists_clear_active(struct intel_engine_execlists *execlists,
613 unsigned int bit)
615 __clear_bit(bit, (unsigned long *)&execlists->active);
618 static inline bool
619 execlists_is_active(const struct intel_engine_execlists *execlists,
620 unsigned int bit)
622 return test_bit(bit, (unsigned long *)&execlists->active);
625 void
626 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists);
628 void
629 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);
631 static inline unsigned int
632 execlists_num_ports(const struct intel_engine_execlists * const execlists)
634 return execlists->port_mask + 1;
637 static inline void
638 execlists_port_complete(struct intel_engine_execlists * const execlists,
639 struct execlist_port * const port)
641 const unsigned int m = execlists->port_mask;
643 GEM_BUG_ON(port_index(port, execlists) != 0);
644 GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));
646 memmove(port, port + 1, m * sizeof(struct execlist_port));
647 memset(port + m, 0, sizeof(struct execlist_port));
650 static inline unsigned int
651 intel_engine_flag(const struct intel_engine_cs *engine)
653 return BIT(engine->id);
656 static inline u32
657 intel_read_status_page(struct intel_engine_cs *engine, int reg)
659 /* Ensure that the compiler doesn't optimize away the load. */
660 return READ_ONCE(engine->status_page.page_addr[reg]);
663 static inline void
664 intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
666 /* Writing into the status page should be done sparingly. Since
667 * we do when we are uncertain of the device state, we take a bit
668 * of extra paranoia to try and ensure that the HWS takes the value
669 * we give and that it doesn't end up trapped inside the CPU!
671 if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
672 mb();
673 clflush(&engine->status_page.page_addr[reg]);
674 engine->status_page.page_addr[reg] = value;
675 clflush(&engine->status_page.page_addr[reg]);
676 mb();
677 } else {
678 WRITE_ONCE(engine->status_page.page_addr[reg], value);
683 * Reads a dword out of the status page, which is written to from the command
684 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
685 * MI_STORE_DATA_IMM.
687 * The following dwords have a reserved meaning:
688 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
689 * 0x04: ring 0 head pointer
690 * 0x05: ring 1 head pointer (915-class)
691 * 0x06: ring 2 head pointer (915-class)
692 * 0x10-0x1b: Context status DWords (GM45)
693 * 0x1f: Last written status offset. (GM45)
694 * 0x20-0x2f: Reserved (Gen6+)
696 * The area from dword 0x30 to 0x3ff is available for driver usage.
698 #define I915_GEM_HWS_INDEX 0x30
699 #define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
700 #define I915_GEM_HWS_PREEMPT_INDEX 0x32
701 #define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
702 #define I915_GEM_HWS_SCRATCH_INDEX 0x40
703 #define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
705 #define I915_HWS_CSB_BUF0_INDEX 0x10
706 #define I915_HWS_CSB_WRITE_INDEX 0x1f
707 #define CNL_HWS_CSB_WRITE_INDEX 0x2f
709 struct intel_ring *
710 intel_engine_create_ring(struct intel_engine_cs *engine, int size);
711 int intel_ring_pin(struct intel_ring *ring,
712 struct drm_i915_private *i915,
713 unsigned int offset_bias);
714 void intel_ring_reset(struct intel_ring *ring, u32 tail);
715 unsigned int intel_ring_update_space(struct intel_ring *ring);
716 void intel_ring_unpin(struct intel_ring *ring);
717 void intel_ring_free(struct intel_ring *ring);
719 void intel_engine_stop(struct intel_engine_cs *engine);
720 void intel_engine_cleanup(struct intel_engine_cs *engine);
722 void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);
724 int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
726 int intel_ring_wait_for_space(struct intel_ring *ring, unsigned int bytes);
727 u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req,
728 unsigned int n);
730 static inline void
731 intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
733 /* Dummy function.
735 * This serves as a placeholder in the code so that the reader
736 * can compare against the preceding intel_ring_begin() and
737 * check that the number of dwords emitted matches the space
738 * reserved for the command packet (i.e. the value passed to
739 * intel_ring_begin()).
741 GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
744 static inline u32
745 intel_ring_wrap(const struct intel_ring *ring, u32 pos)
747 return pos & (ring->size - 1);
750 static inline u32
751 intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
753 /* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
754 u32 offset = addr - req->ring->vaddr;
755 GEM_BUG_ON(offset > req->ring->size);
756 return intel_ring_wrap(req->ring, offset);
759 static inline void
760 assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
762 /* We could combine these into a single tail operation, but keeping
763 * them as seperate tests will help identify the cause should one
764 * ever fire.
766 GEM_BUG_ON(!IS_ALIGNED(tail, 8));
767 GEM_BUG_ON(tail >= ring->size);
770 * "Ring Buffer Use"
771 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6
772 * Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
773 * Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
774 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
775 * same cacheline, the Head Pointer must not be greater than the Tail
776 * Pointer."
778 * We use ring->head as the last known location of the actual RING_HEAD,
779 * it may have advanced but in the worst case it is equally the same
780 * as ring->head and so we should never program RING_TAIL to advance
781 * into the same cacheline as ring->head.
783 #define cacheline(a) round_down(a, CACHELINE_BYTES)
784 GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
785 tail < ring->head);
786 #undef cacheline
789 static inline unsigned int
790 intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
792 /* Whilst writes to the tail are strictly order, there is no
793 * serialisation between readers and the writers. The tail may be
794 * read by i915_gem_request_retire() just as it is being updated
795 * by execlists, as although the breadcrumb is complete, the context
796 * switch hasn't been seen.
798 assert_ring_tail_valid(ring, tail);
799 ring->tail = tail;
800 return tail;
803 void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);
805 void intel_engine_setup_common(struct intel_engine_cs *engine);
806 int intel_engine_init_common(struct intel_engine_cs *engine);
807 int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
808 void intel_engine_cleanup_common(struct intel_engine_cs *engine);
810 int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
811 int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
812 int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
813 int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);
815 u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
816 u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);
818 static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
820 return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
823 static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
825 /* We are only peeking at the tail of the submit queue (and not the
826 * queue itself) in order to gain a hint as to the current active
827 * state of the engine. Callers are not expected to be taking
828 * engine->timeline->lock, nor are they expected to be concerned
829 * wtih serialising this hint with anything, so document it as
830 * a hint and nothing more.
832 return READ_ONCE(engine->timeline->seqno);
835 int init_workarounds_ring(struct intel_engine_cs *engine);
836 int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);
838 void intel_engine_get_instdone(struct intel_engine_cs *engine,
839 struct intel_instdone *instdone);
842 * Arbitrary size for largest possible 'add request' sequence. The code paths
843 * are complex and variable. Empirical measurement shows that the worst case
844 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
845 * we need to allocate double the largest single packet within that emission
846 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
848 #define MIN_SPACE_FOR_ADD_REQUEST 336
850 static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
852 return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
855 static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine)
857 return engine->status_page.ggtt_offset + I915_GEM_HWS_PREEMPT_ADDR;
860 /* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
861 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
863 static inline void intel_wait_init(struct intel_wait *wait,
864 struct drm_i915_gem_request *rq)
866 wait->tsk = current;
867 wait->request = rq;
870 static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
872 wait->tsk = current;
873 wait->seqno = seqno;
876 static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
878 return wait->seqno;
881 static inline bool
882 intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
884 wait->seqno = seqno;
885 return intel_wait_has_seqno(wait);
888 static inline bool
889 intel_wait_update_request(struct intel_wait *wait,
890 const struct drm_i915_gem_request *rq)
892 return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
895 static inline bool
896 intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
898 return wait->seqno == seqno;
901 static inline bool
902 intel_wait_check_request(const struct intel_wait *wait,
903 const struct drm_i915_gem_request *rq)
905 return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
908 static inline bool intel_wait_complete(const struct intel_wait *wait)
910 return RB_EMPTY_NODE(&wait->node);
913 bool intel_engine_add_wait(struct intel_engine_cs *engine,
914 struct intel_wait *wait);
915 void intel_engine_remove_wait(struct intel_engine_cs *engine,
916 struct intel_wait *wait);
917 void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
918 bool wakeup);
919 void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);
921 static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
923 return READ_ONCE(engine->breadcrumbs.irq_wait);
926 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
927 #define ENGINE_WAKEUP_WAITER BIT(0)
928 #define ENGINE_WAKEUP_ASLEEP BIT(1)
930 void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine);
931 void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine);
933 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
934 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
936 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
937 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
938 bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);
940 static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
942 memset(batch, 0, 6 * sizeof(u32));
944 batch[0] = GFX_OP_PIPE_CONTROL(6);
945 batch[1] = flags;
946 batch[2] = offset;
948 return batch + 6;
951 static inline u32 *
952 gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset)
954 /* We're using qword write, offset should be aligned to 8 bytes. */
955 GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
957 /* w/a for post sync ops following a GPGPU operation we
958 * need a prior CS_STALL, which is emitted by the flush
959 * following the batch.
961 *cs++ = GFX_OP_PIPE_CONTROL(6);
962 *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
963 PIPE_CONTROL_QW_WRITE;
964 *cs++ = gtt_offset;
965 *cs++ = 0;
966 *cs++ = value;
967 /* We're thrashing one dword of HWS. */
968 *cs++ = 0;
970 return cs;
973 static inline u32 *
974 gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset)
976 /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
977 GEM_BUG_ON(gtt_offset & (1 << 5));
978 /* Offset should be aligned to 8 bytes for both (QW/DW) write types */
979 GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));
981 *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
982 *cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
983 *cs++ = 0;
984 *cs++ = value;
986 return cs;
989 bool intel_engine_is_idle(struct intel_engine_cs *engine);
990 bool intel_engines_are_idle(struct drm_i915_private *dev_priv);
992 bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine);
994 void intel_engines_park(struct drm_i915_private *i915);
995 void intel_engines_unpark(struct drm_i915_private *i915);
997 void intel_engines_reset_default_submission(struct drm_i915_private *i915);
998 unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915);
1000 bool intel_engine_can_store_dword(struct intel_engine_cs *engine);
1002 __printf(3, 4)
1003 void intel_engine_dump(struct intel_engine_cs *engine,
1004 struct drm_printer *m,
1005 const char *header, ...);
1007 struct intel_engine_cs *
1008 intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance);
1010 static inline void intel_engine_context_in(struct intel_engine_cs *engine)
1012 unsigned long flags;
1014 if (READ_ONCE(engine->stats.enabled) == 0)
1015 return;
1017 spin_lock_irqsave(&engine->stats.lock, flags);
1019 if (engine->stats.enabled > 0) {
1020 if (engine->stats.active++ == 0)
1021 engine->stats.start = ktime_get();
1022 GEM_BUG_ON(engine->stats.active == 0);
1025 spin_unlock_irqrestore(&engine->stats.lock, flags);
1028 static inline void intel_engine_context_out(struct intel_engine_cs *engine)
1030 unsigned long flags;
1032 if (READ_ONCE(engine->stats.enabled) == 0)
1033 return;
1035 spin_lock_irqsave(&engine->stats.lock, flags);
1037 if (engine->stats.enabled > 0) {
1038 ktime_t last;
1040 if (engine->stats.active && --engine->stats.active == 0) {
1042 * Decrement the active context count and in case GPU
1043 * is now idle add up to the running total.
1045 last = ktime_sub(ktime_get(), engine->stats.start);
1047 engine->stats.total = ktime_add(engine->stats.total,
1048 last);
1049 } else if (engine->stats.active == 0) {
1051 * After turning on engine stats, context out might be
1052 * the first event in which case we account from the
1053 * time stats gathering was turned on.
1055 last = ktime_sub(ktime_get(), engine->stats.enabled_at);
1057 engine->stats.total = ktime_add(engine->stats.total,
1058 last);
1062 spin_unlock_irqrestore(&engine->stats.lock, flags);
1065 int intel_enable_engine_stats(struct intel_engine_cs *engine);
1066 void intel_disable_engine_stats(struct intel_engine_cs *engine);
1068 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine);
1070 #endif /* _INTEL_RINGBUFFER_H_ */